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Abstract—Cloud service providers use the concept of
“burstable performance instance” that can temporally ramp up
its performance to handle bursty workloads by utilizing spare
resources. The state-of-the-practice to using the available burst
capacity is independent of the workload, which results in squan-
dering spare resources. In this work, we quantify and optimize
the efficiency of using burst capacity so that it benefits both
cloud service providers and end users. More specifically, we use a
throttling mechanism as a control knob to continuously adapt the
amount of spare resources based on workload characteristics such
as traffic intensity. To identify optimal throttling, we integrate
lightweight profiling and quantile regression in a synergistic way
and build a prediction model that accurately predicts tail latency.
We build an autonomic scheduling framework called CEDULE
that can make adaptive scheduling decisions to maximize the
efficiency of spare resources while achieving user defined SLOs.
We conduct extensive experimental evaluations of the proposed
scheduling framework on Amazon EC2 using popular benchmark
applications, such as Sysbench, YCSB, and TPC-W. Experimental
results demonstrate the high accuracy of the prediction model,
i.e., average errors range from 1% to 15%. The effectiveness
of CEDULE is verified as it can triple the efficiency of spare
resources while meeting stringent SLOs.

I. INTRODUCTION

Cloud computing is adopted by corporations and individ-
uals for its flexible, reliable, and cost-effective services [5].
Cloud providers make their services available through virtual
machines (or instances) of different capacities to better serve
different user needs. The cost of an instance depends on its
capacity. Typically, the less powerful a virtual machine, the
lower its cost [23]. Recently, cloud providers [26, 27, 29] have
introduced the concept of burstable performance instance, a
new type of low-cost instance that has a guaranteed perfor-
mance base but that can burst to significant better performance
for certain amounts of time. Burstable instances are used
for applications (e.g., micro-services and small and medium
databases [26]) that usually do not need consistently high
computational power, but may require higher computational
power from time to time to deal with a burst of heavy load
over a short period of time. In this case, the instance can
ramp up its CPU performance for a limited time to effectively
process the increased amount of requests. Burstable instances
are the cheapest instances currently available [23], e.g., the
monthly price for the smallest Amazon’s on-demand instance
(i.e., t2.nano) is almost 17 times lower than the monthly price
of the smallest non-bursting instance (i.e., m5.large).

In this paper we use the Amazon EC2 platform and its
t2 instances (i.e., burstable instances) for a case study. A

TABLE I: Performance characteristics of four t2 instances:
t2.nano, t2.micro, t2.small, and t2.medium. Note that the
baseline performance refers to each available vCPU.

T2 size vCPU Init. Cr. Gen. rate[cr/hr] Baseln. Perf. Max Cr.
nano 1 30 3 5% 72
micro 1 30 6 10% 144
small 1 30 12 20% 288

medium 2 60 24 20% 576

t2 instance is created with a specific amount of initial CPU
credits, this amount depends on the instance size. One credit
provides the maximum computational power of a CPU core
for a minute (i.e., the CPU is utilized at 100%). If CPU is less
utilized, then its credit consumption reduces. For example, one
credit is consumed in two minutes if the CPU runs at 50%
utilization. After all initial credits are depleted, the instance
operates at the baseline performance but periodically generates
new credits with a rate that is commensurate to the instance’s
size, i.e., the credit generation is capped. In addition, the
amount of credits generated in one hour is equal to the number
of credits needed for the CPU to run with baseline performance
for the same amount of time. Therefore, the average credit
level remains unchanged. Finally, all credits (except for the
initial ones) expire if they are not used for 24 hours since
their generation. Table I summarizes the main characteristics
of t2 instances.

The capacity of burstable performance instances is enabled
by spare resources, this is why Cloud service providers can
offer such low prices for burstable instances. A more efficient
way of using spare resources can greatly benefit cloud service
providers as the same amount of spare resources can be
multiplexed across more users but at the same time can also
benefit end users by significantly reducing cost as otherwise
a more expensive instance may need to be used for achieving
the users’s SLO. In this paper, we investigate the effectiveness
of the state-of-the-practice for using burstable capacity/spare
resources, our target is to improve the efficiency of using
burstable instances. We broadly define efficiency as the amount
of work that can be done using the burstable capacity of
the spare resource, the more work is done, the higher its
efficiency. To quantify “burstable efficiency”, we use as metric
the credit depletion time. Past work [24] showed that it is
possible to extend the initial credit deletion period using the
cpulimit utility [28] that limits the CPU usage of a process.
Using cpulimit effectively forces CPU to work with low
utilization. To motivate the work presented here, we use the
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(a) Client = 300,cpulimit= 30%
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(b) Client = 300,cpulimit= 70%
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(c) Client = 700,cpulimit= 30%
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(d) Client = 700,cpulimit= 70%

Fig. 1: 99.99th percentile latency (t2.micro) for browsing:
different cpulimit with different arrival intensities.

typical SPEC TPC-W benchmark [2] to show that if the CPU
credit consumption is controlled by the user, it can achieve
better user-perceived performance by effectively expanding the
time period that the applications enjoys high CPU bursts.

Figures 1 illustrate a first proof of concept of the effect of
different CPU limits for TPC-W’s browsing mix running on
the t2.micro with 300 and 700 clients, respectively. The figures
illustrate the normalized client latency when the default CPU
scheduling is used (i.e., no cpulimit, dabbed as Amazon),
when a certain cpulimit is used, and the target SLO (flat
line). Two cases of cpulimit are considered: 30% and 70%.
Assuming an especially challenging SLO latency (we require
the 99.99% percentile of latencies to be below a certain value),
we see that different cpulimit values result in different
violations but most importantly in different lengths of the
time that the system operates with burstable performance
under the initial credit deletion period. When cpulimit 30%
is used, the credit depletion period triples, see Figure 1(a),
for cpulimit 70% it nearly doubles (see Figure 1(b)).
The moment credit depletion completes, latencies increase
dramatically. The credit depletion period is not as pronounced
if the workload is heavier, see Figures 1(c)-1(d) with 700
clients. The ideal cpulimit is a function of the workload
intensity (expressed by the number of clients), workload type
(for this experiment we used the browsing mix, results are
different for the ordering or shopping mix), and the desired
SLO level.

The purpose of this paper is to devise an autonomic
scheduling framework to adjust cpulimit on-the-fly in order
to deal effectively with dynamic workloads (i.e., changing
client intensities, changing workload types, and even changing
SLOs) so that we can maximize the efficiency of the burstable
capacity/spare resource while meeting SLOs. The challenge
lies in the huge search space of cpulimit and expensive

Fig. 2: Overview of CEDULE.

profiling. To this end, we combine light-weight profiling with
an analytical model driven by recent research in quantile
regression [3] to determine the optimal cpulimit that max-
imizes the efficiency of initial credits. We also incorporate
the migration cost (when credit is depleted) in our analytical
model to reflect the state-of-the-practice. We illustrate the
effectiveness of the proposed scheduling framework using
single-tier and multi-tier applications, under both static and
dynamic workload conditions.

The remainder of this paper is organized as follows. Section
II describes each step of the adaptive scheduling framework,
Section III evaluates the proposed scheduling framework on
Amazon EC2. In Section IV previous work is discussed and
Section V concludes the paper.

II. METHODOLOGY

In this section, we present the proposed Credit Efficiency-
aware scheDULing framEwork (CEDULE). CEDULE inte-
grates empirical measurements (lightweight profiling) with
an analytical method (quantile regression) in a synergistic
manner, to find the best cpulimit for a given load (number
of requests per second) that can maximize credit efficiency
while meeting a predefined SLO.

A. Overview

The goal of CEDULE is to achieve a win-win scheduling
solution for both the cloud service provider and its end
users by enabling smart sharing of resources without violating
user SLOs. From the user perspective, the benefit is cost
reduction, otherwise it may be necessary to use a more
expensive instance to meet SLO for sustained time periods.
From the cloud provider perspective, if a user can achieve its
SLO with less resources, spare resources can be multiplexed
across more users. Previous work proposes migration once
credit is depleted [24] but does not provide any solution for
determining the ideal credit consumption rate to meet user
performance requirements in order to reduce the frequency of
migration. Frequent migration can have high monetary cost as
two instances may run during the migration period and is also
discouraged by service providers, e.g., Amazon has limited to
100 new instances that can start every day [11]. Figure 2 gives
an overview of CEDULE, which is composed of three main
components: profiler, prediction model, and scheduler, which
are introduced in the following sections.



B. Lightweight Profiling

The straight-forward way to maximize the efficiency of
spare resources is through exhaustive profiling. This can be
costly and time consuming. Assuming L different CPU limit
levels and A different loads, we need to conduct L×A profiling
experiments. In addition, measuring the percentile latency
requires a long time span to collect enough samples, especially
for high percentiles. If t is the average time to achieve
statistical stability in profiling, then the total cost of exhaustive
profiling is L×A× t. CEDULE conducts lightweight profiling
through sparse sampling and utilizes an analytical model to
fill the rest of the search space. Assuming that the collected
percentage samples from L is α and that the percentage of
samples from A is β , then the total profiling cost becomes
α × β × L× A× t, which is α × β times smaller than the
exhaustive one. We feed the profiling results to our prediction
model for estimating the tail latency. The prediction model is
introduced in the next subsection.

C. Prediction Methodology

We propose a prediction methodology which takes the
profiling data, SLO, and monitored system load as inputs and
computes the lowest cpulimit as output so that the SLO is
met and the efficiency of spare resources is maximized. The
core of this prediction methodology is an analytical model
based on quantile regression.

1) Problem Formulation: We define the computation of
the ideal cpulimit as an optimization problem. The spare
resources are measured by credits. We define Credit Efficiency
(CE) as the average credit depletion time (Td) minus the
average migration time (Tm) under a given SLO constraint.
Therefore, the problem of maximizing the efficiency of spare
resources is equivalent to maximizing Credit Efficiency as
follows:

maximize Td−Tm

subject to Pi ≤ SLO,
(1)

where Pi is the i-th percentile of latency and its value depends
on CPU throttling, i.e., Pi = f (cpulimit). The migration time
Tm depends on the migration approach, e.g., Tm can even be 0
if live migration is used, if proactive migration [24] is used,
then the migration time equals to the time of copying the
application status from the old instance to the new instance.
The credit depletion time Td depends on the initial credit Ci,
credit earning rate Re, credit consumption rate Rc (which is
usually a function of cpulimit: Rc = f (cpulimit)), and system
utilization ρ , where Re and Rc are defined by the service
provider. Credit is only consumed when the system is busy.
Two different mechanisms affect credit earning: one is the
default fixed credit earning rate, and the other is only earning
credit when the system is idle. We add a parameter k to capture
the credit earning mechanism: k = 1

1−ρ
when the credit earning

rate is fixed and k = 1 when credit earning occurs only during
the time that the system is idle. Td can be computed using the
following equation:

Ci +Td× (Re× k× (1−ρ)−Rc×ρ) = 0. (2)

Since system utilization depends on the arrival rate λ and in-
stance service rate µ (when there is no CPU throttling), based
on the Utilization Law [1], ρ = λ

µ
. For burstable instances,

the service rate also depends on throttling if cpulimit is used,
therefore ρ = λ

µ×cpulimit . Td can be computed as:

Td =
Ci

Rc× λ

µ×cpulimit −Re× k× (1− λ

µ×cpulimit )
. (3)

To summarize, the inputs of the model are:
• Load λ in terms of mean arrival rate: here we assume

exponential inter-arrival times as it represents the typical
online service behavior [4], note that the load can change
over time to reflect the dynamic nature of the workload.

• Burstable service rate µ , i.e., when no throttling is
applied.

• Initial credit Ci, credit earning rate Re, and credit con-
sumption rate Rc, as defined by the cloud service provider.

• Profiling results: sparse samples of the percentile latency
under the target cpulimit.

• Service Level Objective (SLO).
The output of the model is the optimal cpulimit with maxi-
mized Credit Efficiency without violating the user SLO.

The above problem formulation clearly shows how the
cpulimit can be used as a control knob to adjust Credit
Efficiency. However, its impact on Credit Efficiency is not
straightforward and depends on several factors. In practice,
a too low cpulimit may result in a too large Pi and thus
violate the SLO, a high cpulimit may cause low Credit
Efficiency and could fail to achieve the scheduling objective.
Therefore, we need to model the impact of cpulimit on tail
latency and Credit Efficiency. Next we introduce the analytical
model, which is based on quantile regression.

2) Analytical Model: In order to identify the optimal
cpulimit, we need to predict the percentile latency Pi for
a given cpulimit and load. Here we build our analytical
model upon quantile regression [3]. Quantile regression is a
statistical inference method used for estimation and extrapo-
lating the relationship between conditional quantile functions.
The regression model for quantile level τ is given by

Qτ(yi) =β0(τ)+β1(τ)xi1 + .....+βp(τ)xip, i = 1, ....,n (4)

where β j(τ)s are estimated by solving the minimization prob-
lem:

minimize
β0(τ),..,βp(τ)

n

∑
i=1

Pτ

(
yi−β0(τ)−

p

∑
j=1

xi jβ j(τ)

)
(5)

where Pτ(r) = τmax(r,0) + (1− τ)max(−r,0). The function
Pτ(r) is referred to as the check loss, because its shape
resembles a check mark. For each quantile level τ , the solution
to the minimization problem yields a distinct set of regression
coefficients.

Quantile regression takes a number of samples as inputs
and outputs the estimated coefficients βi, which are calculated
to minimize the prediction error on a particular quantile τ .
Each input sample includes a set of independent variables x



and a response variable y. Apart form the individual indepen-
dent variables it also takes into consideration the relationship
among all independent variables. The error of the loss function
is minimized via numerical optimization. The τ-th quantile
loss function assigns a weight τ to underestimate errors and
(1− τ) to overestimate ones. The main advantage of quantile
regression is that it does not require any assumptions regarding
the underlining distribution of the data [18] and is robust to
non-normal errors and outliers compared to linear regression
models.

Quantile regression only admits a one-dimensional sam-
ple of data as input. Our latency prediction model needs
to consider both cpulimit and load, which form a two-
dimensional space. Therefore, we extend the original quantile
regression in [3] by first training the model using a fixed load
while varying cpulimit to collect latency samples in the
profiling step. Here, the cpulimit values are independent
variables and the latency samples for each cpulimit are
input samples. As a second step, we fix cpulimt and vary
the loads to train a second model. The loads now become
the independent variables and the latency samples are used
as input samples. We integrate the models trained in these
two steps into a complete model. Since the first model and
the second model can predict the same case (i.e., for a given
cpulimit and load), we calibrate the results by averaging
the prediction results from each model1. Finally, we use the
complete model to populate the Scheduling Reference Table
in Figure 2.

D. Scheduler

The scheduler takes the load as input and searches the
optimal cpulimit in the scheduling reference table to max-
imize Credit Efficiency while meeting the user SLO. More
specifically, the scheduler chooses the smallest cpulimit
with percentile latency smaller than or equal to the given
SLO. This is because based on Eq 3, the smallest CPU limit
has the longest depletion period and thus maximizes Credit
Efficiency. When the workload is dynamic, cpulimit needs
to be adjusted based on the monitored load to avoid SLO
violations. We implement a fixed observation window of (e.g.,
5 seconds) to measure the load of the incoming requests and
adapt cpulimit based on the scheduling reference table.

III. EXPERIMENTAL EVALUATION

In this section we evaluate CEDULE via experimentation on
the Amazon EC2. First, we study the prediction error of the
proposed methodology. Then, we evaluate the SLO violations.
We compare the performance of our methodology against the
default mechanism of t2.micro, in terms of SLO violations
and the period of CPU credit depletion. Finally, we briefly
compare the credit depletion period calculated by the analytic
model with the one observed during the experiments.

1A more sophisticated way of calibration can be used here, but this is out
of the main scope of this paper.

A. Experimental Setup

1) System overview: We evaluate CEDULE using single-
tier and multi-tier benchmarks on Amazon EC2. For our
experiments, we use t2.micro instances with Ubuntu Server
16.04 LTS. Each t2.micro instance has one vCPU, 1 GB
memory and 30 initial credits; other parameters (and more
information) are given in Table I. Due to AWS limits on the
maximum number of instances allowed in each region (i.e.,
no more than 10 or 20 depending on the availability zone),
experiments were run in the Virginia and Ohio regions. In the
following, the benchmarks used are briefly described.

Single-Tier Applications. We consider two single-tier
benchmarks: Sysbench [7] and YCSB [6]. Sysbench is a CPU
intensive application whose requests perform prime number
calculation. In our experiments each job generates 50 requests
(i.e., prime number calculations), and it is completed only
when all requests have been executed. YCSB is used to
generate requests to a memcached system (i.e., a distributed
memory object caching system). In contrast to Sysbench,
memory is an important resource for this benchmark, but CPU
is still the dominant resource. Independently of the benchmark
used, we consider a closed system with 100 users, with average
think times between 1 and 12 seconds, to best approximate a
user-driven, latency-aware workload.

Multi-Tier Applications. We use the multi-tier benchmark
TPC-W [2] in our evaluation. TPC-W is a three-tier web appli-
cation with a client server, front-end web server, and database
server. Here, we use one t2.micro instance for each tier. Since
the CPU utilization of the client server is always below 10
percent, there is no need to experiment with cpulimit on
the client server. We apply the same cpulimit on the web
server and the database server, striving for a balanced system
during profiling and in the evaluation experiments. The number
of clients during all experiments is kept constant at 300. The
browsing mix of TPC-W is used. In order to generate the load
of varying arrival intensities, the think time of the clients is
varied between 0.1 and 2 seconds.

2) Workload: We evaluate how cpulimit adapts to static
and dynamic workloads within a closed-system setting, consis-
tent with the TPC-W specifications. System load is controlled
by the user think time [2], therefore we control the average
arrival rate of requests by varying the user think time. In the
rest of this paper, we interchangeably use the terms think time
and arrival rate.

Static workload: The arrival rate of the workload is kept
static during the entire period of the experiment – this is a basic
experiment and CEDULE’s target is to identify the smallest
cpulimit such that the SLO is met.

Dynamic workload: In this experiment, a fluctuating work-
load arrival rate is realized by changing the user average
think time over time. This type of experiment allows to study
the accuracy of prediction and the ability of the system to
continuously adjust the optimal cpulimit under variable
workload conditions.



B. CEDULE with Static Workloads
We first evaluate the accuracy of the latency prediction

model by comparing model-predicted values to measured
ones. To this end, we profile the single-tier and multi-tier
benchmarks with latency samples for five different values
of cpulimit (i.e., 10%, 20%, 50%, 70% and 100%). All
other cpulimit values are extrapolated from the above ex-
periments. Finally, note that cpulimit=100% is essentially
the typical CPU usage, i.e., there is no user-mandated CPU
throttling.

To evaluate CEDULE’s robustness under stringent workload
conditions, we use as SLO targets the 99th and 99.99th le-
tency percentiles for the single-tier and multi-tier benchmarks,
respectively. Model prediction results are compared against
different cpulimit values and think times. For reasons of
presentation clarity, we opt for normalized latencies rather than
raw values in all results presented in this section.

For the experiment presented in Figure 3, we set the think
time to 12 seconds and vary cpulimit. After training the
model, its accuracy is evaluated against actual experiments.
The cumulative distribution function of the raw error is
given in Figure 3(b). Here, negative values represent under
estimation of the prediction model, while positive values
correspond an over estimation, with an absolute average error
less than 8%. As this experiment is executed for two hours,
we evaluate the model robustness across four subsequent 30-
minute windows. Across all windows results are consistent
with those presented in Figures 3 and 3(b) and are not reported
here due to lack of space.
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Fig. 3: Single-tier Sysbench prediction and error (t2.micro).
Actual vs predicted 99th percentile, for cpulimit = 10% to
cpulimit = 100% with an increment of 10%, and for think
time set to 12 seconds. Note that model training is done with
only a subset of cpulimit values , i.e., 10%, 20%, 50%,
70% and 100%.

Next, we evaluate the predicted and measured 99th per-
centile latency for different load intensities, as expressed by
different user think values, see Figure 4. fo this experiment,
we set cpulimit to 30%. Consistent with the previous
experiment, we use a sparse number of think times for model
training (i.e., 1s, 2s, 5s, 7s and 10s) and extrapolate others
from the model. Experimental and prediction results are in
excellent agreement with average errors ever lower than 1%
(see Figure 4(b)).
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Fig. 4: Single-tier Sysbench prediction and error (t2.micro).
Actual vs predicted 99th percentile, for think time Z = 1s to
Z = 10s with an increment of 1s, and for cpulimit = 30%.
Model training is done with a subset of think values, i.e., 1s,
2s, 5s, 7s and 10s.

Similar experiments are also done for the YCSB benchmark.
For the first experiment, the think time is 5 seconds and
cpulimit is varied. Results are shown in Figure 5, showing
average error not larger than 2.5%. Similar to Sysbench, we
also present results that show how the prediction model adapts
to varying think times, see Figure 6. As in the the Sysbench
base, average prediction errors are minimal.
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Fig. 5: Single-tier YCSB (memcached system) prediction
and error (t2.micro). Actual vs predicted 99th percentile, for
cpulimit= 10% to cpulimit= 100% with an increment of
10%, and for think time set to 5 seconds. Model training is
done with only a subset of cpulimit values , i.e., 10%,
20%, 50%, 70% and 100%

.

For the multi-tiered workload (TPC-W), we collect data via
light-weight profiling for experiments with 300 customers and
average think time equal to 1 second. For the more challenging
multi-tiered case, we set the SLO percentile latency to 99.99
for a limited number of cpulimit values , i.e., 10%,
20%, 50%, 70% and 100%. In order to test the accuracy of
prediction we also run 10 experiments for different CPU limits
(10% to 100% with an increment of 10%), all other parameters
are the same. Similarly to the single-tier experiments, we
evaluate the model effectiveness for 6 consecutive windows
in time – the model prediction is consistently robust. Figure 7
shows results across all time windows. The figure illustrates
actual and predicted latencies during the entire duration of the
experiment (one hour) and the CDF of prediction errors for
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Fig. 6: Single-tier YCSB (Memcached) prediction and error
(t2.micro). Actual vs predicted 99th percentile, for think
time Z = 1s to Z = 10s with an increment of 1s, and for
cpulimit = 70%. Model training is done with a subset of
think values, i.e., 1s, 2s, 5s, 7s and 10s.

the web server. We observe that the predicted latency closely
follows the same trends as the actual one. The point where
latency errors are large is for cpulimit equal to 10%. This
is an outcome of the low utilization and the fact that we do
not sample enough data, especially for the stringent 99.99
percentile. Despite the complex interaction patterns between
the database server and the web server in TPC-W and the very
stringent 99.99 percentile target latency, the prediction model
is quite robust, with mean latency error close to 12%, see
Figure 7(b). Figure 8 presents similar results for the database
server and further confirms the robustness of prediction.
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Fig. 7: TPC-W web server prediction and error (t2.micro).
Actual vs predicted 99.99th percentile, for cpulimit= 10%
to cpulimit= 100% with an increment of 10%, and for think
time set to 1 second.

Similarly to the single-tier experiments, we test model
accuracy for TPC-W for varying arrival rates. For this set of
experiments, cpulimit is fixed to 70 percent on both web
and database servers. The value of think time is varied between
0.1 to 2 seconds. The varying arrival rate results in different
web and database server utilization levels. Profiling is done
with 5 think time values (i.e., 0.1s, 0.5s, 0.1s, 1.5s, and 2s).
The reason for selecting think time values between 0.1 second
to 2 seconds is that, beyond these values the system utilization
drops below 70 percent and cpulimt cannot truly affect the
system. To verify model robustness, we also do experiments
for 10 thinking times . The comparison of latency and CDF
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Fig. 8: TPC-W database server prediction and error (t2.micro).
Actual vs predicted 99.99th percentile, for cpulimit= 10%
to cpulimit= 100% with an increment of 10%, and for think
time set to 1 second.
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Fig. 9: TPC-W web server(t2.micro) 99.99th percentile of
actual and predicted latency and CDF of model errors for fixed
cpulimit = 70% with varying arrival rates (x-axis).

of error percentage for web sever and database server are
shown in Figures 9 and 10, respectively. For the web server
we observe a higher mean error compare to other cases. That
may be caused by interference of other VMs co-located on the
same physical machine that hosts the web server instance [8,
9, 21].

A similar abnormal behavior is also observed for think time
equal to 1 second in the database server, see Figure 10(a). The
CDF of error for the database server is given in Figure 10(b).
In general, errors are consistent with those reported for varying
cpulimit.
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Fig. 10: TPC-W database server (t2.micro) 99.99th percentile
of actual vs predicted latency and CDF of model errors for
fixed cpulimit = 70% with varying arrival rates (x-axis).



C. CEDULE with Dynamic Workloads

In this section we study the accuracy of CEDULE when
single-tier or multi-tier systems serve dynamic workloads. For
this purpose, we first train our model as described in Section
II, sampling the system latency for few configurations (i.e.,
different user think times and cpulimit values), and use
quantile regression to derive the cpulimit for all the other
possible configurations. Then, the effectuviness of CEDULE
under a dynamically changing workload is tested for Sysbench
and TPC-W. The dynamic workload is generated by varying
the average think time for each client during the time that
the experiment takes place. The observation window, i.e., the
period of time during which the inter-arrival rate is observed
by CEDULE to select the best cpulimit value, is just 1
minute long. The measured inter-arrival rate and the SLO value
are input parameters to the model to calculate the smallest
cpulimit that can meet the advertised SLO. If a change
in the inter-arrival rate is observed during the observation
window, a new cpulimit value is imposed on the system. In
this section we present results for a fixed SLO value. We note
that CEDULE is also robust if SLO is changed dynamically
– such results are not presented here due to lack of space.

The results for the single-tier application are shown in Fig.
11. The experiment lasts 32 minutes during which 13,250
requests are served. The user think time varies five times
during the experiment and its value is between 5.6 and 9.1
seconds. The SLO (on the 99th percentile latency) is set to
10 seconds for the duration of the experiment. For the sake of
presentation clarity, all values are normalized over the SLO.
The figure shows that cpulimit varies as a function of the
user think times, but with a small lag. This effect is due to the
observation window because CEDULE observes the workload
before changing to a new cpulimit. Note that longer user
think times correspond to a smaller inter-arrival rate. Thus,
cpulimit decreases when think time increases. Overall, the
number of violations observed during the experiment is very
small (i.e., less than 0.2%) and CEDULE successfully adapts
cpulimit to the changing workload.

To generate the dynamic workload for TPC-W, think times
are varied between 0.2 to 1.8 seconds. In this experiment we
started a new t2.micro instance with 30 credits. Each exper-
iment ran until the amount of available credits is depleted.
Figure 12 shows the change in the cpulimit overtime,
the figure also reports the arrival rate in the web server,
the 99.99th percentile latency, and the SLO. The spikes in
the arrival rate to the web server are due to the observation
windows during which the incoming workload is changing
but the new cpulimit is not yet activated. The accumulated
99.99th percentile latency value is very close to the SLO value,
this clearly demonstrates that the proposed solution chooses
cpulimit very efficiently. Overall, we only observe 0.0086
percent violations during the entire period.

D. Benefits over the Default Amazon Mechanism

In order to fully understand the efficiency of our adaptive
strategy, we compared the credit depletion period (i.e., the
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Fig. 11: Single-tier Sysbench: 99th percentile latency,
cpulimit, users’ think time and SLO for dynamic workload.
All the values are normalized over the SLO. Note that, the
inter-arrival rate decreases as the think time increases.
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Fig. 12: Multi-tier TPC-W: web server 99.99th percentile
latency, cpulimit, request arrival rate (jobs/minute) and
SLO for dynamic workload. All the values are normalized
over the SLO.

time before an instance runs out of credits) of two systems
executing the benchmarks: in the first case, the system is
adopting the methodology presented in this paper, thus trying
to save resources while complying with the SLO, in the second
case the system is using the default Amazon scheduling. This
experiment is also done for the single-tier and multi-tier sys-
tems, using Sysbench and TPC-W benchmarks, respectively.

For the single-tier case, we execute the Sysbench benchmark
(dynamic workload) with CEDULE and with the default
Amazon scheduling. Both experiments start with 33 credits
and the 99th percentile latency of completing requests is
observed for 40 minutes. Figure 13 depicts the 99th percentile
latency of both experiments as a function of time. The SLO
(i.e., 10 seconds) is also depicted in the figure. For the sake
of clarity, all values are normalized over the highest observed
value and y-axis is in logarithmic scale. As expected, the
CEDULE makes credits last longer by making better use of
spare resource while the Amazon scheduling essentially wastes
these space resources as credits are depleted faster. Once
depletion happens, the 99th percentile latency grows and the
SLO is violated. It is also interesting to note that the Amazon
scheduling is exhausting all its credits before 30 minutes of
work. In fact, we have observed that t2.micro instances start
throttling the CPU before the number of available credits
reaches 0. This happens when the amount of credits of an
instance is between 6 and 7.

We also present here a similar experiment for TPC-W
(dynamic workload). All tiers for both CEDULE and the
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Fig. 13: Comparison of the normalized 99th percentile laten-
cies (t2.micro) achieved by CEDULE and the default Amazon
policy for Sysbench. CEDULE uses different a cpulimit
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default Amazon policy start with 36 credits. The experiment
duration goes till the point when one of the tiers is fully
throttled on both policies. The 99.99th latency percentile
for the web server is given in Figure 14. Similar to the
Sysbench experiment, the default Amazon scheduling depletes
the available credits fast. CEDULE applies cpulimit on
both the web and database servers and results in superior credit
utilization. The accumulated 99.99th percentile latency that al-
ways closely follows the SLO, reflects the impressive accuracy
of CEDULE’s cpulimit calculation, nearly tripling the time
to credit depletion.
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Fig. 14: Comparison of the normalized (log scale) 99.99th
percentile latency (t2.micro) achieved by CEDULE and the
default Amazon policy for TPC-W. CEDULE uses a different
cpulimit for different arrival intensities.

E. Benefits over Exhaustive Profiling

As described in Section II, CEDULE uses light weight
profiling to identify and adopt the best cpulimit to meet the
SLO under different load levels. The experimental results show
that CEDULE can accurately predict the latency for varying
cpulimit and arrival rate values. Moreover, the cost of
CEDULE is significantly lower than exhaustive profiling. For
example, when considering a dynamic workload, CEDULE
requires only 25 profiling experiments (i.e., 5 cpulimit × 5
users’ think time) to create a reference table with 100×100 en-
tries, while exhaustive profiling requires 10,000 experiments.
The time for profiling experiments and building the reference
table for the dynamic workload case is shown in Table II. In
order to accurately measure latency with the desired percentile,
profiling experiments should capture enough samples. In fact,

the profiling time of each experiment depends on the appli-
cation behavior and workload. In particular, YCSB requests
are those with the longest service time, whereas Sysbench
and TPC-W generate shorter requests. For this reason, the
time required to complete the profiling procedure for YCSB
is longer than the time for Sysbench and TPC-W.

F. Comparison of Depletion Period: Analytic Model vs Exper-
imental Results

The Depletion time of the CPU credits is modeled in equa-
tion 3. Given the value of CPU utilization and cpulimit,
the credit depletion time is calculated so that the application
can schedule a migration before running out of credits.

Equation 3 is checked against some of our experiments.
In fact, it is possible to derive the credit depletion time of an
instance by observing the amount of its available credits at the
beginning of the experiment and its average CPU utilization
while it serves the incoming requests. Results for the static
and dynamic workload cases are shown in Table III, showing
that the predicted credit deletion time is remarkably close to
the real one.

We note that CEDULE minimizes the migration penalty by
reducing the number of migrations. Indeed, credit utilization
in CEDULE depends on the current workload and SLOs. This
allows the instance to extend the CPU depletion period and
results in a lower number of migrations compared to the de-
fault Amazon policy. For example, the credit depletion period
for the default instance in Figure 14 is almost 55 minutes.
Instead, by applying CEDULE, this period is extended to 145
minutes. Thus, considering a 24-hour period, 27 new instances
must be launched if the system adopts the default Amazon EC2
strategy, instead only 10 can be launched with CEDULE.

Finally, to avoid long service interruptions, one must also
account for migration time when analyzing the cost of this
operation. Tools like CMT2 – together with CEDULE allow
us to proactively migrate the instance as soon as the number
of available credits approaches zero. In this case, the time
required for migration depends only on the amount of data to
be transferred. For the experiments presented here, it varies
from few tens of MB in the single-tier system to 400 MB on
average for the multi-tier one.

IV. RELATED WORK

Resource management in cloud computing has been deeply
studied in the literature. Many different techniques and frame-
works have been proposed [12, 17, 14, 15, 19, 20], focusing
on the cloud users’ Quality of Service (QoS) and SLOs. Some
strategies account for interference among VMs hosted on the
same physical machine that may degrade the performance
of individual instances. Wang et al. [12] proposed a Fuzzy
Model Predictive Control to automatically manage resources
while complying with QoS and SLOs. Javadi et al. [19]
introduce DIAL, an interference-aware load balancer that can
reduce long tail latencies in cloud-deployed applications. Other

2https://github.com/marcosnils/cmt



TABLE II: Cost comparison between exhaustive and light profiling for different benchmarks.

Benchmark Method
Ref. Table
cpulimit

entries

Ref. Table
loads

entries
# profiling exp. Profiling time [min.] Total profiling time [days]

Sysbench Light
Exhaustive

100 100 25
10000

9.27 0.16
64.35

YCSB Light
Exhaustive

100 100 25
10000

25.88 0.45
179.72

TPC-W Light
Exhaustive

100 100 25
10000

10 0.17
69.44

TABLE III: Estimated and observed credits depletion time for
static and dynamic workloads.

Workload # credits UCPU [%] Estim. Td [min] Real Td [min]
Static 23.5 100 25.56 26
Static 23.5 55 51.11 52

Dynamic 25 100 27.77 27
Dynamic 25 62 48.08 45

techniques try to predict the workload of cloud applications
and allow the final users to scale their VMs based on pre-
diction. For example, in [14] a Kalman-based estimator is
adopted to predict the workload and resource allocation is
performed through different algorithms. Frameworks to make
resource management more effective are also proposed in
[17], that investigated a pack-centric framework to group VMs
according to resource sharing and collocation requirements.
Liu et al. [15] described NetAnalytics, a monitoring system to
study performance of cloud data centers and automate resource
management by analyzing network data. Some frameworks are
proposed to improve cost efficiency and resource utilization of
cloud applications, e.g., iCSI [20] introduces a cloud garbage
VM collector to detect inactive instances by collecting data
from the VMs. Morris et. al. [16, 25] devise mechanisms
to increase computational sprinting using DVFS to boost
processor clock rates and AWS burstable instances. Their
work is based on off-line system measurements and uses a
machine learing model to predict the response time model
under different sprinting strategies but they assume a priori
knowledge of the workload running conditions (e.g., arrival
rate).

Although On-Demand instances are relatively new, previous
works have introduced models for their analysis and proposed
different ways to get best advantages from their features. Some
of these works take into consideration the previous gener-
ation Amazon EC2 burstable instances (i.e., T1 instances).
For example, Wen et al. [13] statistically characterized the
behavior of a t1.micro virtual machines (VMs), and proposed
to limit instances CPU consumption by injecting delays to
make VMs provide better performance with lower prices.
Since 2014, Amazon Web Services (AWS) introduced T2
instances, the new generation instances that replaced the T1
ones. T2 instances have a much better performance profile,
and the main difference with respect to T1 instances is the
introduction of credits to manage burst of performance. Many
authors [10, 23, 24] focus on investigating the T2 model
and its performance variations due to the amount of available

credits. Leitner and Scheuner [10] proposed a basic model to
analytically and empirically study T2 instances. This work also
analyzes the credit boosting idea to obtain better performance
with a lower price. Unfortunately, this strategy has some
limitations due to constraints on the number of time a T2
instance can be started or rebooted with full amount of credits
(e.g., t2.micro instances can be launched 100 times in a 24-
hour period) [11]. Wang et al. [23] investigated the mechanism
used for On-Demand instances. For this purpose, they consider
VMs from both Amazon EC2 and Google Cloud Engine.
They note that, due to deterministic regulation mechanisms,
network and CPU performance of burstable instances are
subject to high dynamism. They also proposed some possible
exploitations of burstable instances, such as passive backup
for spot instances [22] and temporal multiplexing of burstable
instances. [24] focuses on how to extend the lifetime of credits
in single-tier and multi-tier systems by adopting cpulimit,
surpassing the performance of the delay strategy proposed in
[13] that can negatively affect the end-to-end execution time
making it longer. Besides extending the credits lifetime and
the performance of the system, the approach presented in [24]
also allows users to reduce migration cost by decreasing the
migration frequency.

To the best of our knowledge, there are not available
techniques for bursting instances that can dynamically adapt to
variations in the workload while making the credits deplete as
late as possible. With bursting instances being a relative new
topic, no works have considered in depth mechanisms to make
their credits last longer. Starting from the results obtained
and presented in [24], we introduce that is based on a novel
autonomic strategy that combines cpulimit and quantile
regression to make the system save credits while complying
with user-defined strict SLOs.

V. CONCLUSIONS

This work presents , an autonomic scheduling framework,
that can maximize the efficiency of spare resources while
preserving SLOs in burstable cloud instances. The core
component is a tail latency prediction model driven by
quantile regression that can predict the tail latency under a
given load and cpulimit. The symbiosis of lightweight
profiling and analytical modeling significantly reduces the
overhead of collecting heuristics for training and enables
the proposed work to be useful in practice. Extensive
experimental evaluation using both single-tier and multi-tier
applications on Amazon EC2 verifies the prediction accuracy



of the proposed tail latency prediction model (with prediction
errors ranging from 1% to 15%) as well as the effectiveness
of in terms of improving the efficiency of spare resources
without violating SLOs.
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