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DATA-DRIVEN TENSOR TRAINGRADIENT CROSS APPROXIMATION FOR
HAMILTON-JACOBI-BELLMAN EQUATIONS

SERGEY DOLGOV∗, DANTE KALISE†, AND LUCA SALUZZI‡

Abstract. A gradient-enhanced functional tensor train cross approximationmethod for the resolution of the Hamilton-Jacobi-
Bellman (HJB) equations associated to optimal feedback control of nonlinear dynamics is presented. The procedure uses samples
of both the solution of the HJB equation and its gradient to obtain a tensor train approximation of the value function. The
collection of the data for the algorithm is based on two possible techniques: Pontryagin Maximum Principle and State-Dependent
Riccati Equations. Several numerical tests are presented in low and high dimension showing the effectiveness of the proposed
method and its robustness with respect to inexact data evaluations, provided by the gradient information. The resulting tensor
train approximation paves the way towards fast synthesis of the control signal in real-time applications.

Keywords. Dynamic Programming, Optimal Feedback Control, Hamilton-Jacobi-Bellman Equations, Tensor Decomposition,
High-dimensional Approximation
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1. Introduction. Stabilization of nonlinear dynamical systems is a fundamental problem in control
theory, with applications in mechanical systems, chemical engineering, and fluid flow control, among
many other areas. Nonlinear stabilization is often approached by means of feedback (closed-loop) con-
trollers which, in contrast to open-loop controls, offer enhanced stability properties with respect to
external disturbances. The synthesis of optimal feedback controls resorts to the use of dynamic pro-
gramming, which characterizes the optimal feedback law in terms of the solution of a Hamilton-Jacobi-
Bellman (HJB) nonlinear Partial Differential Equation (PDE). The main drawback for this approach lies
on the fact that the HJB equation must be solved on the state space of the dynamical system, often lead-
ing to solving a nonlinear PDE in arbitrarily high dimensions. This limitation is referred to as the curse
of dimensionality, a term coined by Richard Bellman in the ’60s and still an active subject of research.
Under some specific structural assumptions, as in the case of linear dynamics and a quadratic cost
functional, the HJB equation is equivalent to the matrix Algebraic Riccati Equation (ARE), for which
high-dimensional solvers are readily available [35, 7]. Unfortunately, for the fully nonlinear setting, no
reformulation is possible and the HJB PDE must be solved directly. In this direction, over the last years
there has been a significant progress on the solution of high-dimensional HJB PDEs arising in optimal
control, including max-plus algebra methods [39, 1, 12], sparse grids [21], tree-structure algorithms
[4, 20], applications of artificial neural networks [29, 13, 38, 40, 58, 43, 50] and regression-type meth-
ods in tensor formats [52, 49]. The above mentioned techniques can scale up to very high-dimensional
HJB PDEs, however, the effective implementation of real-time HJB-based controllers remains an open
problem.

In this work we develop a data-driven approach based on the knowledge of the value function and
its gradient on sample points. Similar ideas have been proposed in [33, 32] in the framework of sparse
grids, in [5] with sparse polynomial regression, in [48, 52] via tensor train representation and Monte
Carlo quadrature, and in [41, 42, 9, 44] using supervised learning and deep neural networks. The
aforementioned works exploit the link between the HJB equation and Pontraygin’s Maximum Principle
(PMP), a first-order optimality condition which is interpreted as a characteristic curve of the HJB PDE.
The latter is used to generate synthetic data for the solution of the HJB equation, whose global solution
is then recovered by supervised learning. A similar idea is proposed in [2] where the authors propose
a sub-optimal feedback law obtained via a feedforward neural network. In this case the training set
is generated via the State-Dependent Riccati Equation (SDRE) strategy [6, 11, 3], an extension of the
Riccati solution to nonlinear dynamics.

Generally speaking, the proposed methodology belongs to a class of surrogate models, where in-
stead of solving numerically expensive PMP and SDRE problems for each given state of the system, an
offline approximation of the entire value function is pre-computed in a compressed storage format. This
format is then used for a cheap online evaluation of an approximate control signal for any given state
of the system, which allows one to control the system in real time even on a low-performance device
(e.g. FPGA). In this paper we propose to approximate the value function together with its gradient in
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a tensor product decomposition, computed via adaptive sampling of either PMP or SDRE. We show
that sampling from this pre-built tensor format of the value function is 100 times faster than the online
computation of SDRE solutions, effectively enabling real-time control synthesis.

Tensor decompositions have emerged as efficient approximation techniques for high dimensional
tensors [27, 25], and, when such tensors encapsulate expansion coefficients of functions in a structured
basis, multivariate functions [10, 23]. The idea behind tensor decompositions is to approximate a given
tensor (or a function) by separation of variables. Convergence of such decompositions for functions of
certain regularity [55], or particular classes of value functions [14] has been established. Hierarchical
tensor decompositions [27], in particular the Tensor Train decomposition [45], have becomemost widely
used due to efficient and numerically stable computational algorithms. Those can typically be written in
a recursive form that scales linearly with the dimension. The main workhorse is the Alternating Linear
Scheme [30, 17], an analog of the coordinate gradient descent, which optimizes a desired objective
function by iterating over the tensor decomposition factors, computing only one factor at a time.

This optimization framework can be used for solving regression problems, such as the Variational
Monte Carlo [47, 18, 48, 19]. In this case, one draws random samples from the sought function, and
seeks for its tensor approximation by minimizing the misfit on the given samples over the elements of
the tensor factors. This problem is also called Tensor Completion [36, 24]. In addition to the straightfor-
ward coordinate descent, one can formulate the misfit optimization as a gradient flow on a Riemannian
manifold of the tensor decomposition [56], which turns out to be more accurate in a higher-error regime.

Although Tensor Completion works well for smooth functions and rapidly converging decomposi-
tions, the predefined sampling may miss localized but significant regions of a more irregular function.
Cross approximation methods [46, 54, 26, 53] have been designed to adapt the sampling sets to mini-
mize the conditioning of the interpolation problem, and to improve the approximation accuracy. More-
over, the structure of the sampling sets in the cross methods is aligned to the structure of the sought
tensor decomposition, which enables a more efficient linear algebra.

In addition to optimizing the locations of the data samples, one can assimilate more information
per each sample. In some problems (such as the optimal control considered here), each evaluation of
the sought function comes together with a value of the gradient of this function at little or no extra
cost. In this case, one can extend the regression problem such that weighted misfits in both the function
and its gradient are minimized. This allows one to take fewer samples for the same accuracy [51, 2], or
to achieve a higher accuracy for the same amount of samples. The latter property becomes especially
useful when the function values are noisy. In this paper we develop an algorithm to solve the gradient-
enhanced regression problem on a Tensor Train decomposition of the value function of an optimal
control problem.

The contributions of this paper can be summarized as follows:
1. We propose a framework for synthetic data generation for infinite horizon nonlinear stabiliza-

tion problems based on the pointwise solution of State-Dependent Riccati Equations.
2. We formulate a gradient-augmented supervised learning problem where a tensor train approx-

imation of the value function is adaptively trained upon synthetic SDRE samples.
3. We develop a two-box approach (based on the two ingredients above) to improve the accuracy

in cases where stabilization towards the origin requires enhanced precision of the control law.
4. Wepresent a comprehensive computational assessment of the proposedmethodology over high-

dimensional nonlinear tests motivated by optimal control of multi-agent systems.
The rest of the paper is structured as follows. In Section 2 we give a brief introduction on the

infinite horizon optimal control problems and on the two techniques used to generate the dataset: the
State-Dependent Riccati Equations and the finite horizon Pontryagin Maximum Principle. In Section
3 we develop the construction of Gradient Cross for the approximation of the value function. Finally,
in Section 4 we will demonstrate the efficiency of the proposed algorithm in low and high dimensional
numerical tests.

2. The infinite horizon optimal control problem and suboptimal feedback laws. In this section
we formulate the deterministic infinite horizon problem for which we are interested in synthesizing
a feedback law. We first present the optimal feedback synthesis using the Hamilton-Jacobi-Bellman
formalism, to subsequently discuss suboptimal feedback laws which can be effectively cast in a data-
driven environment. We consider system dynamics in control affine-form given by

(2.1)

{

ẏ(s) = f (y(s)) +B(y(s))u(s), s ∈ (0,+∞),
y(0) = x ∈Rd .
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We denote by y : [0,+∞) → R
d the state of the system, by u : [0,+∞) → R

m the control signal and
by U = L∞([0,+∞);U ) the set of admissible controls where U ⊂ R

m is a compact set. We assume that
the system dynamics f : R d → R

d and B : R d → R
d are C1(R d ) functions, verifying f (0) = B(0) = 0.

Whenever we want to stress the dependence of the control signal from an initial state x ∈ Rd , we will
write u(t,x).
We consider the following undiscounted infinite horizon cost functional:

(2.2) J(u(·,x)) :=

∫ +∞

0
y(s)⊤Qy(s) + u⊤(s)Ru(s)ds ,

where Q ∈ R
n×n is a symmetric positive semidefinite matrix and R ∈ R

m×m is a symmetric positive
definite matrix. Our goal is to synthesize an optimal control in feedback form, that is, a control law that
is fully determined upon the current state of the system. We begin by the defining the value function
for a given initial condition x ∈ R d :

(2.3) V (x) := inf
u∈U

J(u(·,x)) ,

which, by standard dynamic programming arguments, satisfies the following Hamilton-Jacobi-Bellman
PDE for every x ∈R d

(2.4) min
u∈U

{

(f (x) +B(x)u)⊤∇V (x) + x⊤Qx + u⊤Ru
}

= 0.

TheHJB PDE (2.4) is challenging first-order fully nonlinear PDE cast overR d , where d can be arbitrarily
large, and thus intractable through conventional grid-based methods. However, in the unconstrained
case, i.e. U = R

m, the minimizer of the l.h.s. of eq. (2.4) can be computed explicitly as

(2.5) u∗(x) = −
1

2
R−1B(x)⊤∇V (x) ,

leading to an unconstrained version of the HJB PDE given by

∇V (x)⊤f (x)−
1

4
∇V (x)⊤B(x)R−1B(x)⊤∇V (x)+x⊤Qx = 0 .(2.6)

In this work, we are interested in recovering an approximation of the optimal feedback law (2.5)
circumventing the solution of the high-dimensional HJB PDE (2.6). Instead, we will approximate V (x)
in a regression framework, assuming measurements from both the value function V (x) and its gradi-
ent ∇V (x) are available at sampling points. The idea behind this approach resides in the fact that, for
a given sample state x, the value function and its gradient can be recovered by minimizing the cost
(2.2) without resorting the HJB PDE, and independently from other sampling points. However, gener-
ating a single sample of V (x) by solving the associated infinite horizon optimal control problem (2.2) is
already a computationally demanding task, unsuitable for the generation of a large-scale dataset. In-
stead, we propose two alternatives which trade optimality in minimizing (2.2) by fast computability:
a State-Dependent Riccati Equation (SDRE) approach and a finite horizon Pontryagin Maximum Prin-
ciple (PMP) formulation. In this way, we generate a synthetic dataset which approximates the value
function and its gradient, leading to a suboptimal, yet asymptotically stabilizing feedback law.

2.1. State-Dependent Riccati Equation. Since the value function is a positive function, with no
loss of generality it can be represented as

(2.7) V (x) = x⊤Π(x)x,

where Π(x) ∈ Rn×n is a symmetric matrix-valued function with its gradient given by the following for-
mula

(2.8) ∇V (x) = 2Π(x)x +

























x⊤ d
dx1

Π(x)x
...

x⊤ d
dxd

Π(x)x

























.

In the particular case of a linear dynamics (i.e. A(x) = A and B(x) = B),Π(x) =Π is constant and it is well
known that the HJB equation (2.6) becomes the Algebraic Riccati Equation (ARE)

A⊤Π +ΠA−ΠBR−1B⊤Π +Q = 0.
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An intermediate parametrization can be considered in the nonlinear case, by writing the dynamics in
semilinear form

(2.9) ẏ = A(y(t))y(t) +B(y(t))u(t),

In this case, eq. (2.6) can be approximated as

(2.10) A⊤(x)Π(x) +Π(x)A(x)−Π(x)B(x)R−1B(x)⊤Π(x) +Q = 0 ,

which is obtained by applying the ansatz V (x) = x⊤Π(x)x with a gradient approximation ∇V (x) =
2Π(x)x, that is, by neglecting the second term in eq. (2.8) . The resulting equation is known as State-
Dependent Riccati Equation (SDRE). First, we note that the SDRE is a functional equation which must
hold for every x ∈ R

d , hence analytical solutions are only available in limited cases. However, under
the assumption that the pair (A(x),B(x)) is stabilizable for all x ∈ Rd , in [6] the authors prove that the
feedback law associated to the SDRE

(2.11) u(x) = −R−1B(x)⊤Π(x)x

is locally asymptotically stabilizing (that is, for states in a neighborhood of the origin). Since the SDRE
is an approximation of the HJB PDE leading to an optimal feedback law, we claim that the SDRE control
is a suboptimal feedback law.

A natural implementation of the SDRE control law for nonlinear stabilization is through a receding
horizon approach. In the SDRE setting, this means that given a current state xk of the trajectory, every
matrix in eq.(2.10) is frozen at xk and an algebraic Riccati equation is solved for Π(xk). Then, the
resulting feedback law u(xk) from (2.11) is applied to evolve the dynamics for a short horizon, until the
next state xk+1 where the computation is repeated. This implementation is feasible for low-dimensional
dynamics, but becomes quickly unpractical as the number of states grows, as it requires the solution
of large-scale algebraic Riccati equations at a very high rate. Here instead, we propose a supervised
learning approach where eq. (2.10) is used to generate a dataset to approximate Π(x) offline, so that
online feedback calculations are limited to the evaluation of the feedback law (2.11), which requires
the evaluation of Π(x)x, or the approximate gradient of V (x). The approximation of the value function
using a functional tensor train format is discussed in detail in Section 2.3.

When approximating the value function via supervised learning, as presented in Section 3, we will
augment our regression dataset with values of both V (x) and its gradient. This computation relies on
the formula (2.8), which requires derivatives of the SDRE solution Π(x). Without loss of generality let
us consider the case B(x) = B. Computing derivatives of (2.10) with respect to a generic coordinate xi
and denoting by W = BR−1B⊤, we obtain the following Lyapunov equation for d

dxi
Π(x)

(2.12)
d

dxi
Π(x) (A(x)−WΠ(x)) +

(

A(x)⊤ −Π(x)W
) d

dxi
Π(x) = −

d

dxi
A(x)⊤Π(x)−Π(x)

d

dxi
A(x), i = 1, . . . ,d.

Therefore, for each sampled state x, the computation ofV (x) and its gradient requires the solution of one
ARE (freezing x in (2.10)) and d Lyapunov equations (2.12), where d is the dimension of the dynamical
system. If the matrix A(x) does not depend on a variable xi , its derivative with respect to that variable
will be a null matrix and by (2.12) also the matrix d

dxi
Π(x) = 0d , will be null. Hence, it will not contribute

in the computation of the gradient of the value function. It will be sufficient to solve equation (2.12)
just k times, where k is the number of variables appearing in A(x).

2.2. Pontryagin Maximum Principle. Another option to generate an approximation of the infinite
horizon value function is the use of Pontryagin’s Maximum Principle (PMP). We refer to Chapter 5.3
in [34] for a complete description of this methodology. However, PMP provides first-order optimality
conditions for a finite horizon optimal control problem. Since we are dealing with an infinite horizon,
it is necessary to provide a final time T for which the value function and its derivative decay to zero
for every initial condition chosen in a reference domain.In this framework, the suboptimality originates
from the truncation of the infinite horizon.For an initial condition x and time horizon T , introducing
the adjoint variable p : [0,T ]→R

d , the PMP system reads for (2.2)
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(2.13)







































d
dt y
∗(t) = f (y(t)) +B(y∗(t))u∗(t),

y∗(0) = x,

− d
dtp
∗
i (t) =

∑d
j=1 p

∗
j (t)∂yi (fj (y

∗(t)) +Bj (y
∗(t))u∗(t)) + 2(Qy∗)i , i = 1, . . . ,d,

pi(T ) = 0,
u∗(t) = −1

2R
−1B(y∗(t))⊤p∗(t) .

In [57] the author shows that the optimal adjoint corresponds to the gradient of the value function
along the optimal trajectory. Hence, the value function on the initial condition x will be computed along
the optimal trajectory and the optimal control

(2.14) V (x) =

∫ +∞

0
y∗(s)⊤Qy∗(s) + u∗(s)⊤Ru∗(s)ds ≈

∫ ⊤

0
y∗(s)⊤Qy∗(s) + u∗(s)⊤Ru∗(s)ds,

while its gradient will be given by initial value of the adjoint, i.e.

(2.15) ∇V (x) ≈ p(0).

Equality (2.14) holds with the assumption that the optimal control u∗(s) and the optimal trajectory
y∗(s) reached the zero level in the time interval [0,T ].

2.2.1. Control constrained problem. Unlike the SDRE approach, using PMP enables the addition
of control constraints. For the sake of simplicity, we discuss the scalar control case, i.e. m = 1, with a
control signal restricted to an interval [−umax ,umax]. We are going to consider the same approach used
in [14]. In order to impose the control constraints, let us choose the following penalty function

P (u) = umax tanh(u/umax)

and let us change the control penalty term u⊤Ru in the cost functional (2.2) with the following term

(2.16) W (u) = 2R

∫ u

0
P −1(µ)dµ.

Note that the choice of this penalty function will keep the control in the interval [−umax,umax].
The corresponding PMP system becomes

(2.17)







































d
dt y
∗(t) = f (y(t)) +B(y∗(t))P (u∗(t)),

y∗(0) = x,
− d
dtp
∗
i (t) =

∑n
j=1 p

∗
j (t)∂yj (fj (y

∗(t)) +Bj (y
∗(t))P (u∗(t))) + 2(Qy∗)i , i = 1, . . . ,d,

pi(T ) = 0,
u∗(t) = −1

2R
−1B(y∗(t))⊤p∗(t).

In this case we need to compute the value function using the control cost functional (2.16), leading
to the following formula

(2.18) V (x) =

∫ ⊤

0
y∗(s)⊤Qy∗(s) +W (u∗(s))ds,

while the gradient is still obtained by the initial value of the adjoint p(0).

2.3. Functional Tensor Train. The value function defined by (2.3) lives in the same dimension of
the dynamical system (2.1). We are interested in dealing with high dimensional dynamical systems, e.g.
those deriving from the semidiscretization of PDEs or from complex systems. For this reason we need
an efficient procedure to deal with high-dimensional functions. We are going to consider the Functional
Tensor Train (FTT) to mitigate this problem. We sketch the main aspects, further details can be found
in [10, 23].

First of all, let us fix for each variable xk a set of nk basis functions Φk (xk) := {Φ
(1)
k (xk ), . . . ,Φ

(nk )
k (xk)}

and a set of collocation points Xk = {x
(i)
k }

nk
i=1. For uniqueness of the representation we assume that the

Vandermonde matrix Φk(Xk) ∈ R
nk×nk is nonsingular. Classical choices for the basis functions are the
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Lagrange basis or the Legendre polynomials. Now, given a multivariate function V : X :=
�d

k=1Xk → R,
we are interested in the following approximation, which we call FTT:

(2.19) V (x) ≈ Ṽ (x) :=

r0
∑

α0=1

r1
∑

α1=1

· · ·

rd
∑

αd=1

G
(1)
(α0,α1)

(x1) · · · G
(k)
(αk−1,αk )

(xk ) · · · G
(d)
(αd−1 ,αd )

(xd ).

The summation ranges rk are called TT ranks and the factor G
(k)
(αk−1,αk )

(xk ) is called k-th TT core. Without

loss of generality we can fix r0 = rd = 1. The TT core is a linear combination of the nk basis functions:

G
(k)
(αk−1,αk )

(xk ) =

nk
∑

i=1

Φ
(i)
k (xk )H

(k)
(αk−1,i,αk )

= Φk(xk ) ·H
(k)
(αk−1,αk )

,

where H (k) ∈ Rrk−1×nk×rk is a three-dimensional tensor, H
(k)
(αk−1,i,αk )

∈ R is its element, and H
(k)
(αk−1 ,αk )

∈ Rnk

is a vector from H (k), sliced at the given indices αk−1,αk . Similarly, we introduce a matrix slice H
(k)
(i) ∈

R
rk−1×rk and a matrix valued function G(k)(xk) : Xk → R

rk−1×rk . This allows us to ease the notation, and
write (2.19) in a matrix form as follows

Ṽ (x) = G(1)(x1) · · · G
(k)(xk ) · · · G

(d)(xd ).

In the following sections we are going to refer to the TT rank of a tensor as the maximum among all the
TT ranks, r =maxk=0,...,d rk .

The TT decomposition was initially written for discrete tensors [45]. A relation to function approx-
imation is established via the same Cartesian basis,

Ṽ (x) =

n1,...,nd
∑

i1 ,...,id=1

H(i1,...,id )Φ
(i1)
1 (x1) · · ·Φ

(id )
d (xd ).

This corresponds to the TT decomposition

(2.20) H(i1,...,id ) =

r0 ,...,rd
∑

α0,...,αd=1

H
(1)
(α0,i1 ,α1)

· · ·H
(d)
(αd−1 ,id ,αd )

.

Counting the number of elements in the tensors in the right hand side, we notice that the TT decom-
position needs

∑

k rk−1nkrk = O(dnr
2) degrees of freedom (where we introduce n := maxk nk ), in contrast

to O(nd ) elements in the full tensor of coefficients H . Other tensor decompositions can be used, such
as the HT format [28, 27] or the range-separated tensor format [8]. However, in this paper we prefer to
use the TT format as the most simple yet general representation, which is suitable for value functions
as they are usually smooth.

The TT format admits fast linear algebraic operations. For instance, we can compute multivariate

integrals of Ṽ (x) by using a tensor product of high-order univariate quadratures. Let {x
(i)
k } and {w

(i)
k } be

quadrature nodes and weights respectively. Then the integral
∫

V (x)dx can be approximated by

















· · ·

































n1
∑

i1=1

w
(i1)
1 G(1)(x

(i1)
1 )

















·

















n2
∑

i2=1

w
(i2)
2 G(2)(x

(i2)
2 )

































· · ·

















·

















nd
∑

id=1

w
(id )
d G(d)(x

(id )
d )

















,

requiring O(dnr2) operations in this order. Similarly, we can compute derivatives, and approximate

(2.21) ∇xkV (x) ≈ G(1)(x1) · · ·G
(k−1)(xk−1) ·

[

d

dxk
G(k)(xk)

]

·G(k+1)(xk+1) · · ·G
(d)(xd ),

again needing O(dnr2) operations per point. Additions, inner and pointwise products, as well as ac-
tions of linear operators can be written as explicit TT decompositions with a cost that is linear in d.
Such explicit decompositions are likely to have overestimated TT ranks. However, if a tensor (2.20) (or
a function (2.19)) is given in a TT format, a quasi-optimal re-approximation can be done in O(dnr3)
operations by using QR and SVD factorizations. For details we refer to [45].
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Explicit TT formats are a rare exception though. In general, a function may have no exact decom-
position, and an approximation must be sought from (as few as possible) evaluations of the function.
This can be achieved by solving a Least Squares problem, by minimizing the sum of squares of errors
at given (e.g. random) points over the elements of TT cores [47, 18, 48, 19]. However, a priori chosen
point sets may miss an important region of the domain, which will make the approximation inaccurate.
Alternatively, TT-Cross methods [46, 54, 53] adapt the sampling points iteratively towards the optimal
locations for the current iterate. However, existing methods employ only the values of the function
itself, which may be suboptimal if the values of the gradient are also available for free.

3. Gradient Cross and value function approximation. As discussed in the previous sections, we
want to recover the feedback map for the optimal control problem given the knowledge of the value
function and its gradient in specific points. In this section we develop a new algorithm in which this
information about the value function will enrich the approximation via the FTT. More precisely, given
certain sample points {xi }

N
i=1 and a dataset {V (xi ), ∇V (xi )}

N
i=1 computed by either Pontryagin or SDRE,

we are interested in determining the coefficient tensors {H (1), . . . ,H (d)} which characterize the FTT rep-
resentation Ṽ (x) introduced in (2.19). The regression problem can be formulated as

min
H (1),...,H (d)

N
∑

i=1

|Ṽ (xi )−V (xi )|
2 +λ‖∇Ṽ (xi )−∇V (xi )‖

2,

where λ > 0 is a parameter which weights the contribution of the derivatives, and the gradient of the
FTT can be computed considering univariate derivatives (2.21). The resolution of the minimization
problem will be addressed in the next sections, first presenting the bi-variate case, and then extending
the algorithm to higher dimensions.

3.1. Bidimensional Gradient Cross. Given a bidimensional function V (x1,x2), we will denote by
V0(x1,x2) the function itself and by V1(x1,x2) and V2(x1,x2) its partial derivatives with respect to x1 and
x2. Let us fix two sets of collocation points X1 ∈ R

n1 and X2 ∈ R
n2 for each dimension. One may use

the matrix Vi(X1,X2) = [Vi(x
(j)
1 ,x

(k)
2 )] ∈Rn1×n2 for i ∈ {0,1,2} to construct a discrete approximation of the

function, but these evaluations are expensive, in particular in dimension larger than two.
For this reason we are interested in a TT representation of the form

(3.1) V (x1,x2) ≈ G(1)(x1)G
(2)(x2)

with

G(1)(x1) =Φ1(x1)H
(1), G(2)(x2) =H (2)

Φ
⊤
2 (x2)

where H (1) ∈Rn1×r , H (2) ∈ Rr×n2 and {Φk(x)}k=1,2 are prefixed basis functions.
More precisely, we are looking for two sets of indices I1 and I2 with cardinality #I1 = #I2 = r, and

the corresponding interpolating approximations

G(1)(x1)Ĝ
(2)(x2) and Ĝ(1)(x1)G

(2)(x2)

such that G(k)(Xk(Ik)) = Ir , where Ir is the identity matrix, and Ĝ(1)(x1) = V (x1,X2(I2)), Ĝ
(2)(x2) =

V (X1(I1),x2). This kind of approximation can be obtained via an alternating direction procedure by
solving a sequence of least squares problems.

Starting from an initial guess for H (2) and I2, we want to solve the following problem in the x1-
direction

(3.2) min
H (1)

2
∑

i=0

λi‖Vi(X1,X2(I2))− Ṽ
1
i ‖

2,

with

Ṽ 1
i =























Φ1(X1)H
(1)G(2)(X2(I2)) i = 0,

Φ
′
1(X1)H

(1)G(2)(X2(I2)) i = 1,

Φ1(X1)H
(1)∂x2G

(2)(X2(I2)) i = 2.

In what follows we will fix λ0 = 1 and λ1 = λ2 = λ are the regularization parameters.
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Let us consider for simplicity Lagrangian basis, i.e. Φk(Xk) = Ink ∈ R
nk×nk for k = 1,2. Moreover, we

know by hypothesis that G(2)(X2(I2)) = Ir . Then, (3.2) is equivalent to the resolution of the following
Lyapunov equation
(3.3)
(

In1 +λΦ′1(X1)
⊤
Φ
′
1(X1)

)

H (1)+λH (1)G̃2G̃
⊤
2 = V0(X1,X2(I2))+λΦ

′
1(X1)

⊤V1(X1,X2(I2))+λV2(X1,X2(I2))G̃
⊤
2 ,

where G̃2 = ∂x2G
(2)(X2(I2)) = (Φ′2(X2(I2))Φ2(X2(I2))

†)⊤, whereΦ2(X2(I2))
† = (H (2))⊤ is the Moore-Penrose

pseudoinverse of Φ2(X2(I2)), arising from the condition G(2)(X2(I2)) = Ir .
Having solved equation (3.3), we first execute the QR decomposition of the matrix H (1) = HR1 to

improve the numerical stability and then we apply the maximum volume (maxvol) method [22] to the
matrix H . The maxvol algorithm selects the most relevant indices I1 such that the coefficient matrix
C :=HH[I1, :]

−1 satisfies maxi,j |C[i, j]| ≤ 1+δ, where δ > 0 is an arbitrary threshold. This procedure will
provide an approximation of the maximum volume submatrix H[I∗, :], i.e. the submatrix with maximum
determinant in modulus among all the possible r × r submatrices. Taking C as the new H (1) ensures
G(1)(X1(I1)) = Ir for the next steps.

Afterwards, we can pass to the least squares problem in the y-direction

(3.4) min
H (2)

2
∑

i=0

λi‖Vi(X1(I1),X2)− Ṽ
2
i ‖

2,

with

Ṽ 2
i =























G(1)(X1(I1))H
(2)
Φ2(X2)

⊤ i = 0,

∂x1G
(1)(X1(I1))H

(2)
Φ2(X2)

⊤ i = 1,

G(1)(X1(I1))H
(2)
Φ
′
2(X2)

⊤ i = 2.

After the first step we have G(1)(X1(I1)) = Ir by construction. Then, (3.4) corresponds to the resolution
of a Lyapunov equation
(3.5)

λG̃⊤1 G̃1H
(2) +H (2)

(

In2 +λΦ′2(X2)
⊤
Φ
′
2(X2)

)

= V0(X1(I1),X2) +λG̃⊤1 V1(X1(I1),X2) +λV2(X1(I1),X2)Φ
′
2(X2) ,

where G̃1 = ∂x1G
(1)(X1(I1)). The remaining procedure is identical: we solve (3.5), compute the QR

decomposition of the solution and apply the maxvol method, obtaining I2 and H (2). The strategy is
repeated until either we converge according to residual criteria or we reach a maximum number of
iterations. The method is sketched in Algorithm 3.1.

Algorithm 3.1 Bidimensional TT Gradient Cross with Lagrangian bases

1: Choose an initial I2 and H (2), a tolerance tol and a maximum number of iteration itmax
2: while res > tol and it ≤ itmax do
3: Solve equation (3.3) obtaining H (1)

4: Compute the QR decomposition H (1) =HR1

5: [I1,C] =maxvol(H), replace H (1) = C.
6: Solve equation (3.5) obtaining H (2)

7: Compute the QR decomposition (H (2))⊤ =HR1

8: [I2,C] =maxvol(H), replace H (2) = C⊤.
9: Update res

10: it = it +1
11: end while

For the initial guess H (2) one may consider a normally distributed pseudorandom matrix H (2) ∈
R
r×n2 and apply steps 7 and 8 of Algorithm 3.1 to obtain the initial set I2.

With non-Lagrangian bases (i.e. if Φk(Xk) , Ink ), we simply need to amend lines 5 and 8 of Al-

gorithm 3.1 to [I1,Φ1(X1)H
(1)] = maxvol(Φ1(X1)H) and [I2,Φ2(X2)(H

(2))⊤] = maxvol(Φ2(X2)H), respec-
tively. This ensures that we select optimal grid points, not optimal coefficients.

The most reliable residual criterion is to compute the mean square approximation error on some
validation set (e.g. random points), and to compare it to a chosen threshold. However, a large validation
set may inflate the computing time significantly, while a small set may underestimate the error. In the
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course of existing alternating algorithms [16] it was found that it is sufficient to compare consecutive
iterations. Therefore, we proceed with the following definition in line 9 of Algorithm 3.1:

res =max















‖H
(1)
it −H

(1)
it−1‖F

‖H
(1)
it ‖F

,
‖H

(2)
it −H

(2)
it−1‖F

‖H
(2)
it ‖F















,

where it is the iteration number.
Once the value function is approximated by Algorithm 3.1, we can compute the optimal control

and optimal trajectory starting from a given initial point x0 ∈ R2. The formula for the synthesis of the
optimal control is given by

u(x) = −
1

2
R−1B(x)⊤∇V (x),

where x = (x1,x2) ∈ R
2. The computation of the gradient in this case is simply given by considering the

derivatives in (3.1)

∂x1V (x) = Φ
′
1(x1)H

(1)G2(x2),

∂x2V (x) =G1(x1)H
(2)
Φ
′⊤
2 (x2).

3.2. Multidimensional Gradient Cross. Now we are going to generalize the result obtained in the
previous section to an arbitrary dimension d. The FTT representation in this case reads

Ṽ (x) = G(1)(x1) · · · G
(k)(xk ) · · · G

(d)(xd ).

We will use the alternating strategy in this case too. For this reason it is convenient to group all the
terms before and after the k-th TT core, obtaining a more compact formula

Ṽ (x) =G(<k)(x<k) ·G
(k)(xk ) ·G

(>k)(x>k),

where

G(<k)(x<k) = G(1)(x1) · · · G
(k−1)(xk−1), k ≥ 2,(3.6)

G(>k)(x>k) = G(k+1)(xk+1) · · · G
(d)(xd ), k ≤ d − 1.(3.7)

We are again interested in finding interpolation sets X<k ⊂ X1 × · · · ×Xk−1 and X>k ⊂ Xk+1 × · · · ×Xd
with rk−1 and rk points, respectively. Let us suppose that in the k-th step the sets X<k and X>k are given.
Combining the previous expressions, we can write

#»

V k := vec
(

V (X<k ,Xk ,X>k)
)

≈ Ṽ k :=
(

G(<k)
(

X<k

)

⊗Φk (Xk)⊗G
(>k)

(

X>k

))

· vec(H (k)),

where vec(·) stretches a tensor into a vector with the same order of elements, and ⊗ is the Kronecker
product of matrices. Similarly to the bidimensional case, we are going to denote the function values by
#»

V k
0 and the derivative values with respect to the i-th component by

#»

V k
i . Our aim is to solve the following

least squares problem

(3.8) min
H (k)

d
∑

i=0

λi‖
#»

V k
i − Ṽ

k
i ‖

2,

where

Ṽ k
i =



































(

G(<k)
(

X<k

)

⊗Φk (Xk)⊗G
(>k)

(

X>k

))

· vec(H (k)) i = 0
(

∂iG
(<k)

(

X<k

)

⊗Φk (Xk)⊗G
(>k)

(

X>k

))

· vec(H (k)) i = 1, . . . ,k − 1
(

G(<k)
(

X<k

)

⊗Φ′k (Xk)⊗G
(>k)

(

X>k

))

· vec(H (k)) i = k
(

G(<k)
(

X<k

)

⊗Φk (Xk)⊗∂iG
(>k)

(

X>k

))

· vec(H (k)) i = k +1, . . . ,d.

Proposition 3.1. The least square problem (3.8) can be solved as a three-dimensional Sylvester equation.

Proof. The proof is available in Appendix A.1.
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Having obtained the solution H (k), we can consider the unfolding matrix H
(k)
L =

[

H
(k)

(αk−1 ,i,αk )

]

∈ Rrk−1nk×rk

and compute its QR factorization H
(k)
L = H̃

(k)
L R(k), then assemble an unfolded TT core

G̃
(k)
L =

(

Irk−1 ⊗Φk(Xk)
)

H̃
(k)
L ⇔ G̃(k)(xk ) =

nk
∑

i=1

Φ
(i)
k (xk )H̃

(k)
(i) .

Now we can use the maxvol method on G̃
(k)
L to find the set Ik , which is a subset of [αk−1]

rk−1
αk−1=1

× [i]
nk
i=1.

We can split Ik into corresponding components

(3.9) Iαk = {αk−1 : αk−1, i ∈ Ik}, and Ixk = {i : αk−1, i ∈ Ik}.

In turn, those enumerate elements in X<k and Xk . Therefore, we can define the new interpolation set

(3.10) X<k+1 := X<k(I
α
k )×Xk(I

x
k ).

that allows us to continue the iteration. Finally, the new TT core tensor is recovered from the interpo-

lating unfolding matrix H
(k)
L := H̃

(k)
L

(

G̃
(k)
L [Ik , :]

)−1

.

Passing on to the (k +1)-th step, we need to compute G(<k+1)
(

X<k+1

)

. Computing the corresponding

evaluations of all k cores constituting G(<k+1) will result in an O(d2) complexity of the entire algo-

rithm. However, since we can assume that G(<k)
(

X<k

)

was available in the current step, we can obtain

G(<k+1)
(

X<k+1

)

with a cost independent of k (and d). These computations are shown in Appendix A.2.

We proceed in the same fashion until either the discrepancy between the consecutive iterations is
below the stopping tolerance, or a maximum number of iteration has been reached.

The method needs a little modification to adapt the TT ranks to a given error threshold. Firstly, if
the ranks are overestimated, we can reduce them by computing the singular value decomposition (SVD)

instead of the QR decomposition of H
(k)
L , and truncate the former to ensure that the sum of squares of

the truncated singular values is below the desired threshold. Secondly, if the ranks are underestimated,

we can expand H
(k)
L with some extra ρk columns Z

(k)
L , thereby increasing the TT rank rk to rk +ρk . It was

shown [17] that Z (k) can be taken as TT cores of a TT approximation of the error z(x) := V (x)−Ṽ (x). This
interplay of the reduction and expansion of the TT ranks will eventually stabilize near optimal ranks
for the given error. The entire procedure is summarized in Algorithm 3.2. The expansion cores Z (k) are
obtained by running an independent instance of the same algorithm computing a TT approximation
z̃(x) ≈ z(x) with fixed TT ranks ρ1 = . . . = ρd−1 = ρ instead of lines 5 and 6.

Algorithm 3.2 Gradient TT Cross

1: Choose initial TT cores H (k), point sets X>k , a tolerance tol and a maximum number of iterations
itmax.

2: while res > tol and it ≤ itmax do
3: for k = 1, . . . ,d do
4: Find H (k) as the minimizer in (3.8) by solving (A.1).

5: (Optionally) Reduce the TT rank rk via truncated SVD of H
(k)
L to error threshold tol

6: (Optionally) Increase rk by expanding H
(k)
L :=

[

H
(k)
L , Z

(k)
L

]

with TT core of error Z
(k)
L

7: Compute the QR decomposition H
(k)
L = H̃

(k)
L R(k)

8:

[

Ik , (Irk−1 ⊗Φk(Xk))H
(k)
L

]

=maxvol
(

(Irk−1 ⊗Φk(Xk))H̃
(k)
L

)

9: Compute the next point set X<k+1 as shown in Eq. (3.9), (3.10)
10: Compute the next sampled cores as shown in Eq. (A.3)
11: Update res
12: end for
13: it = it +1
14: end while
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3.3. Two Boxes approach. Our scope is to solve the HJB equation (2.4) in a computational domain
Ω which is usually a hypercube [−a,a]d containing all initial conditions of interest and their subsequent
optimal trajectories. We discretize the domain separately along each dimension. For the high dimen-
sional numerical tests we consider Gauss-Legendre nodes and the corresponding Legendre polynomials
on the nodes. This choice allow us to obtain accurate solution in the vicinity of the boundary, but it
may be less accurate closer to the origin, where the system stabilizes. For this reason we introduce an
additional step: the Two Boxes (TB) algorithm. First of all, we solve the optimal control problem on
the whole domain using the TT Gradient Cross, constructing an approximation of the value function
V on Ω. Afterwards, we construct the optimal trajectory ỹ0(t) and the optimal control ũ0(t) starting
from the origin, ỹ0(0) = 0. The exact path and control are zero constant functions since the origin is an
equilibrium of the dynamics, but the approximation may escape from the origin due to approximation
errors. In this case we consider the maximum value reached by the dynamics until a final time T . This
maximum will be denoted as ỹ0max := maxtmaxi |ỹ

0
i (t)|, and we will set aTB = 2ỹ0max. Afterwards, we con-

struct a new value function VTB on the sub-domain [−aTB,aTB]
d . Since the new domain is closer to the

origin and smaller than the entire domain, we expect a tensor with smaller TT ranks and evaluations
needed in the gradient cross. We will use the information provided by both value functions, defining
the optimal feedback map as

u∗(x) =

{

F(∇VTB(x)), ‖x‖∞ ≤ aTB,
F(∇V (x)), otherwise,

with F(g(x)) = −1
2R
−1B(x)⊤g(x).

If ỹ0max is small enough, the value function VTB would be close to the solution of the Linear Quadratic
Regulator (LQR) problem. In the LQR setting the value function reads VLQR = x⊤Πx, where Π is the
solution of the Riccati equation

A⊤(0)Π +ΠA(0)−ΠB(0)R−1B(0)⊤Π +Q = 0 .

In this case we can construct the optimal control as

u∗(x) =

{

−R−1B(0)⊤Πx, ‖x‖∞ ≤ aTB,
−1
2R
−1B(x)⊤∇V (x), otherwise.

We notice that the second choice provides a faster procedure, since it implies just one resolution of a
Riccati equation.

4. Numerical Tests. In this section we assess the proposed methodology through different numer-
ical tests. First, we investigate the effect of adding gradient information in the regression in a series
of closed-form high-dimensional functions with noisy evaluations. The second numerical test deals
with a two dimensional optimal control problem in which the exact value function is known. We test
the efficiency of the method under noise and the effect of introducing control constraints. In the third
example we study the three-dimensional Lorenz system. We study the performance of the algorithm
reducing the control energy penalty in the cost functional. The last test deals with the Cucker-Smale
model, where first we compare the PMP and SDRE approaches for data generation. We study the effect
of varying the parameter λ and the selection of an optimal parameter. In the last part of the section,
a comparison with a Neural Network approach is presented together with the application of the Two
Boxes approach. The numerical simulations reported in this paper are performed on a Dell XPS 13 with
Intel Core i7, 2.8GHz and 16GB RAM. The codes are written in Matlab R2021a.

Let us introduce some notations useful for the next sections. We denote by JT the total discrete cost
functional computed by applying directly SDRE to approximate the optimal control problem up to a
fixed final time T . The total discrete cost functional computed via TT Gradient Cross up to T will be
denoted by J̃T . Similarly, ỹ∗(t) denotes the discrete trajectory at time t controlled with TT, and ũ∗(t)
denotes the corresponding discrete optimal control at time t.

We define the errors in the computation of the cost function and optimal control as

errJ := |JT − J̃T |, erru :=

√

√

√nt−1
∑

i=0

(ti+1 − ti )|u(ti )− ũ(ti )|2,

respectively, where nt is the number of time steps ti produced by the RK4ODE solver, and the maximum
absolute optimal state value at the final time T as

ỹmax(T ) := max
i
|ỹ∗i (T )|.
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4.1. High-dimensional function approximation. In this first numerical experiment we test the
gradient cross algorithm for the approximation of high-dimensional functions. We will study the be-
haviour of the algorithm in presence of different noise levels. We are going to consider the following
two functions in dimension d:

a) f (x) = exp(−
∑d

i=1 xi /(2d)), x ∈ [−1,1]
d ,

b) f (x) = exp(−
∏d

i=1 xi ), x ∈ [−1,1]
d .

We fix the dimension d = 100, the stopping error threshold for the gradient cross tol = 10−4 and we
discretize the interval [−1,1] with 33 Legendre-Gauss nodes for each direction. The noise is introduced
by adding independent identically distributed normal random numbers with mean 0 and standard
deviation σ to the values of the function f (x) and all components of the gradient ∂if (x). The error is
computed with respect to the adaptive TT-Cross [53] with tolerance 10−12 and in absence of noise.

It is easy to see that the function (a) has an exact rank-1 TT decomposition, so we will run the TT-
Cross with a fixed rank 1. In Figure 4.1 we show a comparison in terms of the mean approximation
error for different λ. The noise magnitude σ varies in the set {0}∪{10−k ,k = 1, . . . ,6}. In absence of noise,
the gradient cross with λ = 0 performs with high precision. Increasing the noise, the higher is λ, the
better is the approximation.

Function (b) is a function of rank higher than 1, and it is already possible to notice a different be-
haviour. For every noise amplitude it is possible to find a λ , 0 which obtains a better result compared
to the cross approximation without gradient knowledge. In particular, the gradient cross gives a mean-
ingful approximation with an error of 0.1 even with the largest noise magnitude σ = 0.1, in which case
the error of the standard TT-Cross (corresponding to λ = 0) is larger than 1.

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

Noise amplitude

10-14

10-12

10-10

10-8

10-6

10-4
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100 Approximation error
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=10-3

=10-2
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10-6

10-4

10-2

100

102

104

106 Approximation error

=0

=10-5

=10-3

=10-2

Figure 4.1: Mean approximation error for function (a) (left) and function (b) (right) for different λ and
noise amplitudes σ. The gradient cross (with λ > 0) is much more accurate than a gradient-free method
(λ = 0) if a noisy approximate TT approximation is sought.

4.2. 2D Dynamics with Exact Solution. The second numerical test deals with an example with
exact solution. Given the following state dynamics

(4.1)

[

ẋ1
ẋ2

]

=

[

0 1
x21 0

][

x1
x2

]

+

[

0
1

]

u

and the associated cost functional

(4.2) J =
1

2

∫ ∞

0

(

‖x(s)‖2 + |u(s)|2
)

ds,

the solution of the corresponding SDRE is

(4.3) Π(x) =





























√

x41+1

√

2
√

x41+1+2x
2
1+1

2

√

x41+1+x
2
1

2
√

x41+1+x
2
1

2

√

2
√

x41+1+2x
2
1+1

2





























.

We apply the TT gradient cross described in the previous section and we test it under the effect of noises
of different amplitude σ. We discretize the interval [−1,1] using 14 Lagrangian basis functions and we



DATA-DRIVEN TENSOR TRAIN GRADIENT CROSS APPROXIMATION FOR HJB EQUATIONS 13

fix the stopping error threshold for the gradient cross tol = 10−4. The collection of the data for the
value function and its gradient is performed via the resolution of SDREs. We will consider the case
without the knowledge of the gradient (i.e. λ = 0) and the case with λ = 10−4. The mean errors in Table
4.1 are computed on a sample of 100 random initial conditions. Since the control is computed taking
into account the gradient of the value function, the sum of the considered errors provide an H1 error
estimate. It is possible to notice that in all cases the introduction of the gradient information yields a
better approximation. In Figure 4.2 we show the optimal trajectories and the optimal control computed
starting from the initial condition x0 = (1,−1). The right panel of the figure shows the visual coincidence
of the three solutions without the presence of noise, which was intuitable by the first row of Table 4.1.
The left panel shows the comparison of the solutions under a noise amplitude σ = 10−2. The choice
λ = 0 and λ = 10−4 cannot retrieve the starting behaviour of the exact control signal, which is zero at
the initial time, while fixing λ = 1 we can observe a better match.

errJ erru
σ λ = 0 λ = 10−4 λ = 1 λ = 0 λ = 10−4 λ = 1

0 8.6-9 9.8e-9 2.6e-8 5.0e-7 4.4e-7 1.1e-6
10−4 9.1e-6 6.2e-6 3.4e-6 3.5e-4 1.1e-4 6.4e-5
10−3 6.1e-5 6.2e-5 3.5e-5 2.6e-3 1.7e-3 8.7e-4
10−2 6.8e-4 6.8e-4 3.2e-4 1.2e-2 1.1e-2 5.5e-3
10−1 6.6e-2 2.0e-2 6.2e-3 0.16 0.11 6.0e-2

Table 4.1: Mean errors in the cost functional of the 2D model and in the control for different amplitudes
of noise.
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Figure 4.2: Optimal control without noise (left) and with noise amplitude σ = 10−2 (right) starting from
x0 = (1,−1).

Constrained control. We focus on the optimal control problem (4.1)-(4.2) coupled with control
constraints, i.e. |u| ≤ umax. As remarked in Section 2.2.1, in this case the value function and its gradient
will be computed via the PMP, composing the optimal control as

u∗ = umax tanh

(

u

umax

)

to enforce the control constraint and the optimisation of the cost functional (2.18). We solve the problem
in the domain [−2,2]2 andwe consider as initial condition (x1(0),x2(0)) = (2,2). In the first test, we fix the
TT-rank r = 5. In Table 4.2 we report the values of the total cost obtained using different λ and different
constraints. Both in the unconstrained case (umax = ∞) and in the constrained cases it is possible to
pick a λ , 0 which performs better than the case with λ = 0. It is not necessarily the largest λ, as
an exceedingly large λ deteriorates the conditioning of the normal equation (A.1). In the left panel of
Figure 4.3 we show the optimal trajectories for λ = 0 in the unconstrained case. In this case the optimal
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control manages to steer the dynamical system to the equilibrium. However, if we constrain the control
to umax = 20 (right panel of Figure 4.3), we notice that the control is unable to stabilize the system.

umax =∞ umax = 25 umax = 20

λ = 0 70.2131 81.9607 93.5168
λ = 10−4 70.2124 81.4676 92.0130
λ = 10−3 70.2139 81.1542 91.9481
λ = 10−2 70.2134 81.1451 92.0824

Table 4.2: Cost functional J̃T for different λ and umax with r = 5. In each column there is a nonzero λ
that gives the smallest cost.
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Figure 4.3: Optimal trajectory (blue: x1(t), red: x2(t)) for umax =∞ (left) and umax = 20 (right) with λ = 0
and TT rank r = 5. This TT rank is too small to approximate the value function accurate enough to
stabilize the trajectory.

umax =∞ umax = 25 umax = 20

λ = 0 70.2123 81.9629 93.2145
λ = 10−4 70.2124 81.4544 91.9991
λ = 10−3 70.2130 81.1660 91.8594
λ = 10−2 70.2131 81.1548 92.0458

Table 4.3: Cost functional J̃T of the 2D model for different λ and umax with r = 6.

This is fixed by increasing the TT-rank of our approximation to r = 6. We can see by the right
panel of Figure 4.4 that now the solution reaches the origin. In the left panel of Figure 4.4 we show
the different behaviours of the control according to the different constraints, fixing λ = 10−3. Finally,
we show in Table 4.3 the total cost for the different choices of λ and umax with r = 6. Reducing the
size of the constraint box, the difference between the no-gradient regression and choosing the best λ
increases, confirming that the gradient cross achieves a better result for the constrained case in presence
of information of both the value function and its gradient.

4.3. Lorenz system. The third example deals with the Lorenz system given by

(4.4)























ẋ = σ(y − x),

ẏ = x(ρ − z)− y + u,

ż = xy − βz
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Figure 4.4: Optimal control for different umax (left) and optimal trajectory (blue: x1(t), red: x2(t)) of the
2Dmodel for umax = 20 (right) with λ = 10−3 and r = 6. This TT rank is sufficient to stabilize the system.

with the following cost functional

(4.5) J =

∫ ∞

0

(

|x(s)|2 + |y(s)|2 + |z(s)|2 +γ |u(s)|2
)

ds.

The same example has been considered in [37]. We fix σ = 10, β = 8/3 , ρ = 2 and (x(0),y(0), z(0)) =
(−1,−1,−1). Data collection is performed via SDRE and we will consider two cases: λ = 0 and λ = 1. We
will vary the regularization parameter γ in (4.5) in the range {0,0.1,0.01,0.001}. We consider 6 Legendre
basis functions on the interval [−1,1] and the stopping error threshold for the gradient cross is 10−2.

In Figure 4.5 we show the optimal trajectory and the optimal control with γ = 0.001 and λ = 1. In
Figure 4.6 we show the number of time steps needed for ode45 solver to compute the optimal trajectory
in logarithmic scale. It is evident that for small values of the regularization parameter γ , the ODE solver
needs more time steps in the no-gradient case compared to the gradient case. The norm of the difference
of the two value functions is 1.2 ·10−6, and the difference of the total cost functionals is 3.5 ·10−7, which
is within the requested error threshold. However, the value function approximation computed with
λ = 1 appears smoother, allowing to obtain a similar trajectory with fewer time steps.
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Figure 4.5: Optimal trajectory (left) and optimal control (right) of the Lorenz model with γ = 0.001 and
λ = 1.

4.4. Cucker-Smalemodel. Let us consider the dynamics governed by the Cucker-Smalemodel with
Na interacting agents given by

(4.6)

[

ẏ
v̇

]

=

[

ONa
INa

ONa
ANa

(y)

][

y
v

]

+

[

ONa

INa

]

u,
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Figure 4.6: Numbers of time steps needed for the computation of the controlled trajectory of the Lorenz
model using ode45 for different regularization parameters γ . For large values of γ the two curves
overlap, while we note an increasing difference for small γ . For the smallest γ = 10−3, the no-gradient
method needs 3 orders of magnitude more time steps compared to the gradient method.

with
[

ANa
(y)

]

i,j
=















− 1
Na

∑

k,i P(yi ,yk ) if i = j,
1
Na

P(yi ,yj ) otherwise,

P(yi ,yj ) =
1

1+ ‖yi − yj‖2
.

Our aim is to minimize the following cost functional

J(y(·),v(·),u(·)) =
1

Na

∫ ∞

0
‖y(s)‖2 + ‖v(s)‖2 + ‖u(s)‖2 ds.

We consider a state domain Ω = [−0.5,0.5]2Na , 5 Legendre basis functions in each variable, and the
gradient cross stopping tolerance is equal to 10−2. We first compare PMP and SDRE to check their
performances in producing samples of the cost. In this case we fix Na = 2 and final time T = 20 for the
corresponding finite horizon control problem for PMP. The PMP system (2.13) is solved via the MATLAB
function bvp4c. It is possible to supply this function with the Jacobian of the differential equation to
accelterate the algorithm and to obtain a more accurate solution. We will denote by PMP the resolution
of the system (2.13) without the the knowledge of the Jacobian, while by PMPJ the one enriched by this
further information. The results of the comparison are shown in Table 4.4.

CPU J̃T ỹmax(T )

SDRE 0.5s 0.150168 1.5e-8
PMP 33s 0.150173 2.0e-6
PMPJ 24s 0.150173 6.2e-7

Table 4.4: Comparison between SDRE, PMP and PMPJ on the Cucker-Smale model with Na = 2. Here
SDRE is the best method.

We can notice that SDRE is 66 times faster than PMP and 48 times faster compared to PMPJ, ob-
taining almost the same result in terms of the total cost, and a much smaller absolute value of the final
state than PMPJ and PMP. In the following run we use the SDRE approach to generate the data for the
TT Gradient Cross.

We turn our attention to higher dimensional problems. We first analyse the behaviour of the Gra-
dient Cross algorithm increasing the dimension d = 2Na. In Figure 4.7 we compare the error in the
cost functional and the maximum reached by the dynamics at the final time increasing the dimension
d from 4 to 20. We consider two cases, one in the absence of gradient information (λ = 0) and the other
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one with λ = 10−3. The shaded areas in the plots are encircled by mean ± 1 standard deviation over 10
trials. For example in the case of the error in the cost we consider the mean errJ (d) and the correspond-
ing standard deviation σerrJ (d). The shaded area is created considering for each dimension the interval
[errJ (d)−σerrJ (d), errJ (d)+σerrJ (d)]. We see that the mean and the standard deviation are both lower in the
case with gradient information and this difference grows with increasing dimension of the problem. In
Figure 4.8 we show the comparison in terms of TT ranks and evaluations needed by the Gradient Cross.
It is important to point that the TT ranks fluctuate in the same interval [11.5, 16] for all dimensions,
proving that we are really solving the curse of dimensionality. In terms of the number of evaluations, for
lower dimensions the case with λ = 10−3 presents a higher mean, but for higher dimensions we obtain a
decreasing behaviour in contrast to the case with λ = 0.

Figure 4.7: Error in the Cucker-Smale cost functional (left) and ỹmax(T ) (right) for λ = 0 (blue) and
λ = 10−3 (green). Shaded area denotes mean ± 1 standard deviation over 10 runs. Here λ = 10−3 gives a
more accurate approximation.

Figure 4.8: TT ranks (left) and number of evaluations (right) for λ = 0 (blue) and λ = 10−3 (green).
Shaded area denotes mean ± 1 standard deviation over 10 runs. Both methods show comparable com-
plexity, though λ = 10−3 has less variation from run to run.

The choice of the parameter λ is crucial in this approach. We show a comparison of the perfor-
mances for different λ and in different dimensions. Since the computational costs of our previous tests
are comparable, we will focus instead on the error in the cost functional and on ỹmax(T ). We consider a
finite set Λ for the variable λ and we minimize the total cost and the final maximum value on this set.
The result of the minimization will provide the best choice for the parameter λ. In Figure 4.9 we report
the results for these quantities. The parameter λ is taken from the set Λ = {0} ∪ {10−k ,k = 0, . . . ,6}, and
the dimension d varies in the range {10,20,30,40}. The minimum for each dimension is marked with a
circle. First of all, we can notice that in all the cases the parameter λ = 0 never represents the optimal
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choice. We can notice that we obtain a parameter independent on the dimension since in almost all
cases λ = 10−6 represents the optimal choice.
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10-3 Error in the cost

d=10
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T
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d=40

Figure 4.9: Error in the Cucker-Smale cost functional (left) and ỹmax(T ) (right) for different λ and di-
mensions. It is possible to notice that λ = 10−6 represents the optimal choice in almost all cases studied.

In Table 4.5 we report the averaged elapsed time in computing the suboptimal control applying
directly SDRE (first column), via the value function precomputed by the TT (second column) and via
the value function precomputed by the Two Boxes approach (third column). We immediately note
that the evaluation of TT is 2 orders of magnitude faster than the online SDRE solution, proving the
efficiency in precomputing the value function when a real-time solution is needed. By comparing the
final two columns we notice a small speed-up, showing the beneficial application of LQR in a region
close to the origin.

d SDRE TT Two Boxes

10 1.4e − 3s 1.8e − 5s 1.7e − 5s
20 5.4e − 3s 6.9e − 5s 6.4e − 5s
30 1.0e − 2s 1.6e − 4s 1.4e − 4s
40 2.2e − 2s 3.3e − 4s 1.9e − 4s
100 1.3e − 1s 5.3e − 3s 4.5e − 3s

Table 4.5: Averaged CPU time for a single computation of the suboptimal control for the different
methods.

Comparing with Neural Networks. The aim of this section is to compare the proposed technique
with a supervised learning approach discussed in [2]. In this work the authors generate a dataset using
a SDRE approach and train a neural network to learn directly a suboptimal feedback map u(x). We will
compare against this approach in the framework of agent-based dynamics.

In Figure 4.10 we compare the two approaches varying the dimension d ∈ {10,20,30,40}. The choice
of the parameter λ for TT follows the previous paragraph. For the NN approach we consider the number
of samples equal to the number of evaluations needed for TT, in this way the two strategies will have the
same computational complexity. We can deduce that the TT approach is up to one order of magnitude
more accurate in terms of both indicators.

Now we fix the dimension d = 40 and we show the optimal trajectories for the two approaches in
Figure 4.11. As noticed in this figure and in the right panel of Figure 4.10, the NN is far from the
equilibrium, while TT is evidently close. In Figure 4.12 we show the optimal trajectories starting from
x0 = 0 ∈ R40 for TT (left panel) and NN (right panel). We note that all the components deviate from the
equilibrium. The first Na components stabilize around a point different from the origin, while the last
Na components return to 0.

To improve the stabilization near the origin, we apply the Two Boxes (TB) approach to reduce the
quantity ỹmax(T ) for bothmethods. We recall that we are going to consider the sub-domain [−aTB,aTB]

40,
where aTB = 2ỹ0max with ỹ0max computed from Figure 4.12. We set aTB = 0.009 for TT and aTB = 0.0126 for
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Figure 4.10: Error in the cost functional (left) and ỹmax(T ) (right) for TT and NN for different dimen-
sions. The TT approximation is more accurate in terms of both indicators for all dimensions.
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Figure 4.11: Optimal trajectory for TT (left) and NN (right) with d = 40. Neither of the methods stabi-
lizes the trajectory exactly towards the origin.

NN and we apply LQR in the smaller box. The results are shown in Table 4.6. As discussed previously,
without the application of the TB algorithm, TT results are more accurate. Coupling the two methods
with TB and LQR, we see by the second line of Table 4.6 a remarkable improvement in terms of the
final state magnitude. Finally, we show in Figure 4.6 the optimal trajectories in this case, where the
stabilization to the origin is more visible for both approaches.

Method NN errJ TT errJ NN ỹmax(T ) TT ỹmax(T )

Simple 2.3e-4 2.5e-5 6.2e-3 4.3e-3
Two Boxes + LQR 2.0e-4 3.7e-5 4.8e-4 3.3e-4

Table 4.6: Comparison between NN and TT with λ = 10−6 for d = 40. With the Two Boxes technique,
both methods are more capable to stabilize the state.

Finally, we test the TT approach and the Neural Network strategy fixing the dimension d = 100.
For the TT cross we fix λ = 10−4 and the resulting approximation has TT rank equal to 16, in line with
the outcome of the left panel of Figure 4.8. Table 4.7 shows the results of the comparison considering
both the simple algorithm and the coupling with the TB approach. We set aTB = 8.6 · 10−3 for TT and
aTB = 1.2 ·10−2 for NN, applying LQR in the smaller box. In this case we note that the TT approximation
is two orders of magnitude more accurate than NN in both methods in terms of the error in the cost
functional. Furthermore, the application of TB is beneficial for ỹmax(T ) for both methods, keeping the
error in the cost functional unaffected.



20 S. DOLGOV, D. KALISE AND L. SALUZZI

0 2 4 6 8 10
-2

-1

0

1

2

3

4

5
10-3 Optimal trajectory

Figure 4.12: Optimal trajectory for TT (left) and NN (right) with d = 40 starting from the origin. The
spurious nonzero state value at the final time is used to define the switching threshold in the Two Boxes
approach.
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Figure 4.13: Optimal trajectory for Two Boxes TT (left) and Two Boxes NN (right) with d = 40. Both
methods are stabilizing.

5. Conclusions. Wehave developed a data-driven method for the approximation of high-dimensional
infinite horizon optimal control laws. A key feature of the data-driven methodology is that it circum-
vents the solution of a HJB PDE, a task that quickly becomes overwhelmingly expensive as the dimen-
sion of the state space grows. The value function associated to the feedback law has been written in a
Functional Tensor Train form and its approximation has been enriched by the knowledge of both the
value function and its gradient at specific sampling points. Synthetic data generation has been per-
formed using two different methods: Pontryagin’s Maximum Principle and the State Dependent Riccati
Equation approach. Through different numerical tests we have shown that the SDRE-based regression
performs more accurately and efficiently, whereas PMP can still be necessary in the case of state/control
constraints. The numerical tests have shown that the introduction of gradient-enhanced supervised
learning methodology yields the following advantages with respect to the no-gradient formulation:

• the algorithm presents more stability in presence of noise,
• the H1 norm of the error is better controlled,
• improved performance for control-constrained cases,
• the feedback map appears more regular and can be integrated with larger time steps,
• it is characterised by a lower standard deviation on the trial set,
• the Error/Evals cost for different θ and dimensions is always minimized picking λ , 0.

We also showed that the maximum TT rank in the representation of the values function grows
almost linearly, yielding a effective mitigation of the curse of dimensionality.

In the future we aim at coupling the proposed algorithm with Model Order Reduction techniques
in order to deal with problems in considerably higher dimension such as fluid flow control. Since
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Method NN errJ TT errJ NN ỹmax(T ) TT ỹmax(T )

Simple 2.7e-4 2.8e-6 6.0e-3 1.5e-3
Two Boxes + LQR 2.7e-4 2.8e-6 4.0e-4 4.2e-4

Table 4.7: Comparison between NN and TT with λ = 10−4 for d = 100. The TT approximation achieves
an accuracy of two of magnitudes more than NN in terms of error in the cost functional.

we are not restricted to consider a reduced space in a very low dimension, we are able to work with
challenging problems using an extended reduced order basis, leading to a more accurate control design.
Further extensions include the study of robust controllers through differential games and Hamilton-
Jacobi-Isaacs PDEs as in [31], by resorting to representation via SDREs [3, 15], and data-driven tensor
approximation for stochastic control problems in the spirit of [29].
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Appendix A. Supplementary materials for the multidimensional Gradient Cross.

A.1. Resolution of the multidimensional least squares problem. We report here the computation
for the resolution of the regression problem treated in Section 3.2.

Deriving the normal equation for the problem (3.8) we obtain

(A.1) (A< ⊗M ⊗M> +M< ⊗A⊗M> +M< ⊗M ⊗A>)vec(H
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To solve the normal equation (A.1) we first compute a generalized diagonalization for the three
couples of Gram matrices (M<,A<), (M,A) and (M>,A>),

M<V< = A<V<L< , MV = AVL, M>V> = A>V>L> ,

then equation (A.1) can be rewritten in the following form

(A.2) (A< ⊗A⊗A>) (V< ⊗V ⊗V>) · L3 ·
(

V⊤< ⊗V
⊤ ⊗V⊤>

)

(A< ⊗A⊗A>)vec(H
(k)) =

#»

F

where L3 = (L< ⊗ L⊗ I+ L<⊗ I⊗ L> + I⊗ L⊗ L>) is diagonal. Now the linear system (A.2) is easily
solvable by inverting individual terms under the Kronecker products, and the diagonal matrix.

https://github.com/saluzzi/TT-Gradient-Cross
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A.2. Update of the core evaluations. As stated in Section 3.2, in the (k +1)-th step we can evaluate

the core G(<k+1)
(

X<k+1

)

with a cost independent of k and d. Indeed, for each of the rk elements in Iαk
and Ixk we compute the matrix products
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(<k)

(

X<k(I
α
k (αk ))

)

G(k)
(

Xk(I
x
k (αk ))

)

, i = 1, . . . ,k − 1,

∂kG
(<k+1)

(

X<k+1(αk )
)

= G(<k)
(

X<k(I
α
k (αk ))

)

∂kG
(k)

(

Xk(I
x
k (αk ))

)

, αk = 1, . . . , rk ,

where G(<k)
(

X<k

)

and ∂iG
(<k)

(

X<k

)

are available from the previous step, and need only slicing at Iαk (αk).
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