
Doctoral Thesis

Orchestration Strategies for Regression

Testing of Evolving Software Systems

PhD Program in Computer Science: 34th cycle

Author:

Renan Domingos

Merlin Greca

renan.greca@gssi.it

Supervisors:

Prof. Antonia Bertolino

antonia.bertolino@isti.cnr.it

Prof. Breno Miranda bafm@cin.ufpe.br

Internal advisor:

Dr. Ludovico Iovino

ludovico.iovino@gssi.it

May 2023

GSSI Gran Sasso Science Institute

Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

mailto:renan.greca@gssi.it
mailto:antonia.bertolino@isti.cnr.it
mailto:bafm@cin.ufpe.br
mailto:ludovico.iovino@gssi.it
http://www.gssi.infn.it
https://goo.gl/maps/9Cj77




“There are many potentially valuable academic insights that just wither and die on the

vine because they aren’t pushed far enough to entice corporations or policy makers to adopt

them. This intermediary step is time consuming, it’s tedious, it’s maybe expensive, and

it’s really not rewarded enough in academics.”

Steven Levitt



Abstract

Context: Software is an important part of modern life, and in most cases, it provides

tremendous benefits to society. Unfortunately, software is highly susceptible to faults.

Faults are often harmless, but even small errors can cause massive damage depending on

the context. Thus, it is crucial for software developers to adopt testing techniques that can

help locate faults and guarantee the functionality of both individual components and the

system as a whole. Today, there is a trend towards continuously evolving software, in which

it is desired that changes such as new features and corrections are delivered to end users

as quickly as possible. To ensure correct behavior upon release, development teams rely

on regression testing suites, which serve to validate previously-correct features and, when

well-designed, avoid the propagation of faults to end users. However, the desire for velocity

that comes with continuously evolving software places an additional burden on regression

testing practices, as running complete test suites can be a costly process in large-scale

software. This challenge has generated a need for novel regression testing techniques, a

topic which now enjoys a robust literature within software engineering research. However,

there is limited evidence of this research finding its way into practical usage by the software

development community; in other words, there is a disconnect between academia and

industry on the subject of software testing techniques.

Objective: To improve applicability of regression testing research, we must identify

what are the main causes of this apparent gap between software engineering academics

and practitioners. This is a multifaceted goal, involving an investigation of the literature

and of the state of practice. A related goal is to provide examples of test suite orches-

tration strategies that draw from academic advancements and could provide benefits if

implemented on real software.

Method: This thesis tackles the aforementioned challenge from multiple directions. It

includes a comprehensive systematic literature review covering research published between

2016 and 2022, focusing on papers that bring techniques and discussions that are rele-

vant to the applicability of regression testing research. Along with data extracted from

the papers themselves, this discussion of the existing literature includes information re-

ceived directly from authors through a questionnaire, as well as a survey performed with

practitioners, seeking to validate some of the reported findings.

Test suite orchestration strategies can be a step towards bridging the so-called industry-

academia knowledge gap. To that end we propose a combined approach for regression



testing, including techniques extracted from the literature that have promising qualities.

This approach is an initial experiment with full test suite orchestration and extended

approaches are also discussed.

To get a closer understanding of the state of regression testing in a practical sense, a series

of interviews were conducted in collaboration with a large technology company. During

a seven-week process, we were able to interact with the team and learn the test practices

performed on a daily basis and have some insight on the long-term test strategies for

the company. The responses of the interviews are reported, edited for readability and

confidentiality reasons, and these results are discussed within the larger context of the

study.

The results from the above components of the studies are then aggregated into two notable

outputs. First, a live repository of literature is made available online, containing the

current results of the literature review and with the opportunity of expansion as more

research is performed in this topic. Then, we provide a list of the most notable challenges

for the implementation of regression testing techniques in practice, that were identified

during the development of this entire study.

Results: This thesis provides the following contributions: a comprehensive literature re-

view of applicable regression testing research; additional context on the literature provided

by the authors of cited papers; a preliminary test suite orchestration strategy combining

robust techniques from the literature; interviews with practitioners at a major technology

company that highlight the challenges faced daily by developers and testers; a live repos-

itory of papers to aggregate relevant literature in one online location; a list of challenges

that can serve as guidelines for researchers or even as research directions in their own

right.

Conclusion: There is still much work to be done by the software engineering research

and development communities in order to completely close the gap that exists between

them. To a great extent, the motivations of researchers and practitioners are not aligned

— while in academia, proposing theoretically sound novel approaches is encouraged to

obtain publications, in industry there is a need for techniques that are proven to reduce

effort and/or costs. This can only be solved by close collaboration between the two

sides, yet a question of who is willing to fund these experiments remain. The data and

discussions provided in this thesis show that, although difficult, this is not an impossible

problem to solve and there are certain clear steps that can be taken by researchers and

practitioners alike to begin addressing it.





In memory of Prof. Dr. Luiz Felipe Paula Soares
and Prof. Dr. Francisco de Paula Soares Filho

vii





Acknowledgements

I am incredibly grateful for the guidance and orientation provided by my advisors, profes-

sors Antonia Bertolino, Breno Miranda and Ludovico Iovino. I would also like to thank

GSSI professors Luca Aceto and Michele Flammini, who have been supportive in times

of need since my early days at the institute.

Thanks to Milos Gligoric, from University of Texas at Austin, who provided significant

contributions to the discussions and results presented in Chapter 4. I also thank Sigrid

Eldh, from Mälardens Universitet, who arranged the collaboration that allows the discus-

sion present in Chapter 5. I am also grateful to the people at the industrial partner, who

received me with grace and gave me the opportunity of interacting with their team, but

who shall remain anonymous due to confidentiality concerns. If you are reading this, you

know who you are.

Thanks to my parents, Lizmari and Edison Greca, and my grandparents, Glacial and

Aquiles Merlin, who gave me the foundational values and education that have guided

me through life until this point. Additionally, I would like to remember my grandparents

Berenice and Eros Greca, who I wish could be here to share their part in this achievement,

and my uncles Felipe and Chico, who encouraged me to explore the world.

Thanks to my colleagues Debashmita Poddar, Konstantin Prokopchik and Alex Coto for

the companionship throughout the PhD and the many board game nights that kept us

sane during the lockdowns.

I would also like to thank professors Luiz Albini and Eduardo Todt from UFPR, for the

education I received before coming to Italy and for the warm welcome I received when

visiting my alma mater.

Thanks to Marco Rotilio, whose music lessons were an outlet of creativity.

Finally, I would like to acknowledge and thank my friends: André Ramos, Arthur Alves,

Arthur Pieri, Cainã Trevisan, Dácio Augusto, Darren Kerwin, Douglas Novelli, Eric

Bunese, Felipe de Lara, Felipe Gugelmin, Gustavo Henrique, Janderson Oliveira, Lu-

cas Knopki, Luiz Roveran, and Pedro Vicente. Even thousands of kilometers away, you

are all special to me.

ix





Contents

Abstract iv

Acknowledgements ix

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1

1.1 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 7

2.1 Regression Testing of Evolving Software Systems . . . . . . . . . . . . . . 8

2.2 Test Suite Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Test Case Prioritization . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Test Case Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Test Case Reduction and Minimization . . . . . . . . . . . . . . . 14

2.2.4 Test Case Amplification and Augmentation . . . . . . . . . . . . . 15

3 Literature Review 17

3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Planning and Design of the Review . . . . . . . . . . . . . . . . . . 23

3.3.2 Executing the Review . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Questionnaire with Authors . . . . . . . . . . . . . . . . . . . . . . 34

3.3.5 Survey with Practitioners . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.6 Replicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 RQ3.1: Common Approaches and Metrics in RT research . . . . . 37

3.4.2 RQ3.2: Applicability Concerns in Regression Testing Research . . 42

3.4.3 RQ3.3: Evidences of Real-world Application of Regression Testing
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Contents xii

4 Test Suite Orchestration 53

4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Ekstazi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Fastazi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Experiment Design and Execution . . . . . . . . . . . . . . . . . . 62

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 RQ4.1: Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 RQ4.2: Effectiveness Under a Limited Budget . . . . . . . . . . . . 68

4.5.3 RQ4.3: Efficiency Comparison . . . . . . . . . . . . . . . . . . . . 71

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Existing Examples of Test Suite Orchestration . . . . . . . . . . . 74

4.6.2 Future Directions for Test Suite Orchestration . . . . . . . . . . . 75

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Insights from Industry 79

5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Overview of Testing at the industrial partner . . . . . . . . . . . . . . . . 81

5.2.1 Overview of the system . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Roles and Experience . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Current Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Common Issues With Regression Testing . . . . . . . . . . . . . . 86

5.3.4 Collaboration with Academia . . . . . . . . . . . . . . . . . . . . . 90

5.3.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 RQ5.1: Common Issues . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 RQ5.2: Challenges of Incorporation . . . . . . . . . . . . . . . . . 96

5.4.3 RQ5.3: Paths to Improve Collaboration . . . . . . . . . . . . . . . 98

5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Challenges Between Industry and Academia 101

6.1 List of Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 CH1: Alignment of Motivations . . . . . . . . . . . . . . . . . . . . 102

6.1.2 CH2: Realistic Experimentation . . . . . . . . . . . . . . . . . . . 103

6.1.3 CH3: Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.4 CH4: Relevance of Metrics . . . . . . . . . . . . . . . . . . . . . . 105

6.1.5 CH5: Converting Research into Usable Tools . . . . . . . . . . . . 106

6.1.6 CH6: Absence of TSR/TSA . . . . . . . . . . . . . . . . . . . . . . 107

6.1.7 CH7: Clarity of Target . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.8 CH8: Skepticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.9 CH9: Data Quality and Availability . . . . . . . . . . . . . . . . . 109

6.1.10 CH10: Communication . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Contents xiii

7 Live Repository 111

7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Longevity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Conclusion 115

8.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Surveys 119

A.1 E-mail Template Sent to Authors of Surveyed Papers . . . . . . . . . . . . 120

A.2 Questionnaire Sent to Practitioners During Literature Review . . . . . . . 121

A.3 Questions for Practitioners at the Industrial Partner . . . . . . . . . . . . 124

Bibliography 125





List of Figures

3.1 Diagram of the literature review process. . . . . . . . . . . . . . . . . . . . 32

3.2 Distribution of information approaches. . . . . . . . . . . . . . . . . . . . 37

3.3 Distribution of algorithm approaches. . . . . . . . . . . . . . . . . . . . . 37

3.4 Distribution of effectiveness metrics. . . . . . . . . . . . . . . . . . . . . . 39

3.5 Distribution of (a) efficiency and (b) other metrics. . . . . . . . . . . . . . 39

3.6 Distribution of the targeted programming languages. . . . . . . . . . . . . 45

3.7 Quantitative analysis of the satisfied criteria. . . . . . . . . . . . . . . . . 46

3.8 Mapping of approaches and techniques that have seen practical application
on at least 2 papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Sample outputs of Ekstazi, FAST and Fastazi . . . . . . . . . . . . . . . 59

4.2 Normalized TTFF of different approaches . . . . . . . . . . . . . . . . . . 65

4.3 APFD of different approaches. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Impact on failure detection capability in a budget-constrained scenario. . 69

4.5 Impact on failure detection capability grouped by subject and by budget. 70

4.6 Diagram showing an example of a fully orchestrated approach to the test
suite execution and evolution. . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Screenshots from the live repository. From left to right: 1) the main page
listing the included papers; and 2) a single paper’s page (S1 used as exam-
ple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv





List of Tables

3.1 Overview of existing secondary studies on RT. . . . . . . . . . . . . . . . . 19

3.2 Number of results for each search engine . . . . . . . . . . . . . . . . . . . 26

3.3 Selected papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Data extraction form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Information- and Algorithm-based Approaches . . . . . . . . . . . . . . . 38

3.6 Effectiveness, Efficiency and Other Metrics . . . . . . . . . . . . . . . . . 40

3.7 Relevance properties found in the papers. . . . . . . . . . . . . . . . . . . 42

4.1 Subjects Used in the Evaluation. . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 TTFF and APFD for the different approaches. . . . . . . . . . . . . . . . 66

4.3 Effect size per subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Average Running Times (in ms). . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Time Efficiency Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Team members interviewed for this study. . . . . . . . . . . . . . . . . . . 83

6.1 Summary of main challenges identified by this study. . . . . . . . . . . . . 102

A.1 Questionnaire for practitioners, Section 1. . . . . . . . . . . . . . . . . . . 121

A.2 Questionnaire for practitioners, Section 2. . . . . . . . . . . . . . . . . . . 122

A.3 Questionnaire for practitioners, Section 3. . . . . . . . . . . . . . . . . . . 122

A.4 Questionnaire for practitioners, Section 4. . . . . . . . . . . . . . . . . . . 122

A.5 Questionnaire for practitioners, Section 5. . . . . . . . . . . . . . . . . . . 123

A.6 List of questions asked during interviews. . . . . . . . . . . . . . . . . . . 124

xvii





Abbreviations

APFD: Average Percentage of Faults Detected

CI/CD: Continuous Integration/Continuous Delivery (or Deployment)

FAD: Functional Area Domain

FOSS: Free and Open-Source Software

IR&A: Industrial Relevance and Applicability

LIRT: Long Interval Regression Test(ing)

MCT: Multi-Component Test(ing)

RT: Regression Testing

SIRT: Short Interval Regression Test(ing)

SLR: Systematic Literature Review

SUT: System Under Test

TCP: Test Case Prioritization

TCS: Test Case Selection

TSA: Test Suite Amplification or Augmentation

TSR: Test Suite Reduction

TR: Trouble Report

XFT: X (Cross) Functional Team

xix





Chapter 1

Introduction

Software has become an ubiquitous part of every-day life, be it in computers, smartphones,

vehicles, or other devices. Well-functioning software can be a major asset for most people,

helping to reduce operational costs, reduce time spent on tasks, and even save lives.

However, it is already in the common sense that software is not always perfect, and, from

time to time, it may behave incorrectly or unexpectedly.

A recent and devastating example is the Boeing 737 Max, an aircraft that was involved

in two fatal crashes in 2018 and 2019, and had to be grounded for months, due to what

was likely a software fault [81]. Needless to say, this software fault caused the tragic loss

of many lives, as well as billions of dollars of expenses to Boeing, airlines, airports and

passengers.

Despite this example, encountering bugs is an almost universal experience to people who

interact with software. Most bugs are not harmful or fatal, appearing frequently as incon-

veniences that may bother users, or perhaps incurring additional costs to a company that

relies on the software. From an industry perspective, these bugs are costly — fixing soft-

ware defects is always more expensive after release and, in critical infrastructure systems,

costly steps such as hardware redundancy must be employed to ensure uninterrupted

service if the software is not deemed to be 100% reliable.

As such, it is important for companies and communities developing software to utilize

methods to mitigate the possibility that faulty software will reach production. Today,

most commercial and open-source software products are accompanied by a test suite, a

series of automated tests that are used to provide a level of certainty that parts of a

1



Introduction 2

software, both in isolation and in conjunction, correctly perform the tasks to which they

are assigned. One widely-adopted software testing technique is called regression testing

(RT); its primary role is to execute the test suite with a certain frequency, in order to

guarantee that recently introduced changes to the software do not affect previously-correct

behavior. However, in large-scale software development (that is, with multiple developers

and a large codebase), it is usually unfeasible to execute every test after every change,

either because changes are too frequent, or because there are too many tests, or both. This

is aggravated by the fact that most software is now developed in a continuous manner,

meaning software that is developed in an iterative and cyclical process, resulting in a short

turnaround time between the design of a requirement, the development of a feature, and

the delivery of an update to customers.

Although RT is an active research topic, the research community’s efforts over the years

to mitigate RT cost and complexity do not seem to have produced the desired impact.

A 2010 study [38] aiming at understanding RT practice already highlighted several diver-

gences between software testing research and practice, notwithstanding in 2017 Garousi

and Felderer [46] still called them as “worlds apart”. Indeed, in a recent systematic re-

view of the RT literature aiming at identifying approaches with industrial relevance and

applicability (henceforth referred to as IR&A), Ali et al. [4] could only select 38 primary

studies out of an initial pool of 1068 collected works. In other words, their study would

imply that less than 4% of the published works on RT could be of interest to industry.

This difficulty of bringing theoretically-sound approaches into real-world use by develop-

ers is a major challenge in software testing research. There are many reasons why this

happens; for example, many academic works on the topic aim for highly-precise tech-

niques that, when applied in practice, are too slow to be useful or unrealistically require

resources that are not easily available, e.g. an extensive log of test execution history. On

the other hand, many practitioners already apply coarse-grained techniques that provide

some reduction in costs, but that could do much better with further research and experi-

ments, although companies are reluctant to spend time and money on improving a testing

workflow instead of delivering new features. In other words, there is a potential mismatch

in motivations of researchers and practitioners who work with software testing, causing

the so-called industry-academia knowledge/technology transfer gap.

This thesis brings forth a discussion on this apparent gap, extracting information from



Introduction 3

a comprehensive literature review in combination with in person interviews at a major

technology company. With this, we aim to expose ongoing challenges that prevent most

software testing research from seeing real-world use and provide directions for future

researchers to act upon. In addition, as a proof-of-concept approach, we introduce or-

chestration strategies for regression testing, with the objective of managing multiple RT

techniques, such as test case prioritization (TCP), test case selection (TCS), test suite

reduction (TSR) and test suite amplification(TSA).

Many approaches for RT techniques have already been proposed in the literature [132, 76,

62, 87]. Our research goal here is not that of inventing yet another approach, but rather

to understand if and how TCS, TCP, TSR and TSA should be used in combination, i.e.:

when a new software version is released, is it more convenient to apply a TCS approach or

instead a TCP one? Intuitively, a combination of all techniques would provide the most

benefit, but this could result in additional challenges and drawbacks. Notwithstanding the

vast literature on regression testing, such type of questions remain largely unanswered.

1.1 Document structure

The following paragraphs provide a summary of the remainder of this document.

As a background, Chapter 2 provides a detailed description of the challenges involved

with regression testing and continuously evolving software systems. It also introduces

the concept of test suite orchestration and the techniques that can be components of

an overarching test strategy. Finally, it describes the four groups of techniques that are

delineated as the scope for this thesis: test case prioritization (TCP), test case selection

(TCS), test suite reduction (TSR) and test suite amplification (TSA).

Then, Chapter 3 is a comprehensive systematic literature review covering advances in

regression testing research between the years 2016 and 2022. The focus is to identify

papers that propose techniques that are either validated in practical experiments, or are

promising candidates for real-world use. In this process, we have identified 79 papers

covering the four aforementioned groups of regression testing techniques. To obtain an

updated understanding of the research beyond what is included directly in the papers, we

contacted the authors directly, asking them about the long-term impact of their research



Introduction 4

after publication. Furthermore, we also contacted a number of industry practitioners to

better understand their relationship with the ongoing research in the field.

A proof-of-concept test suite orchestration strategy is introduced in Chapter 4, combining

two previously existing techniques from literature and drawing conclusions regarding the

effectiveness and efficiency of the combined approach versus the individual techniques.

This work is left open to extension with probable paths highlighted in the chapter.

During a seven-week period, an investigation was conducted in partnership with a large

technology company; the results of which can be found in Chapter 5. The primary

objective of this period was to understand how testing is done at the company and identify

the testing issues that most commonly affect the practitioners. A series of interviews were

conducted with team members involved with the testing process, from which it is possible

to determine the positives of their current process, the points that could be improved

with new techniques, and potential avenues for closer collaboration with academic work.

Certain parts of the extracted information are under a non-disclosure agreement, thus

here we present as much as possible without infringing this contract.

Combining data and findings from the preceding chapters, Chapter 6 provides a list of

ongoing challenges for the real-world relevance of software testing research. Some of

these were brought up by authors; others emerged during the interviews at the industrial

partner; others still are based on our own observations of the information we collected

and analyzed during the development of this work. This chapter is designed to be a set

of suggestions for researchers to keep in mind while developing their next work, as well as

as potential research directions in their own right.

To provide a long-term usefulness to this work, we introduce an online live repository of

research in Chapter 7. This is based primarily on the findings of Chapter 3, developed

into an interactive website that will be systematically updated over the years, as long as

the related research questions remain relevant. The goal is to provide a destination to

researchers in the field of regression testing to easily gather a bibliography of research

that has proven applicability or potential for it. Practitioners interested in adopting new

techniques on their projects can also look for studies that are related to the challenges they

face, opening up an avenue for contact and collaboration. Authors of the cited papers

and engaged readers are encouraged to contribute to the repository, either by adding



Introduction 5

additional details about the included papers or by suggesting additional papers that fit

the topic and criteria.

Finally, Chapter 8 provides a summary and final thoughts on the results of this research.

It also acknowledges the threats to validity of the preceding chapters and, finally, lists the

papers that have been developed during the PhD period.

In summary, the contributions of this research are as follows:

• A comprehensive literature review highlighting research with a high degree of ap-

plicability between the years 2016-2022 [52].

• Follow-up information from the authors of the cited papers, detailing their long-term

impact and the challenges that prevent implementation of a technique.

• A proof-of-concept for test suite orchestration, combining existing robust research

and drawing paths for future expansion [53].

• A series of interviews with practitioners at a major technology company, presenting

an overview of how testing is performed there and what are the issues faced by the

team that could be alleviated by software testing research.

• A list of challenges gathered from the preceding work, which can help future re-

searchers address barriers to applicability and should help research turn into prac-

tice.

• A live repository of papers extracted from the literature review, which will serve as a

starting point for researchers and practitioners seeking to develop new and practical

regression testing techniques.





Chapter 2

Background

Some core concepts form the basis of the discussion found in this thesis. In particular,

the focus is on regression testing (RT) techniques for continuously evolving software.

Collectively, we view RT techniques as parts of an overarching test suite orchestration

strategy. This chapter provides a brief introduction to these concepts, including additional

details on the specific RT challenges that are tackled in this research.

First of all, it is important to clarify the definitions of two sets of terms that are related,

but offer distinct nuance to the discussion of software testing techniques.

Failure, fault and error: these terms are widely used throughout this thesis. While

they may seem interchangeable, there are key distinctions that must be highlighted, as

defined by the IEEE standard 1044-2009 [66]. A failure occurs when a system produces

an incorrect or unexpected outcome, leading to a failing test case — without further

investigation, the cause of the failure might be unknown. A fault is a specific part of the

software that is incorrect; e.g. a logical or semantical issue in the source code that, when

executed, will produce a failure. Finally, an error is the human action that leads to a

fault, such as having written incorrect code, or misinterpreted the system requirements.

Terms like anomaly, defect or bug can be used when referring generally to unexpected

software behavior.

Efficacy, effectiveness and efficiency: these “three Es” are commonly used words

when describing the results of a technique or experiment. Here, we follow dictionary

7



Background 8

definitions closely [31]. Given a certain task and one or more techniques designed to

accomplish it, efficacy is a binary assessment of whether a technique accomplishes the

desired task at all; effectiveness provides a more nuanced description of how well the task

is accomplished, and can be used to compare multiple alternatives; and efficiency is a

quality related to the time, cost and/or effort spent to accomplish the task.

2.1 Regression Testing of Evolving Software Systems

In the early stages of commercial software development, computer programs were de-

signed, produced and distributed mostly like physical retail goods. That is, there was an

initial planning and design phase, followed by an extensive development period and, on a

certain deadline, the software would be shipped embedded with hardware, or pressed onto

disquettes or CDs that could be mailed to customers or made available in store shelves.

The advent of the Internet made it possible to completely alter this paradigm. Now,

these three phases still exist in commercial software, but happen much faster and can be

repeated iteratively as needed. In other words, software companies can initially design

and develop the “minimum viable product” to be delivered to customers online and, with

the software already in use, updates can be develop to add new features, improve existing

ones, or correct bugs that can be detected1.

We denote software developed and released as ever-evolving products as continuously

evolving software. The concept of evolving software was introduced in the 1970s by

Lehman [77], although it was in the 1990s that the term and paradigm gained widespread

use, due to the accelerated delivery methods becoming available [97]. It can also hap-

pen that programs that were originally designed according to the traditional release cycle

are, at some point, adapted and converted to be continuously evolving (e.g. Microsoft

Windows shifted from yearly “service packs” to weekly online updates).

The shift to evolving software, which correlates to the pivot to agile development practices

in the mid-2000s, also caused a significant change to how software testing is viewed and

addressed. Previously, it was common to see testing as its own stage of development;

certain teams had members solely responsible for testing the source code, which was

1This is not the same for all types of software; for example, embedded systems cannot always rely
on the ability of online updates; meanwhile video games generally deliver complete products on a given
deadline to account for distribution and marketing schedules, often followed by an extensive post-release
update cycle which resembles the evolving software paradigm.



Background 9

usually a manual process. Nowadays, it is common practice for developers to write and

test their own code, and have an active role in the maintenance of the regression testing

suite, a practice encouraged by the agile method [89]. This has the advantage of speeding

up the testing process, although as a drawback it can cause testing to be seen as a “second-

class citizen” by developers, who would rather create new features than test existing ones.

Regression testing is the part of software testing concerned with testing previously existing

components of a system to guarantee that recent changes in the codebase did not affect

the originally specified functionality of components. This process is one of the costliest

aspects of software development [121], as it should ideally be performed every time a code

change is committed, and involves much repetition of previously performed tests. It is

defined in [98] as “an activity which makes sure that everything is working correctly after

changes to the system.” That is, its primary objective is to assure that, after each change

to the software, previously existing code continues to comply to specification (or simply

to expectations, in case no formal specification exists).

The term regression testing (RT) has its origins in pre-agile days and, as a research topic,

has been studied since the 1980s [80, 148]. At the time, release schedules were centered

around a hard deadline, so RT was an activity that was only performed near the end of

the cycle, after the important features of the release had already been developed. At that

point, testers would check if any of the new changes interfered with previous functionality

of the software; in some places this was a manual process, in others semi-automated. Doing

so earlier was not advantageous — if a bug is detected in the middle of development but

new features are not yet complete, it is possible that another bug will be detected on

another round of testing. Since the software could only be shipped once all features were

done, intermediary regression testing provided little benefits.

Continuously evolving software shifted this dynamic. With smaller and more frequent

release cycles, regression testing too became a more frequent activity. At the same time,

the incredible feature speed demanded by customers and consumers means that it is not

viable to postpone testing until right before release — if a bug is detected at that point,

it might be too late to fix it before delivery. Thus, with the development of Continu-

ous Integration/Continuous Delivery (CI/CD) practices and tools, automated regression

testing became commonplace, sometimes executed as frequently as new code changes are

pushed into a repository.



Background 10

Test automation mostly solves the problem in small projects, where it takes only a few

seconds or maybe minutes to run a full test suite. Large-scale software demand additional

attention because of two factors: the test suite is large and takes a long time to execute,

and code commits arrive at such a high frequency that there is not enough time to run

the test suite between each commit. Often, a combination of both factors become a major

challenge in large-scale software development [95].

In order to maintain the health of the testing process and the availability of testing

equipment, the execution time of a suite should be less than the average time between

commits pushed by developers. In reality, this is difficult to achieve and maintain, as test

suites tend to increase in scale (according to the necessities of an ever-growing software)

and commit frequency remains stable or can even increase if new developers are added to

the team. The straightforward solution is to increase the computational power of testing

servers, so testing time reduces by brute force, although obviously this incurs additional

costs.

The concept of software size and scale is fundamental for the motivation of this research.

There are multiple ways of measuring software scale — it could refer to a large number of

lines of code (LOC); it can also mean high-complexity algorithms that run for a long time,

or software that needs to serve multiple users simultaneously. For this research, we are

considered primarily with the number of test cases that the program needs to be reliable.

Thus, other aspects of software scalability go beyond the scope of this thesis and, here,

the term “scalability” itself refers primarily to the ability of managing an ever-growing

number of test cases.

That said, in this work, we are interested in “industrial-scale evolving software”. Under-

stand “industrial-scale” as a general term for large-scale software in the real world. In

practice, it can mean several different kinds of software, such as software developed as

the primary product of a corporation (in the technology industry), software that provides

essential features to other products (such as in the automotive or telecommunication in-

dustries), or open-source software that is developed by a community instead of a team

within a company.

It is also noteworthy that software can exist in a multitude of contexts — e.g. embedded

software, distributed systems, web or mobile applications, cloud-based solutions, and so

forth. Each context is associated with unique challenges that inevitably alter how they are



Background 11

designed. For the most part, this thesis explores testing strategies that can be generalized

into most contexts, as long as the software is continuously evolving in nature, although

the ultimate implementation of these strategies might require adjustments.

2.2 Test Suite Orchestration

Given the challenges associated with ever-expanding regression testing suites of continu-

ously evolving software, we define test suite orchestration as the art of generating, choos-

ing, prioritizing and executing tests in order to maximize the effectiveness of testing while

keeping costs within a desired budget. Today, research on test orchestration is quite

granular, with individual researchers mostly focusing on specific challenges within this

topic. While this is important for the continuity and advancement of research, it fails in

addressing the practical concerns of software developers, who desire a complete solution

to aid the development cycle.

Features such as test case generation, test case prioritization, handling of flaky tests,

mutation testing, test suite augmentation and others can be considered under the broader

scope of test orchestration. While improvements in each of these features can provide

substantial benefits, it is their combination that can produce the desired solution.

In general, test suite orchestration can be thought of as a broad challenge with the ulti-

mate goal of improving regression testing in multiple aspects, composed of several sub-

challenges, which are in turned addressed by groups of techniques. These sub-challenges

include, but are not limited, to the following:

• Test case selection (TCS): the challenge of determining a sub-set of tests that,

when executed, provides sufficiently high confidence that recent changes have not

introduced failures in the software, while substantially reducing the execution costs

[32, 69].

• Test case prioritization (TCP): the challenge of ordering tests to detect potential

faults as early as possible, prioritizing tests that are most likely to reveal faults or

that cover critical parts of the program [32, 84].



Background 12

• Test suite reduction or minimization (TSR): the challenge of reducing the

test suite by finding and possibly removing redundant tests [32, 117]. Unlike TCS,

which is change-aware, TSR can be used on a single version of a test suite.

• Test suite amplification or augmentation (TSA): the challenge of expanding

and improving an existing test suite through various different means. A survey on

test suite amplification is found in [29]; out of the categories presented, the synthesis

of new tests with respect to changes is the most relevant for a continuously-evolving

system.

• Handling of unreliable/flaky tests: a test that might pass or fail non-deter-

ministically without changes to the SUT is designated as unreliable or flaky. This

can happen due to poor test design, misconfiguration of the test suite or the testing

environment, or timing errors in asynchronous tasks. These tests make it difficult

for developers to identify true faults in the system and thus they should ideally be

detected and flagged as such.

Individually, each of these challenges can be its own field of research, and indeed many

works have been published on them. However, an ideal test orchestration solution should

consider all or most of these challenges in unison, as solving each one alone is not sufficient

to solve the problems faced by software developers in practice.

Due to the breadth of the orchestration challenge, for this thesis the decision was made

to restrict the scope and focus primarily on four aspects: test case prioritization, test

case selection, test suite reduction/minimization and test suite amplification/augmenta-

tion. Other topics remain tangential to the research and may occasionally be part of the

discussion, but are not the focus of this work. The following subsection offers definitions

for the four groups of techniques that this study focuses on. In Section 3.4.1, common

approaches and metrics for each group are described in more detail, according to data

extracted from the existing literature.

2.2.1 Test Case Prioritization

One challenge of regression testing is to detect failing tests fast. The objective of test case

prioritization (TCP) is to re-order test cases according to some definition of priority, in



Background 13

order to get faster feedback from the test execution [148]. Given an SUT M and its test

suite T , TCP can be described as a function P (M,T ) that provides a permutation of T ,

T ′ such that, given a metric function f , f(T ′) > f(T ). The optimal prioritization is one

where f(T ′) is greater than or equal to any other possible permutation of T .

Some criteria often used for TCP include: (1) similarity-based, which attempts to diver-

sify the execution of tests; (2) coverage-based, with the objective of maximizing block2

coverage with as few tests as possible; or (3) history-based, which prioritizes tests that

have a history of failing or revealing faults [70].

Common metrics include: (1) average percentage of faults detected (APFD), which esti-

mates how effective a prioritization is in detecting faults in fewer tests; (2) tests till first

fault (TTFF), a count of how many tests were executed until one failed; or (3) developer

feedback time, a measure of how long it takes for a developer to get a report if there is a

failing test in the suite.

TCP is particularly useful in situations where the test suite is exceptionally large and

detecting failures sooner allows for potential faults to be addressed quicker. It’s also

relevant in cases where the testing budget is limited but not consistent, so testing might

stop at any time and only tests that failed until then can be added to a report.

A prioritized test suite still contains all test cases, so there is no loss of failures detection

ability (assuming that test results are independent and the testing budget is sufficient) –

what changes is the amount of time that it takes for one or more failures to be detected.

2.2.2 Test Case Selection

In regression testing, not all tests are relevant to a particular code change: if only a small

part of one file was updated, it is unlikely that the entire project would be affected and

the full regression test suite would have to be run. Test case selection (TCS)3 addresses

the challenge of selecting a subset of tests that is representative of the entire suite in a

given situation [148, 122]. In other words, given subsequent versions of an SUT, M and

M ′ and its test suite T , TCS can be described as a function S(M,M ′, T ) that selects a

subset T ′ ⊆ T to be used for testing M ′, considering the differences between M and M ′.

2A block of the SUT can be one line of code, a branch, a function, etc. according to system design and
other necessities.

3Also referred to as Regression Test Selection (RTS) in the literature.



Background 14

We say that a TCS technique is safe if it guarantees that all tests whose outcome may

be affected by a change are included in the selected subset [122]. That is, safe selection

techniques output a subset T ′ while maintaining the output of a fault detection metric

function f(T ′) ≥ f(T ).

Examples of approaches for TCS are: (1) change-based, which executes tests that have

some relation to modified files, classes, or methods; (2) model-based, which uses data

extracted from models of the SUT to determine test execution; or (3) graph-based, which

uses a graph representation of the SUT to detect control flow and select relevant tests [69].

Some metrics for TCS are: (1) selection count or percentage, which measures how many

tests were executed in comparison to the original suite (e.g. |T ′| ≤ |T |); (2) testing time,

or the time taken to execute the selected subset of tests; and (3) fault detection capability,

used to determine the safeness of the proposed technique.

A potential drawback of TCS is that, depending on the size of the test suite and the

execution time of individual tests, it may happen that the time needed to produce the

subset T ′ is greater than the savings provided by executing T ′ instead of T .

2.2.3 Test Case Reduction and Minimization

Without considering subsequent versions of the SUT, test suite reduction (TSR) aims to

find a minimal subset of test cases such that the testing requirements are still met [148].

Thus, given an SUT M its test suite T that satisfies a set of requirements {r1, ..., rn}, we

describe TSR as a function R(M,T, r) which outputs a test suite T ′ ⊆ T such that each

ri is still satisfied.

There exists conceptual overlap between TCS and TSR, with the key differences being

change-awareness and the objective of the result. While TCS uses a comparison between

versions of the SUT and produces a set of tests meant to validate those changes, TSR

can be performed on an isolated iteration of a program and is meant to detect tests

that are no longer needed for full satisfaction of the requirements. TSR approaches are

often coverage-based or requirements-based and, as discussed in Section 3.4.1, evaluation

metrics for TCP and TSR are often shared, since both are concerned with running fewer

tests and reducing the overall testing time; however TSR must ensure that there is no

loss in fault detection capability in the long-term evolution of the suite.



Background 15

Regarding the terms reduction and minimization, both options are used nearly inter-

changeably in the literature. According to Yoo and Harman [148], the difference in termi-

nology is subtle: while both remove tests from the suite, minimization implies this change

is temporary, while reduction stands for permanent removal of tests. Generally speaking,

the same techniques can be applied for both ends so, from the perspective of researchers,

the two terms are not distinct.

2.2.4 Test Case Amplification and Augmentation

As a program evolves and grows in scope, so must its test suite keep up with the additional

features requirements. Today, this is mostly done manually by the development teams.

In some cases developers are responsible for testing their own code; in others, developers

test each other, or there can be designated testers whose job is to ensure other people’s

changes satisfy requirements and are error-free.

Unfortunately, tests do not add to the perceived value of a software product, since they

do not provide direct functionality to end users. Thus, in a lot of cases, developers are

encouraged to spend little time writing new tests or improving existing ones. As such,

an automated solution can prove to be valuable to both reduce the manual work done by

programmers and to improve the overall quality of new test cases. Test case amplification

(TSA) is the technique to achieve that goal.

Given an SUT M and its test suite T that partially satisfies a set of requirements

{r1, ..., rn}, TSA is described as a function A(M,T, r) outputting a test suite T ′ ⊇ T

that satisfies more ris than T . Much like TSR, coverage-based and requirements-based

approaches are common, although the objective is naturally to increase coverage rather

than maintain it. Metrics for measuring the output include the relative increase in cover-

age/requirements.

This problem is related to test suite generation (TSG) although, for the discussion of

regression testing, TSA is a more useful concept. The difference is that TSA increases

a pre-existing test suite, while TSG generates one from scratch using only the SUT as

input. Since the latter does not presume an ongoing and evolving regression test suite, it

was determined that it falls out of the scope of discussion of this thesis. That said, from



Background 16

a purely technical standpoint, both challenges are strongly related and, indeed, TSA is

sometimes referred to as incremental generation of test cases.

There is a nuanced distinction between the usage of amplification and augmentation,

and the two are sometimes conflated in the literature. Generally, amplification refers to

any improvement of the test suite, which may happen by adding new tests or enhancing

existing ones. On the other hand, augmentation implies the creation of new tests with-

out modifying previous ones. By this definition, test suite augmentation is a problem

embedded within test suite amplification, so for the purposes of this thesis, we refer as

amplification the combined challenge.



Chapter 3

Literature Review

This chapter provides a Systematic Literature Review (SLR) with the purpose of reviewing

the IR&A of RT approaches published in the latest years, i.e., since 2016. For the sake of

comprehensiveness, we characterize as having IR&A not only those studies that report an

evaluation on industrial applications (as was done by Ali et al. [4]), but also approaches

that are explicitly motivated by industrial problems, or by related concerns, such as costs,

scalability, or impact on the development procedures. Within this scope, we performed a

systematic search over the five main digital libraries (ACM, IEEE, Springer, Scopus and

Wiley) for RT studies mentioning industry or practice or applicability or scalability (or

similar wordings) in their abstract, and completed this search with a snowballing cycle.

We collected 1320 candidate papers published between 2016 and 2022 (780 via query, 540

via snowballing), and after applying a systematic selection process we identified a total

of 78 primary studies that present IR&A approaches.

However, we understand that there is not a direct mapping between motivation and

results, and approaches stemming from applicability concerns could end up with having

low significance. In order to get a better assessment of the long-term impact of the

papers after publication, we complemented our literature review with a survey sent to

the authors of all the selected studies, asking them about the outcome of their research

post-publication. We received responses from authors of 64% of the papers, reporting

both positive and negative outcomes, including some of the reasons why an approach was

unsuccessful. Some of the authors also signaled additional papers for consideration of the

review, out of which we selected only 1.

17



Literature Review 18

The review includes a total of 79 primary studies. Based on a full reading of the selected

papers and on the feedback received by their authors, we discuss the main characteristics

of IR&A approaches, how they tackle applicability concerns, and whether they produced

in impact in practice and why (or why not). We then also conducted a further survey

among test practitioners to get their opinion in order to comment and possibly validate

our conclusions. By applying a convenience sampling method we got answers from 23

practitioners who confirmed our findings and provided further useful insights in our study

of investigating IR&A of proposed RT approaches.

This chapter provides the following contributions:

• A systematic literature review of recent RT techniques emphasizing IR&A;

• A survey among the authors of the selected primary studies that provides informa-

tion about their impact;

• A survey among practitioners to validate and complement our findings.

The chapter is structured as follows: in the next section we overview related secondary

studies. The formulated Research Questions (RQs) are defined and described in Sec-

tion 3.2. In Section 3.3 we describe the study methodology, in particular the selection

and data extraction process and the surveys with authors and practitioners. Section 3.4

then provides discussions and answers to the RQs: in Section 3.4.1 we answer RQ3.1, by

overviewing and classifying existing techniques; in Section 3.4.2 we answer RQ3.2, which

addresses IR&A concerns; in Section 3.4.3 we answer RQ3.2, about the impact obtained

by the collected studies.

3.1 Related Works

The first recommended step before undertaking any new systematic review is to verify that

such a study is actually needed [72]. Indeed, in view of the large set of papers published

every year on RT techniques and related topics, it is natural that a good number of

secondary studies reviewing the regression testing literature has also been produced.

The already cited study by Ali et al. [4] has previously verified whether existing reviews

of literature regarding RT techniques took into consideration IR&A. After a systematic



Literature Review 19

Paper Year Techniques Nº Period Systematic? Context

Do [32] 2016 TCP, TCS, TSR 12 2010-2016
Hao et al. [56] 2016 TCP 27 2010-2016
Rosero et al. [120] 2016 TCP, TCS, TSR 25 2000-2014
Kazmi et al. [69] 2017 TCS 47 2007-2015 X
Bajaj and Sangwan [9] 2018 TCP, TCS, TSR 15 1999-2016 Nature-inspired
Khatibsyarbini et al. [70] 2018 TCP 80 1999-2016 X
Mukherjee and Patnaik
[101]

2018 TCP 90 2001-2018 X

Rehman Khan et al. [117] 2018 TSR 113 1993-2016 X
Bajaj and Sangwan [10] 2019 TCP 20 2006-2018 X Genetic
Ali et al. [4] 2019 TCP, TCS, TSR 38 2002-2017 Mix
Danglot et al. [29] 2019 TSA 491 1993-2017 X
Lou et al. [84] 2019 TCP 191 1997-2016 X
Hasnain et al. [60] 2020 TCP 65 2001-2017 X Web services
Prado Lima and Vergilio
[114]

2020 TCP 35 2009-2019 X Continuous integration

Abdul Manan et al. [2] 2021 TCP 20 2011-2020 X Combinatorial
Hasnain et al. [61] 2021 TCP 24 2007-2019 X Ontology-based
Mohd-Shafie et al. [100] 2021 TCP 222 2005-2018 X Model-based
Rosero et al. [119] 2021 TCP, TCS, TSR 40 2002-2020 X
Samad et al. [124] 2021 TCP 52 2007-2019 X
Ahmed et al. [3] 2022 TCP 21 2001-2019 X Value-based
Pan et al. [110] 2022 TCP, TCS 29 2006-2020 X Machine learning
Sadri-Moshkenani et al.
[123]

2022 TCP, TCS, TSR 132 2015-2019 X Cyber-physical

1: Ref. [29] covers test amplification, which is a wider scope than test augmentation, and the reported number of
49 primary studies includes the whole field. 2.: For Refs. [100] and [123] the reported number of primary studies
also includes papers addressing test generation.

Table 3.1: Overview of existing secondary studies on RT.

search, they found eleven secondary studies spanning over 2008-2017, including [120,

42, 39, 152, 69, 59, 16, 148, 115, 131, 17]. After a thorough analysis of those reviews

they concluded that at the time none of them addressed satisfactorily such aspects. The

authors hence used such studies1 as the start-set for a snowball sampling search, launched

in August 2016. In order to verify if another review is needed, it is hence necessary to

conduct a thorough examination of existing secondary studies on RT published since 2016.

We performed a search for secondary studies on RT over the same libraries queried for

the primary studies (see Section 3.3.2) and complemented the search results with a snow-

balling cycle. We eventually identified 22 works published since 2016 that are listed in

the first column of Table 3.1, whereas the second column includes the year the review was

published.

In the third column of Table 3.1 we report which RT techniques are covered in the study.

Most reviews only focus on TCP approaches [56, 101, 84, 70, 10, 114, 60, 2, 61, 100, 124,

3]. One study is dedicated solely to TCS [69], one other study to TSR [117], and again

1Actually 10 of them, as the authors explain that the 2017 survey [69] only appeared after they had
concluded the analysis.



Literature Review 20

only one to TSA [29]. Finally, seven secondary studies investigate primary studies on

multiple RT techniques [120, 32, 9, 4, 123, 119, 110].

In the 4th and 5th columns, we report the number of primary studies reviewed and the

interval of years to which they belong, whereas the 6th column is checked if the review is

conducted in systematic way. Finally, in the last column, we also report on the context of

the review, if it focuses on techniques using a specific approach or covers a specific appli-

cation domain. A version of this data is also included in our online repository (Chapter 7),

with some additional notes; the intent is to update the table as more secondary studies

are written and published.

For the sake of comparison, in the following paragraphs we briefly report the motivations

behind the 22 reviews, grouped by the targeted technique (i.e., TCP, TCS, TSR, TSA,

or multiple techniques).

TCP only The work by Hao et al. [56] aims at reviewing the advancements in TCP

and identifying open challenges. Similar goals are pursued by Lou et al. [84], who analyze

the primary studies along six aspects: algorithms, criteria, measurements, constraints,

empirical studies, and scenarios. The objective of Khatibsyarbini et al. [70] was to review

the experimental evidence relative to the most recent TCP approaches along with the

metrics used for evaluating them. Mukherjee and Patnaik [101] generically aim to identify

the most popular and useful TCP approaches. The review by Samad et al. [124] classifies

existing work according to the algorithms or models adopted, the subjects of evaluation

and the prioritization measures. A number of reviews focus on TCP for specific test

approaches, namely: Bajaj and Sangwan [10] cover genetic algorithms; Abdul Manan

et al. [2] address combinatorial testing; Hasnain et al. [61] consider ontology-based test

methods; Mohd-Shafie et al. [100] cover model-based testing approaches, and Ahmed et

al. [3] review TCP techniques that integrate value consideration, either in terms of fault

severity or test case cost. Finally Hasnain et al. [60] investigate TCP approaches for web

services, whereas Prado Lima and Vergilio [114] study how TCP has been adapted for

Continuous Integration environments.

TCS only The only secondary study focusing on TCS work is Kazmi et al. [69], which

aims at presenting the state-of-the-art in effective regression test case selection techniques.



Literature Review 21

TSR only The systematic review by Rehman Khan et al. [117] is motivated by the

quality assessment of empirical studies employed to evaluate the test reduction approaches.

TSA only Danglot et al. [29] present the first review on test amplification, a novel term

they introduce as an umbrella for various activities that aims at improving an existing test

suite, including test augmentation, optimization, enrichment, or refactoring. The review

is not specifically devoted to RT, but a subset of the primary studies they overview deals

with creating new tests for assessing the effects of changes.

Multiple techniques Among the secondary studies that focus on multiple RT tech-

niques, both Do [32] and Rosero et al. [120] aimed at generically providing an overview

of recent research advances. Some authors instead were motivated to study more specific

type of techniques: Bajaj and Sangwan [9] aimed at reviewing RT approaches leverag-

ing nature-inspired algorithms, while Pan et al. [110] analyzed TCP and TCS studies

that use Machine-Learning based techniques. The review by Sadri-Moshkenani et al.

[123] characterizes the approaches and the open challenges for the generation, selection

and prioritization of test cases for cyber-physical systems. Rosero et al. [119] provide a

preliminary brief mapping of primary studies that report about industrial usage of RT

techniques. Finally, the already mentioned study by Ali et al. [4] surveys RT research

that has industrial relevance and applicability, and also creates a taxonomy useful for the

communication between academia and industry.

Nearly all of the secondary studies express some concerns over IR&A of RT techniques,

although in most cases these concerns are only mentioned in passing, and are not central

to their motivations. Rosero et al. [120] report that only 16% of the surveyed primary

studies experimented in industrial context. On the positive side, Do [32] observes that

recently, more research is focusing on industrial software or open-source programs of

different types. The review by Lou et al. [84] contains a subsection titled “Practical

Values” in which they suggest researchers to consider TCP in practical scenarios and to

develop usable TCP tools. The only two reviews that specifically target IR&A as this

study are: i) the aforementioned work by Ali et al. [4]. However it selects only papers that

performed evaluations with industrial subjects, and was motivated mainly by the goal of

establishing a taxonomy for communicating RT research in a way that is accessible and

relevant for practitioners; and ii) the preliminary work by Rosero et al. [119], but this is is



Literature Review 22

a brief report that just classifies 40 selected primary studies found by searching the TCP

literature for the term “industrial” without investigating in depth their characteristics

and actual impact.

Considering the list of related secondary studies in Table 3.1, we conclude that a new

secondary study specifically addressing progresses in latest years about IR&A is needed

and can provide value to the research and development communities.

3.2 Research Questions

With these research questions, we aim to synthesize the current state of RT research in

terms of most frequently used approaches and metrics as well as understand researchers’

motivations and efforts regarding the practical implementation of their proposed tech-

niques.

RQ3.1 What are the main approaches used for RT techniques and what are

the metrics used to evaluate them? — We want to have an overview of the approaches

most used in this field, including what information is required from the software, what

algorithms are put into use and what goal are they trying to achieve. In addition, we want

to know what metrics are widely accepted among researchers to evaluate such approaches

and whether there is evidence to suggest that these metrics correlate to the technique’s

practical applicability.

RQ3.2 Is IR&A an explicit concern in RT research? — We want to find out if

there is a meaningful number of papers that state IR&A as their motivation and include

it as part of their problem description. Additionally, we want to understand what are the

main steps that authors usually take towards addressing these concerns with the tools,

techniques and solutions they provide.

RQ3.3 Is there evidence that techniques developed in academia make their

way into software in practice? — In an effort to measure the extent of active industry-

academia collaborations, we want to highlight examples of techniques that have been put

into practice at some point during the development of the work. To provide a clearer



Literature Review 23

picture, we asked authors of the selected studies to provide details of the state of their

research post publication.

3.3 Methodology

This section elaborates the entire review process, from its conceptual phases to the list

of selected papers and how we organized their contents, until conclusions drawing. First,

we establish the research questions that drive both the selection of papers and the data

presented and discussed in subsequent sections. Then, we explain the planning and design

phase of the survey, followed by its actual execution. We also highlight the data that was

extracted from each paper and the process of sending complementary questions to authors

via e-mail. We present the survey with practitioners that we conducted in support of the

study conclusions. Finally, we make available the relevant data needed to replicate this

process, to the extent of possibility.

3.3.1 Planning and Design of the Review

To answer the questions above, we designed the following literature review process. For the

purposes of this review, a “regression testing technique” addresses test case prioritization

(TCP), test case selection (TCS), test suite reduction (TSR), or test suite amplification

(TSA). Only papers concerning one or more of these four challenges should be considered.

Due to the scale of the available literature and our focused interest in recent developments,

we only look for papers published between January/2016 and July/2022. We also only

consider papers written in English.

We want to focus on papers that either signify an advance of the state of the art in

academia towards practicality, or includes data and discussions that might help guide

future researchers to make their research more valuable for practitioners. Thus, to be

included in the review, a paper must satisfy at least one of these inclusion criteria:

• It introduces a new regression testing technique and provides evidence that it ad-

dresses a real-world concern, or provides substantial benefits in experiments per-

formed with real software;



Literature Review 24

• It introduces and/or discusses a metric for evaluating regression testing techniques

with evidence that it might be valuable in practice; or

• It provides a case study of how regression testing is done in a certain team or

company, and provides some insight into the actual needs of practitioners.

We also want to avoid certain topics that are related to regression testing but would

increase the scope of the review beyond necessary. A paper should be excluded according

to following criteria:

• It is regarding software testing education, as this is a completely different challenge;

• It proposes a technique for test suite generation, which is related albeit distinct

problem from TSA2;

• It is concerning security testing, because it typically requires specific types of tech-

niques [41]; or

• It is concerning software product lines or highly configurable software, as these also

present quite different challenges from typical regression testing [15].

After collecting the unfiltered set of papers, the inclusion and exclusion criteria are applied

by each author to a random sample set based on their titles, abstracts and, if needed,

superficial analysis of the text. In case of divergences in the analysis, the authors should

discuss their conclusions. The Cohen Kappa agreement measure [26], a scale from -1 to 1,

is used to determine if both authors are generally in agreement regarding this sample of

papers. Upon establishing a satisfying agreement value, the analysis of remaining papers

are split among the authors. If it is not clear whether a paper fully satisfies the criteria,

it is brought for discussion among all authors until a mutual decision is reached.

After this initial analysis, full-text assessment of the remaining literature is performed.

The following quality criteria are to be used to further narrow down the papers that are

relevant to our research goals:

• The writing and presentation quality should not hinder comprehension;

2The primary difference is that test suite augmentation presupposes the existence of a test suite to
enhance, while test suite generation can create a new test suite from scratch.



Literature Review 25

• A paper should provide evidence that they address a problem found in real-world

software development and/or that the technique was evaluated on real-world soft-

ware;

• The metrics used for evaluation should be clear and the authors should provide some

reasoning as to why they are relevant; and

• In case there are multiple papers by the same group of authors that reference ver-

sions of the same work, we keep the most extensive one, avoiding, for instance, a

conference paper and a journal paper that address the same research (if they are

equivalent, we keep the most recent one).

The results from our queries are complemented by both forward and backward snowballing

to improve the comprehensiveness of the review. The same date restrictions and criteria

apply to papers found via snowballing.

Finally, a questionnaire with authors (Section 3.3.4) is used in order to clarify and update

some details regarding the selected papers. The authors have the option of suggesting

additional papers for consideration in this study; in that case, they should also be analyzed

according to the established criteria.

3.3.2 Executing the Review

We began by assembling a list of keywords that form the basis of our queries, includ-

ing potential variants of the same terms. These are: test/testing, evaluate/evaluation,

metric, indicator, investment, cost, relevant/relevance, industry/industrial, practice/prac-

tical/practitioner, applicable/applicability, scale/scalability, regression, selection, prior-

iti[s/z]ation, amplification/augmentation, reduction/minimi[s/z]ation software. These key-

words were used to manually experiment with the ACM and IEEE digital libraries, in

order to have a general understanding of the relevance of the results. We found, for exam-

ple, that the term “regression” would often bring papers on the broad topic of machine

learning (even not related to RT), so we had to make sure the word “software” was also

mentioned in the abstract.

Once the desired keywords were established, we built a query combining them. The query

went through several iterations, in order to maximize the likelihood of finding all the



Literature Review 26

ACM IEEE Springer Scopus Wiley Total

217 189 202 285 31 865

Table 3.2: Number of results for each search engine

papers that are relevant to our research, while also minimizing the number of papers in

excess. The final query was structured as:

Title:(test OR testing) AND

Abstract:(evaluat* OR metric OR indicator OR investment OR cost OR relevan*) AND

Abstract:(industr* OR practic* OR applicab* OR scal*) AND

Abstract:(regression OR selection OR prioriti* OR augmentation OR

amplification OR reduction OR minimi*) AND

Abstract:(software)

Queries were executed on five digital libraries: ACM, IEEE, Springer, Scopus and Wiley.

The searches were performed on Nov. 4, 2021 and Jul. 27, 2022. Each of the five search

engines uses a different syntax for queries, so we adapted the query to each syntax while

keeping its overall meaning as similar as possible. We also attempted to include results

from Science Direct into the study, but its search engine cannot handle all of the query

details. In all of the search engines, we narrowed the results to papers published since

January of 2016 and under the fields of Computer Science and Software Engineering.

The number of results were: ACM (217), IEEE (189), Springer (202), Scopus (285), Wiley

(31). The total number was 865. Removing exact duplicates that were found in more

than one digital library, the number of papers considered for the review was 780. We then

assembled a spreadsheet with the year, author list, title, abstract and keywords of each

paper in a shuffled order, to be reviewed by two of the authors of this study. A sample

of 40 papers was used to calculate the Cohen Kappa measure and establish a consensus.

From these, we achieved an agreement value of 0.89, which is considered very high, so we

were satisfied with the criteria and the authors’ interpretations of them. Processing of

the remaining papers was split among us.

This initial filtering resulted in 180 remaining papers, on which we conducted full-text

analysis to ensure topic relevance and satisfaction of exclusion and quality criteria. Like

the previous step, a set of 20 papers was analyzed and discussed by all authors, and again

we achieved a satisfactory agreement value; analysis of the remaining ones was split.



Literature Review 27

When there was uncertainty, some were discussed between the authors and we decided to

be overly inclusive at this step, leaving the most rigorous filtering for last. Papers from

the same groups of authors were also flagged to then determine if they were describing

the same or similar work. Our list, before any snowballing, contained 86 papers.

Snowballing upon the selected primary studies was performed on Nov. 15 2021 and Aug.

15 2022, using the papers’ own references for backward snowballing and Google Scholar

for forward snowballing. This resulted in a further 540 papers published since 2016,

after removing duplicates of papers already found in the previous review step. From the

snowballing sample, we selected 108 candidates, forming a pool of 194 papers for analysis.

We performed full-text analysis of these papers, carefully extracting the information

pointed out in Section 3.3.3 and using that to form the decision of whether or not the

paper satisfied our inclusion and quality criteria. Again during this step, we divided the

papers among the authors and, in case there was uncertainty regarding one paper, we

made the decision together.

Later, when we received responses from the authors of the selected studies (Section 3.3.4),

four papers were brought to our attention. We applied all our aforementioned criteria to

these suggestions and decided to incorporate one of them into the review. It had not been

caught by either the query or the snowballing process, but we understand that a single

missed paper is evidence that our review process has been sufficiently comprehensive.

Finally, our survey, as is presented in this study, contains the 79 papers listed in Table 3.3:

46 found by the query; 16 from backward snowballing; 16 from forward snowballing; and

1 author suggestion. The entire selection process is illustrated in Figure 3.1.

It is noteworthy that other studies, not included in this review, are also important for the

advancement of software engineering research. During the execution of this review, we

came across several papers that provide meaningful contributions to the theory or practice

of regression testing research, but exist in an isolated context. The focus of this collection

of studies is to find techniques and approaches that are applicable in real software or

are close to that - oftentimes, these papers are the result of a longer series of smaller

contributions that ultimately culminated in a usable product.

ID Year Authors Title

T
C

P

T
C

S

T
S

R

T
S

A



Literature Review 28

S1 2016 Srikanth et al.

[135]

Requirements Based Test Prioritization Using Risk Factors

S2 2016 Noor and

Hemmati [105]

A similarity-based approach for test case prioritization using historical

failure data

S3 2016 Schwartz and Do

[125]

Cost-effective regression testing through adaptive test prioritization

strategies

S4 2016 Hirzel and

Klaeren [64]

Graph-walk-based selective regression testing of web applications cre-

ated with Google web toolkit

S5 2016 Lu et al. [85] How does regression test prioritization perform in real-world software

evolution?

S6 2016 Vöst and

Wagner [141]

Trace-based test selection to support continuous integration in the

automotive industry

S7 2016 Wang et al. [142] Enhancing test case prioritization in an industrial setting with re-

source awareness and multi-objective search

S8 2016 Srikanth et al.

[134]

Test Case Prioritization of Build Acceptance Tests for an Enterprise

Cloud Application

S9 2017 Blondeau et al.

[12]

Test case selection in industry: an analysis of issues related to static

approaches

S10 2016 Pradhan et al.

[113]

Search-Based Cost-Effective Test Case Selection within a Time Bud-

get: An Empirical Study

S11 2016 Buchgeher et al.

[13]

Improving testing in an enterprise SOA with an architecture-based

approach

S12 2016 Tahvili et al.

[138]

Dynamic integration test selection based on test case dependencies

S13 2016 Öqvist et al.

[107]

Extraction-based regression test selection

S14 2016 Magalhães et al.

[92]

Automatic selection of test cases for regression testing

S15 2016 Aman et al. [5] Application of Mahalanobis-Taguchi Method and 0-1 Programming

Method to Cost-Effective Regression Testing

S16 2016 Busjaeger and

Xie [14]

Learning for test prioritization: An industrial case study

S17 2016 Yoshida et al.

[150]

FSX: A tool for fine-grained incremental unit test generation for

C/C++ Programs

S18 2016 Tahvili et al.

[137]

Cost-benefit analysis of using dependency knowledge at integration

testing

S19 2017 Ramler et al.

[116]

Tool support for change-based regression testing: An industry expe-

rience report



Literature Review 29

S20 2016 Strandberg et al.

[136]

Experience Report: Automated System Level Regression Test Prior-

itization Using Multiple Factors

S21 2016 Marijan and

Liaaen [93]

Effect of time window on the performance of continuous regression

testing

S22 2017 Gotlieb and

Marijan [50]

Using global constraints to automate regression testing

S23 2017 Chi et al. [23] Multi-Level Random Walk for Software Test Suite Reduction

S24 2017 Bach et al. [7] Coverage-Based Reduction of Test Execution Time: Lessons from a

Very Large Industrial Project

S25 2017 Spieker et al.

[133]

Reinforcement learning for automatic test case prioritization and se-

lection in continuous integration

S26 2017 Vasic et al. [140] File-Level vs. Module-Level Regression Test Selection for .NET

S27 2017 Celik et al. [18] Regression test selection across JVM boundaries

S28 2018 Ouriques et al.

[108]

Test case prioritization techniques for model-based testing: a repli-

cated study

S29 2017 Kwon and Ko

[74]

Cost-effective regression testing using bloom filters in continuous in-

tegration development environments

S30 2018 Garousi et al.

[45]

Multi-objective regression test selection in practice: An empirical

study in the defense software industry

S31 2018 Shi et al. [127] Evaluating test-suite reduction in real software evolution

S32 2018 Haghighatkhah

et al. [55]

Test prioritization in continuous integration environments

S33 2018 Zhang [154] Hybrid regression test selection

S34 2018 Miranda et al.

[99]

FAST Approaches to Scalable Similarity-Based Test Case Prioritiza-

tion

S35 2018 Yilmaz and

Tarhan [147]

A case study to compare regression test selection techniques on open-

source software projects

S36 2018 Chen et al. [20] Optimizing Test Prioritization via Test Distribution Analysis

S37 2018 Celik et al. [19] Regression Test Selection for TizenRT

S38 2018 Zhu et al. [158] Test re-prioritization in continuous testing environments

S39 2018 Azizi and Do [6] Retest: A cost effective test case selection technique for modern soft-

ware development

S40 2019 Guo et al. [54] Decomposing Composite Changes for Code Review and Regression

Test Selection in Evolving Software

S41 2019 Zhong et al. [155] TestSage: Regression test selection for large-scale Web service testing

S42 2019 Fu et al. [43] Resurgence of Regression Test Selection for C++

S43 2019 Eda and Do [34] An efficient regression testing approach for PHP Web applications

using test selection and reusable constraints



Literature Review 30

S44 2019 Goyal et al. [51] Test suite minimization of evolving software systems: A case study

S45 2019 Yu et al. [151] TERMINATOR: better automated UI test case prioritization

S46 2019 Correia et al. [27] MOTSD: A multi-objective test selection tool using test suite diag-

nosability

S47 2018 Machalica et al.

[90]

Predictive Test Selection

S48 2019 Najafi et al. [102] Improving Test Effectiveness Using Test Executions History: An In-

dustrial Experience Report

S49 2019 Leong et al. [78] Assessing Transition-Based Test Selection Algorithms at Google

S50 2019 Cruciani et al.

[28]

Scalable Approaches for Test Suite Reduction

S51 2019 Philip et al. [112] FastLane: Test Minimization for Rapidly Deployed Large-Scale On-

line Services

S52 2020 Magalhães et al.

[91]

HSP: A hybrid selection and prioritisation of regression test cases

based on information retrieval and code coverage applied on an in-

dustrial case study

S53 2019 Wu et al. [143] A Time Window Based Reinforcement Learning Reward for Test Case

Prioritization in Continuous Integration

S54 2019 Land et al. [75] An Industrial Evaluation of Test Prioritisation Criteria and Metrics

S55 2020 Noemmer and

Haas [104]

An Evaluation of Test Suite Minimization Techniques

S56 2020 Lübke [86] Selecting and Prioritizing Regression Test Suites by Production Usage

Risk in Time-Constrained Environments

S57 2019 Yackley et al.

[145]

Simultaneous refactoring and regression testing

S58 2019 Shi et al. [129] Understanding and improving regression test selection in continuous

integration

S59 2022 Lima and

Vergilio [83]

A Multi-Armed Bandit Approach for Test Case Prioritization in Con-

tinuous Integration Environments

S60 2020 Zhou et al. [157] Beating Random Test Case Prioritization

S61 2020 Peng et al. [111] Empirically revisiting and enhancing IR-based test-case prioritization

S62 2020 Bertolino et al.

[11]

Learning-to-rank vs ranking-to-learn: Strategies for regression testing

in continuous integration

S63 2021 Chen and Chen

[22]

Multi-objective regression test selection

S64 2021 Rosenbauer

et al. [118]

An Artificial Immune System for Black Box Test Case Selection



Literature Review 31

S65 2022 Bagherzadeh et

al. [8]

Reinforcement learning for test case prioritization

S66 2021 Elsner et al. [37] Empirically evaluating readily available information for regression test

optimization in continuous integration

S67 2020 Pan et al. [109] Dynamic Time Window based Reward for Reinforcement Learning in

Continuous Integration Testing

S68 2021 Mehta et al. [94] Data-driven test selection at scale

S69 2021 Xu et al. [144] A Requirement-based Regression Test Selection Technique in

Behavior-Driven Development

S70 2022 Zhou et al. [156] Parallel Test Prioritization

S71 2021 Sharif et al. [126] DeepOrder: Deep Learning for Test Case Prioritization in Continuous

Integration Testing

S72 2021 Li et al. [82] AGA: An Accelerated Greedy Additional Algorithm for Test Case

Prioritization

S73 2021 Chen et al. [21] Context-Aware Regression Test Selection

S74 2022 Zhang et al. [153] Comparing and Combining Analysis-Based and Learning-Based Re-

gression Test Selection

S75 2022 Abdelkarim and

ElAdawi [1]

TCP-Net: Test Case Prioritization using End-to-End Deep Neural

Networks

S76 2022 Çıngıl and Sözer

[25]

Black-box Test Case Selection by Relating Code Changes with Previ-

ously Fixed Defects

S77 2022 Yaraghi et al.

[146]

Scalable and Accurate Test Case Prioritization in Continuous Inte-

gration Contexts

S78 2022 Omri and Sinz

[106]

Learning to Rank for Test Case Prioritization

S79 2022 Greca et al. [53] Comparing and combining file-based selection and similarity-based

prioritization towards regression test orchestration

Totals 46 41 8 1

Table 3.3: Selected papers.

3.3.3 Data Extraction

To collect the data, each of the selected papers was assigned to one author to lead the data

extraction, and to another author to review the data afterwards. Thus, each paper was

thoroughly reviewed by at least two authors. At the end of this phase, the three authors



Literature Review 32

Query

780
non-duplicates

86 
candidates

Title/abstract
analysis

212 backward 
328 forward

108
candidates

79 
selected studies

Full-text analysis

194
candidates

Title/abstract
analysis

4 
candidates

Snowballing Author 
Suggestions 

Application 
of criteria

Figure 3.1: Diagram of the literature review process.

performed a broad review of the collected information in order to ensure consistency of

the results.

During the full-text analysis of the selected papers, we took notes of four groups of prop-

erties we wished to extract from each paper. First, we wanted to have the core biblio-

graphical information of the paper. Then, we categorized the papers according to the RT

challenge being addressed and contextual factors such as software type and development

environment. We also took note of eight properties we considered important regarding

IR&A of each proposed technique or case study. Finally, we synthesized the results of

the papers by highlighting the types of approaches and metrics used and, if available, the

open challenges/future work discussed by the authors. The properties we collected are

listed in Table 3.4.

Some further explanation is needed regarding the “applicability concerns” properties.

During the data extraction, it became clear to us that there is some ambiguity regarding

industrial motivation; among the non-selected papers, we also saw a great number of

them briefly mentioning industry needs in the abstract and introduction, but not forming

a connection between those needs and the technique being proposed. So, for our criteria,

industrial needs must not only be mentioned, but clearly stated with motivating evidence

and/or references, and serve as the actual principle behind the idea of the study.

Regarding the industrial evaluation of results, this property is satisfied when experi-

ments are performed directly on industrial software, usually through collaboration with a

technology company. However, there are plenty of papers that have robust experiments

performed on notable open-source software, such as those from the Apache and Mozilla

foundations. Thus, we collect the following information about the subjects:



Literature Review 33

• Its openness, which can be industrial proprietary, industrial open-source, fully open-

source, or an academic dataset;

• Its testing scale (small up to 500 TCs, medium up to 2,000 TCs, large up to 10,000

TCs, or very large if more than that)3;

• The language used for writing tests, which can be a programming language, natural

language, a domain-specific language or a combination; and

• Its origin (the company that wrote it, or the dataset it is from).

We also checked to see if there is feedback from practitioners in the text of the paper. Rel-

atively few authors include feedback and, often times, it is only a brief passage. Sometimes

feedback seems to be implied, but we only considered explicit references to comments from

practitioners (in either direct or indirect quotes).

The remaining properties are more straightforward: For experiment subject(s) and indus-

try partner, we merely point out the kind of software (or the specific software, if possible)

used for evaluation, as well as any collaboration received from a company. For industrial

author(s), we check if the authors of the paper come from an academic, industrial or mixed

background. “Available tool” is a URL pointing to an implementation of the technique, if

it exists (regardless if it is source code, a plug-in, or a robust replication package). Finally,

“put into practice” indicates whether the technique was actually incorporated into the

development workflow of a software, to the extent of the information contained in the

paper.

Most of the data extracted according to the form can be found in this document under

Table 3.3 (bibliographical data); Figures 3.2 and 3.3 (approaches); Figures 3.4 and 3.5

(metrics); and Table 3.7 (IR&A relevance properties). Additional properties, such as

abstracts, DOIs, details on the experiment subjects, and links to supplementary material,

can be found in the replication package (Section 3.3.6) and the live repository (Chapter 7).

3It is also important to note that the number of test cases is only one dimension of scale: on S76, for
example, evaluation was performed on Smart TV apps with only 38 test cases, but the testing time was
over 7 hours.



Literature Review 34

Bibliographical
data

Basic information about the publication.

Date The date the paper was made available online.
Authors The list of authors.
Title The title of the paper.
Abstract The abstract of the paper.
Venue and Publisher The conference or journal where it was published and its organization.
DOI The Digital Object Identifier of the paper.

Categorization Details regarding the problem addressed by the paper.

RT challenges Whether the paper covers TCP, TCS, TSR, TSA or a combination.
Context The type of software targeted by the approach.

Applicability
concerns

Properties of the paper related to its IR&A.

Industry motivation Whether the paper is clearly motivated by an industrially relevant problem.
Industry evaluation Whether the technique is evaluated in industrial software or sufficiently large-scale

open-source projects.
Experiment subject(s) Which software or kind of software was used for the experimental evaluation of the

technique, including the testing scale, the availability and the language in which tests
are written.

Industry partner Which, if any, industrial partner collaborated with the development and/or evaluation
of the technique.

Industrial author Whether one or more of the authors of the paper come from industry.
Practitioner feedback Whether practitioners were consulted to provide feedback to the results of the paper.
Available tool Whether the technique introduced in the paper is available to be used, either as a

prototype or as a complete tool. If true, we also stored the relevant URLs.
Put into practice Whether the proposed tool has been adopted into the development process of a certain

software.

Findings Details of the proposed technique and remaining challenges.

Approach What sort of algorithm and information the technique is using.
Metrics What criteria are being used for evaluating the techniques.
Open challenges What the authors list as next steps and unsolved issues related to the problem they

addressed.

Table 3.4: Data extraction form.

3.3.4 Questionnaire with Authors

As we collected the data needed to answer the research questions, we realized the need

of a perspective beyond what is possible to extract solely from the papers, particularly

regarding the ongoing usage of the described techniques. This happens because the infor-

mation contained in the papers themselves might be out-of-date or unclear. For example,

the authors of S11 mention that their tool, TePSEx, was in use at the time of the pub-

lication; however, it is impossible to tell from the paper itself whether the situation has

changed since 2016. Conversely, there are also several papers that mention a practical

implementation among their future work [S7, S12, S22, S37, S51], but we were not able

to find follow-up papers clarifying whether that actually happened.

In order to provide a satisfactory answer to RQ3.3, we reached out to the authors of the

papers via e-mail. Our initial objective was to discover if techniques were ever put into

practice and, if so, if they continue to be used to this day. We also realized that the



Literature Review 35

authors could also provide fruitful insight into RQ3.1 and RQ3.2, so it ultimately became

an important pillar of this work.

We were able to contact authors from most of the papers; in some cases we were not able

to locate the author’s e-mail address, or the address is no longer valid. The authors were

given 12 days to respond and we received replies related to 51 out of the 79 papers — in

some cases, one author answered for several papers, in others several authors of the same

paper provided answers. The total number of responding authors was 45, although five

of them did not provide meaningful answers (i.e. asked us to contact another co-author

or said they were not able to answer our questions).

The e-mail sent out to the authors had the following questions:

1. Is there a functional version of your technique (tool, prototype, source code, etc.)

available online? If so, please share with us the URL.

2. Was there an attempt to implement your technique in industrial or large open-source

software? Is the technique currently in use with the software?

3. If the technique was put into practice, were the metrics used in the paper relevant for

the technique’s applicability? If not, were there other metrics that proved to be useful?

In addition, we also asked if the authors authorized their answers to be used in this study,

if we could link them to their answers, and if they wish to be contacted about updates to

this study. The full template of the e-mail is found in Appendix A.1.

All responding authors authorized the use of their answers, but several of them asked

not to be linked directly to specific answers due to non-disclosure agreements with in-

dustrial partners; therefore, we use the received answers broadly, collecting quantitative

and qualitative data from them without specifying which piece of information came from

which author. Whenever a direct quote is significant, we transcribe it anonymously; for

readability we use an arbitrary ID numbering.

3.3.5 Survey with Practitioners

In addition to the questions we sent to the authors of reviewed papers, we also prepared

a survey destined to practitioners. The objective of this survey was to complement and

verify some of the conclusions we draw from the literature, and help align the interests of

academia and industry.



Literature Review 36

The survey was disseminated using a convenience sample, including contacts we person-

ally know in industry and people who participated in software testing centric events.

We considered also putting the survey in public online forums centered on software test-

ing/engineering, but ultimately decided against that for fear of low-quality responses and

data pollution.

We received 23 responses from practitioners in six different countries (Brazil, Italy, Fin-

land, Hungary, Portugal and Sweden). Obviously this survey covers an extremely small

part of software testing practice, but it is possible to trace some common elements pointed

out by the respondent that corroborate some of the findings and conclusions we had ex-

tracted from the literature. When relevant, these responses are used in Section 3.4.3 and

also contribute to Chapter 6.

Due to space concerns, we cannot include the full questionnaire here, but it is available

online, along with the anonymized responses we received. The main points covered in it

were:

1. What are the most common pain points when it comes to regression testing?

2. Do you know of, or have you ever used, a regression testing tool originating in

academia?

2.1 If so, how was the experience of using it?

3. Do you stay informed on current advances in software engineering research? Are there

attempts of collaboration between your company and academia?

We also asked for their company, country and role, which we used to assess the diversity

of respondents. This will not be published for privacy reasons. Again, the full transcript

of the survey questions is available in Appendix A.2.

3.3.6 Replicability

To allow replicability of our review and clearly describe the thought process behind the

choice of included studies, we make a replication package available online4. This package

includes the original search queries, the list of papers that we included or excluded via

the criteria, the full contents of the data extraction form, and the data used to generate

4Available at: https://bit.ly/3gCKh7V. For the purposes of review, we make the online material
available through Google Sheets. This will be updated for the final release of the paper.

https://bit.ly/3gCKh7V


Literature Review 37

11

1

221

21

1

3

1

4

3

2

2

6

3

9

2

5

6

1

15

1

TSA Author count 1 13

Technique Approach Number of papers

TCP 

TCS 

TSR 

C
ha

ng
e-

ba
se

d 

C
ov

er
ag

e-
ba

se
d 

H
is

to
ry

-b
as

ed
 

C
os

t-a
w

ar
e 

Fa
ul

t-b
as

ed
 

Te
st

 c
od

e 

M
an

ua
l 

cl
as

si
fic

at
io

n 

Cha
ng

e-b
ase

d

Cov
era

ge
-ba

sed

Hist
ory

-ba
sed

Cost
-aw

are

Fau
lt-b

ase
d

Test
 co

de
Man

ua
l 

cla
ssi

fic
ati

on

Req
uir

em
en

ts-
 

ba
sed Mod

el-
ba

sed

Trac
e-b

ase
d

Exe
cu

tio
n 

co
nte

xt

Loa
d f

act
or

Auth
or 

co
un

t

3

Figure 3.2: Distribution of information approaches.

2

11

3

2

3

6

1

1

8

1

6

6

1

4

10TCP 

TCS 

TSR 

M
ac

hi
ne

 le
ar

ni
ng

 

Se
ar

ch
-b

as
ed

 

Si
m

ila
rit

y 
or

 
di

st
an

ce
-b

as
ed

 

G
ra

ph
-b

as
ed

 

G
re

ed
y 

B
lo

om
 fi

lte
r o

r 
w

in
do

w
-b

as
ed

 

M
ac

hin
e l

ea
rni

ng

Sea
rch

-ba
sed

Sim
ila

rit
y- 

or 

dis
tan

ce
-ba

sed

Grap
h-b

ase
d

Gree
dy Bloo

m fil
ter

 or
 

wind
ow

-ba
sed

Con
str

ain
ts-

 

ba
sed

8

Figure 3.3: Distribution of algorithm approaches.

the figures. It also includes the full version of the e-mail template sent to the authors and

the full questionnaire sent to practitioners.

3.4 Discussion

3.4.1 RQ3.1: Common Approaches and Metrics in RT research

A summary of the main approaches used to tackle RT challenges is presented in Ta-

ble 3.5. We observe that the approaches adopted by a technique may serve to two dif-

ferent purposes: one is regarding the source from where the information used as input

for a technique is collected5; a second purpose refers to the actual algorithm used to

address the problem to solve. Correspondingly, the main approaches used to tackle RT

challenges are presented in Figure 3.2 and in Figure 3.3, respectively. Regarding informa-

tion, change-based, coverage-based, history-based and cost-aware approaches are the most

common; while machine learning-based, search-based, similarity-based and graph-based

are the popular algorithmic approaches.

5This is also referred to as criteria in the literature [84].



Literature Review 38

Information TCP TCS TSR TSA Description

History-based S8, S15, S16,
S20, S21, S29,
S32, S45, S48

S29, S47, S48 Uses information from previous testing cycles
to decide about test case relevance.

Change-based S20 S13, S19, S26,
S27, S33, S35,
S37, S40, S42,
S43, S58, S73,
S74, S76, S79

S43 Uses changes between versions to identify the
relevant test cases.

Coverage-based S16, S24, S28,
S45, S52, S56

S19, S24, S41,
S52, S56

S31,
S55

S17 Uses structural coverage information, whereby
coverage can be of statement, method, class,
file, etc.

Cost-aware S5, S7, S12,
S18, S45, S70

S12, S63 Utilizes test case cost or time information to
assess test relevance.

Requirements-
based

S1 S44 Relate tests with project-sensitive informa-
tion, such as requirements and risk assess-
ments.

Manual classifica-
tion

S12, S18, S45 S12 Requires at least some information that must
be manually inputted by an expert.

Model-based S11, S28 S11 Informs the test technique using behavioural
or architectural models.

Trace-based S6, S41 Provides inputs and keeps track of the effects
of those inputs throughout the program.

Fault-based S21, S38 S49, S63, S76 Utilizes information related to fault detection
or failure beaviour.

Test code S2, S34, S61,
S79

S50 Uses the plain text source code of the test
cases.

Load factor S11 S11 Indicates what parts of the SUT are most used
by different services and components.

Author count S49 Number of authors associated with a certain
part of the SUT.

Execution con-
text

S27, S73 Considers environment data such as libraries,
APIs, databases, operating system, etc.

Algorithm TCP TCS TSR TSA Description

Similarity or
distance-based

S2, S15, S16,
S28, S32, S34,
S60, S79

S50 Assesses test cases based on their similarity,
with the objective of diversifying the suite.

Search-based S5, S7, S46,
S52, S61, S70

S10, S14, S30,
S46, S52, S64

S23 Utilizes search-based algorithms, such as ge-
netic or nature-inspired ones

Machine
learning-based

S16, S25, S53,
S59, S62, S65,
S66, S75, S77,
S78

S47, S66, S68,
S74

S51 Trains a ML model using historical or other
data. Includes supervised, unsupervised and
reinforcement learning methods.

Graph-based S28 S4, S19, S35,
S37, S39, S62

Creates a graph representation of the SUT and
utilizes graph theory algorithms to solve prob-
lems.

Greedy S5, S70, S72 S24,
S55

Utilizes greedy algorithms and heuristics (usu-
ally based on coverage or similarity informa-
tion).

Constraints-
based

S43 S22,
S43

Utilizes constraint programming paradigm.

Bloom filter,
window-based

S3, S29, S67 S29 Utilizes Bloom filter data structures and time
windows to filter out tests that fail only once.

Table 3.5: Information- and Algorithm-based Approaches



Literature Review 39

1

1

11

1

1

2

2

1

2

2

1

2

2

1

3

2

4

3

4

4

3

3

8

1

6

5

3

11

5

17

23

TCS Accumulated 
regression risk

3 16 1

TSR Accumulated 
regression risk

2 16

TSA Accumulated 
regression risk

1 16

Technique Approach Number of papers

TCP 

TCS 

TSR 

APFD
Test

 co
un

t

Test
ing

 tim
e

Acc
ura

cy,
 pr

ec
isi

on
 

an
d/o

r r
ec

all

Tim
e/t

est
s t

o 

fir
st 

fau
lt

Fau
lt d

ete
cti

on
 

ca
pa

bil
ity

Fau
lt d

ete
cti

on
 

in 
bu

dg
et

Cov
era

ge
  

eff
ec

tiv
en

ess

Fau
lt 

de
tec

tio
n r

ate

Cos
t-b

en
efi

t 

mod
el Fau

lt 

de
tec

tio
n l

os
s

Com
pa

ris
on

 

to 
ex

pe
rt

RPA Fau
lts

 pe
r 

tes
ts/

tim
e

Algo
rit

hm
 

pe
rfo

rm
an

ce
 m

ea
su

res

Acc
um

ula
ted

 

reg
res

sio
n r

isk

14

Figure 3.4: Distribution of effectiveness metrics.

1

1

1

1

1

2

8

4

3

8

9TCP 

TCS 

TSR 

Exe
cu

tio
n t

im
e

Tota
l o

r 

en
d-t

o-e
nd

 tim
e

Sca
lab

ilit
y

M
em

ory
 us

ag
e

M
ea

su
rin

g 

tim
e/c

os
t

App
lic

ab
ilit

y 

or 
ge

ne
ral

ity

Diag
no

sab
ilit

y

1

1

1

1TCP 

TCS 

TSR 

(a) (b)

21

Figure 3.5: Distribution of (a) efficiency and (b) other metrics.

The main metrics reported in the literature are shown in Table 3.6, Figure 3.4 and Fig-

ure 3.5, grouped according to their main goal6. The reported metrics primarily focus on

effectiveness (how good a solution is at accomplishing its task) or efficiency (the time and

cost of using the solution), but two metrics were identified that are neither — namely,

applicability/generality and diagnosability.

APFD is the most widely accepted metric for assessing TCP approaches. Because TCS

and TSR both have the goal of running fewer tests than an original test suite, their metrics

are mostly shared: testing time, selection count and fault detection ability are the most

common ones. The set of accuracy/precision/recall appears to be the effectiveness metric

that covers the most situations. For efficiency, the execution time of a technique is both

widely used and is useful for any kind of solution.

In our questionnaire to the authors, we included a question focused on the choice of met-

rics. We asked authors who had successful or attempted attempts of implementing their

technique whether the metrics described in the paper proved to be relevant in practice, or

if additional measures were needed. We received 27 meaningful responses to that question,

6In each figure, we omit TSA due to space concerns, as only one paper (S17) covers it.



Literature Review 40

Effectiveness TCP TCS TSR TSA Description

Selection/reduction
count/percentage

S4, S6, S9,
S24, S26, S27,
S33, S35, S37,
S39, S42, S43,
S47, S58, S73,
S74, S76

S22,
S23,
S43,
S44,
S55

Absolute or relative size of the resulting test
suite compared to the original.

Average Percent-
age of Faults De-
tected (APFD)

S1, S5, S8,
S16, S21, S25,
S28, S32, S34,
S36, S45, S53,
S59, S61, S65,
S67, S70, S72,
S75, S77, S78,
S79

A measure of how quickly a test suite detects
faults, on average. Includes many variations,
such as APFDc and NAPFD.

Testing time S12, S19, S27,
S30, S35, S37,
S41, S58, S68,
S74, S76

S44,
S51,
S55

Time required to execute the prioritized/se-
lected/reduced test suite as opposed to the
original suite.

Accuracy, preci-
sion and recall

S16, S29, S67,
S75, S78

S9, S14, S29,
S40, S47, S69

S51 Measures of correctness and completeness of
the resulting test suite (e.g., count of false pos-
itives and false negatives).

Fault Detection
Capability

S3, S7, S21 S29, S64, S73,
S76

Number or proportion of faults detected by the
resulting suite compared to the original.

Fault Detection
Rate (FDR)

S15, S20, S45 S39 Time to detect faults compared to the optimal
RT suite.

Coverage Effec-
tiveness (CE)

S2, S45, S52,
S56

S52, S56 S17 Measure of the tradeoff between cost of the
test suite and structural coverage of the SUT.

Time/tests To
First Failure

S2, S36, S38,
S59, S60, S67,
S70, S79

S9, S64, S79 Number of tests or amount of time needed to
reach the first failure.

Fault detection
within a budget

S7, S24, S59,
S79

S10, S24, S79 Faults still detected when restricting the test-
ing time budget.

Cost-benefit
model

S3, S18 S30, S68 Mathematical models considering costs and
benefits of applying a technique throughout
development.

Fault Detection
Loss

S48 S48, S63 S31,
S50

Number or proportion of faults undetected by
the selected/reduced test suite compared to
the original.

Comparison to
expert

S11 S11, S14 Compares the output of the tool with a list of
tests selected by the project architect.

Faults per tests or
time

S29 S29 Number of faults deteted per number of tests
or testing time.

Number of tests
added

S17 Number of tests added to the test suite.

Algorithm perfor-
mance measures

S10 Fitness value or hypervolume metrics applied
to search-based algorithms

Accumulated re-
gression risk

S56 S56 How much of the ”regression risk” is covered
by the tests.

Rank Percentile
Average (RPA)

S62, S65 S62 Comparison between the predicted ranking
and the actual ranking (from the dataset).

Efficiency TCP TCS TSR TSA Description

Execution time S7, S32, S34,
S48, S53, S59,
S70, S72, S79

S4, S26, S27,
S41, S48, S69,
S74, S79

S22,
S23,
S50

S17 Time required to run the tool (e.g., selection
time, prioritization time, etc).

Total/End-to-
end time

S7, S34, S62,
S79

S13, S26, S33,
S37, S42, S62,
S74, S79

End-to-end time, combining measuring time,
execution time and testing time. Due to this,
it is a measure of both efficiency and effective-
ness.

Memory usage S7 S4 Measures the amount of memory used by the
tool.

Scalability S34, S77 S50 How well the tool performs on subjects of dif-
ferent sizes.

Measuring time/-
cost

S66 S66 Measure of how costly is the information
needed by the technique (e.g. compiling tests,
collecting coverage, training a model).

Other TCP TCS TSR TSA Description

Applicability/GeneralityS60 S69 The variety of SUTs upon which the tool can
be applied.

Diagnosability S46 S46 Cost of diagnosing a fault upon detection.

Table 3.6: Effectiveness, Efficiency and Other Metrics



Literature Review 41

out of which 24 were satisfied with the chosen metrics. We quote some of the answers

received: “The metrics directly influenced decisions of the industrial partner” (respondent

author #16); Respondent author #8 stated that “[the] metrics were at the heart of the

approach” and that the provided metrics were “always perceived as necessity by developers

to support them in their work”; “The technique was put in practice for subsequent release

and the metrics were useful and effective” (author #17); Respondent author #23 an-

swered that “the metrics presented in the paper were critical for adoption and to measure

ongoing improvements”; “they [the metrics] were relevant - they were also collected in the

same environment in which the technique ended up being used” (author #19).

Out of the three divergent responses, one suggested that the metrics were not a problem,

but the dataset they used for the experiments was too small to provide meaningful evi-

dence (author #42). Curiously, the remaining two complement each other. Author #45

said that they proposed a new metric, which is believed to be relevant but has not been

experimented in practice yet; while author #25 claimed their own choice of metrics was

not relevant to applicability, and is considering using the same metric proposed by #45.

After analyzing all the answers to this question, two very interesting things emerged: 1)

One author (#14) reflected that although the metrics used were relevant at the time,

looking back in retrospect other relevant metrics should have been used — “Now, 7

years later, we have realized that some metrics were not included that should have been

included”. The author was referring to the use of a metric for test case diversity as

this could have helped them to tune the approach to avoid putting together many test

cases targeting the same functionalities. This reinforces the importance of following up

the adoption of a proposed approach in its application environment: even if we strive

to anticipate all the possible uses of a proposed approach, observing its adoption in a

real industrial context may reveal details and needs that were not captured while the

approach was being conceived. 2) Two respondent authors (#23 and #36) reported that

their approaches were evaluated with some additional metrics relevant to industry — “the

company has also developed their own metrics” (respondent author #36) — that were not

reported in their papers. The answers do not make it clear if the metrics were omitted

because the measurements were not available at the time the paper was published or if

they were omitted on purpose (e.g., because they could reveal sensitive company data).



Literature Review 42

ID

In
d

.
M

o
t.

In
d

.
E

v
a
l.

In
d

.
A

u
th

.

P
r
a
c
.

F
e
e
d

.

A
v
a
il

.
T

o
o
l

In
P

r
a
c
ti

c
e

ID

In
d

.
M

o
t.

In
d

.
E

v
a
l.

In
d

.
A

u
th

.

P
r
a
c
.

F
e
e
d

.

A
v
a
il

.
T

o
o
l

In
P

r
a
c
ti

c
e

ID

In
d

.
M

o
t.

In
d

.
E

v
a
l.

In
d

.
A

u
th

.

P
r
a
c
.

F
e
e
d

.

A
v
a
il

.
T

o
o
l

In
P

r
a
c
ti

c
e

ID

In
d

.
M

o
t.

In
d

.
E

v
a
l.

In
d

.
A

u
th

.

P
r
a
c
.

F
e
e
d

.

A
v
a
il

.
T

o
o
l

In
P

r
a
c
ti

c
e

S1 S21 S41 S61

S2 S22 S42 S62

S3 S23 S43 S63

S4 S24 S44 S64

S5 S25 S45 S65

S6 S26 S46 S66

S7 S27 S47 S67

S8 S28 S48 S68

S9 S29 S49 S69

S10 S30 S50 S70

S11 S31 S51 S71

S12 S32 S52 S72

S13 S33 S53 S73

S14 S34 S54 S74

S15 S35 S55 S75

S16 S36 S56 S76

S17 S37 S57 S77

S18 S38 S58 S78

S19 S39 S59 S79

S20 S40 S60

Ind. Mot.: Industrial Motivation. Ind. Eval.: Industrial Evaluation. Ind. Auth.: Industrial Author(s). Prac.
Feed.: Practitioner Feedback. Avail. Tool: Available Tool. In Practice: Put into Practice. A half-filled circle
indicates a partially satisfied property. For example, a paper that provides its dataset but not its source code, or
one that has some indication of having been implemented without explicitly stating so.

Table 3.7: Relevance properties found in the papers.

Summary of RQ3.1. The data reported in the figures show what are the most

common approaches and metrics according to the objective of the RT techniques.

For example, we see that TCP often relies on history-based and similarity-based

approaches and uses APFD for evaluation, while TCS is usually change-based with

a focus on the number of selected tests. We can also see that some overlap oc-

curs and there are authors who choose unconventional but potentially promising

combinations of techniques and metrics. From the author responses we received, it

appears that many authors are satisfied with their selection of metrics but a few

indicate that more were discovered in the process of implementing the tool with

their industrial partner.

3.4.2 RQ3.2: Applicability Concerns in Regression Testing Research

To answer this research question, we look carefully at the applicability concerns extracted

according to Table 3.4. The full mapping of the papers with the properties they satisfy

is available in Table 3.7. It is worth observing that our conclusions here, as well as in



Literature Review 43

the next section, are only relative to the set of primary studies that we retrieved; we

cannot exclude the possibility that works that we did not select could eventually find

application in practice. For instance, a paper with no obvious practical motivation could

be the theoretical foundation for a tool later adopted by practitioners.

Most of the selected papers satisfy the properties of having a clear industrial motivation:

out of the 79 papers, only five [S4, S15, S25, S57, S58] did not have a clear IR&A

motivation. Regarding evaluation, 50 of the papers contained experiments on industrial

(or industrial-scale) software. In other words, it is quite clear that IR&A is frequently

a concern that motivates researchers to develop novel RT techniques. While providing

adequate experimentation and evaluation to these techniques can be a tough challenge, it

is one that researchers are indeed attempting to address.

Out of the 74 papers with relevant evaluation, 44 perform experiments with the direct

collaboration of an interested partner — in most cases a corporation, in one case a gov-

ernment department (S30), indicating that such collaborations can play an important role

in improving the relevance of experiments. Curiously, there are also four papers that have

industrial collaborations, but the experiments are not performed with software from that

partner [S17, S27, S40, S55]. Finally, there is one paper with an industrial partner but

the objective of the work was not to develop a tool, so there are no experiments (S54).

In our retrieved literature, the industrial background of the authors is significant in a

few ways. The papers with primarily industrial authors are the most likely ones to be

relevant in practice, because these are generally designed with the application on a specific

software product in mind; these papers usually provide insight into the testing workflow

at large companies and share the lessons learned from applying a certain technique to a

specific scenario. Examples include S47 with Facebook; S49 with Google and S51 with

Microsoft. There are also some cases of companies whose main product is not software,

but software is an important part of their products (e.g., transportation manufacturers,

as S6 with BMW).

Papers with a mix of industrial and academic authors also represent good progress in

enhancing industry-academia collaborations, such as the collaborations between Univer-

sity of Texas at Austin and Microsoft [S26, S37] or between the Federal University of

Pernambuco and Motorola [S14, S52].



Literature Review 44

Finally, we want to highlight the papers that have tools available online. This is important

for replicability and ease of access, but is still lacking in many publications. To facilitate

comparisons by other researchers and simplify experimentation by software developers,

it is fundamental that a version of the technique exists, either in binary or source code

format. Only 22 of the surveyed papers made their tool available in some form (usually

source code repository), making it improbable that any of the other tools were used by

practitioners without direct contact with their developers. Notably, there appears to be

a change in this trend: between 2016 and 2020, only 14 papers had any sort of replication

package or tool available. In 2021 and 2022 (up until July), we found 8 papers satisfying

this criteria. The likely explanation to this is that noteworthy Software Engineering

conferences have given more value to easily-replicable research in recent years and this

has caused authors to make it a priority. However, there are some cases where the code

is made available with little to no documentation or explanation of how it works; on the

bright side, there are also examples that stood out for having clear and detailed steps on

how to use the code and replicate the experiments. Among the e-mail responses from the

authors, we received the source code repository URL for four additional papers, confirming

that at least 26 papers have material available online — whenever possible, the relevant

URLs can be found in our live repository (Chapter 7).

Out of the investigated URLs, only S4 and S33 provide clear usage instructions for arbi-

trary software projects; they are available as plug-ins for the Eclipse IDE and the Maven

build system, respectively. S40 also mentions the tool is available as an Eclipse plug-in,

but we were unable to find a URL pointing to it. The remaining papers provide their

source code primarily for study replication, not necessarily intended for actual usage by

developers, meaning that the tool is likely not sufficiently robust for practical usage be-

yond experiments. It also happens frequently that tools developed in conjunction with an

industrial partner end up becoming proprietary software and cannot be easily distributed

(e.g. S14, S16). Authors of 14 papers said in their responses that the code or the tool

could not be shared, since the resulting software is completely or partially proprietary or

confidential.

An issue we identified is regarding the programming languages of the SUTs targeted by

the experiments. Figure 3.6 shows that there is a heavy bias towards Java, with 23 papers

targeting software written in that language. On most of the papers focused on a specific

language, it is not clear if the same approach would be easy to adapt and would produce



Literature Review 45

Technique Approach Number of papers

21542123423Nº papers

Ja
va

 

C
/C

++
 

C
# 

A
gn

os
tic

 o
r 

m
ul

ti-
la

ng
ua

ge
 

D
om

ai
n-

sp
ec

ifi
c 

Jav
a

C/C
++

C# Agn
ost

ic 
or 

mult
i-la

ng
ua

ge

Dom
ain

-sp
eci

fic

Natu
ral

Othe
rs

Unc
lea

r

31

Figure 3.6: Distribution of the targeted programming languages.

equivalent results on software developed using other widely used languages. However, 12

papers target systems written in multiple languages, or explicitly state that the approach

is language-agnostic, which highly increases its applicability. Unfortunately, it was not

possible to identify the target language of 21 papers; this creates a substantial challenge

for both the replicability of the experiments and applicability of the technique.

Summary of RQ3.2. Our survey shows that a large number of papers exhibit

IR&A concerns in their motivations, and a smaller albeit still significant amount

contains experiments at relevant scale. Most of the times, the techniques that

are implemented into a software workflow are also papers that have authors from

an industrial background. Unfortunately, few authors share their tools in a well-

documented, open-source fashion, which hampers both future researchers, who wish

to compare their solutions against the state-of-the-art, and practitioners, who might

want to see how existing RT tools can help their software.

3.4.3 RQ3.3: Evidences of Real-world Application of Regression Testing

Techniques

Our study is motivated by the concern that there is potentially valuable technology being

proposed in academia that does not always make its way into usage in industry. The

difference between the state-of-the-art techniques proposed in academia and the ones

actually used in real-world software is what we call the academia-industry technology

transfer gap. Expressing concerns over IR&A of RT techniques is an important step

towards awareness of the gap, although not sufficient per se to solve the problem of

actually putting these techniques into practice. The focus of this section is to discover

if and how much evidence exists of techniques developed by the research community

being adopted by real-world software development. As previously stated, there might be

studies that have been put into practice, but escaped our review because they were not



Literature Review 46

Technique Approach Number of papers

202616365074Nº papers

In
d.

 M
ot

. 

In
d.

 E
va

l. 

In
d.

 A
ut

h.
 

Pr
ac

. F
ee

d.
 

A
va

il.
 T

oo
l 

In
 P

ra
ct

ic
e

Ind
. M

ot.

Ind
. E

va
l.

Ind
. A

uth
.

Prac
. F

ee
d.

Ava
il. 

Too
l

In 
Prac

tic
e

27

Figure 3.7: Quantitative analysis of the satisfied criteria.

explicitly motivated by IR&A; we hope that, in the future, our live repository solution

will eventually find them and potentially widen the conclusions described here.

Table 3.7 contains only data extracted from the papers themselves; since the author

responses are anonymous, we cannot map them directly to the table. Thus, Figure 3.7

displays the total number of papers that satisfy each of our applicability criteria, including

updates from the author responses. In other words, we consider the author response if it

updates the information retrieved from the paper; otherwise the data extracted from the

paper remains.

Regarding the adoption of the proposed approaches, Table 3.7 shows that 16 out of the 79

selected papers explicitly state that the proposal is applied with a partner, or suggest that

implementation was ongoing at the time of publication, out of which six are confirmed

to still be in use by their authors, while four say it fell out of use (the remaining six did

not respond, so we assume no change). Eight other authors claim their approach was

implemented after publication, so the count in Figure 3.7 is 20 (16-4+8).

We can observe that having a practitioner as a co-author helps to provide a direct line

from the founding theory of the technique to its application in practice: indeed, 14 of

these 20 papers have at least one author from industry. This is not surprising, because

such collaborations often originate directly from a need expressed by the practitioners.

However, we also see that only 8 out of those 20 papers featured feedback from the practi-

tioners who actually used the developed tool. That is, although the tool was incorporated

into the production workflow, in many cases an assessment of long-term benefits and ac-

ceptance by its users is either not done or not reported. Ultimately, the authors were our

best chance of understanding the story behind each tool, revealing whether it is still being

used by a partner and the reasons it might have fallen out of use.

From the respondent authors, we received six confirmations that the tool continues to

be in use by their industrial partner in some form, e.g. “The tool was implemented at



Literature Review 47

a company [...] and it is still in use at the company [with significant changes].” from

respondent author #14. Authors of another two papers stated that the technique is

undergoing an implementation process at the time of the response. Author #37 claims

that their work on a newer paper is seeing adoption by an industrial partner; however, at

the time of writing, that paper remains in pre-print and cannot be formally included in

this review.

Interestingly, eight authors say that the tool was successfully incorporated into an indus-

trial partner’s development cycle after the publication of the paper: “the technique has

been adapted and embedded into a random data selection tool by the [company]’s testing

team, for purposes including but not limited to regression testing.” (author #36); “the

[technique] has been in use at [company since roughly the date of publication. [It] is used

to run relevant test cases for every code review in [company]’s main code repository.”

(author #23). However, the details are not always known to them: “We were told it was

put into practice but we were not given any information, due to confidentiality rules.”

(author #44).

To the extent of the authors’ knowledge, 12 papers were never put in practice, although

some say there was a discussion to do so at some point. From author #35: “We dis-

cussed the possibility of conducting a research visit at one of the corporation branches to

experiment with the technique in vivo, but in the end it did not go through.”

Authors of ten papers (out of which four were tagged as implemented in Table 3.7) said

that the tool saw usage but fell out of use after a few years; an additional three claimed

some sort of attempt, but the current status is unknown. What this means is that, even

if a technique is incorporated into a software, a lot of work must still be done to ensure

that the approach remains viable in a longer term. Some challenges mentioned by these

authors include:

The tool became outdated and it was not updated to remain relevant “It

was implemented in an industrial setting, but this work is several years old and has to

be evolved to stay relevant for business.” (author #20). This can be either due to a

technical issue, e.g. the tool was designed for an older version of a programming language

or platform and would require some effort to be updated and be used on newer software,

or because the tool does not consider newer requirements of its subject software.



Literature Review 48

Ind
. M

ot.

Ind
. E

va
l.

Ind
. A

uth
.

Prac
. F

ee
d.

Ava
il. 

Too
l

In 
Prac

tic
e

232334

3728616

35271013

4515811

859810

Ind. Eval. 2 3

Ind. Auth. 3 1

Prac. Feed. 4 0

Avail. Tool 5 0

In Practice 6 1

Technique Approach Number of papers

Coverage-based 

Search-based 

Change-based 

Machine learning 

Greedy

40

Figure 3.8: Mapping of approaches and techniques that have seen practical application
on at least 2 papers.

The authors noticed that adapting an academic prototype into an industry-

strength tool required more time and budget than the project permitted

“There is a gap between developing a research prototype and an industrial-strength tool.

Evolving research prototypes towards industry-ready tools was beyond the project bud-

get.”(author #8) It can happen that a technique seems promising in initial experiments,

but an enormous amount of work would be needed to actually incorporate it into a work-

flow. The technique might require data that is not currently being collected, or use some

manual process for the evaluation that would need to be automated. The tool must also

be verified for correctness and robustness before practical usage.

Authors lost contact with their partners and no longer follow development of

the tool “[The tool] was supported by [our partner]. We have no input if the tool has

been used.” (author #26) There are cases where the partnership does not continue after

the publication of the paper or some other condition occurs. The industrial partner is

likely free to continue using the developed tool, but the authors from the academic side

are no longer part of its evolution and do not receive updates and feedback regarding the

subsequent challenges and achievements.

The cost-benefit ratio was off “We tried to use it within [our partner]. It seemed to

work fine but the cost associated with the 1% bugs that were missed is too high” (author

#43). Even if a TCS technique detects 99% of bugs by running a very small set of tests,

practitioners will be skeptical of using as a replacement for TestAll strategy. After all,

although testing is a costly procedure, it is still much cheaper to detect an error during

testing than after the software has been shipped to customers.



Literature Review 49

Figure 3.8 shows the relationship between the applicability criteria and the approaches

that have seen real-world usage. The figure shows approaches with at least two papers

put into practice7. Unsurprisingly, the most common information-type and algorithm-type

approaches are the ones that see the most real-world usage. Coverage-based approaches

dominate the implementations of techniques, despite previous concerns regarding the cost

of measuring coverage [63]; although time-consuming, coverage measurements are easy

to obtain in most programming languages. Conversely, there are 16 papers proposing

machine learning approaches, but only three were implemented, likely because machine

learning models are only as good as the data they are fed; often, obtaining data of enough

volume and quality is more difficult than implementing the method itself.

From the practitioners’ point of view, one possible source of information is grey literature

— that is, material produced by experts and published without peer-review. However,

this data is decentralized and unstructured, making it difficult to locate useful informa-

tion. We did find one example: Netflix has a post on their blog [71] describing a system

they developed inspired by S25. This indicates that grey literature might be worthy of

investigation, but such an effort would fall beyond the scope of the current study.

To provide some insight into the state of practice, we surveyed 23 practitioners who are

involved with software development and/or testing at their workplace. 60% of respondents

claim they do not know about RT tools that originated from research, which corroborates

the well-known lack of communication. 35% say they use or have used a tool to aid RT;

however most of these claim the tool was developed specifically for their needs, so it is

not clear that their origins can be traced back to Software Engineering research.

Summary of RQ3.3. From the papers and the responses we received, we have

evidence that 20 papers propose techniques that are still being used in practice. It is

a relatively small number, but it shows that RT research can have concrete positive

impact on real-world software development. Unfortunately, many of the techniques

that are implemented fall out of use after some time, as an ongoing effort is needed

to motivate their usage and keep the tool relevant and updated. There is a hint of

evidence stemming from grey literature, although practitioners themselves, when

surveyed, mostly claim to be unaware of RT techniques originated in academia.

7Constraint-based, graph-based, similarity-based, trace-based, manual classification, cost-aware and
history-based approaches have one paper each implemented in practice.



Literature Review 50

3.5 Threats to Validity

Construct validity Despite our efforts to comprehensively find all primary studies

that meet our selection criteria, we might have missed some. To mitigate this threat,

we performed a systematic search over five broad digital libraries and complemented the

search with a snowballing cycle and a check with authors of all found studies, who in fact

suggested a few additional entries.

As usual for this kind of study, our selection of papers was performed through queries,

followed by manual filtering. To diminish potential bias of the latter step, the filtering

process was systematically reviewed and agreed upon among all the three authors.

Internal validity The internal validity of this study is strongly dependent on the three

research questions that guided all our analysis as well as the data extraction form we built.

We took great care in ensuring that they properly reflect our objectives, although it is

unavoidable that, by formulating different questions or using other data extraction forms,

we could have obtained other results. We might also have overlooked or misinterpreted

some important information or arguments in the primary studies, beyond our best efforts

and accuracy in the full reading of all selected papers. To mitigate such threats we

provide all extracted data in traceable format, highlighting the main points we extracted

from each primary study. Furthermore, the responses we received directly from authors

often provide additional context that reduce the risk of misinterpretation. That said, we

cannot make the full responses available due to non-disclosure requests from some authors.

Conclusion validity The conclusions we drew in terms of the information we summa-

rize from the primary studies, the detected challenges we discuss in the above section and

the recommendations we formulate in the conclusions might have been influenced by our

background, and other authors might have reached different conclusions. Such potential

bias is unavoidable in this type of study, however we tried to mitigate it by aiming at

full consensus of all authors behind each conclusion. Furthermore, by documenting in

detail the data extraction process, we ensure a fully transparent study that can be ver-

ified and replicated. The survey sent to practitioners helps to validate our conclusions.

Although the sample of 23 responses is very small, it shows a degree of alignment among

people working in six different countries. A convenience sample was used to distribute



Literature Review 51

the survey; thus, the practitioners we reached are more likely to have some contact with

ongoing research. To avoid excessive bias in that direction, we did not contact members

of industry who are known to regularly publish in Software Engineering events.

External validity We do not make any claim of validity of our conclusions beyond

the 79 papers analyzed. As more primary studies are published, they should be read and

analyzed on their own, and our conclusions should be revised accordingly. In consideration

of this threat, in the aim of ensuring validity even in future, we are committed to keep

the live repository up-to-date, taking into account the community inputs. Moreover, we

believe that the framework we developed consisting of the three research questions, the

data extraction form and the structured tables for summarizing the approaches and the

metrics could be still applicable also by other external authors.





Chapter 4

Test Suite Orchestration

We understand test suite orchestration as a series of steps that can be performed before

the execution of a test suite, with the objective of improving the effectiveness and effi-

ciency of the suite. This can have an impact in the moments that immediately follow the

orchestration, as well as in the long-term evolution, health and usefulness of the suite, as

it adapts to an SUT that is also continuously evolving.

As a step towards the goal of fully automated orchestration of test suites that can be

useful in real-world software, we focus here on regression testing techniques extracted

from the existing literature that have been conceived for practical relevance and scalability.

Specifically, as a representative TCS approach we adopt Ekstazi [48] while for TCP we

use FAST [99]. The criteria used for selecting these tools were: their cost-effectiveness

and simplicity of application; their availability as open-source programs; finally, also for

convenience as authors of both tools were also involved with the development of the

current study.

Concerning TCS, in an empirical study conducted in 2014 [49], the authors observed

that many techniques were not adopted in practice and developers mostly continued to

perform manual selection of test cases. Motivated by this study, Gligoric et al. [48]

proposed Ekstazi, a lightweight TCS technique that leverages file dependencies. Besides

the original paper on Ekstazi, several follow-up studies showed the benefit of file-based

selection over other approaches [76, 154].

Concerning TCP, in a recent study Miranda et al. [99] showed that many existing tech-

niques do not scale-up to large test suites. They hence proposed the FAST approach

53



Test Suite Orchestration 54

that applies Locality-Sensitive Hashing (LSH) techniques [79] for similarity-based prior-

itization. In the original work, the authors assess FAST against several competing TCP

techniques, showing that it gives comparable effectiveness but with higher efficiency.

This work stems from the simple yet powerful idea of comparing these two approaches—

TCS by Ekstazi and TCP by FAST—and possibly taking the advantages of each while

overcoming their potential shortcomings. We make the following two observations:

• Ekstazi comes with no notion of test case priority: it assumes that all the selected

test cases are run and makes no distinction about whether a failure is found by the

first or the last executed test case;

• FAST reorders tests with the goal to detect failures early, but does not consider

recent code changes, whereas we know from practice that these are related with

failures, e.g., [73, 36].

By combining Ekstazi and FAST, we aim at developing a practical and effective approach

to regression testing that we call Fastazi. This is meant to be practical because it combines

two scalable techniques, and effective because it overcomes the above shortcomings of each.

In particular, this combined approach aims to decrease developer feedback time, which is

the time it takes for a developer to receive a test failure notification once testing begins.

Clearly Fastazi is one instance within a plethora of possible combinations of many existing

TCS and TCP approaches, and further studies should be conducted to evaluate different

combinations. Indeed, following the case made by Harman [57], research in combining

multiple criteria in the context of one regression technique is very active, e.g., [40, 47].

Much less attention has been devoted so far to using multiple criteria while combining dif-

ferent regression techniques, which we see as an essential part of test suite orchestration.

Di Nardo et al. [30] applied and assessed minimization, selection and prioritization tech-

niques on a single industrial case study, but only considering coverage-based criteria; Silva

et al. [130] proposed to combine prioritization and selection based on function criticality

(assessed manually); Najafi et al. [102] evaluated selection and prioritization based on test

execution history on a large industrial system; Shi et al. [128] combined and evaluated

test reduction (based on coverage) and selection (based on changes). Fastazi is the first

regression test orchestration approach that combines file-based TCS with similarity-based

TCP.



Test Suite Orchestration 55

We compared Ekstazi, FAST and their orchestration through Fastazi using a set of 12

projects (from the Defects4J repository [68]). Our results shows that for most subjects,

executing a change-aware selection of test cases (in random ordering) detects the first

failure faster than executing the whole prioritized suite (based on similarity). However,

we also observed that adding FAST ordering on top of Ekstazi selection further improves

effectiveness at negligible additional cost.

To conclude this study and provide a direction for future evolution of test orchestra-

tion strategies, we provide a discussion on methods of incorporating other TCS or TCP

techniques, along with potential combinations with TSR and TSA approaches.

In summary, our contributions include:

• an empirical study comparing TCS against TCP, and their orchestration against

each technique alone;

• the novel Fastazi approach to regression testing that combines filed-based TCS and

similarity-based TCP;

• a replication package1 including Fastazi implementation and all data from the study.

For practitioners our results signify not only a further confirmation of change-aware se-

lection validity, but also the convenience of executing the selected test cases in prioritized

order based on their similarity. In fact, using state-of-art scalable techniques as FAST over

the selected test subset can help detect failures faster at virtually no cost. For researchers,

this paper signifies the importance of studying regression techniques as an orchestration

rather than individually, and opens up the floor for many potential experiments in which

various TCS techniques are compared against, or combined with, various TCP techniques.

In Section 4.2 we provide a short summary of the TCS and TCP approaches that we

compare and combine, while in Section 4.3 we present Fastazi. The study methodology is

described in Section 4.4 and the results are discussed in Section 4.5. Finally, in Section 4.6

we draw brief conclusions derived from this study and discuss the possible next steps in

the evolution of this work.

1Available at: https://doi.org/10.5281/zenodo.5851288

https://doi.org/10.5281/zenodo.5851288


Test Suite Orchestration 56

4.1 Research Questions

We evaluate Ekstazi against FAST, and their combination (Fastazi) against either of them,

considering first their effectiveness in failure detection (RQ4.1). Then, based on the real

example shown in Figure 4.1, we hypothesize that the potential gain in effectiveness of a

combined approach could be better observed under a limited test budget (RQ4.2). Finally

we also compare their efficiency (RQ4.3). Precisely, we formulate the following research

questions:

RQ4.1 How do Ekstazi, FAST, and Fastazi compare in terms of effectiveness?

For the scope of this study, the comparison between the respective effectiveness of the three

approaches can be based on how quick they are in detecting the failures. As FAST uses

the whole test suite, we know it will detect all regression failures as a retest-all technique.

Also, Ekstazi is developed as a safe TCS technique, thus it should, as well, detect all

failures found by retest-all. Consequently, Fastazi too detects all failures. Thus, we refine

the above question into the following two sub-questions:

RQ4.1.1 Between Ekstazi and FAST, which tool detects failures running

fewer tests? While both Ekstazi and FAST have been shown to be effective in fail-

ure detection, we do not know whether when a new project version is released, potential

regression failures would be revealed earlier by selecting those test cases that are affected

by the changes (and randomly ordered) or instead by prioritizing test cases based on their

similarity.

RQ4.1.2 How does Fastazi compare against Ekstazi and FAST with respect

to feedback time? It is unclear if, and by how much, a combination of both techniques

would provide lower feedback time from a test suite. With this question, we aim to

discover if the orchestration of TCS and TCP has a positive and substantive impact to

the regression testing workflow.

RQ4.2 How does a limited testing budget affect the effectiveness of the three

approaches? While in RQ4.1.1 and RQ4.1.2 we compare Ekstazi, FAST, and Fastazi

without considering possible time constraints, with this RQ we aim at assessing whether,



Test Suite Orchestration 57

and how, testing under limited resources impacts each of the three approaches. This

problem is similar to cost-bounded selection [24] (i.e., selecting test cases according to

a predetermined budget), which can be a concern in large-scale industrial projects [36].

TCS and TCP each provide benefits when it is not possible to test 100% of the test suite

in each execution, but they cannot assumed to be safe in these circumstances. Perhaps

an orchestrated test suite would viable at even stricter testing budgets.

RQ4.3 How do Ekstazi, FAST and Fastazi compare in terms of time effi-

ciency? With this question, we aim to discover what is the additional cost in terms of

time required by either technique alone, and then by their orchestration. Inevitably, the

orchestration increases total testing time, and we aim at assessing such drawback.

4.2 Background

4.2.1 Ekstazi

Ekstazi [48] is a change-based and coarse-grained approach to TCS. It works by collecting

test case dependencies (i.e., set of used classes by each test case) during an initial run of

the entire test suite, then by selecting the test cases based on the changes applied to those

dependencies from one version of the software to another. In doing this Ekstazi applies

a file-level granularity : any code changed within a file that is related to a test case will

result in that test being selected. To compare two versions of a file, Ekstazi uses cyclic

redundancy check (CRC). For example, consider a test t that invokes a function a. If a

change is made to another function b located in the same file as a, t will be selected (as

the CRC of the file changed).

The result of this approach is an over-approximation of the subset of selected tests. Al-

though Ekstazi selects, on average, more tests than fine-grained TCS solutions (e.g., those

that track dependencies on methods), the authors demonstrated that the actual selection

time is much faster than the alternatives. Consequently, the total end-to-end time (i.e.,

time to select tests + time to execute selected tests) tends to be lower, even if more tests

are selected.



Test Suite Orchestration 58

We chose Ekstazi for our study for its efficiency and ease of use: Ekstazi is publicly

available as a plug-in for various Java build systems. Furthermore, aiming eventually

at an orchestration of TCS plus TCP with the objective of reducing feedback time, we

considered that a prioritized test suite could mitigate the drawbacks of over-selecting test

cases.

4.2.2 FAST

FAST [99] utilizes test source code as input for a similarity-based algorithm to prioritize

the tests. Inspired by big data techniques, string representations of test cases are trans-

formed using minhashing signatures, which are then ordered according to their similarity.

The benefits of FAST are low overhead and scalability, which make it usable for large

software projects. We chose it because of its low running times and relatively simple

implementation.

FAST authors [99] examined several possible variations of it that trade off efficiency for

accuracy when choosing the next test(s). These are all stochastic by nature; as the

authors point out, if two test cases are ranked equally, the tie is solved randomly. In

our experiments with FAST we observed that FAST-pw (which is one of the variations)

produced consistently similar permutations when executed more than once with the same

test suite. This was an expected result given that FAST-pw is designed to always select

the test case that is the furthest away from the set of already-prioritized tests. It does so

by computing the similarity between each candidate test and the set of already-prioritized

tests in a pairwise fashion. Furthermore, FAST-pw was able to rank failing tests higher

than other variations. Therefore, in this paper we consider the FAST-pw variant, and in

the following we refer to it simply as FAST.

4.3 Fastazi

Many researchers have shown that TCS and TCP provide substantial benefits to regres-

sion testing [4, 69, 70, 122]: a good selection decreases the overall testing time, while a

good prioritization allows for detecting failures faster. However the two concepts are not

mutually exclusive, and an orchestration of both may provide even further improvements,

e.g., [133, 36].



Test Suite Orchestration 59

T
t1
t2
t3

t170

t363

1

2

3

170

363

...

...

...

...

S
t1
t2
t3

t170

t325

1

2

3

78

134

...

...

...

...

P
t101
t63
t46

t170

t359

1

2

3

17

363

...

...

...

...

O
t321
t46
t3

t170

t324 

1

2

3

9

134

...

...

...

...

T: complete test suite; S: selection by Ekstazi;
P: prioritization by FAST; O: orchestration by Fastazi.

Figure 4.1: Sample outputs of Ekstazi, FAST and Fastazi

If a test suite T is selected and prioritized, both testing time and feedback time can be

decreased. Recall that, as seen in Section 2.2.1, TCP can be defined as a function P (T )

that outputs a permutation of T for a given SUT. Furthermore, as detailed in Section 2.2.2,

TCS can be seen as a function S(T ) that produces a subset of T considering the differences

between versions of an SUT2. Then, the goal of an approach that orchestrates TCS and

TCP is to generate another function, O(T ), whose output is smaller than T and ordered

to speed up failures detection. When discussing possible ways of orchestrating TCS and

TCP, two approaches stand out.

Parallel execution. One approach is to independently perform the prioritization and

selection of the entire test suite, and then arranging the selected tests according to the

ordering given by prioritization. This approach has the advantage of allowing parallel

execution of S(T ) and P (T ) and merging their outputs, instead of having one depend

upon the other. To combine the outputs, it is sufficient to go through the prioritized list

of tests and remove the ones that are not included in the selection.

Sequential execution. Another possible approach to the idea is performing selection

first and then prioritizing the output. The advantage of this approach is reducing the

running time of the prioritization, which would focus on the tests impacted by the changes

2For simplicity of notation, in this section we omit the SUT and its subsequent versions as parameters
to the S and P functions as, for the purposes of experimentation, they can be thought of as information
inextricably linked to the test suite T .



Test Suite Orchestration 60

and thus more likely to fail. However, this also means that the selection and prioritization

steps cannot be performed simultaneously (although it is still possible to parallelize the

preparation steps). Intuitively, it is not clear which option should be more effective or

efficient than the other. Indeed, our experiments show that the effectiveness and efficiency

of the parallel and sequential approaches are statistically equivalent (according to the same

analysis detailed in Section 4.5). For lack of space, henceforth Fastazi results always refer

to the sequential execution, while the results of the parallel combination are available in

the replication package.

As an example, Figure 4.1 contains sample outputs from Ekstazi, FAST and Fastazi3.

Colored red, t170 is the failing test within a test suite T of 363 test cases. In S, the output

of Ekstazi, this test is found in the 78th position, because several tests were excluded

during the selection, while in the output P of FAST, it is moved up to the 17th position.

Finally, the output of Fastazi, O, which is selected and prioritized, promoted the test to

the 9th position.

Algorithm 1 provides an abstract view of Ekstazi and FAST4, and outlines how Fastazi

works in practice. Ekstazi requires tests to be compiled before performing selection, while

FAST needs the hash signature of each test before prioritizing the suite. These two

steps are independent and can be performed in parallel (they are both abstracted by the

function GetHashesAndModified). After that, Ekstazi can perform its selection normally,

and FAST prioritizes the resulting list of tests.

It is important to observe that, while we utilize Ekstazi and FAST as representative

implementations of TCS and TCP, the idea behind Fastazi could be attempted using

different approaches. There are many proposed techniques that address TCS and TCP;

combining different ones would inevitably result in changes to effectiveness and efficiency.

4.4 Experiments

3This example is based on results of the experiments on Chart v26. Actual names of test cases are
omitted for clarity.

4For a complete understanding of Ekstazi and FAST, refer to [48, 99].



Test Suite Orchestration 61

Algorithm 1 Ekstazi, FAST and Fastazi overview

1: function GetHashesAndModified(files F )
2: M,C ← ExistingHashes(F)
3: M ′ ← ∅ . Minhashes for FAST and CRC for Ekstazi
4: F ′ ← ∅
5: for f ∈ F do
6: M ′[f ]← ComputeHashes(f)
7: if M [f ] 6= M ′[f ] then
8: Append(F ′, f)

9: return M ′, F ′ . Updated hashes and modified files.

10: function Ekstazi(test suite T , files F )
11: S ← ∅
12: for f ∈ F do
13: for t ∈ T do
14: if TestDependsOn(t, f) then
15: Append(S, t)

16: return S . A selected test suite.
17: function FAST(test suite T , hashes M)
18: P ← ∅
19: while |P | 6= |T | do
20: t ← PickNextTest(T , P , M) . Pick the test that is furthest away from the

so-far-ordered tests P based on M .
21: P ← Append(P , t)

22: return P . A prioritized test suite.

23: function Fastazi(test suite T , files in the project F )
24: Compile(T ) • M,F ← GetHashesAndModified(F ) . Compiles the test suite

using the build system and, in parallel, computes hashes and detects modified files.
25: S ←Ekstazi(T , F )
26: P ←FAST(S, M)
27: return P . A selected and prioritized test suite.

4.4.1 Evaluation Metrics

The primary objective of TCS is to reduce the total number of tests executed per run,

while TCP, on the other hand, has the goal of detecting failures quickly and reduce the

feedback time of the test suite. Thus, the metric for an orchestration should somehow

measure both of these objectives.

For RQ4.1, we utilize a metric called Time To First Failure (TTFF) [149]. Given a

test suite T , its TTFF indicates the position of the first test to detect a failure. A low

TTFF indicates that the test suite provides quick feedback. TTFF is a useful metric

to evaluate both TCS and TCP, because it simultaneously encourages a tight selection

of truly relevant tests and a prioritization that puts a failing test at the top of the list.



Test Suite Orchestration 62

However, since the output S of TCS is a subset of T , its size might be smaller than the

output P of TCP. Therefore, for fairness, all TTFF results in this paper are normalized

according to size of T . For example, if |T | = |P | = 1000, |S| = 100 and a failing test is

in the 100th position of P but the the 50th position of S, then TTFF (P ) = 0.10 and

TTFF (S) = 0.05.

We also utilize Average Percentage of Faults Detected (APFD), the most popular metric

for evaluating TCP solutions [70]. It is not designed to evaluate TCS and thus may not

provide a fair comparison for Ekstazi; however, as previously explained, we assess here

effectiveness in terms of how fast failures are detected by the compared techniques, and

for this APFD provides an intuitive, well known assessment.

Regarding RQ4.2, when considering a limited testing budget, we use the output from

RQ4.1 and create versions of the suites that are cut off at certain points, according to the

budget restriction. This data is analyzed in two ways: first, we observe, for each version

of each subject, the proportion of the 30 variations that were able to detect the failure or

not. Then, we also reduce this number into a binary form: 1 if the test suite detects the

failure in all of its 30 variations, and 0 otherwise. This has the effect of punishing suites

that are somehow inconsistent, rewarding those that catch the failure every time, since it

can be important that an approach is consistent and reliable.

Finally, for RQ4.3, we measure the time taken to execute the discrete steps of the ap-

proach. For this, we use the GNU time utility (user+sys CPU time) to measure each step

of the experiment individually, allowing us to understand where are the bottlenecks of the

approaches.

4.4.2 Experiment Design and Execution

The goal of the experiment is to compare four possible arrangements of the test suite:

the tests selected by Ekstazi; the test suite prioritized by FAST; the orchestration of both

with Fastazi; and a random ordering of the test suite to provide a base case. Considering

that both Ekstazi and FAST have been previously compared to several competing TCS

and TCP approaches [76, 154, 99], we deemed it not necessary to add further alternatives

in a direct comparison between the two tools.



Test Suite Orchestration 63

Subject # Versions Min. # Tests Max. # Tests

Chart 26 303 363
Cli 30 24 85
Closure 168 236 258
Codec 8 34 52
Collections 4 157 165
Compress 39 44 133
Gson 18 77 119
Jsoup 93 12 39
JxPath 4 27 33
Lang 28 87 178
Math 100 137 821
Time 23 121 123

Total 541 n/a n/a

Min. # Tests and Max. # Tests show the smallest and largest test suites, respectively, among all
versions of a certain subject.

Table 4.1: Subjects Used in the Evaluation.

We utilize as subjects 12 projects available as part of the Defects4J repository [68] that

contains multiple versions of Java-based open-source software projects of different sizes.

Each version is comprised of one commit containing a bug, the commit that fixed the

bug, and metadata such as the files related to the bug, and which tests would detect

it. Table 4.1 shows basic properties about each project used in our evaluation. For each

project, we show the number of versions used and minimum and maximum number of test

cases (across versions). A few versions were skipped, either because their bugs are listed

as deprecated by Defects4J, or because we ran into compilation issues for them (e.g., due

to Java version incompatibility).

We use Ekstazi version 5.3, available on the project’s website5, as a plug-in for the Maven

and Ant build systems. A script is used to automatically incorporate the Ekstazi task into

a project’s build script, allowing us to easily perform test selection over multiple versions

of different subjects.

In the case of FAST, we use the source code from the replication package of the original

paper6. This code was modified by us with two purposes. The first was to make FAST

version-aware by storing the hash signatures of test cases between versions so they do not

5http://ekstazi.org
6https://github.com/icse18-FAST/FAST

http://ekstazi.org
https://github.com/icse18-FAST/FAST


Test Suite Orchestration 64

need to be re-computed unless there is a modification. This is important because comput-

ing the hashes is the most time-consuming part of FAST, so storing these representations

for unchanged tests greatly reduces overhead after an initial execution. In addition, it

was updated to guarantee that the input and output of both Ekstazi and FAST are in

the same format.

Fastazi was not incorporated into the build system, but its results can be easily generated

by using the output of Ekstazi as input for Fastazi, as shown in Algorithm 1. Observe that

change-based TCS provides no benefit in the initial version of a project, since there are

no changes to be detected; thus the first output of Fastazi, for each experiment subject,

is identical to using FAST in isolation.

To collect the metrics, we did not actually execute the test suites given by each approach.

First we collect the outputs of the approaches as text files containing lists of tests and

then we calculate the metrics according to the position of the failing test(s) (ground truth

given by Defects4J).

When measuring TTFF, the default order of test executions could have a large impact on

(unprioritized) test suites; hence, for fairness we shuffled the output of Ekstazi 30 times

and reported the average of these repetitions. Similarly, to account for the nondetermin-

istic behavior of FAST, Fastazi and random, their outputs are also generated 30 times to

reduce any potential noise in the data7.

The experiments were executed in a Docker container running Ubuntu 20.04 LTS, using

Java OpenJDK 1.8.0, Apache Maven 3.6.3, and Apache Ant 1.10.7. On all the projects,

JUnit version was set to 4.12. The host computer was running macOS 11.0.1 on a 6-core

Intel Core i7 processor, with 32GB RAM and SSD storage.

4.5 Results

4.5.1 RQ4.1: Effectiveness

The answer to RQ4.1 contains two parts: first, we compare the effectiveness of Ekstazi

and FAST against each other (RQ4.1.1), and then, we assess whether orchestration TCS

7We experimented with values between 10 and 50 and found that 30 provided a good amount of data
without severely impacting the running time.



Test Suite Orchestration 65

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●
●●

●

●

0.00

0.25

0.50

0.75

1.00

Ekstazi FAST Fastazi Random

Figure 4.2: Normalized TTFF of different approaches

and TCP ultimately improves effectiveness (RQ4.1.2). For the sake of space we show the

results for both subquestions within unified plots and tables.

The TTFF results are displayed as violin plots in Figure 4.2, in which each version of

each subject is one data point (totaling 541). The violin plots display, in addition to

the median and interquartile ranges, the full distribution of the data, which allows us to

identify the different peaks in a distribution. For the TTFF metric, the lower the result,

the better.

The visual assessment of the data shows us that the median TTFF achieved by Ekstazi

and FAST are both close to 45% (the two leftmost plots in Figure 4.2), although there

is a large difference in the distribution of the results. This can be explained in part by

the experiment design – since Ekstazi’s TTFF is an average of 30 permutations of S, the

value tends to be close to the center. Indeed, we can see that the median for Random is

very close to 50%, while Ekstazi is lower than that because S is frequently smaller than

T .

When adding Fastazi to the comparison, we can see that its median TTFF is much

lower, at around 25%, which is slightly over half the medians of Ekstazi and FAST. Both

FAST and Fastazi can, in some instances, produce a TTFF close to 100%, meaning that

the failing test is found at the very end of the test suite. In the case of FAST, this is

explained by the fact that similarity-based TCP can occasionally produce poor results if

there are multiple similar test cases out of which only one reveals the failure.

With Fastazi, this happens less frequently; when it does, it is caused by performance of

both Ekstazi (selecting nearly 100% of the test suite) and FAST (ranking the failing test

low) in specific subject versions.



Test Suite Orchestration 66

After the visual inspection we proceeded with the statistical analysis of the data. As

we could not assume our data to be normally distributed, we adopted a non-parametric

statistical hypothesis test, the Kruskal-Wallis rank sum test8. We assessed at a significance

level of 5% the null hypothesis that the differences in the TTFF values are not statistically

significant. The observed differences in TTFF were statistically significant at least at the

95% confidence level (p-value < 2.2e-16).

Provided that significant differences were detected by the Kruskal-Wallis test we per-

formed pairwise comparisons to determine which approaches are different9. The results

are displayed in Section 4.5.1 (column Group for TTFF). If two approaches have different

letters they are significantly different (with α = 0.05). If, on the other hand, they share

the same letter, the difference between their ranks is not statistically significant. The

approach (or group of approaches) that yields the best performance is assigned to the

group (a). Looking at the results in Section 4.5.1, we can tell that Fastazi is different

from (better than) Ekstazi (b). Ekstazi, on its turn, is different from (better than) FAST

(c), and all the approaches are different from (better than) Random (d).

Approach
TTFF APFD

Med SD Group Med SD Group

Fastazi 0.25 0.27 (a) 0.75 0.27 (a)
Ekstazi 0.39 0.14 (b) 0.62 0.14 (b)
FAST 0.41 0.29 (c) 0.60 0.29 (c)
Random 0.49 0.09 (d) 0.51 0.09 (d)

Med is the median, SD is the standard deviation, and Group displays the result for the pairwise
comparisons after the Kruskal-Wallis test.

Table 4.2: TTFF and APFD for the different approaches.

To understand the effect of choosing one technique over another on the effectiveness of the

test suite, we measured the effect size using the Vargha and Delaney Â12 measure [139],

which tells us the probability of an observation from one group being larger than an obser-

vation from the other group. The results are displayed in Section 4.5.1. For interpreting

the results, the Â12 measure ranges from 0 to 1, and when the measure is exactly 0.5 the

two techniques (in the column name) have equal performance. When Â12 > 0.5, the first

technique outperforms the second, and when Â12 < 0.5, the second technique outperforms

the first. Vargha and Delaney suggest that the effect size is small if the measure is over

8We used kruskal.test() from the Stats package in R.
9A significant Kruskal-Wallis test indicates that there is a significant difference between approaches,

but does not identify which pairs of approaches are different.



Test Suite Orchestration 67

Subject
Fastazi vs Fastazi vs Fastazi vs Ekstazi vs
Random FAST Ekstazi FAST

Chart 0.82 (L) 0.79 (L) 0.57 (S) 0.78 (L)
Cli 0.85 (L) 0.56 (S) 0.81 (L) 0.23 (L)
Closure 0.62 (S) 0.55 (N) 0.56 (S) 0.51 (N)
Codec 0.88 (L) 0.66 (M) 0.66 (M) 0.52 (N)
Collections 0.50 (N) 0.66 (M) 0.44 (N) 0.63 (S)
Compress 0.82 (L) 0.65 (M) 0.59 (S) 0.58 (S)
Gson 0.69 (M) 0.58 (S) 0.60 (S) 0.47 (N)
Jsoup 0.63 (S) 0.64 (M) 0.51 (N) 0.66 (M)
JxPath 0.50 (N) 0.56 (S) 0.44 (N) 0.57 (S)
Lang 0.66 (M) 0.63 (S) 0.65 (M) 0.58 (S)
Math 0.83 (L) 0.66 (M) 0.64 (M) 0.57 (S)
Time 0.60 (S) 0.61 (S) 0.52 (N) 0.61 (S)

L, M, S and N indicate large, medium, small and negligible effect size, respectively.

Table 4.3: Effect size per subject.

0.56, medium if over 0.64, and large if the measure is over 0.71. As an example, when

comparing Fastazi against Random for the subject Chart, Fastazi outperforms Random

with a large effect (Â12 = 0.82) on the testing effectiveness. We can see that Ekstazi

generally outperforms FAST, most of the time with a negligible or small effect, but there

are cases where FAST outperforms Ekstazi. Fastazi, on its turn, outperforms Ekstazi and

FAST with a non-negligible effect in the vast majority of the cases (18 out 24). The effect

of choosing Fastazi over Ekstazi or FAST on the test effectiveness is large or medium in

11 cases.

While TTFF captures how many test cases are required to reveal the first failures, the

APFD metric measures the speed at which failures are revealed.

●

●

●

●

●

●

●

●

●

●

●●
●●●●
●●●
●

●

●

0.00

0.25

0.50

0.75

1.00

Ekstazi FAST Fastazi Random

Figure 4.3: APFD of different approaches.



Test Suite Orchestration 68

The observed APFD results are displayed as violin plots in Figure 4.3. For the APFD

metric, the higher the better. Visual assessment of the results lead to the same conclusion

as for TTFF: Ekstazi and FAST have similar medians, although FAST sometimes performs

very poorly, while Fastazi has a higher median than both and mitigates most instances of

poor performance from FAST. It is also visible that the peak of the distribution of Fastazi

leans towards the highest possible values, while Ekstazi peaks at around 0.6.

Statistical analysis results are reported in Section 4.5.1 (right side). We performed again

the Kruskal-Wallis rank sum test, followed by the pairwise multiple comparisons. All

results in Section 4.5.1 are statistically significant at the 5% significance level. Both the

groups assigned to each approach and the results of the effect size analysis were the same

as the ones observed for the TTFF metric.

Summary of RQ4.1. While statistically significant differences were observed for

the comparison between Ekstazi and FAST, a further investigation of the effect size

revealed that the effect of choosing Ekstazi over FAST is either small or negligible

in almost all the cases. Fastazi, on the other hand, outperformed Ekstazi and

FAST with a non-negligible effect in the vast majority of the cases, suggesting that

adopting Fastazi can help improving the testing effectiveness.

4.5.2 RQ4.2: Effectiveness Under a Limited Budget

To answer RQ4.2, we proceeded with a detailed analysis of the impact of limiting the

number of test cases with respect to those that would be run by Ekstazi. We investigated

the impact on the failure detection capability of all the approaches when the testing

budget is gradually reduced from 100% (no budget restrictions) to 25% of the test suite

selected by Ekstazi, at steps of 25%. We discuss our findings first at a higher level, then

with a more in-depth analysis of the results for each of the subjects considered in our

study.

Figure 4.4 depicts the impact on failure detection capability on the different approaches.

The results are grouped per budget (25% to 100%) and each approach is represented by

a violin plot. For each version of each subject we counted how many times, out of the

30 repetitions (see Section 4.4.1) each approach would be able to reveal the failure under

the different budget restrictions (the number of observation in each violin plot is thus the



Test Suite Orchestration 69

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●
●
●●

●●
●
●

●

●

●●
●
●

●

● ●●
●
●
●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●
●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●●
●

●●
●
●

●
●

25% 50% 75% 100%

0

10

20

30

Ekstazi FAST Fastazi Random

Each panel represents a different budget constraint (100% is defined as the percentage of the test size
selected by Ekstazi). The vertical axis shows how many times, out of the 30 repetitions, each approach is
able to reveal the failure.

Figure 4.4: Impact on failure detection capability in a budget-constrained scenario.

same as the total number of versions, i.e., 541). The vertical axis varies from 0 to 30,

respectively the minimum and maximum number of times an approach could reveal the

failure across the 30 repetitions. Notice that for this RQ it is not a concern whether the

failure is revealed by the first or the last test case, as this was already answered by RQ4.1;

the concern here is whether the failure is revealed.

We can draw several observations from Figure 4.4: i) the median number of times the

random approach can reveal the failure decreases almost uniformly as the budget becomes

stricter; ii) because Ekstazi is the result of Ekstazi selection with random ordering, the

observed medians and distributions are always slightly better than random, but follow-

ing a similar trend as the one observed for random; iii) Fastazi outperforms the other

approaches up to a budget restriction of 50%; iv) for the more restrictive budget of 25%

the median of Ekstazi and even random are better than those of the Fastazi approach.

Looking at the shape of the violin plots, however, we can see that even with a lower

median Fastazi appears to have more observations leaning towards the maximum possible

value.

To better understand such a behavior we analyze the data again from a different perspec-

tive in Figure 4.5, in which we observe the impact on failure detection capability on a per

subject basis. This time, however, instead of counting how many times the failure would

be revealed across the 30 repetitions, we are interested in the cases where the approach

would consistently reveal the failure across all the repetitions for a given version. In this

way we do not reward the cases where an approach would be able to reveal a failure by

pure chance. Each subject is represented by a grouped bar plot and the height of each bar

represents the number of times the approach was able to consistently reveal the failure,



Test Suite Orchestration 70

0.
05

0.
09

0.
14

0.
18

0.
23

0.
28

0.
32

0.
37

0.
42

0.
46

0

6

13

20

26

C
ha

rt
0.

08
0.

18
0.

27
0.

36
0.

45
0.

54
0.

63
0.

72
0.

81
0.

91

0

8

15

22

30

C
li

0.
08

0.
17

0.
25

0.
34

0.
42

0.
51

0.
59

0.
68

0.
76

0.
85

0

42

84

126

168

0

.25

.5

.75

1

C
lo

su
re

0.
04 0.

1
0.

15 0.
2

0.
26 0.

3
0.

35
0.

41
0.

46
0.

52

0

2

4

6

8

C
od

ec

0.
09

0.
18

0.
27

0.
36

0.
45

0.
55

0.
63

0.
73

0.
82

0.
91

0

1

2

3

4

C
ol

le
ct

io
ns

0.
05 0.

1
0.

15
0.

21
0.

26
0.

32
0.

37
0.

42
0.

47
0.

53

0

10

20

29

39

0

.25

.5

.75

1

C
om

pr
es

s

0.
08

0.
16

0.
25

0.
33

0.
42 0.

5
0.

58
0.

67
0.

75
0.

84

0

4

9

14

18

G
so

n

0.
06

0.
14

0.
21

0.
29

0.
37

0.
44

0.
52

0.
59

0.
67

0.
76

0

23

46

70

93

Js
ou

p

0.
07

0.
16

0.
25

0.
33

0.
43

0.
52 0.

6
0.

69
0.

78
0.

87

0

1

2

3

4

0

.25

.5

.75

1

Jx
P

at
h

0.
08

0.
16

0.
24

0.
32 0.

4
0.

48
0.

56
0.

65
0.

73
0.

81

0

7

14

21

28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

La
ng

0.
07

0.
14

0.
21

0.
27

0.
34

0.
41

0.
48

0.
55

0.
62

0.
69

0

25

50

75

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
at

h

0.
07

0.
15

0.
23

0.
31

0.
39

0.
46

0.
54

0.
62

0.
69

0.
77

0

6

12

17

23

0

.25

.5

.75

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
im

e

Ekstazi Fast Fastazi Random

The vertical axes represent the number of failures revealed in absolute (left) and in relative terms
(right), whereas the horizontal axes show the budgets w.r.t the number of tests selected by Ekstazi
(bottom) and w.r.t the total number of tests in the subject’s test suite (top).

Figure 4.5: Impact on failure detection capability grouped by subject and by budget.

both in absolute (left vertical axis) and in relative terms (right vertical axis). For exam-

ple, the maximum value in the left vertical axis for Closure is 168, which is the number

of versions we considered for that subject and, at the same time, the maximum number

of failures that can be revealed (one per version).

The primary horizontal axis (bottom) represents the budgets, from 10% to 100%, whereas

the secondary horizontal axis (top) shows what a given budget restriction would mean

with regards to the whole test suite. This is important because the size of the test suite

varies greatly across the subjects. For example, while a budget restriction of 50% for

Collections means that 45% of the whole test suite is selected, only 23% of the whole test

suite would be selected for Chart under the same budget restrictions (we recall that the

budget restriction is calculated over the size of the test subset selected by Ekstazi).



Test Suite Orchestration 71

By analyzing Figure 4.5 we can draw the following observations: i) with no budget restric-

tions (budget = 100%), Ekstazi and Fastazi were able to consistently reveal all the failures

across the 30 repetitions; ii) for any other budget value below 100% Fastazi outperformed

Ekstazi alone and FAST alone — in a very few cases FAST appears tied to Fastazi; iii)

Ekstazi can consistently reveal some failures for almost all the budgets for Chart. For all

the other subjects, it cannot reveal any failure for budgets restricted below 50%. For the

particular cases of Collections and Lang, Ekstazi cannot reveal any failure consistently

in the constrained budget scenario; iv) with the exception of Codec, Collections, and

JxPath, Fastazi was able to consistently reveal some failures across the 30 repetitions for

all the budgets, including the more restrictive budget of 10%.

Summary of RQ4.2: Without controlling for the differences across subjects,

Fastazi exposes the best failure detection capability even under restricted budgets,

except for under 25% reductions in which Ekstazi and even random appear to show

better median values. However, when we look from a per subject perspective and

reward the approaches that consistently reveal failures, Fastazi outperform Ekstazi

alone (with random ordering) and FAST alone (without TCS) for all the budgets

considered.

4.5.3 RQ4.3: Efficiency Comparison

To compare the time efficiency of Ekstazi, FAST, and Fastazi, we isolated the individual

steps of each approach and measured the average time each step took, across the different

versions of each subject program. In our measures, displayed in Section 4.5.3, the average

build time (column 2) for each project was substantially longer than any cost added by

Ekstazi, FAST, or Fastazi. This is an important observation because FAST can run its

preparation phase (column 3), i.e, computing hashes of added/modified test cases, in

parallel with the building process as it requires only test code. Fastazi takes advantage of

this aspect to minimize the time overhead. Ekstazi, on the other hand, requires the code

to be compiled before it can perform selection, so it cannot be run in parallel with the

build.

Looking at the average execution times for FAST, Ekstazi, and Fastazi (the three right-

most columns in Section 4.5.3) the two main things we can observe are: i) overall, FAST



Test Suite Orchestration 72

Project Build
FAST FAST Ekstazi Fastazi
(setup) (TCP) (TCS) (TCS + TCP)

Chart 4167 1105 112 3224 3259 (35)
Cli 2997 165 10 137 147 (10)
Closure 6627 1403 83 1571 1637 (66)
Codec 4581 551 6 163 166 (3)
Collections 6627 1043 29 237 259 (22)
Compress 4986 326 10 309 314 (5)
Gson 4901 221 20 297 313 (16)
Jsoup 6098 195 3 222 224 (2)
JxPath 3643 67 3 227 230 (3)
Lang 5032 621 37 262 287 (25)
Math 6903 1129 265 747 907 (160)
Time 11521 1439 20 500 515 (15)

Table 4.4: Average Running Times (in ms).

Comparison p-value Significance Effect Size (Â12)

FAST-Ekstazi 0.000462 *** 0.04 (large)
FAST-Fastazi 0.000366 *** 0.03 (large)
Fastazi-Ekstazi 1 ns 0.55 (negligible)

ns = not significant, *** means p-value ¡ 0.001

Table 4.5: Time Efficiency Comparison.

is the technique that incurs the least time overhead; and ii) the overhead of Fastazi with

respect to Ekstazi running time is generally very small.

To confirm our observations we performed the non-parametric Kruskal-Wallis rank sum

test, and the result (p-value = 4.5e-05) confirmed that at least one of the approaches was

different from the others with respect to the time efficiency. Provided that significant

differences were detected, we proceeded with pairwise comparisons to determine which

approaches were different and the results are displayed in Section 4.5.3. Statistically

significant differences were observed when comparing FAST with Ekstazi and Fastazi,

but not when comparing Fastazi with Ekstazi. Finally, to understand if the observed

differences in time efficiency are not only statistically significant but also meaningful to

support practitioners in the decision of whether Fastazi should be adopted, we measured

the effect size. The results can be interpreted in an analogous way of that explained

in Section 4.5.1. The effect size for the comparison of FAST with Ekstazi and Fastazi was

Â12 = 0.04 and Â12 = 0.03, respectively, indicating that the effect on the time overhead



Test Suite Orchestration 73

when running Ekstazi or Fastazi is large. On the other hand, the effect size for the

comparison between Fastazi and Ekstazi was Â12 = 0.55, indicating that the additional

time overhead incurred by Fastazi when compared with Ekstazi is negligible.

It is important to notice that such results concern the overhead time required by the

studied techniques, which are anyhow one or two orders of magnitude shorter than the

time required for actually running the whole test suites.

Summary of RQ4.3: When considering the three approaches in isolation, FAST is

the most efficient one and the difference with respect to the time overhead incurred

by the other approaches is large. The additional time overhead incurred by Fastazi

for prioritizing the test cases selected by Ekstazi is not statistically significant and

the effect size is negligible.

4.6 Discussion

Software regression testing has undergone extensive research in the last several decades.

The largest part of solutions, though, addressed separately one dimension of the problem

at a time. While many TCS and TCP techniques have been proposed, they have not

been directly compared, only few authors look into integrated approaches for combined

selection and prioritization, and no work empirically assessed the advantages of using TCS

and TCP in combination over their individual application. In contrast, we believe that,

by merging differing criteria for selection and prioritization, we can achieve the most from

the restricted subset of test cases that can be executed at each new release.

Towards this direction, we presented a study directly comparing two recent practical

and effective approaches to TCS and TCP, namely file-based selection (by Ekstazi) and

similarity-based prioritization (by FAST). Our results show that Ekstazi generally out-

performs FAST, although the effect size is negligible or small; however, their orchestration

by Fastazi outperforms both with a non-negligible effect. Moreover, considering a limited

test budget, Fastazi exposed a higher effectiveness in consistent way. After assessing the

overhead imposed by each of the studied approaches, we can conclude that Fastazi is quite

practical: if we parallelize the preparation steps, the additional cost of similarity-based

prioritization of the test cases selected by Ekstazi is negligible.



Test Suite Orchestration 74

We aim at further improving the effectiveness and efficiency of Fastazi by refining several

technical aspects. In particular, to make the approach more easily usable, it should be

integrated into build systems as a plug-in as Ekstazi is now. In addition to that, we

would also like to try orchestrating other TCS and TCP techniques from the literature to

understand the resulting challenges and outcomes.

4.6.1 Existing Examples of Test Suite Orchestration

Although the nomenclature of Test Suite Orchestration is recent, the concept behind it is

not entirely new. The reader might have observed that the literature review in Chapter 3

contains some examples of papers that address some combination of TCP, TCS, and

TSR— thus wondering if these are previous examples of orchestration in the literature.

This is true in certain cases, although not always.

Particularly, orchestration refers to strategies combining different approaches to certain

aspects of RT. Conversely, most of the papers in the review covering more than one RT

challenges (in most cases, TCP and TCS) do so by applying a common algorithm to both

problems. Thus, they do not strictly fall under the definition of Test Suite Orchestration,

although they could still be considered as a component of an orchestration strategy along

with other approaches.

Aside from our own publication introducing Fastazi [53], a notable example of test suite

orchestration is from Shi et al. [128], which is not discussed in Chapter 3 due to its

publication date of 2015, who compare empirically TSR and TCS. The authors observe

that both techniques aim at running only a subset of the test suite, thus asking which one

is better considering the size of the reduced test suite, and the loss in terms of detection

capability of change-related faults. For TCS their study adopts the Ekstazi tool above

mentioned, whereas for TSR they remove redundant test cases using a greedy heuristic

based on statement coverage. From the comparison they conclude that TCS on average

returns a smaller test suite size, with no loss in change-related faults detection for safe

TCS techniques. In comparison, TSR can miss a small percentage of change-related

faults. They also evaluate a combination of the two techniques, specifically “selection

of reduction” in which TCS is applied on the reduced suite obtained by TSR: this can

further reduce the number of tests yielding the same loss in fault detection observed for

TSR alone.



Test Suite Orchestration 75

We were unable to detect further examples of publications fitting the mold of Test Suite

Orchestration. This signifies that addressing more than one challenge with the same

technique is an existing — even if infrequent — concern among researchers, but combining

distinct approaches together is not.

4.6.2 Future Directions for Test Suite Orchestration

As previously discussed, the experiments we performed with Fastazi is a starting point

for test suite orchestration. This work paves the way to exploring a full range of potential

strategies of combining differing criteria for selection and prioritization. It can be worth-

while to also expand the study to the orchestration of techniques along other dimensions of

regression testing, e.g., also test suite reduction (TSR) or test suite amplification (TSA).

When combining multiple techniques into a cohesive orchestration strategy, the first and

perhaps most important aspect to consider is the sequence of operations. We see in

Section 4.3 that there are two ways of using TCS and TCP together: we can either select

a set of test cases and the prioritize these, or prioritize the entire test suite and run

the selected tests in that given order. Including more techniques in the orchestration

inevitably leads to more possible sequences.

For example, if we add TSR to the orchestration, the operation could be performed before

or after the selection and prioritization. By using it before, we already restrict the number

of test cases the other techniques must deal with; doing it afterwards, the results of the

reduction will only be used in the next execution of the test suite.

The combination becomes more interesting when adding TSA to the strategy. TSA could

be the first technique to run, updating or adding test cases that will then serve as input

for selection, prioritization and reduction. Or, it could be placed in between selection

and prioritization, modifying the suite only according to the results of the selection. This

could be desired if the TSA process is costly and running it with fewer targets greatly

reduces the time it consumes.

Continuing this line of thought, Figure 4.6 shows an example of a fully orchestrated

test suite execution. In it, we consider three subsequent versions of the SUT (vi-1, vi,

vi+1). The chevron boxes represent some process being applied to the tests, while the

cut rectangles represent variations of the test suite (e.g., a list of test cases).



Test Suite Orchestration 76

The target of the orchestration is T, which is the test suite corresponding to version vi

of the SUT. The first technique to be applied is TCS, generating a subset of tests S.

Additionally, from previous test execution logs, historical data, such as test that have

recently failed, can be extracted, forming the set H.

This subset is then used as input for TSA techniques, in this example displayed separately

as augmentation and amplification. The results are one set of newly generated tests G and

one set A containing the amplified versions of the tests in S. At this point, information

from H, G and A is merged into a list of tests M.

M is then used as input for three different techniques. On one side, TSR is used, using

information from M and T to eliminate excessive redundancies in the suite and produces

a tighter suite R that can be used as a starting point for the next cycle of orchestration

(when it is time for version vi+1 of the SUT to be tested). On the other, TCP prioritizes

the test cases to P and a test flakiness detection technique provides a list F of potentially

unreliable tests, which should be handled differently during execution.

Finally, the orchestrated test suite O is produced, which can be used to test the SUT

version vi.

It is worthy of reiteration that this is simply an example, built upon the goals of each RT

technique and considering how they can be used to each others’ advantages. Validating

such a model requires extensive experimentation, which unfortunately poses a technical

challenge, as not every technique has an available and easily usable implementation. Even

when the tools exist, the way each one handles inputs and outputs can be incompatible,

so some alteration is needed.

Some questions remain unanswered regarding a fully orchestrated strategy. The possibility

of executing all RT techniques at each new version of the SUT largely depends on the

intervals between versions; if new versions are committed frequently, there might not be

enough time to execute the full process. In such cases, an additional point to consider is

which techniques are important for frequent execution, and which ones can become part

of a nightly testing cycle.



Test Suite Orchestration 77

Vi-1

Vi 

Vi+1

History H

T TCS S

TSAug

TSAmp

G

A

M

TSR

TCP

FTD

P

F

R

OO

Legend: vi-1, vi, vi+1: previous, current and next version of the SUT; H: output of history-based
criteria; T: the test suite as of version vi; S: the output of TCS; G, A: the outputs of test suite
augmentation and amplification, respectively; M: a selected and enhanced test suite combining the
outputs of the previous steps; R: the output of TSR; P: the output of TCP; F: the output of a flaky test
detection technique; O: the orchestrated test suite that should be executed for vi.

Figure 4.6: Diagram showing an example of a fully orchestrated approach to the test
suite execution and evolution.

4.7 Threats to Validity

We evaluated Fastazi using faults available in Defects4J. Our results and conclusions

could be different had we used another bug repository. However, Defects4J is among

the most popular bug repositories and is heavily used in research on regression testing.

Additionally, it includes real faults, which strengthens our findings.

The fact that we use Defects4J means that we were running experiments on project

versions that are potentially very far apart (e.g., years). In this setup, Ekstazi might select

a very large number of tests, because it was designed for small code changes between two

consecutive commits [48, 140]. However, Ekstazi ended up performing well even in our

setup.



Test Suite Orchestration 78

We defined the testing budget as the number of tests that one can run at each project

version, which does not take into account the differences in individual test execution time.

As we focus on unit tests, we do not expect that there would be substantial differences in

execution time across tests.

To measure effectiveness, we used TTFF and APFD. As known the Defects4J subjects

contain only one fault per version and hence the two measures behave similarly. To

mitigate this issue, we need to perform more studies on subjects containing multiple

faults, for which the APFD measure becomes more valuable.

In our experiments we assume that test execution is deterministic, which we know does

not always hold in practice, i.e., tests are flaky [88, 58]. We have not observed any flaky

behavior in our experiments: only the expected set of tests was failing in each run.



Chapter 5

Insights from Industry

As seen in the discussion from Chapter 3, not many RT approaches and techniques pro-

posed in academia make their way into practical usage. To dig deeper into this problem

and understand the underlying challenges, a crucial part of this research involves direct

communication with members of industry who work on software testing.

Upon contact, members from a large technology company granted the opportunity to

spend some time at their offices to observe practices, collect data and interview team

members. This chapter synthesizes the findings of a seven-week period which was spent

in direct contact with the company.

The interacted team is responsible for a software system which is an integral component

of the company’s delivered product. Specifically, practices related to multi-component

testing (MCT) were investigated; at the time, there were thousands of MCTs in the

system. Our focus is on the regression testing procedures (which was at times referred to

as legacy testing); although naturally we were also interested in knowing where RT fits in

the overall test strategy of the team.

The interviews cover a variety of topics, including education in software testing, current

practices and procedures employed by the team, their relationship with members and

research from academia, and the most notable challenges they face. Analysis of the

responses show that there is a strong desire to improve processes, which is hampered by

reasons including technical challenges, bureaucratic hurdles and even skepticism by some

team members of automated solutions.

79



Insights from Industry 80

Section 5.1 describes the questions that drive the discussions brought here. Section 5.2

provides an overview of the testing process at the company and of the system for which

the interviewed team is responsible. Section 5.3 brings quotes from the interviews to form

a picture of the state of practice from the perspective of the practitioners themselves.

Finally, Section 5.4 contains the answers to the research questions, in the form of a series

of observations derived the interviews.

5.1 Research Questions

The following research questions represent the main objectives of the collaborative in-

teraction with the industrial partner. Generally, the contribution of this period is the

identification and explanation of notable challenges involved with industry-academia col-

laboration and the advancement of practical software testing techniques.

It is worth noting that these are not the questions asked directly to the practitioners

(which are found in Appendix A), but they were used a starting point to design the

interviews.

RQ5.1 What are the regression testing issues most frequently encountered by

software testing practitioners? — We want to hear from the practitioners themselves

what are the regression testing challenges they face on a daily basis. It is important to

understand whether these challenges are the same that motivate software testing research,

or if there are concerns from industry that are yet unaddressed by researchers.

RQ5.2 What are the challenges that arise when trying to incorporate aca-

demic insight in practice? — Based on their previous experiences with regression

testing techniques, we would like to know what worked and what didn’t, and for what

reasons. We know beforehand that it is not trivial to convert academic knowledge and

insights into a company environment, but we should understand with more details why

this conversion is so difficult to accomplish.

RQ5.3 What are potential paths to improve collaboration between academics

and practitioners? — With this we seek to capture what the practitioners are looking



Insights from Industry 81

for when they are approached by academics. This discussion should help researchers pro-

pose more relevant collaborative projects, as well as set the expectations of practitioners

as to what is feasible to achieve when working together with academics.

5.2 Overview of Testing at the industrial partner

Since the mid-2000s, the company in question has adopted agile development principles.

This had a notable effect on testing practices, as previously there were distinct roles for

developers and testers and now many developers are responsible for testing their own

code, although the company also continues to employ a substantial number of dedicated

systems testers.

Currently, their test design is based on a multi-layer “test strategy model” that provides

the hierarchy of tests for a given system, starting with unit tests, which should be the

most atomic and numerous tests. At each layer, the complexity of tests increases, as

each test becomes responsible for covering a larger amount of source code, leading up to

extensive end-to-end tests.

The discussions in this chapter refer mostly to multi-component testing (MCT), which is

among the lower layers of the testing strategy model. Initially, developers run the MCT

suite on their development machine as a mechanism to aid the writing of new code. At this

point, new tests can also be written, or old ones can be updated, to account for changes

in requirements. During the day, multiple developers commit changes that should be

merged into a component’s main branch and, at that point, a test suite run is queued for

execution on a testing server, running a limited number of tests to ensure critical features

are functional. For the purposes of this discussion, we shall name these executions, which

are triggered after each change to the source code, Short Interval Regression Testing

(SIRT). Finally, at certain longer intervals, another test execution is started, which runs

all test cases and ensures none of the day’s updates caused a system-breaking error.

Here, we shall name this procedure, which happens at a fixed schedule, as Long Interval

Regression Testing (LIRT)1.

1SIRT and LIRT are not terms used by the company, who asked to not disclose internal process names.
These two acronyms are used here as a proxy, aiding legibility.



Insights from Industry 82

Generally speaking, although the unit tests are more numerous, the higher-level tests are

responsible for a great part of the testing costs, as they involve multiple software compo-

nents along with hardware simulators and, in some instances, actual physical hardware.

Additionally, when a failure is detected at higher levels, it is more challenging and time-

consuming to identify the cause of the issue. In comparison, unit tests are often executed

completely by a developer at their local computer and checked again while merging the

code in continuous integration; as each test covers well-defined pieces of code, a failure in

this level leads to a quicker understanding of what could be going wrong.

For this reason, certain teams have been implementing a so-called “shift left” policy for

testing. The objective is to bring as much fault-finding capability as possible to the lower

levels of the test strategy model. One notable way of doing this is by writing new unit or

component tests whenever a failure happens in a complex test. However, there is also a

plan to incorporate this policy into the test strategies of software still under design and

development.

5.2.1 Overview of the system

For this study, a period of seven weeks was spent at an office of the company in Europe,

in order to understand fundamental aspects of the testing procedures at the company. It

cannot be said that this is a comprehensive account, because the data is extracted from

only one small part of the entire corporation, and the overall scope of the projects being

conducted is too large for full comprehension in such a short time frame.

The investigated system is part of a software stack deployed to a delivered product.

Currently, there are two versions of the software in active development/maintenance mode

and in use by customers.

Furthermore, the team we interacted with is mainly concerned with MCT, which involves

the integration of multiple software components in addition to hardware and infrastructure

simulators. Based on reports from the team members, generally speaking the tests are

written in a different programming language than that of the SUT. Reports indicate that

the two versions have thousands of tests each.



Insights from Industry 83

ID Role

R1 Functional Area Domain Tester
R2 Functional Area Domain Tester
R3 Functional Area Domain Tester
R4 Continuous Integration Test Manager
R5 Module Test Manager
R6 Module Test Manager
R7 Senior Test Specialist
R8 Senior Test Specialist

Table 5.1: Team members interviewed for this study.

5.3 Interviews

Information about how testing is performed at the industrial partner and regarding the

challenges still faced at the company was gathered via a series of interviews. This was

initially in the form of unstructured conversation, while the interviewer understood the

central details. After the basics were covered, we performed a series of 30- to 60-minute

sessions with 1 to 3 people at a time asking more focused questions.

Table 5.1 lists the roles of the interviewees, who are anonymized for this study.

5.3.1 Roles and Experience

R1, R2 and R3 are members of the Functional Area Domain team2. They describe

themselves as “the owners of the test suite” (R2) and are responsible for “monitoring the

test results” (R2). In particular, they “are monitoring the nightly runs” (R1), i.e. the

LIRT or non-blocking tests.

R4, R5 and R6 are test managers, albeit R4 has a different responsibility. The module

test managers, R5 and R6, are responsible for the testing of particular modules, meaning

“not working on specific features” (R5). “I also guide the teams on how to write test cases

[...], how we organize test suites and so on” (R6). Meanwhile, the CI Test Manager R4 is

“responsible for the machines and environment and some of the test framework parts. To

simplify, we are doing the framework, the developers are writing the tests, the managers

are designing the strategy” (R4).

2These team members were interviewed jointly; others interviews were one-on-one sessions.



Insights from Industry 84

Finally, R7 and R8 are designated as test specialists, meaning they handle longer-term

strategy. “I work a lot with test strategies. How we should test features and products

[...] from now until 2025 ” (R7). Despite the similar titles, there is a key difference

between the two specialists: R7 is responsible for a long-term strategy of a specific core

of products, while R8 has an overview of the entire company, so their job also includes

sharing technologies and strategies among distant teams.

Aside from R8, who has a PhD on the topic of software testing, most of the interviewees

did not have testing as a focus of their education while at university. When asked about

their education, R4, R5 and R6 are computer scientists and/or engineers, and most of

the testing knowledge they had prior to working at the company was “standard university

[curriculum], which contains tests” (R5). Meanwhile, R7 “graduated in media and com-

munication”, so testing was “not covered in university”. R4, R5 and R7 mention having a

certification by the ISQTB3. Additionally, R4 also mentions taking testing courses led by

R8 internally, while R5 reports having attended workshops from “people [from the main

office] presenting how testing should be done, but it was so high level that I couldn’t un-

derstand how to apply it to my level” (R5). It is unclear if the testing courses/workshops

mentioned by R4 and R5 are the same.

5.3.2 Current Practices

Regarding the current testing practices, we want to understand what are the day-to-day

activities performed by the team. We would also like to know if there are any imple-

mentations of the regression testing techniques classically studied in research (selection,

prioritization, reduction, amplification).

The interviewed team members are mostly working on MCT and have all mentioned two

key processes for this layer: “[one] for delivery, [another] for less frequent runs” (R1).

As previously discussed, we use the acronym SIRT to refer to a short execution of the

test suite that happens whenever a developer pushes changes to be merged into the main

branch of a module. Due to time and resource constraints, “for [SIRT] there is selection,

in nightly we run everything” (R1). This is also called the “gating loop”, since a failing

test prevents the change from being merged. At the time of the interviews, “it’s manually

decided what goes in [SIRT]” (R6) and “the running time [...] for MCT is 15-20 mins”

3International Software Testing Qualifications Board



Insights from Industry 85

(R5). The LIRT is also known as “assessment loop”, which includes all tests in the suite,

and can take up to 10 hours. As a general rule, the tests in SIRT are a subset of the LIRT

suite.

Selection. In MCT, it is manually determined whether a test should be included in the

SIRT. As an example, “yesterday, we got the question, ‘should we include this in gating?’

I don’t know, I just go by feeling. We have to see if the feature seems fundamental or

important somehow” (R5). Despite this practice, most of the interviewees are aware that

there could be a better way of doing things: “I think there should be more strategy than

just me thinking” (R5). When this finding was reported to R8, who oversees testing all

over the company and does not work with R1-7 on a daily basis, they mentioned that the

company does have an internal tool for test selection and was surprised to find out this

team did not use it. R4 explains: “we had attempts to integrate [the test tool mentioned

by R8] but it did not work out so well. I think we never built a business case for [the new

version of the system] and it ended up way in the backlog. In 2017 or 2018 we said ‘this is

something we should add to our plan’, but we did not do anything.” However, “it might be

deployed in other parts of the company” (R7). That said, R8 questioned the necessity of

TCS in a well-designed agile production: “why do you need to select? The agile principle

says we should test everything” (R8).

Prioritization. This does not appear to be an active concern for the team and there are

no techniques in place for advanced prioritization: “for prioritization, nothing specific”

(R1). “We have suites, which are groups, e.g. for sub-modules, gating or not. Then I think

it’s just the order they’re written.” (R5). However, “now we have introduced shuffling for

the assessment” (R5), i.e. random ordering of the test cases. The motivation for this is not

decreasing the feedback time, but rather “to help find problems with unstable tests” (R1),

which might be flaky according to the execution order. R8 again expressed a concern:

“using the same TCP approach every time, wouldn’t the same test be top priority every

time?” (R8).

Reduction and Amplification. These techniques are absent in the workflow. “We

don’t have any tools that helps us in any way in shrinking or expanding the tests” (R5).

“No, we don’t have anything like that” (R6). Regarding reduction, “if it happens that



Insights from Industry 86

there are too many tests for overnight, there would be an initiative to reduce” (R1), but

“we can put more machines and we can run more” (R6). Interviewees generally agree

that it is more cost-efficient to increase computing capacity of testing servers than to

spend human time determining which tests to remove. For amplification, there appears

to be no interest in automating the process. There is a protocol, however, to manually

augment the test suite in the situations where a fault slips through a layer of testing: “if

a fault was found later in test or in the field, we try to investigate why did it slip through,

and we should have a test for that” (R1); then, “after the fact, if there is time, we can go

back and understand why a needed test was not in the plan” (R2).

5.3.3 Common Issues With Regression Testing

Part of the questions asked interviewees to detail the common issues they notice with the

current state of the test suite and the testing practices at their team. They were asked

to elaborate on five key points: fault detection, flaky tests, running time, increasing test

scope and reducing test scope.

Fault detection. Most respondents have reasonable confidence on the fault detection

capability of the test suite, although several admit that they might not have the data

needed to be sure and it mostly relies on the fact that few faults are detected in the deliv-

ered product. Since most of the monitoring of the test suite happens within the CI/CD

pipeline, there is an understanding that most of the fault detection actually happens be-

fore that, on the developers’ local environments. “Perhaps a suite is going green always,

but it’s being used by a developer while they are writing” (R5); “the very good test cases

[...] find faults when running locally at the developer’s computer” (R1). “[Developers] are

quite happy doing MCT testing locally. I think they find a lot of bugs there. They rely

on SIRT to feel confident they won’t break everything when delivering” (R2). Thus, most

of the faults detected during the SIRT would be a result of conflicts between changes

merged by two developers asynchronously, rather than the result of poor code submitted

by a single developer. That said, the team recognizes that the current version of the test

suite is not 100% effective in avoiding faults or “slips” (when a failure is detected in a

higher layer of testing than it should have been), especially during the gating loop. “We

can’t have all the test scope in the gating loop. There is a discussion of having specific test



Insights from Industry 87

cases for gating in order to have more coverage, instead of just a subset” (R6). There is

a back-and-forth discussion between two sides of the team: one wants the gating loops to

pass more often and let the changes through, the other wants them to be stricter. “The

flow guys remove everything to get the flow going, but we are like I don’t know, this test

might be important” (R5). Once a fault slips and it is detected at a later testing phase

or in the field, there is “a systematic way of processing trouble reports (TRs) and we can

identify where it is needed to add tests” (R5). Regarding that, R8 brings an analogy: “if

you only take care of the shootings, you do not solve crime”, implying that the above is

not an effective strategy for delivering a fault-free product.

Flaky tests. Although techniques for addressing flaky tests falls beyond the scope of

this thesis, it was a topic brought up frequently during the discussions — “that’s the worst,

we have a lot of those” (R5) — it is strongly related to the above point regarding fault

detection. “The tests are run distributed in several computers connected to a network, so

when the load gets really high, running thousands of tests at night, we can get different

behavior compared to running the tests manually” (R2). To account for this, “we started

shuffling the order of the tests” (R3), although sometimes the developer who wrote the

test case admits “’I don’t know why it fails if it comes later in the suite’” (R3). There is

an agreement that “creating stable [non-flaky] tests is cumbersome” (R1) and, “if it’s due

to the code, it’s usually timing issues” (R2). Some team members believe this could be

relieved with better test design: “most of the times, flaky tests are caused by poor testing”

(R8); “a lot of people develop tests but are not very familiar [with test design principles]”

(R1). In fact, upon investigation, testers in the functional team “find more problems with

the tests than with the products” (R1). The test managers share this perspective: one says

“less than 50% of our failures are actually a product fault” (R6), while another thinks

“it’s 30/30/30 [actual error/test design/environment issues]” (R5). Despite being aware

of this, the team has learned to deal with the issue. For example, “we have one test that

is mostly working, but it’s failing once a week” (R1). At first glance, it might appear that

this test is not adding value to the suite, but actually, “we can double and triple check

that it’s not actually a bug in the product” (R2) and, “if it starts failing every day, we

would look into it, so there is some value” (R1). Due to situations like this, “every day

there’s at least one failure” (R6) in LIRT runs, but the team recognizes the troublesome

tests. That’s not to say these tests are ignored: “usually, we are currently working on a



Insights from Industry 88

solution but it’s not done yet” (R2). Since these tests are particularly difficult to fix and

they still provide some value to the test results, they are left as-is unless a fault related

to it slips to another layer of testing.

Running time. Test managers claim that “the running time is fairly okay, [...] for

MCT 15-20 mins” (R5). More important than the running time itself (which is offloaded

to virtualized testing server) is the queueing time, which increases during the day as more

test jobs are dispatched to the servers by the developers. For this, “we can also test in

parallel a lot of things [...] and spin up more virtual machines as needed” (R5). Naturally,

“the main pain point is the gating loop, since we want to have shorter feedback, it’s more

loaded during the day as people are working and at night it’s mostly free” (R6). The

parallelization is limited, however, at least in some layers of testing. Since the main branch

of a module is updated linearly, separate commits cannot simply be tested in parallel and

then merged without being tested together, so what may happen is that a certain number

of commits is tested in parallel and, if the tests of at least one passes without issue, only

one is merged into the branch. Failing tests are sent back to the developer, and other

passing commits are queued for execution again, using the newly-updated branch as the

base.

Increasing test scope. Although simply increasing the number and even coverage of

tests is not a challenge on its own, doing so maintaining quality and consistency might

be. Currently, “it’s the feature developers who write tests” (R6) or, in other words, devel-

opers mostly write tests to cover their own code. “The problem is that cross-functional

teams (XFTs) are racing for product delivery” (R6) but, since many developers are not

necessarily proficient in good test design, “it’s easier to copy paste code. Tests are not

always great. I would say it’s something we need to work on.” (R6). As the product itself

grows in scope, “it makes sense that the tests increase at the same rate, but to me we are

not increasing the test scope at fast as the product” (R7), so there is still a feeling that

the tests are seen as secondary compared to the product itself.

Reducing test scope. Many interviewees agree that this is a difficult challenge that is

not currently well addressed. “Cleaning and updating old tests is most difficult” (R1), but

“who can decide if a test case should be removed?” (R5). Even if refactoring or reducing



Insights from Industry 89

the test suite is discussed, “it’s cheaper to leave [the test] there and run it than spend

money to have people looking at it” (R5), especially in LIRT. On the more restrictive

“SIRT, if new tests are coming in, we have to shift out legacy tests” (R6), so in this

situation the tightening of test scope is essential. Although this perspective has changed

over time: “in the beginning of [the new version of the system], we said ‘everything should

be gating’, but now we have too many test cases” (R6). Often, a test “might make sense

when it’s first written, but many developers go into the same same suite, so over time

it might degenerate a bit” (R7), which would call for refactoring if not outright removal.

The specialists bring a complementary insight: “even if tests are obsolete in terms of

fault detection, they might still be useful for root causing” (R8), meaning that a test that

doesn’t find faults might help narrow down the causes why other tests are failing.

Testing costs. Testing costs is often discussed in the literature when it comes to the

applicability of solutions, but it is not a major concern to most of the interviewees. The

team uses cloud-based testing, and “the cloud infrastructure is completely ours” (R4), not

outsourced to other companies. The functional testers “don’t know [the cost]” (R1), but

it is “probably a lot” (R2). R6 also says “I don’t know how much kilowatts it’s drawing”,

but, according to R5, “I don’t think it’s more expensive than watching a youtube video”.

It’s understood by several team members that resources can be increased if required, and

one manager goes on to ask “why not run everything more and faster, instead of selecting

things? It might not be cheaper, but it seems like the company is more willing to pay

for equipment than employees” (R5). When asked specifically who would know this, the

answer is “the area product owner” (R4), who “handles the budget with inputs from us,

according to how much we use and how much we’ll need” (R4). The specialists highlight

that “earlier test loops are much cheaper” (R7), so it is important to detect faults as early

as possible. Furthermore, even if “electricity is so cheap” (R2), “we have some hardware

that is super expensive, it costs as much as house” (R7). For this reason, “we want to

make sure the test cases that execute on that hardware are only the most important ones”

(R7) and this type of load balancing is still being worked on by the cloud infrastructure

team.



Insights from Industry 90

5.3.4 Collaboration with Academia

Another point relevant to this study is the practitioners’ current relationship with academia.

Firstly, they were asked if they keep themselves informed about recent research trends in

software engineering. Most respondents answered in the lines of no, “I don’t find the time

or I don’t prioritize it” (R1), “our level, we don’t really have time” (R5). R2 occasionally

reads books on the topic, although these are more practical in nature rather than research

works. Time is the main issue, because “because the research world is huge and there’s so

much happening” (R7). R5 thinks “it would be interesting to see how other big companies

do it”, which alludes to initiatives such as the Google Journal Club [103] that have seen

success in some companies but does not appear to be a practice in this case. “I suppose

someone at the company has this assignment somewhere” (R5) and, indeed, this someone

is likely R8: “I read the literature and try to apply it”. However, “academia is both ahead

and behind [the state of practice]. It’s ahead because it’s looking into techniques that might

be useful many years from now. It’s behind because it doesn’t keep up with the current

challenges in the state of practice” (R8). There is a perception that academic work is

important, but ultimately disparate from the immediate needs of practitioners.

A follow-up question asked if the team member were aware of any current tool or practice

at the company that had origins in academic research. The general response to this was

uncertain. Nobody could point to a specific and concrete example, but there are some

possibilities, for example “before we used to run everything manually, then this scheduler

was developed that can define when and what to run” (R5), but “I don’t know if that’s

from academia” (R5). Furthermore, “over the years we have had much cooperation with

research, so I would assume there is something” (R7), but again no clear example was

given.

When asked if they still keep in touch with a friend or colleague in the academic world,

it appears this is not common. “We always have old colleagues that are PhD, but unfor-

tunately we don’t hang out so much” (R5), and “I think all my friends from college are

now in industry” (R4).

Continuing on this line of thought, some respondents mention there is some collabora-

tive projects that happen involving the company and a nearby university. “At least in

[this city], we have been keeping a close relationship with the university” (R4), although

the main objective is not necessarily to develop new research or technology, but rather



Insights from Industry 91

“to vacuum the competencies from the university towards us” (R4). This mostly occurs

through co-sponsorship of Master degree students: “we announce some thesis work and

try to keep them here” (R4). R7, however, mentions volunteering “a study by another

company [about] roles for testers, [...] I think [the researcher] is employed by both that

company and the local university”, indicating there is some cooperation happening be-

tween the two companies and the local university. R1, R2, R3 and R6 provide a negative

answer: “no, there hasn’t [been collaboration] from what I know” (R6). Regarding specif-

ically an experience similar to the present work, e.g. a visiting researcher collecting data

and performing a study on the current practices of the company, “no, I think you’re the

first PhD I’m having contact with” (R7).

When asked what would motivate the team to incorporate a technique from academia

into their workflow, the main factor is the ease of use and the resulting reduction of

workload from the team: “how easy to implement is it? Does it remove manual work?”

(R6). However, regarding risks and challenges of doing so, there are several relevant

points. A major one is the matter of security. It is recognized that “external tools can be

security risks” (R8) especially because “we don’t know if the researchers are rigorous with

their implementation” (R8); indeed, it appears that “something happened some years ago

and, for security reasons, we don’t want to incorporate open-source tools into the process

without making sure what they are” (R5). Due to this, “we have this [free and open-

source software] (FOSS) process. If you want to use open-source you need to submit a

ticket, then it needs to be scanned and approved” (R5). Furthermore, it is hardly the

case that general open-source tools can be incorporated without bespoke modifications:

“it usually doesn’t fit” (R8). For example, “researchers might assume a certain level of

quality or standardization among test cases, but in reality test design is often bad” (R8),

which could explain in part the existing gap between academic experiments and real-world

usage. In addition, “we have to figure out how to feed data to the tool” (R2), which is

not always trivial: “the algorithms are usually fine, but it’s hard to provide the data that

is asked for” (R7). One possible reason for this lack of data is that many of the test

executions are triggered by the developers themselves while they are still working on a

new feature or bug fix. A failure at this point might be a legitimate detection of an error,

or it might be expected by the developer who triggered the test while being aware that

the code was unfinished; it is difficult to filter out this type of data and provide a “clean”

input to an algorithm.



Insights from Industry 92

Despite the above concerns, the team members expressed a drive to make changes to

their workflow and say that “we are quite good at solving technical difficulties” (R2)

and performing the necessary modifications and experiments is not the main obstacle

to overcome. Rather, “the big problem is that there are unclear responsibilities” (R1),

so “It’s not clear who we would need to convince to make changes to the process” (R1).

This opinion is corroborated by other team members: “I always see bureaucracy as a

part of the difficulty of getting things done” (R5); “I think the main challenge would be

convincing people to spend time and money on it” (R6); “the problem [...] is to find out

who is going to pay for it” (R4). Considering the scale the company, however, “I think

it’s good we have this organization, the company is really big so we need structure, but it

can make it harder to make these smaller changes” (R4), but it is clear that “programs

are measured by how many features they are developing, especially in the customer end.

You’re measured more on feature throughput than product care” (R4), so software quality

activities such as testing and refactoring, which are “invisible” to the customer, are hard

to prioritize. R7 mentions a dedicated internal group “who can work with anyone within

the company” (R7). Together, they performed a study to improve test case selection in

their next-generation products, but it is “challenge to convince someone to do it” (R7).

“The project [with the internal group] was a theoretical experiment, but we did not try it

in practice. There’s a limited budget to how many improvements we can do in parallel

and other things were prioritized” (R7).

5.3.5 Metrics

In conversations with R4, the topic of metrics for measuring test suite effectiveness was

discussed. Metrics familiar to researchers, such as APFD, is not part of the common

language at the company, but there is a current initiative to add some measurements

to the testing flow and extract useful metrics from them. Specifically, three metrics, all

under consideration but not in active use, were explained:

Product Fault Finding Capability (PFFC). The objective of this metric is to de-

termine whether faults are being detected in the “correct” layer of testing, or if they are

slipping to more complex and costly testing. It is measured by two variables: (1) the

number of new product faults found (npff), which counts the number of new faults after



Insights from Industry 93

a test execution and analysis of failures, and (2) the number of slips (slips), which is the

number of faults detected in a certain layer of testing that, upon inspection, should have

been found earlier in the testing stack.

PFFC =
npff

npff + slips

Cost to Fault Ratio (C). It is particularly difficult to measure the cost of an individual

test, but it should be possible to at least estimate the cost of an entire test suite, or the

cost of each detected fault. This metric does that by multiplying the machine costs

(MCn) with the number or sizes of system test plans (STPn) meant for execution in that

machine. The resulting value is then divided by the number of detected faults in order

to get the cost per fault. Ideally, this should ensure only critical tests are executed in the

most costly testing servers.

C =
MC1 × STP1 +MC2 × STP2 + ...+MCn × STPn

faults detected

The obvious flaw with this metric is that it might disfavor products with a low number

of faults — as fewer faults are detected, the cost per fault ratio will greatly increase.

Reliability (R). This metric targets specifically flaky tests, providing a value to their

reliability. It is simply a division of the number of faults detected (fd) by the test suite

by the number of failed runs (fr) of that same suite.

R =
fd

fr

Suites with low reliability are ones that fail often, but rarely lead to a true detection of

errors in the SUT.

5.4 Observations



Insights from Industry 94

5.4.1 RQ5.1: Common Issues

From the literature examined in Chapter 3, it is possible to observe that test case prior-

itization is the regression testing technique most widely addressed in academic research.

The conversations with the team, however, show that it is not a topic of active concern for

the practitioners. Indeed, when questioned about methods of determining the execution

order of tests, respondents claim that, until recently, it was “just the order in which they

were written” (R5). Due to concerns with flaky tests and developers who were explicitly

asking to run their tests before all others, shuffling (random prioritization) was introduced.

This helps the identification of tests that are flaky due to interdependency — e.g. one

test that presumes another has been executed previously — or due to improper cleanup

— tests that affect the global state of the program and do not revert that change before

concluding. However, it is a far simpler approach than what is studied in the literature

and has an ultimately different goal: detecting flaws in the test suite itself rather than

speeding up feedback time for faults detected in the SUT itself.

Indeed, the detection of poor test case design appears to be a common problem to the

test managers and specialists. Although they did not provide raw data to analyze this

claim, their intuition indicates that 30% to 50% of test failures are caused by poorly

implemented tests and do not lead to a true error in the product. It’s well-accepted that

most developers are not adequately educated or trained in software testing principles and

learn by imitating previously-existing tests written by people who might be in different

roles by that point.

The practice of running shorter test suites during the day and the full range of tests at

night is common at the company and, for that reason, test case selection can be a valuable

asset. In the unit test level, “configuration-based selection” is used, which is similar to the

file-based selection frequently discussed in the literature. However, for multi-component

tests, it is manually decided what tests should be executed in SIRT, following a few

guidelines and procedures. Each test in this level is certainly more complex than a unit

test, and perhaps techniques for addressing each type of test need to be distinct. There

is an internal tool used for selection, but the team interviewed for this study claim that

attempts to integrate it into their workflow were unsuccessful.

Since most software products are in constant evolution and growth (meaning new require-

ments and features), it is expected that the test suite will also grow accordingly. In the



Insights from Industry 95

long term, this means thousands of test cases for a product, sometimes spread across

multiple modules. It is often the case that, in the early stages of development, tests will

be designed to cover the most basic functionality of the software, which serve as the foun-

dation to more complex features later on. Then, as these complex features are introduced,

more specialized tests must also be added, covering intricate details of the functionality.

Many of these specialized tests must also cover basic functionality by definition, even if

indirectly through the higher-order features that depend on core elements4. Thus, in real-

ity, a lot of older tests are made obsolete, at least in purely fault-finding terms. Detecting

which tests are redundant is a challenge that was mentioned by several of the interviewees,

as currently this would need to be performed manually and the time/budget restrictions

do not allow this. An automated solution could be helpful, although it is not desirable

to completely delete test cases — when a fault is detected, tests that cover similar parts

of code can be analyzed together to help identify the cause of the issue. Thus, there are

tests that do not need to be executed daily but could be added to a weekend-only testing

schedule, for example. That said, despite acknowledging the challenge of reducing the

size of a test suite, it is much easier to simply add resources to the testing server than

to spend human time and effort into analyzing tests or even implementing an automated

solution.

There did not appear to be a strong desire for automated amplification or augmentation of

the test suite. As it is, the suite already grows substantially over time, so adding machine-

generated tests to it could create more problems than it solves. Regarding new tests, test

managers are more concerned with their quality than quantity, so perhaps methods for

aiding developers in manually writing good tests would be better accepted than simply

offloading that task to an automated tool.

4This is not always true for unit tests, which attempt to isolate functionality as much as possible for
testing, but is common in component and multi-component testing.



Insights from Industry 96

Summary of RQ5.1. The issue most frequently brought up by respondents has to

do with test flakiness, which is very common in their regression test suite; testers

and managers have found ways of dealing with them, but it still makes it more

difficult to detect true errors in the test suite. More generally, the main challenge

is detecting and improving poorly written tests, which is the leading cause of test

flakiness. There is a manual process for deciding which tests should be executed

at each new commit, while removing redundant tests is something that is talked

about, but not usually done because it’s cheaper to simply add more compute power

to testing servers.

5.4.2 RQ5.2: Challenges of Incorporation

The interviews make it possible to identify a few notable obstacles that prevent the usage

of state-of-the-art research techniques in the corporate environment.

From a technical perspective, the first challenge is that academic tools can barely ever be

used as-is. As discussed in Section 3.4.3, a lot of additional effort must be exerted in order

to go from an algorithm to a replication package, to a functional prototype and, finally, to

a commercially viable tool that can be used by developers. Even if the tool does exist and

is available as FOSS, it might be geared specifically to a certain programming language

or require certain environment characteristics; if these don’t match, the interested party

would need to re-implement the algorithm for a new target. Those conditions being met,

the testing tool must still go through extensive security screening, which adds to the time

and cost needed to implement a technique.

Assuming that the above requirements are met, there are additional barriers that might

not even be a matter of time and cost. One issue that was pointed out by the test

specialists is that academic tools generally assume that the SUT is perfectly designed and

has plenty of data available to work with, but that might not always be the case. Even

the best designed software will have the occasional oddity, peculiar characteristics that

humans might be used to handling, but could produce unexpected results in automation.

Regarding the data, there was a discussion during the execution of this study about

collecting historical test execution data in order to run experiments; as it turns out, it

is not a simple task. Many of the test executions happen in developers’ local computers



Insights from Industry 97

and this data is not included in the CI/CD history. Since these local executions are likely

to have frequent failures, their execution history can provide important data about which

tests are most important in the initial stages of testing, for example. Furthermore, even

considering only the data available from the CI/CD tools, logs are not meant for long-term

storage and not organized in a way that can easily be fed into, for example, a selection or

prioritization algorithm.

Considering these challenges above, it is not exactly tackling them that is the greatest

obstacle. Instead, many interviewees say they would be excited to try new techniques

and perform experiments with their software to try and find more efficient ways to han-

dle their testing workflow. However, all this would require a time investment from the

team members, which means setting aside other tasks, such as feature delivery. Since new

features are the most desirable output in the perspective of customers, it is difficult to

convince people in managerial and decision-making positions to slow down deliveries in

order to perform experiments that, realistically, might not be successful. An argument

to managers would need to include time and cost estimates, including forecasts showing

that, in the mid- to long-term, performing these experiments now will lead to notable cost

savings in the future. To avoid slowdown, an alternative would be to hire people dedicated

specifically to experiment with new techniques and identifying avenues of improvement;

however, hiring employees is an expensive process by itself and, given the choice, man-

agers would prefer buying new computers to run more tests before hiring an employee to

optimize the existing ones.

Summary of RQ5.2.: Practitioners describe several technical challenges involved

with the implementation of new techniques into their workflow. Notably, adapting

algorithms to their environment, screening for security risks and collecting appro-

priate data for input are frequently cited. Regardless, bureaucratic hurdles are

more difficult to address than technicalities and, in order to convince managers to

invest time and money into the effort, there needs to be robust evidence that a

technique will provide meaningful benefits.



Insights from Industry 98

5.4.3 RQ5.3: Paths to Improve Collaboration

The interviews make it clear that, at least within the interacted team, there have not been

many attempts of collaboration with academia, in the sense of bringing techniques from

theory into practice and/or attempting experimentation in realistic software. It should

be noted that this is not a general assessment of the company, which may have other

examples of collaboration with academia, but only of the team that interacted with this

study. Nevertheless, the conversations highlights the current desire for such collaboration

and some avenues for improvement.

The team is not completely isolated from academia, as the company frequently funds

Master’s programs jointly with the local university, although the motivation for this is

not necessarily scientific advancement nor development of novel techniques. Students in

this program get the opportunity to interact more closely with the inner workings of the

team and acquire specialized knowledge before graduating.

Less common are collaborations with PhD candidates, post-doctoral fellows or professors.

Occasionally a researcher will invite an employee to participate in a study, such as the

aforementioned study with a neighboring company, or even this present study. In such

cases, there is usually some data provided by the company or by one of its employee that

are used by the researchers in some work meant for academic publication. The next step

of this type of collaboration would be to bring the results of that study back into the

company and attempt to internal experimentation and potentially implementation of the

technique. As far as the interviewees are aware, this either has not happened, or happens

very rarely.

With few exceptions, practitioners admit that they do not have the time to keep up with

Software Engineering research and no longer maintain contact with former colleagues who

might now be professors. There is no simple solution to this problem, as following research

trends is not only time-consuming; it can be mentally draining for someone preoccupied

with other tasks and it is rarely obvious how the results of a paper can be beneficial for

an individuals’ workflow.

Internally, there is a team whose responsibility is to interact with different parts of the

company and update workflows with new techniques. This dynamic is similar to the

“ideal” scenario of industry-academia relations, cutting down some major obstacles (the



Insights from Industry 99

company maintains control over the developed tool, there is a budget allocated for this,

etc.). However, even a tool proposed and experimented with this team did not see adoption

by the team that was interviewed, due to the limited benefits observed in the multi-

component testing layer.

Summary of RQ5.3.: There is interest and desire of collaboration among inter-

viewed practitioners, but it is something they find difficult to take initiative upon.

Most of their time is consumed performing day-to-day tasks and ensuring the de-

livered product is constantly improved, and there is little time or energy left to

keep up with the quickly growing academic literature. They often fund Master’s

programs and there are examples of academic papers using data from the com-

pany, but it is difficult to find situations where research results directly impacted

the current state of practice.

5.5 Threats to Validity

Construct validity The observations in Chapter 5 were only possible due to a collab-

oration with an European technology company, facilitated by a person who is in frequent

contact with both the company and the academic world. It is important to note that the

findings relate to an experience of only seven weeks at only one office of the company. We

did our best efforts to understand the internal testing strategies and workflows, but the

overall complexity of the processes is too high to be completely comprehended in a short

timeframe.

Internal validity The interviews that were conducted for this chapter were based on

the research questions presented here. These research questions were designed to reflect

our goals when designing that part of the research, and inevitably narrow the possible

findings and guide the general outcome of the study. The quotes included in this chap-

ter are transcribed from verbal interviews with practitioners and edited by the author

for legibility, clarity and cohesiveness with the text. It is possible that a response was

misinterpreted by the interviewer or that the meaning of a quote is not fully clear to a

reader. We took great care of transcribing the interviews as accurately as possible, and of

ensuring that their meaning was not altered by cherry-picking quotes or adjusting their



Insights from Industry 100

wording. Mitigating this risk, the chapter has been read and approved by two people

from the industrial partner, ensuring their point of view is correctly expressed. Due to a

non-disclosure agreement with the industrial partner, we cannot provide the full unedited

transcripts of the interviews.

Conclusion validity The conclusions drawn from the interviews are a result of our own

interpretation of the situation, based on the observed data, on discussions with members of

the company, and related information extracted from the software engineering literature.

Inevitably these conclusions are influenced by the background of the researchers who, to

the degree of possibility, allowed the newfound information to shape the conclusions, not

the opposite. Unfortunately, this study is not easily replicable, as core components of it

are left undisclosed due to confidentiality concerns by the industrial partner.

External validity These observations relate to one team at one office at a large com-

pany. The conclusions we draw relate solely to that team and might not generalize to

the practices observed in the rest of the company. Furthermore, we make no claims that

these findings generalize to software industry as a whole. This threat can only be miti-

gated if more companies are willing to allow researchers to interview their employees and

understand their testing processes and challenges.



Chapter 6

Challenges Between Industry and

Academia

While the review in Chapter 3 indicates that IR&A is a growing concern among RT

researchers, it’s still only being addressed with any depth on a minority of secondary

studies. It is clear that several authors believe IR&A is a challenge worth addressing

in research, but there is not a lot of available RT literature focusing on the steps that

need to be taken in order to improve academia-industry communication and shorten the

technology transfer gap.

We conclude this work by highlighting some key challenges that we have identified, com-

bining data found in the literature itself, in the authors’ responses and in the practitioner

survey. These are challenges that may have been addressed in certain circumstances but

remain unsolved in a broad sense, as they are still present in several recent works. Along

with each challenge, we make some suggestions that could be applied by Software En-

gineering researchers and/or Software Testing practitioners — these could be actionable

steps for upcoming primary studies, or further avenues of investigation for secondary or

meta studies. Table 6.1 provides the summary of the challenges we identified, indicat-

ing the primary source of our observation (i.e. the literature, the authors and/or the

practitioners).

6.1 List of Challenges

101



Challenges Between Industry and Academia 102

ID Title L A P I ID Title L A P I

CH1 Alignment of motivations CH6 Absence of TSR/TSA

CH2 Realistic experimentation CH7 Clarity of target

CH3 Scalability CH8 Skepticism

CH4 Relevance of metrics CH9 Data quality/availability

CH5 Developing usable tools CH10 Communication

Source(s): L: Literature; A: Author questionnaire; P: Practitioner survey; I: Industry partner.

Table 6.1: Summary of main challenges identified by this study.

6.1.1 CH1: Alignment of Motivations

When asked what would convince them to implement and use an RT tool, eight surveyed

practitioners gave responses that can be synthesized into “it would make my work easier”.

This general sentiment matches the responses received during interviews at our industrial

partner.

There exists a mismatch between academic motivations and industrial needs: research

is concerned with discovering novel techniques that might provide marginal effectiveness

gains over the state-of-the-art, while practitioners are mostly concerned with any solution

that simplifies their workflow. In other words, even if an RT technique has the potential to

greatly reduce the testing time of a suite, practitioners will weigh those benefits against

the effort required to implement the technique and adapt/maintain it for their needs.

This is not to say that the current research motivations are ill-informed: it is the role of

academia to push the boundaries of what is possible in theory first, and sometimes this

theory takes many years to find relevance in practice. One interviewee from Chapter 5

gave an example of this: “mutation testing1 has been in the literature since the 1990s, and

it is starting to see adoption in industry today” (R8).

If the researchers have the objective of implementing their approach, they must be certain

that it is addressing the current needs of practitioners. An obvious way to achieve this,

which is also confirmed by our literature review, is by developing techniques through

direct partnerships between academic researchers and industrial practitioners (or even

open-source communities). In these cases, the practitioners bring realistic examples of

the challenges they face and, as a result, these collaborative works tend to produce results

1Mutation testing refers to a set of techniques that introduce artificial errors in the SUT in order to
validate the efficacy of a test suite [67].



Challenges Between Industry and Academia 103

suitable for practical applications and could serve as a guideline for other, purely academic,

approaches.

Naturally, not all research can be done with industrial partnerships, and in these cases

there is difficulty in finding what exactly is relevant to current practitioners. One possible

source of this information is grey literature: information produced by experts in a field,

but without necessarily following academic guidelines, in the form of blog posts, videos,

magazine articles, talks etc. Practitioners who produce grey literature can help inform

researchers about the current state of practice, the main existing challenges in software

development, and successful implementations of techniques (e.g. the aforementioned Net-

flix blog [71] which details the process of bringing a technique from a paper into their

workflow).

Ultimately, the unavoidable reality is that academics and practitioners work towards

different goals. Researchers are motivated and driven by publication; indeed, the point

of research is to aggregate information into a body of knowledge that grows gradually

over time. Historically, academia does not encourage researchers to continue working

on a project after the related paper is published and “see it through” to an eventual

application of a technique. In fact, the pursuit for novelty can diminish the perceived

value of a researcher who is willing to perform experiments and do the additional work to

implement a technique.

This is in direct contrast with the desires of industry. Few companies are willing to commit

time, money and human resources into developing novel techniques that may or may not

provide value or savings in the long term. Rather, they would rather adopt practices with

a proven and predictable outcome.

6.1.2 CH2: Realistic Experimentation

It is clearly not possible for every research paper to feature practitioner co-authors or

to rely on an industrial partnership for experimentations. Selecting the right subject for

experiments is a decisive point when writing a paper about a technique. Older studies

on RT would often rely on the “Siemens programs” [65], which is believed to have caused

an overfitting of results to a particular kind of software [32]. More recently, the Software

Infrastructure Repository (SIR) [33] (e.g. (S3)) and Defects4J [68] (e.g. [S2, S39]) have



Challenges Between Industry and Academia 104

been used to similar ends. Having common subjects can provide replicability benefits

when directly comparing techniques, although is not always clear if they approximate

the difficulty of testing real software. Authors who are able to collaborate directly with

members of industry gain an enormous advantage if they are allowed to run experiments

on production code, but it is also clear that not every paper will have that opportunity.

The most obvious alternative is to use large-scale open-source software (e.g. from the

Mozilla (S60) and Apache [S13, S62, S67, S65, S73] foundations) as subjects, since the

communities developing these programs follow procedures much like the developers work-

ing for corporations . This is also far from trivial. The larger the software, the more time

a researcher will need to dedicate in order to understand it and to adapt the technique

to it, sacrificing the possibility of experimenting on a larger variety of subjects and thus

again bringing the risk of overfitting. Additionally, there is no established consensus re-

garding which properties an open-source program must satisfy in order to be a satisfactory

subject.

Alleviating this issue would require effort from both researchers and practitioners. For

example, Google has an open dataset of testing results [35], and S25 combined it with one

from ABB Robotics. As a result, this combined dataset has already been used by other

papers covering machine learning [S53, S59, S67, S71, S78]. Two practitioners mention

that “open source code/data is not provided” due to confidentiality reasons. In those cases,

our suggestion would be to provide some opaque information regarding the system, e.g.

its programming language, the number of lines of code and/or tests, how many developers

work on it, how frequently is the code updated, etc. At the very least, this would help

researchers choose subjects with similar characteristics.

6.1.3 CH3: Scalability

RT techniques provide the most savings when applied to large-scale software projects,

which can have multiple thousands of test cases. Therefore, it is important that techniques

are designed to scale up to any size of test suite, but few papers tackle this issue directly.

The trouble is that scalability is very hard to measure unless multiple subjects of different

sizes are used. One way to demonstrate scalability, beyond relying on industrial partners

or large-scale open-source projects, is to artificially generate large datasets (e.g. [S34,

S50]), which are useful from the algorithmic perspective, but might not address other



Challenges Between Industry and Academia 105

issues that arise in large-scale software development. It is also worth mentioning that

many RT techniques can become disadvantageous when applied to small test suites, as

the cost of running the technique does not outweigh the savings in testing time. So

selecting the size of the experiment subject is important both to highlight the scalability

of the tool in large software and also to consider whether the necessary overhead is a

deal-breaker on small or medium projects.

6.1.4 CH4: Relevance of Metrics

Section 3.4.1 shows that a wide variety of metrics has been used to evaluate the effective-

ness of RT techniques. Some are used almost universally for a certain kind of challenge

(e.g. APFD for TCP), while others have nearly no presence beyond the paper that intro-

duced them.

The abundant use of APFD and its variants indicate that, at least among researchers,

there is a consensus of its utility and importance when evaluating TCP approaches, al-

though the usage of specific variants might hamper that benefit. At the same time, it

is not clear that a technique optimized for only APFD is sufficient to satisfy the needs

of software developers in practice. Still, APFD has been in use for over 20 years and

it cannot simply be dismissed: at the very least it provides an agreed-upon method of

directly comparing different techniques.

For the cases of TCS and TSR, there is less controversy on what are the most impor-

tant metrics; reduction rate and fault detection loss appear to be the consensus among

researchers, and there are fewer novel and single-use metrics. As an example, S68 inter-

viewed practitioners at Microsoft before deciding on their TCS metrics, obtaining three

main targets: reduction of cost, reduction of time and the failure detection rate. We

can observe in Section 3.4.1 that these concerns are reasonably addressed by TCS tech-

niques, although researchers still appear to prioritize reducing the selected set rather than

ensuring all failures are detected.

The metrics of applicability and diagnosability (S46, S60) are interesting propositions that

consider other degrees of usefulness of a tool to developers. Their existence indicates that

some researchers still believe there is room for improved metrics that, perhaps, better map

the requirements of real-world software, although these are rarely found in the literature.



Challenges Between Industry and Academia 106

Furthermore, ease-of-use is an important point to consider and, as far as we could detect,

there is no established method of measuring it.

One practitioner stated: “I don’t think that academic tools are the best in a professional

environment, I prefer commercial tools,” implying they believe academics are not mea-

suring the results that matter most to them. Indeed, managers allocating development

funds will usually focus on the dollar savings a technique can bring, regardless of its the-

oretical effectiveness in fault-finding (as mentioned by respondent author #43: “the cost

associated with the 1% bugs that were missed is too high”).

6.1.5 CH5: Converting Research into Usable Tools

When techniques are designed in an academic context, they are normally developed as

proof-of-concept works. That is, the purpose is to show that the technique works and

provides significant results according to some metrics. However, this leads to two is-

sues: either primary studies do not make their solution available for implementation, as

we discussed in Section 3.4.2, or their experiments do not thoroughly consider practical

concerns such as efficiency or the data requirements of a proposed approach. Finally,

what seems to matter the most is time and budget for developing a tool. Papers are

usually written targeting a hard deadline and their prototypes often do not see further

work past publication. It is inevitable that researchers will move on to new challenges,

but their contribution would be amplified if the tool is, at the very least, open-source and

well-documented so that other interested parties can continue the work in the future if

desired.

If an RT technique is implemented as a prototype that is shown to work on a certain

kind of software, it is much easier to get the attention from a practitioner and convert

the solution into something used in practice. If feasible, an available prototype with solid

documentation and usage instructions can be valuable both for study replicability and as

a way to get developers interested in using it. That said, the responsibility of developing

fully functional tools should not fall solely upon researchers. One practitioner stated that

“[RT tools] need full security screening”, and other said “it requires an adaptation”; these

steps are not actionable by researchers in isolation. As industry stands to benefit from

scientific advances, it should be in its best interest to promote and fund the collaborations

needed to continue development of promising prototypes.



Challenges Between Industry and Academia 107

This strongly relates to CH1 regarding the motivations of academics and practitioners.

Even if a researcher has the desire to see a technique through to its applicability, or even

just to provide a robust source code for the implementation of an approach, there is little

incentive from the academic side for doing so. Certain software engineering conferences

have started to encourage or even require the inclusion of replication packages and source

code of studies with an empirical component, which is a step in the right direction.

6.1.6 CH6: Absence of TSR/TSA

Out of 79 papers, only 8 are about TSR and, surprisingly, only one covers TSA (S17). 60%

of the surveyed practitioners claim that “creating or updating tests” is a major challenge

in real-world RT, so the desire for TSA exists and there appears to be ample room for

experimenting with new approaches and metrics. However, most practitioners interviewed

at the industry partner claim that increasing test scope is not a major concern, as even

the manually-written tests can be too many.

On the other hand, they do mention the difficulty of refactoring and removing obsolete

test cases as a frequent challenge, which aligns with 47% of the surveyed practitioners.

TSR could prove valuable to testers who need to manage ever-growing test suites and

hardly find the time to manually assess tests that are obsolete or in need of refactoring.

In reality, this is often addressed by simply increasing the capacity of testing servers, but

this is a costly and non-scalable solution.

This assessment of TSR and TSA techniques indicate an opportunity for researchers to

develop novel methods for these challenges and to progress in directions that are in need

of improvement in software development workflows.

6.1.7 CH7: Clarity of Target

Several of the papers we reviewed don’t clearly state key characteristics of their SUT,

such as its programming language or its scale (either in lines of code or test cases).

For practitioners and other researchers to consider a paper worthy of investigation, it is

important to know for which kind of system a piece of research was designed.



Challenges Between Industry and Academia 108

As mentioned in Section 3.4.2, few RT techniques are language-agnostic and many do not

inform the target language at all. Similarly, the type of software (web, mobile, embedded,

distributed, etc.) or its development paradigm are important factors to mention, seen in

studies such as S41 for web services and S59 for software developed and delivered through

continuous integration. Not every tool can be used in any type of software, and it is

likely that specific types of software might require specific solutions, so it is important to

state the particularities of certain subject programs. This is akin to the point of “context

factors” brought up by Ali et al. [4], which helps to alleviate the issue by introducing a

base taxonomy that can be used to categorize techniques.

Critically, there is often ambiguity on the very definition of test case. Software testing can

include unit tests, integration tests, multi-component tests, system tests, end-to-end tests

and so forth. Most papers do not make it explicit which layer of testing it is addressing.

While it can sometimes be inferred with some domain knowledge, it is difficult to be

certain for most readers. This information would be valuable for interested practitioners

and also for researchers who are looking to identify gaps in the literature. On top of that,

some papers use the term “test case” to refer to test methods, while others use it when

referring to test classes/files (which contain several test methods), so the granularity of

the technique is not always clear, and this can impact both effectiveness and efficiency

analysis. This challenge can be solved by having a paragraph dedicated to explicitly

describing the properties and context factors of the experiment subjects.

6.1.8 CH8: Skepticism

In general, there is some degree of skepticism from practitioners regarding automated

solutions. For example, some interviewees at the industrial partner expressed concerns

that a TCS solution might leave out an important test, or that TCP algorithms might

always prioritize the same tests. Their intuition is that performing selection (or even

prioritization) manually allows for easier troubleshooting in case something goes wrong.

As for what can go wrong, the fear is to detect a fault later on, only to find out the test

to detect it already existed, but was not selected or prioritized by the automated tool.

This calls back to a comment made by one of the responding authors in Section 3.4.2:

even if 99% of faults are detected at a fraction of the testing costs, the remaining 1% of

slips is unnerving to the people responsible for the tests. And even if a tool is shown to



Challenges Between Industry and Academia 109

be safe, there is still a feeling that there might be a slip that will only be revealed much

later than it should have been.

Regarding TSR, most developers are also opposed to outright removing tests, but are

willing to put these tests in less-frequent rotations, e.g. weekly instead of daily. Finally,

for TSA the practitioners are also doubtful that automatically generated or enhanced

tests are as good as human-designed ones, but wouldn’t be against to trying it if the need

arises.

6.1.9 CH9: Data Quality and Availability

Another point raised by the interviewed practitioners at the industrial partner is their own

ability to provide the data required by an automated tool. History-based approaches, for

example, are more effective when there are many test logs archived for analysis, but in

reality these logs are only stored temporarily.

Furthermore, even if the data exists it might not be of sufficient quality to, for example,

serve as a training set for a machine learning model. This extends to the test code itself,

as highlighted by one of the interviewees: “researchers might assume a certain level of

quality or standardization among test cases, but in reality test design is often bad” (R8).

If the existing test cases are not standardized and high-quality, automated attempts to

improve them are unlikely to yield the desired benefits.

6.1.10 CH10: Communication

The main challenge, which connects most of the previous ones, is communication. Re-

searchers and practitioners both lead busy lives, focusing on their day-to-day affairs, and

ultimately communication between the two realms suffers.

There are some steps that can be taken to improve this. Companies can start by having

round-table discussions on recent research publications (e.g. the Google Journal Club

[103]) and, if possible, they should invite the author(s) to participate. On the other side,

universities can host lectures by practitioners in addition to other researchers. This can

start small — find people in the same city, perhaps alumni of the university, who are

working on something interesting and have a conversation.



Challenges Between Industry and Academia 110

Out of the practitioners we surveyed for Chapter 3, 56% claimed they keep contact with

a friend or colleague who is a researcher in Software Engineering. After all, most aca-

demics have interacted with people who are currently practitioners during their education

process, and vice-versa. This means that both sides have an opportunity to network and

communicate beyond their current professions, giving each other ideas of what is cur-

rently relevant in industrial software development and what is the latest state-of-the-art

in academic research. Unfortunately, the practitioners interviewed for Chapter 5 have

mostly lost contact with their academic colleagues and today struggle to keep up with the

advancement of research.

It can be a daunting idea to catch up to latest research trends, so larger companies

could consider having employees dedicated to understanding the internal processes and

challenges while searching for collaborations with academics, or at least promote internal

reading club sessions. Many researchers would be thrilled to receive a message inviting

them for a joint effort with palpable outcomes.

6.2 Threats to Validity

The list of challenges assembled in Chapter 6 is based on our own observations of the

current state of industry-academia relations from a multitude of sources: the literature,

communications with other authors, feedback from practitioners and our own experiences

developing techniques. It is not meant to be a comprehensive and end-all checklist of

challenges to solve, as other researchers following different sources would likely come to

a divergent set of conclusions. That said, we believe that most researchers performing a

similar study would agree upon the majority of the listed challenges. To the extent of our

knowledge, these challenges are real and in need of further study, but there is no guarantee

that addressing each one of them will solve all the problems with software engineering

research.



Chapter 7

Live Repository

In the analysis of recent secondary studies, we notice a gap of one or even two years

elapses between the covered period of literature and the year the review appears. This

is understandable, because the authors may need substantial time for analyzing the se-

lected studies and then writing the article, followed by several months for the peer review

process. Moreover, even if this temporal gap is reduced to a minimum, as long as the

investigated topic remains active, new primary studies will always appear, soon distancing

any systematic literature review (SLR) from the status of literature. If the purpose of an

SLR is to provide an up-to-date summary of existing work on a topic, frequent updates

are required to include newly appearing relevant studies. Also, it can happen that the

original research questions and findings lose relevance, or are superseded by newer results.

As previously questioned in other disciplines [44], Mendes et al. [96] have recently investi-

gated the issue of SLRs in software engineering becoming obsolete and of when and how

they would need to be updated. Specifically, in line with [44], they conclude that SLRs

should be updated based on two conditions: i) new relevant methods, studies or informa-

tion become available; or ii) the adoption or inclusion of previous and new research cause

an impact to the findings, conclusions or credibility of the original SLR.

Thus, it is inevitable that a literature review becomes outdated after some time, as new

research comes out that cannot be included in the published paper, limiting the long-

term value of the work, since the text will no longer reflect the ongoing research in the

field. In consideration of these challenges, rather than providing a static list of the studies

found while conducting the review, along with this work we release an open and updatable

111



Live Repository 112

repository, which is an integral contribution of this study, and the review from Chapter 3

is enhanced to become a live systematic review1.

Aggregating long-term value to this work, we have made the list of papers and the in-

formation extracted from them available as an online live repository2. The papers listed

in Table 3.3 and discussed throughout Chapter 3 serve as the starting point for a bib-

liography that will continue to grow year over year, through updates to the review and

submissions by authors. We hope this website will serve as reference to anyone who is

interested in practical applications of regression testing techniques in the coming years.

The intent is to invite the community to contribute with newly published works with

approaches to RT that are relevant in IR&A. Additionally, it could also be incremented

with works already published but that, for some reason, escaped our selection. This will

allow us to keep track of newly published studies, as well as recover papers that had

theoretical motivations and unclear applicability, but that eventually provided benefits in

practice. At periodic intervals (planned to be once per year), we will check new results

for queries and suggestions from the community and decide how to update the collection

of studies. With this, another SLR covering the same topic should not be needed within

the foreseeable future.

The repository also contains a separate section for relevant literature reviews, initially

populated by the reviews mentioned in Section 3.1. This provides a starting point for

new researchers and a place to gather the overarching themes of the field.

7.1 Implementation

The website is implemented using the Jekyll static website generator and the associated

Liquid templating language. The data that populates the webpages is initially extracted

from the spreadsheets originally used to manage the SLR from Chapter 3. The spread-

sheets are exported as CSV files, then converted to JSON files for better readability, also

making it easier for each paper to have its own data file. The fields for each paper mostly

1We notice that our concept of a “live” systematic review, while inspired by similar aims, should
not be confused with the much more formalized approach for conducting living systematic reviews
recently adopted in medicine, as illustrated by https://community.cochrane.org/review-production/
production-resources/living-systematic-reviews.

2Available at: https://renangreca.github.io/literature-repository.

https://community.cochrane.org/review-production/production-resources/living-systematic-reviews
https://community.cochrane.org/review-production/production-resources/living-systematic-reviews
https://renangreca.github.io/literature-repository


Live Repository 113

Figure 7.1: Screenshots from the live repository. From left to right: 1) the main page
listing the included papers; and 2) a single paper’s page (S1 used as example).

correspond to the data extraction table (Table 3.4). The website itself is open-source and

hosted via GitHub Pages.

7.2 Longevity

The main challenge is how to keep this repository alive in the long term. It is unfeasible

for us to add a relevant paper to the repository as soon as it is published, so our plan

is to update the list in a yearly basis, re-running the query and screening steps detailed

in Section 3.3. That way, we can at least assure the most recent paper included is no

more than one year old. We are also looking into the possibility of getting automatic

notifications when a paper that satisfies certain criteria is published in an online library.

For now, this work is done by the original authors of the literature review; according to

future necessities, we will appoint other researchers or graduate students to help with the

process. In addition, we also encourage authors to submit their own work by filling a form

linked on the website3.

Along with adding more papers to the list, whenever possible we will also add additional

information about the ones already included. This can be triggered by a direct contact

by one of the authors, some observed update with the state of that piece of research, or

by suggestion of an engaged reader.

At some point after a certain number of years, the definitions we selected for including a

paper in the repository will likely need be adjusted. Whenever an author submits a paper,

we will use the opportunity to consider whether or not the paper itself is a good fit for the

3Available at: https://forms.gle/CWGjMrxCe1bnKikk8.

https://forms.gle/CWGjMrxCe1bnKikk8


Live Repository 114

repository, but also if there are new trends that our existing selection process does not

account for. There will eventually be a point in the future when the industry/academia

landscape has shifted and this study will no longer be needed. When that happens, we

will discuss the possibility of freezing the repository and stopping further expansions.

Aside from newer papers, it is always possible that we have missed some relevant papers

for a variety of reasons, so the live repository is another way of mitigating that risk. It is

impossible to provide a complete and definitive overview of any field, but we believe that

a live repository is the closest approximation that can be expected.



Chapter 8

Conclusion

This thesis provides data, insight and discussions centered around regression testing chal-

lenges and the overall goal of test suite orchestration. Based on an investigation of the

literature, a proof-of-concept implementation of orchestration, and in loco interviews with

software testing practitioners, the result is a thorough investigation on the potential ben-

efits of orchestration as well as the challenges that are currently faced by researchers and

practitioners who wish to implement these techniques on real-world software.

In Chapter 3, we provide a comprehensive literature review of academic papers with proven

or apparent potential for real-world software usage. We have shown that applicability is

a growing concern in research but, when it comes to actually applying the techniques

with an industrial partner, many challenges arise and very few approaches feature lasting

longevity.

Chapter 4 shows an example of how test suite orchestration can be used to enhance

software testing procedures, incorporating change-based TCS and similarity-based TCP

approaches as an initial step towards the goal of full orchestration. Analysis is performed

on the approach, which exhibits promise both in terms of effectiveness and of efficiency.

The challenge of full orchestration is left open, with a descriptive example of how multiple

RT could be combined.

First-hand accounts of the state of software testing in practice are quoted and discussed

in Chapter 5. Thanks to the opportunity of collaborating with an industrial partner, we

were able to understand the processes and challenges that exist today in software testing.

115



Conclusion 116

Reports indicate that testing is far from being a solved problem, showing there is ample

opportunity for new techniques to improve workflows and reduce costs in the industry.

The results of Chapter 3, Chapter 4 and Chapter 5 are used to form a list of essential

challenges in Chapter 6 that researchers should consider and address if their goal is to

provide techniques that are usable by practitioners.

To add longevity to the relevance of this work, Chapter 7 describes the process of con-

verting the literature review from Chapter 3 into a live systematic literature review. This

repository of studies is available online and provides a starting point and bibliography for

researchers to wish to pursue this research direction.

Ultimately, many of the challenges we investigate are as of yet unresolved, remaining a

fertile direction for future research. It is clear that software engineering academics and

practitioners have distinct goals when it comes to the work they do to improve the quality

and efficiency of testing, but there is also plenty of evidence indicating that it is possible

to align these motivations and produce even better techniques as a result.

The closing message of this thesis is one of community and collaboration: in order to ensure

that software testing research leads to tangible improvements to the lives of developers

and users of computer software, it is essential that academia and industry form a tighter

bond to explore each other’s advantages and cover their weaknesses. It is our sincere belief

that such collaboration is possible and will at some point be achieved. We hope that the

conclusion and publication of this study will help this happen sooner rather than later.

This chapter contains one additional section, discussing the papers that were submitted

and/or published during the development of this PhD thesis.

8.1 Publications

During the development of this thesis, the following papers were accepted for publication

at software engineering conferences or journals. We note that [P1] is not related to the

topic of this thesis, but was a collaborative effort with other colleagues. [P2] is mostly

related to the work seen in Chapter 4, while [P3] is the journal version of our systematic

literature review, and relates to Chapters 3, 6 and 7 of this thesis. [P4] is a short paper



Conclusion 117

containing a formal definition of test suite orchestration including examples and ongoing

challenges.

[P1] M. T. Rossi, R. Greca, L. Iovino, G. Giacinto, and A. Bertolino. “Defensive Pro-

gramming for Smart Home Cybersecurity”. In: 2020 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW). IEEE. 2020, pp. 600–605. doi:

10.1109/EuroSPW51379.2020.00087.

[P2] R. Greca, B. Miranda, M. Gligoric, and A. Bertolino. “Comparing and combin-

ing file-based selection and similarity-based prioritization towards regression test

orchestration”. In: Proceedings of the 3rd ACM/IEEE International Conference

on Automation of Software Test. Pittsburgh, USA: ACM/IEEE, May 2022. doi:

10.1145/3524481.3527223.

[P3] R. Greca, B. Miranda, and A. Bertolino. “State of Practical Applicability of Regres-

sion Testing Research: A Live Systematic Literature Review”. In: ACM Computing

Surveys (Jan. 2023). doi: 10.1145/3579851.

[P4] R. Greca, B. Miranda, and A. Bertolino. “Orchestration Strategies for Regression

Test Suites”. In: Proceedings of the 4th ACM/IEEE International Conference on

Automation of Software Test. Melbourne, Australia: ACM/IEEE, May 2023.

We are preparing two additional papers for submission based on different parts of this

work.

1. One industry-track paper containing the interviews and observations from Chapter 5

and comparisons with the state of practice in other software companies; and

2. One extension of the work from Chapter 4 including additional components in the

orchestration.

https://doi.org/10.1109/EuroSPW51379.2020.00087
https://doi.org/10.1145/3524481.3527223
https://doi.org/10.1145/3579851




Appendix A

Surveys

119



Appendix A: Surveys 120

A.1 E-mail Template Sent to Authors of Surveyed Papers

Dear {{Name}},

I am Renan Greca, a PhD student at the Gran Sasso Science Institute, under the supervision

of Professors Antonia Bertolino and Breno Miranda. Currently, we are performing a

systematic literature review on the topic of software regression testing, focusing on the

real-world relevance and applicability of techniques proposed in academia.

The following paper(s) of your authorship has(have) been selected for our study:

{{Paper 1}}

{{Paper 2}}

{{Paper 3}}

If possible, we would like some information about the outcome of your research after the

publication of the paper(s). We have a few questions regarding your work:

1. Is there a functional version of your technique (tool, prototype, source code,

etc.) available online? If so, please share with us the URL.

2. Was there an attempt to implement your technique in industrial or large

open-source software? Is the technique currently in use with the software?

3. If the technique was put into practice, were the metrics used in the paper

relevant for the technique’s applicability? If not, were there other metrics that

proved to be useful?

Furthermore, please let us know whether we can link your comments directly to your work

in our literature review or, if not, if we can mention these comments without referencing

which author gave them.

Finally, please inform us if you are interested and available for further contact related to

the outcome of this research at a later date.

We kindly ask you to provide answers by September 23, or to let us know by then if more

time is needed.

If you have received a similar email before, it is because we are updating our study and we

have included another paper from your authorship, so please respond regarding these new

paper(s).

Best regards,

Renan Greca (GSSI)

Breno Miranda (UFPE)

Antonia Bertolino (ISTI-CNR)



Appendix A: Surveys 121

A.2 Questionnaire Sent to Practitioners During Literature

Review

Nº Question

1 Survey for software testing practitioners
We are researchers studying the state of collaboration between academic researchers and
industrial practitioners, considering the topic of software regression testing. This survey
has the goal of better understanding practitioners’ perspective on past and ongoing usage
of methods, techniques and tools initially developed in an academic context.
Fill this form if you are directly or indirectly involved with software testing at the
company you work for. If you have colleagues that also work with software testing,
please share the form with them.
Please submit your responses by deadline.
By answering these questions, you provide consent to the authors to handle this data
and use it for research purposes. The data will not be used for any other purposes.
If you have questions or need clarifications, feel free to contact the authors: Antonia
Bertolino (antonia.bertolino@isti.cnr.it) Breno Miranda (bafm@ufpe.br) Renan Greca
(renan.greca@gssi.it)

1.1 Please tell us what are the most common pain points when it comes to
running regression testing suites.
Multiple choices can be selected.
a) Detecting failures
b) Flaky (unreliable) tests
c) Running time of the test suite
d) Creating new tests or updating existing ones
e) Cleaning up obsolete tests
Other...

1.2 Do you know of, or have you used, any tool for improving regression testing
with roots in academic research?
By regression testing, we mean running and re-running tests that cover
previously-existing functionality. Examples of techniques that can help are test case
selection, test case prioritization, test suite augmentation or test suite reduction.
A single choice can be selected.
a) I have used one or more tools. (go to Section 2)
b) I know about one or more, but never used them. (go to Section 3)
c) I don’t know about these tools. (go to Section 4)

Table A.1: Questionnaire for practitioners, Section 1.



Appendix A: Surveys 122

Nº Question

2 About the tools you have used.
In the previous page, you answered that you have used tools to improve regression
testing. Please tell us about them.

2.1 Which tools have you used?
Full body answer.

2.2 Please mark how much you agree with the following statements.
If you have used multiple tools, you may offer general sentiments about them collectively.
Possible values: Strongly disagree, Disagree, Neutral, Agree, Strongly agree.
You had a positive experience using the tool.
The tool was easy to learn and use.
The tool satisfied what you were looking for.
The tool was designed targeting your company.
The tool is currently still in use by you or your colleagues.

2.3 Feel free to share further thoughts about your experience with the tool(s).
Full body answer.

Table A.2: Questionnaire for practitioners, Section 2.

Nº Question

3 About the tools you know.
In the previous page, you answered that you know about tools to improve regression
testing. Please tell us which ones.

3.1 Which tools do you know about?
Full body answer.

Table A.3: Questionnaire for practitioners, Section 3.

Nº Question

4 Collaboration with academia.
This page focuses on the possibilities of collaboration between practitioners and
academics.

4.1 Please mark how much you agree with the following statements.
Possible values: Strongly disagree, Disagree, Neutral, Agree, Strongly agree.
You stay informed about recent research in Software Engineering.
A piece of Software Engineering research has directly improved your workflow.
You keep contact with a friend or colleague doing research in Software Engineering.
There have been attempts of collaboration between members of your company and
academia.
Your company provide open datasets or open-source software that could be used as
research subjects.

4.2 If you haven’t already, what would convince you to try using a technique
proposed in academia in your workflow? After trying it, what should it
satisfy to become a permanent part of your process?
Full body answer.

4.3 If you have materials to share, such as results of previous collaborations or
open-source data provided by your company, please put links below.
Full body answer.

4.4 Feel free to share any other comment you might have regarding industry-
academia collaboration for regression testing.
Full body answer.

Table A.4: Questionnaire for practitioners, Section 4.



Appendix A: Surveys 123

Nº Question

5 Demographics
This final section is optional, but would help improve the quality of our results.

5.1 Company
The company for which you work.
Full body answer.

5.2 Country
The country where you work.
A single choice can be selected, from a list of countries.

5.3 Role
What title best describes your role at the company?
a) Software Engineer
b) Software Tester
c) Product Manager
d) Test Manager
Other...
Thank you for your time!

Table A.5: Questionnaire for practitioners, Section 5.



Appendix A: Surveys 124

A.3 Questions for Practitioners at the Industrial Partner

Nº Question

1 Roles & education
1.1 What is your role at the company and what are the main ways you interact with the

regression testing suite?
1.2 What is your education in testing?

2 Are these common issues when dealing with the test suite?
2.1 Correctly detecting failures (avoiding slips)
2.2 Flaky (unreliable tests)
2.3 Running time of the test suite
2.4 Creating or updating tests (increasing test scope)
2.5 Cleaning up obsolete tests (reducing test scope)

3 Current practices
3.1 Are you familiar with these terms? Do you use them?
3.1.1 Test Case Selection
3.1.2 Test Case Prioritization
3.1.3 Test Suite Reduction
3.1.4 Test Suite Augmentation
3.2 Does your team separate test execution into shorter, frequent runs and longer overnight

runs?
3.3 Are there people in your team solely responsible for testing, or is it a job of the developer?
3.4 Do you believe the current test suite is effective in avoiding fault propagation upon

delivery of an update?
3.5 How often are there failing tests from the overnight run in the morning?
3.6 How often is a test failure a sign of actual SUT error vs. poor test quality vs. environment

misconfiguration?
3.7 What do you do when the same test fails many days in a row?
3.8 What is the standard procedure for dealing with potentially flaky tests?
3.9 Is there a policy in place for refactoring and/or removing aging tests?
3.10 Do you have an idea of how much money or how much electricity is needed to run a test

suite? Is this concern increasing or reducing over the years?
3.11 Do you personally ever review test code? How much trust do you have that it’s being

done correctly and at high quality?

4 Interaction with academia
4.1 Do you stay informed about recent research in Software Engineering?
4.2 Has a piece of Software Engineering research directly improved your workflow?
4.3 Do you keep contact with a friend or colleague doing research in Software Engineering?
4.4 Before me, have there been attempts of collaboration between members of your team

and academic researchers?
4.5 What does a tool need to do/have in order to convince you to use it as a permanent

part of your workflow?
4.6 What are the risks and benefits of using a new tool for regression testing improvement?
4.7 Have you ever used an open-source regression testing approach as-is, or is it always

necessary to re-engineer it for usability/security/compatibility reasons?
4.8 If I came to you saying “I have this algorithm that would help your testing workflow”,

what would be your reaction?

Table A.6: List of questions asked during interviews.



Bibliography

[1] M. Abdelkarim and R. ElAdawi. “TCP-Net: Test Case Prioritization using End-to-

End Deep Neural Networks”. en. In: 2022 IEEE International Conference on Soft-

ware Testing, Verification and Validation Workshops (ICSTW). Valencia, Spain:

IEEE, Apr. 2022, pp. 122–129. isbn: 978-1-66549-628-5. doi: 10.1109/ICSTW55395.

2022 .00034. url: https : // ieeexplore . ieee . org/document/9787970/ (visited on

09/14/2022).

[2] M. S. Abdul Manan, D. N. Abang Jawawi, and J. Ahmad. “A Systematic Literature

Review on Test Case Prioritization in Combinatorial Testing”. In: 2021 The 5th

International Conference on Algorithms, Computing and Systems. 2021, pp. 55–61.

[3] F. S. Ahmed, A. Majeed, T. A. Khan, and S. N. Bhatti. “Value-based cost-

cognizant test case prioritization for regression testing”. In: Plos one 17.5 (2022),

e0264972.

[4] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas, D. Helges-

son, S. Kunze, and M. Varshosaz. “On the search for industry-relevant regression

testing research”. In: Empirical Software Engineering 24.4 (Aug. 2019). ISBN:

1066401896 Publisher: Springer New York LLC, pp. 2020–2055. issn: 15737616.

doi: 10.1007/s10664-018-9670-1.

[5] H. Aman, Y. Tanaka, T. Nakano, H. Ogasawara, and M. Kawahara. “Application

of Mahalanobis-Taguchi Method and 0-1 Programming Method to Cost-Effective

Regression Testing”. In: Proceedings - 42nd Euromicro Conference on Software

Engineering and Advanced Applications, SEAA 2016. 2016, pp. 240–244. doi: 10.

1109/SEAA.2016.29.

125

https://doi.org/10.1109/ICSTW55395.2022.00034
https://doi.org/10.1109/ICSTW55395.2022.00034
https://ieeexplore.ieee.org/document/9787970/
https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.1109/SEAA.2016.29
https://doi.org/10.1109/SEAA.2016.29


Bibliography 126

[6] M. Azizi and H. Do. “ReTEST: A Cost Effective Test Case Selection Technique for

Modern Software Development”. en. In: 2018 IEEE 29th International Symposium

on Software Reliability Engineering (ISSRE). Memphis, TN: IEEE, Oct. 2018,

pp. 144–154. isbn: 978-1-5386-8321-7. doi: 10.1109/ISSRE.2018.00025. url: https:

//ieeexplore.ieee.org/document/8539077/ (visited on 05/11/2021).

[7] T. Bach, A. Andrzejak, and R. Pannemans. “Coverage-Based Reduction of Test

Execution Time: Lessons from a Very Large Industrial Project”. In: Proceedings -

10th IEEE International Conference on Software Testing, Verification and Valida-

tion Workshops, ICSTW 2017. 2017, pp. 3–12. doi: 10.1109/ICSTW.2017.6.

[8] M. Bagherzadeh, N. Kahani, and L. Briand. “Reinforcement Learning for Test Case

Prioritization”. en. In: IEEE Transactions on Software Engineering 48.8 (Aug.

2022), pp. 2836–2856. issn: 0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.

2021.3070549. url: https://ieeexplore.ieee.org/document/9394799/ (visited on

09/14/2022).

[9] A. Bajaj and O. P. Sangwan. “A Survey on Regression Testing Using Nature-

Inspired Approaches”. en. In: 2018 4th International Conference on Computing

Communication and Automation (ICCCA). Greater Noida, India: IEEE, Dec. 2018,

pp. 1–5. isbn: 978-1-5386-6947-1. doi: 10.1109/CCAA.2018.8777692. (Visited on

11/08/2020).

[10] A. Bajaj and O. P. Sangwan. “A Systematic Literature Review of Test Case Pri-

oritization Using Genetic Algorithms”. en. In: IEEE Access 7 (2019), pp. 126355–

126375. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2938260. (Visited on 11/08/2020).

[11] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo. “Learning-

to-rank vs ranking-to-learn: strategies for regression testing in continuous integra-

tion”. en. In: Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering. Seoul South Korea: ACM, June 2020, pp. 1–12. isbn: 978-

1-4503-7121-6. doi: 10.1145/3377811.3380369. url: https://dl.acm.org/doi/10.

1145/3377811.3380369 (visited on 09/14/2022).

[12] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy, and S. Ducasse. “Test

case selection in industry: an analysis of issues related to static approaches”. In:

Software Quality Journal 25.4 (Dec. 2017). Publisher: Springer New York LLC,

pp. 1203–1237. issn: 15731367. doi: 10.1007/s11219-016-9328-4.

https://doi.org/10.1109/ISSRE.2018.00025
https://ieeexplore.ieee.org/document/8539077/
https://ieeexplore.ieee.org/document/8539077/
https://doi.org/10.1109/ICSTW.2017.6
https://doi.org/10.1109/TSE.2021.3070549
https://doi.org/10.1109/TSE.2021.3070549
https://ieeexplore.ieee.org/document/9394799/
https://doi.org/10.1109/CCAA.2018.8777692
https://doi.org/10.1109/ACCESS.2019.2938260
https://doi.org/10.1145/3377811.3380369
https://dl.acm.org/doi/10.1145/3377811.3380369
https://dl.acm.org/doi/10.1145/3377811.3380369
https://doi.org/10.1007/s11219-016-9328-4


Bibliography 127

[13] G. Buchgeher, C. Klammer, W. Heider, M. Schuetz, and H. Huber. “Improving

testing in an enterprise SOA with an architecture-based approach”. In: Proceedings

- 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA

2016. 2016, pp. 231–240. doi: 10.1109/WICSA.2016.24.

[14] B. Busjaeger and T. Xie. “Learning for test prioritization: An industrial case

study”. In: Proceedings of the ACM SIGSOFT Symposium on the Foundations

of Software Engineering. Vol. 13-18-November-2016. 2016, pp. 975–980. doi: 10.

1145/2950290.2983954.

[15] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S. De Almeida.

“On strategies for testing software product lines: A systematic literature review”.

In: Information and Software Technology 56.10 (2014), pp. 1183–1199.

[16] C. Catal. “On the application of genetic algorithms for test case prioritization: a

systematic literature review”. In: Proceedings of the 2nd international workshop on

evidential assessment of software technologies. 2012, pp. 9–14.

[17] C. Catal and D. Mishra. “Test case prioritization: a systematic mapping study”.

In: Software Quality Journal 21.3 (2013), pp. 445–478.

[18] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric. “Regression test selection across

JVM boundaries”. In: Proceedings of the ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering. Vol. Part F130154. 2017, pp. 809–820. doi: 10.

1145/3106237.3106297.

[19] A. Celik, Y. C. Lee, and M. Gligoric. “Regression Test Selection for TizenRT”.

In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering.

ESEC/FSE 2018. New York, NY, USA: Association for Computing Machinery,

Oct. 2018, pp. 845–850. isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3275527.

url: https://biblioproxy.cnr.it:2481/10.1145/3236024.3275527.

[20] J. Chen, Y. Lou, L. L. Zhang, J. Zhou, X. Wang, D. Hao, and L. L. Zhang. “Op-

timizing Test Prioritization via Test Distribution Analysis”. In: Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ESEC/FSE 2018. New

York, NY, USA: Association for Computing Machinery, Oct. 2018, pp. 656–667.

https://doi.org/10.1109/WICSA.2016.24
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/3106237.3106297
https://doi.org/10.1145/3106237.3106297
https://doi.org/10.1145/3236024.3275527
https://biblioproxy.cnr.it:2481/10.1145/3236024.3275527


Bibliography 128

isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3236053. url: https://biblioproxy.

cnr.it:2481/10.1145/3236024.3236053.

[21] Y. Chen, N. Chaudhari, and M.-H. Chen. “Context-Aware Regression Test Selec-

tion”. en. In: 2021 28th Asia-Pacific Software Engineering Conference (APSEC).

Taipei, Taiwan: IEEE, Dec. 2021, pp. 431–440. isbn: 978-1-66543-784-4. doi: 10.

1109 / APSEC53868 . 2021 . 00050. url: https : / / ieeexplore . ieee . org / document /

9711972/ (visited on 09/14/2022).

[22] Y. Chen and M.-H. Chen. “Multi-Objective Regression Test Selection”. en. In:

2021, pp. 105–92. doi: 10.29007/7z5n. url: https://easychair.org/publications/

paper/pgdP (visited on 09/14/2022).

[23] Z. Chi, J. Xuan, Z. Ren, X. Xie, and H. Guo. “Multi-Level Random Walk for

Software Test Suite Reduction”. en. In: IEEE Computational Intelligence Magazine

12.2 (May 2017), pp. 24–33. issn: 1556-603X. doi: 10.1109/MCI.2017.2670460.

url: http://ieeexplore.ieee.org/document/7895279/ (visited on 11/22/2021).

[24] H. Cibulski and A. Yehudai. “Regression test selection techniques for test-driven

development”. In: 2011 IEEE Fourth International Conference on Software Test-

ing, Verification and Validation Workshops. IEEE. 2011, pp. 115–124.

[25] T. Çıngıl and H. Sözer. “Black-box Test Case Selection by Relating Code Changes

with Previously Fixed Defects”. en. In: The International Conference on Evalu-

ation and Assessment in Software Engineering 2022. Gothenburg Sweden: ACM,

June 2022, pp. 30–39. isbn: 978-1-4503-9613-4. doi: 10.1145/3530019.3530023.

url: https://dl.acm.org/doi/10.1145/3530019.3530023 (visited on 09/14/2022).

[26] J. Cohen. “A coefficient of agreement for nominal scales”. In: Educational and

psychological measurement 20.1 (1960), pp. 37–46.

[27] D. Correia, R. Abreu, P. Santos, and J. Nadkarni. “MOTSD: A multi-objective test

selection tool using test suite diagnosability”. In: ESEC/FSE 2019 - Proceedings

of the 2019 27th ACM Joint Meeting European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 2019, pp. 1070–1074.

doi: 10.1145/3338906.3341187.

[28] E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino. “Scalable Approaches for

Test Suite Reduction”. en. In: 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). Montreal, QC, Canada: IEEE, May 2019, pp. 419–

https://doi.org/10.1145/3236024.3236053
https://biblioproxy.cnr.it:2481/10.1145/3236024.3236053
https://biblioproxy.cnr.it:2481/10.1145/3236024.3236053
https://doi.org/10.1109/APSEC53868.2021.00050
https://doi.org/10.1109/APSEC53868.2021.00050
https://ieeexplore.ieee.org/document/9711972/
https://ieeexplore.ieee.org/document/9711972/
https://doi.org/10.29007/7z5n
https://easychair.org/publications/paper/pgdP
https://easychair.org/publications/paper/pgdP
https://doi.org/10.1109/MCI.2017.2670460
http://ieeexplore.ieee.org/document/7895279/
https://doi.org/10.1145/3530019.3530023
https://dl.acm.org/doi/10.1145/3530019.3530023
https://doi.org/10.1145/3338906.3341187


Bibliography 129

429. isbn: 978-1-72810-869-8. doi: 10 . 1109 / ICSE . 2019 . 00055. url: https : / /

ieeexplore.ieee.org/document/8812048/ (visited on 09/06/2019).

[29] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and B. Baudry.

“A snowballing literature study on test amplification”. In: Journal of Systems and

Software 157 (2019), p. 110398.

[30] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. “Coverage-based regression

test case selection, minimization and prioritization: A case study on an industrial

system”. In: Software Testing, Verification and Reliability 25.4 (2015), pp. 371–

396.

[31] Dictionary.com. “Effectiveness” vs. “Efficacy” vs. “Efficiency”: When To Use Each

Word For The Best Results. url: https://www.dictionary.com/e/effectiveness-vs-

efficacy-vs-efficiency-when-to-use-each-word-for-the-best-results/.

[32] H. Do. “Recent Advances in Regression Testing Techniques”. en. In: Advances

in Computers. Vol. 103. Elsevier, 2016, pp. 53–77. isbn: 978-0-12-809941-4. doi:

10.1016/bs.adcom.2016.04.004. (Visited on 11/08/2020).

[33] H. Do, S. Elbaum, and G. Rothermel. “Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact”. In: Empirical

Software Engineering 10.4 (2005), pp. 405–435.

[34] R. Eda and H. Do. “An efficient regression testing approach for PHP Web applica-

tions using test selection and reusable constraints”. en. In: Software Quality Journal

27.4 (Dec. 2019), pp. 1383–1417. issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-

019-09449-2. url: http://link.springer.com/10.1007/s11219-019-09449-2 (visited

on 05/11/2021).

[35] S. Elbaum, A. Mclaughlin, and J. Penix. The Google Dataset of Testing Results.

https://code.google.com/p/google-shared-dataset-of-test-suite-results. Accessed

on 11/10/2022. 2014. (Visited on 10/11/2022).

[36] S. Elbaum, G. Rothermel, and J. Penix. “Techniques for improving regression

testing in continuous integration development environments”. In: Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. 2014, pp. 235–245.

https://doi.org/10.1109/ICSE.2019.00055
https://ieeexplore.ieee.org/document/8812048/
https://ieeexplore.ieee.org/document/8812048/
https://www.dictionary.com/e/effectiveness-vs-efficacy-vs-efficiency-when-to-use-each-word-for-the-best-results/
https://www.dictionary.com/e/effectiveness-vs-efficacy-vs-efficiency-when-to-use-each-word-for-the-best-results/
https://doi.org/10.1016/bs.adcom.2016.04.004
https://doi.org/10.1007/s11219-019-09449-2
https://doi.org/10.1007/s11219-019-09449-2
http://link.springer.com/10.1007/s11219-019-09449-2
https://code.google.com/p/google-shared-dataset-of-test-suite-results


Bibliography 130

[37] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer. “Empirically evaluating readily

available information for regression test optimization in continuous integration”.

en. In: Proceedings of the 30th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis. Virtual Denmark: ACM, July 2021, pp. 491–504. isbn:

978-1-4503-8459-9. doi: 10.1145/3460319.3464834. url: https://dl.acm.org/doi/

10.1145/3460319.3464834 (visited on 09/14/2022).

[38] E. Engström and P. Runeson. “A qualitative survey of regression testing practices”.

In: International Conference on Product Focused Software Process Improvement.

Springer. 2010, pp. 3–16.

[39] E. Engström, P. Runeson, and M. Skoglund. “A systematic review on regression

test selection techniques”. In: Information and Software Technology 52.1 (2010),

pp. 14–30.

[40] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke. “Empirical evaluation

of pareto efficient multi-objective regression test case prioritisation”. In: Proceed-

ings of the 2015 International Symposium on Software Testing and Analysis. 2015,

pp. 234–245.

[41] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner.

“Chapter One - Security Testing: A Survey”. In: ed. by A. Memon. Vol. 101.

Advances in Computers. Elsevier, 2016, pp. 1–51. doi: https://doi.org/10.1016/

bs.adcom.2015.11.003. url: https://www.sciencedirect.com/science/article/pii/

S0065245815000649.

[42] M. Felderer and E. Fourneret. “A systematic classification of security regression

testing approaches”. In: International Journal on Software Tools for Technology

Transfer 17.3 (2015), pp. 305–319.

[43] B. Fu, S. Misailovic, and M. Gligoric. “Resurgence of Regression Test Selection

for C++”. en. In: 2019 12th IEEE Conference on Software Testing, Validation

and Verification (ICST). Xi’an, China: IEEE, Apr. 2019, pp. 323–334. isbn: 978-

1-72811-736-2. doi: 10.1109/ICST.2019.00039. url: https://ieeexplore.ieee.org/

document/8730161/ (visited on 05/11/2021).

[44] P. Garner, S. Hopewell, J. Chandler, H. MacLehose, E. A. Akl, J. Beyene, S.

Chang, R. Churchill, K. Dearness, G. Guyatt, C. Lefebvre, B. Liles, R. Marshall, L.

https://doi.org/10.1145/3460319.3464834
https://dl.acm.org/doi/10.1145/3460319.3464834
https://dl.acm.org/doi/10.1145/3460319.3464834
https://doi.org/https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/https://doi.org/10.1016/bs.adcom.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://doi.org/10.1109/ICST.2019.00039
https://ieeexplore.ieee.org/document/8730161/
https://ieeexplore.ieee.org/document/8730161/


Bibliography 131

Mart́ınez Garćıa, C. Mavergames, M. Nasser, A. Qaseem, M. Sampson, K. Soares-

Weiser, Y. Takwoingi, L. Thabane, M. Trivella, P. Tugwell, E. Welsh, E. C. Wilson,

and H. J. Schünemann. “When and how to update systematic reviews: consensus

and checklist”. In: BMJ 354 (2016). doi: 10.1136/bmj.i3507. url: https://www.

bmj.com/content/354/bmj.i3507.

[45] V. Garousi, R. Özkan, and A. Betin-Can. “Multi-objective regression test selection

in practice: An empirical study in the defense software industry”. In: Information

and Software Technology 103 (2018), pp. 40–54. doi: 10.1016/j.infsof.2018.06.007.

[46] V. Garousi and M. Felderer. “Worlds apart: industrial and academic focus areas

in software testing”. In: IEEE Software 34.5 (2017), pp. 38–45.

[47] V. Garousi, R. Özkan, and A. Betin-Can. “Multi-objective regression test selection

in practice: An empirical study in the defense software industry”. In: Information

and Software Technology 103 (2018), pp. 40–54.

[48] M. Gligoric, L. Eloussi, and D. Marinov. “Practical Regression Test Selection with

Dynamic File Dependencies”. In: Proceedings of the 2015 International Symposium

on Software Testing and Analysis. ISSTA 2015. Baltimore, MD, USA: Association

for Computing Machinery, 2015, pp. 211–222. isbn: 9781450336208. doi: 10.1145/

2771783.2771784. url: https://doi.org/10.1145/2771783.2771784.

[49] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov. “An Empirical Evaluation

and Comparison of Manual and Automated Test Selection”. In: Proceedings of the

29th ACM/IEEE International Conference on Automated Software Engineering.

ASE ’14. Vasteras, Sweden: Association for Computing Machinery, 2014, pp. 361–

372. isbn: 9781450330138. doi: 10.1145/2642937.2643019. url: https://doi.org/

10.1145/2642937.2643019.

[50] A. Gotlieb and D. Marijan. “Using global constraints to automate regression test-

ing”. In: AI Magazine 38.1 (2017), pp. 73–87. url: https://doi.org/10.1609/aimag.

v38i1.2714.

[51] A. Goyal, R. Shyamasundar, R. Jetley, D. Mohan, and S. Ramaswamy. “Test suite

minimization of evolving software systems: A case study”. In: ICSOFT 2019 -

Proceedings of the 14th International Conference on Software Technologies. 2019,

pp. 226–237.

https://doi.org/10.1136/bmj.i3507
https://www.bmj.com/content/354/bmj.i3507
https://www.bmj.com/content/354/bmj.i3507
https://doi.org/10.1016/j.infsof.2018.06.007
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2642937.2643019
https://doi.org/10.1145/2642937.2643019
https://doi.org/10.1145/2642937.2643019
https://doi.org/10.1609/aimag.v38i1.2714
https://doi.org/10.1609/aimag.v38i1.2714


Bibliography 132

[52] R. Greca, B. Miranda, and A. Bertolino. “State of Practical Applicability of Regres-

sion Testing Research: A Live Systematic Literature Review”. In: ACM Computing

Surveys (Jan. 2023). issn: 0360-0300. doi: 10.1145/3579851.

[53] R. Greca, B. Miranda, M. Gligoric, and A. Bertolino. “Comparing and combin-

ing file-based selection and similarity-based prioritization towards regression test

orchestration”. en. In: Proceedings of the 3rd ACM/IEEE International Confer-

ence on Automation of Software Test. Pittsburgh Pennsylvania: ACM, May 2022,

pp. 115–125. isbn: 978-1-4503-9286-0. doi: 10.1145/3524481.3527223.

[54] B. Guo, Y.-W. Kwon, and M. Song. “Decomposing Composite Changes for Code

Review and Regression Test Selection in Evolving Software”. In: Journal of Com-

puter Science and Technology 34.2 (2019), pp. 416–436. doi: 10.1007/s11390-019-

1917-9.

[55] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja. “Test prioritization in

continuous integration environments”. en. In: Journal of Systems and Software

146 (Dec. 2018), pp. 80–98. issn: 01641212. doi: 10 . 1016 / j . jss . 2018 . 08 . 061.

url: https://linkinghub.elsevier.com/retrieve/pii/S0164121218301730 (visited on

05/11/2021).

[56] D. Hao, L. Zhang, and H. Mei. “Test-case prioritization: achievements and chal-

lenges”. en. In: Frontiers of Computer Science 10.5 (Oct. 2016), pp. 769–777. issn:

2095-2228, 2095-2236. doi: 10.1007/s11704-016-6112-3. (Visited on 11/08/2020).

[57] M. Harman. “Making the case for MORTO: Multi objective regression test opti-

mization”. In: 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops. IEEE. 2011, pp. 111–114.

[58] M. Harman and P. O’Hearn. “From start-ups to scale-ups: Opportunities and

open problems for static and dynamic program analysis”. In: Proceedings of the

18th International Working Conference on Source Code Analysis and Manipulation

(SCAM 18). IEEE. 2018, pp. 1–23.

[59] M. J. Harrold and A. Orso. “Retesting software during development and mainte-

nance”. In: 2008 Frontiers of Software Maintenance. IEEE. 2008, pp. 99–108.

[60] M. Hasnain, I. Ghani, M. F. Pasha, and S. R. Jeong. “A Comprehensive Re-

view on Regression Test Case Prioritization Techniques for Web Services”. en. In:

https://doi.org/10.1145/3579851
https://doi.org/10.1145/3524481.3527223
https://doi.org/10.1007/s11390-019-1917-9
https://doi.org/10.1007/s11390-019-1917-9
https://doi.org/10.1016/j.jss.2018.08.061
https://linkinghub.elsevier.com/retrieve/pii/S0164121218301730
https://doi.org/10.1007/s11704-016-6112-3


Bibliography 133

KSII Transactions on Internet and Information Systems 14.5 (May 2020). issn:

19767277. doi: 10.3837/tiis.2020.05.001. (Visited on 11/08/2020).

[61] M. Hasnain, I. Ghani, M. F. Pasha, and S.-R. Jeong. “Ontology-Based Regres-

sion Testing: A Systematic Literature Review”. In: Applied Sciences 11.20 (2021),

p. 9709.

[62] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. “Comparing

White-Box and Black-Box Test Prioritization”. In: 2016 IEEE/ACM 38th In-

ternational Conference on Software Engineering (ICSE). 2016, pp. 523–534. doi:

10.1145/2884781.2884791.

[63] K. Herzig. Let’s assume we had to pay for testing. https://www.slideshare.net/kim.

herzig/keynote-ast-2016. Accessed on 06/09/2022. 2016. (Visited on 10/06/2022).

[64] M. Hirzel and H. Klaeren. “Graph-Walk-based Selective Regression Testing of Web

Applications Created with Google Web Toolkit”. en. In: (2016), p. 15.

[65] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. “Experiments on the effec-

tiveness of dataflow-and control-flow-based test adequacy criteria”. In: Proceedings

of 16th International conference on Software engineering. IEEE. 1994, pp. 191–200.

[66] “IEEE Standard Classification for Software Anomalies”. In: IEEE Std 1044-2009

(Revision of IEEE Std 1044-1993) (2010), pp. 1–23. doi: 10.1109/IEEESTD.2010.

5399061.

[67] Y. Jia and M. Harman. “An analysis and survey of the development of mutation

testing”. In: IEEE transactions on software engineering 37.5 (2010), pp. 649–678.

[68] R. Just, D. Jalali, and M. D. Ernst. “Defects4J: A database of existing faults to

enable controlled testing studies for Java programs”. In: Proceedings of the 2014

International Symposium on Software Testing and Analysis. 2014, pp. 437–440.

[69] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani. “Effective Regression Test

Case Selection: A Systematic Literature Review”. en. In: ACM Computing Surveys

50.2 (June 2017), pp. 1–32. issn: 0360-0300, 1557-7341. doi: 10 .1145/3057269.

(Visited on 11/08/2020).

[70] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng. “Test case priori-

tization approaches in regression testing: A systematic literature review”. en. In:

Information and Software Technology 93 (Jan. 2018), pp. 74–93. issn: 09505849.

doi: 10.1016/j.infsof.2017.08.014. (Visited on 12/01/2020).

https://doi.org/10.3837/tiis.2020.05.001
https://doi.org/10.1145/2884781.2884791
https://www.slideshare.net/kim.herzig/keynote-ast-2016
https://www.slideshare.net/kim.herzig/keynote-ast-2016
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1145/3057269
https://doi.org/10.1016/j.infsof.2017.08.014


Bibliography 134

[71] S. Kirdey, K. Cureton, S. Rick, S. Ramanathan, and M. Shukla. Lerner — using

RL agents for test case scheduling. https : //netflixtechblog . com/ lerner - using -

rl-agents-for-test-case-scheduling-3e0686211198. Accessed on 06/09/2022. 2019.

(Visited on 09/06/2022).

[72] B. Kitchenham. “Procedures for performing systematic reviews”. In: Keele, UK,

Keele University 33.2004 (2004), pp. 1–26.

[73] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson, and M. Castell. “Support-

ing continuous integration by code-churn based test selection”. In: 2015 IEEE/ACM

2nd International Workshop on Rapid Continuous Software Engineering. IEEE.

2015, pp. 19–25.

[74] J.-H. Kwon and I.-Y. Ko. “Cost-effective regression testing using bloom filters

in continuous integration development environments”. In: 2017 24th Asia-Pacific

Software Engineering Conference (APSEC). IEEE. 2017, pp. 160–168.

[75] K. Land, E.-M. Neumann, S. Ziegltrum, H. Li, and B. Vogel-Heuser. “An In-

dustrial Evaluation of Test Prioritisation Criteria and Metrics”. In: 2019 IEEE

International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy:

IEEE, Oct. 2019, pp. 1887–1892. isbn: 978-1-72814-569-3. doi: 10 .1109/SMC.

2019.8914505. url: https://ieeexplore.ieee.org/document/8914505/ (visited on

05/11/2021).

[76] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. “An extensive

study of static regression test selection in modern software evolution”. In: Proceed-

ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering. 2016, pp. 583–594.

[77] M. Lehman. “Programs, life cycles, and laws of software evolution”. In: Proceedings

of the IEEE 68.9 (1980), pp. 1060–1076. doi: 10.1109/PROC.1980.11805.

[78] C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco. “Assessing Transition-

Based Test Selection Algorithms at Google”. en. In: 2019 IEEE/ACM 41st Inter-

national Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP). Montreal, QC, Canada: IEEE, May 2019, pp. 101–110. isbn: 978-1-

72811-760-7. doi: 10.1109/ICSE-SEIP.2019.00019. url: https://ieeexplore.ieee.

org/document/8804429/ (visited on 11/07/2019).

https://netflixtechblog.com/lerner-using-rl-agents-for-test-case-scheduling-3e0686211198
https://netflixtechblog.com/lerner-using-rl-agents-for-test-case-scheduling-3e0686211198
https://doi.org/10.1109/SMC.2019.8914505
https://doi.org/10.1109/SMC.2019.8914505
https://ieeexplore.ieee.org/document/8914505/
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://ieeexplore.ieee.org/document/8804429/
https://ieeexplore.ieee.org/document/8804429/


Bibliography 135

[79] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets. New

York, NY, USA: Cambridge University Press, 2014. isbn: 1107077230, 9781107077232.

[80] H. K. Leung and L. White. “Insights into regression testing (software testing)”. In:

Proceedings. Conference on Software Maintenance-1989. IEEE. 1989, pp. 60–69.

[81] A. Levin. “Latest 737 Max Fault That Alarmed Test Pilots Rooted in Software”. en.

In: Bloomberg.com (July 2019). url: https://www.bloomberg.com/news/articles/

2019-07-27/latest- 737-max- fault- that- alarmed- test-pilots- rooted- in- software

(visited on 09/11/2019).

[82] F. Li, J. Zhou, Y. Li, D. Hao, and L. Zhang. “AGA: An Accelerated Greedy

Additional Algorithm for Test Case Prioritization”. en. In: IEEE Transactions on

Software Engineering (2021), pp. 1–1. issn: 0098-5589, 1939-3520, 2326-3881. doi:

10.1109/TSE.2021.3137929. url: https://ieeexplore.ieee.org/document/9662236/

(visited on 09/14/2022).

[83] J. A. P. Lima and S. R. Vergilio. “A Multi-Armed Bandit Approach for Test Case

Prioritization in Continuous Integration Environments”. en. In: IEEE Transactions

on Software Engineering 48.2 (Feb. 2022), pp. 453–465. issn: 0098-5589, 1939-3520,

2326-3881. doi: 10.1109/TSE.2020.2992428. url: https://ieeexplore.ieee.org/

document/9086053/ (visited on 09/14/2022).

[84] Y. Lou, J. Chen, L. Zhang, and D. Hao. “A Survey on Regression Test-Case Pri-

oritization”. en. In: Advances in Computers 113 (2019), pp. 1–46. issn: 0065-2458.

doi: 10.1016/bs.adcom.2018.10.001.

[85] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang. “How does

regression test prioritization perform in real-world software evolution?” en. In:

Proceedings of the 38th International Conference on Software Engineering. Austin

Texas: ACM, May 2016, pp. 535–546. isbn: 978-1-4503-3900-1. doi: 10 . 1145 /

2884781.2884874. url: https://dl.acm.org/doi/10.1145/2884781.2884874 (visited

on 05/11/2021).

[86] D. Lübke. “Selecting and Prioritizing Regression Test Suites by Production Us-

age Risk in Time-Constrained Environments”. In: (2020). ISBN: 9783030355098,

pp. 69–83. doi: 10.1007/978-3-030-35510-4.

https://www.bloomberg.com/news/articles/2019-07-27/latest-737-max-fault-that-alarmed-test-pilots-rooted-in-software
https://www.bloomberg.com/news/articles/2019-07-27/latest-737-max-fault-that-alarmed-test-pilots-rooted-in-software
https://doi.org/10.1109/TSE.2021.3137929
https://ieeexplore.ieee.org/document/9662236/
https://doi.org/10.1109/TSE.2020.2992428
https://ieeexplore.ieee.org/document/9086053/
https://ieeexplore.ieee.org/document/9086053/
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1145/2884781.2884874
https://dl.acm.org/doi/10.1145/2884781.2884874
https://doi.org/10.1007/978-3-030-35510-4


Bibliography 136

[87] Q. Luo, K. Moran, L. Zhang, and D. Poshyvanyk. “How Do Static and Dynamic

Test Case Prioritization Techniques Perform on Modern Software Systems? An

Extensive Study on GitHub Projects”. In: IEEE Transactions on Software Engi-

neering 45.11 (2019), pp. 1054–1080. doi: 10.1109/TSE.2018.2822270.

[88] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. “An empirical analysis of flaky

tests”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. 2014, pp. 643–653.

[89] R. Lynn. How the Agile Method Transforms Software Testing. url: https://www.

planview.com/resources/articles/how-agile-method-transforms-software-testing/.

[90] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. “Predictive Test Selection”.

en. In: arXiv:1810.05286 [cs]. arXiv: 1810.05286. Oct. 2018. url: http://arxiv.org/

abs/1810.05286 (visited on 08/07/2019).

[91] C. Magalhães, J. Andrade, L. Perrusi, A. Mota, F. Barros, and E. Maia. “HSP:

A hybrid selection and prioritisation of regression test cases based on information

retrieval and code coverage applied on an industrial case study”. en. In: Journal

of Systems and Software 159 (Jan. 2020), p. 110430. issn: 01641212. doi: 10 .

1016 / j . jss . 2019 . 110430. url: https : / / linkinghub . elsevier . com / retrieve / pii /

S0164121219302043 (visited on 09/14/2022).

[92] C. Magalhães, F. Barros, A. Mota, and E. Maia. “Automatic Selection of Test Cases

for Regression Testing”. en. In: Proceedings of the 1st Brazilian Symposium on Sys-

tematic and Automated Software Testing - SAST. Maringa, Parana, Brazil: ACM

Press, 2016, pp. 1–8. isbn: 978-1-4503-4766-2. doi: 10.1145/2993288.2993299. url:

http://dl.acm.org/citation.cfm?doid=2993288.2993299 (visited on 05/11/2021).

[93] D. Marijan and M. Liaaen. “Effect of Time Window on the Performance of Con-

tinuous Regression Testing”. en. In: 2016 IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME). Raleigh, NC, USA: IEEE, Oct. 2016,

pp. 568–571. isbn: 978-1-5090-3806-0. doi: 10.1109/ICSME.2016.77. url: http:

//ieeexplore.ieee.org/document/7816510/ (visited on 05/11/2021).

[94] S. Mehta, F. Farmahinifarahani, R. Bhagwan, S. Guptha, S. Jafari, R. Kumar, V.

Saini, and A. Santhiar. “Data-driven test selection at scale”. en. In: Proceedings of

the 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. Athens Greece: ACM,

https://doi.org/10.1109/TSE.2018.2822270
https://www.planview.com/resources/articles/how-agile-method-transforms-software-testing/
https://www.planview.com/resources/articles/how-agile-method-transforms-software-testing/
http://arxiv.org/abs/1810.05286
http://arxiv.org/abs/1810.05286
https://doi.org/10.1016/j.jss.2019.110430
https://doi.org/10.1016/j.jss.2019.110430
https://linkinghub.elsevier.com/retrieve/pii/S0164121219302043
https://linkinghub.elsevier.com/retrieve/pii/S0164121219302043
https://doi.org/10.1145/2993288.2993299
http://dl.acm.org/citation.cfm?doid=2993288.2993299
https://doi.org/10.1109/ICSME.2016.77
http://ieeexplore.ieee.org/document/7816510/
http://ieeexplore.ieee.org/document/7816510/


Bibliography 137

Aug. 2021, pp. 1225–1235. isbn: 978-1-4503-8562-6. doi: 10.1145/3468264.3473916.

url: https://dl.acm.org/doi/10.1145/3468264.3473916 (visited on 09/14/2022).

[95] A. Memon, Zebao Gao, Bao Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and

J. Micco. “Taming Google-scale continuous testing”. en. In: 2017 IEEE/ACM 39th

International Conference on Software Engineering: Software Engineering in Prac-

tice Track (ICSE-SEIP). Buenos Aires: IEEE, May 2017, pp. 233–242. isbn: 978-

1-5386-2717-4. doi: 10.1109/ICSE-SEIP.2017.16. url: http://ieeexplore.ieee.org/

document/7965447/ (visited on 09/09/2019).

[96] E. Mendes, C. Wohlin, K. Felizardo, and M. Kalinowski. “When to update sys-

tematic literature reviews in software engineering”. In: Journal of Systems and

Software 167 (2020), p. 110607. issn: 0164-1212. doi: https://doi.org/10.1016/

j . jss . 2020 . 110607. url: https : //www. sciencedirect . com/science/article /pii /

S0164121220300856.

[97] T. Mens. “Introduction and Roadmap: History and Challenges of Software Evo-

lution”. In: Software Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg,

2008, pp. 1–11. isbn: 978-3-540-76440-3. doi: 10.1007/978-3-540-76440-3 1. url:

https://doi.org/10.1007/978-3-540-76440-3 1.

[98] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk. “Regression Testing Goals

- View of Practitioners and Researchers”. en. In: 2017 24th Asia-Pacific Soft-

ware Engineering Conference Workshops (APSECW). Nanjing: IEEE, Dec. 2017,

pp. 25–31. isbn: 978-1-5386-2649-8. doi: 10.1109/APSECW.2017.23. url: http:

//ieeexplore.ieee.org/document/8312521/ (visited on 09/02/2019).

[99] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino. “FAST approaches to

scalable similarity-based test case prioritization”. en. In: Proceedings of the 40th In-

ternational Conference on Software Engineering - ICSE ’18. Gothenburg, Sweden:

ACM Press, 2018, pp. 222–232. isbn: 978-1-4503-5638-1. doi: 10.1145/3180155.

3180210. url: http://dl.acm.org/citation.cfm?doid=3180155.3180210 (visited on

09/06/2019).

[100] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini, and M. A.

Isa. “Model-based test case generation and prioritization: a systematic literature

review”. In: Software and Systems Modeling (2021), pp. 1–37.

https://doi.org/10.1145/3468264.3473916
https://dl.acm.org/doi/10.1145/3468264.3473916
https://doi.org/10.1109/ICSE-SEIP.2017.16
http://ieeexplore.ieee.org/document/7965447/
http://ieeexplore.ieee.org/document/7965447/
https://doi.org/https://doi.org/10.1016/j.jss.2020.110607
https://doi.org/https://doi.org/10.1016/j.jss.2020.110607
https://www.sciencedirect.com/science/article/pii/S0164121220300856
https://www.sciencedirect.com/science/article/pii/S0164121220300856
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1109/APSECW.2017.23
http://ieeexplore.ieee.org/document/8312521/
http://ieeexplore.ieee.org/document/8312521/
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
http://dl.acm.org/citation.cfm?doid=3180155.3180210


Bibliography 138

[101] R. Mukherjee and K. S. Patnaik. “A survey on different approaches for software

test case prioritization”. en. In: Journal of King Saud University - Computer and

Information Sciences (Oct. 2018), S1319157818303616. issn: 13191578. doi: 10.

1016/j.jksuci.2018.09.005. (Visited on 11/08/2020).

[102] A. Najafi, W. Shang, and P. Rigby. “Improving Test Effectiveness Using Test

Executions History: An Industrial Experience Report”. In: Proceedings - 2019

IEEE/ACM 41st International Conference on Software Engineering: Software En-

gineering in Practice, ICSE-SEIP 2019. 2019, pp. 213–222. doi: 10.1109/ICSE-

SEIP.2019.00031.

[103] B. N. Nguyen, T. Henderson, J. Micco, and S. Dhanda. Google Journal Club. https:

//sites.google.com/site/gjournalclub/. Accessed on 18/03/2021. 2016. (Visited on

03/18/2021).

[104] R. Noemmer and R. Haas. “An Evaluation of Test Suite Minimization Techniques”.

In: Lecture Notes in Business Information Processing 371 LNBIP (2020), pp. 51–

66. doi: 10.1007/978-3-030-35510-4 4.

[105] T. Noor and H. Hemmati. “A similarity-based approach for test case prioritization

using historical failure data”. In: 2015 IEEE 26th International Symposium on

Software Reliability Engineering, ISSRE 2015. 2016, pp. 58–68. doi: 10 . 1109 /

ISSRE.2015.7381799.

[106] S. Omri and C. Sinz. “Learning to Rank for Test Case Prioritization”. en. In:

(2022), p. 9.

[107] J. Öqvist, G. Hedin, and B. Magnusson. “Extraction-Based Regression Test Selec-

tion”. en. In: Proceedings of the 13th International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines, Languages, and

Tools. Lugano Switzerland: ACM, Aug. 2016, pp. 1–10. isbn: 978-1-4503-4135-6.

doi: 10.1145/2972206.2972224. url: https://dl.acm.org/doi/10.1145/2972206.

2972224 (visited on 09/14/2022).

[108] J. F. S. Ouriques, E. G. Cartaxo, and P. D. Machado. “Test case prioritization

techniques for model-based testing: a replicated study”. In: Software Quality Jour-

nal 26.4 (Dec. 2018). Publisher: Springer New York LLC, pp. 1451–1482. issn:

15731367. doi: 10.1007/s11219-017-9398-y.

https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1109/ICSE-SEIP.2019.00031
https://doi.org/10.1109/ICSE-SEIP.2019.00031
https://sites.google.com/site/gjournalclub/
https://sites.google.com/site/gjournalclub/
https://doi.org/10.1007/978-3-030-35510-4_4
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1145/2972206.2972224
https://dl.acm.org/doi/10.1145/2972206.2972224
https://dl.acm.org/doi/10.1145/2972206.2972224
https://doi.org/10.1007/s11219-017-9398-y


Bibliography 139

[109] C. Pan, Y. Yang, Z. Li, and J. Guo. “Dynamic Time Window based Reward for Re-

inforcement Learning in Continuous Integration Testing”. en. In: 12th Asia-Pacific

Symposium on Internetware. Singapore Singapore: ACM, Nov. 2020, pp. 189–198.

isbn: 978-1-4503-8819-1. doi: 10.1145/3457913.3457930. url: https://dl.acm.org/

doi/10.1145/3457913.3457930 (visited on 09/14/2022).

[110] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand. “Test case selection and

prioritization using machine learning: a systematic literature review”. In: Empirical

Software Engineering 27.2 (2022), pp. 1–43.

[111] Q. Peng, A. Shi, and L. Zhang. “Empirically revisiting and enhancing IR-based

test-case prioritization”. en. In: Proceedings of the 29th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis. Virtual Event USA: ACM,

July 2020, pp. 324–336. isbn: 978-1-4503-8008-9. doi: 10.1145/3395363.3397383.

url: https://dl.acm.org/doi/10.1145/3395363.3397383 (visited on 05/11/2021).

[112] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan. “FastLane:

Test Minimization for Rapidly Deployed Large-Scale Online Services”. en. In: 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE). Mon-

treal, QC, Canada: IEEE, May 2019, pp. 408–418. isbn: 978-1-72810-869-8. doi:

10.1109/ICSE.2019.00054. url: https://ieeexplore.ieee.org/document/8812033/

(visited on 12/09/2019).

[113] D. Pradhan, S. Wang, S. Ali, and T. Yue. “Search-Based Cost-Effective Test Case

Selection within a Time Budget: An Empirical Study”. In: Proceedings of the Ge-

netic and Evolutionary Computation Conference 2016. GECCO ’16. New York,

NY, USA: Association for Computing Machinery, July 2016, pp. 1085–1092. isbn:

978-1-4503-4206-3. doi: 10.1145/2908812.2908850. url: https://biblioproxy.cnr.it:

2481/10.1145/2908812.2908850.

[114] J. A. Prado Lima and S. R. Vergilio. “Test Case Prioritization in Continuous Inte-

gration environments: A systematic mapping study”. In: Information and Software

Technology 121 (2020). doi: 10.1016/j.infsof.2020.106268.

[115] D. Qiu, B. Li, S. Ji, and H. Leung. “Regression testing of web service: a systematic

mapping study”. In: ACM Computing Surveys (CSUR) 47.2 (2014), pp. 1–46.

https://doi.org/10.1145/3457913.3457930
https://dl.acm.org/doi/10.1145/3457913.3457930
https://dl.acm.org/doi/10.1145/3457913.3457930
https://doi.org/10.1145/3395363.3397383
https://dl.acm.org/doi/10.1145/3395363.3397383
https://doi.org/10.1109/ICSE.2019.00054
https://ieeexplore.ieee.org/document/8812033/
https://doi.org/10.1145/2908812.2908850
https://biblioproxy.cnr.it:2481/10.1145/2908812.2908850
https://biblioproxy.cnr.it:2481/10.1145/2908812.2908850
https://doi.org/10.1016/j.infsof.2020.106268


Bibliography 140

[116] R. Ramler, C. Salomon, G. Buchgeher, and M. Lusser. “Tool support for change-

based regression testing: An industry experience report”. In: Lecture Notes in Busi-

ness Information Processing 269 (2017), pp. 133–152. doi: 10.1007/978-3-319-

49421-0 10.

[117] S. U. Rehman Khan, S. P. Lee, N. Javaid, and W. Abdul. “A Systematic Re-

view on Test Suite Reduction: Approaches, Experiment’s Quality Evaluation, and

Guidelines”. en. In: IEEE Access 6 (2018), pp. 11816–11841. issn: 2169-3536. doi:

10.1109/ACCESS.2018.2809600. (Visited on 11/08/2020).

[118] L. Rosenbauer, A. Stein, and J. Hähner. “An Artificial Immune System for Black

Box Test Case Selection”. en. In: Evolutionary Computation in Combinatorial Op-

timization. Ed. by C. Zarges and S. Verel. Vol. 12692. Series Title: Lecture Notes

in Computer Science. Cham: Springer International Publishing, 2021, pp. 169–184.

isbn: 978-3-030-72903-5 978-3-030-72904-2. doi: 10.1007/978-3-030-72904-2 11.

url: http : / / link . springer . com / 10 . 1007 / 978 - 3 - 030 - 72904 - 2 11 (visited on

09/14/2022).

[119] R. H. Rosero, O. S. Gómez, E. R. Villa, R. A. Aguilar, and C. J. Pardo. “Software

Regression Testing in Industrial Settings: Preliminary Findings from a Literature

Review”. In: The International Conference on Advances in Emerging Trends and

Technologies. Springer. 2021, pp. 227–237.

[120] R. H. Rosero, O. S. Gómez, and G. Rodŕıguez. “15 Years of Software Regres-

sion Testing Techniques - A Survey”. In: International Journal of Software En-

gineering and Knowledge Engineering 26.5 (2016), pp. 675–689. doi: 10 . 1142/

S0218194016300013.

[121] G. Rothermel. “Improving regression testing in continuous integration development

environments (keynote)”. en. In: Proceedings of the 9th ACM SIGSOFT Interna-

tional Workshop on Automating TEST Case Design, Selection, and Evaluation -

A-TEST 2018. Lake Buena Vista, FL, USA: ACM Press, 2018, pp. 1–1. isbn: 978-

1-4503-6053-1. doi: 10.1145/3278186.3281454. url: http://dl.acm.org/citation.

cfm?doid=3278186.3281454 (visited on 08/26/2019).

[122] G. Rothermel and M. J. Harrold. “A Framework for Evaluating Regression Test

Selection Techniques”. In: International Conference on Software Engineering. 1994,

pp. 201–210.

https://doi.org/10.1007/978-3-319-49421-0_10
https://doi.org/10.1007/978-3-319-49421-0_10
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1007/978-3-030-72904-2_11
http://link.springer.com/10.1007/978-3-030-72904-2_11
https://doi.org/10.1142/S0218194016300013
https://doi.org/10.1142/S0218194016300013
https://doi.org/10.1145/3278186.3281454
http://dl.acm.org/citation.cfm?doid=3278186.3281454
http://dl.acm.org/citation.cfm?doid=3278186.3281454


Bibliography 141

[123] Z. Sadri-Moshkenani, J. Bradley, and G. Rothermel. “Survey on test case genera-

tion, selection and prioritization for cyber-physical systems”. In: Software Testing,

Verification and Reliability 32.1 (2022), e1794.

[124] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim. “Regression Test Case Priori-

tization: A Systematic Literature Review”. In: International Journal of Advanced

Computer Science and Applications 12.2 (2021).

[125] A. Schwartz and H. Do. “Cost-effective regression testing through Adaptive Test

Prioritization strategies”. en. In: Journal of Systems and Software 115 (May 2016),

pp. 61–81. issn: 01641212. doi: 10.1016/j.jss.2016.01.018. url: https://linkinghub.

elsevier.com/retrieve/pii/S0164121216000169 (visited on 05/11/2021).

[126] A. Sharif, D. Marijan, and M. Liaaen. “DeepOrder: Deep Learning for Test Case

Prioritization in Continuous Integration Testing”. en. In: 2021 IEEE International

Conference on Software Maintenance and Evolution (ICSME). Luxembourg: IEEE,

Sept. 2021, pp. 525–534. isbn: 978-1-66542-882-8. doi: 10 . 1109 / ICSME52107 .

2021 .00053. url: https : // ieeexplore . ieee . org/document/9609187/ (visited on

09/14/2022).

[127] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov. “Evaluating test-suite

reduction in real software evolution”. en. In: Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and Analysis. Amsterdam

Netherlands: ACM, July 2018, pp. 84–94. isbn: 978-1-4503-5699-2. doi: 10.1145/

3213846.3213875. url: https://dl.acm.org/doi/10.1145/3213846.3213875 (visited

on 11/22/2021).

[128] A. Shi, T. Yung, A. Gyori, and D. Marinov. “Comparing and combining test-suite

reduction and regression test selection”. In: Proceedings of the 2015 10th joint

meeting on foundations of software engineering. 2015, pp. 237–247.

[129] A. Shi, P. Zhao, and D. Marinov. “Understanding and Improving Regression Test

Selection in Continuous Integration”. en. In: 2019 IEEE 30th International Sym-

posium on Software Reliability Engineering (ISSRE). Berlin, Germany: IEEE, Oct.

2019, pp. 228–238. isbn: 978-1-72814-982-0. doi: 10.1109/ISSRE.2019.00031. url:

https://ieeexplore.ieee.org/document/8987498/ (visited on 05/11/2021).

https://doi.org/10.1016/j.jss.2016.01.018
https://linkinghub.elsevier.com/retrieve/pii/S0164121216000169
https://linkinghub.elsevier.com/retrieve/pii/S0164121216000169
https://doi.org/10.1109/ICSME52107.2021.00053
https://doi.org/10.1109/ICSME52107.2021.00053
https://ieeexplore.ieee.org/document/9609187/
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/3213846.3213875
https://dl.acm.org/doi/10.1145/3213846.3213875
https://doi.org/10.1109/ISSRE.2019.00031
https://ieeexplore.ieee.org/document/8987498/


Bibliography 142

[130] D. Silva, R. Rabelo, M. Campanha, P. S. Neto, P. A. Oliveira, and R. Britto. “A

hybrid approach for test case prioritization and selection”. In: 2016 IEEE Congress

on Evolutionary Computation (CEC). IEEE. 2016, pp. 4508–4515.

[131] Y. Singh, A. Kaur, B. Suri, and S. Singhal. “Systematic literature review on re-

gression test prioritization techniques”. In: Informatica 36.4 (2012).

[132] Q. D. Soetens, S. Demeyer, A. Zaidman, and J. Pérez. “Change-based test selection:

an empirical evaluation”. In: Empirical software engineering 21.5 (2016), pp. 1990–

2032.

[133] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. “Reinforcement learning for

automatic test case prioritization and selection in continuous integration”. en. In:

Proceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis. Santa Barbara CA USA: ACM, July 2017, pp. 12–22. isbn:

978-1-4503-5076-1. doi: 10.1145/3092703.3092709. url: https://dl.acm.org/doi/

10.1145/3092703.3092709 (visited on 09/14/2022).

[134] H. Srikanth, M. Cashman, and M. Cohen. “Test case prioritization of build ac-

ceptance tests for an enterprise cloud application: An industrial case study”. In:

Journal of Systems and Software 119 (2016), pp. 122–135. doi: 10.1016/j.jss.2016.

06.017.

[135] H. Srikanth, C. Hettiarachchi, and H. Do. “Requirements Based Test Prioritization

Using Risk Factors”. In: Inf. Softw. Technol. 69.C (Jan. 2016). Place: USA Pub-

lisher: Butterworth-Heinemann, pp. 71–83. issn: 0950-5849. doi: 10.1016/j.infsof.

2015.09.002. url: https://biblioproxy.cnr.it:2481/10.1016/j.infsof.2015.09.002.

[136] P. Strandberg, D. Sundmark, W. Afzal, T. Ostrand, and E. Weyuker. “Experience

Report: Automated System Level Regression Test Prioritization Using Multiple

Factors”. In: Proceedings - International Symposium on Software Reliability Engi-

neering, ISSRE. 2016, pp. 12–23. doi: 10.1109/ISSRE.2016.23.

[137] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and D. Sundmark.

“Cost-benefit analysis of using dependency knowledge at integration testing”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 10027 LNCS (2016), pp. 268–

284. doi: 10.1007/978-3-319-49094-6 17.

https://doi.org/10.1145/3092703.3092709
https://dl.acm.org/doi/10.1145/3092703.3092709
https://dl.acm.org/doi/10.1145/3092703.3092709
https://doi.org/10.1016/j.jss.2016.06.017
https://doi.org/10.1016/j.jss.2016.06.017
https://doi.org/10.1016/j.infsof.2015.09.002
https://doi.org/10.1016/j.infsof.2015.09.002
https://biblioproxy.cnr.it:2481/10.1016/j.infsof.2015.09.002
https://doi.org/10.1109/ISSRE.2016.23
https://doi.org/10.1007/978-3-319-49094-6_17


Bibliography 143

[138] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and D. Sundmark.

“Dynamic Integration Test Selection Based on Test Case Dependencies”. en. In:

2016 IEEE Ninth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW). Chicago, IL, USA: IEEE, Apr. 2016, pp. 277–286.

isbn: 978-1-5090-3674-5. doi: 10.1109/ICSTW.2016.14. url: http://ieeexplore.

ieee.org/document/7528974/ (visited on 05/11/2021).

[139] A. Vargha and H. D. Delaney. “A critique and improvement of the CL common

language effect size statistics of McGraw and Wong”. In: Journal of Educational

and Behavioral Statistics 25.2 (2000), pp. 101–132.

[140] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric. “File-level vs. module-level

regression test selection for .NET”. en. In: Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering. Paderborn Germany: ACM, Aug.

2017, pp. 848–853. isbn: 978-1-4503-5105-8. doi: 10.1145/3106237.3117763. url:

https://dl.acm.org/doi/10.1145/3106237.3117763 (visited on 05/11/2021).

[141] S. Vöst and S. Wagner. “Trace-based test selection to support continuous inte-

gration in the automotive industry”. In: Proceedings - International Workshop on

Continuous Software Evolution and Delivery, CSED 2016. Association for Com-

puting Machinery, Inc, May 2016, pp. 34–40. isbn: 978-1-4503-4157-8. doi: 10 .

1145/2896941.2896951.

[142] S. Wang, S. Ali, T. Yue, O. Bakkeli, and M. Liaaen. “Enhancing test case prioriti-

zation in an industrial setting with resource awareness and multi-objective search”.

In: Proceedings - International Conference on Software Engineering. IEEE Com-

puter Society, May 2016, pp. 182–191. isbn: 978-1-4503-4161-5. doi: 10 . 1145 /

2889160.2889240.

[143] Z. Wu, Y. Y. Yang, Z. Li, and R. Zhao. “A Time Window Based Reinforcement

Learning Reward for Test Case Prioritization in Continuous Integration”. In: Pro-

ceedings of the 11th Asia-Pacific Symposium on Internetware. Internetware ’19.

New York, NY, USA: Association for Computing Machinery, Oct. 2019. isbn: 978-

1-4503-7701-0. doi: 10.1145/3361242.3361258. url: https://biblioproxy.cnr.it:

2481/10.1145/3361242.3361258.

[144] J. Xu, Q. Du, and X. Li. “A Requirement-based Regression Test Selection Tech-

nique in Behavior-Driven Development”. en. In: 2021 IEEE 45th Annual Comput-

ers, Software, and Applications Conference (COMPSAC). Madrid, Spain: IEEE,

https://doi.org/10.1109/ICSTW.2016.14
http://ieeexplore.ieee.org/document/7528974/
http://ieeexplore.ieee.org/document/7528974/
https://doi.org/10.1145/3106237.3117763
https://dl.acm.org/doi/10.1145/3106237.3117763
https://doi.org/10.1145/2896941.2896951
https://doi.org/10.1145/2896941.2896951
https://doi.org/10.1145/2889160.2889240
https://doi.org/10.1145/2889160.2889240
https://doi.org/10.1145/3361242.3361258
https://biblioproxy.cnr.it:2481/10.1145/3361242.3361258
https://biblioproxy.cnr.it:2481/10.1145/3361242.3361258


Bibliography 144

July 2021, pp. 1303–1308. isbn: 978-1-66542-463-9. doi: 10.1109/COMPSAC51774.

2021 .00182. url: https : // ieeexplore . ieee . org/document/9529903/ (visited on

09/14/2022).

[145] J. Yackley, M. Kessentini, G. Bavota, V. Alizadeh, and B. Maxim. “Simultane-

ous refactoring and regression testing”. In: Proceedings - 19th IEEE International

Working Conference on Source Code Analysis and Manipulation, SCAM 2019.

2019, pp. 216–227. doi: 10.1109/SCAM.2019.00032.

[146] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. Briand. “Scalable and Accu-

rate Test Case Prioritization in Continuous Integration Contexts”. en. In: IEEE

Transactions on Software Engineering (2022), pp. 1–24. issn: 0098-5589, 1939-

3520, 2326-3881. doi: 10.1109/TSE.2022.3184842. url: https://ieeexplore.ieee.

org/document/9801672/ (visited on 09/14/2022).

[147] U. Yilmaz and A. Tarhan. “A case study to compare regression test selection

techniques on open-source software projects”. In: CEUR Workshop Proceedings.

Vol. 2201. 2018.

[148] S. Yoo and M. Harman. “Regression testing minimization, selection and priori-

tization: a survey”. In: Software testing, verification and reliability 22.2 (2012),

pp. 67–120.

[149] S. Yoo, R. Nilsson, and M. Harman. “Faster fault finding at Google using multi ob-

jective regression test optimisation”. In: 8th European Software Engineering Con-

ference and the ACM SIGSOFT Symposium on the Foundations of Software En-

gineering (ESEC/FSE’11), Szeged, Hungary. 2011.

[150] H. Yoshida, S. Tokumoto, M. Prasad, I. Ghosh, and T. Uehara. “FSX: A tool

for fine-grained incremental unit test generation for C/C++ Programs”. In: Pro-

ceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering. Vol. 13-18-November-2016. 2016, pp. 1052–1056. doi: 10.1145/2950290.

2983937.

[151] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian. “TERMI-

NATOR: better automated UI test case prioritization”. en. In: Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. Tallinn Estonia: ACM,

https://doi.org/10.1109/COMPSAC51774.2021.00182
https://doi.org/10.1109/COMPSAC51774.2021.00182
https://ieeexplore.ieee.org/document/9529903/
https://doi.org/10.1109/SCAM.2019.00032
https://doi.org/10.1109/TSE.2022.3184842
https://ieeexplore.ieee.org/document/9801672/
https://ieeexplore.ieee.org/document/9801672/
https://doi.org/10.1145/2950290.2983937
https://doi.org/10.1145/2950290.2983937


Bibliography 145

Aug. 2019, pp. 883–894. isbn: 978-1-4503-5572-8. doi: 10.1145/3338906.3340448.

url: https://dl.acm.org/doi/10.1145/3338906.3340448 (visited on 05/11/2021).

[152] A. Zarrad. “A Systematic Review on Regression Testing for Web-Based Applica-

tions.” In: J. Softw. 10.8 (2015), pp. 971–990.

[153] J. Zhang, Y. Liu, M. Gligoric, O. Legunsen, and A. Shi. “Comparing and combining

analysis-based and learning-based regression test selection”. en. In: Proceedings of

the 3rd ACM/IEEE International Conference on Automation of Software Test.

Pittsburgh Pennsylvania: ACM, May 2022, pp. 17–28. isbn: 978-1-4503-9286-0.

doi: 10.1145/3524481.3527230. url: https://dl.acm.org/doi/10.1145/3524481.

3527230 (visited on 09/14/2022).

[154] L. Zhang. “Hybrid regression test selection”. en. In: Proceedings of the 40th In-

ternational Conference on Software Engineering. Gothenburg Sweden: ACM, May

2018, pp. 199–209. isbn: 978-1-4503-5638-1. doi: 10.1145/3180155.3180198. url:

https://dl.acm.org/doi/10.1145/3180155.3180198 (visited on 05/11/2021).

[155] H. Zhong, L. Zhang, and S. Khurshid. “TestSage: Regression Test Selection for

Large-Scale Web Service Testing”. en. In: 2019 12th IEEE Conference on Soft-

ware Testing, Validation and Verification (ICST). Xi’an, China: IEEE, Apr. 2019,

pp. 430–440. isbn: 978-1-72811-736-2. doi: 10.1109/ICST.2019.00052. url: https:

//ieeexplore.ieee.org/document/8730207/ (visited on 12/09/2019).

[156] J. Zhou, J. Chen, and D. Hao. “Parallel Test Prioritization”. en. In: ACM Trans-

actions on Software Engineering and Methodology 31.1 (Jan. 2022), pp. 1–50. issn:

1049-331X, 1557-7392. doi: 10.1145/3471906. url: https://dl.acm.org/doi/10.

1145/3471906 (visited on 09/14/2022).

[157] Z. Q. Zhou, C. Liu, T. Y. Chen, T. H. Tse, and W. Susilo. “Beating Random

Test Case Prioritization”. en. In: IEEE Transactions on Reliability (2020), pp. 1–

22. issn: 0018-9529, 1558-1721. doi: 10.1109/TR.2020.2979815. url: https://

ieeexplore.ieee.org/document/9118977/ (visited on 05/11/2021).

[158] Y. Zhu, E. Shihab, and P. C. Rigby. “Test re-prioritization in continuous testing

environments”. In: Proceedings - 2018 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2018. IEEE, 2018, pp. 69–79. isbn: 978-1-

5386-7870-1. doi: 10.1109/ICSME.2018.00016.

https://doi.org/10.1145/3338906.3340448
https://dl.acm.org/doi/10.1145/3338906.3340448
https://doi.org/10.1145/3524481.3527230
https://dl.acm.org/doi/10.1145/3524481.3527230
https://dl.acm.org/doi/10.1145/3524481.3527230
https://doi.org/10.1145/3180155.3180198
https://dl.acm.org/doi/10.1145/3180155.3180198
https://doi.org/10.1109/ICST.2019.00052
https://ieeexplore.ieee.org/document/8730207/
https://ieeexplore.ieee.org/document/8730207/
https://doi.org/10.1145/3471906
https://dl.acm.org/doi/10.1145/3471906
https://dl.acm.org/doi/10.1145/3471906
https://doi.org/10.1109/TR.2020.2979815
https://ieeexplore.ieee.org/document/9118977/
https://ieeexplore.ieee.org/document/9118977/
https://doi.org/10.1109/ICSME.2018.00016

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Document structure

	2 Background
	2.1 Regression Testing of Evolving Software Systems
	2.2 Test Suite Orchestration
	2.2.1 Test Case Prioritization
	2.2.2 Test Case Selection
	2.2.3 Test Case Reduction and Minimization
	2.2.4 Test Case Amplification and Augmentation


	3 Literature Review
	3.1 Related Works
	3.2 Research Questions
	3.3 Methodology
	3.3.1 Planning and Design of the Review
	3.3.2 Executing the Review
	3.3.3 Data Extraction
	3.3.4 Questionnaire with Authors
	3.3.5 Survey with Practitioners
	3.3.6 Replicability

	3.4 Discussion
	3.4.1 RQ3.1: Common Approaches and Metrics in RT research
	3.4.2 RQ3.2: Applicability Concerns in Regression Testing Research
	3.4.3 RQ3.3: Evidences of Real-world Application of Regression Testing Techniques

	3.5 Threats to Validity

	4 Test Suite Orchestration
	4.1 Research Questions
	4.2 Background
	4.2.1 Ekstazi
	4.2.2 FAST

	4.3 Fastazi
	4.4 Experiments
	4.4.1 Evaluation Metrics
	4.4.2 Experiment Design and Execution

	4.5 Results
	4.5.1 RQ4.1: Effectiveness
	4.5.2 RQ4.2: Effectiveness Under a Limited Budget
	4.5.3 RQ4.3: Efficiency Comparison

	4.6 Discussion
	4.6.1 Existing Examples of Test Suite Orchestration
	4.6.2 Future Directions for Test Suite Orchestration

	4.7 Threats to Validity

	5 Insights from Industry
	5.1 Research Questions
	5.2 Overview of Testing at the industrial partner
	5.2.1 Overview of the system

	5.3 Interviews
	5.3.1 Roles and Experience
	5.3.2 Current Practices
	5.3.3 Common Issues With Regression Testing
	5.3.4 Collaboration with Academia
	5.3.5 Metrics

	5.4 Observations
	5.4.1 RQ5.1: Common Issues
	5.4.2 RQ5.2: Challenges of Incorporation
	5.4.3 RQ5.3: Paths to Improve Collaboration

	5.5 Threats to Validity

	6 Challenges Between Industry and Academia
	6.1 List of Challenges
	6.1.1 CH1: Alignment of Motivations
	6.1.2 CH2: Realistic Experimentation
	6.1.3 CH3: Scalability
	6.1.4 CH4: Relevance of Metrics
	6.1.5 CH5: Converting Research into Usable Tools
	6.1.6 CH6: Absence of TSR/TSA
	6.1.7 CH7: Clarity of Target
	6.1.8 CH8: Skepticism
	6.1.9 CH9: Data Quality and Availability
	6.1.10 CH10: Communication

	6.2 Threats to Validity

	7 Live Repository
	7.1 Implementation
	7.2 Longevity

	8 Conclusion
	8.1 Publications

	A Surveys
	A.1 E-mail Template Sent to Authors of Surveyed Papers
	A.2 Questionnaire Sent to Practitioners During Literature Review
	A.3 Questions for Practitioners at the Industrial Partner

	Bibliography

