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GPU accelerated digital twins 
of the human heart open new 
routes for cardiovascular research
Francesco Viola 1,7, Giulio Del Corso 1,6, Ruggero De Paulis 2,3 & Roberto Verzicco 1,4,5*

The recruitment of patients for rare or complex cardiovascular diseases is a bottleneck for clinical 
trials and digital twins of the human heart have recently been proposed as a viable alternative. In 
this paper we present an unprecedented cardiovascular computer model which, relying on the latest 
GPU-acceleration technologies, replicates the full multi-physics dynamics of the human heart within a 
few hours per heartbeat. This opens the way to extensive simulation campaigns to study the response 
of synthetic cohorts of patients to cardiovascular disorders, novel prosthetic devices or surgical 
procedures. As a proof-of-concept we show the results obtained for left bundle branch block disorder 
and the subsequent cardiac resynchronization obtained by pacemaker implantation. The in-silico 
results closely match those obtained in clinical practice, confirming the reliability of the method. This 
innovative approach makes possible a systematic use of digital twins in cardiovascular research, thus 
reducing the need of real patients with their economical and ethical implications. This study is a major 
step towards in-silico clinical trials in the era of digital medicine.

After the initial phase of research and development, the standard route for the transfer of a novel treatment to 
clinical practice is through randomised trials. In fact, every human is one of a kind and the efficacy of a new 
therapy can be assessed only via statistical analyses on large cohorts of patients. These are collected into ran-
domised homogeneous groups and subjected to different treatments to compare the outcome of the new therapy 
with the established ones. However, recruiting enough participants for trials on rare or complex diseases could 
be very challenging while biased and incomplete cohorts yield inconclusive or misleading results. Paradoxically, 
clinical trials can thus become a barrier preventing some patients from accessing innovative treatments (not 
to mention the ethical question associated with sub-optimal or placebo therapies applied to some trial control 
groups). The generation of synthetic data by high-fidelity computer models might be an effective strategy to 
mitigate the above issues and this is one of the main aims of digital medicine. In fact, these models are referred 
to as digital twins and, when provided with appropriate input parameters, they can be used to surrogate real 
patients with ‘on demand’ features. In this way, the completion of thorough and cost effective clinical trials 
could be possible even in those cases in which enrolling a patients cohort would be challenging. The advantages 
of digital twins are huge since not only they can produce specific data but, in principle, they can anticipate the 
outcome of a surgical procedure, the progression of a disease or the performance of an implanted device thus 
shifting the medical paradigm from decisions based on past experience to predictions guided by virtual models.

Considerable efforts have been made in the last decade to produce digital twins for clinical applications and 
cardiac modelling has been among the fastest growing fields. The electrophysiology models and their numerical 
solution are nowadays well-assessed in the  literature1–3, as well as their coupling with a structural solver yielding 
electromechanical  systems4–13 enabling to reproduce the myocytes depolarization over the cardiac tissue includ-
ing pathologic cardiac phenomena as ischemic events and  defibrillation14,15. The influence of cardiac contraction 
on the electrocardiogram (ECG)16 and of the heart rate  variability17 has also been included and recent review 
 papers18,19 give a detailed account of whole-heart electromechanical models. Models including the hemodynamics 
are more scarce and the flow is often parametrised by simplified laws, as by considering only the blood pressure 
within each heart chamber while all valves are reduced to viscous  resistances20,21 or by introducing a more realistic 
hemodynamics within a bi-ventricular configuration with simple lumped models for the heart  valves22,23. More 
recently, an accurate model, which includes the atria and the hemodynamics, has been  proposed24, although only 
the systolic function is considered and, therefore, the sealed atrio-ventricular valves are modelled as impermeable 
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plane disks while the fully open semilunar ones as circular holes. Some heart models simultaneously accounting 
for the electromechanics and hemodynamics equations are currently being  developed23–26, although they are 
generally very advanced for the electrophysiology and the elastodynamics of the tissues while the fluid dynamics, 
with its unsteady and transitional evolution, is often simplified. In some cases, the fluid motion in the left heart 
is solved using Navier-Stokes equations with kinematic  driven27 and  FSI28, whereas Navier-Stokes/LES equa-
tions have also been applied to reduce the computational  burden29. From the above literature review, it appears 
that implementing a truly digital twin for the whole heart, capable of simulating all the features throughout the 
heartbeat is a formidable task which has not been fully accomplished yet. Furthermore, in order for a digital 
twin to be reliable and predictive, it must reproduce all the relevant dynamical details of the real counterpart 
thus requiring hundreds of million degrees of freedom. Even on modern supercomputers, such models entail 
simulation times of weeks or months and this prevents their routine clinical use: overcoming such limitation 
has huge cardiovascular potential and this has motivated the present work.

In this paper we present a groundbreaking virtual heart model coping with all the main features of the car-
diovascular function: it accounts for the dynamics of the complex biological tissues both, active myocardium 
and passive valves, the transitional and turbulent hemodynamics, the myocardium electrophysiology and their 
strongly coupled interactions. The complete computer model uses up to one billion of spatial degrees of freedom 
and half a million time steps per heartbeat to capture with uncompromised accuracy the complex heart dynamics. 
The resulting huge computational burden is tackled by the latest graphics processing units (GPU) technologies 
which reduce the time-to-solution from months to a few  days30. In the following we show first some results 
for a healthy heart with a physiological function then, by disconnecting the electrical conduction between the 
atrio-ventricular node and the left bundled branch, we induce its block and observe a deterioration of several 
cardiovascular indicators similarly to the clinical experience. Starting from this impaired configuration, cardiac 
resynchronization is simulated by pacemaker therapy and a small clinical trial is generated by varying the posi-
tion of the implanted lead within the left ventricle. The outcome of the various virtual treatments is discussed 
in the light of the clinical experience (of one of the authors) and perspectives for future work are finally given.

Results
The quantities of interest, used to monitor the heart function and their dynamics, are obtained by our computer 
model whose details are given in the section "Methods". Here we add that the heart, including the four cardiac 
valves and main arteries/vessels, is properly located in a human torso (see Fig. 1a–d) and, during the simulations 
the electrical signals reaching the skin surface are detected to produce synthetic ECGs. In fact, in addition to the 
composite heart elastomechanics and  hemodynamics28, the model accounts also for the complex, hierarchical 
structure of the electrophysiological  system31, therefore it produces a realistic source of electric potential which 
propagates throughout the body.

Owing to the inherent human variability, defining a representative geometry of a heart is a problem in itself 
and two opposite directions can be taken: (i) replicating the heart of a particular individual (patient-specific 
model) or (ii) modelling a ‘normal’ organ with average properties. In this case the latter approach was pursued 
with the shape of each chamber, the local thickness of the tissues and their fiber directions obtained by surgical 
 atlases32 or measurements whose ranges are reported in Table 1. It is worth mentioning that the heart resulting 
from these parameters does not belong to any specific individual but it rather exemplifies a standard configuration 
representative of the heart of adult humans. A typical run consists of a couple of initial heartbeats, during which 
the transient is accommodated, followed by ten cycles which are used to extract phase averaged quantities and 
statistics. The wall-clock time needed to solve a single beat of the whole cardiac dynamics strongly depends on the 
available hardware resources. For the fluid Eulerian grid at use (211′752′711 grid points) scaling tests have been 
run using both Nvidia V100 devices (on Marconi100, GPU cluster by Cineca) and the next generation Nvidia 
A100 devices on DGX machine. The wall clock time needed to solve a single time step is of 0.235s on 4 × V100 
(a single Marconi100 node), which reduces to 0.1285s and 0.0814s using 4 × and 8 ×  A100 devices, respectively. 
In the last case, ≈ 11.3 h are needed to solve a single heartbeat and to produce a database of ≈ 8 Tbytes to be 
analysed by successive postprocessing.

Physiological conditions. The reference healthy case is generated by running the model under nominal 
conditions and some representative results are given in Figs. 2, 3, 4, respectively for the electrophysiology, hemo-
dynamics and the tissue mechanics.

Figure 2 shows the depolarization pattern which starts from the sino-atrial node and quickly proceeds through 
the atria via the fast conducting bundles. The signal then slows down in the atrio-ventricular node for about 
100 ms to allow the fully contracted atria to complete the filling of the relaxed ventricles. A quick propagation 
follows along the His bundle and the Purkinje network to depolarize the ventricles and lead to their strong 
(almost) synchronous contraction (see also Fig. 5b) . The electrically driven contraction and relaxation of the 
tissues squeezes the blood from atria to ventricles and then to veins and arteries following precise directions 
which are ensured by the passive opening and closing of the heart valves. Figure 3 shows the flow structure during 
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Figure 1.  Geometrical and topological features of the cardiac digital twin. (a) Location of the heart model 
in a human torso and position of two virtual leads with which the ECG is computed (see section "Methods"). 
(b) Geometrical assembly of the heart model with the main elements, including veins and arteries. (c) Zonal 
separation of the heart with the external fibers orientation; the black dashed line is the trace of the cutting plane 
of panel d. The active and passive mechanical properties of the tissues are specific of each heart structure. (d) 
Plane section through the apical region of the ventricles to show the fibers orientation across the myocardium 
thickness. Note that the active contraction of the myocardium occurs along these directions thus yielding 
anisotropic and inhomogeneous features. (e) Hierarchical structures of the electrophysiological system: the 
conduction velocity of the electrical signal is position dependent. (f) Instantaneous snapshot of the flow 
streamlines at systole coloured with the velocity magnitude (0 m/s white, 1.5 m/s dark red); the clustering of 
lines in the ventricles evidences a swirling motion while the dark regions in veins and arteries show intense 
flows. The diastolic phase along with the corresponding snapshots in diseased and resynchronized conditions 
are reported in the supplementary material Fig. S1.
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several instants of the heartbeat and, since a single planar section cannot describe the complex structure of the 
heart, the flow on two different planes for the left and right heart is shown. Furthermore, the supplementary 
material Fig. S1a,b report three-dimensional visualizations of the systolic and diastolic hemodynamics through 
instantaneous streamlines of the blood velocity.

For the sake of completeness, in Fig. 4, the intensity of the tissue contraction is visualised through tension 
stress along the tissue fibers with results which are complementary to the activation potential of Fig. 2 and the 
produced hemodynamics of Fig. 3.

Although a high-fidelity digital model makes easily accessible the complex three-dimensional dynamics of the 
various heart systems the same is not true in the routine clinical practice which, instead, relies on simpler quanti-
ties that can be directly measured or inferred through standard analyses. Examples are the pressure variations 
during a heartbeat, the volume of the left ventricle and the ejection fraction or the ECG, as shown at the bottom of 
Fig. 4. The values obtained for the healthy configuration are 130/76 mmHg for systolic/diastolic pressure, ≈ 51% 
for the ejection fraction and an ECG trace showing the appropriate duration of the QRS complex and T wave.

We wish to stress that all these quantities have been obtained as part of the model results without additional 
inputs other than the electro-mechanical properties of the system thus providing evidence of its predictive 
capability.

Pathological left bundle branch block. A further step forward for the model assessment is to show that 
not only it behaves correctly in healthy physiological cases (for which it has been designed) but it also reproduces 
the pathologic conditions of a specific induced disfunction. In order to accomplish this goal, we have discon-
nected the electrical conduction between the atrio-ventricular node and the left His bundle (Fig. 5c) thus caus-
ing a left bundle branch block (LBBB) disorder.

The immediate consequence is that the tissue depolarization proceeds quickly in the right ventricle along 
the Purkinje fibers but it is much delayed on the left counterpart as the activation potential can propagate only 
through the slow conducting myocardium: this is evident in Fig. 6b showing the largely polarized (not con-
tracted) posterior region of the left ventricle compared with the fully contracted myocardium of the healthy case 
(Fig. 6a,g; see also Fig. S4 in the supplementary material). The hemodynamics produced by the impaired left 
ventricle function yields a weak aortic jet evidenced by Fig. 6e and in the supplementary material Fig. S2. Also 
the myocardium contraction is consistent with the above picture and Fig. 6h (see also supplementary material 
Fig. S11) confirms that the left ventricle fails to reach the same contraction strength as the right part.

Concerning the classical clinical indicators, we see that the peak left ventricle and aortic systolic pressures 
drop by about 30% (95/69 mmHg) and the systole duration is extended in the cycle. The ejection fraction 

Table 1.  Normal ranges of cardiac parameters in healthy adults calculated as the mean value ± twice the 
standard deviation and corresponding parameters of the digital twin (healthy electrophysiology case).

Parameter Source Population (female) Normal range Digital heart
LV end diastolic volume (ml) 33 800 (462) 75–211 176
LV end systolic volume (ml) 33 800 (462) 24–92 86
LV stroke volume (ml) 33 800 (462) 45–125 90
LV ejection fraction  (%) 33 800 (462) 48–72 51
RV end diastolic volume  (ml) 33 800 (462) 74–234 189
RV end systolic volume  (ml) 33 800 (462) 21–117 98
RV stroke volume  (ml) 33 800 (462) 45–125 91
RV ejection fraction (%) 33 800 (462) 44–68 48
LA max volume  (ml) 33 795 (462) 28–104 75
LA stroke volume  (ml) 33 795 (432) 18–62 38
LA ejection fraction (%) 33 795 (432) 46–74 51
RA max volume  (ml) 33 795 (432) 30–130 84
RA stroke volume  (ml) 33 795 (432) 9–61 35
RA ejection fraction (%) 33 795 (432) 24–64 42
LV long axis diastole  (mm) 34 52 (26) 62-98 92
LV short axis diastole (mm) 34 52 (26) 36-48 50
LV sphericity index diastole 34 52 (26) 0.40–0.64 0.54
RV long axis diastole  (mm) 35 41 (21) 71.0–81.0 79
RV short axis diastole (mm) 35 41 (21) 27.0–33.0 32
Aortic annulus diameter (mm) 36 3370 (1156) 17.4–27.1 23
Pulmonaryannulus diameter (mm) 36 3997 (1408) 19.5–30.8 22

Mitral annulus area (mm2) 37 211 (114) 460–1220 800

Tricuspid annulus area (mm2) 38 209 (116) 460–1260 800
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Figure 2.  Depolarization of the electrophysiology network. Instantaneous snapshots of the activation potential 
during the heartbeat: (a) The sino-atrial node ‘sparks’ the initial triggering signal ( t ≃ 0 s); (b) The electrical 
signal spreads quickly, via the internodal pathways, across the atrial tissue and depolarises them ( t = 160 ms); 
(c) The signal reaches the atrio-ventricular node where it is delayed by ≈ 100 ms by the very small conduction 
velocity of the signal in that region ( t = 190 ms); (d) At t = 250ms, the activation potential has spread through 
the bundle of His, the Purkinje fibers and the myocardial tissue of the ventricles; (e) While the myocardium 
repolarizes a vigorous contraction starts ( t = 400 ms); (f) The ventricles attain the strongest contraction at 
t = 560  ms, a long relaxation period follows until the beginning of the next heartbeat.
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Figure 3.  Cardiac hemodynamics. Instantaneous snapshots of the blood velocity magnitude over plane sections 
crossing the left (a)–(f) and right (g)–(l) parts of the heart. The left plane position is such to cross in the middle 
the mitral and aortic valves. Similarly, the right plane crosses the pulmonary and tricuspid valves. (a) and (g 
t = 500 ms, (b) and (h) t = 540 ms, (c) and (i) t = 600 ms, (d) and (j) t = 620 ms, (e) and (k) t = 680 ms, (f) 
and (l) t = 780 ms.
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decreases to a value of 34% with the ECG trace evidencing slower repolarization, prolonged QRS duration and 
QT interval which are all common indicators of the LBBB disorder.

Effect of cardiac resynchronization therapy. Cardiac resynchronization therapy (CRT) is indicated in 
patients with heart failure evidenced by depressed ejection fraction and wide QRS complex in the ECG trace. 
In short, CRT consists of the implantation of a pacemaker which using artificial electrical signals restores the 
coordination of ventricles contraction. A common device is the biventricular pacemaker which has three leads 
implanted, respectively, in the upper part of the right atrium, in the apex of the right ventricle and in the pos-
terior wall of the left ventricle. The leads are inserted via the upper vena cava and the left ventricle is reached 
passing through the coronary sinus; as a consequence, it can be implanted only in the regions crossed by its main 
tributary veins (Fig. 5a). On the other hand, the most appropriate positioning would be the latest depolarized 
point of the left ventricle whose position neither is known precisely nor is necessarily reached by a main vein. 
In Fig. 5d,e we show the optimum implantation point (hereafter indicated as LP1—lead position one), accord-
ing to the above criteria, with the lead activation time tuned so to yield the maximum cardiac output. Figure  6 
shows the activation potential, the hemodynamics and tissue contraction after the resynchronization therapy 
which exhibit features similar to the physiological case; see also supplementary material Figs. 3, 5 and 12 for the 
snapshots sequence during the heartbeat. Further quantitative confirmation comes from the standard clinical 
indicators of Fig. 4g–i whose values and time evolution closely match those of the healthy reference case. In 

Figure 4.  Tissue stresses and clinical indicators. (a)–(f) Instantaneous surface distribution of the tension 
along the fibers axes (force per unit area) during a heartbeat; during diastole, when atria contract, the heart is 
viewed from above (panels (a)–(c), during systole (d)–(f) the viewpoint is from below to evidence ventricles 
contraction. a, t = 20 ms, (b) t = 120 ms, (c) t = 260 ms, (d) t = 460ms, (e) t = 560 ms, (f) t = 640 ms. (g) 
Time evolution of the left ventricle blood pressure during systole: black solid line for a healthy heart; red solid 
line for the impaired heart with a left bundle branch block (LBBB); blue solid line for the impaired heart after 
resynchronization (CRT, with left ventricular lead in the position LP1). The dashed lines have the same meaning 
as before but for the aortic pressure. h, Time evolution of the left ventricle volume during systole, the colour 
code is the same as in panel (g). (i) ECG trace from the two sensors as in Fig. 1a), the colour code is the same as 
in panel (g).
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particular blood pressure values recover to 120/72 mmHg while the ejection fraction raises to 48% with the ECG 
trace which regains the physiological timings.

Sub-optimal left-ventricle lead implantation. For real patients, instantaneous maps of the activation potential 
such as that of Fig. 5d are not available and the exact location of the latest depolarised left-ventricle region is not 
known a-priori. Furthermore, the main myocardium veins form a very sparse network thus the left-ventricle 
lead is unlikely to be implanted in the best possible position and the initial sub-optimal outcome is usually 
improved by successive tuning of timings and delays among the atrial and ventricular leads.

Nevertheless, depending on the particular lead position, the cardiac function improves only up to a given 
threshold and in Fig. 7 we report the results of a simulation campaign, in which the left ventricle lead has been 
implanted in five possible alternative positions. For each case, denoted by LP2–6, the activation time of the left 
ventricle lead has been tuned, by complementary simulations, so to obtain the best cardiac output similarly to 
the procedure following real implantation surgery. The data are presented in the same form as for the previous 
cases and, in the sake of conciseness, the corresponding maps of activation potential blood flow and fibers ten-
sion distribution over the tissue are reported in the supplementary material Figs. S6–S10 and Figs. S13–S17. 
The emerging picture from the results of Fig. 7d–e is that the cardiac function improved in all cases although 
the recovery is the smaller the farther is the implantation point from the optimal position identified by the LP1 
case. Similar indication comes from the ECG traces of Fig. 7f when comparing the duration of the QRS complex 
and the repolarization time delay with the values of the healthy reference case.

Figure 5.  Cardiac resynchronization therapy. (a) Sketch of the biventricular pacemaker device with the atrial 
lead (in red), right ventricular lead (in yellow) and left ventricular lead (in green). (b) Arrangement of the fast 
conducting structures of the electrical signal in the heart. The two white arrows evidence the branching of the 
signal in the Bundle of His, after the Atrio-Ventricular node. (c) The same as (b) but with a red cross indicating 
the point where the electrical connection for the left side has been interrupted. (d) Surface distribution of the 
activation potential in the myocardium (at t = 316 ms) for the configuration  in panel (c) with overlapped the 
position of the main veins; the green bullet indicates the optimal point for the lead implantation as it can be 
reached via the coronary vein and is located within the polarised portion of the tissue. (e) Same configuration 
as in panel (c) with the position of the three pacemaker leads. Note that in this configuration the atrial and right 
ventricle leads operate only as sensors since only the left ventricle lead is allowed to issue triggering signals.
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More quantitative data about the efficacy of the resynchronization procedure is summarized in Table 2 in 
which volumes, pressures and derived quantities are computed for all the simulated cases. As the position of 
the left ventricular lead is moved from the optimal position LP1 to the suboptimals ones LP2-6, the end systolic 
volume increases, thus corresponding to a decrease of the stroke volume, of the ejection fraction and of the peak 
systolic pressure.

Discussion
In this paper we have presented a GPU-accelerated cardiac model for determining the changes produced by 
pathologies or the outcome of a therapy. The multi-physics solver encompasses (i) the complex dynamics of the 
cardiac tissues that are either passively moved by the interaction with the flow (valves and artery/vein walls) or 
actively deformed by the propagation of an electrical signal through the myocardium via the electrophysiology 
network of the heart (ii) the material properties of the various tissues that are anisotropic and have nonlinear 
constitutive relations, (iii) the pulsatile, transitional and turbulent character of the flow that requires the state-
of-the-art direct numerical simulation for the correct description of all the flow scales up to the smallest.

As a proof-of-concept, for the use of a human heart digital twin to study specific features of the cardiac func-
tion, the model has reproduced the physiological behaviour when run in healthy conditions while pathological 
alterations have emerged after having induced a disorder.

Finally, the same model has predicted the outcome of a resynchronization treatment aimed at restoring the 
cardiac function; in order to account for the inherent uncertainties related to the clinical procedure, different 
positions of the left ventricle pacemaker lead have been tested and the results have yielded the whole range of 
possible outcomes, from full recovery to marginal improvements.

Figure 6.  Pathological effect and therapeutic effectiveness. Comparison of different quantities for healthy (a), 
(d), (g), impaired (b), (e), (h) and resynchronized (c, f, i) heart during systole. (a)–(c) Instantaneous surface 
distribution of the activation potential ( t = 252 ms). (d)–(f) Blood velocity distribution on a planar section 
cutting the left heart at peak systole ( t = 520 ms). (g)–(i) Surface distribution of the tension along the fibers axes 
at peak systole (force per unit area, t = 520 ms).
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Figure 7.  Optimal and suboptimal left ventricular pacing. (a)–(c) Views of the different possible positions 
for the left ventricular lead with a sketch of the main veins arrangement. d, Time evolution of the left ventricle 
blood pressure during systole: black solid line for healthy, red solid for impaired and blue solid for the heart 
after optimal resynchronization. The dashed lines represent the other resynchronization cases for different lead 
positions as detailed in panels (a)–(c). (e) Time evolution of the left ventricle volume during systole, the colour 
code is the same as in panel (d). (f) ECG trace from the two sensors as in Fig. 1a), the colour code and labels are 
the same as in previous panels.
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The complete set of simulations presented in this paper can therefore be regarded as a proof-of-concept 
for a small clinical trial aimed at assessing the effect of uncertainty in the positioning of the ventricular lead of 
a pacemaker device. In real clinical practice this would be achieved by collecting data from different patients 
and performing a retrospective statistical analysis. However, each patient is different from the others, therefore 
when comparing different outcomes it is practically impossible to separate the effects of the surgical procedure 
from the epistemic variability of each individual. In contrast, the present model produces different cases simply 
by changing one or more input parameters which, therefore, can be assigned to form a representative cohort of 
patients in clean, repeatable and controllable conditions.

In fact, clinical trials infer the quantities of interest (QoIs) by comparing the outcome of alternative treat-
ments on different cohorts of homogeneous patients. These should include a number of individuals large enough 
to properly represent the statistics of the population in turn entailing a random sampling. This is equivalent to 
a Monte Carlo analysis (MC), which gauges the size N of the cohort needed to compute the statistics; since the 
error in estimating statistical  moments39 decays as ∼ 1/

√
N  , a cohort of about N = 400 patients is needed to 

reduce the uncertainty below 5% while it ramps up to N = 10000 for a threshold of 1%.
When resorting to in-silico trials, however, the features of virtual patients can be defined on demand and this 

allows the use of more efficient sampling strategies which ensure a faster convergence than MC. For example, 
using a variance reduction technique (such as the Latin Hypercube  sampling40), the error decreases as ∼ C/N1/2 , 
with the constant C ≤ 139. The converge of the QoIs statistic can be further improved considering the so called 
quasi-random sampling strategies, such as the Sobol’ low discrepancy  sequence41. In this case the error decays as 
1/Nα , with the exponent α in the range [1/2,  1]42. It appears that combining a quasi-random method with a mod-
erate variance reduction technique entails a significant reduction of the number of samples and, consequently, 
the size of the virtual patients cohort. For example, with α = 0.7 and C = 0.08 , an in-silico study would need 
N = 50 ( N = 500 ) samples to estimate QoIs within 5% ( 1% ), rather than N = 400 ( N = 10000 ) of a standard MC 
method routinely employed in the clinical practice. The advantages associated with in-silico trials and the optimal 
sampling techniques are even larger when the analysis is focussed on rare diseases. In fact, estimating events with 
low probability ( p ≪ 1 ) yields a prohibitively slow convergence rate ( ∼ 1/

√
pN  for standard MC methods while, 

using a method like the Subset  Simulation43, which sequentially samples the distribution tails, the error decays 
as 

√

(log(p−1)2/N 44. This implies that, for an uncertainty threshold of ≈ 10% , an event of probability p = 10−2 
needs a cohort of 10000 patients for MC sampling and only about 400 with a Subset Simulation approach.

Cardiac digital models can thus be exploited to run in-silico clinical trials for investigating pathologies and for 
testing the outcome of surgical procedures or devices implantation. As an example, the effect of a myocardial or 
valvular pathology on the normal hemodynamics (and consequently on the wall shear stress, tissue damage and 
hemolysis) can be studied, and the beneficial effects of implanted cardiac device or prosthesis can be predicted 
and quantified numerically. Nevertheless, the high computational cost of the simulations calls for high-perfor-
mance computing facilities to reduce the time-to-solution and an efficient code parallelization with the effective 
use of the computational resources is key, especially for running simulations campaigns. The GPU-accelerated 
multi-physics computational model proposed here allows to solve a heart beat in less than 12 h running on 8 ×
A100 devices, which corresponds to a single DGX node. Such wall clock time will be further reduced keeping up 
with the upcoming hardware improvements. As an example, a speed up of about two will be achieved with the 
next Nvidia H100 devices (which have been released in the first quarter of 2023) and more performant devices 
are expected in the next years. In principle, the time-to-solution can be also reduced by running a multi-node 
simulation, thus resorting to more GPU devices, even if the connection among nodes (Infiniband) is slower 
than the NVLink connection between the GPU devices within the same node. Consequently, as the simulation 
is scaled out from single node to larger node counts, even if the wall clock time reduces, an increasing percent-
age of the buffer is sent over the slower connections, which causes a reduction in performance. Therefore, in the 
perspective of running in-silicio clinical trials and minimize the total wall clock time for solving a patient cohort 
(rather than a single cardiac simulation) it is more efficient to solve one simulation per node in a GPU cluster, 
where each node is equipped with 4 to 8 devices having a total of 80 Gb RAM per device.

Table 2.  Main cardiac parameters as obtained from the model for the various healthy, pathological (left 
bundle branch block, LBBB) and treated cases (with cardiac resynchronization therapy, CRT). The labelling of 
the cases is the same as in Fig. 7.

Parameter Healthy LBBB
LBBB+CRT 
LP1

LBBB+CRT 
LP2

LBBB+CRT 
LP3

LBBB+CRT 
LP4

LBBB+CRT 
LP5

LBBB+CRT 
LP6

LV end diastolic 
volume (ml) 176 176 176 176 176 176 176 176

LV end systolic 
volume (ml) 86 116 92 94 97 97 105 111

LV stroke volume 
(ml) 90 60 84 82 79 79 71 65

LV ejection fraction 
(%) 51 34 48 47 45 45 40 37

Max LV pressure 
(mmHg) 130 95 120 118 110 109 102 98
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Before concluding this paper we would like to stress that despite the effort made to develop a complete 
model for the whole heart, still there are many limitations. In our model the nonlinear stiffening at high strains 
observed in the cardiac tissue is modeled suitably by a Fung-type constitutitve relation based on the exponential 
function for the strain energy function, whose parameters depend on the local muscular fiber, thus accounting 
for the orthotropic nature of the tissues. The constitutive modelling can be further improved for instance using 
the Holzapfel Ogden  relation45, which has been demonstrated to capture better the passive mechanical behavior 
of arteries and 3-D states of deformation especially in the case of shear deformation. Another key challenge to 
be tackled in future studies is addressing the inherent human variability and the uncertainty of the heart tissue 
parameters, which could yield significant difference in the patient response to therapies and surgical procedures. 
In this scenario, a large simulation campaign is needed to determine the population response to CRT by sweep-
ing the probability distributions of the uncertain inputs of the digital twin, such as the elastic parameters of the 
tissues, electrical conductivities, the orientation of the muscular fibers and the geometry of the heart chambers, 
just to mention a few.

Furthermore, the heart is not just a complex electomechanical system but it relies also on many biochemi-
cal processes which, at the moment, are not modelled by our digital twin. For example, coupling continuum 
mechanotransduction models can be very useful for predicting the evolution of abnormal haemodynamics or 
the progression of a disease diagnosed at the initial  stage46. In this framework the endothelial wall shear stresses 
(WSS) are an important input parameter for these models, as abnormal WSS distributions may alter the physi-
ological stress levels and activate tissue remodelling or enhance  calcification47. The accurate solution of WSS calls 
for a local grid refinement at the wet tissues to solve the steep velocity gradients within the boundary layers. In 
immersed boundary methods (IBMs; also adopted here, see section "Methods"), as the grid directions are not 
aligned with the wet tissues which significantly deform and change orientation during a heartbeat, a fine grid 
size should be used in the three spatial directions throughout the whole computational  domain48, thus increasing 
the computational burden. On the other hand, the remodelling processes, evolve over times which range from 
seconds to months and many effects tend to be cumulative triggering feedback loops whose result can show up 
in years. Such a long time scales are clearly out of reach of our computer model which, at most, could reproduce 
a few minutes of heartbeats. A possible strategy to bridge this gap could be to rely on continuum mechanostrans-
duction models in which the results of high-fidelity hemodynamic simulations are used as input for biological 
tissue models which, in turn, can predict the long term evolution of a given situation. In case the evolution of 
the system produces a change of geometry (as for tissue remodelling), iterations between the digital twin of the 
heart and mechanotransduction models would be necessary in order to predict the final evolution of an initial 
symptom: the combination of such a sophisticated computer models is at the base of digital medicine and is one 
of the main challenges of future research.

Methods
Cardiac geometry. The 3D heart geometry including the four cardiac valves and the main vessels has been 
built using modeling softwares (Rhinocad, Blender, MeshMixer, Meshlab) so as to reproduce high-resolution 
clinical images and medical atlas, where the corresponding lengths and thicknesses are within the normal ranges 
reported in Table 1. In the left part of the heart, the left atrium (red chamber in Fig. 1c) receives oxygenated 
blood via the pulmonary veins (orange veins in the same figure) and is connected to the left ventricle through the 
mitral valve which has two leaflets, an anterior next to the aortic valve and the other posterior close to the lateral 
myocardium (see Fig. 1b). The left ventricle (yellow chamber) pumps blood through the aorta causing the three-
leaflets aortic valve (see Fig. 1b) to open during systole and to close during diastole. On the other hand, the right 
atrium (green chamber in Fig. 1c) receives deoxygenated blood from the superior and inferior vena cava (green 
veins) and is connected to the right ventricle through the tricuspid valve that has three leaflets (see Fig. 1b). The 
right ventricle (blue chamber) pumps blood through the three-leaflets pulmonary valve (see Fig. 1b) towards the 
pulmonary artery (brown artery in Fig. 1c). The heart tissues are made of fibers which make their electrical con-
ductivities and elastic properties orthotropic. In particular, the muscular fibers of the ventricular myocardium 
have a dual-orientation49,50, with directions ranging approximately from +60◦ to −60◦ across the ventricular 
 wall51, whereas atrial fiber orientation is uniform within the myocardium  thickness52, see Fig. 1c,d.

The Lagrangian mesh used for the structural and electrophysiology solver of the heart is described by 
∼ 5 × 105 cells including the four cardiac valves. The heart geometry is immersed in a computational box for the 
hemodynamics of Lx × Ly × Lz = 10 × 10 × 14 cm3 that is discretized, by an Eulerian mesh of 531 × 531 × 751 
nodes corresponding to a grid spacing ≤ 190 μm, which is needed to correctly solve the hemodynamics. A small 
time step of about 2 μs is needed to advance a single heart beat, which corresponds to 500’000 time steps with 
a heart rate HR = 60 bpm.

Fluid-Structure-Electrophysiology interaction (FSEI). The digital twin of the human heart is based 
on a multi-physics computational model tailored to accurately solve cardiovascular flows, which can cope with 
the electrophysiology of the myocardium, its active contraction and passive relaxation, the dynamics of the 
valves and the hemodynamics within the heart chambers and arteries. These models are three-way coupled with 
each other, thus capturing the fully synergistic physics of the heart functioning and the resulting FSEI is here 
summarized.

Fluid solver. The blood velocity u and pressure p are governed by the incompressible Navier–Stokes and con-
tinuity equations:
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 where ρ = 1060 Kg/m3 is the blood density. In the case of a Newtonian fluid, the viscous stress tensor is given by 
τ = µ(∇ + ∇T )u with µ = 3.5 mPa s the fluid viscosity, whereas non-Newtonian fluids call for more complex 
constitutive relations. Blood is a concentrated suspension of cells, in a Newtonian liquid, the plasma, therefore 
its overall behaviour is that of a non-Newtonian fluid owing to the surface tension of the cell membranes on 
the Newtonian matrix. In order to account also for this behavior, a non-Newtonian (shear-thinning, Carreau-
Yasuda53) blood model has been implemented in the flow solver even if it has been shown that the non-New-
tonian blood features become relevant only in vessels of sub-millimeter diameter while in the ventricular flow 
they produce only minor effects. The governing equations (1) are solved over Cartesian meshes using central 
second-order finite-differences discretized on staggered grids, whereas the equations are marched in time using 
a fractional step with an explicit Adams–Bashforth method for the nonlinear convective term and an implicit 
Crank-Nicolson method for the viscous  terms28,30.

As it happens in immersed boundary methods (IBMs), the heart is immersed in the fluid domain (Eulerian 
grid), as shown in Fig. 8. The no-slip condition on the moving wet heart tissues is imposed through the instan-
taneous forcing fIB using an IBM based on the moving least square (MLS)  interpolation54,55, which is used to 
transfer the IB forcing computed at the Lagrangian markers (uniformly distributed on the wet surface of the 
 IB55) to the Eulerian grid. An advantage of this technique with respect other direct  IBMs48, is that the same MLS 
interpolation is also used to transfer back pressure and viscous stresses from the Eulerian grid to the Lagrangian 
markers, thus obtaining smooth hydrodynamics loads which are provided as input to the structural solver for 
fluid-structure coupling. In the case of the valve leaflets, both sides of the tissues are wet by the fluid and the 
local hydrodynamic force is computed over both the positive n+ and negative n− = −n+ normal directions: 
Fextf = [−(p+f − p−

f )n
+
f + (τ+

f − τ−
f ) · n

+
f ]Af  , where Af  is the area of the triangular face. On the other hand, 

for closed surfaces, like the heart chambers and vessels, hydrodynamic loads are only computed over the inner 
surface as: Fextf = [−pf nf + τ · nf ]Af  , being n the wet normal direction. The hydrodynamic loads evaluated at 
the wet faces are then transferred to the wet nodes thus obtaining, Fextn  , used in the Newton’s equation in the 
next paragraph.

As visible in Fig. 8, the tips of the arteries and veins representing the inlets/outlets of the heart do not cross 
the boundaries of the fluid computational domain, and during the cardiac dynamics blood is sucked from the 
outer volume through the pulmonary veins and superior/inferior vena cava and propelled towards the same 

(1)ρ

(

∂u

∂t
+ ∇ · (uu)

)

= −∇p+ ∇ · τ + fIB + fWK , ∇ · u = 0,

Figure 8.  Boundary conditions of the cardiac model. The whole cardiac geometry is immersed in the 
computational domain of the blood phase (external bounding box). The grey volumes at the tip of the artery/
veins indicate the region where the impedance of the missing circulation is mimicked by a volume forcing.
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outer volume through the aorta and the pulmonary arteries. However, the heart is just a portion of the whole 
circulatory system and since the 3D modelling will be limited to the heart and to the initial tracts of the main 
vessels, boundary conditions must be applied at the inlets and outlets of the model, so to account for the resis-
tive, elastic and inertial features of the missing vascular network. These features are generally represented into 
a lumped parameter network whose description requires inexpensive differential equations (analogous to those 
of electrical circuits)56. As in the present cardiac model the inlets/outlets are embedded in the computational 
domain, the boundary conditions are imposed through the volume forcing fWK in Eq. (1), which is only active in 
the cylindrical subdomains (having outward-pointing normal vector n! ) indicated in Fig. 8. The forcing is given 
by −fWK = αu + β

∫ t
0 u(τ )dτ + γn% , which along with the resistance and capacitance of the initial tracts of 

the veins/arteries is equivalent to a three elements Windkessel57,58 (see Table 3). This open-loop approach where 
each inflow/outflow boundary conditions is provided separately could be improved by resorting to closed-loop 
models where each outflow condition is coupled through a system of differential equations to the corresponding 
inlet  condition59–61, e.g. the outflow of the descending aorta to the inlet of the inferior vena cava with the 0D 
model mimicking the lower-body systemic circulation.

Structural solver. The dynamics of the deformable heart tissues is solved using a spring-network structural 
model based on the Fedosov’s interaction potential  approach62. A 3D solver is used for the ventricular and atrial 
myocardium that are discretized using a tetrahedral mesh, with the endocardium wet by the blood correspond-
ing to a triangular inner surface. On the other hand, thin membranes as the valve leaflets are discretized through 
2D triangulated surfaces. Several models of the elasticity of the myocardium are available in the literature, also 
accounting for its orthotropic  properties45,63,64. Here, the orthotropic and hyperelastic nature of biological car-
diac tissues is modelled by a larger elastic stiffness in the fiber direction, ê∥ , than in the sheet, ê/ , and sheet-
normal, ê⊥ , directions and by a nonlinear strain–stress behaviour according to a Fung-type constitutive relation, 
where the strain energy density reads We = c

2 (e
Q − 1), with Q = α∥ϵ

2
∥ + α/ϵ

2
/ + α⊥ϵ2⊥ being a combination of 

the Green strain tensor components in the fiber, ϵ∥ , sheet, ϵ/ , and sheet-normal ϵ⊥ directions. The coefficients c, 
α∥ , α/ , α⊥ have been set as in Table 4 so as to reproduce the stress-strain curves in the fiber and cross-fiber direc-
tion measured ex-vivo in different portions of the cardiac tissue.

Electrophysiology solver. The heterogeneous properties of the electrophysiology network are captured by resort-
ing to a state-of-the-art electrical model of the whole  heart31. Specifically, the cardiac geometry is decomposed 
into a set of coupled conductive media having different topology and electrical conductivities: (i) a network of 
slender bundles comprising a fast conduction atrial network, the AV–node and the ventricular bundles; (ii) the 
Purkinje network; and (iii) the atrial and ventricular myocardium (see Fig. 1e). The propagation of the cellular 
action potential in (iii) is governed by the bidomain equations:

where v and vext are the transmembrane and extracellular potential, χ and Cm are the surface-to-volume ratio of 
cells and the membrane capacitance and Is is the external triggering stimulus initiating the myocardial depolariza-
tion placed in the sino-atrial node. The intracellular, Mint , and extracellular, Mext , conductivity tensors are set to 

χ

(

Cm
∂v

∂t
+ Iion(s)+ Is

)

= ∇ · (Mint∇v)+ ∇ · (Mint∇vext),

0 = ∇ · (Mint∇v + (Mint +M
ext)∇vext),

ds

dt
= F(s, v, t),

Table 3.  Windkessel parameters at the inlets/outlets of the cardiac model as defined in Fig. 8.

      !ao              !epi              !pv             !pa              !vcs             !vci      
α (Kg m −3 s −1 × 106) 3.13 16.62 0.062 0.78 0.39 0.39

β (Kg m −3 s −2 × 106) 2.96 10.36 0.059 1.18 0.11 0.11

γ (Kg m −2 s −2 × 106) 18.43 25.68 0.00 4.17 0.00 0.00

Table 4.  Elastic parameters of the Fung constitutive relation for the various cardiac components.

Cardiac tissue C (KPa) α∥ α/ = α⊥ References
Left ventricle 11.59 9.97 3.17 Calibrated on biaxial tests of ovine cardiac  tissue65

Left atrium 8.31 3.77 3.52 Calibrated on biaxial tests of ovine cardiac  tissue65

Right ventricle 9.20 8.22 4.09 Calibrated on biaxial tests of ovine cardiac  tissue65

Right atrium 2.95 6.50 6.52 Calibrated on biaxial tests of ovine cardiac  tissue65

Arteries and veins 16.77 16.39 15.76 Calibrated on biaxial tests of aortic human  tissue66

Mitral and tricuspid valve 0.14 98.58 71.24 Calibrated on biaxial tests of porince mitral  leaflet67

Aortic and pulmonary valve 0.0093 120.88 5.87 Calibrated on biaxial tests of porcine aortic  leaflet68
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reflect the orthotropic myocardium electrical properties and thus depend both on the conductive media and on 
the local fiber orientation (Fig. 1c,d). In the case of a 3D conductive media, as the myocardium, these tensors have 
rank three and are diagonal when expressed in the fiber (∥) , sheet-fiber (/) and cross-fiber (⊥) directions, having 
components mext

∥  , mext
/  , mext

⊥  and mint
∥  , mint

/  , mint
⊥  . Since for the fast conductive bundles and the Purkinje network 

the external and the internal conductivity tensors can be taken as proportional one to the  other31 Mext = !Mint , 
the bidomain system of PDEs reduces to the monodomain equation χ

(

Cm
∂v
∂t + Iion(s)+ Is

)

= ∇ · (M∇v) , 
with M = !Mint/(1+ !) . The values of the principal conductivities components over the cardiac domain are 
reported in Table 5. The set of bidomain/modomain equations is solved using an in-house finite volume library, 
which provides a suitable approach for solving the electrophysiology equations in complex  geometries31, and 
it is coupled through the ionic current per unit cell membrane Iion to three different cellular models (indicated 
by the last equation): the Courtemanche  model69 for the atrial myocytes, the Stewart  model70 for the Purkinje 
network and the ten Tusscher-Panfilov  model71 for the ventricular myocytes. The active muscular tension Factn  
at the mesh cell is then obtained as a function of the transmembrane potential v through the model equation 
proposed by Nash and Panfilov 72.

Coupling. The contraction and relaxation of the heart chambers along with the passive motion of the vessels 
and valve leaflets result from the dynamic balance among the inertia of the tissues, the external hydrodynamic 
forces given by the fluid solver Fextn  , the internal passive forces coming from the structural solver Fintn  and the 
active tension computed by the electrophysiology solver Factn  : mn

d2xn
dt2

= Fextn + Fintn + Factn , where mn is the tissue 
mass associated with the nth−Lagrangian mesh node and xn its (instantaneous) position. The hydrodynamics 
force is non-zero only on the mesh nodes belonging to the wet surfaces (namely the valve leaflets and the inner 
wall of the heart chambers/vessels), whereas the active tension can be non-zero only for the nodes belonging 
to the muscular myocardium, i.e. ventricles and atria. Both, strong and loose coupling approaches have been 
implemented in the  code28,30 . The first is based on a predictor-corrector two-step Adams-Bashforth scheme and 
the three solvers–fluid, structure and electrophysiology—are iterated (typically 2–3 times) until the maximum 
relative error computed on the position and velocity of the structural nodes decreases below a prescribed thresh-
old (usually 10−4 ). In the loose coupling method, fluid and electrophysiology are solved first and the generated 
hydrodynamic and active loads are used to evolve the structure, whose updated configuration is the input for the 
successive time step. This approach is computationally cheaper than the strong coupling but is proner to numeri-
cal instability thus a smaller time step has to be used to integrate the equations. The small time step used here 
( !t = 2µs ) ensures the stability of the loose coupling procedure.

Synthetic ECG. The heart model has been enclosed in the idealized torso shown in Fig. 1a, which has been 
constructed to represent an average patient geometry having a heart-to-skin distance of 35 mm, in line with the 
parasternal average value of 32.1±7.9 mm (measured on a total of 150 individuals, 71 male and 79  female75). The 
waist circumference of 92.5 cm is within the normal range for the female and male populations (defined as mean 
value ± twice the standard  deviation76), which are respectively equal to 66.1–106.1 cm (mean 86.1 cm, measured 
on 1986 subjects) and 71.7–116.4 cm (mean 94.1 cm, measured on 4082 subjects). The chest circumference is 
equal to 107.3 cm, which is also within the normal ranges of the female (78.2–111.2 cm; mean 94.7 cm) and male 
(88.4–123.4 cm; mean 105.9 cm) populations measured on the same  groups76. In Fig. 1a are also indicated the 
surface locations used to calculate the ECG. The voltage difference between these two leads examines the car-
diac depolarization along the junction between atria and ventricles (heart vertical axis), with negative electrical 
potentials corresponding to electrical wavefronts moving towards the apex of the heart. The surface potential at 
the ECG leads, Vs , can be obtained by solving the electrical potential within the torso coupled with the cardiac 
electrophysiology  system77. Alternatively, in the assumption of isotropic electrical conductivity in the torso, Vs at 
a surface position xs and time t is given  by78:

Vs(xs , t) = −K

∫

!heart

∇v(x, t) · ∇
(

1

||x − xs||

)

dx,

Table 5.  Electrical conductivities and electrophysiology/cell models of the various cardiac components.

Cardiac tissue PDE model Cell model Conductivity values mS/mm References

Left and right ventricles Bidomain ten Tusscher-Panfilov71 mext
∥ = 0.62 , mext

/ = mext
⊥ = 0.24mint

∥ = 0.17 , 
mint

/ = mint
⊥ = 0.019

3

Left and right atria Bidomain Courtemanche69 mext
∥ = 0.66 , mext

/ = mext
⊥ = 0.25mint

∥ = 0.18 , 
mint

/ = mint
⊥ = 0.02

Calibrated for a longitudinal 
speed of 0.5 m/s73,74

Purkinje network Monodomain Stewart70 m∥ = m/ = 3.95
Calibrated for a 
depolarization speed of 4.0 m/s73

Internodal bundles Monodomain Courtemanche69 m∥ = 1.29
Calibrated for a 
depolarization speed of 1.54 m/s74
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where !heart indicates the cardiac domain where the electrophysiology bidomain equations are solved, ∇v(x) is 
the spatial gradient of the transmembrane potential at the cardiac location x and K includes the ratio between 
the intracellular and torso conductivity.

GPU acceleration. A drawback of the FSEI is that it requires a large computational power implying long 
time to obtain results. GPUs, however, have emerged as a convenient platform for high performance computing 
as they allow for unprecedented speed-ups and, consequently, considerable reductions of the time-to-solution. 
To this aim, the code has been ported to CUDA-Fortran30 and the GPU-accelerated FSEI algorithm can now 
tackle complex cardiac simulations with ∼ one billion of spatial degrees (including the demanding solution of 
the Navier-Stokes equations) within a few hours, thus allowing for running in-silico clinical trials.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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