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THERMODYNAMIC FORMALISM FOR PIECEWISE

EXPANDING MAPS IN FINITE DIMENSION

VIVIANE BALADI(1),(2) AND ROBERTO CASTORRINI(3)

Abstract. For ᾱ > 1 and α ∈ (0, ᾱ], we study weighted transfer operators
associated to a piecewise expanding Cᾱ map T on a compact manifold of dimen-
sion d ≥ 1, and a piecewise Cα weight g, acting on Sobolev spaces. We bound
the essential spectral radius in terms of a topological pressure for a subaddi-
tive potential. Under a new small boundary pressure condition, we improve the
estimate by establishing a variational principle for piecewise expanding maps
and subadditive potentials.

1. Introduction

1.1. Functional Approach to Ergodic Properties. For M a connected com-
pact Riemannian manifold and T : M → M , the functional analytic approach to
statistical properties of the dynamics T consists in finding a Banach space B of
functions or distributions on M such that the (Ruelle) transfer operator

LT,gϕ(x) =
∑

Ty=x

g(y)ϕ(y) , x ∈ M ,

weighted by a suitable function g : M → C, and defined initially on a subset of
measurable functions ϕ : M → C, extends to a bounded operator on B on which its
essential spectral radius1 is smaller than its spectral radius (“quasicompactness”).
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If g is positive and T is mixing, the spectral picture can sometimes be strength-
ened as follows: The transfer operator has a positive maximal eigenvalue, which
is the exponential eP (log g) of the topological pressure of log g. This eigenvalue is
simple, and the rest of the spectrum is contained in a smaller disc. This “spectral
gap” often implies existence, uniqueness and decay of correlations (for suitable
observables) of the equilibrium state of log g, i.e. the invariant measure maximis-
ing hµ +

∫
log gdµ (where hµ is the Kolmogorov entropy). For g = |detDT |−1,

we have in many cases that ePtop(log g) = 1, and the equilibrium state of log g is
the physical (SRB) measure.

Another desirable goal (besides finding a Banach space on which the essential
spectral radius is small) is to relate the isolated eigenvalues of the transfer operator
with the poles of a dynamical zeta function defined by assuming that Fix T n =
{x ∈ M | T n(x) = x} is finite for each fixed n, and setting (in the sense of

formal power series) ζT,g(z) = exp
∑∞

n=1
zn

n

∑
x∈FixTn g(n)(x). We hope that the

Milnor–Thurston kneading operator approach of [13] (see [14] or [3, §3.2] for an
implementation to smooth dynamics in arbitrary dimension) can be applied to
piecewise expanding or piecewise hyperbolic dynamics in arbitrary dimension.

1.2. (Piecewise) Expanding Case. For expanding and piecewise expanding
maps T (with smallest expansion denoted by λ > 1), the relevant B is a space of
functions. In the smooth expanding case, the pioneering bounds of Ruelle [38] on
the essential spectral radius, taking B the space of Hölder functions, were shown
to be optimal by Gundlach–Latushkin [31], who reformulated them using a vari-
ational (thermodynamic) expression. The piecewise expanding theory is fairly
complete in one-dimension, usually taking B the set BV of functions of bounded
variation (piecewise monotonicity is enough there, see e.g. [2, 13]).

For higher dimensional piecewise expanding dynamics, quasicompactness (and
even ergodic properties such as existence of the SRB measure) can fail [45, 18] if
one does not make additional assumptions on the “complexity at the beginning”
Db(T ) (also called “entropy multiplicity,” see (2.7)): The works [10, 11, 41, 35]
require some version of Db(T ) < log λ (“hyperbolicity beats complexity at the
beginning”) to bound the essential spectral radius. Cowieson [24] proved that
Db(T ) = 0 for T in an open and dense subset of piecewise Cᾱ expanding maps,
and that Db(T ) = 0 implies a spectral gap for the operator associated to g =
|detDT |−1 acting on B = BV (see [42] for a different choice of B). For arbitrary
piecewise Cα weights g, in any dimension, Thomine [41], inspired by [10], obtained2

a bound (see (2.9)) on the essential spectral radius on classical Sobolev spaces
B = Ht

p, for 1 < p < ∞ and 0 < t < min{α, 1/p}. Even if Db(T ) = 0 and

g = |detDT |−1, Thomine’s bound ensures quasicompactness only if either T
satisfies some pinching condition (for example if T is a β transformation) or p
is close enough to 1, in order to control the exponential growth of the number

2Using a tower construction, Buzzi et al. [22, 21] had previously found mild additional
conditions implying exponential decay of correlations for Hölder observables.
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of preimages of T n (the “complexity at the end”, see Remark 2.4). Liverani
[35, (3)] found sufficient conditions ensuring a spectral gap3 on B = BV for
d ≥ 1 and piecewise expanding maps having possibly infinitely many domains of
continuity and (controlled) blowup of derivatives, with g = |detDT |−1. The only
results linking the poles of the zeta function to the spectrum of LT,g for higher
dimensional4 piecewise expanding maps were obtained by Buzzi and Keller [20],
for piecewise affine maps and g = |detDT |−1.

1.3. (Piecewise) Hyperbolic Case. The pioneering work [15] introduced aniso-
tropic Banach spaces B of distributions, adapted to Anosov diffeomorphisms T .
These spaces can be classified in two categories (see [4]): Geometric spaces, using
integration over stable submanifolds, and micro-local spaces, using the Fourier
transform. The nature of geometric norms (taking a supremum over a class of
submanifolds) does not seem to be amenable to the Milnor–Thurston approach.
In the smooth hyperbolic case, the best known estimate for the essential spectral
radius is obtained for micro-local spaces by thermodynamic formalism techniques,
as a variational expression for a subadditive topological pressure [14].

Many physically relevant models, such as dispersive billiards are uniformly hy-
perbolic, but only piecewise smooth. The geometric approach [15, 30] has been
used to study the SRB measure of piecewise hyperbolic maps with controlled
complexity in dimension two ([26]), but also the SRB measure and other equi-
librium states of Sinai billiard maps and flows ([28, 7, 8, 9, 6]). It has recently
been extended to the random Lorentz gas, via Birkhoff cones [27]. Estimates on
the essential spectral radius for micro-local spaces were5 obtained ([10, 11]) for
weighted piecewise hyperbolic surface maps. (The results there do not apply to
Sinai billiards, for which the derivative is unbounded.) We are not aware of any
result linking the poles of dynamical zeta functions with the spectrum of transfer
operators for piecewise hyperbolic maps.

A modification U t,s
p of the micro-local spaces of [11] suitable in the piecewise

smooth setting has been proposed in [4, 5]. Jézéquel, observed that, even if
Db(T ) = 0 and g = |detDT |−1, the bound on the essential spectral radius of
[4, Thm 4.1] may not imply quasicompactness: For a linear automorphism T of
the two-torus with expanding eigenvalue Λ > 1, the essential spectral radius of
the operator for |detDT |−1 ≡ 1 acting on the space U t,s

p from [4] is bounded

by r0(t, s, p) = Λ
Λ1/p max{Λ−t,Λt+s} (the factor Λ comes from a naive use of

“complexity at the end”). To ensure that characteristic functions are bounded
multipliers [5, Thm 3.1], we must take −1+1/p < s < −t < 0, so that r0(t, s, p) >
1. Our hope is that a “thermodynamic” control of the complexity at the end (using
fragmentation and reconstitution, as below) will replace r0(t, s, p) by r(t, s, p) =

3The assumption [35, (3)] that “hyperbolicity beats complexity” is similar to requiring
Db

{νn} < 0, see (2.21).
4In the more general setting of non-degenerate entropy expanding maps, Buzzi [19, §6] found

a domain of meromorphy for ζT,g(z) if g ≡ 1 (but no spectral interpretation of the poles).
5Even if Db(T ) = 0, [10, 11] do not always give quasicompactness if g 6= |detDT |−1.
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Λp̃

Λ1/p max{Λ−t,Λt+s} for some p̃ ∈ (0, 1) (probably (p− 1)/p, in view of (2.9) and

[11, Thm 2.5]), allowing parameters for which r(t, s, p) < 1.

1.4. Outline of the Results. We consider the toy-model case of weighted piece-
wise expanding maps and classical (isotropic) Sobolev spaces Ht

p, just like in [41],
but thermodynamic estimates replace the “complexity at the end”: Our first
main result, Theorem 2.10, gives an unconditional bound (2.22) on the essential
spectral radius in terms of the topological pressure of a subadditive potential re-
lated to log |g|. (We recover the optimal bound [12, 34] in dimension one. We
improve on Thomine’s bound [41] in the generic small boundary entropy case
Db(T ) = 0. If g = |detDT |−1, our bound is analogous to Liverani’s bound
[35, Thm 1, Lemma 3.1] for the essential spectral radius. Our bound coincides
with Gundlach–Latushkin’s [31] bound on Hölder spaces if the map and weight
are smooth. See Remarks 2.12, 2.13, 2.15, 2.16, 2.19.) Assuming small boundary
pressure, a variational principle of Buzzi–Sarig [23] allows us to reformulate (2.22)
in Corollary 2.11.

Next, Theorem 2.17 generalises this additive variational principle [23] to a class
of subadditive potentials (subadditive potentials appear naturally in dynamics,
for example log |detDT | in dimension two or higher, see below — our results
are the piecewise smooth analogue of [14, §3], see also [3, App. B]). Combining
Theorem 2.17 with Theorem 2.10 yields Corollary 2.18, which gives the variational
expression (2.29) for the bound (2.22), under a new subadditive small boundary
pressure condition. Our results are strongest in the SRB case g = |detDT |−1,
letting 1/p > t both tend to 1.

One of the features of our approach is fragmentation-reconstitution Lemma 3.7,
which allows us to conveniently use a zoom for arbitrary values of our parameter
p. We hope that our results lay the groundwork for the implementation of the
“ultimate” micro-local Banach space U t,s

p from [4, 5] in the setting of piecewise
hyperbolic systems, giving also information on zeta functions.

1.5. Outline of the Paper. The paper is organised as follows: In Section 2, after
defining our class of piecewise Cᾱ expanding maps T and piecewise Cα weights g,
we state our two main results: Theorem 2.10 on the essential spectral radius of the
weighted transfer operator Lg and Theorem 2.17 on the subadditive variational
principle. We state and prove Corollary 2.11 and Corollary 2.18, which follow from
Theorem 2.10 and, respectively, (2.18) and Theorem 2.17, and give conditional
variational expressions for the bound on the essential spectral radius. In Section 3,
we establish Theorem 2.10. For this, we prove the key Lasota–Yorke inequality,
Proposition 3.8, in §3.3 and exploit it in §3.4. Then, Section 4 contains the
(independent) proof of Theorem 2.17, adapting [23], using symbolic dynamics
and a variational principle of Cao–Feng–Huang [25] for continuous subadditive
potentials.
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2. Setting, Definitions, and Precise Statement of Results

2.1. Piecewise Expanding Maps. Throughout, M is a compact connected C∞

Riemannian manifold of dimension d < ∞, and Tx denotes the tangent space

of M at x ∈ M . If M has a boundary we let M̃ be a compact connected C∞

Riemannian manifold of dimension d < ∞ containing the union of M and a small

neighbourhood of its boundary, otherwise we take M̃ = M . For noninteger β > 1,
we denote by Cβ those C[β] maps whose partial derivatives of order [β] are (β−[β])-
Hölder. If a map F is invertible on a set E, we write F−1|E = (F |E)

−1, abusing
notation. Fixing real numbers ᾱ > 1 and 0 < α ≤ ᾱ, we introduce our object of
study:

Definition 2.1. A map T : M → M is called piecewise (Cᾱ) expanding if there
exists a finite set of pairwise disjoint open sets O = {Oi}i∈I , covering Lebesgue
almost all M , such that each ∂Oi is a finite union of C1 compact hypersurfaces

with boundaries, and moreover, for each i ∈ I there exists a neighbourhood Õi of

Oi in M̃ and a Cᾱ diffeomorphism T̃i : Õi → Ti(Õi) ⊂ M̃ such that T |Oi = T̃i|Oi,

and, setting λi(x) = infv∈TxM\{0}
‖DxT̃iv‖

‖v‖ for i ∈ I and x ∈ Õi,

(2.1) λ = inf
i∈I

inf
x∈Õi

λi(x) > 1 .

Remark 2.2. Using a Taylor series, our assumption implies that, for any λ′ ∈
(1, λ), there exists ǫ′ > 0 such that, refining O to a finite collection O′ = {O′

i}i∈I′
(such that each ∂O′

i is a finite union of C1 compact hypersurfaces with boundaries)
of pairwise disjoint open sets of diameter smaller than ǫ′ covering Lebesgue almost
all M , we have

d(T (x), T (y)) ≥ λ′d(x, y), ∀x, y ∈ O′
i , ∀i .

From now on, we assume that such a refinement has been done, using the notation
λ, O, Oi, I, for λ′, O′, O′

i, I
′.

For T as in Definition 2.1 (and Remark 2.2), we introduce, for n ≥ 1 and
i = (i0, . . . , in−1) ∈ In, the n-cylinder Oi by

Oi = O(i0,...,in) =
n−1⋂

k=0

T−kOik .

Note that for each n ≥ 1 and almost every x ∈ M , there exists a unique i ∈ In

such that x ∈ Oi. The corresponding (mod-0) partition into n-cylinders Oi is

denoted by O(n) (so that O = O(1)). We set diam(O(n)) = maxOi∈O(n) diam(Oi),

so that6 diam(O(n)) ≤ λ−n diam(M).

6Recall Remark 2.2, and proceed inductively on n, noting that
⋂n−1

k=0 T−kOik =

Oi0

⋂

T−1(
⋂n−1

k=1 T
−(k−1)Oik ).
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For n ≥ 1 and i ∈ In with Oi 6= ∅, the map T̃ n
i = T̃in−1 ◦ · · · ◦ T̃i0 is defined

in the neighbourhood Õi =
⋂n−1

k=0 T̃
−k
(i0,...,ik−1)

Õik of Oi (we put Oi = ∅ if Oi = ∅).

Setting

(2.2) ∂O = ∪i∂Oi , SO = ∪k≥0T
−k(∂O) ,

(note that SO has zero Lebesgue measure), we put

νn(x) =
1

inf‖v‖=1 ‖DxT nv‖
, x ∈ M \ SO ,(2.3)

ν̃n,i(y) = ‖DTn
i
y(T̃

n
i )

−1‖ , y ∈ Õi , i ∈ In;(2.4)

ν̃n(x) = sup
i∈In:x∈Õi

ν̃n,i(x) ∈ [νn(x), λ
−n] , x ∈ M .

The function νn is submultiplicative (multiplicative if d = 1). We set

(2.5) ν∗(x) = lim
n→∞

νn(x)
1/n , x ∈ M \ SO .

For 1 < p < ∞ and t ≥ 0, we denote by Ht
p = Ht

p(M) the standard Sobolev
space on M (see Section 3.1). We write ress(L|B) for the essential spectral radius
of a bounded operator L on a Banach space B. For a fixed piecewise expanding
map T , a function f : M → C is called piecewise continuous if f |Oi extends

continuously to Õi, and f is called piecewise Cα if f |Oi is C
α. If f is piecewise Cα,

it is easy to see that each f |Oi admits a Cα extension f̃i (with
7 the same Hölder

constant Ci) to Õi for each i ∈ {1, .., I}, and we set

(2.6) f (n)(x) =

n−1∏

k=0

f(T k(x)) , x ∈ M , f̃
(n)
i =

n−1∏

k=0

f̃ik(T̃
k
i (x)) , i ∈ In , x ∈ Õi .

We can now define the transfer operator:

Definition 2.3. Let T : M → M be piecewise C ᾱ expanding. Let g : M → C be
piecewise Cα. Fix 1 ≤ p ≤ ∞. The transfer operator Lg : Lp(M) → Lp(M) is

Lg(ϕ)(x) = LT,g(ϕ)(x) =
∑

y:T (y)=x

g(y)ϕ(y), x ∈ M , ϕ ∈ Lp(M) .

Next, for µ ∈ Erg(T ) (the set of ergodic T -invariant probability measures on
M), let hµ = hµ(T ) be its Kolmogorov entropy and χµ(DT ) the smallest Lyapunov
exponent of the linear cocycle DT . If d = 1, the Birkhoff ergodic theorem gives
χµ(DT ) =

∫
log |T ′| dµ =

∫
log |detDT | dµ.

Finally, the asymptotic complexity at the beginning (or entropy multiplicity, see
e.g. [16]) Db = hmult of T (and O) is

(2.7) Db = Db(T ) = lim
n→∞

1

n
logDb

n(T ) ,

7It is enough to consider real-valued f in charts. Set f̃i(x) = infy∈Oi
{f(y) +Cid(x, y)

α}.
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where the n-complexity at the beginning Db
n(T ) of T (and O) is

(2.8) Db
n = Db

n(T ) = max
x∈M

#
{
i = (i0, . . . , in−1) | Oi ∋ x

}
, n ≥ 1 .

Remark 2.4 (Complexity at the end De). The works [10, 11, 41] also use com-
plexity at the end

De
n = De

n(T ) = max
x∈M

#{i = (i0, . . . , in−1) | x ∈ T n (Oi)} , n ≥ 1 ,

De = De(T ) = lim
n→∞

1

n
logDe

n > 0 .

For Tx = 2x mod 1 on [0, 1], we have De
n(T ) = 2n, see Remarks 2.6 and 2.15,

and Lemma 2.8 for more about complexity at the end. Thomine’s bound [41] is

(2.9) ress(Lg|Ht
p
) ≤ lim

n→∞

(
Db

n(T )
1
p De

n(T )
p−1
p sup

∣∣∣∣g
(n)|detDT n|

1
p νtn

∣∣∣∣
)1/n

.

Choosing p > 1 close to 1 allows to control the contribution of De
n, but such

an exponent p increases the contribution of |detDT n|1/p. In our estimates, the
complexity at the end will be implicit in the topological pressure P ∗

top.

2.2. Pressure P ∗
top and Boundary Pressure. We define the pressure of sub-

additive sequences for a piecewise expanding map T , generalising the pressure8

P ∗
top(T, log f,E) (for E ⊂ M and f : M → R

+
∗ ) studied e.g. by Buzzi–Sarig [23].

Definition 2.5 (Pressure of a Subadditive Potential). A submultiplicative se-
quence for the piecewise Cᾱ expanding map T is a sequence {fn : M → R

+ | n ≥ 1}
of bounded functions with fm+n(x) ≤ fm(T n(x)) · fn(x) for all m,n ≥ 1. For
E ⊂ M measurable, and {fn} submultiplicative, the topological pressure of T and
(the subadditive potential) {log fn | n ≥ 1} on E is9

(2.10) P ∗
top(T, {log fn | n ≥ 1}, E) = lim

n→∞

1

n
log

∑

i∈In:E∩Ōi 6=∅

sup
Oi

fn ∈ [−∞,∞) .

We write P ∗
top({log fn}, E) and P ∗

top({log fn}) when the meaning is clear. If

fn = f (n) is multiplicative, we just write P ∗
top(log f,E) and P ∗

top(log f). The
topological entropy of T on a measurable set E ⊂ M is P ∗

top(T, 0, E).

For all q ≥ 1, we have the trivial bound

e
P∗
top(0,E)

q · lim
n→∞

(inf fn)
1/n ≤ e

P∗
top({q log fn},E)

q ≤ e
P∗
top(0,E)

q · lim
n→∞

(sup fn)
1/n .(2.11)

8The partition O is a topological generator, but T is not continuous, so classical results do
not apply. We do not relate here P ∗

top to pressure defined via open covers, separated sets, or

spanning sets. See [8, 9] for entropy and pressure via natural topological generators for billiards.
9The limit exists in R ∪ {−∞} by subadditivity.
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Remark 2.6 (Comparing Pressure with Complexity). Note that eD
e(T ) is just

the spectral radius of L1 on L∞: Indeed, we have

(2.12) maxLn
1 (1) = eD

e
n(T ) ≤ exp#{i ∈ In | Oi 6= ∅} . Thus, De(T ) ≤ P ∗

top(0) .

For the complexity at the beginning, we have

(2.13) Db(T ) ≤ P ∗
top(0, ∂O) ,

(Indeed, setting P ∗
n,top(0, ∂O) = #{i ∈ In | ∂O ∩ Ōi 6= ∅}, we have, Db

1(T ) ≤

P ∗
1,top(0, ∂O) and Db

n(T ) ≤ max{Db
n−1(T ), P

∗
n,top(0, ∂O)} if n ≥ 2.)

In the other direction, using that ∂O has codimension one, we have by [17,
Prop. 5.2] (condition (A2) there is satisfied) that

(2.14) P ∗
top(− log |detDT |, ∂O) ≤ − log λ+Db(T ) .

Set Λ0 = 1, and,10 for d ≥ 2,

(2.15) Λd−1 = exp lim sup
n→∞

1

n
log max

x,V
‖ ∧d−1 (DT n

x )|V ‖ ,

where the maximum ranges over (d − 1)-dimensional subspaces V of TxM . If T
is piecewise affine, then [16, Prop. 4] implies that

P ∗
top(log f, ∂O) ≤ sup log f + P ∗

top(0, ∂O)

≤ sup log f + log Λd−1 +Db(T ) .(2.16)

Definition 2.7 (Small Boundary Pressure). Let T be piecewise Cᾱ expanding. A
submultiplicative sequence {fn : M → R

+ | n ≥ 1}, satisfies the small boundary
pressure condition if

(2.17) P ∗
top(T, {log fn}, ∂O) < P ∗

top(T, {log fn}) .

For multiplicative sequences fn = f (n), associated to a piecewise Cα function
f : M → R

+ with inf f > 0, Buzzi and Sarig ([23, Thm 1.3]) showed

P ∗
top(T, log f, ∂O) < P ∗

top(T, log f) =⇒

P ∗
top(log f) = sup

µ∈Erg(T )

{
hµ(T ) +

∫
log fdµ

}
.(2.18)

They also showed that small boundary pressure implies that there are finitely
many measures realising the supremum, and that, if T is strongly topologically
mixing, this maximum is uniquely attained. In a previous work, Buzzi [17, Thm A]
had established (2.18) for g = |detDT |−1, showing also that

P ∗
top(T,− log |detDT |, ∂O) < P ∗

top(T,− log |detDT |) =⇒

P ∗
top(− log |detDT |) = 0 .(2.19)

Theorem 2.17 below generalises (2.18) to certain subadditive potentials.
A useful consequence of (2.18) is the following lemma:

10∧k(A)|V denotes the quantity by which the k-dimensional volume of V is multiplied by the
linear map A.
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Lemma 2.8 (Small Boundary Pressure Implies P ∗
top(T, 0) ≤ De(T )). Let T be

piecewise Cᾱ expanding, let g : M → R be piecewise Cα with inf g > 0. If
P ∗
top(T, log g, ∂O) < P ∗

top(T, log g), then P ∗
top(T, log g) is bounded by the logarithm

of the spectral radius of Lg on L∞. (In particular, if P ∗
top(T, 0, ∂O) < P ∗

top(T, 0)
then De(T ) = P ∗

top(T, 0) by the equality in (2.12).)

The fact that P ∗
top(T, log g) is bounded by the logarithm of the spectral radius

of Lg on L∞ for g > 0 is well known if d = 1 (see [2, Thm 3.3]).

Proof. In view of (2.18), for any δ > 0 there exists µδ ∈ Erg(T ) such that
P ∗
top(T, log g) ≤ hµδ

(T ) +
∫
log gdµδ + δ. The claim thus follows from an ap-

plication of Rohlin’s formula. See e.g. [2, pp. 160–161]. �

2.3. The Essential Spectral Radius (Theorem 2.10 and Corollary 2.11).
We introduce the weighted n-complexity at the beginning Db

n(T, f̄) of T and a
nonnegative function f̄ :

(2.20) Db
n(log f̄) = Db

n(T, log f̄) = sup
x∈M

∑

i∈In|Oi∋x

sup
Oi

f̄ , n ≥ 1 ,

and we set, for a submultiplicative sequence of nonnegative functions fn,

(2.21) Db({log fn}) = Db(T, {log fn}) = lim
n→∞

1

n
logDb

n(T, log fn) .

If fn ≡ 1 for all n, we recover Db
n(T ) and Db(T ) from (2.8), (2.7).

We have the following generalisation of (2.13):

Lemma 2.9. We have Db(T, {log fn}) ≤ P ∗
top({log fn}, ∂O).

Proof. Setting P ∗
n,top(log f̄ , ∂O) =

∑
i∈In|∂O∩Ōi 6=∅ supOi

f̄ , we have

Db
1(T, log f̄) ≤ P ∗

1,top(log f̄ , ∂O)

and (recalling also that fn ≤ (f1 ◦ T
n−1) · fn−1),

Db
n(T, log fn) ≤ max{Db

n−1(T, log fn), P
∗
n,top(log fn, ∂O)} , ∀n ≥ 2 . �

The first main result follows. (It is proved in §3.4.)

Theorem 2.10 (Spectral and Essential Spectral Radius). Let T : M → M be
piecewise Cᾱ expanding and recall νn from (2.3). Let g : M → C be piecewise Cα.
For all p ∈ (1,∞) and t ∈ (0,min{1/p, α}), the operator Lg on Lp(M) restricts
boundedly11 to Ht

p(M), with essential spectral radius there bounded by

(2.22) Rt,p
∗ (g) = exp

(Db(T )

p
+

p− 1

p
P ∗
top({

p

p − 1
log
(
|g(n)| · |detDT n|

1
p · νtn

)
})
)
.

11See §3.1 for the definition of Ht
p(M).
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Moreover, for s ∈ [0, t], the essential spectral radius of Lg|Ht
p(M) is bounded by12

Rt,p
∗,s(g) = exp

(
Db(T, {log νsn})

p
(2.23)

+
p− 1

p
P ∗
top({

p

p − 1
log(|g(n)| · |detDT n|

1
p · νt−s

n )})

)
.

Finally, the spectral radius of Lg on H0
p(M) = Lp(M) is bounded by R0,p

∗ (g).

Note that by (2.11), we have (similar bounds can be written for Rt,p
∗,s(g))

Rt,p
∗ (g) ≤ e

Db(T )
p

+ p−1
p

P ∗
top(

p
p−1

log |g|) lim
n→∞

‖|detDT n|
1
p νtn‖

1
n
L∞

≤ e
Db(T )

p
+ p−1

p
P ∗
top(0) lim

n→∞
‖g(n) · |detDT n|

1
p νtn‖

1
n
L∞

.(2.24)

The Ruelle inequality is the property that

(2.25) sup
µ∈Erg(T )

{hµ(T )−

∫
log |detDT |dµ} ≤ 0 .

By (2.18) and (2.19), small boundary pressure for fn = |detDT n|−1 implies
the Ruelle inequality. See [1, (1)] for a “large image” condition (called quasi-
Markovianity there) which ensures the Ruelle inequality.

We state a corollary of (2.22) (the reader is invited to derive variational bounds
from (2.23), Lemma 2.9):

Corollary 2.11. In the setting of Theorem 2.10, set f = (|g||detDT |1/p)p/(p−1).
Assume that the Ruelle inequality holds. If P ∗

top(T, log f, ∂O) < P ∗
top(T, log f) then

Rt,p
∗ (g) ≤ νt∗ · e

Db(T )
p exp

(
sup

µ∈Erg(T )

{p− 1

p
hµ(T ) +

∫
log(|g||detDT |1/p)dµ

})
(2.26)

≤ νt∗ · e
Db(T )

p exp
(

sup
µ∈Erg(T )

{∫
log(|g||detDT |)dµ

})
.

Clearly, supµ∈Erg(T ){
∫
log(|g||detDT |)dµ} ≤ limn→∞(‖g(n)|detDT n|‖L∞)1/n.

Proof of Corollary 2.11. The first bound follows from (2.18) and (2.22). To show
the second one, use Ruelle’s inequality and proceed as for [3, (2.27)]. �

We list some comments about the unconditional result Theorem 2.10.

12The term Db(T, {log νs
n})/p in (2.23) can be replaced by P ∗

top({log ν
s
n}, ∂O)/p,applying

Lemma 2.9 to fn = νs
n.
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Remark 2.12 (The case d = 1). If d = 1, then Db(T ) = 0, and |detDT n| =
|DT n| = ν−1

n so that (2.24) is

≤ e
p−1
p

P ∗
top(0) lim

n→∞

∥∥g(n)|DT n|
1
p
−t∥∥1/n .(2.27)

Letting p → 1, t → 1 in (2.27) (or in (2.9)), we recover the (sometimes optimal

[34]) bound limn sup |g
(n)|1/n from [12] for the essential spectral radius on BV .

Remark 2.13 (Spectral Gap if g = |detDT |−1). For g = |detDT |−1 the dual
of Lg fixes Lebesgue measure, and Lebesgue measure belongs to the dual of any
Ht

p(M) with t ≥ 0. In addition, the norm of ‖Lg‖L1(M) ≤ 1, with Ht
p(M) ⊂

L1(M). Hence, if ress(L|detDT |−1 |Ht
p
) < 1, for some 0 < t < 1/p, then the

spectral radius of Lg on Ht
p is equal to one and standard arguments imply that13

T has finitely many ergodic absolutely continuous invariant probability measures,
with densities in Ht

p(M), the union of whose ergodic basins has full measure (see
e.g. [10, Thm 33] or [35, Thm 1]). Each of these measures is exponentially mixing
(up to a finite period) for Cv Hölder observables if v > t. Taking t (and thus p)
close enough to 1, our bound (2.24) for ress(L|detDT |−1 |Ht

p
) is strictly smaller than

one if Db(T ) = 0. More generally, if σ = exp(Db(T, {νsn})) < 1 for some s ≤ t
then (2.23) is bounded by σ for t and p close enough to 1, which is comparable to
Liverani’s bound from [35, (3), Lemma 3.1].

Remark 2.14 (Spectral Gap if g ≥ 0). The spectral radius of LT,g on L∞ is
≤ P ∗

top(log |g|) (similarly as for (2.12)). Although Ht
p is not included in L∞ if

t < 1/p, we conjecture, in view of [23, Thm 1.2], that, if g ≥ 0 and there exist

t < min{1/p, α} such that ress(Lg|Ht
p
) < P ∗

top(log g) = R0,∞
∗ (g), then the spec-

tral radius of LT,g on Ht
p is P ∗

top(log g). In particular, combining the maximal
eigenvectors of Lg and its dual should then give another construction for the equi-
librium states of Buzzi–Sarig [23], with the additional perk of exponential decay of
correlations for suitable observables.

Remark 2.15 (Comparing (2.22) with Thomine’s bound (2.9)). Our bound (2.24)
is less than or equal to (2.9) as soon as De(T ) ≥ P ∗

top(0). By Lemma 2.8, this holds
under the small boundary entropy condition P ∗

top(T, 0, ∂O) < P ∗
top(T, 0). For T a

multidimensional β-transformation (i.e. a piecewise affine T , with DT constant)
on [0, 1]d, it is known [16, Thm 1, Lemma 1] that Db(T ) = 0 and P ∗

top(0) = htop =∑d
i=1 ξi = log |detDT |, for 0 < ξ1 ≤ · · · ≤ ξd the Lyapunov exponents of T . By

[20, Thm 1], we have De(T ) = limn→∞maxLn
T,1(1) ≥ exp(

∑d
i=1 ξi). Thus, we

recover Thomine’s bound (2.9) since (2.24) gives

ress(L|detDT |−1 |Ht
p
) ≤ e−tξ1+

p−1
p

∑d
i=1 ξi+

1−p
p

∑d
i=1 ξi = e−tξ1 .

13See also the comment after (2.18) for the existence of equilibrium states for general g > 0
under small boundary pressure.
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Our bound (2.22) can be strictly smaller than (2.9) (we expect that this holds
generically if De(T ) = P ∗

top(0)): Take d = 1 and14 T continuous, with g =

|detDT |−1. By the variational principle [23, Thm 3.1] for − log |detDT | (using
(2.14) with Db(T ) = 0), there exists µSRB such that15

p− 1

p
P ∗
top(

p

p − 1
log g +

1

p− 1
log |detDT |)

=
p− 1

p

(
hµSRB

−

∫
log |detDT |dµSRB

)

≤
p− 1

p

(
P ∗
top(0)−

∫
log |detDT |dµSRB

)
.

If T has a fixed point with Lyapunov exponent <
∫
log |detDT |dµSRB then

∫
log |detDT |−1+1/pdµSRB < lim

n

1

n
log sup |detDT n|−1+1/p .

Remark 2.16 (Comparing (2.22) with Gundlach–Latushkin). If T is Cᾱ and g
is Cα on M , the condition t < 1/p can be lifted, and we get the optimal bound

exp sup
µ∈Erg(T )

(
hµ(T ) +

∫
log |g|dµ − tχµ(DT )

)

from [31] for B = Cα by16 letting p → ∞ in (2.22).

2.4. Variational Principle (Theorem 2.17 and Corollary 2.18). Our sec-
ond main result (proved in Section 4) is a variational principle for certain subad-
ditive potentials, generalising (2.18):

Theorem 2.17 (Variational Principle). Let T be piecewise Cᾱ expanding, let17

G : M → C be piecewise Cα, and let t ≥ 0. If the small boundary pressure
condition (2.17) holds for fn = fn,t = |G(n)| · νtn (recall (2.3)), then

sup
µ∈Erg(T )

{
hµ(T ) +

∫
log |G|dµ− tχµ(DT )

}
= P ∗

top({log fn}) .

In addition, the supremum above is attained.

Define

(2.28) fn,t,p = |g(n)| · |detDT n|
1
p · νtn , t ≥ 0 , p ≥ 1 , n ≥ 1 .

Theorem 2.17 and the proof of Theorem 2.10 allow us to show the following
corollary in §3.4 see the proof of Corollary 2.11 for the last claim):

14Then P ∗
top(0) = De(T ). Moreover, P ∗

top(0) = htop(T ) > 0: Taking the Oi to be
maximal monotonicity intervals, #{i ∈ In | Oi 6= ∅} is the lap-number lapn of T , and
limn→∞ n−1 log lapn = htop(T ).

15Note that the left hand-side is equal to zero.
16In the smooth case Db(T ) = 0, and the variational principle (2.18) for the subadditive

potential log
(

|g(n)| · | detDTn|
1

p · νt
n

)

holds [3, App. B].
17Our application is G = (g · |detDT |

1

p )q.
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Corollary 2.18 (Variational Expression for the Essential Spectral Radius). Let
T , g, p, t, be as in Theorem 2.10. Assume that the Ruelle inequality (2.25) holds.
If T satisfies the small boundary pressure condition (2.17) for fn = f q

n,t,p with

q ∈ [1, p
p−1 ], and 0 ≤ t < min{1/p, α}, then the spectral radius of Lg on H0

p = Lp

is bounded by R0,p,q(g), the essential spectral radius of Lg on Ht
p is bounded by

Rt,p,q
∗ (g) = exp

(
Db(T )

p

+ sup
µ∈Erg(T )

{hµ(T )
q

+

∫
log(|g||detDT |

1
p )dµ− tχµ(DT )

})
.(2.29)

In addition, we have

Rt,p,q
∗ (g) ≤ exp

(Db(T )

p

)
· lim
n→∞

∥∥g(n)|detDT (n)|1/p+1/q νtn
∥∥1/n
L∞

.(2.30)

If Db(T ) = 0 and (2.17) holds for f q
n,t,p with q = p/(p − 1), the bound (2.29)

reduces to the bound in [3, Thm 2.15] for smooth expanding maps.
Note that 1/p + 1/q ∈ [1, 1 + 1/p]. If q = p/(p − 1) then 1/p + 1/q = 1, and,

comparing (2.30) to Thomine’s bound (2.9), we see that the complexity at the
end has disappeared, at the cost of a higher weight on |detDT |.

Remark 2.19 (Small Boundary Pressure Condition (2.17)). The bound (2.17)
for f q

n,t,p holds18 if

q
(
log[sup(|g||detDT |1/p lim

n
(sup νtn)

1/n)]− log
[
inf(|g||detDT |1/p) lim

n
(inf νtn)

1/n
])

< P ∗
top(0)− P ∗

top(0, ∂O) .(2.31)

Indeed, by (2.11), we find

e
P∗
top({q log fn,t,p})

q ≥ e
P∗
top(0)

q lim
n→∞

inf[|g(n)| · |detDT n|
1
p νtn]

1/n ,

while (2.11) gives

e
P∗
top({q log fn,t,p},∂O)

q ≤ e
P∗
top(0,∂O)

q lim
n→∞

sup[|g(n)| · |detDT n|
1
p νtn]

1/n .

In the piecewise affine case, (2.16) gives P ∗
top(0, ∂O) ≤ Db(T ) + log Λd−1 (recall

(2.15)). If d ≥ 2, (2.31) holds for β-transformations T and g = |detDT |−1 with

0 < t < 1/p, for arbitrary q ≥ 1. Indeed, Db(T ) = 0 and P ∗
top(0) =

∑d
i=1 ξi ≡

log |detDT |, with νn a constant function, and limn ν
1/n
n = exp(−ξ1), so that

(2.31) reads
∑d

i=2 ξi <
∑d

i=1 ξi.

18Cf. the condition sup log |g| − inf log |g| < P ∗(0) from the pioneering work [33].
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3. Proof of Theorem 2.10 on the Essential Spectral Radius

3.1. Sobolev Spaces. For p ∈ (1,∞) and t ∈ R, define local Sobolev spaces by

Ht
p = Ht

p(R
d) = {u ∈ Lp(R

d) | ‖u‖Ht
p(R

d) = ‖F−1((1 + |ξ|2)t/2 · Fu)‖Lp(Rd) < ∞} ,

where F is the Fourier transform. If t ≥ 0 then Ht
p(R

d) is the closure of the
Schwartz space S of rapidly decreasing functions for the norm ‖u‖Ht

p(R
d), see e.g.

[43, Thm 3.2/2, Rk 3.2/2].

Recall M̃ from the beginning of §2.1. To patch the local spaces together, we
will use charts and partitions of unity:

Definition 3.1 (Admissible Charts and Partition of Unity for T ). For a piecewise
Cᾱ expanding map T , we define admissible charts to be a finite system of C∞ local

charts {(Vω, κω)}ω∈Ω, where each Vω is open in M̃ and such that V ω ⊂ Õi(ω), for

some i(ω) ∈ I, with M ⊂ ∪ωVω, and where each κω : Vω → R
d is a diffeomorphism

onto its image. We define an admissible partition of unity to be a C∞ partition

of unity {θω : M̃ → [0, 1]}ω∈Ω such that the support of θω is contained in Vω.

Note that if M has a boundary, the boundary cutoff will be performed through
the characteristic functions of the Oi.

Definition 3.2 (Ht
p(M)). Let T be piecewise Cᾱ expanding and let κω and θω be

as in Definition 3.1. For 1 < p < ∞ and t < 1/p, let Ht
p = Ht

p(M) be defined by

Ht
p(M) = {ϕ ∈ Lp(M) | ‖ϕ‖Ht

p(M) =
∑

ω∈Ω

∥∥(θω · ϕ) ◦ κ−1
ω

∥∥
Ht

p(R
d)

< ∞}.

By [39], the definition above makes sense if M has a boundary (in that case
κω(supp (θω)) has a boundary for some ω) since t < 1/p. Changing the system of
charts or the partition of unity produces equivalent norms (see [40, I.5, I.6]). It is
easy to see that Ht

p(M) is the closure of Cv(M) for the norm ‖ϕ‖Ht
p(M) for v > t.

3.2. Toolbox. Zoomed Norms. We collect results used for the Lasota–Yorke
inequality. We shall use the following localisation to zoom into smaller scales.

Lemma 3.3 (Localisation [44, Thm 2.4.7(ii)]). Fix τ in the set C∞
0 (Rd, [0, 1]) of

compactly supported C∞ functions from R
d to [0, 1]. For x ∈ R

d and m ∈ Z
d, set

τm(x) = τ(x +m). For any p ∈ (1,∞) and t ∈ R
+ there exists Ct,p,τ < ∞ such

that

(3.1)

( ∑

m∈Zd

‖τmu‖pHt
p

) 1
p

≤ Ct,p,τ‖u‖Ht
p
, ∀u ∈ Ht

p(R
d) .

In addition, if
∑

m∈Zd τm(x) = 1 for all x, then there exists Ct,p,τ < ∞ such that

(3.2) ‖u‖Ht
p
≤ Ct,p,τ

( ∑

m∈Zd

‖τmu‖pHt
p

) 1
p

, ∀u such that: ∀m, τmu ∈ Ht
p(R

d) .
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For any measurable set O and every p ∈ (1,∞) we have ‖1Oϕ‖Lp ≤ ‖ϕ‖Lp .
The next result is the reason behind the constraint t < 1/p:

Lemma 3.4 (Characteristic Functions as Bounded Multipliers [39, Cor. II.4.2]).
For any −1 + 1/p < t < 1/p < 1 there exists Ct,p such that, for any L ≥ 1, and

every measurable set O ⊂ R
d whose intersection with almost every line parallel to

some coordinate axis has at most L connected components, we have

‖1Oϕ‖Ht
p
≤ Ct,pL‖ϕ‖Ht

p
, ∀ϕ ∈ Ht

p(R
d) .

We will be able to use Lemma 3.4 when composing with the iterate T n of a
piecewise expanding map in view of the following result.

Lemma 3.5 ([41, Lemma 5.1]). Recall Definitions 2.1 and 3.1. Let L0 be the
maximal number of smooth boundary components of the Oi. For any n ≥ 1, i ∈ In,
x ∈ Oi, and for any ω ∈ Ω such that x ∈ supp θω, there exist a neighbourhood O′

of x and an orthogonal matrix A such that the intersection of A(κω(O
′∩Oi)) with

almost any line parallel to a coordinate axis has at most L0n components.

The next result is crucial (for F = id, it plays the part of a Leibniz bound):

Lemma 3.6 (Local Lasota–Yorke Bound [3, Lemma 2.21]). Let d ≥ 1. For each
0 ≤ t < α there exists ct such that for any p ∈ (1,∞), any open U ⊂ R

d any
F : U → R

d extending to a bilipschitz Cᾱ diffeomorphism of Rd with

(3.3) sup
Rd

|detDF | ≤ 2 sup
U

|detDF | ,

and any Cα function f : Rd → C supported in a compact set K ⊂ U , we have

‖f · (ϕ ◦ F )‖H0
p
≤ sup

K
|f | sup

U
|detDF |−1/p‖ϕ‖H0

p
, ∀ϕ ∈ H0

p (R
d) = Lp(R

d) ,

and for any t′ < t there is Ct,t′,p(f, F ) such that, for any ϕ ∈ Ht
p supported in K,

‖f ·(ϕ◦F )‖Ht
p
≤ ct sup

K
|f | sup

U
‖DF‖t sup

U
|detDF |−1/p‖ϕ‖Ht

p
+Ct,t′,p(f, F )‖ϕ‖Ht′

p
.

The intersection multiplicity of a family of subsets of Rd is the maximal number
of sets having nonempty intersection. The intersection multiplicity of a partition
of unity of R

d is the intersection multiplicity of the family formed by taking
the supports of the maps in the partition. With this terminology, we recall the
fragmentation-reconstitution lemma, at the core of our local computations.

Lemma 3.7 (Fragmentation and Reconstitution [3, Lemmas 2.26 and 2.27]). Let
1 < p < ∞ and t ≥ 0, and let K ⊂ R

d be compact. For any t′ ∈ Z there exists a
constant C > 0 such that, for any partition of unity {θj}

J
j=1 of K with intersection

multiplicity β, there exist finite constants Cθ, C̃θ > 0 (depending on the θj only
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through their supports) such that

‖
J∑

j=1

θjw‖Ht
p
≤ β

p−1
p (

J∑

j=1

‖θjw‖
p
Ht

p
)1/p + C̃θ

J∑

j=1

‖θjw‖Ht′
p
(fragmentation),

(3.4)

(

J∑

j=1

‖θjw‖
p
Ht

p
)1/p ≤ Cβ1/p sup

1≤j≤J
‖θjw‖Ht

p
+ Cθ

J∑

j=1

‖θjw‖Ht′
p
(reconstitution).

(3.5)

In addition, if t = 0, then19 we may take Cθ = C̃θ = 0.

Finally, for p ∈ (1,∞) and t ≥ 0, following Thomine [41], define a zoomed norm
for any increasing sequence rn > 1 (chosen in the proof of Proposition 3.8) by

(3.6) Rn(x) = rn ·x ,∀x ∈ R
d , n ∈ Z+ ; ‖ϕ‖rn,t,p =

∑

ω∈Ω

∥∥(θωϕ) ◦ κ−1
ω ◦R−1

n

∥∥
Ht

p
.

The zoomed norm ‖ϕ‖rn,t,p defined above is equivalent to ‖ · ‖Ht
p
. It is used for

example when applying Lemma 3.5 and Lemma 3.6 below.

3.3. A Global Lasota–Yorke Inequality. We will prove the Lasota–Yorke in-
equality by combining the zoomed norm with the fragmentation-reconstitution
techniques from §3.2, to obtain a thermodynamic factor in front of the strong

norm. Recall the sequence fn,t,p = |g(n)| · |detDT n|
1
p · νtn from (2.28).

Proposition 3.8 (Lasota–Yorke Bound). Fix p ∈ (1,∞), and 0 < t < min{1
p , α}.

Then there exists Ct,p such that, for any T and g as in Theorem 2.10,

‖Ln
gϕ‖Lp ≤ Ct,p(D

b
n)

1
p
(∑

i∈In

sup
Oi

f
p

p−1

n,0,p

) p−1
p · ‖ϕ‖Lp , ∀ϕ ∈ Lp(M) , ∀n ≥ 1 ,

and, in addition, for each T , there exists an increasing20 sequence {rn = rn(T )}
such that, for each g and each t′ < t, there exists Cn = Cn,t,t′,p(g) such that

‖Ln
gϕ‖rn,t,p ≤ Ct,pn(D

b
n)

1
p
(∑

i∈In

sup
Oi

f
p

p−1

n,t,p

)p−1
p · ‖ϕ‖rn,t,p

+ Cn‖ϕ‖rn,t′,p , ∀ϕ ∈ Ht
p , ∀n ≥ 1 .(3.7)

Proof. We prove (3.7). (The bound on Lp(M) follows from a simplification of
the argument for (3.7), using the Lp bound in Lemma 3.6 and the last claim of
Lemma 3.7. In particular, the zoom is not needed.) For n ≥ 1 and each i ∈ In,

19This follows from the Hölder inequality. See the proof of [3, Lemmas 2.26 and 2.27].
20The sequence rn is independent of t and p.
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select a C∞ function θi on M such that supp θi ⊂ Õi and θi ≡ 1 on Oi. Then we
have21

(3.8) Ln
gϕ(x) =

∑

i∈In

(θig̃
(n)
i

1Oi
ϕ) ◦ T̃−n

i
(x) , for Lebesgue a.e. x ∈ M .

Recall Definition 3.1. For ω ∈ Ω, we have

(3.9)
(
θωL

n
gϕ
)
◦ κ−1

ω ◦R−1
n =

∑

i∈In

(
θω
[
(θig̃

(n)
i 1Oi

ϕ) ◦ T̃−n
i

])
◦ κ−1

ω ◦R−1
n .

Since ϕ =
∑

ω′∈Ω θω′ϕ, the triangle inequality followed by the fragmentation
bound (3.4) in Lemma 3.7 applied for fixed i to the partition of unity {θω′} gives

constants C (depending on the intersection multiplicity) and C̃{θω′} such that

‖
(
θωL

n
gϕ
)
◦ κ−1

ω ◦R−1
n ‖Ht

p

≤C
∑

i∈In

(∑

ω′

‖
(
θω
[
(θig̃

(n)
i

1Oi
θω′ϕ) ◦ T̃−n

i

])
◦ κ−1

ω ◦R−1
n ‖pHt

p

)1/p

(3.10)

+ C̃{θω′}

∑

i∈In

∑

ω′

‖
(
θω
[
(θig̃

(n)
i 1Oi

θω′ϕ) ◦ T̃−n
i

])
◦ κ−1

ω ◦R−1
n ‖Ht′

p
.

We focus on the first double sum in the right hand-side (the second is similar).
For τm such that

∑
m τm ≡ 1 as in the localisation Lemma 3.3, set

ϕm,n
ω′ = (τm ◦Rn ◦ κω′) · (θω′ϕ) , m ∈ Z

d , so that θω′ϕ =
∑

m∈Zd

ϕm,n
ω′ .(3.11)

Since θω′ is compactly supported, only a finite number of terms in the above sum
are nonzero. In addition, the functions (τm ◦ Rn ◦ κω′)m∈Zd have finite intersec-
tion multiplicity β. Thus, for each i and ω′, the fragmentation bound (3.4) in
Lemma 3.7 (applied to the partition of unity τm) estimates the pth power of the
term for (i, ω′) in (3.10) by (using (|a|+ |a′|)p < 2p−1(|a|p + |a′|p))

Ct,pβ
(p−1)/p

∑

m∈Zd

‖

(
θω[(θig̃

(n)
i 1Oi

ϕm,n
ω′ ) ◦ T̃−n

i ]

)
◦ κ−1

ω ◦R−1
n ‖pHt

p
(3.12)

+ C̃t,p,τ◦Rm

∑

m∈Zd

‖

(
θω[(θig̃

(n)
i 1Oi

ϕm,n
ω′ ) ◦ T̃−n

i ]

)
◦ κ−1

ω ◦R−1
n ‖p

Ht′
p
.

We focus on the first term above. The set of indices i ∈ In for which the term in
(3.12) corresponding to a fixed pair (ω′,m) is non zero is contained in the set

(3.13) Jn = Jn(ω′,m) = {i ∈ In : Oi ∩ suppϕm,n
ω′ 6= ∅}.

Since Rn expands by a factor rn, while the size of the supports of the functions τm
is uniformly bounded, taking rn large enough, we can guarantee that suppϕm,n

ω′

is small enough such that #Jn(ω′,m) ≤ Db
n for each ω′ and m.

21Since Leb(∂O) = 0 and Lg acts on a subset of Lp(M), the formula (3.8) is legitimate.
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For ω, ω′, and i ∈ Jn such that T̃−n
i (Vω) ∩ (Vω′ ∩Oi) 6= ∅, setting

ϕm,n
ω′i

= τm ·
(
[1Oi

· (θω′ϕ)] ◦ κ−1
ω′ ◦R−1

n

)

F = Rn ◦ κω′ ◦ T̃−n
i ◦ κ−1

ω ◦R−1
n , f = τ̃m ·

((
θω[θ̃ω′θig̃

(n)
i ] ◦ T̃−n

i

)
◦ κ−1

ω ◦R−1
n

)
,

for C∞ functions θ̃ω′ : M̃ → [0, 1] , τ̃m : Rd → [0, 1] with

θω′(x) = θ̃ω′(x)θω′(x) , ∀x ∈ M̃ , τ̃m(u)τm(u) = τm(u) , ∀u ∈ R
d ,

we have

(3.14) (θω[(θig̃
(n)
i 1Oi

ϕm,n
ω′ ) ◦ T̃−n

i ]) ◦ κ−1
ω ◦R−1

n = f · (ϕm,n
ω′i

◦ F ) .

Increasing rn if needed (and choosing τ̃m with a small enough support), the map
F = F (n, i, ω, ω′) satisfies the condition (3.3) of Lemma 3.6, if we take for U the

intersection of Rn(κω(T̃
n
i (Õi∩Vω′))) with the interior of the support of τ̃m. Then,

Lemma 3.6 applied to the map F , the weight f = f(n,m, i, ω, ω′), which is Cα

and supported on U , and the test function ϕm,n
ω′i

gives constants Cn (depending
on rn) and Ct such that, recalling ν̃tn,i from (2.4), and, setting Θi = supp θi,

‖f · (ϕm,n
ω′i

◦ F )‖Ht
p

≤ Ct sup
Θi

|g̃
(n)
i | sup

Θi

|detDT̃ n
i |

1
p sup

Θi

ν̃tn,i‖ϕ
m,n
ω′i ‖Ht

p
+ Cn‖ϕ

m,n
ω′i ‖Ht′

p
.(3.15)

Next, using bounded distortion for uniformly expanding maps (see e.g. [36, III.1]),
there exists C > 0 such that for all n and i,

sup
Θi

(|g̃
(n)
i |) sup

Θi

(|detDT̃ n
i |

1/p) ≤ C inf
Θi

(|g̃
(n)
i ‖detDT̃ n

i |
1/p) .

Finally, using (inf a) · (sup b) ≤ sup(a · b), we have

(3.16) sup
Θi

|g̃
(n)
i

| sup
Θi

|detDT̃ n|
1
p sup

Θi

ν̃tn,i ≤ C sup
Θi

(|g̃
(n)
i

||detDT̃ n
i |

1
p ν̃tn,i) .

Setting Σi = {(ω′,m) | i ∈ Jn(ω′,m)} and

(3.17) Ξn,i = sup
Θi

[|g̃
(n)
i

||detDT̃ n
i |

1
p ν̃tn,i] ,

by (3.15), (3.14), (3.16), and the Minkowski inequality, we have

∑

i∈In

( ∑

(ω′,m)∈Σi

‖(θig̃
(n)
i ) ◦ T̃−n

i ◦ κ−1
ω ◦R−1

n · ϕm,n
ω′i

◦ F‖pHt
p

) 1
p

≤ Ct,p

∑

i

Ξn,i

( ∑

(ω′,m)∈Σi

‖ϕm,n
ω′i

‖pHt
p

) 1
p

+ Cn

∑

i

( ∑

(ω′,m)∈Σi

‖ϕm,n
ω′i

‖p
Ht′

p

) 1
p

.(3.18)
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Let us estimate the first term above. For all q ≥ 1, the22 Hölder inequality gives

∑

i∈In

Ξn,i

( ∑

(ω′,m)∈Σi

‖ϕm,n
ω′i ‖

p
Ht

p

) 1
p

≤
(∑

i

Ξq
n,i

) 1
q
(∑

i

( ∑

(ω′,m)∈Σi

‖ϕm,n
ω′i

‖pHt
p

) q
(q−1)p

) q−1
q .(3.19)

To estimate
∥∥ϕm,n

ω′i

∥∥
Ht

p
, we argue as in [41] to get rid of the characteristic functions

1Oi
. On the one hand, if the support of ϕn,m

ω is small enough, which is guaranteed
if rn is large enough, then Lemma 3.5 provides a neighbourhood O′ of this support
and a matrix A such that the intersection of Rn(A(κω′(O′∩Oi))) with almost any
line parallel to a coordinate axis has at most L0n connected components. Hence,
since23 t < 1/p, Lemma 3.4 applied to multiplication by 1O′∩Oi

◦κ−1
ω′ ◦A−1 ◦R−1

n ,
using that A is orthogonal and commutes with Rn, implies, for all i ∈ Jn,

(3.20) ‖(1Oi
◦ κ−1

ω′ ◦R−1
n ) · v‖Ht

p
≤ Ct,pL0n‖v‖Ht

p
,∀v .

Thus, we obtain

(3.21) ‖ϕm,n
ω′i

‖Ht
p
≤ Ct,pL0n‖τm · (θω′ϕ) ◦ κ−1

ω′ ◦R−1
n ‖Ht

p
, ∀i ∈ Jn .

We can now estimate the second factor in the right hand-side of (3.19). Using
(3.21) and (3.1) from the localisation Lemma 3.3, we have, for any q ∈ [1, p

p−1 ],

(∑

i∈In

( ∑

(ω′,m)∈Σi

‖ϕm,n
ω′i

‖pHt
p

) q
(q−1)p

) q−1
q

(3.22)

≤ Ct,pn

(∑

i

( ∑

(ω′,m)∈Σi

‖τm · (θω′ϕ) ◦ κ−1
ω′ ◦R−1

n ‖pHt
p

) q
(q−1)p

) q−1
q

≤ Ct,pn

((∑

ω′,m

Db
n · sup

i∈Jn(ω′,m)
‖τm · (θω′ϕ) ◦ κ−1

ω′ ◦R−1
n ‖pHt

p

) q
(q−1)p

) q−1
q

≤ Ct,pn(D
b
n)

1/p
(∑

ω′

‖(θω′ϕ) ◦ κ−1
ω′ ◦R−1

n ‖pHt
p

) 1
p ,(3.23)

exchanging the sums over i and (ω′,m) (which is legitimate since q
(q−1)p ≥ 1) and

using #Jn(ω′,m) ≤ Db
n for all m and ω′ in the penultimate line. Combining

22We use the standard notation (
∑

i |ai|
q′)1/q

′

= supi |ai| if q
′ = ∞.

23This is the only place where this assumption is used.
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(3.23), (3.19), and (3.18) with (3.10), we obtain, for any q ∈ [1, p
p−1 ],

‖
(
θωL

n
gϕ
)
◦κ−1

ω ◦R−1
n ‖Ht

p
≤ Cn

∑

ω′

‖(θω′ϕ) ◦ κ−1
ω′ ◦R−1

n ‖Ht′
p

+ Ct,pn(D
b
n)

1/p
(∑

i∈In

Ξq
n,i

) 1
q
(∑

ω′

‖(θω′ϕ) ◦ κ−1
ω′ ◦R−1

n ‖pHt
p

) 1
p .

Hence, the reconstitution bound (3.5) in Lemma 3.7 applied to the partition of
unity θω′ gives

‖
(
θωL

n
gϕ
)
◦ κ−1

ω ◦R−1
n ‖Ht

p
≤ Cn sup

ω′∈Ω
‖(θω′ϕ) ◦ κ−1

ω′ ◦R−1
n ‖Ht′

p

+ Ct,pn(D
b
n)

1/p
(∑

i∈In

Ξq
n,i

) 1
q
∑

ω′∈Ω

‖(θω′ϕ) ◦ κ−1
ω′ ◦R−1

n ‖Ht
p
.(3.24)

Since Ω is finite and the map q 7→ ‖v‖ℓq is strictly decreasing on [1,∞) for any
fixed v ∈ R

D, this implies (3.7) by (3.17) and the definition (3.6) of ‖ · ‖rn,t,p.

(Replacing Θi by Oi, g̃
(n)
i by g(n), detDT̃ n

i by detDT n, and ν̃n,i by νn in (3.17)
costs a factor (1 + ǫ)n, for arbitrarily small ǫ > 0, up to taking θi with small
enough support.) �

3.4. Proof of Theorem 2.10 and Corollary 2.18.

Proof of Theorem 2.10. The claim on the spectral radius on Lp = H0
p is an obvious

consequence on the Lp bound in Proposition 3.8.
For the bound on the essential spectral radius, since each norm ‖ · ‖rn0 ,t,p

is

equivalent to ‖ · ‖Ht
p
, and since the inclusion of Ht

p in Lp(M) is compact for t > 0,

the Lasota–Yorke bound in Proposition 3.8 implies, by a result of Hennion [32,
Cor. 1], that

ress(Lg|Ht
p
) ≤ ρ = e

Db(T )
p lim

n→∞

(∑

i∈In

sup
Oi

(
|g(n)||detDT n|

1
p νtn
) p

p−1

) p−1
pn

.(3.25)

(Indeed, fix n0 ≥ 1 very large, so that the limit in (3.25) is almost attained,
decompose n = ℓn0 + n′, with ℓ ≥ 0 and 0 ≤ n′ < n0, and apply Proposition 3.8
inductively to bound Ln

g for the norm ‖ · ‖rn0 ,t,p
, which is equivalent to the norm

of Ht
p(M).) Then (3.25) implies the bound (2.22) for the essential spectral radius,

by definition of P ∗
top.

To show (2.23), we modify the proof of Proposition 3.8 as follows: In the
definition (3.17) of Ξn,i, we replace t by t − s. In (3.18), (3.19), and (3.22), we
replace ϕm,n

ω′,i by supΘi
ν̃sn,iϕ

m,n
ω′,i . In the line after (3.22), we insert (supΘi

ν̃sn,i)
p

before the factor ‖τm · ...‖pHt
p
. In (3.23) and the line above it, we replace Db

n by

(1 + ǫ)nDb
n({ν

s
n}) (with ǫ as in the end of the proof of Proposition 3.8). �
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Proof of Corollary 2.18. Since (3.24) holds for any q ∈ [1, p
p−1 ], the conclusion of

Proposition 3.8 holds replacing
(∑

i∈In supOi
f

p
p−1

n,t,p

)p−1
p by the infimum of

(∑

i∈In

sup
Oi

f q
n,t,p

) 1
q

over such q. Thus (2.22) in Theorem 2.10 holds replacing p−1
p P ∗

top({
p

p−1 log fn,t,p})

by the infimum over such q of 1
qP

∗
top({q log fn,t,p}). The bound (2.29) follows from

this version of (2.22) combined with Theorem 2.17 with G = g|detDT |
1
p : We

have, for q ∈ [1, p
p−1 ],

log ress(Lg|Ht
p
)−

Db(T )

p
≤

1

q
P ∗
top(q log(|G

(n)|νtn))

=
1

q
sup

µ∈Erg(T )

{
hµ(T ) +

∫
q log |G|dµ − tqχµ(DT )

}

= sup
µ∈Erg(T )

{
1

q
hµ(T ) +

∫
log |g(detDT )

1
p |dµ− tχµ(DT )

}
.

The final claim is shown just like the second bound of Corollary 2.11. �

4. Proof of Theorem 2.17 on the Subadditive Variational Principle

We show Theorem 2.17 in §4.3, adapting the proof24 of [23, Thm 3.1(i)] to
subadditive potentials. For this, we first state and prove a key proposition about
measures with µ(SO) > 0 in §4.1 and next recall in §4.2 the symbolic dynamics
of a piecewise expanding map and a variational principle of Cao–Feng–Huang.

4.1. Measures Giving Nonzero Mass to SO. The proof of Theorem 2.17 is
based on the following proposition, inspired from [23, Prop. 3.1]:

Proposition 4.1. Let T be a piecewise Cᾱ expanding map. Recall SO from (2.2).
For each µ ∈ Erg(T ) such that µ(SO) > 0, every t ≥ 0, and each piecewise Cα

function G : M → R
+
∗ , we have

hµ(T ) +

∫
logGdµ− tχµ(DT ) ≤ P ∗

top({log(G
(n)νtn)},SO) .

Our proof of the proposition uses the following lemma (see [14], [3, Lemma B.3]):

Lemma 4.2. Let T be a piecewise Cᾱ expanding map, and let G : M → R be
piecewise continuous. Then, for any measurable set E ⊂ M and any t ≥ 0,

P ∗
top(T, {log(|G

(n)|νtn) | n ≥ 1}, E) = lim
m→∞

1

m
P ∗
top(T

m, log(|G(m)|νtm), E) .

24Applying directly [23, Thm 1.3] and using Lemma 4.2 would also give Theorem 2.17, along
the lines of [3, Lemma B.6]. (Note that small boundary pressure of Tm for log fm,t for all large
enough m is equivalent to the condition in Theorem 2.17 by Lemma 4.2.)
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Proof. The limit in the right-hand side exists in R∪{−∞} by submultiplicativity.
By definition, for each ǫ > 0, there exists m ≥ 1 such that

P ∗
top(T, {log(|G

(n)|νtn) | n ≥ 1}, E) + ǫ ≥
1

m
log

∑

i∈Im|E∩Oi 6=∅

sup
Oi

(|G(m)|νtm)

≥
1

m
P ∗
top(T

m, log(|G(m)|νtm), E) .

(we used that the limit defining P ∗
top(T

m, log f,E) is an infimum). Thus

P ∗
top(T, {log(|G

(n)|νtn) | n ≥ 1}, E) ≥ lim
m→∞

1

m
P ∗
top(T

m, log(|G(m)|νtm), E) .

The other inequality follows from submultiplicativity, which gives, for any m > 0,

P ∗
top(T, {log(|G

(n)|νtn) | n ≥ 1}, E) = lim
k→∞

1

mk
log

∑

i∈Imk|E∩Oi 6=∅

sup
Oi

(|G(mk)|νtmk)

≤
1

m
lim
k→∞

1

k
log

∑

i∈(Im)k |E∩Oi 6=∅

sup
Oi

(|G(m)|(k)νtkm )

=
1

m
P ∗
top(T

m, log(|G(m)|νtm), E) .

�

Proof of Proposition 4.1. We may assume inf G > 0 because, if Gk is a sequence
of piecewise continuous functions such that infM Gk > 0, with Gk ≥ Gk+1 ≥ |G|
for all k, and limk→∞ ‖Gk − |G|‖L∞(M) = 0, then for any measurable set E,

applying our definitions to the sequences fn = log(G(n)νtn) and (for a fixed k)

f ′
n = log(G

(n)
k νtn),

(4.1) lim
k→∞

P ∗
top(T, {log(G

(n)
k νtn)}, E) = P ∗

top(T, {log(|G
(n)|νtn)}, E) , ∀t ≥ 0 .

To show (4.1), it suffices to show that for all t ≥ 0 (see25 [3, Lemma B.4])

lim
k→∞

P ∗
top(T, {log(G

(n)
k νtn) | n ≥ 1}, E) ≤ P ∗

top(T, {log(|G
(n)|νtn) | n ≥ 1}, E) .

Fix E and t. For any ǫ > 0, there exists m = m(ǫ) large enough such that

P ∗
top(T, {log(|G

(n)|νtn) | n ≥ 1}, E) + ǫ ≥
1

m
log

∑

i∈Im|E∩Oi 6=∅

sup
Oi

(|G(m)|νtm) .

Then take k0(m) such that for all k ≥ k0

1

m
log

∑

i∈Im|E∩Oi 6=∅

sup
Oi

(G
(m)
k νtm) ≤

1

m

(
ǫ+ log

∑

i∈Im|E∩Oi 6=∅

sup
Oi

(|G(m)|νtm)) .

25There are typos in the proof there: Gn should be replaced by G (twice) in the third line of

that proof, and Q∗(T,G, λ(∗),W) + 2ǫ should be Q∗(T,G, λ(∗),W,m) + ǫ in the 5th line.
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We conclude the proof of (4.1) by submultiplicativity: For all k ≥ k0,

P ∗
top(T, {log(G

(n)
k νtn) | n ≥ 1}, E) ≤ P ∗

top(T, {log(|G
(n)|νtn) | n ≥ 1}, E) + 2ǫ .

So let us assume that inf |G| > 0. By definition,

(G(n)νtn)(x) = exp

(
n−1∑

k=0

logG(T k(x))− t log inf
‖v‖=1

‖DxT
n(v)‖

)
.

We introduce a generalisation of (2.6), setting, for n,m ≥ 1,

f (n,m)(x) =

n−1∏

k=0

f(T km(x)) , x ∈ M .

Fix ǫ > 0. First, by Lemma 4.2 there exist m0 ≥ 1 and a sequence n0(m) ≥ 1 such
that (using the convention that the supremum of any function over the empty set
is zero)
∑

i∈Inm

sup
Oi

(G(mn)(νtm)(n,m)) ≤ en(P
∗
top(T

m,log(G(m)νtm),SO)+ǫ) , ∀m ≥ 1 ,∀n ≥ n0(m),

≤ enm(P
∗
top({log(G

(k)νtk},SO)+2ǫ) , ∀m ≥ m0 , n ≥ n0(m).(4.2)

Next, for any µ ∈ Erg(T ), Oseledec’s theorem [46] implies

(4.3) lim
m→∞

t

m
log νm(x) = −tχµ(DT ) , for µ almost every x .

Thus, by the Birkhoff ergodic theorem, there exists a set R ⊂ M , with µ(R) >

1− µ(SO)
2 , and there exists an integer m0 ≤ m1(ǫ) < ∞ such that

(4.4) (G(m1)νtm1
)(x) ≥ em1(

∫
logGdµ−tχµ(DT )−ǫ) , ∀x ∈ R .

Therefore

(4.5) (G(m1)νtm1
)(n,m1)(x) ≥ enm1(

∫
logGdµ−tχµ(DT )−ǫ) , ∀x ∈ R , ∀n ≥ 1 .

For each n ≥ 1, define

Kn = {i ∈ Inm1 | Oi ∩R ∩ SO 6= ∅} .

Since Kn = ∪i∈KnOi contains R∩SO, we have infn µ(Kn) ≥ µ(R∩SO) >
µ(SO)

2 >

0. Next, since logG is26 piecewise Hölder, and diam(O(n)) ≤ diam(M)/λn, there
exist CG < ∞ and n1(ǫ) ≥ 1 such that, for all n ≥ n1 and all i ∈ Inm1 ,

(4.6) | logG(nm1)(x)− logG(nm1)(y)| ≤ CG(diam(O))α ≤ n
ǫ

2
, ∀x, y ∈ Oi ,

and, in addition since νm1 is Hölder on Oj for each j ∈ Im1 , we have for all n ≥ n1,

(4.7) t| log(νm1)
(n,m1)(x)− log(νm1)

(n,m1)(y)| ≤ n
ǫ

2
, ∀x, y ∈ Oi , ∀i ∈ Inm1 .

26We do not see why piecewise uniform continuity of φ suffices for [23, (5)].
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It follows from (4.6–4.7) and (4.5) that, for all n ≥ n1,
∑

i∈Kn

sup
x∈Oi

(G(nm1)(νtm1
)(n))(x) ≥

∑

i∈Kn

e−nǫ sup
x∈Oi∩R

(G(m1)νtm1
)(n)(x)(4.8)

≥ #Kn · enm1(
∫
logGdµ−tχµ(DT )−2ǫ) .

Therefore, since m1 ≥ m0, recalling (4.2) we have, for all n ≥ max{n0(m0), n1},

(4.9) #Kn ≤ Cenm1(P ∗
top({log(G

(n)νtn)},SO)+2ǫ) · e−nm1(
∫
logGdµ−tχµ(DT )−2ǫ) .

Rudolph’s formula for the entropy (see [37, §5.1, §5.10]) says that if µ ∈ Erg(T )
then, for any fixed γ ∈ (0, 1) and any finite generator, denoting by K ′

ℓ the minimal
cardinality of a collection of ℓ-cylinders whose union has measure at least γ,
we have hµ(T ) = lim infℓ→∞

1
ℓ logK

′
ℓ. Therefore, taking O as a generator and

γ = µ(SO)
2 , we have #Kn ≥ K ′

nm1
so that

hµ(T ) ≤ lim inf
n→∞

1

nm1
log#Kn

≤ P ∗
top({log(G

(n)νtn)},SO) + 2ǫ−

∫
logGdµ + tχµ(DT ) + 2ǫ ,

where we used (4.9) for the second inequality. To conclude, let ǫ → 0. �

4.2. Symbolic Dynamics. Continuous Subadditive Variational Princi-
ple. We use the symbolic dynamics for a piecewise Cᾱ expanding map T from
[23, Beginning of §3]: Set

Σ0(T ) = {i∞ = (i0, i1, . . . ) ∈ IZ+ | ∃x ∈ M | T nx ∈ Oin ,∀n ≥ 0} ,

and let Σ(T ) be the closure of Σ0(T ) in IZ+ for the product topology of the discrete
topology on I. (This topology is compatible with the distance dist(i∞, j∞) = 2−n,
where n(i∞, j∞) = min{k ∈ Z+ | ik∞ 6= jk∞}, where ik∞ = (i0, i1, . . . , ik−1) ∈ Ik,
and with the convention min ∅ = ∞.) Let σ : Σ(T ) → Σ(T ) be the left-shift on
Σ(T ).

By compactness of M , and since T is piecewise expanding, for each i∞ ∈ Σ(T )
there exists a unique x ∈ M such that ∩n≥1Oin∞

= {x}. This defines a map π :

Σ(T ) → M by π(i∞) = ∩n≥1Oin∞
. Setting Sπ

O = π−1(SO) and ∂Oπ = π−1(∂O),
it is easy to check that the restriction

π∗ : Σ(T ) \
⋃

k≥0

σ−k(∂Oπ) = Σ(T ) \ Sπ
O → M \

⋃

k≥0

T−k(∂O) = M \ SO

is measurable, and bijective, with measurable inverse, and we have π∗◦σ = T ◦π∗.
Note that σ is a continuous transformation of the compact metric space Σ(T ).

Next, given a function f : M → R, we define fπ : Σ(T ) → R by

(4.10) fπ(i∞) = lim
m→∞

inf
Oim∞

f .
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Then we have

(4.11) fπ(i∞) = f(π(i∞)) , ∀i∞ : π(i∞) /∈ ∂O .

Moreover, for each α > 0 there exists α′ such that if f is piecewise α-Hölder,
respectively continuous, on M then fπ is α′-Hölder, respectively continuous, on
Σ(T ). If φ : Σ(T ) → R

∗
+ is continuous then the topological pressure Ptop(σ, log φ)

is well-defined. If f is such that fπ : Σ(T ) → R
∗
+ is continuous, then

Ptop(σ, log f
π) = P ∗

top(T, log f) .

More generally, if fn : M → R
∗
+ is a submultiplicative sequence of functions with

each fπ
n continuous, it is easy to see that

(4.12) Ptop(σ, {log f
π
n}) = P ∗

top(T, {log fn}) ,

where the topological pressure in the left-hand side is defined using (n, ǫ)-separated
sets for continuous transformations of compact metric spaces in [25, p. 640], or in
the case of left-shift σ (see [25, §4, p. 649]) using cylinders.

The topological entropy of σ is finite. Thus, for a submultiplicative sequence
of continuous functions φn : Σ(T ) → R+, the variational principle in [25, Thm 1.1
and §4] says that (the limit below exists by subadditivity)

(4.13) Ptop(σ, {log φn}) = sup
µσ∈Erg(σ)

{hµσ (σ) + lim
n→∞

1

n

∫
log φndµσ} .

4.3. Proof of Theorem 2.17.

Proof of Theorem 2.17. Fix t ≥ 0. In Step I, we shall prove that27

sup
µ∈Erg(T )

hµ(T ) +

∫
log |G|dµ − tχµ(DT ) ≤ logP ∗

top({log(G
(n)νtn)}) .

In Step II, we shall find µ0,t ∈ Erg(T ) with

hµ0,t(T ) +

∫
log |G|dµ0,t − tχµ0,t(DT ) = log P ∗

top({log(G
(n)νtn)}) .

Both steps will use Proposition 4.1.
We can assume inf |G| > 0 by (4.1). We associate the sequence of continuous

functions {log fπ
n,t} to {log fn,t = log(|G(n)|νtn)} via (4.10).

We start with Step I. Let µ ∈ Erg(T ). Assume first that µ(SO) = 0. Then,

π : (Σ(T ), µ ◦ π, σ) → (M,µ, T ) ,

(for the Borel σ algebras of Σ(T ), M) is a measure-theoretic isomorphism. Thus

hµ(T ) +

∫
log |G|dµ − tχµ(DT ) = hµ◦π−1(σ) + lim

n

1

n

∫
log fπ

n,tdµ ◦ π−1 .

27This does not require small boundary pressure.
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Next, by the variational principle (4.13),

hµ◦π−1(σ) + lim
n

1

n

∫
log fπ

n,tdµ ◦ π−1 ≤ Ptop(σ, {log f
π
n,t}) .

Therefore, since Ptop(σ, {log f
π
n,t}) = P ∗

top(T, {log fn,t}) by (4.12), we have

hµ(T ) +

∫
log |G|dµ − tχµ(DT ) ≤ P ∗

top(T, {log fn,t}) .

Finally, if µ(SO) > 0, then Proposition 4.1 gives

hµ(T ) +

∫
log |G|dµ− tχµ(DT ) ≤ P ∗

top(T, {log fn,t},SO) ≤ P ∗
top(T, {log fn,t}) .

We move to Step II. Since σ is expansive and Σ(T ) is compact, the functions

µσ 7→ hµσ (σ
n) and µσ 7→ lim

n

1

n

∫
log fπ

n,t dµσ , µσ ∈ Erg(σ)

are upper semi-continuous (indeed −
∫
limn

1
n log νπn dµ > 0 is lower semi-con-

tinuous, as it is the smallest Lyapunov exponent χµ(DT ), see e.g. [46, Lemma 9.1],

hence limn
1
n

∫
log νπn dµ < 0 and limn

1
n

∫
log fπ

n,t dµ are upper semi-continuous).
Therefore, there exists µ0 ∈ Erg(σ) with

hµ0(σ) + lim
n

1

n

∫
log fπ

n,t dµ0 = sup
µσ∈Erg(σ)

hµσ (σ) + lim
n

1

n

∫
log fπ

n,t dµσ

= Ptop(σ, {log f
π
n,t}) ,

where the second inequality follows from the variational principle (4.13).
Setting µ0,t = µ0 ◦ π

−1, suppose that µ0,t(SO) > 0, so that µ0(π
−1(SO)) > 0.

Then Proposition 4.1 and the small boundary condition (2.17) would imply

Ptop(σ, {log f
π
n,t}) = hµ0(σ) + lim

n

1

n

∫
log fπ

n,tdµ0 ≤ Ptop(σ, {log f
π
n,t}, π

−1∂O)

≤ P ∗
top(T, {log fn,t}, ∂O) < P ∗

top(T, {log fn,t}) .

This would contradict P ∗
top(T, {log fn,t}) = Ptop(σ, {log f

π
n,t}). Thus, µ0,t(SO) = 0

and, arguing as in Step I, we have

hµ0,t(T ) + lim
n

1

n

∫
log fn,tdµ0,t = hµ0(σ) + lim

n

1

n

∫
log fπ

n,tdµ0 .

The right-hand side is Ptop(σ, {log f
π
n,t}) = P ∗

top(T, {log fn,t}), and we conclude.
�
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