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A central limit theorem for stochastic heat equations
in random environment

Lu Xu*  Kyushu University

Abstract In this article, we investigate the asymptotic behavior of the solution to a one-
dimensional stochastic heat equation with random nonlinear term generated by a stationary,
ergodic random field. We extend the well-known central limit theorem for finite-dimensional
diffusions in random environment to this infinite-dimensional setting. Due to our result, a
central limit theorem in L' sense with respect to the randomness of the environment holds under
a diffusive time scaling. The limit distribution is a centered Gaussian law whose covariance
operator is explicitly described. It concentrates only on the space of constant functions.

1 Introduction and main result

Homogenization of finite-dimensional diffusions in stationary and ergodic environments is a
well-studied topic, including periodic and quasiperiodic environments as special cases. In the
early works [9] and [15], central limit theorems are established for diffusions driven by random,
self-adjoint operators of divergence type. Diffusions without drift are considered in [16]. In
[12], an invariance principle in a quenched sense is obtained for diffusions in ergodic, almost
surely C?-smooth environment, through a study on the fundamental solutions corresponding
to its generator.

A good review of finite-dimensional results can be found in [8 Sect. 9], where the main
approach is to record the environment viewed from the particle as a Markov process. Every
sample path of the diffusion is decomposed into the sum of an additive functional of the envi-
ronment process and a martingale with stationary and ergodic increments. The general method
to prove a central limit theorem for additive functional of Markov process is firstly developed
in [7] for reversible case and be extended later in [I3], [I4] and [I9] to non-reversible case where
a sector condition holds. We rely on these results in this article, but in an infinite-dimensional
setting.

Our aim is to extend this strategy to an infinite-dimensional, nonlinear system. We study
the homogenization of the solution to a stochastic partial differential equation in random envi-
ronment. The equation considered here is a stochastic heat equation on the unit interval [0, 1]
driven by standard space-time white noise and having a random nonlinear term. Different from
the finite-dimensional model, the law of the nonlinear term is supposed to be stationary and
ergodic under only constant shifts, that is, a group of transformations indexed by R. We adopt
this setting since the Laplacian in the equation is preserved only by these transformations,
which is necessary for obtaining the Markov property of the environment process.

The nonlinear term is supposed to be the composition of a gradient-type part and a
divergence-free part. If only deterministic gradient-type environment is adopted, this equa-
tion is used to describe the motion of a flexible Brownian string in some potential field, see
[4]. Moreover, if the environment degenerates to a periodic nonlinear term, the model is closely
related to the dynamical sine-Gordon equation (see, e.g., [6]), and an invariance principle is
obtained in [20]. The divergence-free part can be added since it preserves the equilibrium state.

*l-xu@math.kyushu-u.ac.jp


http://arxiv.org/abs/1511.01615v3

For homogenization of finite-dimensional diffusions in divergence-free random field, we refer to
.

To state our model, we first introduce some basic notations. Throughout this article let
H = L?[0,1]. The inner product and the norm on H are denoted by (-,-)g and || - ||g. Let E
be the Banach space C[0, 1] equipped with the uniform topology. Denote by Ey the subspace of
FE consisting of functions which vanish at 0. Denote by ug the Wiener measure on Fy induced
by a standard Brownian motion. Since the sample path of a Brownian motion is almost surely
Holder continuous with order less than %, we fix some « € (0, %) and introduce F* as the space
of a-Hoélder continuous functions on [0,1]. E, E¢ and Fy are treated as subspaces of H.

Recall that a real-valued function f defined on H is said to be Fréchet differentiable, if at
every h € H there exists some Df(h) € H such that

f(h+h) = f'(h) = (Df(h), W) m

=0.
h' € Hs ||l || 140 12|

Df is called the Fréchet derivative of f. Higher-order derivatives are defined inductively. For
a positive integer k, by Cf(H ) we denote the class of all bounded functions on H which have
bounded and continuous Fréchet derivatives up to the k-th order.

Now we state our model precisely. Suppose that (X, <7, Q) and (92, .%,P) are two complete
probability spaces, the latter of which is equipped with a filtration of o-fields {#; C .%;t > 0}
satisfying the usual conditions. Let W (¢, x) be a standard cylindrical Brownian motion defined
on (2, .#,P) and adapted to .%;, and

{(V(o,u),B(o,u)) €e Rx H;(o,u) € X x H}

be an R x H-valued random field over H on (%, 7, Q). Suppose that V is Fréchet differentiable
in u for almost all o, and let U be the H-valued random field defined by U = DV + B. For
fixed o € ¥, consider a one-dimensional stochastic heat equation with homogeneous Neumann
boundary conditions and initial condition v € F.

yult,z) = %agu(t,x) —U(oyu(t)) + Wit,), t> 0,2 € (0,1);

Bpu(t, )| oo = Doult, ©)]aer = 0, t>0; (1.1)
u(0, z) = v(x), x € 1[0,1].

Equation () is called a stochastic heat equation in random environment U, and every o € &
is called a fixed environment. To make sure that for fixed o, (IT]) has a strong solution in the
space of continuous functions, assume that

(A1) U(o,-) = DV (o,-) + B(o,-) is a bounded and Lipschitz continuous map from H to H for
Q-almost all o € X.

Under (A1), for almost all o, the unique solution u”"(¢,z) to (L)) is continuous in ¢ and
a-Hélder continuous in z (see [4, []) for v < 4. Therefore, {u"(t);t > 0} forms a continuous
Markov process taking values in E%. Consider the stochastic process on the product space
(2 x Q, o @ F) defined as

u’(t) = u(t), t > 0.

It is called the solution to (LI]) in random environment, which is the main object we want to
study in this article. Sometimes we omit the initial condition v and write it as u(t) for short.
To simplify the discussion on the generator of the environment process defined in Definition
later, also assume that

(A2) sups, gy {|VI+ |DV]lzg + || Blla} < oo
To continue, we discuss the path space and the distribution of {V, B}. Let

CY(H;RxH)£{¢=(v,b): H>RxH |veC'(H;R),be C(H;H)}.



Due to the regularity of u”"(t,-), the distribution of u”(t) depends only on the law of the
subfield {V, B} £ {V(u), B(u)}ucg~. Hence, let

zpathf{¢ E. RxH ‘theClO(H R x H), s.t. ¢ = ¢|Ea}.
Denote by ¥path the completion of Zgath under the Fréchet metric

1 ds. x(01,02)
Sk L S A A 1.2
2k 1+dy g(o1,02) (12)

Mg

01302

where for o; = (61,51) and oy = (172,1;2) e,

ds,k(01,02) = sup {|?71(U)—52(U)|+HDﬁl(U)—D?72(U)HH+|\51(U)—52(U)||H}a

uEEY

EY = {u € B, u(z)| < k. Ju(z) —u(y)|

[z —yl|*
Since every Ef is compact, (Xpath, ds) is a Polish space under the metric ds;. Equip it with the
Borel o-field and adopt it as the path space of {V, B}. For ¢ € R, let 7. be the transformation

on Ypath defined by

< k,Vz,y € [0,1]}.

Te © (5 = (5( + C].), VQE S 2pathv (13)

where 1 stands for the constant function 1(z) =1 on [0, 1]. Since 7, 0 Tey, = Tey4eq, 17c} forms
a group. Given a probability measure p on Y,ath, we say p is ergodic if for measurable set
A C ¥paen such that p(AAT.[A]) = 0 for all ¢ € R, we have either p(A) =1 or p(A) = 0, where
A stands for the symmetric difference. Let Py 5 be the distribution of {V, B} on ¥a and
assume that

(A3) Py j is stationary and ergodic under {7.;c € R}, and

Py p(red =6, VeeR) < 1. (1.4)

The translation invariance and ergodicity of the environment are usually necessary for studying
homogenization in such a model. Since {¢ | 7.6 = ¢, V¢ € R} is obviously a translation
invariant set, (L4) is equivalent to say that Py 5(7ed = ¢, Ve € R) = 0. If () fails to hold,
U(o,u) is periodic in the sense U(o,u) = U(o,u + ¢1). For a stochastic heat equation with
local, periodic and gradient-type nonlinear term, an invariance principle is obtained in [20].
Finally, we assume that

(A4) 3 a measurable set X1 such that 7.[21] = X1, Q(X1) =1 and for all 0 € X,
[ D), Bl w)mpaldu) =0 (1.5)
Eo

holds for all f on H such that f(u) = fT((u,01)u, .., (u,r) ) for some M > 1, fT € CHRM)
and ¢1,...,0opm € H.

(A4) is equivalent to say that §(e=2V' B) = 0 holds for all 0 € ¥, where § is the divergence
operator adjoint to the Malliavin derivative (see, e.g., [10, p. 35, Definition 1.3.1]). One can
see in Lemma and Proposition that a non-gradient field satisfying (A4) preserves the
equilibrium state in both fixed and random environment. Our main result, a central limit
theorem for u”(t), is stated as follows.



Theorem 1.1. Under (A1) to (A4), u(t)/\/t satisfies the central limit theorem in L' sense
with respect to the environment and the limit distribution concentrates on the space of constant
functions, i.e., for any bounded continuous function f on E,

i £ |2 1 ()| = [ ovs.mar| =0 16)

where y1 is the function on [0,1] taking constant value y € R, and D, is the probability density
function of a 1-d centered Gaussian law with variance a® defined in B.I7) below. Furthermore
there exists some strictly positive constant C depending only on V such that C' < a? < 1.

Remark 1.2. A question naturally rises up is whether central limit theorem holds Q-almost
surely. We would like to point out here, that such quenched result usually relies on dimensions
(cf. [1]). The most challenging part in proving a quenched result is to show the sublinearity of
the corrector, which usually involves methods like heat kernel estimates or Sobolev inequality.
Since these methods are not expectable in our setting, the quenched version of Theorem [I.]
cannot be achieved easily.

In Sect. 2, we introduce the evolution of the environment seen from the solution, which
is recorded as an ergodic Markov process with values in a new space consisting of series of
environments. In Sect. 3, we prove Theorem [Tl mainly based on a sector condition and some
general arguments in [8, Sects. 2, 9]. Before these contents, we close this section with two
examples, showing that both periodic and quasiperiodic nonlinear terms are included in our
model as special cases.

Example 1.3. Take ¥ = [0,1], & = B(X) and Q to be the Lebesgue measure. Suppose V to
be a measurable function on [0, 1] x R such that

V(z,:) € C*R), V(z,y) =V(z,y+1), Yz €[0,1], y €R.

Define the random field (V, B) for all 0 € ¥ and u € E as
1
V(o,u) = / V(z,u(z) 4+ o)dx
0

and B(o,u) = 0. Assume that both V' and d%V are uniformly bounded, then (A1) to (A4)

are fulfilled. Denote by u”" the solution to (1)), then u”"~%(t,x) 4+ o solves the stochastic
heat equation with the periodic nonlinear term d%V(:c, u(t, x)).

Example 1.4. For d > 2 take ¥ = [0,1]¢, & = B(X) and Q to be the Lebesgue measure.
Suppose V to be a measurable function on [0, 1] x R? such that

V(z,-) € CLRY), vz € [0,1];

V(x, i) = V(z, i+ &), Ve €[0,1], Vi€ R, Vi=1,...,d;

sup {|VI,104,,V1],...,104,V|} < o0,
[0,1] xR
where €; is the unit vector in R? of i-th coordinate. Let (\1,...,\q) € R? be a vector with

rationally independent coordinates. Define the random field (V, B) for all c € ¥ and u € F as
1
V(o,u) = / V(z, Mu(z) + 01,. .., Aqu(z) + 0q)dz
0

and B(o,u) =0 for all 0 € ¥ and u € E. It gives the quasiperiodic model.



2 The environment process

Since the statement in Theorem [[LTldepends only on the law of (V| B), without loss of generality
we may and will fix ¥ to be the Polish metric space (Xpath, ds;) described in Sect. 1. We take
4/ to be the Borel o-algebra on ¥ associated to dx, and let Q = P, 5. As defined in (L3J),
there is a group of transformations {7.;c € R} on ¥ such that Q is stationary, ergodic and
satisfies that

Q(30) =0, (2.1)

where ¥y = {0 € ¥ | 7.0 = 0,Vc € R} is a subset of 3.
This section is devoted to the construction of the environment process associated to (L.IJ).
To apply the strategy in [8, Sect. 9], the environment process needs to be a Markov process
taking values in a Polish metric space, having a stationary and ergodic probability measure.
Given an environment o € ¥ and some v € E, to shift o with v it is natural to consider a map
£:[0,1] — X such that
&(x) = Tlv(2)] 0 vx € [0,1].

In the above expression, since £(-) = 7(y(.)—v(0y][£(0)] where v(-)—v(0) € Ey = {u € E;u(0) = 0},
& belongs to the set = defined as follows:

E£{¢:[0,1] > 2| 3(o,v) €T x Ey s.b. () = ()0} (2.2)

Every ¢ € = is called a series of environments, which describes the environments seen from a
function. To construct a metric on =, we need the following lemma.

Lemma 2.1. For each & such that £(0) ¢ X¢ in (2J)), there is only one pair of 0 € ¥ and
v € Ey satisfying that §(-) = Tpy(.) 0.

Proof. For o € %, define ker(c) £ {c € R | 7.0 = 0}, then ¥y = {0 € ¥ | ker(c) = R}. Define
a subset Zg C = to be
S0 ={€ € E|£(0) € %o} (2.3)

For £ ¢ o, suppose that { = 7(,(.)j0 = T[y ()0’ for some (o,v) and (0/,v") € ¥ x Ep. Since
v(0) = v'(0) = 0, it is obvious that 0 = ¢’/ = £(0). Notice that ker(c) does not contain any
non-degenerate interval [a, b], otherwise the group property of {7.} would imply that ker(c) =R
and then & € Z9. However, simple calculation shows that

Tho(z)—v' ()]0 = 0, Yo € [0,1].

Hence, the image of v — v’ contains no non-degenerate interval. As v — v’ is continuous on [0, 1]
and v(0) — v'(0) = 0, this yields that v = v'. O

In view of Lemma [2.1] one is able to define a one-to-one map & — (o¢, ve) from = to X x Ey
such that £(-) = Tjy,())0¢. Indeed o¢ = £(0), and when § ¢ =, v¢ is uniquely determined due
to Lemma 21l For those £ € =g, we can simply take ve(x) = 0. Equip E with the metric dz=
defined as

dE(ga 77) = dE(g(O)a 77(0)) + SUP ze(0,1] |’U£(1‘) - ’Un(l'>|, V&v ne E, (24)
where ds(+,-) is the Fréchet metric in (I2). Observing that (=, d=z) may not be complete, we
take the completion and still denote it by =. Since both (Ejy,| - |sup) and (X,ds) are Polish
spaces, also is (E,dz). Equip = with the Borel o-algebra ¢, then & — (£(0),v¢) becomes a
measurable map with respect to & ® %B(Ep). Now the environment process can be defined as
follows.

Definition 2.2. The environment process associated with (L)) is defined as

&= gt() €E, s.t. ft(.’L') = Tuov(t,z)]0s Va € [Oa 1]



Recall that (Q,.%,P) is the probability space where the noise W (t,z) in (L)) is defined.
{&}t>0 defined in Definition forms a =Z-valued stochastic process on the product space
(X x Q, o @ .F). To express the nonlinear term in (1)) by &, we introduce the derivative
operator on . For f : = — R, let f7 be the function defined as f7(v) = f(7(,(.yjo) for all v € E.

Definition 2.3. A function f on = is called differentiable, if for every o, f? can be extended to
a Fréchet differentiable function fo on H, and its derivative is defined as Df(¢) = Df7(v) for
§ = Ty(.))o- Higher-order derivatives are defined inductively. In particular, for differentiable f,
Df(&) = Df(E,-) € H and for twice differentiable f, D*f(£) is a bounded bilinear functional on
Hx H.

The nonlinear term DV (o, u”?(t))+B(o, u”"(t)) can be replaced by a function of &. Indeed,
recall that every o = (v,b) € ¥ = Xpan can be continuously extended to an element in
CYO(H;R x H), we can define

(V(€),B(&)) = [€(0)](ve) e R x H, V¢ € Z,

where v¢ € Ejy is defined by the one-to-one map from = to ¥ x Ej, mentioned above. By
Definition 3] and the definition of Xa¢n, it is not hard to see that

DV(&) + B(&) £ DV (0, u™(1)) + Blo,u™"(t)) = U(o, u”(t)).

In summary, without loss of generality we can assume the following framework. Suppose
(3,ds) to be some Polish metric space equipped with the Borel o-field &7 and some Borel
probability measure Q. A group of measurable transformations {7.;¢ € R} is defined on ¥
such that Q is stationary, ergodic and satisfies (Z.I)). Define = as in (2.2) and equip it with the
metric dg in (Z4) and the Borel o-algebra ¢. It suffices to prove Theorem [IT] for the following
equation instead of (LI)):

Q™" (t, x) = %fﬁua’”(t,x) ~DV(&) - B(&) + W(t,z), t>0,z€(0,1);

0. (1) o = D (1) o = 0, >0, -
UU’U(O,SC) — ’U(ZL'), €T € [0, 1],

where (V, B) is a random variable on (2, ¥) taking values in Rx H. The random field generated
by (V(o,u), B(o,u)) = (V(T[u()10),; B(Tju(.y)0)) is supposed to satisfy (A1), (A2) and (A4) in
Sect. 1.

Before stating the Markov property of &, we prepare some notations. Let By(E) and By (=)
be the collections of all bounded measurable functions on E and E, respectively. For fixed
o, u”?(t) defines a continuous Markov process with values in E* C E. Denote by P{ the
associated Markov semigroup defined on By(F). Denote by P the law of u”" for fixed o and v,
and by EJ the corresponding expectation. With these notations, we have the next proposition.

Proposition 2.4. The environment process {&;,t > 0} is a Markov process on 2. Let {Py,t >
0} be the Markov semigroup on By(Z) determined by &, then

Pif(€) = P{O 4O (), VE € By(3), (2.5)
where f7 is the function on E defined by f7(v) = £(1py())0).

Proof. First notice that if §, € ¢y in (23) then the environment o € 3. This furthermore
implies that & = & for all t > 0 and f¢(©) is a constant function on E. Hence, the Markov
property and (2.3) hold obviously in this case.

Pick o ¢ ¥o, v € E and let { = 1p,(.yj0. Let P7(t;v,-) be the transition probability of the
solution 4% (¢, -) in a fixed environment. Since u7¢%Y = y%v+¢ — ¢,

P?(t;v,-) = P™%(t;v —¢,- — ¢), Ve € R.



Since & ¢ Ey, the discussion below Lemma [2] yields that ve = v(-) — v(0), thus by taking
¢ =v(0) in the equation above, we obtain that

P (t;v,-) = P (t;Ug, - —(0)), (2.6)

Pick somet >0, h >0, n>0,0<1t; <...<t, <t+ h and bounded measurable functions
fi,...,f,,g on = arbitrarily. We have

Hfft (ern)| = E7 Hf” 70 ()97 (u O (t + h))

Using the Markov property of u”?(t) for fixed o, the expectation above equals to

Hqu(ua’v(tj))/EQU(U)PU(h;u“’”(t),du)

Applying (2Z8) with £ = & and v = u”?(¢), this expectation equals to

7 | LT6(6) [, o (PO hivg, dtu = (.0)

= E H (&) / g% O (u) PO (h; v, , du)

Therefore, & is a Markov process and
Pi(6) £ / FEO @) PO (8 v, du) = P 14O (), Ve > 0
E

is the associated Markov semigroup. O

Next we construct the stationary and ergodic measure of {P;,t > 0}. Before discussing the
environment process, we give a lemma concerning the (infinite) stationary measure in frozen
environment o € X. Notice that in [4, Sect. 4], the same problem is discussed for the case that
B(o,-) =0 and V (o, -) is local.

Lemma 2.5. For almost all o0 € X, {P7;t > 0} admits a stationary measure
77 (dv) = exp(=2V (0, v))u(dv),

where (E, 1) is the infinite measure determined by a stochastic process {w(zx);x € [0,1]} satisfy-
ing that w(-) —w(0) is a one-dimensional Brownian motion, while w(0) subjects to the Lebesgue
measure on R. Moreover if B =0, then 77 is reversible.

This lemma follows from a Galerkin approach. For k > 1, let A\y = 2(k — 1)?72 be the
eigenvalues of ——82 on H with Neumann boundary condition. The corresponding eigenvectors

are hy = 1 and hk( ) = V2cos[2(k — 1)7z] for € [0,1] and k > 2. With these notations, we
sketch the proof for completeness.

Proof of Lemmal23 In view of (A4), since (V,B)(o,v + ¢1) = (V, B)(7.0,v) holds for all
c € R, it is easy to see that if o belongs to X,

Eye [(Df, B(o, )) 1] = /REMU {e—W(Tc“vNDf,B(rCa, -)} de =0, (2.7)



for f(v) = fT((v,h1)m, ..., {(v,hy)m) with fT € CH(RY). Since here only fixed environment is
considered, we temporarily omit o and write V', B, u¥(t) in short of V(a,-), B(o,-) and u”"(t).
Let v(dv) = e=2V(") u(dv), and we prove that v(dv) is stationary for {u®(t);t > 0} under @27).

First assume that V and B are finite-dimensional dependent. Precisely, for some N > 1,
VieClRYN) and B = (B],..., BY) € C,(RY;RY), we have

2

V(’U) = VT(<’U, h1>H <’U hN B ’U hl 5 <’U7 hN>H)hk (28)
k=1

Let XF = (u¥(t), hi)m, then Xy = (X}, ..., X}¥) € RY solves
AX} = -\ XFdt — o V(X)) — B (Xy)dt + d(W (), )i, XE = (v, hi)m

Define Uy (x) = )\kw_le’Ak‘IZ for £k > 1 and = € R and observe that the marginal distribution
of won ((v,hi)a, ., (v, ha)e) is (RN, TTA_, Uk (2 )dzy). By @),

N
/RN e V09 Bl (x) . V f(x)] [T @r(zr)dax =0, Vf € CHRY). (2.9)

k=1

Hence e=2V'(®) Hszl Uy (z)dry is an (infinite) invariant measure for X;. Noting that now
{XM;M > N} forms a mutually independent system of Ornstein—Uhlenbeck processes which
is independent of X;, we can conclude that v(dv) = e=2V(")y(dv) is a stationary measure for
{u®(t);t > 0}.

For general V and B, we consider their marginal expectations. Precisely speaking, for N > 1
and x = (71,...,7n) € RY define

Vi (x) = ﬁ [/R‘Ifl Y dyl] (Z-Tlhl+ Z ylhl>

I=N+1 I=N+1

Similarly, write Uy = e =2V (B, hy)g and for k =1,..., N define

i oo
ij7k(x) _ €2VN(X) H [/R \Ilk yl dyl:| (Z xrh; + Z ylhl> .

I=N+1 I=N+1

Define Viy and By by substituting VJQL,, B}LV for VT, BT in (28), and let u% (¢) be the solution
to () with DV + B replaced by DV + By . From the Lipschitz continuity of V, DV and B,
we get for every fixed v € H that

lim [V (v) = V(v)| + [DV (v) = DV (v)[|z + [| Bn (v) = B(v)|[z = 0.

N —o0

Since V, DV and B are uniformly bounded, we can obtain that

sup [V (v)| + | DVN ()|l + || By (v)||n < oo
N>1veH

Let E be the expectation with respect to the noise. With the above estimates, for a function f
on E such that f(v) = f1((v,h1)m, ..., (v, hy) i) with some M > 1 and fT € C}(RM), we can
show that

lim E[f(ux(t))] = E[f(u’ ()]

N—o0

Noting that (V]T,7 B}LV) fulfills (29]), the previous step implies that

[E ELf (ul (£))]e 2~ @ pu(dv) = [E F(0)e™ 2% @ u(dv).



Because f1 is compactly supported, by taking N — oo we get [, E[f (u’(t))]v(dv) = [, f(v)v(dv).
Applying Cauchy—Schwartz inequality,

/E (B[ (1)) (o) < [E E[f2 (u}y (1)} (dv) = [E £ (w)w(dv).

With this inequality and the fact that the finite-dimensional dependent functions is dense in
L?(v), we can conclude that v is invariant for {u(t);¢ > 0}.

In case that B = 0, we can prove the reversibility of v in the same way, only to observe that
now the finite-dimensional approximation X; is a symmetric process, so that e2V'(x) Hszl Uy (zk)dxk
becomes reversible. |

The stationary measure obtained in Lemma (23] is of infinite mass. To overcome this
difficulty, we define a probability measure = on = as

m(d€) = Z~ " exp(—2V(§))po(dve) ® Q(dE(0)), (2.10)

where v¢ € Ej is determined by the one-to-one map from = to X x Ey, and Z is the normalization
constant. Our aim is to show that 7 is stationary for {P;;¢t > 0}.

Proposition 2.6. 7 is a stationary and ergodic probability measure for {P;t > 0}. Moreover,
if B=0, then w is reversible.

To prove Proposition 2.6l we need to introduce the class of smooth functions on =. Let C
be the dense subspace of H defined as

C={he€H|hecC?0,1],h(0)=0,n'(1) =0,(h,1) 5 # 0}, (2.11)

Pick arbitrarily some ¢ € L>®(X;Q), n > 1, hy,...,h, € C and ¢f € Cp°(R™) such that Tal
together with all its derivatives belongs to L!(R";dx). Consider the function

f(f) = /R’I/J(Tga)f(v — 91>d9, V¢ = Tlw()]0 € =, (2.12)

where £(v) = £ ((v,h1)m, ..., (v, hn)m) for v € E. Let &(Z) be the collection of all f in [Z12),
and call its linear span £(Z) the smooth function class on =.

E(Z) is dense in L?(Z; ). To see that, pick g € L?(Z;7) and suppose that (g, f), = 0 for
all f € &(Z). By virtue of (210) and (212, it implies

1
ZE@ {/ uo(dv)/Re_QV(TW‘)]”)g(T[U(.)]a)w(rga)f(v — 91)d9} =0
Eo

holds for all ¢ and ¢ satisfying the conditions above (2I2). Applying the change of variable
o =T_go’, we get from the stationarity of Q under 7y that

1 /
FEe ] [ walde) [ emVOrom gt anio ot - 1) | <o
FEo R

Since v — A1 in this integral subjects to the infinite measure p defined in Lemma 25 we can
rewrite the above equation as
1 ,
ZEQ {/ e 2V )g(T[v(_)]a')w(a’)ﬂ(v),u(dv)} =0. (2.13)
E

From (ZI3) we obtain that e=2Vg = 0 for Q-almost all o and p-almost all v, and thus g = 0
in L?(Z, 7). As £(Z) is the linear span of £°(Z), it is dense in L*(Z; 7).



Proof of Proposition[2.0. We begin with pointing out that to prove the stationarity of =, it
suffices to show E;[Pi(f - f')] = E;[f - f] for all £, f' € £(Z). Indeed, by taking f' = f we
have E;[(P:f)?] < E-[P:(f?)] = E;[f?], so P; is contractive on L?(Z; 7). Since £(Z) is dense in
L?(Z; ), it is easy to obtain E.[P;f] = E.f for all f € L?(Z; ), thus 7 is a stationary measure.

Now we prove that E.[Pi(f - f)] = E.[f - f'] for f, f € £(Z). By the definition, it suffices
to prove for f, £ € £(E). Suppose that f, ' are defined by (ZI2) with some (¢, £) and (¢, £')
respectively. Observe that for £ = 7,0,

f-£(¢) = . V(190 (Torer0) (v — O1)0 (v — (0 + 0')1)dOd0’ .

To simplify the notations, in this proof we write Uy(o) = (o)’ (190) and Lg(v) = £(v)¢' (v —
01). With these notations we have

1
Ex[Pu(f-£)] = ~Eqg / 1o (dv) / e~V Gy, (190 )E [Lor(u (£) — 01)] dOd0' s .
Z Ey R2
Since u?¥(t) — 01 = u™?v=91(¢), the change of variable o = 7_go’ yields that

ElPu(e- 0] = o { [ pola) [ e 00w (018 (L0 0)] v}

With the same arguments as in calculating (ZI3) we get

EL[Pi(E - )] = %E@ { /]R a0’ [\119/(0) /E E Lo (u”" (1))] wa(du)”.

Due to Lemma 25 the last integral equals to Er[Le/], so that

EL[Py(f-£)] = %E@ { /E p(dv) /}R eQV(”’”)\I/gr(a)ng(v)dH’}.

The desired equation E;[Py(f - f')] = E[f - ] then follows.

In case that B = 0, the reversibility of 7 can be proved in the same way, only to notice that
w7 is now reversible to the semigroup in frozen environment.

To see the ergodicity, pick G C = such that 7(G) > 0 and P;1¢ = 1¢ for some ¢ > 0, and
we show that 7(G) = 1. For every o € ¥, define G, = {v € E;7,(yj0 € G}. Take a strictly
positive f € L1(R;dx) and observe that

% /R {EQ { [E 0 e—2V<U’v>1GG(U)MO(dU)] - f(c)}dc:ﬂ'(G)- /R F(e)de > 0.

Noting that 15, (v) = 14 v — ¢1), the above equation can be written as

[TCU](

/]R{EQ [/E e_QV(TC‘T’”_Cl)lg[TCa] (v —cl)po(dv)| - f(c)} dc > 0.

By the 7.-invariance of Q and the same strategy used in (ZI3]) we get

Eq [ /E D16, (0) (0O )| >0

thus Q(o; u(Gs) = 0) < 1. The 7.-invariance of {o;u(G,) = 0} then implies that it is Q-
null, thanks to the ergodicity. Since p is absolutely continuous with respect to 77, we know
further that Q(o;7(G,) = 0) = 0. Noting that for fixed o, (TN satisfies the conditions
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mentioned in [I7), Sect. 1], hence from [I7, Corollary 1.1 and Theorem 1.3], u?(t) is strong Feller
and irreducible. Therefore, its transition probability P?(t;v,-) is equivalent to its stationary
measure 77 for all v and ¢, so that Q(o; P?(t;v, G, ) = 0) = 0. Meanwhile, by (Z.3)),

1
0= (1ge, Pila)r = - Fo {/ 1-1¢q, (v)]e‘QV(U’U)P‘T(t;U,Gg)uo(dv)} .
E

0

As e 2V(@) Po(t: v, G,) is strictly positive for every v, t and almost all o, the above equation
implies that Q(c; po(Gy) = 1) =1, and 7(G) = 1 follows directly. O

The last part of this section is devoted to the generator of P;. Although P; is not strongly
continuous under the topology of Cy(Z) (cf. [18]), due to the stationarity of m we can extend P;
to a Cp semigroup of contractions on L?(Z;7). Denote the extension still by P; and define its
generator (dom(K), ) through Hille-Yosida theorem. Recall that X is unbounded and closed,
and we say A C dom(K) is a core if A is dense in dom(K) and K coincides with the closure of
K|a. In the next proposition, we compute K on the smooth function class on = and show that
it forms a core.

Proposition 2.7. £(Z) forms a core of K, and for all f € E(Z),

K£(§) = 5 (02[DEE)], ve) m — (DE(E), DV(€) +B(&))m + %tr[DQf(E)]- (2.14)

DN | =

Proposition 277 is proved along the strategy in [18], where the maximal dissipativity for
a class of Kolmogorov operators is discussed. We first prove the parallel result for a linear
equation in Lemma 2.8 and then extend it to the nonlinear case.

To discuss the linear case, consider an Ornstein—Uhlenbeck process {uy(t,-) € E;t > 0}
with a given initial condition v € E satisfying that

t
’U/S(t) £ St’U +/O St_TdWT,

where W, is the cylindrical Brownian motion appeared in (CII)), and {S;; ¢ > 0} is the semigroup
on H generated by 192 with Neumann boundary condition. Since uj(t) solves ([II) when
DV + B = 0, it is a continuous E-valued Markov process. Denote by {7.%;¢ > 0} the Markov
semigroup determined by u(t) on By(E). In imitation of (2.1, for f € By(E) and ¢t > 0 we
define

Tif(€) = TS0 (ve), V& € E.

In view of Proposition 2.6 7; possesses a reversible measure 7o (d¢) = Z 1 exp(—2V (€))7 (d€).
Write Hr, = L?(Z;70), and extend {T;;t > 0} to a strongly continuous semigroup of contrac-
tions on H,,. Denote by (dom(L), L) its generator on H,,. Paralleling to Proposition 27 we
have the next lemma for £ and mg.

Lemma 2.8. £(Z) forms a core of £, and for all £ € £(Z), L£(&) = LOfEO) (ve) where L0 is
the Ornstein—Uhlenbeck operator defined as

1 1
LOF(w) = L (02DF(0).0),, + 5 e [D2F(0)].
Proof. First we present a basic estimate. Suppose that f(v) = fT((v,h1)m,..., (v, h,)g) for
all v € E, where n > 1, fT € C°(R") and hq,...,h, € C are chosen arbitrarily. Let M =
max{|0a fT|o0}, where the maximum is taking over all positive n-multiple indexes « such that
|a] < 3. For such f, we have (cf. [I8 Corollary 2.3])

LT = 1)

ver 1+ vl% t

—LYf(v)| < MCy, (2.15)
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where C; is a constant depending on the h;’s, satisfying that C; — 0 when ¢ | 0 for fixed
hi,...,h, € C. We here give the proof of (2I5) only for the case n = 1, since for larger n
the calculations are the same. When n = 1, we write f(v) = fT((v,h)n), and define Q¢ =
fot (Si—rh,dW (r,-)) . With E being the expectation with respect to the noise, we have E[Qy ] =

0 and
”EOF(U) — F(v) — t[,OF(v)’

< ‘E [f (v, Sehyir + Qun) — f((v, Seh)m)] = 5 - f" (v, By )R

N | o+

n ‘f(@, Seh)w) = f({v, ) =t - f' (v, h)wr) <U’ %h”>H‘

1 1
< B |F" | oo [E[QF 1] — tlRlZ] + 5 17" E[1Qenl]
1 2
5 1o 0l - 1Seh = Rl
H
Since h € dom(392), @I5) follows from direct calculation.
Now pick some f in the form of (ZI2) and notice that for all o € X,

t
FU Lol - | Seh—h— L

7 (v) = /Rw(ma)e(v —01)do, Vv e E.

In view of the conditions on ¢ and ¢, it is easy to observe that ([ZI5) holds for each f7 with
common constants M and Ci, hence

1T~ £(9)
[ T

— LOFEO (pe)| < MC.

Applying dominated convergence theorem, we obtain that
f—f
Hry-lim % = LOfO(ve), v € £°(2). (2.16)

As &(E) is the linear span of £9(Z), ([ZI8) holds for all f € £(Z), therefore £(Z) C dom(L) and
LE(&) = LOfEO) () for £ € E(F).
We are left to show that £(E) is a core. By [3], p. 17, Proposition 1.3.3], it suffices to show
that £(E) is preserved under {7z;¢ > 0}. Notice that for h € C,
(ug(t), by = (v, Sth) + Qt.n

and Sih still belongs to C. Therefore, for f in the form of (ZI2),

TO S (v) = Ef7 (ul (1)) = / (o0 ELC (T — OF) i + GO,

where @, = (0, Schi)m, ..., (v, Shn) i), (W = ((h1)a,..., (hn)g) are deterministic R™-
vectors, and Qt,h = (Qthyy---Q¢n,) is a random vector. Tf € £(E) then follows from the
conditions on v and /T, and consequently T;[£(Z)] C £(E). O

From Lemma 28, £(f?) = 2f - Lf + || Df||%; holds for f € £(Z), and the stationarity of mg
implies that E,[£(f?)] = 0, so that Dirichlet form of £ reads

1 -
(€.~ L8, = 5 [ IDRE) Brma(de), ¥ € £(2). (2.17)
Let H, = L*(Z,7), and (-, ), || - ||= be the related inner product and norm. By (A2), || |~

and || - ||x, are equivalent, so that elements in #H, can be identified with those in H,,. With
this observation, we close this section with the proof to Proposition 2.7
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Pmof of Proposition[2.7 First recall the definition of differentiable function on = in Definition
Let C}(Z) denote the class of all differentiable functions f on Z such that Df is continuous
and uniformly bounded in H. Define

K°f = Lf — (Df, DV + B)y, Vf € dom(L) N C} (Z).

Noticing that £(Z) C dom(£) N C}(Z) and that K° satisfies ZI4) for f € £(Z), to verify the
explicit form (2.14) for K we only need to show that

P —f

Hr-lim = K°f, Vf € dom(£) N CL(E). (2.18)

Indeed, observing that u®¥(¢) — uf(t) = f(f Si—r[=DV (&) — B(&,)]dr, for any f € C}(E) and
fixed o, v we have

o PEI70) = T 7 0)

t10 t
~ iim <Df°'<uo<>> -/ St4@V(@>+B(@>}dr>H+o<1>
= (Df7(v), DV (11(0) + B(711(119))

By (A2) and dominated convergence theorem, for f € C} (Z) we obtain

Hootim 25 T8 o DV 4 BY . (2.19)
tl0 t
As my and 7 are mutually equivalent, (ZI8) follows from ([2I6) and (ZI9) directly.

Due to the Lumer—Phillips theorem (see, e.g., [21] and [3], p. 17, Proposition 1.3.1]), to show
that £(Z) is a core, it suffices to prove that (A — KC)[E(E)] is dense in H, for some A > 0. We
first prove it under an additional condition. By (A1), for Q-almost all o, DV (c,-) + B(o, ")
can be extended to some U° € Cy(H; H) such that ||U?||x is uniformly bounded in ¢ and wv.
Assume further that

(AY’) U° € C3(H; H) and supy, g |D2U“(v)|L(H;H) < 00.

Now for fixed o, (LTI becomes a stochastic heat equation with twice differentiable nonlinear
term, thus obviously P7[C}(H)] € C}(H). Furthermore, due to [I7, Theorem 1.2], there is
some constant C' such that

supg || DIPY f]llar < Cmax{t™/%,1} - supg|f|, Vf € C}(H).
Fix g € £(Z), A > 0 and define f = (A — K)~!'g. We show that f € dom(L) N C}(Z). Notice
the following formula holds for f that
£(¢) :/ e M. Pg(&)dt, VE € E. (2.20)
0

By the above estimates and dominated convergence theorem, f € C}(Z) and ||Df(¢)||n is
bounded from above by C) supg |f| with some constant C. Observe that

T£(O) —£(6) _ Puf(€) —£(©) | T£(E) — Puf()

S S S

(2.21)

Since f € dom(K), the H,,-limit of the first term in the right-hand side of (2Z2I)) exists when
s} 0. Since f € C}(Z), 2I9) yields that the second term converges in H,. Noting that H,
and M, have equivalent norm, we have f € dom(L).
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The previous proof now implies that Kf = £f — (Df, DV + B) . Since £(2) is a core of L,
we can pick f, € £(E) such that f, — f and Lf, — Lf, both in H,,. By ZI0), |D(fx — f)||lu
vanishes in ‘H,, and H,. Therefore,

EL|K(f, — £)]? < 2B |(L(fr, — £)|? + 2E.|(D(f), — £),DV +B)y|> = 0

as k — oo. Consequently, ||g — (A — K)fi|lx — 0 and (A — K)[E(Z)] is dense in H.
If (A1) fails to hold, we need to pick an approximating sequence. Indeed, suppose that we
can find a sequence (V,,B,,) satisfying (A1’), (A2), (A4) and that

lim E,[|DV +B—DV, —B,||%] =0. (2.22)
n—oo

Let K,, be the generator of the environment process related to the solution to (ILII)) with (V,B)
replaced by (V,,B,). Fix some g € £(Z) and let f, = (A — K,)"'g. By the previous step,
f, € dom(L) N C}(Z), so that we have

A= K)f, =g+ (K, — K)f, =g+ (DV,, + B,, — DV — B, Df,,) 4. (2.23)

Notice that for f € dom(L) N C}(Z) we have K[f?] = 2f - Kf + | Df||%,. With the same way of
computing the Dirichlet form for £ in (21I7T), we get that

(f,—Kf), =27 E. [|Df|13] - (2.24)

In view of (2:23) and ([224),
N[£al|2 + 27 B [|DE ]3] = (8. £a)r + Ex[(DV,, + B, — DV — B, Df,)) i - £,].

By virtue of [Z20), supz |f,| < A~!supz |g| holds for all n, thus

A

EEW [”Dfn”%] < sup lgl* + sup lg| - Ex[(DVy + Bn, — DV — B, Dfy) .
Using Cauchy—Schwarz inequality we obtain that

A 4
2B [IDE3] < sup lgl® + 5 suplef® - Ex [PV, + B, — DV — BJ3].

Hence, {E,[|Df,||%];n > 1} is a uniformly bounded sequence. By ([223) and 222), (A — K)f,
converges to g in the topology of H, thus (A — K)[E(Z)] is dense.

We are left to show the existence of (V,,,B,,). Using the strategy in the proof of Lemma
20 for fixed o without loss of generality we can assume (V(o,-), B(o,-)) to be in the form
of [Z8) with some Vi(o,-) € C}(RY) and Bf(o,:) € Co(RN;RY). Pick smooth functions
Vi(o,-) and B (o,-) such that (VV,I 4+ B} )(o,-) converges to (VVT 4+ BT)(c,) in a point-wise
sense, supy, gy |VV,I 4+ Bi| is uniformly bounded from above and (2.39)) holds with V.f(c,-) and
Bl (0,-). Then, we get the desired sequence (V;,(0,), By (0,-)) from V,(o,-) and B] (o,-) with

. O

3 Central limit theorem for u(t)/v/

Before giving the proof of Theorem [[LT] we introduce two Hilbert spaces H1 and H_; related
to the operator IC (cf. [8 Sect. 2.2]).

Notice that (2.24) defines a semi-norm || - || on £(Z). Let % = £(Z)/ ~1, where ~; is the
equivalence relation defined by f ~; g <= [|f —g|1 = 0. [|- ||1 naturally extends to a norm on
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S, and let H; be the completion of (1, | - [|1). H1 becomes a Hilbert space under the inner
product given by polarization:

A

1
(f,201 = Z(If + gllt + 1 — gllD)-

Noting that by ([2Z24]), D can be extended to a linear operator defined on H; and taking values
in L2(Z, H; 7). We denote the extension still by D. Meanwhile, since for each f € £(Z),
f? is finite-dimensional dependent, by applying the classical It6 formula for finite-dimensional
semi-martingales we get

t t
f(&) —£(&%) = KE£(&)dr —|—/ (DE(&), dW, )i, VE € E(Z). (3.1)
0 0
The dual space H_1 of H; is defined as follows. For f € H, let

€12, £ sup {2(F, )~ — lIglli}-
g€E(E)

Let #9, = {f € Hn,|/f||-1 < oo} and .¥_1 = 0,/ ~_1, where ~_; is the equivalence relation
defined by f ~_; g < ||f —g|-1 = 0. Let H_; be the completion of (#_1, || - ||=1), which is
also a Hilbert space under the inner product (-, -)_; defined through polarization. The following
variational formula holds for || - ||-1:

||f||_1 = sup {< > || Hl 750}, VEe H. NH_1. (32)
gee®) L llglh

Recall that X9 = {0 € ¥ | 7.0 = 0,Ve € R}. Observe that when o ¢ ¥, in view of Lemma
21 ve, = u®¥(t,-) — u”¥(t,0), hence the weak form of ([CII)) reads

(u?(t), o) = (u?(0), ¥} +/O Uy (&r)dr + (Wi, ) m, (3.3)

where ¢ € C?[0,1] is a test function such that ¢’(0) = ¢/(1) = 0, and

1

5 {ve, 020) — (DV (&) +B(&), ¢)- (3.4)

UL = 3

When o € ¥y we have vg, = 0 and (B3)) fails to hold. However, from (Z1)), X is a Q-null set
here, therefore (B3] holds Q-almost surely and this is sufficient for the L*(Q) convergence in
Theorem [[LT]

Let (dom(K*),K*) be the adjoint operator of I on H,. By the standard arguments in [8|
Sects. 2.6, 2.7, 9.5], to get a central limit theorem for (u’(t), @)y it is necessary to show that
E(Z) is also a core of K*, K satisfies a sector condition and U, € H_;. We prove these results
in this section.

Proposition 3.1. £(E) forms a core of K*, and for all £ € £(2),
. 1 1
KH(€) = 5 {O2DR(E)] ve) i — (DEE), DV(E) ~ B@)w + 5 D). (35)
Proof. Let 4°%(t,-) be the solution to () with B replaced by —B, and {ét,t > 0} be the
corresponding environment process. By Proposition 2.6l 7 is stationary for «Et, so that its

Markov semigroup {Pt,t > 0} is a Cy semigroup of contractions on H,. Let K be its generator.
By Proposition 77} K satisfies (B35) and £(E) is a core of K.
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It suffices to show K* = K. From Proposition 2.6 7 is reversible if B = 0, thus
(Kf + (Df,B)i,g)r = {(£,K'g — (Dg,B)u)x, VE, g € E(F). (3.6)

Meanwhile, in view of (A4), for f and g € £(Z) we have

E. [(D[fg], B)n] = 2ZEQ{/E

Combing (38) and (37) shows that K = K* on £(Z). Noting that £(Z) is a core of K and K*
is always closed, this would imply that K C K*. On the other hand, since K* is the adjoint of
a Markov generator of a Cjy semigroup contractions, it is easy to show that A — K* is invertible
for all A > 0. For all f € H,

e 2@ D[f7¢°](v), Blo, U)>HH0(dU)} =0. (3.7)

0

f=(\-K) [()\ - I@)‘lf} = (A —K%) [()\ - I@)‘lf} :

therefore (A — K*)™! = (A — K)~!, and consequently dom(K*) = dom(K). O
Proposition 3.2. The generator IC satisfies the sector condition, i.e.,

(Kf,g)2 < C(—Kf,f)(—Kg, g)r, Vf, g € dom(K),
where C = C(V,B) is a finite constant depending only on V and B.

Proof. For £ € dom(K) N dom(K*), let K.f = L(Kf + K*f) and K.f = L(Kf — K*f). By
Proposition Bl it suffices to show for f, g € £(Z) that

(Kaf,g)7 < C(V,B)E||DE|| Ex || Dgll7-

For a function g on E, let {g),, = E,,[g]. By virtue of (A4),

(Kafighe = B | [ OO DI 0 B0 (4 (0) — (67)) )]

By Cauchy—Schwarz inequality and (A2) we obtain that

(~Kaf.g) < il { 5 | |g”<v>—<g°’>uo|2uo<dv>]}1/2 (3.8)

Eo
with Cy = 2sup ||B|| iz exp(sup |V]).

Now we apply the Poincaré inequality for Wiener measure. Let H be the Cameron—Martin
space H = {h € W12([0,1];R) | k(0) = 0}, equipped with the Cameron-Martin norm Al =
|Alle, where h stands for the weak derivative of k. For a function g on Ey having the form
gw) = g"((v,h) g, ..., (v, har)g) for some M > 1, gt € CLRM) and h; € H, recall its
H-derivative Dpg e His

D) = sz: {(’)igT((v,hQH, o b)) /O ﬁi(x)dx} Ve By,

)dx € H. The Poincaré inequality for Wiener measure (see, e.g., [2| p. 226,

where h; = [' hi(x)
) yields that

Theorem 5.5.1]

[ 190 = @ Puotao) < [ 10590 ypa(av) (3.9)

Eo
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To continue, write ¥y, = ({(v,h1)m,...,{v,har)g) for shot. Observe that from the explicit
formula for Dz g(v) and Cauchy-Schwarz inequality,

1D g% —/ lzag / i(w)dwrdy

2
1
17/ 0ig" (Tp)hi(x)| dxd
<[y [zgh ] )

2
1
</ [Z @-g*(ﬁh)m(ml dz = | Dg(v) .
0 li=1

Hence in the right-hand side of (B3], we can substitute ||DHg(U)||§I with [|[Dg(v)||%. As
g € £(E), by applying (39) to ¢° in (B.8) we conclude that

<*’Caf; g>7r <C; ”f”l“ngv
and the sector condition then follows. O

Proposition 3.3. For every test function p € C?[0,1] which satisfies that ©'(0) = 0, ¢'(1) = 0,
we have U, defined by [3.4) belongs to H_;.

Proof. In view of ([32)), we only need to show that there exists some finite constant C' such that
(Ug,8)r < C|lg||1 holds for all g € £(Z). Taking f(v) = (v, p) g in (A4), we obtain that for
Q-almost all o,

E,, [eiQV(”’v)<B(U,v),<p>H} =0. (3.10)

Pick g € £(E) and (BI0) implies that

El(Bushr 8= 5B | [ OB huls”(0) - ) olav)

With the same argument as in the proof of Proposition [3.2] we obtain that

Ex[(B,o)u - g] < Cllel llgll- (3.11)

On the other hand, by the integral-by-part formula for Wiener measure (see, e.g., [2, p. 208,
Proposition 5.1.6]) it is easy to get

E:[(U, — (B, o)) 8] = 1 Exl(p. D] < llgllull. (312)

Combining (311)) and (BI2), we get the desired estimate. O

We are at the position to prove Theorem [[LJI We first prove the weak convergence of
(u®(t), ) g /V/'t for fixed ¢. For A > 0, consider the resolvent equation:

My, — Kfy, = U,. (3.13)

Define the Dynkin’s martingale corresponding to fy , € dom(K) as

t
My o (t) = B (&) — Br.(€0) — /0 Ky (6, )dr
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M) ,(t) is a square integrable martingale. Due to the arguments in [8, Theorem 2.14, Sects.
2.7, 9.5], with Proposition we can obtain that

lim E™

su
A0 D

0<t<T

My (t) - /0 (DE,(6,), dW,)

2
] =0, VT >0, (3.14)

where f, = H;-limy o f . Furthermore, by [8, p. 51, Lemma 2.10],

.
tli>r£<; IAI%E [; ’/O Ucp(&?")dr - M)\#P(t)

Combining (33), (314) and BI3) together, we get

] = 0. (3.15)

.

Notice that 7 is ergodic, by central limit theorem for martingales (see, e.g., [8, p. 36, Theorem
2.1]), for all bounded continuous function f on R,

L 1), o) — / (DEA(&) + 0. AW, ) i
0

lim E™
t—o00

(u

Jim Fq ‘Ep {f (%ﬂ - /Rf(y)@a(«:)(y)dy‘ =0, (3.16)

where @, stands for the probability density function of Gaussian distribution with mean 0
and covariance a?(¢) = E.||Df, + ¢||%.

Next, to prove (IL6), it suffices to verify that a(p) = 0 for all ¢ orthogonal to the constant
function 1. Consider the function g, (&) £ —(ve,)n for such ¢. Noting that g, is well
defined and solves the cell problem —Kg, = U,, hence g, = f, in (814). Consequently,
a*(p) = Ex||Dg, + ¢||% = 0 and thus (L) holds with

a® =ad*(1) = g%E,THDfA,l +101%, (3.17)
where £ 1 is the solution to (B.13]) when ¢ = 1.
We are left to show that a? € [C,1] for some C' > 0 depending only on V. To this end,

we introduce two scalar products for H-valued functions on = (cf. [8 Sect. 2.2]). Consider F,
G:E— H. Let {F,G), = E;[(F,G)py], and

(F,G) = Eg [/ (F(Tu(0)s G(T[u()9)) g Ho(dve) | -

Furthermore, define the norm ||F||> = {F, F)) and denote by L?(Z, H) the Hilbert space con-
sisting of all functions with finite || - || norm, equipped with the inner product ((-,-)). Define
I -l and L2(Z, H) from ((-,-)), similarly.

From (B.I3) we know (M, — Kfy , — Uy, £y »)x = 0, which implies that

1 1
NiEsol2 + SIDE o2 + 5 (0, Db o)) = 0.

Let A | 0, we have (Df, + ¢, Df,))» = 0, so that Df, + ¢ and —Df, are orthogonal to each
other in L2(Z, H). Taking ¢ = 1, it easily follows from the orthogonality that

a’ = Ex|Df, + ¢||3 < Ex|Df, + ¢ — Df,||3; = 1.

On the other hand, since Q is {7, }-invariant, for all f € £(Z) we have

on = [ [ [Zrew

18

] po(do)Q(do) = 0.

c=0



Since £(Z) is dense in H1, 1 is orthogonal to the subspace H, = {Df;f € H;} under the inner
product {(-,-)). Therefore, with C = Z~! . exp(—2sup|V|) we have

a® > min ||Df + 1|2 > C min |Df + 1> = C.
fetH, feH,

The proof of Theorem [L.T]is then completed.

Remark 3.4. In the symmetric case B = 0, we can prove the following variational formula (cf.
[8, p. 335, Theorem 10.5]) for the limiting variance a?(¢):

a*(y) = min |Df + |7 (3.18)
feH
Indeed, let B = 0 and write (313) in the weak form for g € £(H),

1
)\<f/\,<,aag>7r + §<<Df>\,<p + (p)Dg»ﬂ' =0.

Let A | 0, we conclude that Df, + ¢ is orthogonal to H, under the inner product ((-, ).
Hence, (3I3) is clear because that Dfy € H,. In summary, the non-gradient term in (LI
always enhances the fluctuation of the solution.
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