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Is there a spectral turnover in the spin noise of millisecond pulsars?
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ABSTRACT
Pulsar timing arrays provide a unique means to detect nanohertz gravitational waves through long-term measurements of pulse
arrival times from an ensemble of millisecond pulsars. After years of observations, some timing array pulsars have been shown
to be dominated by low-frequency red noise, including spin noise that might be associated with pulsar rotational irregularities.
The power spectral density of pulsar timing red noise is usually modelled with a power law or a power law with a turnover
frequency below which the noise power spectrum plateaus. If there is a turnover in the spin noise of millisecond pulsars, residing
within the observation band of current and/or future pulsar timing measurements, it may be easier than projected to resolve the
gravitational-wave background from supermassive binary black holes. Additionally, the spectral turnover can provide valuable
insights on neutron star physics. In the recent study by Melatos and Link, the authors provided a derivation of the model for
power spectral density of spin noise from superfluid turbulence in the core of a neutron star, from first principles. The model
features a spectral turnover, which depends on the dynamical response time of the superfluid and the steady-state angular velocity
lag between the crust and the core of the star. In this work, we search for a spectral turnover in spin noise using the first data
release of the International Pulsar Timing Array. Through Bayesian model selection, we find no evidence of a spectral turnover.
Our analysis also shows that data from PSRs J1939+2134, J1024–0719, and J1713+0747 prefers the power-law model to the
superfluid turbulence model.
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1 IN T RO D U C T I O N

It has long been proposed that pulsars can be used to detect
gravitational waves in the nHz band (Sazhin 1978; Detweiler 1979;
Hellings & Downs 1983). Millisecond pulsars, first discovered in
Backer et al. (1982), provide promising prospects for gravitational
wave detection thanks to their exceptional rotational stability. The
concept of a pulsar timing array (PTA), long-term monitoring of
pulse arrival times from a spatial array of millisecond pulsars, was
conceived three decades ago (Romani 1989; Foster & Backer 1990).
Currently, several collaborations are conducting PTA observations,
including the Parkes Pulsar Timing Array (Manchester et al. 2013),
the European Pulsar Timing Array (Kramer & Champion 2013),
and the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) (McLaughlin 2013). A consortium of these
collaborations is called the International Pulsar Timing Array (IPTA,
Hobbs et al. 2010; Perera et al. 2019).

The first gravitational-wave signal detected with PTAs is likely to
be a stochastic gravitational-wave background, formed by a cosmic
population of supermassive binary black holes (Rosado, Sesana &
Gair 2015). Apart from the detection of gravitational waves, PTAs
also offer the opportunity to establish a pulsar-based time standard
(Hobbs et al. 2012), to study the Solar system (Caballero et al.
2018), the interstellar medium (Coles et al. 2015) and the Solar
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wind (Madison et al. 2019), and to constrain ultralight dark matter
candidates (Porayko et al. 2018).

The science output of PTA data relies on how well we model
noise. Incorrect noise models can also lead to false detection in
gravitational-wave searches (Arzoumanian et al. 2018b; Hazboun
et al. 2020). At low frequencies, where we are most sensitive to the
stochastic gravitational-wave background, some millisecond pulsars,
primarily studied in the PTA context, have measureable levels of red
noise (Coles et al. 2011; Reardon et al. 2015; Lentati et al. 2016;
Caballero et al. 2016; Arzoumanian et al. 2015, 2018a). The red
noise power spectrum is modelled by either a power law, or the
broken power law, which introduces a corner frequency below which
the noise power spectrum plateaus. Additional opportunities also
include the free spectral model (see e.g. Lentati et al. 2013) and the
power-law model with deviations at each frequency bin (Caballero
et al. 2016). One particular source of red noise is the spin noise, which
might be associated with pulsar rotational irregularities (see e.g.
Shannon & Cordes 2010). While some young pulsars show hints of a
spectral turnover at low frequencies (Parthasarathy et al. 2019), it has
not yet been found for millisecond pulsars. If the typical time-scale
of a spectral turnover for millisecond pulsars is on the order of years
or shorter, it reduces the red noise in the most sensitive frequency
band of PTAs, yielding a faster detection of a stochastic gravitational-
wave background. Implications of how a spectral turnover will affect
times to detection of a stochastic background were discussed in Lasky
et al. (2015). One of the conclusions of Lasky et al. (2015) is that
the gravitational wave power spectrum will only surpass the steeper
timing noise spectrum if the latter flattens below some frequency.
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Moreover, pulsar timing red noise provides interesting prospects
for studying neutron star physics. A range of mechanisms have been
proposed to explain pulsar red noise, including switching between
two different spin-down rates (Lyne et al. 2010), recovery from a
glitch – a sudden increase in the rotational frequency (Johnston &
Galloway 1999), a cumulative effect of frequent microglitches
(Cordes & Downs 1985; D’Alessandro et al. 1995; Melatos, Peralta &
Wyithe 2008), variable coupling between the crust and liquid interior
(Alpar, Nandkumar & Pines 1986; Jones 1990), influence of planets
(Cordes 1993) and asteroids (Shannon et al. 2013). Nevertheless,
there are not many models that link power spectral density model
parameters to physical features. One such model by Melatos &
Link (2013), which we explore in this paper, predicts a superfluid
turbulence in neutron star interiors as the origin of red noise. The
turbulent process exerts a torque on the star’s crust, where the external
magnetic field of the star is produced. The model features a spectral
turnover.

In this work, we employ Bayesian inference to search for evidence
of spectral turnover in pulsar spin noise in the first data release
(DR1) of the IPTA (Verbiest et al. 2016). We discuss our data
analysis methods in Section 2. Our simulation study is presented
in Section 3. We describe the noise processes of the first IPTA data
release in Section 4. We present the results in Section 5, and discuss
our conclusions in Section 6.

2 ME T H O D

2.1 Bayesian methodology in pulsar timing

First, following Van Haasteren et al. (2009), we assume a multivariate
Gaussian likelihood function to describe pulsar timing residuals δ t
after fitting for the timing model:

L(δ t|θ, ξ ) = 1√
(2π)ndet(C)

× exp

(
− 1

2
(δ t − s − Mξ )TC−1(δ t − s − Mξ )

)
.

(1)

Stochastic signals are modelled using a covariance matrix C, while
s is a deterministic signal vector. Parameters of our models are θ .
The vector ξ contains timing model parameters and M is a design
matrix, describing the contribution of m timing model parameters
to n times of arrivals (ToA). Throughout our study, we work with
ToAs and residuals, referenced to the Solar system barycentre.
Assuming uniform prior on timing model parameters, the likelihood
is marginalized over these parameters (Van Haasteren et al. 2009):

L(δ t|θ) =
√

det(MTC−1 M)−1

√
(2π)n−mdet(C)

× exp

(
− 1

2
(δ t − s)TC ′(δ t − s)

)
, (2)

where we have defined

C ′ = C−1 − C−1 M(MT C−1 M)−1 MT C−1. (3)

To speed up the calculation, we employ the singular value decom-
position of the design matrix in the form M = U SV ∗, where S
contains singular values of M, U , and V are unitary matrices with
dimensions n × n and m × m, respectively. Then, we obtain the

likelihood function in a form (van Haasteren & Levin 2012)

L(δ t|θ ) = 1√
(2π)n−mdet(GT CG)

× exp

(
− 1

2
(δ t − s)T G(GT CG)−1 GT (δ t − s)

)
, (4)

so that U = U1 G with U1 and G consisting of the first m and
remaining n − m columns of U .

Some timing model processes are covariant with red noise. In
particular, in analyses by Coles et al. (2011) and Reardon et al.
(2015), the least-squares timing model fit absorbs some red noise.
This absorption of power causes an apparent visible turnover in
the measured spectra of red post-fit residuals, which is why the
model with the broken power law was used for these analyses. In
Caballero et al. (2016), the regular power-law was used, as the
effects of timing model fitting were taken into account. In our
analysis, we employ analytical marginalization over the uncertainty
of timing model parameters in equation (4), which is equivalent to
the simultaneous fitting of the timing model parameters and the red
noise parameters, under the assumption that non-linear dependencies
of the likelihood on the timing model parameters are negligible. This
avoids the problem of detecting a spectral turnover that is actually
due to the timing model fit, and makes it possible to target the spectral
turnover in the spin noise itself. During marginalization, one loses
sensitivity at low frequencies, especially at frequencies ≤1/Tobs, due
to taking the uncertainty of the timing model into account.

Our prior probability distribution is π(θ ). The integral of the
likelihood times the prior over the prior parameter range is the
Bayesian evidence for our model:

Z(θ , δ t) =
∫

L(δ t|θ )π(θ )dθ . (5)

To infer our model parameters θ , given observational data, we employ
the Bayes’ theorem:

P(θ |δ t) = L(δ t|θ )π(θ )

Z(θ , δ t)
. (6)

Using two different models A and B with parameters θA and θB, we
employ the Bayes factor as a measure of which model better fits the
data:

BB
A,i = ZB

i (θB, δ t)

ZA
i (θA, δ t)

, i ∈ [1, Npsr], (7)

where Npsr is the number of pulsars. In Bayesian model selection,
it is advised to use the posterior odds ratio as the decisive crite-
rion for model comparison. Posterior odds ratio is equal to the
Bayes factor times the prior odds ratio. In our model selection,
we do not know a priori whether the spectral turnover will ever
be detected in millisecond pulsars. So, we choose prior odds to
be equal to one. Thus, the posterior odds ratio is equal to the
Bayes factor. For simulation studies, we calculate the Bayes factors
from evidence, which is obtained with nested sampling (Skilling
2004). To save on computational cost, we adopt the product-space
sampling method (Hee et al. 2015; Carlin & Chib 1995) to calculate
Bayes factors for the real data.1 Both methods are mathematically
equivalent. Assuming timing data for each pulsar are independent

1The technical inconvenience of this method – one has to choose the set of
compared models before the sampling starts – is the main reason to adopt
nested sampling for our simulation studies.
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measurements, we combine all available data:

BB
A =

Npsr∏
i=1

BB
A,i , (8)

which provides a metric to determine whether the spectral turnover
is a real physical feature of millisecond pulsar spin noise. For a dis-
cussion of how Bayes factors are combined through multiplication,
see, for example, Zimmerman, Haster & Chatziioannou (2019). The
authors argued that this approach is a limiting case of the inference
of hyperparameters that characterize the underlying distributions of
parameters of individual events (pulsars), under the assumption that
individual event (pulsar) parameters are independent. We interpret
Bayes Factors, as in Kass & Raftery (1995), where 0 ≤ logB < 1
is not worth more than a bare mention, 1 ≤ logB < 3 is positive,
3 ≤ logB < 5 is strong, and logB ≥ 5 is very strong.

2.2 Modelling stochastic processes

We model stochastic red noise processes as a power-law power
spectral density P(f). We include P(f) in our likelihood function
using the Fourier-sum method from Lentati et al. (2013), described
briefly below. We represent the covariance matrix as C = N + K ,
where N is a diagonal matrix for white noise component, and K is
a red noise component. A Woodbury lemma is used to simplify the
inversion of a covariance matrix, decomposed into N and K (Hager
1989; van Haasteren & Vallisneri 2014). We define a Fourier basis
F with elements:

Fi,j =

⎧⎪⎪⎨
⎪⎪⎩

κj ai sin

(
2πfi�tj

)
, i is even ;

κj bi cos

(
2πfi�tj

)
, i is odd ;

i ∈ [1, 2NF], j ∈ [1, NToA]. (9)

The parameter κ is a constant, which we reserve to model chromatic
red noise that depends on a radio frequency. For spin noise, κ is equal
to one. The multiplicative factors ai and bi are Fourier coefficients
which follow the standard Gaussian distribution. Each �tj = (tj − t1)
is the difference between the first ToA and the jth ToA. The elements
fi are components of a frequency vector that depend on the total
observation span Tobs. They are defined as

fi =
{

i+1
2T

, i is odd ;
i

2T
, i is even.

(10)

The variable NF determines the number of Fourier basis components
in the frequency domain, with a minimum of 1/Tobs and spacing �f =
1/Tobs. Next, we obtain a diagonal matrix �(θ red) with elements �i =
P(fi), which depends on our red noise model with parameters θ red.
Note, the minimum fi is sometimes referred to as the low-frequency
cut-off, although it is not necessarily assumed that there is no red
noise power below this frequency. Essentially, the data are just not
analysed below fi. In principle, the low-frequency cut-off can become
a free parameter of our model (see e.g. Lentati et al. 2014). This
approach could potentially reveal the sudden drop of power at low
frequencies. The red noise component in our likelihood function,
marginalized over Fourier coefficients ai and bi (van Haasteren &
Vallisneri 2014), is

K = F�FT �f . (11)

The white-noise covariance matrix N is diagonal with elements

σ 2
j = (

EFAC σ ToA
j

)2 + EQUAD2, (12)

where EFAC and EQUAD are factors to account for the excess of
white noise, in addition to ToA error bars, σ ToA

j .

2.3 Red noise models

Some millisecond pulsars in real data do not show evidence of red
noise (e.g. Lentati et al. 2016). We refer to the model without red noise
as ‘Model∅’. Next, we employ the two following phenomenological
models for red noise. The power-law model

PPL(f ) = A2

12π2
yr3(f yr)−γ , (13)

which we refer to as the ‘Model PL’. And the broken power-law
model

PBPL(f ) = A2

12π2
yr3

(√
f 2 + f 2

c yr

)−γ

, (14)

which we refer to as ‘Model BPL’. In the above two equations, model
parameters are: the red noise amplitude A, the slope γ , the corner
frequency fc.

We also study the superfluid turbulence model from (Melatos &
Link 2013)

PM(f ) = 15p2

8πλ2η(R−1)

∫ ∞

2π

x4 + 3x2 + 9[
2πf

η(R−1)

]2
+ x4/3

x−31/3dx, (15)

which we refer to as ‘Model M’. The model depends on parameters
η(R−1) and λ. Our equation (15) is obtained by multiplying the
power spectral density defined in equation (16) of Melatos & Link
(2013) with pulsar spin period squared p2. This way, we obtain
the power spectral density in units of [s3], to be consistent with
equations (13) and (14). Parameter λ is a non-condensate fraction
of the moment of inertia, which affects the amplitude of red noise.
Parameter η(R−1) is a decorrelation frequency, which determines the
spectral turnover. For convenience, we reparametrize equation (15),
in the form of parameters M and tc, using equation (A1). The integral
in equation (15) yields an analytical solution, given by equation (A2).
In our work, we do not model possible covariance between physical
parameters λ and η(R−1), although they do implicitly depend on
neutron star masses and radii, which are correlated (Özel & Freire
2016). For this case, the more general approach from Zimmerman
et al. (2019) for combining information from multiple measurements
would be better suited.

In Fig. 1, we plot examples of models of spin noise power spectral
density. Note, at high frequencies, Model M with two parameters
asymptotically approaches Model PL with fixed γ = 2 and only one
free parameter (amplitude), so parameters η(R−1) and λ of Model
M become degenerate. In order to break this degeneracy, and to
distinguish Models PL and M, one must observe a spectral turnover.
This conclusion will be important later when we find pulsars that
prefer Model M over Model PL, but realize that at the current stage
of observations the performance of Model M is largely determined
by the consistency of Model PL’s estimate of γ with 2.

In our analysis, we model NF = 30 Fourier components of red
noise processes. For power-law P(f), the fraction of the signal power
above 1/Tobs that is fit with NF components is equal to 1 − N

1−γ

F

when γ > 1. As an example, for a typical γ = 3, with 30 Fourier
components we take into account 99.9 per cent of the red noise power
above 1/Tobs. Below γ = 1.5, where 30 Fourier components take into
account 81.7 per cent of the red noise power above 1/Tobs, it is better
to use more Fourier components. In reality, after we calculate this
fraction for the power up to the sampling frequency, this fraction
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Figure 1. Models for pulsar red noise power spectral density. The blue solid
line represents Model PL (equation 13) and the orange dashed line represents
Model BPL (equation 14). For both of them, we chose A = 2 × 10−13 and γ =
2. For the orange dashed line fc = 0.5 yr−1. The green dotted line represents
Model 15 (equation 15) with η(R−1) = 0.5 yr−1, λ = 0.5, assuming pulsar
spin period of 1 ms.

will be greater. Nevertheless, for PSR J2145−0750, where in Lentati
et al. (2016) it has been estimated that γ = 0.6 ± 0.2, we use 100
Fourier components (107 components were used in Lentati et al.
2016). We model remaining pulsars with 30 Fourier components,
which is a reasonable and computationally cheap approximation.
More comments on the consequences of this choice are provided in
Section 5.

2.4 Software

We estimate the design matrix using the DESIGNMATRIX plugin in
TEMPO2 (Hobbs, Edwards & Manchester 2006). We simulate data
and access TEMPO2using LIBSTEMPO (Vallisneri 2013). We construct
our models and likelihood, and do parameter estimation using
ENTERPRISE (Ellis et al. 2019). We perform likelihood sampling using
the PTMCMCAMPLER (Ellis & van Haasteren 2017) for IPTA DR1
data. For simulations, we use a nested sampler DYNESTY (Speagle &
Barbary 2018), and we use BILBY (Ashton et al. 2019) to access the
Dynesty sampler.

3 SIMULATION STUDY

We perform a simulation study to demonstrate our ability to do
Bayesian model selection. We also demonstrate some potential
subtleties in recovering a low-frequency turnover. We simulate ToAs,
ToA errors, and timing residuals for the pulsar PSR J0711−6830,
using ephemerides from the ATNF Pulsar Catalogue (Manchester
et al. 2005). We simulate ToAs evenly sampled once every 30 d
between MJD 53000 and 56650, which is roughly consistent with
the average cadence of a typical IPTA observatory (see Verbiest
et al. 2016, table 1). We assume ToA errors to be 0.5 μs, which is
within the range of ToA errors as found in the DR1 of the IPTA.
These parameters are applied to all simulations described in this
section of the paper. In our noise simulations we only assume one
observing system, one observed radio frequency, and only red and
white noise. The red noise parameters chosen for simulations are
described in the following subsections. We choose them, so that they
are approximately consistent with noise parameters of the real data
(see e.g. Lentati et al. 2016, table 6). The parameter values recovered

Table 1. Priors for the injection study in Section 3.1. Here U stands for a
uniform distribution, and log10 U stands for a uniform in log10 distribution.

Injected π (A) logBBPL
PL Preferred

model model

PL log10 U ( 10−14, 10−12) − 30.8 PL
PL log10 U ( 10−17, 10−14) 1.0 N/A
BPL log10 U ( 10−14, 10−12) 95.6 BPL

from simulations in this section have been confirmed to be consistent
with injected values.

3.1 Red noise in an ensemble of pulsars

We simulate 50 mock pulsars with different random realizations
of Model PL red noise and white noise. Then, we perform model
selection between Models PL and BPL. The simulated white noise
parameters throughout the subsection are EFAC = 1 and EQUAD
= 0.1 μs. According to section 3.3 of Verbiest et al. (2016), these
are the typical EFAC and EQUAD values found in IPTA DR1. The
simulated red noise amplitude is different for the three cases we
describe in this subsection, while the priors for red noise power-
law index and corner frequency are π (γ ) = U(2, 5) and π (fc) =
log10 U(10−10, 10−6). Here U stands for a uniform distribution, and
log10 U stands for a uniform in log10 distribution. We use the same red
noise priors for A and γ for Models PL and BPL, for both injection
and recovery.

First, we simulate Model PL with a prior π (A) =
log10 U(10−14, 10−11). The prior range for noise amplitude is chosen
such that red noise is overall stronger than white noise. As a result,
with all simulated pulsars, we obtain logBBPL

PL = −30.8. Hence,
Model PL is correctly preferred over Model BPL.

Second, we demonstrate that we do not prefer the wrong model
if the red noise is overall much weaker than white noise. The prior
for simulation and recovery of red noise amplitude is reduced to
π (A) = log10 U(10−17, 10−14). Now, logBBPL

PL = 1.0. Therefore, if
the red noise is too weak, we cannot distinguish between two models,
as expected.

Finally, we demonstrate that, when the data from multiple pulsars
are injected with Model BPL, our algorithm prefers Model BPL
over Model PL. To do this, we use the following prior on red
noise amplitude π (A) = log10 U(10−14, 10−11). Now we obtain
logBBPL

PL = 96 favouring the correct model. Our results for this
subsection are summarized in Table 1. All injected signals were
successfully recovered.

3.2 Prior mismatch in simulations

Most of the IPTA pulsars from DR1 are dominated by white noise
Lentati et al. (2016). In this subsection, we perform simulations that
demonstrate that model selection for red noise in data, dominated
by white noise, can lead to the false detection of a spectral turnover,
if we do not carefully choose our prior. We perform simulations
of only white noise with EFAC = 1 and EQUAD = 0.1μs. We
perform model selection between Models BPL and PL. We observe
that evidence for the absence of red noise (Model ∅) is always
the strongest, while either Model PL or BPL may be preferred,
depending on our prior on fc parameter. As we allow our prior on
fc to include only low values less than around 1/Tobs, we cannot
distinguish Models PL and BPL. As we allow our prior on fc to
include only frequencies higher than our sampling frequency, we
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Figure 2. The demonstration of the effect of sample variance on the recovery
of a spectral turnover. Each point represents logBBPL

PL,i . The top plot with blue
points is for different realizations of a power law, Model PL (equation 13),
while the bottom plot with orange points is for different realizations of a
broken power law, Model BPL (equation 14). The injection parameters, except
red noise injection amplitude A (horizontal axes), are the same for both plots.
As the amplitude of the red noise is increased, the evidence in favour (bottom
plot) and against (top plot) the spectral turnover plateaus. Red lines are mean
values for every 200 simulations.

cannot distinguish between Models BPL and ∅, and model selection
between PL and BPL prefers BPL. This is not surprising, as white
noise and Model PL are limiting cases of Model BPL. Therefore,
for the case of the DR1 analysis, when the true distribution of spin
noise parameters is unknown, we propose to account for this effect
by including in equation (8) only pulsars having log BPL

∅,i ≥ 5 or
log BBPL

∅,i ≥ 5. This way we exclude pulsars with no evidence of
any spin noise and do not obtain false positives in favour of either
a spectral turnover or its absence. Another solution to this problem
is to fit the priors using the hierarchical inference (MacKay 2003),
which we defer to a future work.

3.3 The effect of sample variance in recovery of high amplitude
red noise

In this subsection, we find that with a PTA observation time of 10 yr,
we are unlikely to resolve a turnover in the red noise process of any
particular pulsar, assuming a fiducial fc = 10 nHz. The is because
factors ai and bi in equation (9) become a source of noise themselves,
and we do not have a data span long enough to effectively probe
residuals spectra at frequencies around the turnover.

To demonstrate this, we simulate 1000 pulsars with red noise
Model PL amplitude π (A) = log10 U(10−15; 10−11) and γ = 3,
and simulate additional 1000 pulsars with red noise Model BPL
with the same parameters and a corner frequency fc = 10 nHz.
As the amplitude of the red noise in the set of simulated pulsars
increases, the average logBi in favour of the correct model plateaus.
This is demonstrated in Fig. 2. We can see that, at some point,
increasing logB(f ) starts slightly favouring the correct model, but

Table 2. Priors used for model selection analyses between Models PL
(equation 13) and BPL (equation 14), and between Models PL and M
(equation 15). Column 2 indicates whether the prior has been used in all model
comparison analyses, or in model comparison between specific models.

Parameter θ Model comparison Prior π (θ)

EFAC All U (0, 10)
EQUAD (s) All log10 U (10−10, 10−4)
ECORR (s) All log10 U (10−10, 10−4)
ASN PL-BPL log10 U (10−20, 10−8)

PL-M log10 U (10−17, 10−10)
γ SN All U (0, 10)
fc (Hz) PL-BPL log10 U (10−12, 10−6)
MSN PL-M log10 U (10−1, 106)
tc (s) PL-M log10 U (2π × 108, 1022)
ADM All log10 U (10−20, 10−8)
γ DM All U (0, 10)
ABS All log10 U (10−16, 10−10)
γ BS All U (0, 10)
AE All log10 U (10−10, 10−2)
tE (MJD) All U (54500, 54900)
τE (MJD) All log10 U (5, 100)
AG All log10 U (10−6, 10−1)
tG (MJD) All U (53710, 54070)
σG (MJD) All U (20, 140)

then saturates, so that increasing the amplitude of the red noise
does not help to resolve a low-frequency turnover. In this medium-
to-strong red noise regime, some realizations of Model PL may
favour the Model BPL hypothesis, and vice versa. However, the
mean logBBPL

PL,i (red line in Fig. 2) favours the correct model.

4 SOURCES O F N OISE IN THE FIRST IPTA
DATA RELEASE

In this section, we describe sources of noise in the IPTA DR1 data set.
We use Lentati et al. (2016) as a guide for choosing what noise terms
to include in our model. In Table 2, we list the prior distributions for
parameters used in our models. Then, we perform Bayesian inference
of these parameters and model selection for millisecond pulsar spin
noise.

4.1 White noise

IPTA pulsars are often monitored by several radio observatories.
The raw voltages from each telescope are processed by different
hardware. Each observing system has different measurement errors,
contributing to measured white noise. Noise parameter EFAC,
introduced in equation (12), accounts for ToA uncertainty, asso-
ciated with errors during the process of cross-correlation of pulse
profile templates with observed pulse profiles. Parameter EQUAD
is introduced to account for stochastic variations in both phase and
amplitude of radio pulse profiles. These variations are called ‘pulse
jitter’ (Osłowski et al. 2011; Shannon et al. 2014). Parameters EFAC
and EQUAD are introduced for each backend system that processes
raw telescope data, in accordance with equation (12). In NANOGrav
data, one epoch of observations with wide-band receivers is split
into multiple ToAs, corresponding to different radio frequencies,
or sub-bands. Thus, for NANOGrav data, ECORR parameters are
introduced to account for correlations between sub-banded ToAs at
each epoch (Arzoumanian et al. 2018b).
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Table 3. Results for IPTA DR1 pulsars where we found log BBPL
∅,i > 0 and log BPL

∅,i > 0. Columns 3 (ASN) and 4

(γ SN) are the red noise parameter estimates for Model PL. Columns 5 (logBPL
∅,i ) and 6 (logBBPL

∅,i ) show whether

pulsar data favour Models BPL (equation 14) and PL (equation 13) against no spin noise. Columns 7 (logBBPL
PL,i )

and 8 (logBM
PL,i ) show how specific pulsars favors Models BPL and M (equation 15) over Model PL. Here, we

assume a Solar system ephemeris model DE421, which is a default option for IPTA DR1. Pulsar PSR J1024−0719
is marked with an asterisk for the following reason. It has been suggested that the spin noise in PSR J1024−0719
originates from a companion star in a long-period binary system (Kaplan et al. 2016). After we take binary motion
into account, by adding a second spin frequency derivative into the timing model, we see no evidence for spin noise
in PSR J1024−0719.

PSR Tobs (yr) log10ASN γ SN logBPL
∅,i logBBPL

∅,i logBBPL
PL,i logBM

PL,i

J0613−0200 13.7 −14.62+0.60
−1.20 4.70+2.88

−0.92 10.7 10.2 − 0.5 − 2.0

J0621+1002 14.3 −12.10+0.12
−0.13 2.50+0.72

−0.43 4.6 6.5 1.9 1.5

J1713+0747 21.2 −14.81+0.39
−0.83 4.55+1.90

−0.69 >11.7 >11.6 − 0.2 − 4.8

J1824−2452A 5.8 −12.80+0.56
−3.05 2.30+4.44

−0.32 19.0 18.8 − 0.2 1.3

J1939+2134 27.1 −14.33+0.24
−0.40 6.31+0.80

−0.54 >12.5 >11.4 − 1.1 − 109.8

J2145−0750 17.5 −13.03+0.09
−0.06 0.44+0.57

−0.14 >11.6 >12.5 0.8 − 2.0

J1024−0719 ∗ 15.9 −13.94+0.22
−0.41 5.41+1.00

−0.53 >12.4 >11.8 − 0.6 − 29.0

4.2 DM noise

Dispersion measure (DM) is the electron column density, integrated
along the line of sight to a pulsar. Stochastic variations in dispersion
measure result in DM noise. We model DM noise as a power law with
ADM and γ DM, where κj = K2ν−2

j in equation (9). So, both κ j and
Fi, j depend on the radio frequency ν j (Hz) of the j’th ToA. A constant
K = 1400 MHz can be thought of as a reference radio frequency. We
account for DM variations for every pulsar in IPTA analysis.

4.3 Band noise and system noise

Lentati et al. (2016) found that specific IPTA pulsars show evidence
of band noise and system noise, which introduces additional red noise
in some observing systems and radio frequency bands. In order to
separate band noise and system noise from spin noise, we add a
separate power law with ABS and γ BS on specific radio frequency
bands and systems for specific pulsars where band and system noise
for IPTA data release 1 has been found (see table 4 in Lentati et al.
2016, for details).

4.4 Spin noise

We model spin noise as a common red noise process between all
observing systems and radio frequencies. Model PL depends on
parameters ASN and γ SN, and Model BPL depends on an additional
parameter fc. We refer to a hypothesis that no spin noise is present
in the data, as to Model ∅. In this work, we are mostly interested
in resolving a spectral turnover in spin noise, characterized by the
parameter fc in Model BPL. We are also interested in Model M with
parameters MSN and tc.2 When carrying out model selection between
Models M and PL, we chose our prior on Model PL amplitude A to
match the range of spin noise amplitudes that is allowed by our priors
for η(R−1) and λ in Model M. Otherwise, the model with a wider
prior range on spin noise amplitude would be incorrectly penalized
when calculating a Bayes factor.

2Although Bayes factors can be applied to non-nested Models M and
PL (Kass & Raftery 1995), some recent works pointed out difficulties in
that approach and possible solutions (Hong & Preston 2005).

4.5 Transient noise events

PSRs J1713+0747 and J1603−7202 show evidence of a sudden
change in DM (Keith et al. 2012; Coles et al. 2015; Zhu et al.
2015; Desvignes et al. 2016). We take these events into account
using the same empirical models that were used in Lentati et al.
(2016). For PSR J1713+0747, we model the event as a frequency-
dependent sudden decrease followed by an exponential increase in
timing residuals:

sE(t |AE, tE, τE) = K2ν−2

⎧⎨
⎩

0, t < tE ;

AE e
− t−tE

τE , t ≥ tE ;
(16)

where ν is a radio frequency, and K = 1400 MHz is the same
reference frequency as we use to model DM noise. We model the
DM event in PSR J1603−7202 as a Gaussian function in the time
domain:

sG(t |AG, tG, σG) = K2ν−2AG e
− (t−tG)2

2σ2
G . (17)

DM event models in equations (16) and 17 are added to the signal
vector s in the likelihood.

5 R ESULTS

We perform parameter estimation and model selection for pulsars
from the IPTA DR1. A summary of our analysis for individual pulsars
is given in Table 3. The first column contains pulsar names and the
second column contains observation spans. The next two columns,
log10ASN and γ SN, represent parameter estimates for Model PL with
errors, based on 16 per cent and 84 per cent levels of marginalized
posteriors. The last two columns contain the results of spin noise
model selection. From the seventh column, we see that specific
pulsars do not show support in favour of a spectral turnover because
| logBBPL

PL,i | < 2 for all pulsars.
Next, we employ equation (8), in order to use all available data for

model selection. We perform our analysis with five different Solar
system ephemeris models, as it has been found that errors in Solar
system ephemerides contribute to pulsar red noise (Caballero et al.
2018; Arzoumanian et al. 2018b; Guo et al. 2019). We find that data
favour neither Model PL, nor Model BPL. This result is summarized
in Table 4.
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Table 4. The overall logBBPL
PL in favour of Model BPL (equation 14) over

Model PL (equation 13), using all available IPTA data, for different Solar
system ephemeris models.

Ephemeris logBBPL
PL logBBPL

PL (without PSR
J1024−0719)

DE405 − 0.4 0.3
DE418 − 1.0 − 0.3
DE421 0.2 0.8
DE430 − 0.1 0.7
DE435 − 0.8 − 0.1

Note, Tables 3 and 4 contain only results from seven pulsars
where logBPL

∅
> 5 or logBBPL

∅
> 5. In table 6 in Lentati et al.

(2016), authors present eight pulsars that show evidence for spin
noise in their analysis. Seven of them can be found in our Table 4:
PSRs J0613−0200, J0621+1002, J1713+0747, J1824−2452A,
J1939+2134, J2145−0750, and J1024–0719. In the remaining PSR
J1012+5307, we did find some evidence of spin noise, log BPL

∅,i =
4.3, assuming the default Solar system ephemeris DE421. However,
PSR J1012+5307 did not satisfy our formal criteria to be included
in Table 4. It is worth noting that in Lentati et al. (2016) pulsar
J2145−0750 is found to have the most shallow power-law index
γ SN = 0.6 ± 0.2. For the reasons discussed in Section 2.3, PSR
J1012+5307 only showed evidence of spin noise in our analysis
after we changed a number of Fourier components NF from 30 to
100 for this pulsar.

The last column in Table 3, logBM
PL,i , presents log Bayes factors

in favour of Model M over Model PL. We find that no pulsars show
a strong support for Model M. However, PSRs J1939+2134, J1024–
0719, and J1713+0747 disfavour Model M with logBM

PL,i < −4.
We also consider that our data may contain a mixture of pulsars

from two models. For this case, we define a likelihood:

LA
B(ξ ) =

Npsr∏
i=1

(
ξZA

i + (1 − ξ )ZB
i

)
, (18)

where ξ is a hyperparameter that determines the fraction of pulsars
that are described by model A. The rest of the pulsars are described
by model B. Using equation (18), we estimate the fraction of pulsars
that are consistent with a superfluid turbulence origin and a spectral
turnover. The results are summarized in Fig. 3. We estimate that the
fraction of pulsars with the spectral turnover is consistent with any
number between 0 and 1, while the fraction of pulsars where Model
M is favoured over Model PL is mostly consistent with zero. Since no
spectral turnover is detected, PSRs J0621+1002 and J1824−2452A
could get positive preference for Model M over Model PL because
their power-law index γ is consistent with 2.

6 C O N C L U S I O N S

We perform Bayesian model selection to search for a spectral
turnover in pulsar spin noise using the DR1 of the IPTA. We find
support, with a log Bayes factor above 4, for spin noise in eight
pulsars, which is consistent with Lentati et al. (2016). However, we
find no evidence for a spectral turnover either in individual pulsar
data or by combining different pulsars. We also fit the data to the
superfluid turbulence model proposed by Melatos & Link (2013). Our
results show that whereas this model is indistinguishable from the
power-law model for most pulsars, it is strongly disfavoured by three
pulsars, especially PSR J1939+2134 with a log Bayes factor of 110.

Figure 3. Hyperposteriors P(ξ ) for DR1 pulsars. Orange lines are posteriors
PBPL

PL (ξ ) for the fraction of pulsars that are described by Model BPL (equa-
tion 14), assuming other pulsars are described by Model PL (equation 13).
Green lines are posteriors PM

PL(ξ ) for a fraction of pulsars that are described
by Model M (equation 15), assuming other pulsars are described by Model
PL. For solid lines, we assume that spin noise in PSR J1024−0719 is intrinsic
to the pulsar. For dashed lines, we assume that the apparent spin noise
in J1024−0719 is caused by the second spin frequency derivative of the
pulsar induced by gravitational interaction of PSR J1024−0719 with a binary
companion star (Kaplan et al. 2016).

Based on a range of simulations, we find that one is unlikely
to resolve a spectral turnover with a fiducial corner frequency of 10
nHz in any pulsar with ≈10 yr of observations. Longer data spans are
required to increase the detection confidence of a spectral turnover in
individual pulsars, while a larger number of pulsars with red noise can
help to resolve the presence of a spectral turnover in a population
of pulsars. A follow-up study using longer data sets and a larger
sample of pulsars, for example the IPTA second data release (Perera
et al. 2019), will prove useful in not only understanding the nature
of red noise in millisecond pulsars but also in evaluating the realistic
prospect of gravitational-wave detection. A more detailed simulation
study is required to explore PTA configurations that would resolve
spectral turnover in the individual pulsars. Whereas our simulation
study assumed a pulsar with observation span of 10 yr, two pulsars
from the DR1 of the IPTA have observations spans above 25 yr. At
the same time, next-generation PTAs based on MeerKat, the Five-
hundred-meter Aperture Spherical Telescope (FAST), and the Square
Kilometre Array (SKA), will have a reduced radiometer noise. Both
greater observation spans and reduced white noise levels will increase
the sensitivity of a PTA to the spectral turnover, and the future study
could help to estimate by how much. Simulations that attempt to
provide a precise answer to these questions for the real data ought
to include all other noise sources (i.e. DM noise and band noise),
multiple observing backends with realistic observation cadences.
Another interesting future simulation study would determine whether
the broken power-law model would be favored over the power-law
model when the superfluid turbulence model is simulated.
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APPENDI X A : EXPLI CI T FORM OF MODEL M
POWER SPECTRAL DENSI TY

The definite integral in equation (15) yields an analytical solution.
First, we reparametrize equation (15):{

M = 15
(4πλ)2 ;

tc = 2π
η(R−1)

.
(A1)

Next, we obtain the analytical solution in a form:

P (f ) = 3Mp2

4tcf 2

(
1

128 3
√

2π16/3
+ 3

704 3
√

2π22/3
+ 9

3584 3
√

2π28/3

− 1

f 2t2
c

(
1

48π4
+ 1

96π6
+ 3

512π8

)

+ 1

f 4t4
c

(
1

822/3π8/3
+ 3

5622/3π14/3
+ 9

32022/3π20/3

)

− 1

f 6t6
c

(
1

2 3
√

2π4/3
+ 3

20 3
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2π10/3
+ 9

128 3
√

2π16/3

)

+ 1

f 8t8
c

(
1

2π2
+ 3

16π4
− 4 log(π)

3
− log 4

)

− 1

f 10t10
c

(
3 3
√

2

π2/3
+ 9
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+ 1

f 11t11
c
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12 log(π) + 3 log(64)
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(A2)
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Figure B1. This figure represents posterior distributions for spin noise parameters for J0621+1002 (left, B1a) and J1939+2134 (right, B1b). Vertical dashed
lines represent 1/Tobs. For J1939+2134, with least evidence for the spectral turnover in Table 3, measurement of fc does not affect the measurement of the
amplitude and the slope of spin noise. However, for J0621+1002, with the highest evidence for the spectral turnover in Table 3, measurement of fc does affect
measurement of the power-law index.

APPENDIX B: POSTERIOR PRO BA BILITY
DISTR IBU TION EXAMPLES

In Fig. B1, we demonstrate posterior distributions for spin noise
parameters of two pulsars, J0621+1002 and J1939+2134, where the
highest and the lowest logBBPL,i

PL are found (see Table 3 for details).
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