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Abstract

Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs
modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial
correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using
observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which
spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise
process. Represented as a strain spectrum h A f 1yrc

1= a-( ) , we measure A 3.1 100.9
1.3 15= ´-

+ - and
α=−0.45± 0.20, respectively (median and 68% credible interval). For a spectral index of α=−2/3,
corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we
recover an amplitude of A 2.04 100.22

0.25 15= ´-
+ - . However, we demonstrate that the apparent signal strength is time-

dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred
common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by
hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing
pulsar positions on the sky. For a process with α=−2/3, we measure spatial correlations consistent with a GWB,
with an estimated false-alarm probability of p 0.02 (approx. 2σ). The long timing baselines of the PPTA and the
access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);
Millisecond pulsars (1062); Pulsar timing method (1305); Bayesian statistics (1900)

1. Introduction

The era of observational gravitational-wave (GW) astronomy
commenced with the observation of a stellar-mass binary black
hole merger (Abbott et al. 2016). The growing catalog of GW
events from ground-based observatories covers relatively high
frequencies in a band spanning ∼101 Hz to 103( ) Hz (The

LIGO-Virgo-KAGRA Collaboration et al. 2021). Pulsar timing
array (PTA) experiments offer a complementary window into
the GW landscape in the nanohertz-frequency band at frequen-
cies 10 9-( ) Hz. Sources of GWs at such low frequencies may
include supermassive black hole binary (SMBHB) systems
(e.g., Rajagopal & Romani 1995; Wyithe & Loeb 2003; Sesana
2013; Ravi et al. 2015; Burke-Spolaor et al. 2019), primordial
quantum fluctuations amplified by inflation (e.g., Grishchuk
2005; Lasky et al. 2016), cosmic strings (e.g., Siemens et al.
2007; Ölmez et al. 2010), or cosmological phase transitions
(e.g., Caprini et al. 2010; Xue et al. 2021). The highest-
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amplitude (loudest) signal in this band is expected to be the
stochastic background produced by the incoherent super-
position of GWs radiated by inspiraling SMBHBs. An isotropic
stochastic gravitational-wave background (GWB) is the primary
target for GW searches by current PTA collaborations.

A PTA consists of a set of millisecond pulsars (MSPs) that
are monitored regularly (cadences of many days to a few
weeks), over decade timescales, to take advantage of their long-
term rotational stability (Foster & Backer 1990). As GWs
impart a strain on space-time, they slowly modulate the
observed pulse times of arrival (ToAs) from MSPs in an
achromatic manner (Sazhin 1978; Detweiler 1979). The ToA
modulations induced by an isotropic GWB are predicted to
possess a steep power spectral density (PSD) P∝ f−γ, where f is
the GW frequency. This spectrum is derived from the GW strain
amplitude spectrum h A f 1yrc

1= a-( ) , where α= (3− γ)/2.
The characteristic spectral index of an isotropic GWB from
inspiraling SMBHBs is α=− 2/3 and thus γ= 13/3 (Phinney
2001). The challenge in detecting this signal is that MSPs are
not perfectly stable in their spin and pulse properties and may
show intrinsic low-frequency noise that could resemble a GWB
for individual pulsars (Shannon & Cordes 2010). Additionally,
plasma in the interstellar medium has a significant effect on
radio pulses as it imparts dispersion and scattering delays that
depend on the radio wavelength as λ2 and λ∼4, respectively
(e.g., You et al. 2007; Hemberger & Stinebring 2008).
Variations in these propagation effects can also produce a red
signal in the pulse arrival times (e.g., Cordes & Shannon 2010;
Keith et al. 2013). Other low-frequency noise sources can
include errors in the solar system ephemeris (SSE), clock errors,
unmodeled variability in the solar wind, or offsets induced by
the observing instrumentation (Tiburzi et al. 2016).

The distinct characteristic of an isotropic GWB, which
separates it from intrinsic pulsar spin noise and other noise
processes, is the spatial correlations in the arrival times. The
Hellings–Downs function describes the expected correlation in
the pulse arrival times between pairs of pulsars, as a function of
their sky separation angle (Hellings & Downs 1983). It is the
fingerprint of the GWB and is presently the most sought-after
signal for a PTA experiment. The sensitivity of a PTA to such
spatial correlations depends primarily on the number of pulsar
pairs and their sky distribution (Siemens et al. 2013; Taylor
et al. 2016), which motivates the combination of global PTA
data sets under the International Pulsar Timing Array (IPTA;
Hobbs et al. 2010; Antoniadis et al. 2022) project. Future
observations in the high signal-to-noise regime of the GWB
may reveal anisotropy resulting from an unresolved local
population of SMBHBs (Taylor & Gair 2013; Mingarelli et al.
2017). Individual supermassive black hole sources may also be
observed, with orbital properties inferred through template
matching of the GW waveform (Jenet et al. 2004; Corbin &
Cornish 2010; Ellis 2013; Zhu et al. 2015).

The Hellings–Downs signature cross correlation is relatively
weak, with the average amplitude of the cross correlation being
well under 0.25, depending on the distribution of the pulsars on
the sky. As the number of pulsars in the array increases, along
with the time span and advances in instrumentation that improve
the timing precision, the sensitivity of a PTA also increases. We
would expect, eventually, to see the same GWB spectrum in the
power spectrum for each pulsar, rising above the noise level
(which is different for each pulsar). However, the cross
correlations may not become evident until the sensitivity of

the PTA increases significantly (Pol et al. 2021; Romano et al.
2021). Exactly this situation occurred when the North American
Nanohertz Observatory for gravitational waves (NANOGrav)
detected a “common-spectrum” process in their pulsars using
12.5 yr of MSP timing data, but was unable to establish a
significant cross correlation between pulsar pairs (Arzoumanian
et al. 2020). A similar common-spectrum process was also
detected by the other PTAs without obvious cross correlations
(Goncharov et al. 2021b; Chen et al. 2021). The IPTA, using a
union of earlier data releases from each of these PTAs, also
identified a common-spectrum process, notably with higher
significance than the individual PTA constituents of the data set
(Antoniadis et al. 2022).
The origin of the common-spectrum process is unclear, in

part because these recent results were in apparent tension with
the 95% confidence upper limits placed by some PTA analyses
using earlier data releases (e.g., Shannon et al. 2015;
Arzoumanian et al. 2018). Unmodeled SSE errors (Vallisneri
et al. 2020), choices of noise models and priors (Hazboun et al.
2020a), and finite numbers of pulsars (Johnson et al. 2022) have
been proposed to have been factors in these earlier upper-limit
results. The NANOGrav analysis, and earlier works (Arzouma-
nian et al. 2018; Vallisneri et al. 2020), demonstrated that SSE
errors could be contributing to the measured common noise, and
consequently, techniques were developed to account for such
errors. The PPTA analysis found that the “common process”
model does not discriminate between common and spectrally
similar noise processes (Zic et al. 2022), which was addressed in
Goncharov et al. (2022). Depending on the noise modeling
framework, a recovered common-spectrum process could
contain various non-GW sources of noise. For example, the
common spectrum could include pulsar timing noise and/or
errors in the correction of interstellar medium effects (dispersion
and scattering), which would be uncorrelated between pulsars
and could have a similar power-law red spectrum. It could also
include SSE errors, which would be correlated between pulsars
and could have a wide range of spectral distributions (Guo et al.
2019; Vallisneri et al. 2020). Evidently, the origin of the
common spectrum will not be resolved until significant cross
correlation is obtained.
For this work we have used the third data release of the PPTA

(Zic et al. 2023) to search for and characterize a common-
spectrum stochastic process and spatial correlations, with
particular focus on the GWB. In a coordinated effort, the
NANOGrav, EPTA and Indian Pulsar Timing Array (Joshi et al.
2018), and Chinese Pulsar Timing Array (Lee 2016)
collaborations have also recently searched their respective data
sets for a GWB (Antoniadis et al. 2023; Arzoumanian et al.
2023; Xu et al. 2023). In Section 2, we describe the data analysis
methods and the models we consider. The results are presented
in Section 3, and the implications are discussed further in
Section 4. We conclude in Section 5.

2. Methods

The analysis presented here is performed on the third PPTA
data release (PPTA-DR3) and individual pulsar noise analyses.
The data release adds ∼3 yr of timing baseline compared to
PPTA-DR2 (Kerr et al. 2020) and includes observations taken
with the new ultrawide-band low receiver (UWL; Hobbs et al.
2020), which offers wider bandwidths than previous observa-
tions. This is useful for measuring interstellar medium effects
and obtaining arrival times with higher precision. The data
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release (Zic et al. 2023) and noise analyses (Reardon et al. 2023)
are presented in companion papers. While PPTA-DR3 contains
observations from 32 pulsars, in this work we only consider 30
of them. The globular cluster MSP PSR J1824−2452A was
excluded as it contains steep-spectrum red noise that is too
strong for this pulsar to be sensitive to a common process. The
noise is likely intrinsic to the pulsar (Shannon & Cordes 2010),
although globular-cluster dynamics may contribute as well. We
also exclude PSR J1741+ 1351 from the analysis. It was only
added to the PPTA as the UWL was commissioned, and
observed with low priority. In the current data release, only 16
observations were available, resulting in a data set that would
not be sensitive to any GWB signal. These observations could,
however, become useful as part of future IPTA data sets.

2.1. Inference and PTA Likelihood

We use Bayesian inference22 to search for and characterize
noise and signals in our data set, following previous PTA
analyses (Arzoumanian et al. 2020; Goncharov et al. 2021b;
Chen et al. 2021; Antoniadis et al. 2022). PTAs observe offsets
between the measured pulse arrival times δt and the arrival
times predicted by the models. The time-domain likelihood of
the observed residuals given a model is described by a Gaussian
likelihood function, td q( ∣ ), where θ is the vector of model
parameters (van Haasteren et al. 2009). The likelihood is
multivariate with respect to the number of observations of
timing residuals. The implementation of the likelihood is
described in Arzoumanian et al. (2016) and Taylor et al. (2017),
and it is given by

t
t C t

C

exp

det 2
, 1

T1

2
1

d q
d m d m

p
=

- - --


( )

( ∣ )
( ) ( )

( )
( )

where μ(θ) represents the model prediction for timing residuals,
and the covariance matrix is C(θ). The diagonal elements in the
covariance matrix represent the temporally uncorrelated noise,
which is referred to as white. Temporally correlated stochastic
processes, referred to as red, could have been represented by
off-diagonal elements in C. However, to avoid a computation-
ally expensive matrix inversion, temporally correlated stochas-
tic processes are modeled as Gaussian processes (Lentati et al.
2013; van Haasteren & Vallisneri 2014) in μ:

Fa M , 2m = +  ( )

where the design matrixM and the corresponding coefficients ò
are the timing model contributions, and the red processes are
modeled using the Fourier sine and cosine basis functions in F
and amplitudes a. We emphasize that (a and ò) are a subset of
the parameters in the model θ. They are nuisance parameters
and can be analytically marginalized over a Gaussian prior

a, qp ¢( ∣ ). It is common to assume that there is a relationship
between the amplitudes of the Fourier components. In this case,
q¢ are hyperparameters that govern the spectra of temporal
correlations, such as the power-law amplitude and the slope of P
( f ) of pulsar-intrinsic red noise, or the gravitational-wave
background. The prior on a joins single-pulsar likelihoods into a

joint posterior distribution

t t a, , . 3q q d d q q qp p¢ µ ¢ ¢ ( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )

The covariance matrix of a, qp ¢( ∣ ) has elements

P P , 4ai bj ai ab ij ab i ij,p d d d= + G ( )( ) ( )

where a and b are pulsar indices, and i and j are frequency
indices. Pai is the PSD of the noise intrinsic to pulsar a at a
frequency bin i, Pi is the PSD of a spatially correlated signal at
the frequency i, and Γab is the overlap reduction function that
determines the degree of this correlation between pulsars a and
b. In case of an isotropic GWB from circular SMBHBs, Γab,
also referred to as the overlap reduction function, is given by the
Hellings & Downs (1983) curve:

x
x x

1

2

1

2 4

3

2
ln , 5ab ab

ab
ab abdG = + - + ( )

where x 1 cos 2ab abz= -( ) , δab is the Kronecker delta
function, and ζab is the sky separation angle for a given pair
of pulsars.
We evaluate the posterior probability t,q q d¢( ∣ ) using the

ENTERPRISE package (Ellis et al. 2019) and a parallel-tempered
Markov Chain Monte Carlo (MCMC) algorithm (PTMCMCSAM-
PLER; Ellis & van Haasteren 2019). For more details about
modeling Gaussian processes in PTAs, see Lentati et al. (2013)
and van Haasteren & Vallisneri (2014).
Previous GWB analyses have assessed the properties of the

dominant temporally correlated and spatially uncorrelated
common-spectrum process. This process was considered as
the null hypothesis in searches for the spatially correlated GWB
signal. The PSD of temporal correlations can be modeled as a
power law parameterized by an amplitude (A) and spectral
index:

P f
A f

f12
, 6

2

2
yrp

=
g-

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

where γ> 0. The models of common noise in this form are
added to the PTA likelihood and analyzed simultaneously with
all red-noise processes identified in single pulsars. The support
for the proposed common-noise processes is quantified
primarily through the Bayesian odds ratio (equivalent to the
Bayes factor  for equal prior odds), which can be estimated
using the product-space sampling method (Arzoumanian et al.
2016; Carlin & Chib 2018).
The number of Fourier frequency components used to model

the common power-law processes can be set by the sensitivity
of our PTA, which is white-noise dominated near f∼ 1/
(240 days) (as determined based on broken power-law analysis,
e.g., Arzoumanian et al. 2020). Accordingly we set the number
of components as Ncomp= ⌊Tspan/(240 days)⌋= 28, where
Tspan= 6605 days is the total observing span of PPTA-DR3.
We note that the use of a broken power-law model to set the
number of significant Fourier components (Arzoumanian et al.
2020) could highlight excess unmodeled (non-power-law) noise
at higher frequencies. If the noise is correctly characterized, and
the signal is a power law, then the data will not favor a turnover
frequency and should instead become insensitive to a turnover
for frequencies that are white-noise dominated.
Under the model of a fixed spectral index γ= 13/3 (the

spectral index expected for a GWB produced by circular
22 For an overview of the principles of Bayesian inference in gravitational-wave
astronomy, see Thrane & Talbot (2019) and Taylor (2021).
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SMBHBs, with their inspirals driven by GW radiation at the
frequencies of interest; Phinney 2001) and zero spatial
correlation, the PTA likelihood can be factorized into a product
of likelihoods from individual pulsars (e.g., Taylor et al. 2022).
In this way, a γ= 13/3 process can be introduced to the noise
models of individual pulsars and the resulting posterior
probability density functions (PDFs) for the process amplitude
can be multiplied to produce a posterior for the whole array. We
use this factorized-likelihood approach to efficiently assess the
preferred amplitude of a γ= 13/3 process in our data, and to
estimate the model support under an assumed prior range using
the Savage–Dickey method for computing the Bayes factor 
(Dickey 1971).

Hereafter, when referring to specific models, we label the
amplitude of an uncorrelated common-red-noise (CRN) process
as ACRN, and when the spectral index is fixed at γ= 13/3, we
write A13 3

CRN. For a γ= 13/3 process in a single pulsar (i.e., not
common to the PTA), we use A13/3. A process with Hellings–
Downs correlations included in the covariance matrix is denoted
AHD with a varied spectral index and AGWB when the index is
γ= 13/3.

2.1.1. Defining Prior Ranges

The choice of prior has a dramatic effect on the Bayesian
evidence of common-noise processes, and therefore Bayes
factors used for model comparison (Zic et al. 2022). It is
important for priors to encompass the likelihood support, but
prior ranges that are too broad have been shown to induce
spurious support for certain models. This problem affects the
inference of common uncorrelated noise processes in PTAs, and
can lead to very high Bayesian support for a common process
where none exists (Zic et al. 2022). To mitigate the possibility of
spurious support, we trialed different priors in our analysis. For
the factorized-likelihood analysis we adopt a log-uniform prior
on the amplitude in the range A20 log 1110 13 3- -  to be
consistent with earlier analyses (Arzoumanian et al. 2020;
Goncharov et al. 2021b). However, our data are not sensitive to
signals below Alog 16.510 13 3 - even for very steep spectral
indices (γ∼ 7). We therefore adopt Alog 1810 13 3 - as a
conservative lower bound for the remainder of our analyses. The
prior for the common-noise spectral index is uniform
in 0� γ� 7.

To set the prior ranges for the individual pulsar noise
parameters, we take the central 99.7% credible interval from
our single-pulsar noise analysis posteriors (Reardon et al. 2023),
and add a generous buffer region such that pulsar noise properties
are allowed to vary substantially under a common-noise model.
These ranges are A A Alog 2 log log 110 0.15 10 10 99.85- + 
and γ0.15− 0.5� γ� γ99.85+ 0.5, where the parameter sub-
scripts denote the percentile of the posterior distribution for this
parameter. This ensures that we do not force any pulsars to have
intrinsic noise if it is instead attributed to a common process and
the prior range encompasses all likelihood support from the data.
PSR J1643−1224 is the only pulsar with a lower bound

Alog 1710 - , with a red noise prior constructed in this way
of A15.2 log 11.510- < < - as it is observed to have shallow-
spectrum noise (γ� 2.3 with 99.7% confidence). By restricting
the prior ranges in this way, we reduce the risk of spurious
measurements (Zic et al. 2022) of common noise and are able to
accelerate the inference. We are confident in the recovered
parameters using this methodology as the shapes and values of

the inferred marginal posterior PDFs using these prior ranges are
consistent with those recovered using standard priors.

2.2. Noise and Signal Models

2.2.1. Common Processes

The term common noise refers to any noise process (or
potentially unmodeled deterministic signal), correlated or
uncorrelated, that is characterized by the same power spectral
density for all pulsars. However, common noise could be
recovered from similar power spectral densities in most pulsars,
and as such, examples include not only GWs but also potentially
unmodeled instrumental offsets, the solar wind; or errors in the
clock correction, Earth orientation parameters, or SSE. If
intrinsic pulsar timing noise (rotational irregularities) is
generated by the same physical mechanism in multiple pulsars,
the spectral properties of this random process could be
recovered via inference of a common-spectrum noise process
but should be spatially uncorrelated, unlike the GWB. The
variety of potential common-noise sources highlights the need
to measure the signature spatial correlations in order to detect a
GWB. The power spectrum of a power-law common
uncorrelated process is given by Equation (6).

2.2.2. Searching for Spatial Correlations

We conduct two distinct classes of searches for the Hellings–
Downs correlations inherent to a GWB. First, we replicate the
methods of some previous searches (e.g., Arzoumanian et al.
2020; Goncharov et al. 2021b; Chen et al. 2021; Antoniadis
et al. 2022), by constructing the global PTA likelihood for all
pulsars and introducing a Hellings–Downs correlated noise term
to the likelihood (see Equation (4)). For this model, both
autocorrelation and cross correlation are considered and inform
the parameter inference. The sensitivity of the PPTA data set is
predicted to be dominated by the autocorrelations (Spiewak
et al. 2022), so we could expect the spectral properties of such a
model to closely resemble the uncorrelated common process.
While pulsar white-noise terms are usually fixed at their
maximum likelihood values (as they are less covariant with the
GWB), we numerically marginalized over all red-noise terms
for all pulsars in the array, as these noise terms could be highly
covariant with any common signal. This results in a high-
dimension parameter space that needs to be explored. In the case
of PPTA-DR3 the parameter space spans 260 dimensions.
We also present a new search method that increases the

efficiency of the inference with a hierarchical inference
approach. This is important because with our large data volume
(∼1.2× 105 ToAs) and parameter space (∼260 free parameters)
it takes of order CPU years to collect a sufficient number of
independent MCMC samples for standard full-PTA correlation
analyses, which makes it costly to determine false-alarm
probabilities with bootstrap methods. We first search for
common-spectrum noise process in pulsar pairs individually.
We measure the Alog10 13 3 and correlation coefficient, Γ, for
each of the 435 unique pulsar pairs (Npair= Npsr(Npsr− 1)/2, for
Npsr pulsars) in our data set. From the posterior samples, we
derive a smooth PDF, p Alog ,10 13 3 G( ), using a two-
dimensional Gaussian kernel density estimate (KDE). We
account for the bounded domains −1� Γ� 1, and

A18 log 1410- -  by mirroring the samples at these
boundaries to partially overcome bias in the density estimator
introduced by the boundary discontinuity (Schuster 1985). The
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standard deviation of the Gaussian kernel (for all pairs) was
Alog 0.05KDE 10s =( ) for amplitude (the standard deviation of

our measured common process) and σKDE(Γ)= 0.27 for
correlation coefficient (the minimum observed standard
deviation for an individual pair in our sample). We also tried
using a different σKDE(Γ) kernel width for each pair, computed
using Silverman’s rule (because we observe that the
distributions are unimodal; Silverman 1986), and we observe
consistent results.

From these resulting PDFs, we reweight the posterior
samples (using a form of importance sampling; Gelman et al.
1995; Goncharov et al. 2022; Hourihane et al. 2023; Taylor
et al. 2022) to recover the probability density for Γ that
corresponds to the posterior probability density of Alog10 13 3

CRN

that we measured from our factorized-likelihood analysis. After
this reweighting, the 435 PDFs for Γ, denoted p(Γ), assume a
common distribution on Alog10 . These PDFs can then be
analyzed to assess the model support for correlations such as the
Hellings–Downs ORF expected of the isotropic GWB. The
measurements will not be completely independent, and we
address the implications of this below.

We also measure p(Γ) for the amplitude fixed at our
maximum likelihood Alog10 13 3

CRN, which is equivalent to the
reweighted measurements if the correlations do not evolve
across the uncertainty of the recovered common noise. These
fixed-amplitude measurements are more computationally
efficient, particularly for pulsars with low likelihood support
at the amplitude of interest. We therefore obtain these fixed-
amplitude correlation measurements from independent MCMC
chains so that they can also serve as a consistency test, sensitive
to errors in the KDE due to a finite number of samples.

We quantify the support for a Hellings–Downs ORF over
uncorrelated common noise by computing the likelihood of
each model. The Hellings–Downs likelihood is defined to be the
product of the probabilities of observing Γ= Γab for each pair

p , 7
k

N

k ab
HD

1

pair

= G = G
=

 ( ) ( )

where the kth pair involves pulsars a and b, Npair= 435, and Γab

is given by Equation (5). Similarly, the likelihood of zero
correlations for the observed common noise is

p 0 . 8
k

N

k
CRN

1

pair

= G =
=

 ( ) ( )

The support for Hellings–Downs over zero correlations can be
quantified using the likelihood ratio CRN

HD HD CRND =   . This
could be interpreted as an estimated Bayes Factor CRN

HD because
the ORFs are effectively zero-parameter models. However,
because of the weaknesses in this method (e.g., assuming the
measured correlations are independent, and KDE biases), the
ad-hoc estimator CRN

HDD is not as well-defined as a Bayes
factor, and we instead interpret its statistical significance by
generating noise realizations from the data itself.

The method allows for the rapid computation of false-alarm
probabilities by recalculating the likelihood statistics after
assuming random positions for the pulsars on the sky. This
process is referred to as sky scrambling (Cornish & Sampson
2016; Taylor et al. 2017). The number of possible independent
skies (leading to orthogonal sets of samples from the Hellings–
Downs ORF) is limited to Nsky= Npsr(Npsr− 1), for Npsr pulsars

with equal sensitivity. However, we are able to generate a larger
number of skies by relaxing the strict requirement for
independence. We instead consider randomized skies where
the normalized inner product of the ORF samples from any two
skies is �0.2 (e.g., Cornish & Sampson 2016; Taylor
et al. 2017).
Our hierarchical inference scheme can also be simply

extended to search for anisotropy in the GWB (Taylor & Gair
2013), or to search for a signal with a completely different
spatial correlation signature. It could also be used to estimate the
amplitude of a correlated signal independently from the
autocorrelations (provided a reliable reconstruction of the full

Alog ,10 G( ) parameter space can be made for each pair).
Pulsars have different sensitivities to common-noise

processes due to variations in their timing precision and
intrinsic red-noise properties. As a result, the effective number
of pulsar pairs in the array is less than the total. We can also use
the PDFs for Γ to compute the number of effective pulsar pairs
neff using

n , 9
k

N

k

k

N

k

eff
1

2
2

1

4

pair

pair
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= =
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where σk is the uncertainty in the angular correlation for the kth

pulsar pair. We define σk as the half-width of the 68% credibility
interval of the correlation coefficient posterior for pulsar pair k.
This is more conservative than using the standard deviation of
the posterior samples as σk because the distributions are often
asymmetric.

3. Results

3.1. Factorized-likelihood Analysis

We first searched for a purported common red process using
the factorized-likelihood technique (Taylor et al. 2022). For
each pulsar, we include an achromatic process with a fixed
spectral index of γ= 13/3, while the (log) amplitude for this
process, with a prior in the range A20 log 1110 13 3- -  ,
was sampled simultaneously with the full single-pulsar noise
models. The posterior probability density for each pulsar (light-
gray and colored lines) is shown in Figure 1. The probability
density for the log amplitude of a common process is found by
taking the product of these individual pulsar posteriors. In this
way, the log amplitude can be interpreted as a probability-
weighted mean. The resulting distribution gives Alog10 13 3

CRN=
14.69 0.05-  , where, here and throughout, the uncertainties

represent the central 68% credibility interval unless otherwise
stated.
The PPTA data as a whole support the inclusion of a γ= 13/

3 process at this amplitude, with a strong Savage–Dickey Bayes
factor, log 6.810 = . By reducing the prior range to our
nominal A18 log 1110 13 3- -  , we find that the evidence
decreases to log 4.810 = , indicating that this statistic alone is a
poor metric for determining if a common-noise process is
present in the array. We stress that, while the evidence for a
common-noise process varies under different assumed prior
ranges, the recovered characteristics do not, because the
likelihood support under a common-noise model is encom-
passed for all pulsars for all prior ranges considered.
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3.2. Noise Consistency Metrics

Next, we assessed the consistency of each of the pulsars with
the common red process. Using the posterior distributions in
Figure 1, we define metrics to assess the consistency of
individual pulsars with the common process. We compute
posterior probability density ratios, which compare the
probability taken at the measured common amplitude
p Alog 14.6910 13 3 = -( ), against both the prior probability
density Alog10 13 3

CRNp ( ) and the mean probability at low
(effectively zero) amplitude p Alog 16.510 13 3 < -( ). The
probability ratios, shown in the top panel of Figure 2, are
intended to portray similar information to the “dropout factors”
used in previous works (e.g., Arzoumanian et al. 2020;
Goncharov et al. 2021b). We also compute the Savage–Dickey
Bayes factor, A p Alog log 16.510 13 3 10 13 3p= < - ( ) ( ),
which provides the support from each pulsar for a −13/3
process at any amplitude (bottom panel in Figure 2). The three
pulsars with the highest  and the three with the lowest  are
highlighted with unique colors in Figure 1. The three pulsars
that show the highest support show evidence for red noise in
single-pulsar noise analyses and also are likely to dominate the
factorized likelihood. The three pulsars with the lowest  show
no evidence for red noise in single-pulsar analyses. The
posterior distributions for these pulsars show negative support
for the CRN at the inferred amplitude. This is discussed further
below.

3.3. Common Uncorrelated Process

We next search for a single uncorrelated common process
with a variable spectral index. In contrast to the factorized-
likelihood analysis discussed previously, this process is
included for the PTA as a whole and sampled simultaneously

with all red components of the single-pulsar noise models. The
characteristics of this common process are considered for
multiple SSEs from the Jet Propulsion Laboratory (JPL; DE421,
DE438, and DE440), with our fiducial results generated with the
most recent DE440 ephemeris (Park et al. 2021). The one and
two-dimensional marginal posterior probability distributions for
the (log) amplitude and spectral index for the recovered process
are shown in Figure 3. All ephemerides return consistent
constraints for the process, with DE440 providing γ= 3.9± 0.4
and Alog 14.5010

CRN
0.16
0.14= - -

+ . While DE421 is an obsolete
SSE that is inaccurate for the Jovian system, the recovered
common noise is consistent, suggesting that the spectral
characteristics are dominated by another source. Under the
assumption of a fixed spectral index of γ= 13/3 we recover the
same amplitude constraint as the factorized-likelihood analysis,
as expected.
We also searched for a common uncorrelated process using

commonly used broad priors on single-pulsar noise terms
( A20 log 1110- -  , 0� γ� 7) under the DE440 ephe-
meris. We compare this with our distribution recovered under
tailored priors for single-pulsar noise terms in Figure 4. The
distributions are consistent, and for the broader priors we
recover 4.0 0.3

0.3g = -
+ and Alog 14.5210

CRN
0.15
0.14= - -

+ . The differ-
ences are comparable to those induced by SSE choice and much
smaller than those induced by weakness in single-pulsar noise
models (Reardon et al. 2023).

3.4. Time-dependence of the Common Process Amplitude

Next we search for any time evolution of the CRN process.
With the longest multiwavelength timing baseline and high
timing precision on many pulsars, the PPTA data provides the
best opportunity to assess the stationarity of any purported

Figure 1. Factorized-likelihood analysis on the Alog10 13 3 from the PPTA-DR3 pulsars. We highlight the three pulsars showing the highest (PSRs J1909−3744, J0437
−4715, and J2145−0750) and lowest (PSRs J1744−1134, J1603−7202, and J1713+0747) consistency with the inferred common process with colored histograms.
Other pulsars are presented as light-gray histograms. The prior density is shown with the green dashed line, and the total factorized-likelihood constraint for Alog10 13 3

CRN

(the product of all other histograms) is shown by the black line.
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common red signal. Our motivation is to investigate the reasons
why the previous upper limits on the GWB from all PTAs were
lower than the amplitude of the purported common noise being
detected in recent and current data sets. This includes a limit of
A 1.2 1013 3

CRN 15< ´ - (95% confidence), which we place using
the first half of our data set (described below). This limit can be
considered a replacement of the limit placed using a subarray of
four PPTA pulsars with data extending to the beginning of 2015
(Shannon et al. 2015), which used the now-obsolete DE421 SSE
(Folkner et al. 2009).

We estimate the amplitude of the common noise in 6 and 9 yr
sliding windows (slices) assuming γ= 13/3 and present the
results in Figure 5. In the early time windows, marked in orange,
a common-noise process with the γ= 13/3 spectrum was not
detected, and we have shown the 95%-confidence upper limit
for the amplitude. In the later windows, marked in blue, a
detection was made, and the full 95% credible interval was
given. It is clear that these bounds on the common-noise
increase with time, and in the earlier data, they are broadly
consistent with earlier upper limits (e.g., Shannon et al. 2015;
Arzoumanian et al. 2018). The observational systems improved
significantly with time, but it is hard to avoid the conclusion
that, if the common noise represents a single distinct physical

process such as a GWB, then the process is not time stationary.
However, we cannot at this point rule out a nonastrophysical
origin for this effect.
The earlier parts of the data used less powerful signal

processing equipment, resulting in reduced sensitivity (and higher
upper limits) due to lower received observing bandwidth and
greater levels of digital artifacts in the data (Manchester et al.
2013; Kerr et al. 2020). In intermediate windows (dates centering
between 2010 and 2012), which included data with the more
sensitive last-generation narrowband (pre-UWL) digital receiving
systems, we also find no evidence of a common red process. The
95% upper limits were computed by reweighting the posterior
samples to a prior that is uniform in linear amplitude. We infer
upper limits from these intermediate windows ranging from
A 1.2 1013 3

CRN 15< ´ - to A 1.5 1013 3
CRN 15< ´ - , which are below

the measured A 2.0 0.2 1013 3
CRN 15=  ´ - from the full data set.

The upper limit from the first 9 yr (A 1.2 1013 3
CRN 15< ´ - )

slice corresponds with approximately the same data span and
time range considered in Shannon et al. (2015). The similarly
tight bound that we derive consolidates this result and other
similar upper limits (e.g., Arzoumanian et al. 2018). The
amplitude inferred from the most recent 6 yr slice is
A 2.7 1013 3

CRN
0.7
0.8 15= ´-

+ - . This is higher than, but still consistent

Figure 2. Statistics assessing the support for a noise process with γ = 13/3 for each pulsar in PPTA-DR3. Top: posterior probability density ratio for a γ = 13/3
process, at Alog 14.6910 13 3 = - , relative to Alog 16.510 13 3 < - (where the data are insensitive to a γ = 13/3 process) in blue, and the prior density in orange. Bottom:
Savage–Dickey Bayes factor  for a γ = 13/3 process at any amplitude, which is also the ratio of the orange to blue points in the top panel. Filled and hollow circles
correspond to prior range lower bounds on Alog10 13 3 of −20 and −18, respectively.
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with, the A13 3
CRN measurement from the full data span. Johnson

et al. (2022) found that the use of a small number of pulsars
(as in Shannon et al. 2015) can increase the chance of

underestimating upper limits on the amplitude of a common
process. However, this is not the origin for the apparent
time variability that we observe, as we use all available
pulsars in each slice (i.e., 23 pulsars for the first slice, and 30
pulsars in the last) and the same priors and noise models
across the slices.
Using the first three 9 yr windows, the upper limits on the

amplitude of the signal are inconsistent with the amplitude
measured in the entire data set, and in later subsets. The measured
uncorrelated common-spectrum amplitude Alog 14.6910 13 3

CRN = -
lies at the 99.8 percentile of the reweighted samples from the
first 9 yr window. While some variability would be expected
because of the stochasticity of the background (Hazboun et al.
2020b), this level of variation is extreme, and the implications
are discussed below.

3.5. Common Free Spectrum

To assess whether or not the apparent common red signal is
consistent with a power-law process, we formed the free
spectrum. As with power-law processes, the free spectrum is
modeled as a Fourier series but the variances of each Fourier
coefficient are independent (i.e., not constrained to follow a
power-law process).
We formed the free spectrum using multiple methods. First

we modeled it as a common process both with zero correlations
and with Hellings–Downs correlations. In addition, we formed
the spectrum using a factorized-likelihood approach. The

Figure 3. Marginal posterior probability distributions for the measured logarithmic amplitude and spectral index (γ) of a common uncorrelated process assuming
different solar system ephemerides (SSE). Using DE440 (green)we measure γ = 3.87 ± 0.36 and Alog 14.5010

CRN
0.16
0.14= - -

+ (median and 68% credible interval; shaded
regions in one-dimensional histograms). The contours on the two-dimensional marginal distribution show the 1σ, 2σ, and 3σ credible intervals for each of the SSEs.

Figure 4. Marginal posterior probability distributions for the logarithmic
amplitude and spectral index (γ) of a common uncorrelated process, under our
tailored single-pulsar priors (blue) and broader equal priors (orange).
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probability density for the PSD of individual Fourier
components can be factorized in the same way as the power-
law amplitude. We determine, for each pulsar, the probability
density of the (achromatic) noise PSD for each Fourier
component. The frequencies for the components are the same
for each pulsar, and are the frequencies that the total data set is
sensitive to, from 1/Tspan to 60/Tspan, where Tspan is the total
length of the PPTA-DR3 data set.

The different estimates of the free spectrum can be seen in
Figure 6. The results are consistent, showing that the common
noise is well described as the probability-weighted mean of all
achromatic noise processes in individual pulsars. Additionally,
it is consistent with a power law, particularly at the lowest
frequencies, which suggests that a single process may be
dominating. The factorized-likelihood spectrum shows excess
power at a frequency of 14.0 nHz, which corresponds to a
period of 2.26 yr. The common free-spectra show reduced
sensitivity for periods near 3 yr, which corresponds to the
approximate time span of the new pulsars added to the array

(with only UWL data). Including Hellings–Downs correlations
does not significantly change the nature of the spectrum. We
interpret this as a result of the spectral characteristics of the
common noise being dominated by the autocorrelations
(Spiewak et al. 2022).

3.6. Isotropic Stochastic Gravitational-wave Background

We searched for evidence of the correlations of an
isotropic GWB by considering models that include the
Hellings–Downs spatial correlations in the PTA likelihood.
We first searched for a power-law process with an unknown
spectral index and the DE440 SSE, recovering γ= 3.87± 0.47
and Alog 14.5110

HD
0.20
0.18= - -

+ , which is consistent with, but less
precise than the measurement using the uncorrelated comp-
onent alone. The agreement is unsurprising as the sensitivity of
the PPTA data set is dominated by the autocorrelations. At a
fixed spectral index for the assumed GWB from SMBHBs, we
measure Alog 14.68 0.0610

GWB = -  , which is also consis-
tent with the uncorrelated noise. We have also measured the
common-noise free spectrum assuming Hellings–Downs
correlations and find that it is consistent, at all Fourier
frequencies considered, with the uncorrelated common noise
(Figure 6, gold). Again this indicates that the cross correlations
are dominated by the autocorrelated component.
To quantify whether the data supports the inclusion of these

correlations, we estimate the Bayesian odds ratio for using
product-space sampling (Arzoumanian et al. 2018, 2020).
Relative to a common uncorrelated process, we find no
additional Bayesian support, for or against, the Hellings–Downs
using this approach, with 1.5CRN

HD ~ for a varied spectral
index, and 2CRN

HD ~ for γ= 13/3. These values are not
significant.

3.7. Search for the Spatial Correlations

We directly search for the spatial correlations using our
technique described in Section 2.2.2, instead of assuming an
ORF and testing for model support through a common-noise
model. The measurement of interest here is the correlation
coefficient Γ of a γ= 13/3 process, and we obtain one
measurement (the posterior probability density) for each of
the 435 unique pulsar pairs in our array. These measurements
are informed by the cross correlations only and assume a
common distribution for Alog10 13 3. The parameters in the
single-pulsar noise models have also been accounted for in each
pair. The numerically marginalized single-pulsar noise proper-
ties are self-consistent, meaning that the observed noise
characteristics of a pulsar are independent of which pulsar it
is paired with.
To visualize the correlations, we place our 435 pulsar-pair

PDFs, p(Γ), into eight independent and equally spaced bins in a
sky separation angle ζ. The PDFs in each bin are multiplied to
give the total probability density for that bin. The resulting
PDFs are shown in Figure 7, with a gray histogram representing
the number of pulsar pairs in each angular bin. It should be
noted that because the cross-correlation measurements are not
completely independent, the apparent uncertainties will be
underestimated (emphasizing the need for statistical validation
using bootstrap noise realizations).
We show both the measurements assuming a common

distribution of Alog 14.69 0.0510 13 3 = -  , and assuming a
fixed amplitude of Alog 14.6910 13 3 = - . The measurements

Figure 5. Posterior probability density violins for the uncorrelated common-
spectrum noise amplitude as a function of time, using a 6 yr (top) and 9 yr
(bottom) sliding window (slices) over the data set. The spectral index is fixed at
−13/3. Slices with unconstrained (log) amplitude posteriors have been
reweighted to have linear priors in A13 3

CRN (orange), and the 95% confidence
upper limits are denoted with vertical arrows. Slices with constrained
measurements of Alog10 13 3

CRN are colored in blue. For reference, the dashed
horizontal line indicates the 1.2 × 10−15 upper limit set by our first 9 yr slice.
The solid horizontal line and gray band indicate the measured Alog10 13 3

CRN of
−14.69 and its 68% credible interval from our full PPTA-DR3 analysis. Here
and elsewhere, the violins represent the probability density of a parameter, with
broader segments of a violin corresponding to higher probability density.
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were produced with independent posterior samples and the
resulting correlations are nearly identical, which indicates that
the effect of KDE uncertainty due to a finite number of samples
is negligible. It can be clearly seen that the Hellings–Downs
curve (solid black line, Equation (5)) is a better description of
the resulting PDFs than zero correlations (which we quantify
below). It can also be seen that a monopole (with correlation
coefficient, Γ= 1) and dipolar correlations (with cos qG = ( ),
i.e., Γ= 1, at ζ= 0°, and Γ=−1, at ζ= 180°) are not the
dominate source of the common noise at this assumed amplitude

and spectral index. However, these alternative correlations must
be present at some level in all PTA data sets.
We compute the model likelihoods for the correlations

associated with the common noise and find a likelihood ratio
log 1.110 CRN

HDD = in support of Hellings–Downs over zero
correlations. To interpret the significance of this result, we
calibrate the false-alarm probability by generating noise from
the p(Γ) distributions themselves via sky scrambling. We
generate 104 random pulsar sky distributions with the criteria for
near-independence described in Section 2.2.2. As the sky

Figure 6. Free-spectrum common-noise inference for the PPTA-DR3. The violins show the probability density of the power spectral density for the free spectrum of a
common-noise process (the width of the violin represents the probability density, with a linear scale). Solid green violins are from a factorized-likelihood analysis using
the achromatic noise in single pulsars. Black violins are from a common free-spectrum inference assuming no cross correlations. Gold violins show the free spectrum of
a common-noise process with Hellings–Downs cross correlations.

Figure 7. Measured spatial correlations as a function of the angular separation angle, ζ. The width of each violin as a function of Γ is proportional to the inferred
probability density, p(Γ). Binned correlations are shown assuming a common-noise distribution of Alog 14.69 0.0510 13 3

CRN = -  (green, filled) and with amplitude
fixed at the median (black, hollow). The dashed black line is the Hellings–Downs ORF. The gray histogram shows the number of pulsar pairs in each angular bin.
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distributions are not truly independent, the false-alarm
probability is only an estimate (for discussion see Di Marco
et al. 2023). A histogram of the log10 CRN

HDD for Hellings–
Downs over uncorrelated noise from these randomized skies is
shown in Figure 8, from which we derive one-sided p-values of
p 0.014 and p 0.015 for our observations from the varied
and fixed-amplitude correlations, respectively. Using Silver-
man’s rule (Silverman 1986) to set the kernel bandwidth for
each pair, we observe consistent values of p 0.018 and
p 0.012, respectively. We note that, while sky scrambling
with this method is simple and efficient, other false-alarm
probability calculations will be required for validating any
future GWB detection claims (e.g., phase shifting and
accounting for the different sensitivities of the pulsars; Taylor
et al. 2017).

The support for Hellings–Downs correlations can be
efficiently quantified on a per-pulsar basis with our scheme.
Figure 9 shows, for each pulsar, the likelihood ratio (Bayes
factor estimator) CRN

HDD computed using only pairs involving
the given pulsar. The pulsars are ordered by their support for the
uncorrelated common noise in Figure 2. The pairs involving
PSR J1744−1134 give the most discrepant CRN

HDD between the
two amplitude assumptions we consider. This pulsar has fewer
independent posterior samples for the varied amplitude analysis
than most others, because of its low likelihood support in this
region of the parameter space (PSR J1713+0747, with lower
likelihood support, was analyzed including samples from
additional MCMC chains to compensate). Therefore the
difference likely reflects some small KDE uncertainty due to a
finite number of samples.

We compute the number of effective pulsar pairs using σk
from each pulsar pair k using Equation (9), and find neff= 355.

3.8. Marginalizing Over Solar System Ephemeris Errors

An accurate model for the position of the center of the solar
system is paramount for the timing precision required by PTA
experiments. Systematic errors in the positions or masses of the

planets can add additional signals to pulsar timing data sets that
could manifest as both spatial correlations, but also as a
common-noise process. The most recent SSE from JPL, DE440,
used data from the Juno mission and updated very-long-baseline
interferometry measurements of the outer planets, and is
described as having reduced systematic uncertainties (Park
et al. 2021).
We investigated if the amplitude of the apparent CRN could

be affected by systematic uncertainties by perturbing the masses
of outer planets and the orbital elements of the Jovian system
with BAYESEPEHEM models (Vallisneri et al. 2020), with
respect to the ephemerides DE421, DE438, and DE440. We find
that in all ephemerides considered, our data recovers a nonzero
(95% confidence) perturbation to at least one orbital element of
the Jovian system. We note that there was no Bayesian evidence
for perturbations in the DE438 ephemeris using PPTA-DR2
(Goncharov et al. 2021b).
If we marginalize over these potential perturbations, we

recover a steeper spectral index for the common-noise process,
4.02 0.41

0.81g = -
+ , with a log amplitude Alog 14.5610

CRN
0.39
0.16= - -

+

with DE440. All ephemerides considered give consistent
constraints for this process, as shown by the posterior densities
in Figure 10. While we observe weak evidence for SSE errors in
the form of nonzero perturbations, it is assumed that if such
errors were a significant source of common noise, they would
manifest as a dipole-like feature in the inter-pulsar correlations
(Tiburzi et al. 2016). Our data shows that the measured
common-noise process is not dominated by dipolar correlations,
and we have therefore assumed that the DE440 SSE is
sufficiently accurate for the purpose of our GWB search.

4. Discussion

The properties of the common noise are consistent, within
reported uncertainties, with measurements from recent works by
the PPTA and the constituent members of the IPTA. A previous
analysis by the PPTA (Goncharov et al. 2021b) found a
common uncorrelated process with 4.11 0.41

0.52g = -
+ and

Alog 14.5510
CRN

0.23
0.10= - -

+ . The EPTA (Chen et al. 2021) have
reported a similarly consistent result of 3.78 0.59

0.69g = -
+ and

Alog 14.2910
CRN

0.33
0.25= - -

+ . NANOGrav (Arzoumanian et al.
2020) identified a common-spectrum process with a steeper
median spectral index, remaining consistent through relatively
larger uncertainties reported with the value 5.52 1.76

1.26g = -
+ and

Alog 14.7110
CRN

0.15
0.14= - -

+ . This work used only the five lowest-
frequency components, and a shallower process was recovered
when more components were considered. This may be due to
high-fluctuation-frequency processes present in the data set,
such as unmodeled pulse-shape variations (Shannon et al. 2016;
Arzoumanian et al. 2020; Goncharov et al. 2021a).
The search for a common-spectrum process through the

combination of a previous generation of these data sets by the
IPTA (Antoniadis et al. 2022) also finds a consistent signal most
closely resembling that identified by the EPTA, 3.90 0.90

0.90g = -
+

and Alog 14.2910
CRN

0.36
0.14= - -

+ . The PPTA used the DE436 SSE
for the previous analysis, while other PTAs used DE438. The
spectral index marginally steepens when we marginalize over
the SSE errors modeled by Bayesephem, and becomes more
consistent with the prediction for the background predicted by
SMBHBs.
This common spectral noise may be caused by the GWB, or it

may represent one or more other signals masquerading as a

Figure 8. False-alarm probability calculations from 104 quasi-independent
randomized pulsar sky distributions (sky scrambles). As with Figure 7, the green
(filled) histogram corresponds to the measurements assuming

Alog 14.69 0.0510 13 3
CRN = -  , and the black (hollow) histogram assumes the

median amplitude. The measured likelihood ratios CRN
HDD from the data under

the two assumptions about the amplitude are marked by dashed lines and
correspond to a one-sided false-alarm probability of p  0.014.
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background (Tiburzi et al. 2016; Zic et al. 2022). If the
purported common-spectrum noise is a genuine signature of an
isotropic, stochastic GWB, then we can expect the IPTA to
make a detection using the current-generation data sets
(Siemens et al. 2013). In this scenario we need to convincingly
explain (1) why three of our pulsars offer negative likelihood
support for the existence of the GWB, (2) why the current
detected amplitude is higher than previous upper bounds, and
(3) why the apparent amplitude of the GWB in our data is
measured to be increasing with time.

There are several reasons why individual pulsars may not
exhibit the signature of the GWB at the same amplitude. This
includes interaction between the GWB signal and intrinsic
pulsar timing noise (although the probability of this decreases as
data spans increase), misspecification of the intrinsic noise
parameters in the modeling, errors in the pulsar timing model, or
natural variance in the SMBHB source distribution and
anisotropy.

In the PPTA-DR3 data set, the pulsars most discrepant with
the inferred common noise are PSRs J1744−1134, J1603
−7202, and J1713+ 0747. Two of these (PSRs J1744−1134
and J1713+0747) are observed by all of the constituent member
PTAs of the IPTA, and hence it is key to determine whether they
show positive or negative support for the GWB in other data
sets, and to explain any discrepancies. Previous analyses have
revealed similar effects, including PSR J1713+ 0747, which
exhibited low dropout factors in the previous NANOGrav GWB
search analysis (Arzoumanian et al. 2020). This may be
attributed in part to imperfect modeling of the known timing
events observed in this pulsar (Lam et al. 2018). PSR J1603
−7202 is observed as part of the MeerKAT PTA (Miles et al.
2023), which has shorter, but significantly more sensitive
measurements of this pulsar at greater cadence. The MeerKAT
PTA has fortnightly observations and should be sensitive to the
noise processes at higher fluctuation frequencies.

The time-dependence of the signal amplitude is puzzling
under an isotropic GWB model. Limits placed on the amplitude
of the signal in earlier subsets of the data are inconsistent with
high probability ( Alog 14.6910 13 3 < - with 99.8% confidence)

with the amplitudes of the signal measured in later data, and the
data set in the entirety. As shown in Figure 5, the amplitude
obtained with the entire data set is consistent with that from the
most recent 9 yr data span. This result is heavily influenced by
the most dominant pulsar, PSR J1909−3744. The noise
characteristics of this pulsar are unusual, and reflect the
recovered properties of the common-spectrum noise. When
considering the entire data set, there is only modest evidence for
a deviation in the common-spectrum process from a pure
power law.
If our results do not represent the signal from a GWB, then we

must consider the implications. The three pulsars that offer
negative likelihood support for the existence of a γ= 13/3
process at the measured common amplitude could therefore be
representing an approximate upper bound on the amplitude of
the background. The amplitude and spectral slope of the GWB
is poorly constrained, and so lower amplitudes are still
plausible. We reiterate the findings of the previous PPTA
analysis (Goncharov et al. 2021b) that the characterization of
the common noise can be affected by misspecification, and it is
not necessarily a noise floor. That is, the sensitive pulsars with
zero red noise can be outweighted in the likelihood by a
population of pulsars with similar (but not necessarily identical)
noise characteristics (Zic et al. 2022). As it is currently defined,
the measured common noise is consistent with the probability-
weighted mean of the achromatic noise in our sample of pulsars,
across all frequency components.
In the PPTA-DR3 data set, the number of pulsar pairs is not

highly sensitive to the correlated component of the GWB at the
amplitude of the purported CRN. Using autocorrelations and
cross correlations, we find no Bayesian support, for or against,
the presence of a GWB. However, using our technique that
hierarchically analyses the correlations of the common noise
alone, we find a log 1.110 CRN

HDD = in support of the Hellings–
Downs over zero correlations. We computed the significance of
this likelihood ratio via sky scrambling, which provides a
reliable false-alarm probability through noise generated with the
data itself. It is unclear why the latter method provides greater
support than the former. It could be that the former method

Figure 9. Likelihood ratio for Hellings–Downs spatial correlations over zero correlations for a γ = 13/3 process, at an amplitude of Alog 14.6910 13 3 = - . Each point is
calculated using the 29 pulsar pairs involving the labeled pulsar, and therefore, the points are not independent.
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requires the autocorrelated and cross-correlated noise to have
the same amplitude. If the pulsar noise is misspecified, a
mismatch in the amplitude of these two terms could degrade the
sensitivity of the statistic. From this result, we conclude that
future GWB searches should use (Bayesian) statistical methods
that search for the GWB in the cross correlations alone (e.g.,
Arzoumanian et al. 2020). Confirmation of consistency of the
amplitude in the cross correlations and autocorrelations will be
necessary to build confidence in using the entire PTA signal for
astrophysical interpretation.

5. Conclusions

We have presented a search for an isotropic stochastic
gravitational-wave background using the third data release of
the PPTA. We have measured the characteristics of a common-
spectrum process in the array. Using the pulsar autocorrelations
only, we measure Alog 14.510

CRN = - and γ= 3.87, when
using the DE440 SSE. By marginalizing over potential errors in
the SSE, we find that the inferred process steepens with

Alog 14.5610
CRN = - and γ= 4.02, although there is only weak

evidence for these errors. At a fixed spectral index of γ= 13/3
we find Alog 14.69 0.0510 13 3

CRN = -  , which translates to a
constraint on the linear strain amplitude of
A 2.04 100.22

0.25 15= ´-
+ - for the model of an isotropic GWB.

By analyzing only the spatial correlations using a new
technique, we show that the process at this amplitude is
consistent with an isotropic GWB at a level that may occur by
chance with a probability of p 0.014. This false-alarm

probability corresponds to a one-tailed test significance of
approximately 2σ.
However, some of the apparent characteristics of this

common-spectrum process are surprising under the model of
an isotropic GWB, including the following:

1. Three pulsars disfavor the presence of a γ= 13/3 process
at the measured common amplitude. The measured
common-spectrum process, as it is defined, is not
necessarily a noise floor as would be expected of a
GWB. We have demonstrated that the spectral character-
istics of the common noise are nearly identical to the
probability-weighted mean of all achromatic pulsar noise,
which may have significant contributions from intrinsic
spin noise. However, these same pulsars appear to
contribute positively to the Hellings–Downs correlations
when the measured common-noise process is introduced,
which may suggest misspecification in the noise models of
the pulsars.

2. The apparent amplitude of the common noise changes as a
function of time. This observation cannot be explained
simply by the growing sensitivity of the data. For
approximately the first half of our data set, we appear to
be in a nondetection regime, where only upper limits can
be placed on the amplitude of a common-spectrum
process at γ= 13/3. The 95% confidence upper limits
derived from these early parts of our data set are in tension
with the current measurements. For example, in the first 9
yr slice, we find Alog 14.9210 13 3

CRN < - at 95% confidence

Figure 10. As with Figure 3, but with BAYESEPHEM used to marginalize over potential solar system ephemeris errors. We measure 4.02 0.41
0.81g = -

+ , and
Alog 14.5610

CRN
0.39
0.16= - -

+ for DE440 (green).
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and Alog 14.6910 13 3
CRN = - is ruled out at 99.8%

confidence.
Similar results have been observed by NANOGrav

and the PPTA during previous GWB searches. However,
the significance of this tension has been debated, owing to
differences in the data sets (e.g., differing numbers of
pulsars) and analysis procedures (e.g., choice of SSEs,
priors, and single-pulsar noise models). For this analysis,
we used identical models, priors, and inference techniques
on all subsets of the data. We cannot determine the origin
of this apparent nonstationarity as the recovered common-
noise amplitude (measured as a function of time) is not
necessarily determined by a distinct physical process.

3. There is no Bayesian support, for or against, the Hellings–
Downs spatial correlations using both the autocorrelations
and cross correlations. Yet by analyzing only the cross
correlations, using our computationally efficient method,
we observe some model support log 1.110 CRN

HDD = for
the Hellings–Downs ORF, from which we derive the
significance p-value above. If the signal is genuine, this
result may indicate excess noise affecting the autocorrela-
tions, or other weaknesses of the model.

Some of these findings may be resolved by invoking
anisotropy in the SMBHB source distribution, as simulations
suggest a large variance is possible in the spectrum of a GWB
(Rosado et al. 2015). The recovered amplitude of the common
noise is close to the maximum expected one of a GWB from a
population of SMBHBs (Zhu et al. 2019). The eccentricity of a
nearby source or an unresolved local population may result in
the apparent nonstationarity of the common noise. An analysis
with a larger number of pulsars, for example under the IPTA,
should help answer these questions. It will also be interesting to
investigate if other PTA observations of our quiet pulsars (e.g.,
J1713+0747, J1744−1134) yield similar results under con-
sistent noise models, and whether the temporal properties of the
common noise and its upper limits are observed with
independent sets of pulsars. Most importantly, it will be
interesting to see if the global IPTA combination of the
constituent PTA data sets strengthens the significance of any
spatial correlations, resulting in an unambiguous detection.
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