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Abstract—Regression testing is widely studied in the literature,
although most research on the topic is concerned with improving
specific sub-challenges of a wider goal. Test suite orchestration
proposes a more comprehensive view of the challenge of regres-
sion testing, by merging and combining different techniques with
a variety of objectives, including prioritizing, selecting, reducing
and amplifying tests, detecting flaky tests and potentially more.
This paper presents the key approaches and techniques that
form test suite orchestration, along with common evaluation
metrics, and discusses how they can be used together to ultimately
provide an efficient and effective regression testing strategy. To
illustrate the benefits of orchestration, we provide some examples
of existing papers that take steps towards this goal, even if
the specific terminology is not yet used. Orchestrated strategies
utilizing existing regression testing techniques provide a pathway
to practicality and real-world usage of the academic literature.

Index Terms—software testing, regression testing, test case
selection, test case prioritization, test suite reduction, test suite
amplification, flaky test detection, test suite orchestration

I. INTRODUCTION

It is important for companies and communities developing
software to utilize methods to mitigate the possibility that
faulty software will reach production. Today, most commercial
and open-source software products are accompanied by a test
suite, a series of automated tests that are used to provide a
level of certainty that parts of a software, both in isolation
and in conjunction, correctly perform the tasks to which they
are assigned. One widely-adopted software testing technique
is called regression testing (RT); its primary role is to execute
the test suite with a certain frequency, in order to guarantee
that recently introduced changes to the software do not affect
previously-correct behavior. However, in large-scale software
development (that is, with multiple developers and a large
codebase), it is usually unfeasible to execute every test after
every change, either because changes are too frequent, or
because there are too many tests, or both. This is aggravated by
the fact that most software is now developed in a continuous
manner, i.e., following an iterative and cyclical process that
allows for a short turnaround time between the design of a
requirement, the development of a feature, and the delivery of
an update to customers.

Our research covers test suite orchestration strategies for
regression testing, which address the objective of managing
and combining multiple RT techniques: test case prioritization
(TCP), test case selection (TCS), test suite reduction (TSR),
test suite amplification (TSA), and flaky test detection (FTD).

A framework for test suite orchestration strategies is in-
troduced, illustrating how multiple techniques, each handling
a distinct challenge, can be used in unison to improve the

testing workflow. While the idea of combining RT techniques
is not entirely novel, most RT research focuses on improving
one or another specific technique without evidencing how
different combinations of techniques might yield differing
cost/effectiveness ratios [1]. The objective of this paper is to
provide an overview of how differently RT techniques can
be orchestrated, while providing common terminology for the
advancement of this direction of research.

II. BACKGROUND

Given the challenges associated with ever-expanding re-
gression testing suites of continuously evolving software, we
call test suite orchestration the art of generating, choosing,
prioritizing and executing tests in order to maximize the
effectiveness of testing while keeping costs within a desired
budget. Our adoption of the term “orchestration” has been
inspired by a concept in service-oriented architecture, where
centralized logic manages the interoperability between mem-
bers of a system [2]. Today, research on test orchestration is
quite granular, with individual researchers mostly focusing on
specific challenges within this topic. While this is important
for the continuity and advancement of research, it fails in
addressing the practical concerns of software developers, who
desire a complete solution to aid the development cycle.

In general, test suite orchestration can be thought of as
a broad challenge with the ultimate goal of improving re-
gression testing in multiple aspects, composed of several
sub-challenges, which are in turn addressed by groups of
techniques [3] [4], namely the aforementioned TCP, TCS,
TSR, TSA, and FTD, as well as others that could be considered
as extensions.

Individually, each of these challenges can be its own field
of research, and indeed many works have been published on
them, introducing improvements that can provide substantial
benefits. A specific configuration of techniques is referred to
as an orchestration strategy; ideally, it should consider all RT
challenges in unison, as solving each one alone is not sufficient
to solve the problems faced by software developers in practice.
Additional challenges and techniques remain relevant to the
discussion of test suite orchestration and may be added to an
overarching strategy, or some may be omitted due to specific
constraints. In this section, common approaches and metrics
for each sub-challenge are briefly summarized.

A. Test Case Prioritization

One challenge of regression testing is to detect failing tests
fast. The objective of test case prioritization (TCP) is to re-



order test cases according to some definition of priority, in
order to get faster feedback from the test execution [5]. Given
a system-under-test (SUT) M and its test suite T , TCP can be
described as a function P (M,T ) that provides a permutation
T ′ of T , such that, given a metric function f , f(T ′) > f(T ).
The optimal prioritization is one for which f(T ′) is greater
than or equal to any other possible permutation of T .

Among the criteria often used for TCP: (1) similarity-based
attempts to diversify the execution of tests; (2) coverage-based
aims at maximizing coverage with as few tests as possible; and
(3) history-based prioritizes tests that have a history of failing
or revealing faults [6].

Common metrics include: (1) average percentage of faults
detected (APFD), which estimates how effective a prioritiza-
tion is in detecting faults in fewer tests; (2) tests till first fault
(TTFF), a count of how many tests were executed until one
failed; or (3) developer feedback time, a measure of how long
it takes for a developer to get a report if there is a failing test.

TCP is particularly useful in situations where the test suite
is exceptionally large and detecting failures sooner allows for
potential faults to be addressed quicker. It’s also relevant in
cases where the testing budget is limited but not consistent, so
testing might stop at any time and only tests that failed until
then can be added to a report.

A prioritized test suite still contains all test cases, so there is
no loss of failures detection ability (assuming that test results
are independent and the testing budget is sufficient) – what
changes is the amount of time that it takes for one or more
failures to be detected.

B. Test Case Selection

In regression testing, not all tests are relevant to a particular
code change: if only a small part of one file was updated, it is
unlikely that the entire project would be affected and the full
regression test suite would have to be run. Test case selection
(TCS)1 addresses the challenge of selecting a subset of tests
that is representative of the entire suite in a given situation [7]
[8]. In other words, given subsequent versions of an SUT,
M and M ′ and its test suite T , TCS can be described as a
function S(M,M ′, T ) that selects a subset T ′ ⊆ T to be used
for testing M ′, considering the differences from M to M ′.

We say that a TCS technique is safe if it guarantees that all
tests whose outcome may be affected by a change are included
in the selected subset [8]. That is, safe selection techniques
output a subset T ′ while maintaining the output of a fault
detection metric function f(T ′) ≥ f(T ).

Examples of approaches for TCS are: (1) change-based,
which executes tests that have some relation to modified
files, classes, or methods; (2) model-based, which uses data
extracted from models of the SUT to determine test execution;
or (3) graph-based, which uses a graph representation of the
SUT to detect control flow and select relevant tests [7].

Some metrics for TCS are: (1) selection count or percentage,
which measures how many tests were executed in comparison

1Also referred to as Regression Test Selection (RTS) in the literature.

to the original suite (e.g. |T ′| ≤ |T |); (2) testing time, or
the time taken to execute the selected subset of tests; and (3)
fault detection capability, used to determine the safeness of
the proposed technique.

A potential drawback of TCS is that, depending on the size
of the test suite and the execution time of individual tests, it
may happen that the time needed to produce T ′ is greater than
the savings provided by executing T ′ instead of T .

C. Test Case Reduction and Minimization

Without considering subsequent versions of the SUT, test
suite reduction (TSR) aims to find a minimal subset of test
cases such that the testing requirements are still met [9]. Thus,
given an SUT M and its test suite T that satisfies a set
of requirements {r1, ..., rn}, we describe TSR as a function
R(M,T, r) which outputs a test suite T ′ ⊆ T such that each
ri is still satisfied.

There exists conceptual overlap between TCS and TSR,
with the key differences being change-awareness and the
objective of the result. While TCS uses a comparison between
versions of the SUT and produces a set of tests meant to
validate those changes, TSR can be performed on an isolated
iteration of a program and is meant to detect tests that are no
longer needed for full satisfaction of the requirements. TSR
approaches are often coverage-based or requirements-based
and evaluation metrics for TSR are often shared with TCS,
since both are concerned with running fewer tests and reducing
the overall testing time; however TSR must ensure that there is
no loss in fault detection capability in the long-term evolution
of the suite.

Regarding the terms reduction and minimization, both op-
tions are used nearly interchangeably in the literature. Accord-
ing to Yoo and Harman [4], the difference in terminology is
subtle: while both remove tests from the suite, minimization
implies this change is temporary, while reduction stands for
permanent removal of tests. Generally speaking, the same tech-
niques can be applied for both ends so, from the perspective
of researchers, the two terms are not distinct.

D. Test Case Amplification and Augmentation

As a program evolves and grows in scope, so must its test
suite to keep up with the additional features. Today, this is
mostly done manually by the development teams, in some
cases by the developers themselves; in some teams, developers
test each other, or there can be designated testers whose job
is to ensure other people’s changes satisfy requirements and
are error-free.

Unfortunately, tests do not add to the perceived value of a
software product, since they do not provide direct functionality
to end users. Thus, in a lot of cases, developers are encouraged
to spend little time writing new tests or improving existing
ones. As such, an automated solution can prove to be valuable
to both reduce the manual work done by programmers and
to improve the overall quality of new test cases. Test case
amplification (TSA) is the technique to achieve that goal.



Given an SUT M and its test suite T that partially satisfies
a set of requirements {r1, ..., rn}, TSA is described as a
function A(M,T, r) outputting a test suite T ′ ⊇ T that
satisfies more ris than T . Much like TSR, coverage-based
and requirements-based approaches are common, although
the objective is naturally to increase coverage rather than
maintain it. Metrics for measuring the output include the
relative increase in coverage/requirements.

This problem is related to test suite generation (TSG)
although, for the discussion of regression testing, TSA is a
more useful concept. The difference is that TSA increases or
enhances a pre-existing test suite, while TSG generates one
from scratch. Since the latter does not presume an ongoing
and evolving regression test suite, it was determined that it
falls out of the scope of discussion of test suite orchestration.
That said, from a purely technical standpoint, both challenges
are strongly related and, indeed, TSA is sometimes referred
to as incremental generation of test cases.

There is a nuanced distinction between the usage of am-
plification and augmentation, and the two are sometimes
conflated in the literature. Generally, amplification refers to
any improvement of the test suite, which may happen by
adding new tests or enhancing existing ones. On the other
hand, augmentation implies the creation of new tests without
modifying previous ones. By this definition, test suite augmen-
tation is a problem embedded within test suite amplification,
so we can refer as amplification the combined challenge.

E. Test Flakiness

Flaky tests are test cases that can be observed to pass or fail
non-deterministically when executed on unchanged code [10].
This is highly undesirable in regression testing, because the
non-deterministic behavior of flaky tests result in confounding
signals to the testers and developers. The impact of flakiness
on regression testing is substantial, because understanding
if a test is truly flaky requires a large debugging effort;
additionally, false alarms can erode developers’ trust in the
process rigor and indirectly hinder testing efficacy [11], [12].
Thus, a flaky test detection (FTD) technique can provide great
benefits to testers.

The straightforward approach to FTD consists of rerunning
the failing test cases a number of times, e.g., 10 times [13],
to ascertain that failures are not intermittent. However, such
approach, which is now embedded in several testing infras-
tructures, is costly, and researchers have proposed various
other approaches that can help reduce the costs of identifying
flakiness, either by coupling test rerunning with code analysis
techniques that can reduce the amount of test reruns [14],
[15], or even before executing the tests, e.g., by using machine
learning [16], [17]. FTD techniques are considered dynamic or
static depending on whether they are based on test execution
or not, respectively.

What is now clear is that any framework for regression
testing must be made aware of flakiness and possibly include
appropriate mechanisms that can automatically detect flake
tests with sustainable efforts. One difficulty is that the causes

and characteristics of flakiness can be heterogeneous [10], so
possibly more than one technique will be needed. For instance,
Lam et al. propose an enhanced regression testing approach
that addresses test order dependency [18].

III. A FRAMEWORK FOR TEST SUITE ORCHESTRATION

Software regression testing has undergone extensive re-
search in the last several decades. The largest part of solutions,
though, address separately one dimension of the problem at
a time. We believe that, by orchestrating the differing RT
techniques presented in the previous section into a combined
execution, we can achieve the most from the restricted subset
of test cases that can be executed at each new release.

When combining multiple techniques into a cohesive or-
chestration strategy, the first and perhaps most important
aspect to consider is the sequence of operations. For instance,
there are two ways of using TCS and TCP together: we can
either select a set of test cases and then prioritize these, or
prioritize the entire test suite and run the selected tests in that
given order. Including more techniques in the orchestration
inevitably leads to more possible sequences.

By adding TSR to the orchestration, this operation could be
performed before or after the selection and prioritization. By
using it before, we already restrict the number of test cases
the other techniques must deal with; doing it afterwards, the
results of the reduction will only be used in the next execution
of the test suite.

The combination becomes more interesting when adding
TSA to the strategy. TSA could be the first technique to run,
updating or adding test cases that will then serve as input for
selection, prioritization and reduction. Or, it could be placed in
between selection and prioritization, modifying the suite only
according to the results of the selection. This could be desired
if the TSA process is costly and running it with fewer targets
greatly reduces the time it consumes.

Continuing this line of thought, Figure 1 shows a diagram
of a fully orchestrated test strategy. In it, we consider three
subsequent versions of the SUT (vi-1, vi, vi+1). The chevron
boxes represent some process being applied to the tests, while
the cut rectangles represent variations of the test suite (e.g., a
list of test cases).

The target of the orchestration is T, which is the test suite
corresponding to version vi of the SUT. The first technique to
be applied is TCS, generating a subset of tests S. Additionally,
from previous test execution logs, historical data, such as test
that have recently failed, can be extracted, forming the set H.

This subset is then used as input for TSA techniques,
in this example displayed separately as augmentation and
amplification. The results are one set of newly generated
additional tests G and one set A containing the amplified
versions of the tests. At this point, information from H, G
and A is merged into a list of tests M.

M is then used as input for three different techniques. On
one side, TSR is used, using information from M and T to
eliminate excessive redundancies in the suite and produces a
tighter suite R that can be used as a starting point for the next



cycle of orchestration (when it is time for version vi+1 of the
SUT to be tested). On the other, TCP prioritizes the test cases
to P and a static FTD technique provides a list F of potentially
unreliable tests, which should be handled differently during
execution.

Finally, the orchestrated test suite O is produced, which can
be used to test the SUT version vi. Considering the cyclical
nature of testing evolving systems, information produced by
the execution of O can be stored and used as historical data
available for future testing cycles, as well as for dynamic FTD.

Vi-1

Vi 

Vi+1

History H

T TCS S

TSAug

TSAmp
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TSR

TCP

FTD
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Legend: vi-1, vi, vi+1: previous, current and next version of the SUT; H:
output of history-based criteria; T: the test suite as of version vi; S: the
selected test suite; G, A: the outputs of test suite augmentation and
amplification, respectively; M: a selected and enhanced test suite combining
the outputs of the previous steps; R: the reduced test suite; P: the prioritized
test suite; F: a list of potentially flaky tests; O: the orchestrated test suite
that should be executed for vi, the output of which becomes historical data
for vi+1.

Fig. 1: Diagram showing a fully orchestrated strategy to the
test suite execution and evolution.

IV. EXAMPLES OF TEST SUITE ORCHESTRATION

In a previous publication, we presented a study directly
comparing two recent practical and effective approaches to
TCS and TCP, namely file-based selection (by Ekstazi [19])
and similarity-based prioritization (by FAST [20]) [21]. Our
results show that Ekstazi generally outperforms FAST, al-
though the effect size is negligible or small; however, their or-
chestration by Fastazi outperforms both with a non-negligible
effect. Moreover, considering a limited test budget, Fastazi ex-
posed a higher effectiveness in consistent way. After assessing
the overhead imposed by each of the studied approaches, we
can conclude that Fastazi is quite practical: if we parallelize
the preparation steps, the additional cost of similarity-based
prioritization of the test cases selected by Ekstazi is negligible.

Another example of a work addressing test suite orches-
tration (although the authors do not use this term) is the
study by Shi et al. [22], who compare empirically TSR
and TCS. The authors observe that both techniques aim at

running only a subset of the test suite, but in orthogonal
way. They thus ask which one is better considering the size
of the reduced test suite, and the loss in terms of detection
capability of change-related faults. For TCS their study adopts
the Ekstazi tool above mentioned, whereas for reduction they
remove redundant test cases using a greedy heuristic based
on statement coverage. From the comparison they conclude
that TCS on average returns a smaller test suite size, with no
loss in change-related faults detection for safe TCS techniques.
In comparison, TSR can miss a small percentage of change-
related faults. They also evaluate a combination of the two
techniques, specifically “selection of reduction” in which TCS
is applied on the reduced suite obtained by TSR: this can
further reduce the number of tests yielding the same loss in
fault detection observed for TSR alone.

The above examples are just some initial studies towards test
suite orchestration. This work paves the way to exploring a full
range of potential strategies of combining differing criteria for
the various RT techniques in different ways.

V. CONCLUSION

This paper presents a framework for test suite orchestration,
an example built upon the goals of each RT technique which
considers how they can be used to each others’ advantages.
Validating such a model requires extensive experimentation,
which unfortunately poses a technical challenge, as not every
technique has an available and easily usable implementation.
Even when the tools exist, the way each one handles inputs
and outputs can be incompatible, so some alteration is needed.

The study of orchestration strategies might be perceived as
an engineering effort that just consists of integrating existing
tools and hence as such it does not bring new knowledge. We
firmly contrast such view and believe that at the current status
of RT research, we have enough choice of RT techniques, and
the challenge in practice is which and how techniques would
be more usefully combined.

Indeed, several questions remain unanswered regarding a
fully orchestrated strategy. The possibility of executing all RT
techniques at each new version of the SUT largely depends on
the intervals between versions; if new versions are committed
frequently, there might not be enough time to execute the full
process. In such cases, an additional point to consider is which
techniques are important for frequent execution, and which
ones can be used in less frequent (e.g. nightly) testing.

For facilitating the progress in RT orchestration, it is very
important that tools supporting the proposed techniques are
made available for use by other researchers, and that proper
benchmarks are shared for comparison of results from differing
combinations. With this aim, our cited review [1] is conceived
as a live repository and we invite colleagues from the AST
community to contribute actively to keep it up-to-date.
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