
Approximation Algorithms for Node-Weighted
Directed Steiner Problems∗

Gianlorenzo D’Angelo1[0000−0003−0377−7037] and Esmaeil
Delfaraz2[0000−0002−9642−7652]

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy,
gianlorenzo.dangelo@gssi.it

2 Centre of EXcellence EX-Emerge, University of L’Aquila, Italy,
esmaeil.delfarazpahlevanloo@univaq.it

Abstract. Guha et al. [STOC, 1999] and Moss and Rabani [SIAM J.
Comput., 2007] introduced two variants of the Steiner problem in undi-
rected graphs in which the nodes are associated with two values, called
costs and prizes. In the budgeted rooted node-weighted Steiner tree prob-
lem, we are given an undirected graph G with n nodes, a predefined node
r, costs and prizes associated to the nodes of G, and a budget B. The
aim is to find a tree in G rooted at r such that the total cost of its nodes
is at most B and the total prize is maximized. In the quota rooted node-
weighted Steiner tree problem, we are given a quota Q, instead of the
budget, and we aim at minimizing the cost of a tree rooted at r whose
overall prize is at least Q.
If the graph is undirected both problems can be approximated within
polylogarithmic factors, possibly with a constant-factor budget viola-
tion, [Bateni et al. SIAM J. Comput., 2018][Moss and Rabani SIAM
J. Comput., 2007]. If the graph is directed, the budgeted problem can

be approximated within a O
(

logn′

log logn′

)
factor in quasi-polynomial time,

where n′ is the number of vertices in an optimal solution [Ghuge and
Nagarajan SODA 2020], and within a factor O( 1

ϵ3

√
B) with a budget vi-

olation of 1+ϵ, for any ϵ ∈ (0, 1], in polynomial time [D’Angelo, Delfaraz,
and Gilbert ISAAC 2022].
In this paper, we provide two algorithms for the budgeted and quota
problems on directed graphs that achieve, respectively, anO( 1

ϵ2
n2/3 lnn)-

approximation at the cost of a budget violation of a factor of at most
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1+ϵ, for any ϵ ∈ (0, 1], and an approximation factor of O(n2/3 lnn) at the
cost of a violation of the quota constraint by a factor of at most 2. We de-
velop a technique resorting on a standard flow-based linear programming
relaxation to compute a tree with good trade-off between prize and cost,
which allows us to provide polynomial time approximation algorithms for
both problems. We provide the first approximation algorithms for these
problems that run in polynomial time and guarantee an approximation
factor depending only on the number of vertices n.

1 Introduction

Prize Collecting Steiner Tree (PCST) refers to a wide class of combinatorial op-
timization problems, involving variants of the Steiner tree problem and traveling
salesperson problem, with many practical applications in computer and telecom-
munication networks, VLSI design, computational geometry, wireless mesh net-
works, and cancer genome studies [5, 10, 16, 20, 25].

In PCST, we are given a (directed) graph G, two functions modelling costs
and prizes (or penalties) associated to the edges and/or to the nodes of the graph,
and we want to find a connected subgraph T of G (usually a tree or an out-tree)
which optimizes an objective function defined as a combination of its cost and
prize and/or is subject to some constraints on its cost and prize. By considering
different constraints and objective functions, one obtains distinct optimization
problems. In budgeted problems, we are given a budget B and we require that
the cost of T is at most B and its prize is maximum. In quota problems, we
require the prize of T to be at least some quota Q and its cost to be minimum.
Additional constraints can be required, for example in rooted variants we are
given a specific node, called root, which has to be part of T and reach all the
nodes in T .

While there is a vast literature providing approximation algorithms for many
variants of PCST on undirected graphs, e.g. [1, 2, 11, 13, 15, 17, 18, 23], the case
of directed graphs received less attention [4, 7, 12, 20, 26]. Furthermore, prize col-
lecting Steiner tree problems are usually much harder on directed graphs than
on undirected graphs. A well-known example is the Steiner tree problem, for
which there is a simple polynomial time 2-approximation algorithm for its undi-
rected version, but for its directed version, unless NP ⊆

⋂
0<ϵ<1 ZPTIME(2n

ϵ

)
or the Projection Game Conjecture is false, there is no quasi-polynomial time

algorithm that achieves an approximation ratio of o( log2 k
log log k ) [14], where k is the

number of terminal nodes.

In this paper, we focus on budgeted and quota problems on directed graphs
and, motivated by applications in the deployment of wireless relay networks [10,
20] and in the detection of mutated pathways in cancer [16, 25], we study node-
weighted problems, that is both costs and prizes are associated to the nodes of
the graph. We consider the more general rooted variant of this problems.

In both budgeted and quota variants, we are given a directed graph D =
(V,A) with |V | = n, two nonnegative real-valued functions, namely, cost c(v)
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and prize p(v) that are associated to each vertex v ∈ V , and a root vertex r.
In the Budgeted Directed Rooted Tree problem (B-DRT), we are given a budget
B, and we aim at finding an out-tree (a.k.a. out-arborescence) T of D rooted
at r such that the sum of the costs of its vertices is at most B and the sum of
the prizes of its vertices is maximum. In the Quota Directed Rooted Tree problem
(Q-DRT), we are given a quota Q, and aim at finding an out-tree T of D rooted
at r whose total prize is at least Q and total cost is minimum.

Related work. Guha et al. [15] introduced the undirected version of B-DRT,
called B-URT. They gave a polynomial time O(log2 n)-approximation algo-
rithm that violates the budget constraint by a factor of at most 2. Moss and
Rabani [22] improved the approximation factor to O(log n), with the same bud-
get violation. Their algorithm is based on a Lagrangian multiplier preserving
O(lnn)-approximation algorithm, proposed in the same paper, for the prob-
lem of minimizing the cost of the nodes in the resulting tree plus the prizes
of vertices not spanned by the tree. We call this problem PC-URT. However,
Könemann et al. [18] pointed out a flaw in their algorithm for PC-URT and
proposed an alternative Lagrangian multiplier preserving algorithm with the
same guarantee. Later, Bateni et al. [2] proposed an O( 1

ϵ2 log n)-approximation
algorithm for B-URT which requires a budget violation of only 1 + ϵ, for any
ϵ ∈ (0, 1]. Kortsarz and Nutov [19] showed that the unrooted version of B-
URT, so does B-URT, admits no o(log log n)-approximation algorithm, unless
NP ⊆ DTIME(npolylog(n)), even if the algorithm is allowed to violate the bud-
get constraint by a factor equal to a universal constant. Ghuge and Nagara-

jan [12] provided a tight quasi-polynomial time O( logn′

log logn′ )-approximation algo-

rithm for the edge-cost version of B-DRT, where n′ is the number of vertices
in an optimal solution, the prize function is a monotone submodular function
on subsets of nodes, and the edge costs are positive integers. D’Angelo et al. [7]
provided a polynomial time O( 1

ϵ2

√
B)-approximation algorithm for the same

problem that violates the budget constraint by a factor of 1+ ϵ, where ϵ ∈ (0, 1].
By using a simple reduction, it is easy to see that these results for the directed
graphs with edge-costs also hold for their node-cost version. Bateni et al. [2]
showed that the integrally gap of the standard flow-based LP for B-URT, so is
for B-DRT, is unbounded.

To the best of our knowledge, the quota problem on directed graphs has
not been studied explicitly before. For the node-weighted quota problem on
undirected graphs, the algorithm by Moss and Rabani [22] provides an O(log n)-
approximation algorithm by using as a black-box the algorithm of Könemann et
al. [18] (or the one by Bateni et al. [2]) for PC-URT.

It is worth pointing out that by binary searching the budget (resp. quota)
space, one can also show that any α-approximation algorithm for a budgeted
(resp. quota) problem results in a (1+ ϵ)-approximation ((1− ϵ)-approximation)
for its quota (budgeted) version, for any ϵ > 0, that violates the quota (budget)
constraint by a factor of at most α.
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Our results. We introduce a new technique, resorting on flow-based linear
programming relaxations, which allows us to find out-trees with a good trade-
off between cost and prize. By computing suitable values of quota and bud-
get and applying known tree trimming procedures, we achieve good bicriteria
approximations for both B-DRT and Q-DRT. For B-DRT, we introduce a
polynomial-time approximation algorithm that violates the budget constraint
by a factor of at most 1 + ϵ, for ϵ ∈ (0, 1] and achieve an approximation fac-
tor of O( 1

ϵ2n
2/3 lnn). For Q-DRT we present an O(n2/3 lnn)-approximation

polynomial-time algorithm that violates the quota constraint by a factor of at
most 2.

To the best of our knowledge, our techniques yield the first approximation
algorithms for these problems whose approximation ratio depends only on the
number of vertices n and whose running time is polynomial in the input size.
Indeed, the algorithms in [7] and [12] consider a more general version of our
budgeted problem, in which the prize function is monotone and submodular.
However, the approximation guarantee of the algorithm in [7] for the budgeted
problem depends on the budget B, which can be much higher than n, while
the algorithm in [12] requires quasi-polynomial running time. To the best of our
knowledge, there are no known approximation algorithms for quota problems in
directed graphs or submodular prize functions. Moreover, our algorithms allow
the costs to be any non-negative real numbers, whereas the algorithms in [7]
and [12] require the costs to be strictly positive integers.

2 Notation and Problem Statement

For an integer s, let [s] := {1, . . . , s}. Let D = (V,A) a directed graph with a
distinguished vertex r ∈ V and c : V → R≥0 be a nonnegative cost function on
nodes.

A directed path is a directed graph made of a sequence of distinct vertices
(v1, . . . , vs) and a sequence of directed edges (vi, vi+1), i ∈ [s − 1]. An out-tree
(a.k.a. out-arborescence) is a directed graph in which there is exactly one directed
path from a specific vertex r, called root, to each other vertex. If a subgraph T
of a directed graph D is an out-tree, then we say that T is an out-tree of D. For
simplicity of reading, we may will refer to out-trees simply as trees.

Given two nodes u, v ∈ V , the cost of a path from u to v in D is the sum
of the cost of its nodes. A directed path from u to v with the minimum cost is
called a shortest path and its cost, denoted by dist(u, v), is called the distance
from u to v in D. Let F be the maximum distance from r to a node in V ,
F := maxv∈V {dist(r, v)}. Let B ∈ R>0, a graph D is called B-proper for the
vertex r if dist(r, v) ≤ B for any v in D.

For any subgraph D′ of D, we denote by V (D′) and A(D′) the set of nodes
and edges in D′, respectively. Given a subset S ⊆ V of nodes, D[S] denotes the
graph induced by set S, i.e., A(D[S]) = {(u, v) ∈ A|u, v ∈ S}.

In what follows, we state the problems we consider in this paper. Let D =
(V,A) be a directed graph with n nodes, c : V → R≥0 be a cost function on
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nodes, p : V → R≥0 be a prize function on nodes, r ∈ V be a root vertex. We
consider two variants of node-weighted PCST.

1. The Quota Directed Rooted Tree problem (Q-DRT): Given a quota Q ∈
R>0, find an out-tree T of D rooted at r that minimizes c(T ) = Σv∈V (T )c(v)
subject to p(T ) = Σv∈V (T )p(v) ≥ Q.

2. The Budgeted Directed Rooted Tree problem (B-DRT): Given a budget B ∈
R>0, find an out-tree T of D rooted at r that maximizes p(T ) = Σv∈V (T )p(v)
subject to c(T ) = Σv∈V (T )c(v) ≤ B.

Bicriteria approximation. For α, β ≥ 1, a bicriteria (β, α)-approximation algo-
rithm for B-DRT (resp. Q-DRT) is one that, for any instance IB (resp. IQ) of

the problem, returns a solution SolIB (resp. SolIQ) such that p(SolIB ) ≥
OPTIB

α

(resp. c(SolIQ) ≤ αOPTIQ) and c(SolIB ) ≤ βB (resp. p(SolIQ) ≥ Q
β ), where

OPTIB (resp. OPTIQ) is the optimum for IB (resp. IQ).

3 Directed Rooted Tree Problems

In this section we present a polynomial time bicriteria
(
2, O(n2/3 lnn)

)
-approximation

algorithm for Q-DRT and a polynomial time bicriteria
(
1 + ϵ, O(n

2/3 lnn
ϵ2 )

)
-

approximation algorithm for B-DRT, where ϵ is an arbitrary number in (0, 1].
Through the section we let IQ =< D = (V,A), c, p, r,Q > and IB =< D =
(V,A), c, p, r, B > be two instances of Q-DRT and B-DRT, respectively, and
we let T ∗

Q and T ∗
B be two optimal solutions for IQ and IB , respectively. Both algo-

rithms for Q-DRT and B-DRT use the same technique and can be summarized
in the following three steps:

1. We define a set of linear constraints, denoted as (DRT), over fractional vari-
ables, that takes a given quota Π and budget Λ as parameters and admits
a feasible solution if there exists a subtree T of D rooted at r such that
p(T ) ≥ Π and c(T ) ≤ Λ. In particular, an optimal tree T ∗

Q for IQ has prize
p(T ∗

Q) ≥ Q and cost c(T ∗
Q), therefore the linear constraints (DRT) where

parameters Π and Λ are set to Π = Q and Λ = c(T ∗
Q) admits a feasible

solution. It follows that the minimum value OPTQ of Λ for which the set of
linear constraints (DRT) admits a feasible solution when Π = Q is a lower
bound to c(T ∗

Q), i.e. OPTQ ≤ c(T ∗
Q). Similarly, the maximum value OPTB

of Π for which the set of linear constraints (DRT) admits a feasible solution
when Λ = B is an upper bound to p(T ∗

B), i.e. OPTB ≥ p(T ∗
B).

2. We give a polynomial time algorithm that takes as input a feasible solution
to (DRT) and computes a subtree T of D rooted at r such that c(T ) =
O((F + Λ)n2/3 lnn) and p(T ) ≥ Π/2, where F := maxv∈V {dist(r, v)}.

3. Q-DRT: We first compute a solution for (DRT) for which Π = Q and Λ
is minimum, i.e. Λ = OPTQ. Then we use such a solution for (DRT) as
input to the algorithm in the previous step and obtain a tree T such that
c(T ) = O((F +OPTQ)n

2/3 lnn) and p(T ) ≥ Q/2. We can show that we can
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assume w.l.o.g. that F ≤ (1 + ϵ)c(T ∗
Q), for any ϵ > 0. Since OPTQ ≤ c(T ∗

Q),

then the computed tree T satisfies c(T ) = O((1 + ϵ)c(T ∗
Q)n

2/3 lnn) and
p(T ) ≥ Q/2.
B-DRT: We compute a solution for (DRT) for which Λ = B and Π is
maximum, i.e. Π = OPTB ≥ p(T ∗

Q) and use such a solution as input to the
algorithm in the previous step. Since we can assume w.l.o.g. that F ≤ B,
we obtain a tree T such that c(T ) = O(Bn2/3 lnn) and p(T ) ≥ OPTB/2 ≥
p(T ∗

B)/2.
The tree T may violate the budget constraint by a large factor, however the
ratio γ between its prize and its cost is Ω

(
p(T ∗

B)/(Bn2/3 lnn)
)
. The bound

on the value of γ allows us to apply the trimming process given in [2] to T
and obtain another tree T̂ with cost ϵ

2B ≤ c(T̂ ) ≤ (1+ϵ)B, for any ϵ ∈ (0, 1],

and prize-to-cost ratio p(T̂ )

c(T̂ )
= ϵγ4 . Tree T̂ achieves an approximation ratio of

O(n
2/3 lnn
ϵ2 ) at the cost of a budget violation of 1 + ϵ, for any ϵ ∈ (0, 1].

In the following, we will detail each step of our algorithms.

Step 1: Bounding the optimal cost and prize

Here we define a set of linear constraints that admits a feasible solution if there
exists a tree T rooted in r in D such that c(T ) ≤ Λ and p(T ) ≥ Π, for given
parameters Λ,Π ∈ R>0. For each v ∈ V , let pv = p(v), cv = c(v), and Pv be the
set of simple paths in D from r to v. Our set of constraints (DRT) is defined as
follows.

Σv∈V xvpv ≥ Π (D.1)

Σv∈V xvcv ≤ Λ (D.2)

ΣP∈Pv
fv
P = xv, ∀v ∈ V \ {r} (D.3)

ΣP∈Pv:w∈P f
v
P ≤ xw, ∀v ∈ V \ {r} and ∀w ∈ V \ {v} (D.4)

0 ≤ xv ≤ 1, ∀v ∈ V

0 ≤ fv
P ≤ 1, ∀v ∈ V \ {r}, P ∈ Pv

We use variables fv
P and xv, for each v ∈ V and P ∈ Pv, where fv

P represents
the amount of flow sent from r to v using path P and xv represents both the
capacity of node v and the overall amount of flow sent from r to v.

The constraints in (DRT) are as follows. Constraints (D.1) and (D.2) en-
sure that any feasible (fractional) solution to (DRT) has a prize at least Π and
a cost at most Λ. Constraints (D.3) and (D.4) formulate a connectivity con-
straint through standard flow encoding, that is they ensure that the nodes v
with xv > 0 induce subgraph in which all nodes are reachable from r. In partic-
ular, constraint (D.3) ensures that the amount of flow that is sent from r to any
vertex v must be equal to xv and constraint (D.4) ensures that the total flow
from r to v passing through a vertex w cannot exceed xw.

Note that (DRT) has an exponential number of variables. However, it can
be solved efficiently as we only need to find, independently for any v ∈ V \ {r},
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a flow from r to v of value xv that does not exceed the capacity xw, for each
vertex w ∈ V \ {r, v}.

We can show that a feasible solution to (DRT) can be used to find a lower
bound to an optimal solution for Q-DRT and an upper bound to an optimal
solution for B-DRT. The next lemma shows that if there exists a tree T rooted
in r in D such that c(T ) ≤ Λ and p(T ) ≥ Π, then there exists a feasible solution
x for (DRT).

Lemma 1. Given a directed graph D = (V,A), r ∈ V , c : V → R≥0, p : V →
R≥0, Λ ∈ R>0 and Π ∈ R>0, if there exists a tree T rooted in r in D such that
c(T ) ≤ Λ and p(T ) ≥ Π, then there exists a feasible solution x for (DRT).

Proof. Let us consider a solution to (DRT) in which xv = 1 for all v ∈ V (T ),
while xv is set to 0 for all v ̸∈ V (T ). As p(T ) ≥ Π and c(T ) ≤ Λ, then the quota
and budget constraints (D.1)–(D.2) are satisfied. Since T is connected and for
any v ∈ V (T ), there exists only one path P from r to v in T , constraints (D.3)
and (D.4) are satisfied by setting fv

P = 1 and any other flow variable to 0. ⊓⊔

Since T ∗
Q is a feasible solution for IQ, we have that p(T ∗

Q) ≥ Q, which implies
that there exists a feasible solution to (DRT) when parameters Λ and Π are set
to Λ = c(T ∗

Q) and Π = Q. Hence, the optimum OPTQ to the linear program
of minimizing Λ subject to constraints (DRT) in which parameter Π is set to
Π = Q, gives a lower bound to c(T ∗

Q), i.e.OPTQ ≤ c(T ∗
Q). Similarly, the optimum

OPTB to the linear program of maximizing Π subject to constraints (DRT) with
Λ = B, gives an upper bound to p(T ∗

B), OPTB ≥ p(T ∗
B). We denote these two

linear programs by Q-DRT-LP and B-DRT-LP, respectively.

Step 2: Finding a good tree from a feasible fractional solution
to (DRT)

Here we elaborate the second step and show how to compute a tree with a good
trade-off between prize and cost starting from a feasible fractional solution to
the set of constraints (DRT).

Theorem 1. Given a feasible solution x to (DRT), then there exists a poly-
nomial time algorithm that computes a tree T rooted at r such that c(T ) =
O((F + Λ)n2/3 lnn) and p(T ) ≥ Π/2.

We now prove Theorem 1. Let x be a feasible solution for (DRT) and let
S ⊆ V be the set of vertices v with xv > 0, i.e., S = {v ∈ V : xv > 0}. We
partition S into two subsets S1, S2 ⊆ S, where S1 = {v ∈ S|xv ≥ n−1/3} and
S2 = {v ∈ S|xv < n−1/3}. We first focus on nodes in S1 and, in the following
lemma, we show how to compute a tree T rooted at r spanning all vertices in
S1 with cost c(T ) = O((F + Λ)n2/3 lnn).

Lemma 2. There exists a polynomial time algorithm that finds a tree T rooted
at r spanning all vertices in S1 with cost c(T ) = O((F + Λ)n2/3 lnn).
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Proof. Let U := {v ∈ S : xv ≥ n−2/3}. We call a vertex v ∈ S1 a cheap vertex
if there exists a path from r to v in D[U ]. We call a vertex v ∈ S1 an expensive
vertex otherwise. Note that r belongs to U if U ̸= ∅ since we need to send n−2/3

amount of flow from r to any vertex in U by constraint (D.3). Let CH and EX
be the sets of cheap and expensive vertices, respectively.

In the following, we first show that we can compute in polynomial time two
trees TCH and TEX spanning all nodes in CH and EX, respectively, and having
cost c(TCH) = O(Λn2/3) and c(TEX) = O((F +Λ)n2/3 lnn), then we show how
to merge the two trees into a single tree with cost O((F + Λ)n2/3 lnn).

We first focus on TCH . By definition, all vertices in CH are reachable from
r through paths that contain only vertices in U . Thus, for each v ∈ CH, we
compute a shortest path from r to v in D[U ] and find a tree TCH rooted at
r spanning all and only the vertices in the union of these shortest paths. Since
Σu∈Uxucu ≤ Λ (by constraint (D.2)) and xu ≥ n−2/3 for any u ∈ U (by definition
of U), then c(U) = Σu∈Ucu ≤ Λn2/3. Hence c(TCH) ≤ c(U) = O(Λn2/3).

Now we show that there exists a tree TEX rooted at r spanning all the
expensive vertices EX with cost c(TEX) = O((F + Λ)n2/3 lnn) and that we
can compute TEX in polynomial time. The algorithm to build TEX can be
summarized as follows. We first compute, for each v ∈ EX, the set Xv of vertices
w ∈ S \ U for which there exists a path from w to v that uses only vertices in
U ∪ {w}. Then we compute a small-size hitting set X ′ of all Xv, i.e. X ′ =
argmin{|Y | : Y ⊆

⋃
v∈EX Xv and ∀v ∈ EX, Y ∩Xv ̸= ∅}. Finally, we connect

r to the vertices of X ′ and the vertices of X ′ to those in EX in such a way that
each node v in EX is reached from one of the vertices x ∈ X ′ that hits Xv, i.e.,
x ∈ Xv. The bound on the cost of TEX follows from the size of X ′ and from
the cost of nodes in U . We now detail on the construction of TEX and its cost
analysis.

Let U ′ ⊆ S be the set of all vertices w with xw < n−2/3, i.e., U ′ = S \U . For
any expensive vertex v ∈ EX, we define Xv as the set of vertices w in U ′ such
that there exists a path from w to v in D[U ∪{w}]. Note that for any w ∈ Xv, v
is reachable from w through a path P such that V (P )\{w} ⊆ U , i.e., V (P )\{w}
only contains vertices from U . The following claim gives a lower bound on the
size of Xv, for each v ∈ EX.

Claim 1. |Xv| ≥ n1/3, for each v ∈ EX.

Proof. We know that (i) the amount of flow that each vertex v ∈ S1 should
receive is at least n−1/3 (by definition of S1 and constraint (D.3) of (DRT)), (ii)
any path P from r to any v ∈ EX in the graph D[S] contains at least one vertex
w ∈ U ′ (by definition of expensive vertices), and (iii) in any path P from r to
any v ∈ EX, the node w ∈ U ′ in P that is closest to v is a member of Xv, i.e.
w ∈ Xv (by definition of Xv), therefore any flow from r to v should pass through
a vertex w ∈ Xv. This implies that the vertices in Xv must send at least n−1/3

amount of flow to v in total. Formally, we have

n−1/3 ≤ xv = ΣP∈Pv
fv
P ≤ Σw∈Xv

ΣP∈Pv :w∈P f
v
P

≤ Σw∈Xv
xw ≤ Σw∈Xv

n−2/3 = |Xv|n−2/3,
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which implies that |Xv| ≥ n1/3. Note that the first inequality follows from the
definition of S1, the first equality follows from constraint (D.3) of (DRT), the
second inequality is due to the fact that, by definition of Xv, any path P ∈
Pv contains a vertex w ∈ Xv, the third inequality is due to constraint (D.4)
of (DRT), the last inequality is due to xw < n−2/3, for each w ∈ U ′, and
Xv ⊆ U ′. This concludes the proof of the claim. ⊓⊔

We use the following well-known result (see e.g. Lemma 3.3 in [3]) to find a
small set of vertices that hits all the sets Xt, for all t ∈ EX.

Claim 2. Let V ′ be a ground set of M elements and Σ = (X ′
1, . . . , X

′
N ) be a

collection of subsets of V ′ such that |X ′
i| ≥ R, for each i ∈ [N ]. There is a

deterministic algorithm which runs in polynomial time in N and M and finds a
subset X ′ ⊆ V ′ with |X ′| ≤ (M/R) lnN and X ′ ∩X ′

i ̸= ∅ for all i ∈ [N ].

Using the bound of Claim 1 on the size of setsXv, we can exploit the algorithm of
Claim 2, using

⋃
v∈EX Xv as ground set and {Xv}v∈EX as collection of subsets,

to find a set X ′ ⊆
⋃

v∈EX Xv such that X ′ ∩Xv ̸= ∅, for all v ∈ EX, whose size

is at most |X ′| ≤ n lnn
n1/3 = n2/3 lnn. In this case the parameters of Claim 2 are

R = n1/3, M =
∣∣⋃

v∈EX Xv

∣∣ ≤ n, and N = |EX| ≤ n. Since for any v ∈ EX
there exists a path from any w ∈ Xv to v in D[U ∪{w}] and X ′ contains at least
one vertex in Xv, then there exists a path from one of the vertices w ∈ X ′ to v
in D[U ∪ {w}].

Now we find a shortest path from r to any w ∈ X ′ in D. Let P1 be the set
of all these shortest paths. We also find, for each v ∈ EX, a shortest path from
an arbitrary vertex w ∈ X ′ ∩ Xv to v in D[U ∪ {w}]. Let P2 be the set of all
these shortest paths. Let V (P1) and V (P2) be the union of all the nodes of the
paths in P1 and P2, respectively. Then, we find a tree TEX rooted at r spanning
graph DEX := D[V (P1)∪ V (P2)]. Note that such a tree exists as in DEX there
exists a path from r to any w ∈ X ′ and, for each vertex v ∈ EX, at least a path
from one of the vertices in X ′ to v.

We next move to bounding the cost of TEX , i.e. we bound the total cost of
nodes in V (P1)∪V (P2). Since |X ′| ≤ n2/3 lnn and the maximum distance from
r to any other node is F , then c(V (P1)) ≤ Fn2/3 lnn. As Σu∈Uc(v) ≤ Λn2/3 (by
constraint (D.2) of (DRT) and xu ≥ n−2/3 for any u ∈ U) and V (P2) \X ′ ⊆ U ,
then c(V (P2) \X ′) ≤ Λn2/3. Overall, TEX costs at most O((F + Λ)n2/3 lnn).

Since both TEX and TCH are rooted at r, we can find a tree T rooted at r
that spans all vertices V (TEX) ∪ V (TCH). Since c(TCH) + c(TEX) = O((F +
Λ)n2/3 lnn), we have c(T ) = O((F +Λ)n2/3 lnn), which concludes the proof. ⊓⊔

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). As Σv∈Sxvpv ≥ Π, either Σv∈S1
xvpv ≥ Π/2 or

Σv∈S2
xvpv ≥ Π/2.

If Σv∈S1
xvpv ≥ Π/2, then by Lemma 2, we can find in polynomial time a

tree T that spans all vertices in S1 such that c(T ) = O((F + Λ)n2/3 lnn). Since
T spans all vertices of S1, then p(T ) ≥ p(S1) ≥ Π/2.
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If Σv∈S2
xvpv ≥ Π/2, we have that p(S2) = Σv∈S2

pv ≥ n1/3 · Σv∈S2
xvpv ≥

n1/3Π/2, where the first inequality holds since 0 < xv < n−1/3 for any v ∈ S2

and the second inequality holds by the case assumption. We partition S2 into
M groups U1, . . . , UM in such a way that for each i ∈ [M − 1], |Ui| = 2|S2|2/3,
and |UM | ≤ 2|S2|2/3. Hence the number of selected groups is at most M ≤⌈

|S2|
2|S2|2/3

⌉
=

⌈
|S2|1/3

2

⌉
≤

⌊
|S2|1/3

2

⌋
+ 1 ≤ |S2|1/3 ≤ n1/3. Now among U1, . . . , UM ,

we select the group Uz that maximizes the prize, i.e., z = argmaxi∈[M ] p(Ui).

We know that p(Uz) ≥ 1
MΣM

i=1p(Ui) = p(S2)
M ≥ n1/3Π

2n1/3 = Π/2, where the first
inequality is due to an averaging argument, the first equality is due to the addi-
tivity of p, and the second inequality is due to M ≤ n1/3 and p(S2) ≥ n1/3Π/2.

We now find for each vertex v in Uz a shortest path from r to v and compute
a tree T that spans all the vertices in the union of these shortest paths. Clearly,
c(T ) ≤ 2Fn2/3 as |Uz| ≤ 2n2/3 and the cost of a shortest path from r to any
v ∈ V in D is at most F . Furthermore, p(T ) ≥ p(Uz) ≥ Π/2, by additivity of p.
This concludes the proof. ⊓⊔

Step 3: Approximating Q-DRT and B-DRT

We next show how to use Theorem 1 to devise bicriteria approximation algo-
rithms for Q-DRT and B-DRT. First we prove our result for Q-DRT.

Theorem 2. Q-DRT admits a polinomial time bicriteria
(
2, O(n2/3 lnn)

)
-ap-

proximation algorithm.

Proof. We can assume w.l.o.g. that for all nodes v we have dist(r, v) ≤ (1 +
ϵ)c(T ∗

Q), i.e. that F ≤ (1+ϵ)c(T ∗
Q), for any ϵ > 0. Indeed, we can guess an (1+ϵ)-

approximation of c(T ∗
Q) using the following procedure. Let cmin be the minimum

positive cost of a vertex and cM =
∑

v∈V c(v), we know that c(T ∗
Q) ≤ cM . We

estimate the value of c(T ∗
Q) by guessingN possible values, whereN is the smallest

integer for which cmin(1 + ϵ)N−1 ≥ cM . For each guess i ∈ [N ], we remove the
nodes v with dist(r, v) > cmin(1 + ϵ)i−1, and compute a tree T rooted in r with
an algorithm that will be explained later in the proof. Eventually, we output the
computed tree T with the smallest cost. Since cmin(1+ ϵ)N−2 < cM , the number
N of guesses is smaller than log1+ϵ(cM/cmin) + 2, which is polynomial in the
input size and in 1/ϵ.

Let i ∈ [N ] be the smallest value for which cmin(1 + ϵ)i−1 ≥ c(T ∗
Q). Then,

c(T ∗
Q) > cmin(1 + ϵ)i−2 and for all the nodes v in the graph used in guess i, we

have dist(r, v) ≤ cmin(1 + ϵ)i−1 < (1 + ϵ)c(T ∗
Q). Since we output a solution with

the minimum cost among those computed in the guesses, then the final solution
will not be worse than the one computed at guess i. Therefore, from now on we
focus on guess i and assume that F ≤ (1 + ϵ)c(T ∗

Q).
We first find an optimal solution x to Q-DRT-LP, let OPTQ be the opti-

mal value of Q-DRT-LP. Observe that x is a feasible solution for the set of
constraints (DRT) in which Λ = OPTQ and Π = Q and, by Lemma 1, OPTQ ≤
c(T ∗

Q). Therefore, we can use x and apply the algorithm in Theorem 1 to obtain
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a tree T such that c(T ) = O((F + OPTQ)n
2/3 lnn) = O((1 + ϵ)c(T ∗

Q)n
2/3 lnn)

and p(T ) ≥ Q/2, which concludes the proof. ⊓⊔

Next we prove our result for B-DRT. Let us assume that for every v ∈ V ,
dist(r, v) ≤ B, i.e. F ≤ B, since otherwise we can remove from D all the nodes
v such that dist(r, v) > B.

Let x be an optimal solution for B-DRT-LP and let T be a tree computed
from x by the algorithm in Theorem 1. Since x is a feasible solution to (DRT)

when Π = OPTB ≥ p(T ∗
B) and Λ = B, then the prize of T is at least

p(T∗
B)
2 but

its cost can exceed the budget B. In this case, however, the cost of T is bounded

by c(T ) = O(Bn2/3 lnn) and its prize-to-cost ratio is γ = p(T )
c(T ) = Ω

(
p(T∗

B)

Bn2/3 lnn

)
.

Therefore, we can use T and a variant of the trimming process introduced by
Bateni et al. [2] for undirected graphs, to compute another tree T̂ with cost
between ϵB

2 and (1 + ϵ)B and prize-to-cost ratio ϵγ
4 , for any ϵ ∈ (0, 1]. The

following lemma gives extends the trimming process by Bateni et al. to directed
graphs. The proof can be found in the full version of the paper [6].

Lemma 3. Let D = (V,A) be a B-proper graph for a node r. Let T be an out-
tree of D rooted at r with the prize-to-cost ratio γ = p(T )/c(T ). Suppose that,
for ϵ ∈ (0, 1], c(T ) ≥ ϵB/2. One can find an out-tree T̂ rooted at r with the
prize-to-cost ratio at least ϵγ/4 such that ϵB/2 ≤ c′(T̂ ) ≤ (1 + ϵ)B.

Theorem 3. B-DRT admits a polynomial time bicriteria
(
1 + ϵ, O(n

2/3 lnn
ϵ2 )

)
-

approximation algorithm, for any ϵ ∈ (0, 1].

Proof. We first find an optimal solution x to B-DRT-LP. and then we apply
the algorithm in Theorem 1 and use x as input to obtain a tree T . Since x
is a feasible solution to (DRT) when Π = OPTB ≥ p(T ∗

B) and Λ = B, then

c(T ) = O(Bn2/3 lnn) and p(T ) ≥ OPTB

2 ≥ p(T∗
B)
2 as discussed above. The prize-

to-cost ratio of T is γ = p(T )
c(T ) = Ω

(
p(T∗

B)

Bn2/3 lnn

)
. Then, if c(T ) > B, we can

apply the algorithm of Lemma 3 to T and compute another tree T̂ with cost
c(T̂ ) ≤ (1+ ϵ)B and prize-to-cost ratio at least ϵγ

4 . Moreover, c(T̂ ) ≥ ϵB/2, and

therefore we have p(T̂ ) = Ω
(

ϵ2p(T∗
B)

n2/3 lnn

)
, concluding the proof. ⊓⊔

4 Discussion and Future Work

On budget violation. There is some evidence showing that budget violation is
needed to approximate budgeted problems in polynomial time. Kortsarz and
Nutov [19] showed that the unrooted version of B-URT, admits no o(log log n)-
approximation algorithm, unless NP ⊆ DTIME(npolylog(n)), even if the algo-
rithm is allowed to violate the budget constraint by a factor equal to a universal
constant. This lower bound holds for all the budgeted problems in this paper.
The only approximation algorithm for the budgeted problems that does not vio-
late the budget constraint is the combinatorial quasi-polynomial time algorithm
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given by Ghuge and Nagarajan [12]. Most of the literature on these problems,
focuses on approximation algorithms that exploit the standard low-based LP
relaxation. Bateni et al. [2] showed that the integrality gap of this LP relax-
ation is unbounded if no budget violation is allowed, even for B-URT. We show
that, by violating the budget constraint, one can use this LP and provide an
approximation algorithm for the more general B-DRT.
On lower bounds. AsQ-DRT is a more general version of the node-weighted vari-
ant of the directed Steiner tree problem, called DSteinerT, any lower bound for
DSteinerT also holds for Q-DRT. Recently, Li and Laekhanukit [21] ruled out
poly-logarithmic approximation algorithms for the directed Steiner tree prob-
lem using the standard flow-based LP. This result holds for DSteinerT (and
Q-DRT) as, in the instance in [21], the incoming edges of each vertex have the
same cost. We also know that any α-approximation algorithm for the edge cost
version of B-DRT results in an O(α log n)-approximation algorithm for the di-
rected Steiner tree problem, which was also pointed out by [12]. This implies
that the quasi-polynomial time approximation algorithm of [12] is tight for the
edge cost version of B-DRT. Furthermore, by performing a binary search on
the budget (resp. quota) space, one can use an α-approximation algorithm for
a budgeted (resp. quota) problem to obtain a 1 + ϵ (resp. 1− ϵ)-approximation
algorithm for its quota (resp. budgeted) version, for any ϵ > 0, that violates the
quota (resp. budget) constraint by a factor of at most α.
Future Works. We believe that finding a polynomial-time lower bound for the
problems considered in this paper is an interesting future work as this question
for the directed Steiner tree is open for a long-time. The integrality gap of the
standard flow-based LP relaxation for B-URT is unbounded if no budget viola-
tion is allowed [2], and has a polynomial lower bound for the directed Steiner tree
problem [21]. Finding an integrality gap for B-URT in case of budget violation
would be an interesting future work. Extending our results to the edge-cost vari-
ants of B-DRT and Q-DRT would be a very interesting future work. The use
of LP-hierarchies for approximation algorithms in directed Steiner trees [24, 9]
would be a potential direction to provide approximation algorithms for B-DRT
and Q-DRT and their edge-cost variants. For Directed Steiner Network, it is
known that the integrality gap of the Lasserre Hierarchy has a polynomial lower
bound [8].
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