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A central limit theorem for stochastic heat equations

in random environment

Lu Xu
∗ Kyushu University

Abstract In this article, we investigate the asymptotic behavior of the solution to a one-
dimensional stochastic heat equation with random nonlinear term generated by a stationary,
ergodic random field. We extend the well-known central limit theorem for finite-dimensional
diffusions in random environment to this infinite-dimensional setting. Due to our result, a
central limit theorem in L1 sense with respect to the randomness of the environment holds under
a diffusive time scaling. The limit distribution is a centered Gaussian law whose covariance
operator is explicitly described. It concentrates only on the space of constant functions.

1 Introduction and main result

Homogenization of finite-dimensional diffusions in stationary and ergodic environments is a
well-studied topic, including periodic and quasiperiodic environments as special cases. In the
early works [9] and [15], central limit theorems are established for diffusions driven by random,
self-adjoint operators of divergence type. Diffusions without drift are considered in [16]. In
[12], an invariance principle in a quenched sense is obtained for diffusions in ergodic, almost
surely C2-smooth environment, through a study on the fundamental solutions corresponding
to its generator.

A good review of finite-dimensional results can be found in [8, Sect. 9], where the main
approach is to record the environment viewed from the particle as a Markov process. Every
sample path of the diffusion is decomposed into the sum of an additive functional of the envi-
ronment process and a martingale with stationary and ergodic increments. The general method
to prove a central limit theorem for additive functional of Markov process is firstly developed
in [7] for reversible case and be extended later in [13], [14] and [19] to non-reversible case where
a sector condition holds. We rely on these results in this article, but in an infinite-dimensional
setting.

Our aim is to extend this strategy to an infinite-dimensional, nonlinear system. We study
the homogenization of the solution to a stochastic partial differential equation in random envi-
ronment. The equation considered here is a stochastic heat equation on the unit interval [0, 1]
driven by standard space–time white noise and having a random nonlinear term. Different from
the finite-dimensional model, the law of the nonlinear term is supposed to be stationary and
ergodic under only constant shifts, that is, a group of transformations indexed by R. We adopt
this setting since the Laplacian in the equation is preserved only by these transformations,
which is necessary for obtaining the Markov property of the environment process.

The nonlinear term is supposed to be the composition of a gradient-type part and a
divergence-free part. If only deterministic gradient-type environment is adopted, this equa-
tion is used to describe the motion of a flexible Brownian string in some potential field, see
[4]. Moreover, if the environment degenerates to a periodic nonlinear term, the model is closely
related to the dynamical sine-Gordon equation (see, e.g., [6]), and an invariance principle is
obtained in [20]. The divergence-free part can be added since it preserves the equilibrium state.
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For homogenization of finite-dimensional diffusions in divergence-free random field, we refer to
[11].

To state our model, we first introduce some basic notations. Throughout this article let
H = L2[0, 1]. The inner product and the norm on H are denoted by 〈·, ·〉H and ‖ · ‖H . Let E
be the Banach space C[0, 1] equipped with the uniform topology. Denote by E0 the subspace of
E consisting of functions which vanish at 0. Denote by µ0 the Wiener measure on E0 induced
by a standard Brownian motion. Since the sample path of a Brownian motion is almost surely
Hölder continuous with order less than 1

2 , we fix some α ∈ (0, 12 ) and introduce Eα as the space
of α-Hölder continuous functions on [0, 1]. E, Eα and E0 are treated as subspaces of H .

Recall that a real-valued function f defined on H is said to be Fréchet differentiable, if at
every h ∈ H there exists some Df(h) ∈ H such that

lim
h′∈H;‖h′‖H↓0

f(h+ h′)− f ′(h)− 〈Df(h), h′〉H
‖h′‖H

= 0.

Df is called the Fréchet derivative of f . Higher-order derivatives are defined inductively. For
a positive integer k, by Ck

b (H) we denote the class of all bounded functions on H which have
bounded and continuous Fréchet derivatives up to the k-th order.

Now we state our model precisely. Suppose that (Σ,A ,Q) and (Ω,F ,P) are two complete
probability spaces, the latter of which is equipped with a filtration of σ-fields {Ft ⊆ F ; t ≥ 0}
satisfying the usual conditions. Let W (t, x) be a standard cylindrical Brownian motion defined
on (Ω,F ,P) and adapted to Ft, and

{(V (σ, u), B(σ, u)) ∈ R×H ; (σ, u) ∈ Σ×H}

be an R×H-valued random field over H on (Σ,A ,Q). Suppose that V is Fréchet differentiable
in u for almost all σ, and let U be the H-valued random field defined by U = DV + B. For
fixed σ ∈ Σ, consider a one-dimensional stochastic heat equation with homogeneous Neumann
boundary conditions and initial condition v ∈ E.















∂tu(t, x) =
1

2
∂2xu(t, x)− U(σ, u(t)) + Ẇ (t, x), t > 0, x ∈ (0, 1);

∂xu(t, x)|x=0 = ∂xu(t, x)|x=1 = 0, t > 0;

u(0, x) = v(x), x ∈ [0, 1].

(1.1)

Equation (1.1) is called a stochastic heat equation in random environment U , and every σ ∈ Σ
is called a fixed environment. To make sure that for fixed σ, (1.1) has a strong solution in the
space of continuous functions, assume that

(A1) U(σ, ·) = DV (σ, ·) +B(σ, ·) is a bounded and Lipschitz continuous map from H to H for
Q-almost all σ ∈ Σ.

Under (A1), for almost all σ, the unique solution uσ,v(t, x) to (1.1) is continuous in t and
α-Hölder continuous in x (see [4, 5]) for α < 1

2 . Therefore, {uσ,v(t); t ≥ 0} forms a continuous
Markov process taking values in Eα. Consider the stochastic process on the product space
(Σ× Ω,A ⊗ F ) defined as

uv(t) , u·,v(t), t ≥ 0.

It is called the solution to (1.1) in random environment, which is the main object we want to
study in this article. Sometimes we omit the initial condition v and write it as u(t) for short.
To simplify the discussion on the generator of the environment process defined in Definition 2.2
later, also assume that

(A2) supΣ×H {|V |+ ‖DV ‖H + ‖B‖H} <∞.

To continue, we discuss the path space and the distribution of {V,B}. Let

C1,0(H ;R×H) ,
{

φ = (v, b) : H → R×H
∣

∣ v ∈ C1(H ;R), b ∈ C(H ;H)
}

.
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Due to the regularity of uσ,v(t, ·), the distribution of uσ,v(t) depends only on the law of the
subfield {Ṽ , B̃} , {V (u), B(u)}u∈Eα . Hence, let

Σ0
path ,

{

φ̃ : Eα → R×H
∣

∣

∣
∃φ ∈ C1,0(H ;R×H), s.t. φ̃ = φ|Eα

}

.

Denote by Σpath the completion of Σ0
path under the Fréchet metric

dΣ(σ1, σ2) =

∞
∑

k=1

1

2k
· dΣ,k(σ1, σ2)

1 + dΣ,k(σ1, σ2)
, (1.2)

where for σ1 = (ṽ1, b̃1) and σ2 = (ṽ2, b̃2) ∈ Σ,

dΣ,k(σ1, σ2) = sup
u∈Eα

k

{

|ṽ1(u)− ṽ2(u)|+ ‖Dṽ1(u)−Dṽ2(u)‖H + ‖b̃1(u)− b̃2(u)‖H
}

,

Eα
k =

{

u ∈ Eα, |u(x)| ≤ k,
|u(x)− u(y)|

|x− y|α ≤ k, ∀x, y ∈ [0, 1]

}

.

Since every Eα
k is compact, (Σpath, dΣ) is a Polish space under the metric dΣ. Equip it with the

Borel σ-field and adopt it as the path space of {Ṽ , B̃}. For c ∈ R, let τc be the transformation
on Σpath defined by

τc ◦ φ̃ = φ̃(·+ c1), ∀φ̃ ∈ Σpath, (1.3)

where 1 stands for the constant function 1(x) ≡ 1 on [0, 1]. Since τc1 ◦ τc2 = τc1+c2 , {τc} forms
a group. Given a probability measure p on Σpath, we say p is ergodic if for measurable set
A ⊆ Σpath such that p(A∆τc[A]) = 0 for all c ∈ R, we have either p(A) = 1 or p(A) = 0, where

∆ stands for the symmetric difference. Let PṼ ,B̃ be the distribution of {Ṽ , B̃} on Σpath and
assume that

(A3) PṼ ,B̃ is stationary and ergodic under {τc; c ∈ R}, and

PṼ ,B̃(τcφ̃ = φ̃, ∀c ∈ R) < 1. (1.4)

The translation invariance and ergodicity of the environment are usually necessary for studying
homogenization in such a model. Since {φ̃ | τcφ̃ = φ̃, ∀c ∈ R} is obviously a translation
invariant set, (1.4) is equivalent to say that PṼ ,B̃(τcφ̃ = φ̃, ∀c ∈ R) = 0. If (1.4) fails to hold,
U(σ, u) is periodic in the sense U(σ, u) = U(σ, u + c1). For a stochastic heat equation with
local, periodic and gradient-type nonlinear term, an invariance principle is obtained in [20].
Finally, we assume that

(A4) ∃ a measurable set Σ1 such that τc[Σ1] = Σ1, Q(Σ1) = 1 and for all σ ∈ Σ1,

∫

E0

e−2V (σ,u)〈Df(u), B(σ, u)〉Hµ0(du) = 0 (1.5)

holds for all f onH such that f(u) = f †(〈u, ϕ1〉H , . . . , 〈u, ϕM 〉H) for someM ≥ 1, f † ∈ C1
b (R

M )
and ϕ1, . . . , ϕM ∈ H .

(A4) is equivalent to say that δ(e−2VB) = 0 holds for all σ ∈ Σ1, where δ is the divergence
operator adjoint to the Malliavin derivative (see, e.g., [10, p. 35, Definition 1.3.1]). One can
see in Lemma 2.5 and Proposition 2.6 that a non-gradient field satisfying (A4) preserves the
equilibrium state in both fixed and random environment. Our main result, a central limit
theorem for uv(t), is stated as follows.
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Theorem 1.1. Under (A1) to (A4), u(t)/
√
t satisfies the central limit theorem in L1 sense

with respect to the environment and the limit distribution concentrates on the space of constant
functions, i.e., for any bounded continuous function f on E,

lim
t→∞

EQ

∣

∣

∣

∣

EP

[

f

(

u(t)√
t

)]

−
∫

R

f(y1)Φa(y)dy

∣

∣

∣

∣

= 0, (1.6)

where y1 is the function on [0, 1] taking constant value y ∈ R, and Φa is the probability density
function of a 1-d centered Gaussian law with variance a2 defined in (3.17) below. Furthermore
there exists some strictly positive constant C depending only on V such that C ≤ a2 ≤ 1.

Remark 1.2. A question naturally rises up is whether central limit theorem holds Q-almost
surely. We would like to point out here, that such quenched result usually relies on dimensions
(cf. [1]). The most challenging part in proving a quenched result is to show the sublinearity of
the corrector, which usually involves methods like heat kernel estimates or Sobolev inequality.
Since these methods are not expectable in our setting, the quenched version of Theorem 1.1
cannot be achieved easily.

In Sect. 2, we introduce the evolution of the environment seen from the solution, which
is recorded as an ergodic Markov process with values in a new space consisting of series of
environments. In Sect. 3, we prove Theorem 1.1 mainly based on a sector condition and some
general arguments in [8, Sects. 2, 9]. Before these contents, we close this section with two
examples, showing that both periodic and quasiperiodic nonlinear terms are included in our
model as special cases.

Example 1.3. Take Σ = [0, 1], A = B(Σ) and Q to be the Lebesgue measure. Suppose V to
be a measurable function on [0, 1]× R such that

V (x, ·) ∈ C1(R), V (x, y) = V (x, y + 1), ∀x ∈ [0, 1], y ∈ R.

Define the random field (V,B) for all σ ∈ Σ and u ∈ E as

V (σ, u) =

∫ 1

0

V (x, u(x) + σ)dx

and B(σ, u) ≡ 0. Assume that both V and d
dyV are uniformly bounded, then (A1) to (A4)

are fulfilled. Denote by uσ,v the solution to (1.1), then uσ,v−σ(t, x) + σ solves the stochastic
heat equation with the periodic nonlinear term d

dyV (x, u(t, x)).

Example 1.4. For d ≥ 2 take Σ = [0, 1]d, A = B(Σ) and Q to be the Lebesgue measure.
Suppose V to be a measurable function on [0, 1]× Rd such that

V (x, ·) ∈ C1(Rd), ∀x ∈ [0, 1];

V (x, ~y) = V (x, ~y + ~ei), ∀x ∈ [0, 1], ∀~y ∈ Rd, ∀i = 1, . . . , d;

sup
[0,1]×Rd

{|V |, |∂y1V |, . . . , |∂yd
V |} <∞,

where ~ei is the unit vector in Rd of i-th coordinate. Let (λ1, . . . , λd) ∈ Rd be a vector with
rationally independent coordinates. Define the random field (V,B) for all σ ∈ Σ and u ∈ E as

V (σ, u) =

∫ 1

0

V (x, λ1u(x) + σ1, . . . , λdu(x) + σd)dx

and B(σ, u) ≡ 0 for all σ ∈ Σ and u ∈ E. It gives the quasiperiodic model.
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2 The environment process

Since the statement in Theorem 1.1 depends only on the law of (V,B), without loss of generality
we may and will fix Σ to be the Polish metric space (Σpath, dΣ) described in Sect. 1. We take
A to be the Borel σ-algebra on Σ associated to dΣ, and let Q = PṼ ,B̃. As defined in (1.3),
there is a group of transformations {τc; c ∈ R} on Σ such that Q is stationary, ergodic and
satisfies that

Q(Σ0) = 0, (2.1)

where Σ0 , {σ ∈ Σ | τcσ = σ, ∀c ∈ R} is a subset of Σ.
This section is devoted to the construction of the environment process associated to (1.1).

To apply the strategy in [8, Sect. 9], the environment process needs to be a Markov process
taking values in a Polish metric space, having a stationary and ergodic probability measure.
Given an environment σ ∈ Σ and some v ∈ E, to shift σ with v it is natural to consider a map
ξ : [0, 1] → Σ such that

ξ(x) = τ[v(x)]σ, ∀x ∈ [0, 1].

In the above expression, since ξ(·) = τ[v(·)−v(0)][ξ(0)] where v(·)−v(0) ∈ E0 = {u ∈ E;u(0) = 0},
ξ belongs to the set Ξ defined as follows:

Ξ , {ξ : [0, 1] → Σ | ∃(σ, v) ∈ Σ× E0 s.t. ξ(·) = τ[v(·)]σ}. (2.2)

Every ξ ∈ Ξ is called a series of environments, which describes the environments seen from a
function. To construct a metric on Ξ, we need the following lemma.

Lemma 2.1. For each ξ such that ξ(0) /∈ Σ0 in (2.1), there is only one pair of σ ∈ Σ and
v ∈ E0 satisfying that ξ(·) = τ[v(·)]σ.

Proof. For σ ∈ Σ, define ker(σ) , {c ∈ R | τcσ = σ}, then Σ0 = {σ ∈ Σ | ker(σ) = R}. Define
a subset Ξ0 ⊆ Ξ to be

Ξ0 = {ξ ∈ Ξ | ξ(0) ∈ Σ0}. (2.3)

For ξ /∈ Ξ0, suppose that ξ = τ[v(·)]σ = τ[v′(·)]σ
′ for some (σ, v) and (σ′, v′) ∈ Σ × E0. Since

v(0) = v′(0) = 0, it is obvious that σ = σ′ = ξ(0). Notice that ker(σ) does not contain any
non-degenerate interval [a, b], otherwise the group property of {τc} would imply that ker(σ) = R

and then ξ ∈ Ξ0. However, simple calculation shows that

τ[v(x)−v′(x)]σ = σ, ∀x ∈ [0, 1].

Hence, the image of v− v′ contains no non-degenerate interval. As v− v′ is continuous on [0, 1]
and v(0)− v′(0) = 0, this yields that v = v′.

In view of Lemma 2.1, one is able to define a one-to-one map ξ 7→ (σξ, vξ) from Ξ to Σ×E0

such that ξ(·) = τ[vξ(·)]σξ. Indeed σξ = ξ(0), and when ξ /∈ Ξ0, vξ is uniquely determined due
to Lemma 2.1. For those ξ ∈ Ξ0, we can simply take vξ(x) ≡ 0. Equip Ξ with the metric dΞ
defined as

dΞ(ξ, η) = dΣ(ξ(0), η(0)) + supx∈[0,1]|vξ(x) − vη(x)|, ∀ξ, η ∈ Ξ, (2.4)

where dΣ(·, ·) is the Fréchet metric in (1.2). Observing that (Ξ, dΞ) may not be complete, we
take the completion and still denote it by Ξ. Since both (E0, | · |sup) and (Σ, dΣ) are Polish
spaces, also is (Ξ, dΞ). Equip Ξ with the Borel σ-algebra G , then ξ 7→ (ξ(0), vξ) becomes a
measurable map with respect to A ⊗ B(E0). Now the environment process can be defined as
follows.

Definition 2.2. The environment process associated with (1.1) is defined as

ξt = ξt(·) ∈ Ξ, s.t. ξt(x) = τ[uσ,v(t,x)]σ, ∀x ∈ [0, 1].
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Recall that (Ω,F ,P) is the probability space where the noise Ẇ (t, x) in (1.1) is defined.
{ξt}t≥0 defined in Definition 2.2 forms a Ξ-valued stochastic process on the product space
(Σ × Ω,A ⊗ F ). To express the nonlinear term in (1.1) by ξt, we introduce the derivative
operator on Ξ. For f : Ξ → R, let fσ be the function defined as fσ(v) = f(τ[v(·)]σ) for all v ∈ E.

Definition 2.3. A function f on Ξ is called differentiable, if for every σ, fσ can be extended to
a Fréchet differentiable function f̄σ on H , and its derivative is defined as Df(ξ) = Dfσ(v) for
ξ = τ[v(·)]σ. Higher-order derivatives are defined inductively. In particular, for differentiable f ,
Df(ξ) = Df(ξ, ·) ∈ H and for twice differentiable f , D2f(ξ) is a bounded bilinear functional on
H ×H .

The nonlinear termDV (σ, uσ,v(t))+B(σ, uσ,v(t)) can be replaced by a function of ξt. Indeed,
recall that every σ = (v, b) ∈ Σ = Σpath can be continuously extended to an element in
C1,0(H ;R×H), we can define

(V(ξ),B(ξ)) = [ξ(0)](vξ) ∈ R×H, ∀ξ ∈ Ξ,

where vξ ∈ E0 is defined by the one-to-one map from Ξ to Σ × E0 mentioned above. By
Definition 2.3 and the definition of Σpath, it is not hard to see that

DV(ξt) +B(ξt)
d.
= DV (σ, uσ,v(t)) +B(σ, uσ,v(t)) = U(σ, uσ,v(t)).

In summary, without loss of generality we can assume the following framework. Suppose
(Σ, dΣ) to be some Polish metric space equipped with the Borel σ-field A and some Borel
probability measure Q. A group of measurable transformations {τc; c ∈ R} is defined on Σ
such that Q is stationary, ergodic and satisfies (2.1). Define Ξ as in (2.2) and equip it with the
metric dΞ in (2.4) and the Borel σ-algebra G . It suffices to prove Theorem 1.1 for the following
equation instead of (1.1):















∂tu
σ,v(t, x) =

1

2
∂2xu

σ,v(t, x)−DV(ξt)−B(ξt) + Ẇ (t, x), t > 0, x ∈ (0, 1);

∂xu
σ,v(t, x)|x=0 = ∂xu

σ,v(t, x)|x=1 = 0, t > 0;

uσ,v(0, x) = v(x), x ∈ [0, 1],

(1.1’)

where (V,B) is a random variable on (Ξ,G ) taking values in R×H . The random field generated
by (V (σ, u), B(σ, u)) = (V(τ[u(·)]σ),B(τ[u(·)]σ)) is supposed to satisfy (A1), (A2) and (A4) in
Sect. 1.

Before stating the Markov property of ξt, we prepare some notations. Let Bb(E) and Bb(Ξ)
be the collections of all bounded measurable functions on E and Ξ, respectively. For fixed
σ, uσ,v(t) defines a continuous Markov process with values in Eα ⊆ E. Denote by Pσ

t the
associated Markov semigroup defined on Bb(E). Denote by Pσ

v the law of uσ,v for fixed σ and v,
and by Eσ

v the corresponding expectation. With these notations, we have the next proposition.

Proposition 2.4. The environment process {ξt, t ≥ 0} is a Markov process on Ξ. Let {Pt, t ≥
0} be the Markov semigroup on Bb(Ξ) determined by ξt, then

Ptf(ξ) = Pξ(0)
t f ξ(0)(vξ), ∀f ∈ Bb(Ξ), (2.5)

where fσ is the function on E defined by fσ(v) = f(τ[v(·)]σ).

Proof. First notice that if ξ0 ∈ Ξ0 in (2.3) then the environment σ ∈ Σ0. This furthermore
implies that ξt = ξ0 for all t ≥ 0 and f ξ(0) is a constant function on E. Hence, the Markov
property and (2.5) hold obviously in this case.

Pick σ /∈ Σ0, v ∈ E and let ξ = τ[v(·)]σ. Let P σ(t; v, ·) be the transition probability of the
solution uσ,v(t, ·) in a fixed environment. Since uτcσ,v = uσ,v+c − c,

P σ(t; v, ·) = P τcσ(t; v − c, · − c), ∀c ∈ R.
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Since ξ /∈ Ξ0, the discussion below Lemma 2.1 yields that vξ = v(·) − v(0), thus by taking
c = v(0) in the equation above, we obtain that

P σ(t; v, ·) = P ξ(0)(t; vξ, · − v(0)), (2.6)

Pick some t > 0, h > 0, n ≥ 0, 0 ≤ t1 ≤ . . . ≤ tn < t + h and bounded measurable functions
f1, . . . , fn,g on Ξ arbitrarily. We have

Eσ
v





n
∏

j=1

fj(ξtj )g(ξt+h)



 = Eσ
v





n
∏

j=1

fσ
j (u

σ,v(tj))g
σ(uσ,v(t+ h))



 .

Using the Markov property of uσ,v(t) for fixed σ, the expectation above equals to

Eσ
v





n
∏

j=1

fσ
j (u

σ,v(tj))

∫

E

gσ(u)P σ(h;uσ,v(t), du)



 .

Applying (2.6) with ξ = ξt and v = uσ,v(t), this expectation equals to

Eσ
v





n
∏

j=1

fj(ξtj )

∫

E

gσ(u)P ξt(0)(h; vξt , d(u− uσ,v(t, 0)))





= Eσ
v





n
∏

j=1

fj(ξtj )

∫

E

gξt(0)(u)P ξt(0)(h; vξt , du)



 .

Therefore, ξt is a Markov process and

Ptf(ξ) ,

∫

E

f ξ(0)(u)P ξ(0)(t; vξ, du) = Pξ(0)
t f ξ(0)(vξ), ∀t ≥ 0

is the associated Markov semigroup.

Next we construct the stationary and ergodic measure of {Pt, t ≥ 0}. Before discussing the
environment process, we give a lemma concerning the (infinite) stationary measure in frozen
environment σ ∈ Σ. Notice that in [4, Sect. 4], the same problem is discussed for the case that
B(σ, ·) = 0 and V (σ, ·) is local.

Lemma 2.5. For almost all σ ∈ Σ, {Pσ
t ; t ≥ 0} admits a stationary measure

πσ(dv) = exp(−2V (σ, v))µ(dv),

where (E, µ) is the infinite measure determined by a stochastic process {w(x);x ∈ [0, 1]} satisfy-
ing that w(·)−w(0) is a one-dimensional Brownian motion, while w(0) subjects to the Lebesgue
measure on R. Moreover if B ≡ 0, then πσ is reversible.

This lemma follows from a Galerkin approach. For k ≥ 1, let λk = 2(k − 1)2π2 be the
eigenvalues of − 1

2∂
2
x on H with Neumann boundary condition. The corresponding eigenvectors

are h1 = 1 and hk(x) =
√
2 cos[2(k − 1)πx] for x ∈ [0, 1] and k ≥ 2. With these notations, we

sketch the proof for completeness.

Proof of Lemma 2.5. In view of (A4), since (V,B)(σ, v + c1) = (V,B)(τcσ, v) holds for all
c ∈ R, it is easy to see that if σ belongs to Σ1,

Eπσ [〈Df,B(σ, ·)〉H ] =

∫

R

Eµ0

[

e−2V (τcσ,·)〈Df,B(τcσ, ·)
]

dc = 0, (2.7)
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for f(v) = f †(〈v, h1〉H , . . . , 〈v, hN 〉H) with f † ∈ C1
0 (R

N ). Since here only fixed environment is
considered, we temporarily omit σ and write V , B, uv(t) in short of V (σ, ·), B(σ, ·) and uσ,v(t).
Let ν(dv) = e−2V (v)µ(dv), and we prove that ν(dv) is stationary for {uv(t); t ≥ 0} under (2.7).

First assume that V and B are finite-dimensional dependent. Precisely, for some N ≥ 1,
V † ∈ C1

b (R
N ) and B† = (B†

1, . . . , B
†
N ) ∈ Cb(R

N ;RN ), we have

V (v) = V †(〈v, h1〉H , . . . , 〈v, hN 〉H), B(v) =

N
∑

k=1

B†
k(〈v, h1〉H , . . . , 〈v, hN 〉H)hk. (2.8)

Let Xk
t = 〈uv(t), hk〉H , then Xt = (X1

t , . . . , X
N
t ) ∈ RN solves

dXk
t = −λkXk

t dt− ∂kV
†(Xt)−B†

k(Xt)dt+ d〈W (t, ·), hk〉H , Xk
0 = 〈v, hk〉H .

Define Ψk(x) =
√
λkπ−1e−λkx

2

for k ≥ 1 and x ∈ R and observe that the marginal distribution

of µ on (〈v, h1〉H , . . . , 〈v, hN 〉H) is (RN ,
∏N

k=1 Ψk(xk)dxk). By (2.7),

∫

RN

e−2V †(x)
[

B†(x) · ∇f(x)
]

N
∏

k=1

Ψk(xk)dxk = 0, ∀f ∈ C1
0 (R

N ). (2.9)

Hence e−2V †(x)
∏N

k=1 Ψk(xk)dxk is an (infinite) invariant measure for Xt. Noting that now
{XM

t ;M > N} forms a mutually independent system of Ornstein–Uhlenbeck processes which
is independent of Xt, we can conclude that ν(dv) = e−2V (v)µ(dv) is a stationary measure for
{uv(t); t ≥ 0}.

For general V and B, we consider their marginal expectations. Precisely speaking, for N ≥ 1
and x = (x1, . . . , xN ) ∈ RN define

V †
N (x) =

∞
∏

l=N+1

[
∫

R

Ψl(yl)dyl

]

V

(

N
∑

l=1

xlhl +

∞
∑

l=N+1

ylhl

)

.

Similarly, write Uk = e−2V 〈B, hk〉H and for k = 1, . . . , N define

B†
N,k(x) = e2V

†
N
(x)

∞
∏

l=N+1

[
∫

R

Ψk(yl)dyl

]

Uk

(

N
∑

l=1

xlhl +

∞
∑

l=N+1

ylhl

)

.

Define VN and BN by substituting V †
N , B†

N for V †, B† in (2.8), and let uvN (t) be the solution
to (1.1) with DV +B replaced by DVN +BN . From the Lipschitz continuity of V , DV and B,
we get for every fixed v ∈ H that

lim
N→∞

|VN (v)− V (v)| + ‖DVN (v)−DV (v)‖H + ‖BN (v)−B(v)‖H = 0.

Since V , DV and B are uniformly bounded, we can obtain that

sup
N≥1,v∈H

|VN (v)|+ ‖DVN (v)‖H + ‖BN(v)‖H <∞.

Let E be the expectation with respect to the noise. With the above estimates, for a function f
on E such that f(v) = f †(〈v, h1〉H , . . . , 〈v, hM 〉H) with some M ≥ 1 and f † ∈ C1

0 (R
M ), we can

show that
lim

N→∞
E[f(uvN (t))] = E[f(uv(t))].

Noting that (V †
N , B

†
N ) fulfills (2.9), the previous step implies that
∫

E

E[f(uvN (t))]e−2VN (v)µ(dv) =

∫

E

f(v)e−2VN (v)µ(dv).
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Because f † is compactly supported, by takingN → ∞we get
∫

E
E[f(uv(t))]ν(dv) =

∫

E
f(v)ν(dv).

Applying Cauchy–Schwartz inequality,

∫

E

{E[f(uvN (t))]}2 ν(dv) ≤
∫

E

E[f2(uvN (t))]ν(dv) =

∫

E

f2(v)ν(dv).

With this inequality and the fact that the finite-dimensional dependent functions is dense in
L2(ν), we can conclude that ν is invariant for {uv(t); t ≥ 0}.

In case that B = 0, we can prove the reversibility of ν in the same way, only to observe that

now the finite-dimensional approximationXt is a symmetric process, so that e−2V †(x)
∏N

k=1 Ψk(xk)dxk
becomes reversible.

The stationary measure obtained in Lemma (2.5) is of infinite mass. To overcome this
difficulty, we define a probability measure π on Ξ as

π(dξ) = Z−1 exp(−2V(ξ))µ0(dvξ)⊗Q(dξ(0)), (2.10)

where vξ ∈ E0 is determined by the one-to-one map from Ξ to Σ×E0, and Z is the normalization
constant. Our aim is to show that π is stationary for {Pt; t ≥ 0}.

Proposition 2.6. π is a stationary and ergodic probability measure for {Pt; t ≥ 0}. Moreover,
if B ≡ 0, then π is reversible.

To prove Proposition 2.6, we need to introduce the class of smooth functions on Ξ. Let C
be the dense subspace of H defined as

C = {h ∈ H | h ∈ C2[0, 1], h′(0) = 0, h′(1) = 0, 〈h,1〉H 6= 0}, (2.11)

Pick arbitrarily some ψ ∈ L∞(Σ;Q), n ≥ 1, h1, . . . , hn ∈ C and ℓ† ∈ C∞
b (Rn) such that ℓ†

together with all its derivatives belongs to L1(Rn; dx). Consider the function

f(ξ) =

∫

R

ψ(τθσ)ℓ(v − θ1)dθ, ∀ξ = τ[v(·)]σ ∈ Ξ, (2.12)

where ℓ(v) = ℓ†(〈v, h1〉H , . . . , 〈v, hn〉H) for v ∈ E. Let E0(Ξ) be the collection of all f in (2.12),
and call its linear span E(Ξ) the smooth function class on Ξ.

E(Ξ) is dense in L2(Ξ;π). To see that, pick g ∈ L2(Ξ;π) and suppose that 〈g, f〉π = 0 for
all f ∈ E0(Ξ). By virtue of (2.10) and (2.12), it implies

1

Z
EQ

{
∫

E0

µ0(dv)

∫

R

e−2V(τ[v(·)]σ)g(τ[v(·)]σ)ψ(τθσ)ℓ(v − θ1)dθ

}

= 0

holds for all ψ and ℓ satisfying the conditions above (2.12). Applying the change of variable
σ = τ−θσ

′, we get from the stationarity of Q under τθ that

1

Z
EQ

{
∫

E0

µ0(dv)

∫

R

e−2V(τ[v(·)−θ1]σ
′)g(τ[v(·)−θ1]σ

′)ψ(σ′)ℓ(v − θ1)dθ

}

= 0.

Since v − θ1 in this integral subjects to the infinite measure µ defined in Lemma 2.5, we can
rewrite the above equation as

1

Z
EQ

{
∫

E

e−2V(τ[v(·)]σ
′)g(τ[v(·)]σ

′)ψ(σ′)ℓ(v)µ(dv)

}

= 0. (2.13)

From (2.13) we obtain that e−2Vg = 0 for Q-almost all σ and µ-almost all v, and thus g = 0
in L2(Ξ, π). As E(Ξ) is the linear span of E0(Ξ), it is dense in L2(Ξ;π).
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Proof of Proposition 2.6. We begin with pointing out that to prove the stationarity of π, it
suffices to show Eπ[Pt(f · f ′)] = Eπ [f · f ′] for all f , f ′ ∈ E(Ξ). Indeed, by taking f ′ = f we
have Eπ[(Ptf)

2] ≤ Eπ[Pt(f
2)] = Eπ[f

2], so Pt is contractive on L
2(Ξ;π). Since E(Ξ) is dense in

L2(Ξ;π), it is easy to obtain Eπ[Ptf ] = Eπf for all f ∈ L2(Ξ;π), thus π is a stationary measure.
Now we prove that Eπ[Pt(f · f ′)] = Eπ [f · f ′] for f , f ′ ∈ E(Ξ). By the definition, it suffices

to prove for f , f ′ ∈ E0(Ξ). Suppose that f , f ′ are defined by (2.12) with some (ψ, ℓ) and (ψ′, ℓ′)
respectively. Observe that for ξ = τ[v(·)]σ,

f · f ′(ξ) =
∫

R2

ψ(τθσ)ψ
′(τθ+θ′σ)ℓ(v − θ1)ℓ′(v − (θ + θ′)1)dθdθ′.

To simplify the notations, in this proof we write Ψθ(σ) = ψ(σ)ψ′(τθσ) and Lθ(v) = ℓ(v)ℓ′(v −
θ1). With these notations we have

Eπ [Pt(f · f ′)] =
1

Z
EQ

{
∫

E0

µ0(dv)

∫

R2

e−2V (σ,v)Ψθ′(τθσ)E [Lθ′(uσ,v(t)− θ1)] dθdθ′
}

.

Since uσ,v(t)− θ1 = uτθσ,v−θ1(t), the change of variable σ = τ−θσ
′ yields that

Eπ[Pt(f · f ′)] =
1

Z
EQ

{
∫

E0

µ0(dv)

∫

R2

e−2V (σ′,v−θ1)Ψθ′(σ′)E
[

Lθ′(uσ
′,v−θ1(t))

]

dθdθ′
}

.

With the same arguments as in calculating (2.13) we get

Eπ[Pt(f · f ′)] =
1

Z
EQ

{
∫

R

dθ′
[

Ψθ′(σ)

∫

E

E [Lθ′(uσ,v(t))] πσ(dv)

]}

.

Due to Lemma 2.5, the last integral equals to Eπσ [Lθ′], so that

Eπ [Pt(f · f ′)] =
1

Z
EQ

{
∫

E

µ(dv)

∫

R

e−2V (σ,v)Ψθ′(σ)Lθ′(v)dθ′
}

.

The desired equation Eπ[Pt(f · f ′)] = Eπ [f · f ′] then follows.
In case that B = 0, the reversibility of π can be proved in the same way, only to notice that

πσ is now reversible to the semigroup in frozen environment.
To see the ergodicity, pick G ⊆ Ξ such that π(G) > 0 and Pt1G = 1G for some t > 0, and

we show that π(G) = 1. For every σ ∈ Σ, define Gσ = {v ∈ E; τ[v(·)]σ ∈ G}. Take a strictly
positive f ∈ L1(R; dx) and observe that

1

Z

∫

R

{

EQ

[
∫

E0

e−2V (σ,v)1Gσ
(v)µ0(dv)

]

· f(c)
}

dc = π(G) ·
∫

R

f(c)dc > 0.

Noting that 1Gσ
(v) = 1G[τcσ]

(v − c1), the above equation can be written as

∫

R

{

EQ

[
∫

E0

e−2V (τcσ,v−c1)1G[τcσ]
(v − c1)µ0(dv)

]

· f(c)
}

dc > 0.

By the τc-invariance of Q and the same strategy used in (2.13) we get

EQ

[
∫

E

e−2V (σ,v)1Gσ
(v)f(−v(0))µ(dv)

]

> 0,

thus Q(σ;µ(Gσ) = 0) < 1. The τc-invariance of {σ;µ(Gσ) = 0} then implies that it is Q-
null, thanks to the ergodicity. Since µ is absolutely continuous with respect to πσ, we know
further that Q(σ;πσ(Gσ) = 0) = 0. Noting that for fixed σ, (1.1’) satisfies the conditions
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mentioned in [17, Sect. 1], hence from [17, Corollary 1.1 and Theorem 1.3], uσ(t) is strong Feller
and irreducible. Therefore, its transition probability P σ(t; v, ·) is equivalent to its stationary
measure πσ for all v and t, so that Q(σ;P σ(t; v,Gσ) = 0) = 0. Meanwhile, by (2.5),

0 = 〈1Gc ,Pt1G〉π =
1

Z
EQ

{
∫

E0

[1− 1Gσ
(v)]e−2V (σ,v)P σ(t; v,Gσ)µ0(dv)

}

.

As e−2V (σ,v)P σ(t; v,Gσ) is strictly positive for every v, t and almost all σ, the above equation
implies that Q(σ;µ0(Gσ) = 1) = 1, and π(G) = 1 follows directly.

The last part of this section is devoted to the generator of Pt. Although Pt is not strongly
continuous under the topology of Cb(Ξ) (cf. [18]), due to the stationarity of π we can extend Pt

to a C0 semigroup of contractions on L2(Ξ;π). Denote the extension still by Pt and define its
generator (dom(K),K) through Hille–Yosida theorem. Recall that K is unbounded and closed,
and we say A ⊆ dom(K) is a core if A is dense in dom(K) and K coincides with the closure of
K|A. In the next proposition, we compute K on the smooth function class on Ξ and show that
it forms a core.

Proposition 2.7. E(Ξ) forms a core of K, and for all f ∈ E(Ξ),

Kf(ξ) =
1

2
〈∂2x[Df(ξ)], vξ〉H − 〈Df(ξ),DV(ξ) +B(ξ)〉H +

1

2
tr[D2f(ξ)]. (2.14)

Proposition 2.7 is proved along the strategy in [18], where the maximal dissipativity for
a class of Kolmogorov operators is discussed. We first prove the parallel result for a linear
equation in Lemma 2.8, and then extend it to the nonlinear case.

To discuss the linear case, consider an Ornstein–Uhlenbeck process {uv0(t, ·) ∈ E; t ≥ 0}
with a given initial condition v ∈ E satisfying that

uv0(t) , Stv +

∫ t

0

St−rdWr,

whereWr is the cylindrical Brownian motion appeared in (1.1’), and {St; t ≥ 0} is the semigroup
on H generated by 1

2∂
2
x with Neumann boundary condition. Since uv0(t) solves (1.1’) when

DV +B ≡ 0, it is a continuous E-valued Markov process. Denote by {T 0
t ; t ≥ 0} the Markov

semigroup determined by uv0(t) on Bb(E). In imitation of (2.5), for f ∈ Bb(Ξ) and t ≥ 0 we
define

Ttf(ξ) = T 0
t f

ξ(0)(vξ), ∀ξ ∈ Ξ.

In view of Proposition 2.6, Tt possesses a reversible measure π0(dξ) = Z−1 exp(−2V(ξ))π(dξ).
Write Hπ0 = L2(Ξ;π0), and extend {Tt; t ≥ 0} to a strongly continuous semigroup of contrac-
tions on Hπ0 . Denote by (dom(L),L) its generator on Hπ0 . Paralleling to Proposition 2.7, we
have the next lemma for L and π0.

Lemma 2.8. E(Ξ) forms a core of L, and for all f ∈ E(Ξ), Lf(ξ) = L0f ξ(0)(vξ) where L0 is
the Ornstein–Uhlenbeck operator defined as

L0f(v) =
1

2

〈

∂2xDf(v), v
〉

H
+

1

2
tr
[

D2f(v)
]

.

Proof. First we present a basic estimate. Suppose that f(v) = f †(〈v, h1〉H , . . . , 〈v, hn〉H) for
all v ∈ E, where n ≥ 1, f † ∈ C∞

b (Rn) and h1, . . . , hn ∈ C are chosen arbitrarily. Let M =
max{|∂αf †|∞}, where the maximum is taking over all positive n-multiple indexes α such that
|α| ≤ 3. For such f , we have (cf. [18, Corollary 2.3])

sup
v∈E

1

1 + ‖v‖2H

∣

∣

∣

∣

T 0
t f(v)− f(v)

t
− L0f(v)

∣

∣

∣

∣

≤MCt, (2.15)
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where Ct is a constant depending on the hi’s, satisfying that Ct → 0 when t ↓ 0 for fixed
h1, . . . , hn ∈ C. We here give the proof of (2.15) only for the case n = 1, since for larger n
the calculations are the same. When n = 1, we write f(v) = f †(〈v, h〉H), and define Qt,h =
∫ t

0 〈St−rh, dW (r, ·)〉H . With E being the expectation with respect to the noise, we have E[Qt,h] =
0 and

∣

∣T 0
t F (v)− F (v)− tL0F (v)

∣

∣

≤
∣

∣

∣

∣

E [f(〈v, Sth〉H +Qt,h)− f(〈v, Sth〉H)]− t

2
· f ′′(〈v, h〉H)‖h‖2H

∣

∣

∣

∣

+

∣

∣

∣

∣

f(〈v, Sth〉H)− f(〈v, h〉H)− t · f ′(〈v, h〉H)

〈

v,
1

2
h′′
〉

H

∣

∣

∣

∣

≤ 1

2
|f ′′|∞

∣

∣E
[

Q2
t,h

]

− t‖h‖2H
∣

∣+
1

6
|f ′′′|∞ E

[

|Qt,h|3
]

+ |f ′|∞ ‖v‖H ·
∥

∥

∥

∥

Sth− h− t

2
h′′
∥

∥

∥

∥

H

+
1

2
|f ′′|∞ ‖v‖2H · ‖Sth− h‖2H .

Since h ∈ dom(12∂
2
x), (2.15) follows from direct calculation.

Now pick some f in the form of (2.12) and notice that for all σ ∈ Σ,

fσ(v) =

∫

R

ψ(τθσ)ℓ(v − θ1)dθ, ∀v ∈ E.

In view of the conditions on ψ and ℓ, it is easy to observe that (2.15) holds for each fσ with
common constants M and Ct, hence

1

1 + ‖vξ‖2H

∣

∣

∣

∣

Ttf(ξ)− f(ξ)

t
− L0f ξ(0)(vξ)

∣

∣

∣

∣

≤MCt.

Applying dominated convergence theorem, we obtain that

Hπ0- lim
t↓0

Ttf − f

t
= L0f ξ(0)(vξ), ∀f ∈ E0(Ξ). (2.16)

As E(Ξ) is the linear span of E0(Ξ), (2.16) holds for all f ∈ E(Ξ), therefore E(Ξ) ⊆ dom(L) and
Lf(ξ) = L0f ξ(0)(vξ) for f ∈ E(Ξ).

We are left to show that E(Ξ) is a core. By [3, p. 17, Proposition 1.3.3], it suffices to show
that E(Ξ) is preserved under {Tt; t ≥ 0}. Notice that for h ∈ C,

〈uv0(t), h〉H = 〈v, Sth〉H +Qt,h

and Sth still belongs to C. Therefore, for f in the form of (2.12),

T 0
t f

σ(v) = E[fσ(uv0(t))] =

∫

R

ψ(τθσ)E[ℓ
†(~vt,h − θ〈~h〉H + ~Qt,h)]dθ,

where ~vt,h = (〈v, Sth1〉H , . . . , 〈v, Sthn〉H), 〈~h〉H = (〈h1〉H , . . . , 〈hn〉H) are deterministic Rn-

vectors, and ~Qt,h = (Qt,h1 , . . . , Qt,hn
) is a random vector. Ttf ∈ E(Ξ) then follows from the

conditions on ψ and ℓ†, and consequently Tt[E(Ξ)] ⊆ E(Ξ).

From Lemma 2.8, L(f2) = 2f · Lf + ‖Df‖2H holds for f ∈ E(Ξ), and the stationarity of π0
implies that Eπ0 [L(f2)] = 0, so that Dirichlet form of L reads

〈f ,−Lf〉π0 =
1

2

∫

Ξ

‖Df(ξ)‖2Hπ0(dξ), ∀f ∈ E(Ξ). (2.17)

Let Hπ = L2(Ξ, π), and 〈·, ·〉π , ‖ · ‖π be the related inner product and norm. By (A2), ‖ · ‖π
and ‖ · ‖π0 are equivalent, so that elements in Hπ can be identified with those in Hπ0 . With
this observation, we close this section with the proof to Proposition 2.7.
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Proof of Proposition 2.7. First recall the definition of differentiable function on Ξ in Definition
2.3. Let C1

b (Ξ) denote the class of all differentiable functions f on Ξ such that Df is continuous
and uniformly bounded in H . Define

K◦f = Lf − 〈Df ,DV +B〉H , ∀f ∈ dom(L) ∩ C1
b (Ξ).

Noticing that E(Ξ) ⊆ dom(L) ∩ C1
b (Ξ) and that K◦ satisfies (2.14) for f ∈ E(Ξ), to verify the

explicit form (2.14) for K we only need to show that

Hπ- lim
Ptf − f

t
= K◦f , ∀f ∈ dom(L) ∩ C1

b (Ξ). (2.18)

Indeed, observing that uσ,v(t) − uv0(t) =
∫ t

0
St−r[−DV(ξr) − B(ξr)]dr, for any f ∈ C1

b (Ξ) and
fixed σ, v we have

lim
t↓0

Pσ
t f

σ(v) − T σ
t f

σ(v)

t

= lim
t↓0

E

〈

Dfσ(uv0(t)),−
1

t

∫ t

0

St−r[DV(ξr) +B(ξr)]dr

〉

H

+ o(1)

=
〈

Dfσ(v),DV(τ[v(·)]σ) +B(τ[v(·)]σ)
〉

H
.

By (A2) and dominated convergence theorem, for f ∈ C1
b (Ξ) we obtain

Hπ- lim
t↓0

Ptf − Ttf
t

= −〈Df ,DV +B〉H . (2.19)

As π0 and π are mutually equivalent, (2.18) follows from (2.16) and (2.19) directly.
Due to the Lumer–Phillips theorem (see, e.g., [21] and [3, p. 17, Proposition 1.3.1]), to show

that E(Ξ) is a core, it suffices to prove that (λ − K)[E(Ξ)] is dense in Hπ for some λ > 0. We
first prove it under an additional condition. By (A1), for Q-almost all σ, DV (σ, ·) + B(σ, ·)
can be extended to some Uσ ∈ Cb(H ;H) such that ‖Uσ‖H is uniformly bounded in σ and v.
Assume further that

(A1’) Uσ ∈ C2
b (H ;H) and supΣ×H |D2Uσ(v)|L(H;H) <∞.

Now for fixed σ, (1.1’) becomes a stochastic heat equation with twice differentiable nonlinear
term, thus obviously Pσ

t [C
1
b (H)] ⊆ C1

b (H). Furthermore, due to [17, Theorem 1.2], there is
some constant C such that

supH‖D[P σ
t f ]‖H ≤ Cmax{t−1/2, 1} · supH |f |, ∀f ∈ C1

b (H).

Fix g ∈ E(Ξ), λ > 0 and define f = (λ − K)−1g. We show that f ∈ dom(L) ∩ C1
b (Ξ). Notice

the following formula holds for f that

f(ξ) =

∫ ∞

0

e−λt · Ptg(ξ)dt, ∀ξ ∈ Ξ. (2.20)

By the above estimates and dominated convergence theorem, f ∈ C1
b (Ξ) and ‖Df(ξ)‖H is

bounded from above by Cλ supΞ |f | with some constant Cλ. Observe that

Tsf(ξ)− f(ξ)

s
=

Psf(ξ) − f(ξ)

s
+

Tsf(ξ)− Psf(ξ)

s
. (2.21)

Since f ∈ dom(K), the Hπ0 -limit of the first term in the right-hand side of (2.21) exists when
s ↓ 0. Since f ∈ C1

b (Ξ), (2.19) yields that the second term converges in Hπ. Noting that Hπ0

and Hπ have equivalent norm, we have f ∈ dom(L).
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The previous proof now implies that Kf = Lf − 〈Df ,DV+B〉H . Since E(Ξ) is a core of L,
we can pick fk ∈ E(Ξ) such that fk → f and Lfk → Lf , both in Hπ0 . By (2.17), ‖D(fk − f)‖H
vanishes in Hπ0 and Hπ. Therefore,

Eπ|K(fk − f)|2 ≤ 2Eπ|(L(fk − f)|2 + 2Eπ|〈D(fk − f),DV +B〉H |2 → 0

as k → ∞. Consequently, ‖g− (λ−K)fk‖π → 0 and (λ−K)[E(Ξ)] is dense in Hπ.
If (A1’) fails to hold, we need to pick an approximating sequence. Indeed, suppose that we

can find a sequence (Vn,Bn) satisfying (A1’), (A2), (A4) and that

lim
n→∞

Eπ[‖DV +B−DVn −Bn‖2H ] = 0. (2.22)

Let Kn be the generator of the environment process related to the solution to (1.1’) with (V,B)
replaced by (Vn,Bn). Fix some g ∈ E(Ξ) and let fn = (λ − Kn)

−1g. By the previous step,
fn ∈ dom(L) ∩ C1

b (Ξ), so that we have

(λ−K)fn = g+ (Kn −K)fn = g + 〈DVn +Bn −DV −B,Dfn〉H . (2.23)

Notice that for f ∈ dom(L) ∩ C1
b (Ξ) we have K[f2] = 2f · Kf + ‖Df‖2H . With the same way of

computing the Dirichlet form for L in (2.17), we get that

〈f ,−Kf〉π = 2−1Eπ

[

‖Df‖2H
]

. (2.24)

In view of (2.23) and (2.24),

λ‖fn‖2π + 2−1Eπ

[

‖Dfn‖2H
]

= 〈g, fn〉π + Eπ [〈DVn +Bn −DV −B,Dfn〉H · fn].

By virtue of (2.20), supΞ |fn| ≤ λ−1 supΞ |g| holds for all n, thus

λ

2
Eπ

[

‖Dfn‖2H
]

≤ sup
Ξ

|g|2 + sup
Ξ

|g| · Eπ[〈DVn +Bn −DV −B,Dfn〉H ].

Using Cauchy–Schwarz inequality we obtain that

λ

4
Eπ

[

‖Dfn‖2H
]

≤ sup
Ξ

|g|2 + 4

λ
sup
Ξ

|g|2 · Eπ

[

‖DVn +Bn −DV −B‖2H
]

.

Hence, {Eπ[‖Dfn‖2H ];n ≥ 1} is a uniformly bounded sequence. By (2.23) and (2.22), (λ−K)fn
converges to g in the topology of Hπ, thus (λ−K)[E(Ξ)] is dense.

We are left to show the existence of (Vn,Bn). Using the strategy in the proof of Lemma
2.5, for fixed σ without loss of generality we can assume (V (σ, ·), B(σ, ·)) to be in the form
of (2.8) with some V †(σ, ·) ∈ C1

b (R
N ) and B†(σ, ·) ∈ Cb(R

N ;RN ). Pick smooth functions
V †
n (σ, ·) and B†

n(σ, ·) such that (∇V †
n +B†

n)(σ, ·) converges to (∇V † +B†)(σ, ·) in a point-wise
sense, supΣ×RN |∇V †

n +B†
n| is uniformly bounded from above and (2.9) holds with V †

n (σ, ·) and
B†

n(σ, ·). Then, we get the desired sequence (Vn(σ, ·), Bn(σ, ·)) from V †
n (σ, ·) and B†

n(σ, ·) with
(2.8).

3 Central limit theorem for u(t)/
√
t

Before giving the proof of Theorem 1.1, we introduce two Hilbert spaces H1 and H−1 related
to the operator K (cf. [8, Sect. 2.2]).

Notice that (2.24) defines a semi-norm ‖ · ‖21 on E(Ξ). Let I1 = E(Ξ)/ ∼1, where ∼1 is the
equivalence relation defined by f ∼1 g ⇐⇒ ‖f −g‖1 = 0. ‖ · ‖1 naturally extends to a norm on
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I1, and let H1 be the completion of (I1, ‖ · ‖1). H1 becomes a Hilbert space under the inner
product given by polarization:

〈f ,g〉1 ,
1

4
(‖f + g‖21 + ‖f − g‖21).

Noting that by (2.24), D can be extended to a linear operator defined on H1 and taking values
in L2(Ξ, H ;π). We denote the extension still by D. Meanwhile, since for each f ∈ E(Ξ),
fσ is finite-dimensional dependent, by applying the classical Itô formula for finite-dimensional
semi-martingales we get

f(ξt)− f(ξ0) =

∫ t

0

Kf(ξr)dr +

∫ t

0

〈Df(ξr), dWr〉H , ∀f ∈ E(Ξ). (3.1)

The dual space H−1 of H1 is defined as follows. For f ∈ Hπ, let

‖f‖2−1 , sup
g∈E(Ξ)

{

2〈f ,g〉π − ‖g‖21
}

.

Let I 0
−1 = {f ∈ Hπ, ‖f‖−1 <∞} and I−1 = I 0

−1/ ∼−1, where ∼−1 is the equivalence relation
defined by f ∼−1 g ⇐⇒ ‖f − g‖−1 = 0. Let H−1 be the completion of (I−1, ‖ · ‖−1), which is
also a Hilbert space under the inner product 〈·, ·〉−1 defined through polarization. The following
variational formula holds for ‖ · ‖−1:

‖f‖−1 = sup
g∈E(Ξ)

{ 〈f ,g〉π
‖g‖1

; ‖g‖1 6= 0

}

, ∀f ∈ Hπ ∩H−1. (3.2)

Recall that Σ0 = {σ ∈ Σ | τcσ = σ, ∀c ∈ R}. Observe that when σ /∈ Σ0, in view of Lemma
2.1, vξt = uσ,v(t, ·)− uσ,v(t, 0), hence the weak form of (1.1’) reads

〈uσ(t), ϕ〉H = 〈uσ(0), ϕ〉H +

∫ t

0

Uϕ(ξr)dr + 〈Wt, ϕ〉H , (3.3)

where ϕ ∈ C2[0, 1] is a test function such that ϕ′(0) = ϕ′(1) = 0, and

Uϕ(ξ) =
1

2
〈vξ, ∂2xϕ〉H − 〈DV(ξ) +B(ξ), ϕ〉H . (3.4)

When σ ∈ Σ0 we have vξt ≡ 0 and (3.3) fails to hold. However, from (2.1), Σ0 is a Q-null set
here, therefore (3.3) holds Q-almost surely and this is sufficient for the L1(Q) convergence in
Theorem 1.1.

Let (dom(K∗),K∗) be the adjoint operator of K on Hπ. By the standard arguments in [8,
Sects. 2.6, 2.7, 9.5], to get a central limit theorem for 〈uσ(t), ϕ〉H it is necessary to show that
E(Ξ) is also a core of K∗, K satisfies a sector condition and Uϕ ∈ H−1. We prove these results
in this section.

Proposition 3.1. E(Ξ) forms a core of K∗, and for all f ∈ E(Ξ),

K∗f(ξ) =
1

2
〈∂2x[Df(ξ)], vξ〉H − 〈Df(ξ),DV(ξ) −B(ξ)〉H +

1

2
tr[D2f(ξ)]. (3.5)

Proof. Let ûσ,v(t, ·) be the solution to (1.1’) with B replaced by −B, and {ξ̂t; t ≥ 0} be the

corresponding environment process. By Proposition 2.6, π is stationary for ξ̂t, so that its
Markov semigroup {P̂t; t ≥ 0} is a C0 semigroup of contractions on Hπ. Let K̂ be its generator.
By Proposition 2.7, K̂ satisfies (3.5) and E(Ξ) is a core of K̂.
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It suffices to show K∗ = K̂. From Proposition 2.6, π is reversible if B = 0, thus

〈Kf + 〈Df ,B〉H ,g〉π = 〈f ,K∗g − 〈Dg,B〉H〉π, ∀f ,g ∈ E(Ξ). (3.6)

Meanwhile, in view of (A4), for f and g ∈ E(Ξ) we have

Eπ [〈D[fg],B〉H ] =
1

2Z
EQ

{
∫

E0

e−2V (σ,v)〈D[fσgσ](v), B(σ, v)〉Hµ0(dv)

}

= 0. (3.7)

Combing (3.6) and (3.7) shows that K̂ = K∗ on E(Ξ). Noting that E(Ξ) is a core of K̂ and K∗

is always closed, this would imply that K̂ ⊆ K∗. On the other hand, since K∗ is the adjoint of
a Markov generator of a C0 semigroup contractions, it is easy to show that λ−K∗ is invertible
for all λ > 0. For all f ∈ Hπ,

f = (λ− K̂)
[

(λ− K̂)−1f
]

= (λ−K∗)
[

(λ− K̂)−1f
]

,

therefore (λ−K∗)−1 = (λ− K̂)−1, and consequently dom(K∗) = dom(K̂).

Proposition 3.2. The generator K satisfies the sector condition, i.e.,

〈Kf ,g〉2π ≤ C〈−Kf , f〉π〈−Kg,g〉π , ∀f ,g ∈ dom(K),

where C = C(V,B) is a finite constant depending only on V and B.

Proof. For f ∈ dom(K) ∩ dom(K∗), let Ksf = 1
2 (Kf + K∗f) and Kaf = 1

2 (Kf − K∗f). By
Proposition 3.1 it suffices to show for f , g ∈ E(Ξ) that

〈Kaf ,g〉2π ≤ C(V,B)Eπ‖Df‖2HEπ‖Dg‖2H .

For a function g on E, let 〈g〉µ0 , Eµ0 [g]. By virtue of (A4),

〈−Kaf ,g〉π =
1

Z
EQ

[
∫

E0

e−2V (σ,v)〈Dfσ(v), B(σ, v)〉H (gσ(v) − 〈gσ〉µ0)µ0(dv)

]

.

By Cauchy–Schwarz inequality and (A2) we obtain that

〈−Kaf ,g〉π ≤ C1‖f‖1
{

1

Z
EQ

[
∫

E0

|gσ(v) − 〈gσ〉µ0 |2 µ0(dv)

]}1/2

(3.8)

with C1 = 2 sup ‖B‖H exp(sup |V|).
Now we apply the Poincaré inequality for Wiener measure. Let Ĥ be the Cameron–Martin

space Ĥ = {h ∈ W 1,2([0, 1];R) | h(0) = 0}, equipped with the Cameron–Martin norm ‖h‖Ĥ ,

‖ḣ‖H , where ḣ stands for the weak derivative of h. For a function g on E0 having the form
g(v) = g†(〈v, h1〉H , . . . , 〈v, hM 〉H) for some M ≥ 1, g† ∈ C1

0 (R
M ) and hi ∈ H , recall its

Ĥ-derivative DĤg ∈ Ĥ is

DĤg(v) =

M
∑

i=1

[

∂ig
†(〈v, h1〉H , . . . , 〈v, hN 〉H)

∫ ·

0

ĥi(x)dx

]

, ∀v ∈ E0,

where ĥi =
∫ 1

·
hi(x)dx ∈ Ĥ . The Poincaré inequality for Wiener measure (see, e.g., [2, p. 226,

Theorem 5.5.1]) yields that

∫

E0

|g(v)− 〈g〉µ0 |2µ0(dv) ≤
∫

E0

‖DĤg(v)‖2Ĥµ0(dv). (3.9)
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To continue, write ~vh = (〈v, h1〉H , . . . , 〈v, hM 〉H) for shot. Observe that from the explicit
formula for DĤg(v) and Cauchy–Schwarz inequality,

‖DĤg(v)‖2Ĥ =

∫ 1

0

[

M
∑

i=1

∂ig
†(~vh)

∫ 1

y

hi(x)dx

]2

dy

≤
∫ 1

0

(1 − y)

∫ 1

y

[

M
∑

i=1

∂ig
†(~vh)hi(x)

]2

dxdy

≤
∫ 1

0

[

M
∑

i=1

∂ig
†(~vh)hi(x)

]2

dx = ‖Dg(v)‖2H .

Hence in the right-hand side of (3.9), we can substitute ‖DĤg(v)‖2Ĥ with ‖Dg(v)‖2H . As

g ∈ E(Ξ), by applying (3.9) to gσ in (3.8) we conclude that

〈−Kaf ,g〉π ≤ C1‖f‖1‖g‖1,

and the sector condition then follows.

Proposition 3.3. For every test function ϕ ∈ C2[0, 1] which satisfies that ϕ′(0) = 0, ϕ′(1) = 0,
we have Uϕ defined by (3.4) belongs to H−1.

Proof. In view of (3.2), we only need to show that there exists some finite constant C such that
〈Uϕ,g〉π ≤ C‖g‖1 holds for all g ∈ E(Ξ). Taking f(v) = 〈v, ϕ〉H in (A4), we obtain that for
Q-almost all σ,

Eµ0

[

e−2V (σ,v)〈B(σ, v), ϕ〉H
]

= 0. (3.10)

Pick g ∈ E(Ξ) and (3.10) implies that

Eπ[〈B, ϕ〉H · g] = 1

Z
EQ

[
∫

E0

e−2V (σ,v)〈B(σ, v), ϕ〉H (gσ(v)− 〈gσ〉)µ0(dv)

]

.

With the same argument as in the proof of Proposition 3.2, we obtain that

Eπ [〈B, ϕ〉H · g] ≤ C‖ϕ‖H‖g‖1. (3.11)

On the other hand, by the integral-by-part formula for Wiener measure (see, e.g., [2, p. 208,
Proposition 5.1.6]) it is easy to get

Eπ[(Uϕ − 〈B, ϕ〉H) · g] = 1

2
Eπ[〈ϕ,Dg〉H ] ≤ ‖ϕ‖H‖g‖1. (3.12)

Combining (3.11) and (3.12), we get the desired estimate.

We are at the position to prove Theorem 1.1. We first prove the weak convergence of
〈uσ(t), ϕ〉H/

√
t for fixed ϕ. For λ > 0, consider the resolvent equation:

λfλ,ϕ −Kfλ,ϕ = Uϕ. (3.13)

Define the Dynkin’s martingale corresponding to fλ,ϕ ∈ dom(K) as

Mλ,ϕ(t) = fλ,ϕ(ξt)− fλ,ϕ(ξ0)−
∫ t

0

Kfλ,ϕ(ξr)dr.
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Mλ,ϕ(t) is a square integrable martingale. Due to the arguments in [8, Theorem 2.14, Sects.
2.7, 9.5], with Proposition 3.2 we can obtain that

lim
λ↓0

Eπ

[

sup
0≤t≤T

∣

∣

∣

∣

Mλ,ϕ(t)−
∫ t

0

〈Dfϕ(ξr), dWr〉H
∣

∣

∣

∣

2
]

= 0, ∀T > 0, (3.14)

where fϕ = H1- limλ↓0 fλ,ϕ. Furthermore, by [8, p. 51, Lemma 2.10],

lim
t→∞

lim
λ↓0

Eπ

[

1

t

∣

∣

∣

∣

∫ t

0

Uϕ(ξr)dr −Mλ,ϕ(t)

∣

∣

∣

∣

2
]

= 0. (3.15)

Combining (3.3), (3.14) and (3.15) together, we get

lim
t→∞

Eπ

[

1

t

∣

∣

∣

∣

〈uσ,v(t), ϕ〉H −
∫ t

0

〈Dfϕ(ξr) + ϕ, dWr〉H
∣

∣

∣

∣

2
]

= 0.

Notice that π is ergodic, by central limit theorem for martingales (see, e.g., [8, p. 36, Theorem
2.1]), for all bounded continuous function f on R,

lim
t→∞

EQ

∣

∣

∣

∣

EP

[

f

( 〈u(t), ϕ〉H√
t

)]

−
∫

R

f(y)Φa(ϕ)(y)dy

∣

∣

∣

∣

= 0, (3.16)

where Φa(ϕ) stands for the probability density function of Gaussian distribution with mean 0
and covariance a2(ϕ) = Eπ‖Dfϕ + ϕ‖2H .

Next, to prove (1.6), it suffices to verify that a(ϕ) = 0 for all ϕ orthogonal to the constant
function 1. Consider the function gϕ(ξ) , −〈vξ, ϕ〉H for such ϕ. Noting that gϕ is well
defined and solves the cell problem −Kgϕ = Uϕ, hence gϕ = fϕ in (3.14). Consequently,
a2(ϕ) = Eπ‖Dgϕ + ϕ‖2H = 0 and thus (1.6) holds with

a2 = a2(1) = lim
λ↓0

Eπ‖Dfλ,1 + 1‖2H , (3.17)

where fλ,1 is the solution to (3.13) when ϕ = 1.
We are left to show that a2 ∈ [C, 1] for some C > 0 depending only on V. To this end,

we introduce two scalar products for H-valued functions on Ξ (cf. [8, Sect. 2.2]). Consider F ,
G : Ξ → H . Let 〈〈F,G〉〉π = Eπ[〈F,G〉H ], and

〈〈F,G〉〉 = EQ

[
∫

Ξ

〈

F (τ[v(·)]σ), G(τ[v(·)]σ)
〉

H
µ0(dvξ)

]

.

Furthermore, define the norm |||F |||2 = 〈〈F, F 〉〉 and denote by L2(Ξ, H) the Hilbert space con-
sisting of all functions with finite ||| · ||| norm, equipped with the inner product 〈〈·, ·〉〉. Define
||| · |||π and L2

π(Ξ, H) from 〈〈·, ·〉〉π similarly.
From (3.13) we know 〈λfλ,ϕ −Kfλ,ϕ −Uϕ, fλ,ϕ〉π = 0, which implies that

λ‖fλ,ϕ‖2π +
1

2
|||Dfλ,ϕ|||2π +

1

2
〈〈ϕ,Dfλ,ϕ〉〉π = 0.

Let λ ↓ 0, we have 〈〈Dfϕ + ϕ,Dfϕ〉〉π = 0, so that Dfϕ + ϕ and −Dfϕ are orthogonal to each
other in L2

π(Ξ, H). Taking ϕ = 1, it easily follows from the orthogonality that

a2 = Eπ‖Dfϕ + ϕ‖2H ≤ Eπ‖Dfϕ + ϕ−Dfϕ‖2H = 1.

On the other hand, since Q is {τc}-invariant, for all f ∈ E(Ξ) we have

〈〈1,Df〉〉 =
∫

Σ

∫

E0

[

d

dc
f τcσ(v)

∣

∣

∣

∣

c=0

]

µ0(dv)Q(dσ) = 0.
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Since E(Ξ) is dense in H1, 1 is orthogonal to the subspace Hg , {Df ; f ∈ H1} under the inner
product 〈〈·, ·〉〉. Therefore, with C = Z−1 · exp(−2 sup |V|) we have

a2 ≥ min
f∈H1

|||Df + 1|||2π ≥ C min
f∈H1

|||Df + 1|||2 = C.

The proof of Theorem 1.1 is then completed.

Remark 3.4. In the symmetric case B = 0, we can prove the following variational formula (cf.
[8, p. 335, Theorem 10.5]) for the limiting variance a2(ϕ):

a2(ϕ) = min
f∈H1

|||Df + ϕ|||2π . (3.18)

Indeed, let B = 0 and write (3.13) in the weak form for g ∈ E(H),

λ〈fλ,ϕ,g〉π +
1

2
〈〈Dfλ,ϕ + ϕ,Dg〉〉π = 0.

Let λ ↓ 0, we conclude that Dfϕ + ϕ is orthogonal to Hg under the inner product 〈〈·, ·〉〉π .
Hence, (3.18) is clear because that Dfλ ∈ Hg. In summary, the non-gradient term in (1.1’)
always enhances the fluctuation of the solution.
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