Check for
Updates

3rd ACM/IEEE International Conference on Automation of Software Test

Comparing and Combining File-based Selection and
Similarity-based Prioritization
towards Regression Test Orchestration

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino
renan.greca@gssi.it,bafm@cin.ufpe.br,gligoric@utexas.edu,antonia.bertolino@isti.cnr.it
Gran Sasso Science Institute, Federal University of Pernambuco, The University of Texas at Austin, ISTI-CNR
Italy, Brazil, USA, Italy

ABSTRACT

Test case selection (TCS) and test case prioritization (TCP) tech-
niques can reduce time to detect the first test failure. Although
these techniques have been extensively studied in combination and
isolation, they have not been compared one against the other. In
this paper, we perform an empirical study directly comparing TCS
and TCP approaches, represented by the tools Ekstazi and FAST,
respectively. Furthermore, we develop the first combination, named
Fastazi, of file-based TCS and similarity-based TCP and evaluate its
benefit and cost against each individual technique. We performed
our experiments using 12 Java-based open-source projects. Our
results show that, in the median case, the combined approach de-
tects the first failure nearly two times faster than either Ekstazi
alone (with random test ordering) or FAST alone (without TCS).
Statistical analysis shows that the effectiveness of Fastazi is higher
than that of Ekstazi, which in turn is higher than that of FAST. On
the other hand, FAST adds the least overhead to testing time, while
the difference between the additional time needed by Ekstazi and
Fastazi is negligible. Fastazi can also improve failure detection in
scenarios where the time available for testing is restricted.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS

regression testing, test case selection, test case prioritization, test
orchestration, Fastazi

ACM Reference Format:

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino. 2022. Com-
paring and Combining File-based Selection and Similarity-based Prioriti-
zation towards Regression Test Orchestration. In IEEE/ACM 3rd Interna-
tional Conference on Automation of Software Test (AST °22), May 17-18,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3524481.3527223

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9286-0/22/05...$15.00

https://doi.org/10.1145/3524481.3527223

115

1 INTRODUCTION

Software regression testing is actively researched [3, 27, 35], and
many techniques have been proposed, including test case selec-
tion [17] and prioritization [19].

Both selection and prioritization techniques aim at detecting
regression failures, but they follow different strategies. In test case
selection (TCS), when a new software version is released, a subset
of test cases is selected from the available test suite aiming at exer-
cising all the latest code changes. TCS is proposed as an alternative
to a retest-all (i.e., running all tests at each version) strategy that
is not sustainable in many practical cases. On the other hand, in
test case prioritization (TCP) the test suite is re-ordered, aiming
at executing first those test cases that are more likely to fail. As,
of course, we cannot know in advance which test cases discover
which failures, different TCP criteria have been proposed, such as
code coverage.

Many TCS and TCP approaches have been proposed [14, 21, 24,
31]. Our research goal here is not that of inventing yet another
approach, but rather to understand if and how TCS and TCP should
be used in combination, i.e.: when a new software version is released,
is it more convenient to apply a TCS approach or instead a TCP one?
Intuitively, a combination of both techniques would provide the
most benefit, but what are the resulting challenges and drawbacks
of this approach? Notwithstanding the vast literature on regression
testing, such type of questions remain largely unanswered.

To address such concerns, we focus here on regression testing
techniques that have been conceived for practical relevance and
scalability. Specifically, as a representative TCS approach we adopt
Ekstazi [9] while for TCP we use FAST [25]: we selected these
two approaches due to their cost-effectiveness and simplicity of
application, as well as their availability; finally, also for convenience
as the authors of this paper include authors of both tools.

Concerning TCS, in an empirical study conducted in 2014 [10],
the authors observed that many techniques were not adopted in
practice and developers mostly continued to perform manual se-
lection of test cases. Motivated by this study, Gligoric et al. [9]
proposed Ekstazi, a lightweight TCS technique that leverages file
dependencies. Besides the original paper on Ekstazi, several follow-
up studies showed the benefit of file-based selection over other
approaches [21, 37].

Concerning TCP, in a recent study Miranda et al. [25] showed
that many existing techniques do not scale-up to large test suites.
They hence proposed the FAST approach that applies Locality-
Sensitive Hashing (LSH) techniques [22] for similarity-based pri-
oritization. In the original work, the authors assess FAST against

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524481.3527223&domain=pdf&date_stamp=2022-07-19

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

several competing TCP techniques, showing that it gives compara-
ble effectiveness but with higher efficiency.

This work stems from the simple yet powerful idea of comparing
these two approaches—TCS by Ekstazi and TCP by FAST—and
possibly taking the advantages of each while overcoming their
potential shortcomings. We make the following two observations:
i) Ekstazi comes with no notion of test case priority: it assumes
that all the selected test cases are run and makes no distinction
about whether a failure is found by the first or the last executed test
case; ii) FAST reorders tests with the goal to detect failures early,
but does not consider recent code changes, whereas we know from
practice that these are related with failures, e.g., [6, 20].

By combining Ekstazi and FAST, we aim at developing a practi-
cal and effective approach to regression testing that we call Fastazi.
Fastazi is meant to be practical because it combines two scalable
techniques, and effective because it overcomes the above shortcom-
ings of each. In particular, this combined approach aims to decrease
developer feedback time, which is the time it takes for a developer
to receive a test failure notification once testing begins.

Clearly Fastazi is one instance within a plethora of possible
combinations of many existing TCS and TCP approaches, and fur-
ther studies should be conducted to evaluate different combina-
tions. Indeed, following the case made by Harman [12], research
in combining multiple criteria in the context of one regression
technique is very active, e.g., [7, 8]. Much less attention has been
devoted so far to using multiple criteria while combining different
regression techniques, which we call regression test orchestration.
Di Nardo et al. [5] applied and assessed minimization, selection
and prioritization techniques on a single industrial case study, but
only considering coverage-based criteria; Silva et al. [30] proposed
to combine prioritization and selection based on function critical-
ity (assessed manually); Najafi et al. [26] evaluated selection and
prioritization based on test execution history on a large industrial
system; Shi et al. [29] combined and evaluated test reduction (based
on coverage) and selection (based on changes). Fastazi is the first
regression test orchestration approach that combines file-based
TCS with similarity-based TCP.

We compared Ekstazi, FAST and their orchestration through Fas-
tazi using a set of 12 projects (from the Defects4] repository [15]).
Our results shows that for most subjects, executing a change-aware
selection of test cases (in random ordering) detects the first failure
faster than executing the whole prioritized suite (based on simi-
larity). However, we also observed that adding FAST ordering on
top of Ekstazi selection further improves effectiveness at negligible
additional cost.

In summary, our contributions include:

e an empirical study comparing TCS against TCP, and their
orchestration against each technique alone;

o the novel Fastazi approach to regression testing that com-
bines filed-based TCS and similarity-based TCP;

e areplication package! including Fastazi implementation and
all data from the study.

For practitioners our results signify not only a further confirma-
tion of change-aware selection validity, but also the convenience of
executing the selected test cases in prioritized order based on their

! Available at: https://doi.org/10.5281/zenodo.5851288

116

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino

similarity. In fact, using state-of-art scalable techniques as FAST
over the selected test subset can help detect failures faster at virtu-
ally no cost. For researchers, this paper signifies the importance of
studying regression techniques as an orchestration rather than indi-
vidually, and opens up the floor for many potential experiments in
which various TCS techniques are compared against, or combined
with, various TCP techniques.

In the next section we provide a short summary of the TCS and
TCP approaches that we compare and combine, while in Section 3
we present Fastazi. The study methodology is described in Section 4
and the results are discussed in Section 5. In Section 6 we overview
related work, and in Section 7 we draw brief conclusions.

2 BACKGROUND
2.1 Test Case Selection (TCS)

In regression testing, not all tests are relevant to a particular code
change: if only a small part of one file was updated, it is unlikely
that the entire project would be affected and the full regression test
suite would have to be run. TCS addresses the challenge of selecting
a subset of tests that is representative of the entire suite in a given
situation [28, 35]. In other words, given a test suite T, TCS can be
described as a function S(T) that selects a subset of T to be used for
testing the current version of the system under test. We say that a
TCS technique is safe if it guarantees that all tests whose outcome
may be affected by a change are included in the selected subset [28].
Common approaches for TCS are change-based, history-based, and
model-based [17].

Ekstazi [9] is a change-based and coarse-grained approach to TCS.
It works by collecting test case dependencies (i.e., set of used classes
by each test case) during an initial run of the entire test suite, then
by selecting the test cases based on the changes applied to those
dependencies from one version of the software to another. In doing
this Ekstazi applies a file-level granularity: any code changed within
afile that is related to a test case will result in that test being selected.
To compare two versions of a file, Ekstazi uses cyclic redundancy
check (CRC). For example, consider a test ¢ that invokes a function
a. If a change is made to another function b located in the same file
as a, t will be selected (as the CRC of the file changed).

The result of this approach is an over-approximation of the subset
of selected tests. Although Ekstazi selects, on average, more tests
than fine-grained TCS solutions (e.g., those that track dependencies
on methods), the authors demonstrated that the actual selection
time is much faster than the alternatives. Consequently, the total
end-to-end time (i.e., time to select tests + time to execute selected
tests) tends to be lower, even if more tests are selected.

We chose Ekstazi for our study for its efficiency and ease of
use: Ekstazi is publicly available as a plug-in for various Java build
systems. Furthermore, aiming eventually at an orchestration of
TCS plus TCP with the objective of reducing feedback time, we
considered that a prioritized test suite could mitigate the drawbacks
of over-selecting test cases.

2.2 Test Case Prioritization (TCP)

Another challenge of regression testing is to detect failing tests
fast. The objective of TCP is to re-order test cases according to
some definition of priority, in order to get faster feedback from the

Comparing and Combining File-based Selection and Similarity-based Prioritization towards Regression Test Orchestration

test execution. A prioritized test suite still contains all test cases,
so there is no loss of failures detection ability (assuming that test
results are independent) — what changes is the amount of time that
it takes for one or more failures to be detected. TCP can be described
as a function P(T) that provides a permutation of T. Some criteria
often used for TCP include similarity-based, coverage-based, and
history-based [19].

FAST [25] utilizes test source code as input for a similarity-based
algorithm to prioritize the tests. Inspired by big data techniques,
string representations of test cases are transformed using minhash-
ing signatures, which are then ordered according to their similarity.
The benefits of FAST are low overhead and scalability, which make
it usable for large software projects. We chose it because of its low
running times and relatively simple implementation.

FAST authors [25] examined several possible variations of it that
trade off efficiency for accuracy when choosing the next test(s).
These are all stochastic by nature; as the authors point out, if two
test cases are ranked equally, the tie is solved randomly. In our
experiments with FAST we observed that FAST-pw (which is one of
the variations) produced consistently similar permutations when
executed more than once with the same test suite. This was an
expected result given that FAST-pw is designed to always select the
test case that is the furthest away from the set of already-prioritized
tests. It does so by computing the similarity between each candidate
test and the set of already-prioritized tests in a pairwise fashion.
Furthermore, FAST-pw was able to rank failing tests higher than
other variations. Therefore, in this paper we consider the FAST-pw
variant, and in the following we refer to it simply as FAST.

3 FASTAZI

Many researchers have shown that TCS and TCP provide substan-
tial benefits to regression testing [3, 17, 19, 28]: a good selection
decreases the overall testing time, while a good prioritization al-
lows for detecting failures faster. However the two concepts are
not mutually exclusive, and an orchestration of both may provide
even further improvements, e.g., [6, 32].

If a test suite is selected and prioritized, both testing time and
feedback time can be decreased. Recall that TCS can be defined as a
function S(T) that produces a subset of tests and TCP as a function
P(T) that outputs a permutation of T. Then, the goal of an approach
that orchestrates TCS and TCP is to generate another function,
O(T), whose output is smaller than T and ordered to speed up
failures detection. When discussing possible ways of orchestrating
TCS and TCP, two approaches stand out.

Parallel execution. One approach is to independently perform
the prioritization and selection of the entire test suite, and then
arranging the selected tests according to the ordering given by
prioritization. This approach has the advantage of allowing parallel
execution of S(T) and P(T) and merging their outputs, instead of
having one depend upon the other. To combine the outputs, it is
sufficient to go through the prioritized list of tests and remove the
ones that are not included in the selection.

Sequential execution. Another possible approach to the idea is
performing selection first and then prioritizing the output. The
advantage of this approach is reducing the running time of the pri-
oritization, which would focus on the tests impacted by the changes

117

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

T S P (0]
b b | 101 1| 1321
2| t 2| to 2| 163 2| 146
3| t3 3| t3 3| e 3| t3
wltizo | wltzo| w[tio| o[ti70|
363 _té_6_3" 134 _té_2_5_ 1 363__t:3_5_9“ 134 _tES_ZX_

T: complete test suite; S: selection by Ekstazi;
P: prioritization by FAST; O: orchestration by Fastazi.

Figure 1: Sample outputs of Ekstazi, FAST and Fastazi

and thus more likely to fail. However, this also means that the selec-
tion and prioritization steps cannot be performed simultaneously
(although it is still possible to parallelize the preparation steps).

Intuitively, it is not clear which option should be more effective
or efficient than the other. Indeed, our experiments show that the ef-
fectiveness and efficiency of the parallel and sequential approaches
are statistically equivalent (according to the same analysis detailed
in section 5). For lack of space, henceforth Fastazi results always
refer to the sequential execution, while the results of the parallel
combination are available in the replication package.

As an example, Figure 1 contains sample outputs from Ekstazi,
FAST and Fastazi%. Colored red, t17¢ is the failing test within a test
suite T of 363 test cases. In S, the output of Ekstazi, this test is found
in the 78th position, because several tests were excluded during
the selection, while in the output P of FAST, it is moved up to the
17th position. Finally, the output of Fastazi, O, which is selected
and prioritized, promoted the test to the 9th position.

Algorithm 1 provides an abstract view of Ekstazi and FAST?,
and outlines how Fastazi works in practice. Ekstazi requires tests
to be compiled before performing selection, while FAST needs the
hash signature of each test before prioritizing the suite. These two
steps are independent and can be performed in parallel (they are
both abstracted by the function GetHashesAndModified). After that,
Ekstazi can perform its selection normally, and FAST prioritizes
the resulting list of tests.

4 EVALUATION METHODOLOGY
4.1 Research Questions (RQs)

We evaluate Ekstazi against FAST, and their combination (Fastazi)
against either of them, considering first their effectiveness in failure
detection (RQ1). Then, based on the real example shown in Figure 1,
we hypothesize that the potential gain in effectiveness of a com-
bined approach could be better observed under a limited test budget
(RQ2). Finally we also compare their efficiency (RQ3). Precisely, we
formulate the following research questions:

RQ1: How do Ekstazi, FAST, and Fastazi compare in terms of
effectiveness? For the scope of this study, the comparison between
the respective effectiveness of the three approaches can be based on
how quick they are in detecting the failures. As FAST uses the whole

“This example is based on results of the experiments on Chart v26. Actual test names
are omitted for clarity.
3For a complete understanding of Ekstazi and FAST, refer to [9, 25].

AST ’22, May 17-18, 2022, Pittsburgh, PA, USA

Algorithm 1 Ekstazi, FAST and Fastazi overview

: function GETHAsHESANDMobirIED(files F)
M, C « ExisTINGHASHES(F)
M —0
F 0
for f € F do
M’ [f] « CompuTEHASHES(f)
if M[f] # M’[f] then
ArpeND(F', f)
9: return M’, F/
10: function Exstazi(test suite T, files F)

> Minhashes for FAST and CRC for Ekstazi

> Updated hashes and modified files.

11: S0

12: for f € F do

13: fort € T do

14: if TEsTDEPENDSON(Z, f) then

15: APPEND(S, t)

16: return S > A selected test suite.

17: function FAST(test suite T, hashes M)

18: P20

19: while [P| # |T| do

20: t « PickNextTesT(T, P, M) > Pick the test that is furthest away from the
so-far-ordered tests P based on M.

21: P « ArpenND(P, 1)

22: return P > A prioritized test suite.

23: function FasTazi(test suite T, files in the project F)

24: CompiLe(T) @ M, F «<— GETHASHESANDMODIFIED(F) > Compiles the test suite using the
build system and, in parallel, computes hashes and detects modified files.

25: S «—Exkstazi(T, F)

26: P «FAST(S, M)

27: return P > A selected and prioritized test suite.

test suite, we know it will detect all regression failures as a retest-all
technique. Also, Ekstazi is developed as a safe TCS technique, thus it
should, as well, detect all failures found by retest-all. Consequently,
Fastazi too detects all failures. Thus, we refine the above question
into the following two sub-questions:

RQ1.1: Between Ekstazi and FAST, which tool detects fail-
ures running fewer tests? While both Ekstazi and FAST have
been shown to be effective in failure detection, we do not know
whether when a new project version is released, potential regres-
sion failures would be revealed earlier by selecting those test cases
that are affected by the changes (and randomly ordered) or instead
by prioritizing test cases based on their similarity.

RQ1.2: How does Fastazi compare against Ekstazi and FAST
with respect to feedback time? It is unclear if, and by how much,
a combination of both techniques would provide lower feedback
time from a test suite. With this question, we aim to discover if
the orchestration of TCS and TCP has a positive and substantive
impact to the regression testing workflow.

RQ2: How does a limited testing budget affect the effective-
ness of the three approaches? While in RQs 1.1 and 1.2 we
compared Ekstazi, FAST, or Fastazi without considering possible
time constraints, with this RQ we aim at assessing whether, and
how, testing under limited resources impacts each of the three ap-
proaches. This problem is similar to cost-bounded selection [4] (i.e.,
selecting test cases according to a predetermined budget), which
can be a concern in large-scale industrial projects [6]. TCS and TCP
each provide benefits when it is not possible to test 100% of the test
suite in each execution, but they cannot assumed to be safe in these
circumstances. Perhaps an orchestrated test suite would viable at
even stricter testing budgets.

RQ3: How do Ekstazi, FAST and Fastazi compare in terms of
time efficiency? With this question, we aim to discover what is
the additional cost in terms of time required by either technique

118

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino

alone, and then by their orchestration. Inevitably, the orchestration
increases total testing time, and we aim at assessing such drawback.

4.2 Evaluation metrics

The primary objective of TCS is to reduce the total number of
tests executed per run, while TCP, on the other hand, has the goal
of detecting failures quickly and reduce the feedback time of the
test suite. Thus, the metric for an orchestration should somehow
measure both of these objectives.

For RQ1, we utilize a metric called Time To First Failure (TTFF)
[36]. Given a test suite T, its TTFF indicates the position of the
first test to detect a failure. A low TTFF indicates that the test
suite provides quick feedback. TTFF is a useful metric to evaluate
both TCS and TCP, because it simultaneously encourages a tight
selection of truly relevant tests and a prioritization that puts a
failing test at the top of the list. However, since the output S of
TCS is a subset of T, its size might be smaller than the output P
of TCP. Therefore, for fairness, all TTFF results in this paper are
normalized according to size of T. For example, if |T| = |P| = 1000,
|S| = 100 and a failing test is in the 100th position of P but the the
50th position of S, then TTFF(P) = 0.10 and TTFF(S) = 0.05.

We also utilize Average Percentage of Faults Detected (APFD),
the most popular metric for evaluating TCP solutions [19]. It is
not designed to evaluate TCS and thus may not provide a fair
comparison for Ekstazi; however, as previously explained, we assess
here effectiveness in terms of how fast failures are detected by the
compared techniques, and for this APFD provides an intuitive, well
known assessment.

Regarding RQ2, when considering a limited testing budget, we
use the output from RQ1 and create versions of the suites that are
cut off at certain points, according to the budget restriction. This
data is analyzed in two ways: first, we observe, for each version
of each subject, the proportion of the 30 variations that were able
to detect the failure or not. Then, we also reduce this number into
a binary form: 1 if the test suite detects the failure in all of its
30 variations, and 0 otherwise. This has the effect of punishing
suites that are somehow inconsistent, rewarding those that catch
the failure every time, since it can be important that an approach
is consistent and reliable.

Finally, for RQ3, we measure the time taken to execute the
discrete steps of the approach. For this, we use the GNU time
utility (user+sys CPU time) to measure each step of the experiment
individually, allowing us to understand where are the bottlenecks
of the approaches.

4.3 Experiment design and execution

The goal of the experiment is to compare four possible arrange-
ments of the test suite: the tests selected by Ekstazi; the test suite
prioritized by FAST; the orchestration of both with Fastazi; and a
random ordering of the test suite to provide a base case. Consider-
ing that both Ekstazi and FAST have been previously compared to
several competing TCS and TCP approaches [21, 25, 37], we deemed
it not necessary to add further alternatives in a direct comparison
between the two tools.

Comparing and Combining File-based Selection and Similarity-based Prioritization towards Regression Test Orchestration

Table 1: Subjects Used in the Evaluation.

Subject # Versions Min. # Tests Max. # Tests
Chart 26 303 363
Cli 30 24 85
Closure 168 236 258
Codec 8 34 52
Collections 4 157 165
Compress 39 44 133
Gson 18 77 119
Jsoup 93 12 39
JxPath 4 27 33
Lang 28 87 178
Math 100 137 821
Time 23 121 123
Total 541 n/a n/a

Min. # Tests and Max. # Tests show the smallest and largest test suites, respectively,
among all versions of a certain subject.

We utilize as subjects 12 projects available as part of the Defects4]
repository [15] that contains multiple versions of Java-based open-
source software projects of different sizes. Each version is comprised
of one commit containing a bug, the commit that fixed the bug, and
metadata such as the files related to the bug, and which tests would
detect it. Table 1 shows basic statistics about each project used in our
evaluation. For each project, we show the number of versions used
and minimum and maximum number of test cases (across versions).
A few versions were skipped, either because their bugs are listed as
deprecated by Defects4], or because we ran into compilation issues
for them (e.g., due to Java version incompatibility).

We used Ekstazi version 5.3, available on the project’s website?,
as a plug-in for the Maven and Ant build systems. A script is used
to automatically incorporate the Ekstazi task into a project’s build
script, allowing us to easily perform test selection over multiple
versions of different subjects.

In the case of FAST, we used the source code from the replication
package of the original paper®. This code was modified by us with
two purposes. The first was to make FAST version-aware by storing
the hash signatures of test cases between versions so they do not
need to be re-computed unless there is a modification. This is im-
portant because computing the hashes is the most time-consuming
part of FAST, so storing these representations for unchanged tests
greatly reduces overhead after an initial execution. In addition, it
was updated to guarantee that the input and output of both Ekstazi
and FAST are in the same format.

Fastazi was not incorporated into the build system, but its results
can be easily generated by using the output of Ekstazi as input for
Fastazi, as shown in Algorithm 1. Observe that change-based TCS
provides no benefit in the initial version of a project, since there
are no changes to be detected; thus the first output of Fastazi, for
each experiment subject, is identical to using FAST in isolation.

To collect the metrics, we did not actually execute the test suites
given by each approach. First we collect the outputs of the ap-
proaches as text files containing lists of tests and then we calculate

*http://ekstazi.org
Shttps://github.com/icse18-FAST/FAST

119

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

1.00

0.25

0.00

Ekstazi FAST Fastazi Random

Figure 2: Normalized TTFF of different approaches

the metrics according to the position of the failing test(s) (ground
truth given by Defects4]).

When measuring TTFF, the default order of test executions could
have a large impact on (unprioritized) test suites; hence, for fairness
we shuffled the output of Ekstazi 30 times and reported the average
of these repetitions. Similarly, to account for the nondeterminis-
tic behavior of FAST, Fastazi and random, their outputs are also
generated 30 times to reduce any potential noise in the data®.

The experiments were executed in a Docker container running
Ubuntu 20.04 LTS, using Java OpenJDK 1.8.0, Apache Maven 3.6.3,
and Apache Ant 1.10.7. On all the projects, JUnit version was set
to 4.12. The host computer was running macOS 11.0.1 on a 6-core
Intel Core i7 processor, with 32GB RAM and SSD storage.

5 RESULTS
5.1 RQ1: Effectiveness

The answer to RQ1 contains two parts: first, we compare the effec-
tiveness of Ekstazi and FAST against each other (RQ1.1), and then,
we assess whether orchestration TCS and TCP ultimately improves
effectiveness (RQ1.2). For the sake of space we show the results
for both subquestions within unified plots and tables.

The TTFF results are displayed as violin plots in Figure 2, in
which each version of each subject is one data point (totaling 541).
The violin plots display, in addition to the median and interquartile
ranges, the full distribution of the data, which allows us to identify
the different peaks in a distribution. For the TTFF metric, the lower
the result, the better.

The visual assessment of the data shows us that the median
TTFF achieved by Ekstazi and FAST are both close to 45% (the two
leftmost plots in Figure 2), although there is a large difference in
the distribution of the results. This can be explained in part by
the experiment design — since Ekstazi’s TTFF is an average of 30
permutations of S, the value tends to be close to the center. Indeed,
we can see that the median for Random is very close to 50%, while
Ekstazi is lower than that because S is frequently smaller than T.

When adding Fastazi to the comparison, we can see that its
median TTFF is much lower, at around 25%, which is slightly over
half the medians of Ekstazi and FAST. Both FAST and Fastazi can,
in some instances, produce a TTFF close to 100%, meaning that the
failing test is found at the very end of the test suite. In the case of
FAST, this is explained by the fact that similarity-based TCP can
occasionally produce poor results if there are multiple similar test
cases out of which only one reveals the failure. With Fastazi, this
happens less frequently; when it does, it is caused by performance

®We experimented with values between 10 and 50 and found that 30 provided a good
amount of data without severely impacting the running time.

AST ’22, May 17-18, 2022, Pittsburgh, PA, USA

of both Ekstazi (selecting nearly 100% of the test suite) and FAST
(ranking the failing test low) in specific subject versions.

After the visual inspection we proceeded with the statistical
analysis of the data. As we could not assume our data to be normally
distributed, we adopted a non-parametric statistical hypothesis test,
the Kruskal-Wallis rank sum test’. We assessed at a significance
level of 5% the null hypothesis that the differences in the TTFF
values are not statistically significant. The observed differences in
TTFF were statistically significant at least at the 95% confidence
level (p-value < 2.2e-16).

Provided that significant differences were detected by the Kruskal-
Wallis test we performed pairwise comparisons to determine which
approaches are different®. The results are displayed in Table 2 (col-
umn Group for TTFF). If two approaches have different letters they
are significantly different (with & = 0.05). If, on the other hand,
they share the same letter, the difference between their ranks is not
statistically significant. The approach (or group of approaches) that
yields the best performance is assigned to the group (a). Looking
at the results in Table 2, we can tell that Fastazi is different from
(better than) Ekstazi (b). Ekstazi, on its turn, is different from (better
than) FAST (c), and all the approaches are different from (better
than) Random (d).

Table 2: TTFF and APFD for the different approaches.

Approach TTFF APFD

Med SD Group Med SD Group
Fastazi 0.25 0.27 (a) 0.75 0.27 (a)
Ekstazi 039 014 (b) 062 014 (b)
FAST 041 029 () 060 029 (o)
Random 049 009 (d) 051 009 (d)

Med is the median, SD is the standard deviation, and Group displays the result for the
pairwise comparisons after the Kruskal-Wallis test.

To understand the effect of choosing one technique over another
on the effectiveness of the test suite, we measured the effect size
using the Vargha and Delaney A;» measure [33], which tells us the
probability of an observation from one group being larger than
an observation from the other group. The results are displayed in
Table 3. For interpreting the results, the A5 measure ranges from 0
to 1, and when the measure is exactly 0.5 the two techniques (in the
column name) have equal performance. When A;, > 0.5, the first
technique outperforms the second, and when Alg < 0.5, the second
technique outperforms the first. Vargha and Delaney suggest that
the effect size is small if the measure is over 0.56, medium if over
0.64, and large if the measure is over 0.71. As an example, when
comparing Fastazi against Random for the subject Chart, Fastazi
outperforms Random with a large effect (A1, = 0.82) on the testing
effectiveness. We can see that Ekstazi generally outperforms FAST,
most of the time with a negligible or small effect, but there are cases
where FAST outperforms Ekstazi. Fastazi, on its turn, outperforms
Ekstazi and FAST with a non-negligible effect in the vast majority
of the cases (18 out 24). The effect of choosing Fastazi over Ekstazi
or FAST on the test effectiveness is large or medium in 11 cases.
"We used kruskal. test() from the Stats package in R.

8 A significant Kruskal-Wallis test indicates that there is a significant difference between
approaches, but does not identify which pairs of approaches are different.

120

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino

Table 3: Effect size per subject.

Subject Fastazivs Fastazivs Fastazivs Ekstazivs
Random FAST Ekstazi FAST
Chart 082(L) 079(QL) 057(S) 0.78(L)
Cli 085(@L) 056(S) 0.81(L) 0.23(L)
Closure 062(S) 055(N) 056(S) 0.51(N)
Codec 0.88 (L) 0.66 (M) 0.66 (M) 0.52(N)
Collections 0.50 (N) 0.66 (M) 0.44 (N) 0.63 (S)
Compress 0.82 (L) 0.65 (M) 0.59 (S) 0.58 (S)
Gson 069 (M) 058(S) 0.60(S) 0.47 (N)
Jsoup 063(S) 0.64(M) 051(N) 0.66 (M)
JxPath 050(N) 0.56(S) 044 (N) 0.57(S)
Lang 0.66 (M) 0.63(S) 0.65(M) 0.58(S)
Math 0.83(L) 0.66(M) 0.64 (M) 0.57(S)
Time 060(S) 0.61(S) 052(N) 0.61(S)

L, M, S and N indicate large, medium, small and negligible effect size, respectively.

While TTFF captures how many test cases are required to reveal
the first failures, the APFD metric measures the speed at which

failures are revealed.

Random

1.00

0.25

0.00

Ekstazi FAST Fastazi

Figure 3: APFD of different approaches.

The observed APFD results are displayed as violin plots in Fig-
ure 3. For the APFD metric, the higher the better. Visual assessment
of the results lead to the same conclusion as for TTFF: Ekstazi and
FAST have similar medians, although FAST sometimes performs
very poorly, while Fastazi has a higher median than both and mit-
igates most instances of poor performance from FAST. It is also
visible that the peak of the distribution of Fastazi leans towards the
highest possible values, while Ekstazi peaks at around 0.6.

Statistical analysis results are reported in Table 2 (right side).
We performed again the Kruskal-Wallis rank sum test, followed
by the pairwise multiple comparisons. All results in Table 2 are
statistically significant at the 5% significance level. Both the groups
assigned to each approach and the results of the effect size analysis
were the same as the ones observed for the TTFF metric.

Summary of RQ1: While statistically significant differences were
observed for the comparison between Ekstazi and FAST, a further
investigation of the effect size revealed that the effect of choosing
Ekstazi over FAST is either small or negligible in almost all the cases.
Fastazi, on the other hand, outperformed Ekstazi and FAST with a
non-negligible effect in the vast majority of the cases, suggesting
that adopting Fastazi can help improving the testing effectiveness.

Comparing and Combining File-based Selection and Similarity-based Prioritization towards Regression Test Orchestration

5.2 RQ2: Effectiveness under a limited budget

To answer RQ2, we proceeded with a detailed analysis of the impact
of limiting the number of test cases with respect to those that
would be run by Ekstazi. We investigated the impact on the failure
detection capability of all the approaches when the testing budget
is gradually reduced from 100% (no budget restrictions) to 25% of
the test suite selected by Ekstazi, at steps of 25%. We discuss our
findings first at a higher level, then with a more in-depth analysis
of the results for each of the subjects considered in our study.

Figure 4 depicts the impact on failure detection capability on the
different approaches. The results are grouped per budget (25% to
100%) and each approach is represented by a violin plot. For each
version of each subject we counted how many times, out of the
30 repetitions (see subsection 4.2) each approach would be able
to reveal the failure under the different budget restrictions (the
number of observation in each violin plot is thus the same as the
total number of versions, i.e., 541). The vertical axis varies from 0
to 30, respectively the minimum and maximum number of times an
approach could reveal the failure across the 30 repetitions. Notice
that for this RQ it is not a concern whether the failure is revealed
by the first or the last test case, as this was already answered by
ROQ1; the concern here is whether the failure is revealed.

We can draw several observations from Figure 4: i) the median
number of times the random approach can reveal the failure de-
creases almost uniformly as the budget becomes stricter; ii) because
Ekstazi is the result of Ekstazi selection with random ordering, the
observed medians and distributions are always slightly better than
random, but following a similar trend as the one observed for ran-
domy; iii) Fastazi outperforms the other approaches up to a budget
restriction of 50%; iv) for the more restrictive budget of 25% the
median of Ekstazi and even random are better than those of the
Fastazi approach. Looking at the shape of the violin plots, however,
we can see that even with a lower median Fastazi appears to have
more observations leaning towards the maximum possible value.

To better understand such a behavior we analyze the data again
from a different perspective in Figure 5, in which we observe the
impact on failure detection capability on a per subject basis. This
time, however, instead of counting how many times the failure
would be revealed across the 30 repetitions, we are interested in
the cases where the approach would consistently reveal the failure
across all the repetitions for a given version. In this way we do
not reward the cases where an approach would be able to reveal a
failure by pure chance. Each subject is represented by a grouped
bar plot and the height of each bar represents the number of times
the approach was able to consistently reveal the failure, both in
absolute (left vertical axis) and in relative terms (right vertical
axis). For example, the maximum value in the left vertical axis for
Closure is 168, which is the number of versions we considered for
that subject and, at the same time, the maximum number of failures
that can be revealed (one per version). The primary horizontal
axis (bottom) represents the budgets, from 10% to 100%, whereas
the secondary horizontal axis (top) shows what a given budget
restriction would mean with regards to the whole test suite. This
is important because the size of the test suite varies greatly across
the subjects. For example, while a budget restriction of 50% for
Collections means that 45% of the whole test suite is selected,

121

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

Table 4: Average Running Times (in ms).

Project Build FAST FAST Ekstazi Fastazi
(setup) (TCP) (TCS) (TCS + TCP)
Chart 4167 1105 112 3224 3259 (35)
Cli 2997 165 10 137 147 (10)
Closure 6627 1403 83 1571 1637 (66)
Codec 4581 551 6 163 166 (3)
Collections 6627 1043 29 237 259 (22)
Compress 4986 326 10 309 314 (5)
Gson 4901 221 20 297 313(16)
Jsoup 6098 195 3 222 224 (2)
JxPath 3643 67 3 227 230 (3)
Lang 5032 621 37 262 287 (25)
Math 6903 1129 265 747 907 (160)
Time 11521 1439 20 500 515 (15)

only 23% of the whole test suite would be selected for Chart under
the same budget restrictions (we recall that the budget restriction
is calculated over the size of the test subset selected by Ekstazi).

By analyzing Figure 5 we can draw the following observations:
i) with no budget restrictions (budget = 100%), Ekstazi and Fas-
tazi were able to consistently reveal all the failures across the 30
repetitions; ii) for any other budget value below 100% Fastazi out-
performed Ekstazi alone and FAST alone — in a very few cases FAST
appears tied to Fastazi; iii) Ekstazi can consistently reveal some fail-
ures for almost all the budgets for Chart. For all the other subjects,
it cannot reveal any failure for budgets restricted below 50%. For the
particular cases of Collections and Lang, Ekstazi cannot reveal
any failure consistently in the constrained budget scenario; iv) with
the exception of Codec, Collections, and JxPath, Fastazi was able
to consistently reveal some failures across the 30 repetitions for all
the budgets, including the more restrictive budget of 10%.

Summary of RQ2: Without controlling for the differences across
subjects, Fastazi exposes the best failure detection capability even
under restricted budgets, except for under 25% reductions in which
Ekstazi and even random appear to show better median values.
However, when we look from a per subject perspective and reward
the approaches that consistently reveal failures, Fastazi outperform
Ekstazi alone (with random ordering) and FAST alone (without
TCS) for all the budgets considered.

5.3 ROQ3: Efficiency comparison

To compare the time efficiency of Ekstazi, FAST, and Fastazi, we
isolated the individual steps of each approach and measured the
average time each step took, across the different versions of each
subject program. In our measures, displayed in Table 4, the average
build time (column 2) for each project was substantially longer than
any cost added by Ekstazi, FAST, or Fastazi. This is an important
observation because FAST can run its preparation phase (column 3),
i.e, computing hashes of added/modified test cases, in parallel with
the building process as it requires only test code. Fastazi takes
advantage of this aspect to minimize the time overhead. Ekstazi,
on the other hand, requires the code to be compiled before it can
perform selection, so it cannot be run in parallel with the build.

AST °22, May 17-18, 2022, Pittsburgh, PA, USA Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino

25% 50% 75% 100%

T] [} ; T ; Y
| i l
B Ekstazi B FAST B Fastazi [l Random

Each panel represents a different budget constraint (100% is defined as the percentage of the test size selected by Ekstazi). The vertical axis shows how many times, out of the 30
repetitions, each approach is able to reveal the failure.

Figure 4: Impact on failure detection capability in a budget-constrained scenario.

H O > D N A QD L D O A 0 O X DA NN D A D o> LN D D A P
Q‘Q Q‘Q Q"\ 0"\ 0('1’ Qr'll Q(b erb Q'bl Q'b‘ Q‘Q Q"\ Q{'l’ Q('b QP‘ Qcp Q'® Q/‘\ Q?j Qc'b Q‘Q Q"\ Q('L Qr'b Q‘? Qcp Qcp Qg) Q/‘\ Q"b
26 30 168 1
20 22 126 .75
[0
T — 5
S 3 o515 2 o4 5
© 3}
6 I | 8 | 42 .25
0 oLyl kil |-|- 0 | <L |-|-I 0 | I . |-| o
> N b © 0 DN o Q QO Al O H D DO D H N O N OO A DA D
RSP INAN RN AR SR PFPPLLLIS SRR A LG AT LR AP
2} n
6 c
o o]
(0] =1 o
T4 |5} S
S 9 £
(@] 3 o
2 o O

N
8 4 39 1
3 29 75
B2 20 5
I [ER S i
0 i o o A I Anile |,
©

D O D D D 6 P A O > © > N D A XA O A Ao @D PG 6 @R A
NN A NN NN UENIRN AN PPN NN RN o Y g P 0 T SV ?
18 93 4 1
14 70 3 75
c a £
o =] ©
@ 9 8 46 q 2 5
O 3]
4 23 I 1 25
0 I [B | 0 I I [| I] 0 I I 0
D O D L K R © LA AN A > N A XN & b OO A B DN D © D QA
PPN AN PN N N NN I PN 2PN PN AP PN PN NN PPN NN N AN PN PN PN
28 100 23 1
21 75 17 .75
o <)
S 14 © 50 £ 12 5
i = —
7 I 25 I 6 I .25
0 0 I I - - - [| I - 0 | I n n I 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B Ekstazi Fast M Fastazi @ Random

The vertical axes represent the number of failures revealed in absolute (left) and in relative terms (right), whereas the horizontal axes show the budgets w.r.t the number of tests
selected by Ekstazi (bottom) and w.r.t the total number of tests in the subject’s test suite (top).

Figure 5: Impact on failure detection capability grouped by subject and by budget.

122

Comparing and Combining File-based Selection and Similarity-based Prioritization towards Regression Test Orchestration

Table 5: Time Efficiency Comparison.

Comparison p-value Significance Effect Size (A;2)
FAST-Ekstazi 0.000462 *** 0.04 (large)
FAST-Fastazi 0.000366 *** 0.03 (large)
Fastazi-Ekstazi 1 ns 0.55 (negligible)

*kk

ns = not significant, “** means p-value < 0.001

Looking at the average execution times for FAST, Ekstazi, and
Fastazi (the three rightmost columns in Table 4) the two main things
we can observe are: i) overall, FAST is the technique that incurs the
least time overhead; and ii) the overhead of Fastazi with respect to
Ekstazi running time is generally very small.

To confirm our observations we performed the non-parametric
Kruskal-Wallis rank sum test, and the result (p-value = 4.5e-05)
confirmed that at least one of the approaches was different from
the others with respect to the time efficiency. Provided that sig-
nificant differences were detected, we proceeded with pairwise
comparisons to determine which approaches were different and the
results are displayed in Table 5. Statistically significant differences
were observed when comparing FAST with Ekstazi and Fastazi, but
not when comparing Fastazi with Ekstazi. Finally, to understand
if the observed differences in time efficiency are not only statis-
tically significant but also meaningful to support practitioners in
the decision of whether Fastazi should be adopted, we measured
the effect size. The results can be interpreted in an analogous way
of that explained in Section 5.1. The effect size for the comparison
of FAST with Ekstazi and Fastazi was Alz = 0.04 and Alz =0.03,
respectively, indicating that the effect on the time overhead when
running Ekstazi or Fastazi is large. On the other hand, the effect size
for the comparison between Fastazi and Ekstazi was Alz = 0.55,
indicating that the additional time overhead incurred by Fastazi when
compared with Ekstazi is negligible.

It is important to notice that such results concern the overhead
time required by the studied techniques, which are anyhow one or
two orders of magnitude shorter than the time required for actually
running the whole test suites.

Summary of RQ3: When considering the three approaches in iso-
lation, FAST is the most efficient one and the difference with respect
to the time overhead incurred by the other approaches is large. The
additional time overhead incurred by Fastazi for prioritizing the
test cases selected by Ekstazi is not statistically significant and the
effect size is negligible.

5.4 Takeaway

RQ1 shows that Fastazi is statistically more effective than Ekstazi,
which in turn is more effective than FAST and all techniques outper-
form random prioritization. Furthermore, in RQ2 it is shown that
under limited test budgets Fastazi consistently outperforms Ekstazi
and FAST. Meanwhile, RQ3 indicates that Fastazi adds negligible
overhead compared to Ekstazi, so incorporating TCP into a project
that already uses TCS can be encouraged.

123

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

5.5 Threats to validity

We evaluated Fastazi using faults available in Defects4]. Our re-
sults and conclusions could be different had we used another bug
repository. However, Defects4] is among the most popular bug
repositories and is heavily used in research on regression testing.
Additionally, it includes real faults, which strengthens our findings.

The fact that we use Defects4] means that we were running
experiments on project versions that are potentially very far apart
(e.g., years). In this setup, Ekstazi might select a very large number
of tests, because it was designed for small code changes between two
consecutive commits [9, 34]. However, Ekstazi ended up performing
well even in our setup.

We defined the testing budget as the number of tests that one can
run at each project version, which does not take into account the
differences in individual test execution time. As we focus on unit
tests, we do not expect that there would be substantial differences
in execution time across tests.

To measure effectiveness, we used TTFF and APFD. As known
the Defects4] subjects contain only one fault per version and hence
the two measures behave similarly. To mitigate this issue, we need
to perform more studies on subjects containing multiple faults, for
which the APFD measure becomes more valuable.

In our experiments we assume that test execution is deterministic,
which we know does not always hold in practice, i.e., tests are
flaky [13, 23]. We have not observed any flaky behavior in our
experiments: only the expected set of tests was failing in each run.

6 RELATED WORK

The literature on regression test selection and prioritization is huge
and, for a comprehensive overview of proposed approaches, we re-
fer to several existing surveys, both generally on regression testing,
such as [3, 27], or specifically on TCS [17] and TCP [19]. In this
section we focus on related work about comparing and combining
TCS and TCP techniques.

Actually, while there are plenty of studies that compare among
themselves different TCS techniques, e.g., [21, 31], or TCP ones,
e.g., [14, 24], we could only find one earlier work by Najafi et al. [26]
that evaluates selection and prioritization one against the other.
The focus of Najafi et al’s study is to understand if and how history-
based techniques of either TCS or TCP, or their combination, can
improve test effectiveness in the complex infrastructure of Ericsson
company. Thus the objectives of their study are similar to ours,
however their investigation is related to leveraging test execution
history for both techniques. They conclude that in their context and
considering cost savings, prioritization alone outperforms both se-
lection alone and their combination. Differently from them, we aim
here to combine different test criteria. Certainly a future promising
direction can be that of further combining file-based selection and
similarity-based TCP with the usage of historical test information.

As the above is the only paper we found that compares TCS and
TCP, the remainder of the section we overview related work on
combining them. Considering a Continuous Integration process,
Elbaum et al. [6] propose to first apply TCS for the pre-submit
testing of new or changed modules that must be integrated into
the code base, and then TCP for the post-submit phase. Both the

AST ’22, May 17-18, 2022, Pittsburgh, PA, USA

proposed TCS and TCP algorithms are conceived for very large-
scale contexts, such as Google CI environment, and hence utilize
simple lightweight analyses relying on the time elapsed since a test
has been executed or failed. In comparison, our approach leverages
more fine-grained information, combining change-awareness and
similarity criteria that have both individually proven to be effective
in revealing possible regression faults. At the same time, as both
Ekstazi and FAST were originally conceived with practicality in
mind, we expect that Fastazi can scale up even beyond the size of
subjects in which it has been evaluated.

Silva et al. [30] assume a Software Quality Function Deployment
process and prioritize the test cases starting from the relevance of
product features based on customers’ needs. Test selection is per-
formed using Ant Colony Optimization that refers to the criticality
of test cases as calculated by a Fuzzy Inference System, and do
not consider the software changes. Overall, while sharing a similar
goal with us, this approach relies on a specific process and needs
to weight classes relevance, hence applicability seems less general.
Banias [1] proposes to apply a dynamic programming optimization
algorithm that returns a ranked selection of test cases, after they
have been assigned a cost that consider several project-specific
importance criteria. In the context of an agile approach, Kandil et
al. [16] combine the prioritization of test cases at each sprint, based
on various process parameters, with the selection from clusters of
test cases that exercise same functionalities of failed ones. In sum-
mary, the above works [1, 16, 30] combine TCS with prioritization
based on some weighting criteria that require project specific infor-
mation. In contrast, by merely relying on test code similarity that
has proven effective for test prioritization, Fastazi can be applied
in fully automated way without requiring any test annotations.

Some works explore the usage of learning techniques for TCP in
combination with TCS heuristics, within a Continuous Integration
environment. For instance, at each release Spieker et al. [32] priori-
tize test cases based on the failure history by reinforcement-learning
algorithms, and then - if resources are not sufficient — apply se-
lection based on execution constraints. More recently, Bertolino
et al. [2] evaluate the effectiveness of several learning techniques
(both supervised and reinforcement ones) for prioritization, con-
sidering further features in addition to failure history, after having
performed a conservative test selection by static class-level depen-
dency analysis of changes. In such approaches the greatest emphasis
is on the ranking of test cases, which can be obviously addressed as
a learning problem, whereas selection is left to simple heuristics ap-
plied before [2] or after [32] test suite reordering. Here we consider
both TCS and TCP as equally important and aim at evaluating their
combined application against each individual technique. Moreover,
neither work considered a notion of test case similarity as we do.

Finally, a few works aim at reducing the number of test cases to
be executed when the budget is constrained, similarly to our study
in RQ2. Cibulski and Yehudai [4] reduce the problem of bounded
TCS to test prioritization, in that the test cases are prioritized and
then the top k are executed. However, the ranking is driven by the
exposure of test cases to changes, as usually done in TCS. Shi et
al. [29] instead evaluate the “selection of reduction” approach, in
which TCS is performed after test suite reduction [18]. Their results
show that the combined approach achieves a gain in size reduction
but at the cost of potential loss in failure detection effectiveness.

124

Renan Greca, Breno Miranda, Milos Gligoric, Antonia Bertolino

Unlike this work, Fastazi aims at explicitly combining a selection
criterion and a prioritization criterion, for the sake of improving
failure detection rate, both in the case of available time for affording
a safe selection, and even in the case of constrained testing budget.

7 CONCLUSIONS AND FUTURE WORK

Software regression testing has undergone extensive research in
the last several decades. The largest part of solutions, though, ad-
dressed separately one dimension of the problem at a time. While
many TCS and TCP techniques have been proposed, they have
not been directly compared, only few authors look into integrated
approaches for combined selection and prioritization, and no work
empirically assessed the advantages of using TCS and TCP in com-
bination over their individual application. In contrast, we believe
that, by merging differing criteria for selection and prioritization,
we can achieve the most from the restricted subset of test cases that
can be executed at each new release.

Towards this direction, we presented a study directly compar-
ing two recent practical and effective approaches to TCS and TCP,
namely file-based selection (by Ekstazi) and similarity-based pri-
oritization (by FAST). Our results show that Ekstazi generally out-
performs FAST, although the effect size is negligible or small; how-
ever, their orchestration by Fastazi outperforms both with a non-
negligible effect. Moreover, considering a limited test budget, Fastazi
exposed a higher effectiveness in consistent way. After assessing
the overhead imposed by each of the studied approaches, we can
conclude that Fastazi is quite practical: if we parallelize the prepa-
ration steps, the additional cost of similarity-based prioritization of
the test cases selected by Ekstazi is negligible.

We aim at further improving the effectiveness and efficiency of
Fastazi by refining several technical aspects. In particular, to make
the approach more easily usable, it should be integrated into build
systems as a plug-in as Ekstazi is now. In addition to that, we would
also like to try orchestrating other TCS and TCP techniques from
the literature to understand the resulting challenges and outcomes.

More generally, with this work we have paved the way to explor-
ing a full range of potential strategies of combining differing criteria
for selection and prioritization. It can be worthwhile to also expand
the study to the orchestration of techniques along other dimensions
of regression testing, e.g., also test reduction or test amplification.
Overall, we consider that for maximized efficacy under restricted
budgets the problem of regression testing should be addressed in a
holistic strategy that we called regression test orchestration.

DATA AVAILABILITY

All material required for the replication of this study can be found in
our replication package [11], including: (1) experiment source code,
(2) further details about the experiment subjects, (3) instructions for
running the experiments, (4) raw and absolute values of the results
seen in the paper, (5) data used as source for tables and figures, and
(6) supplementary results of experiments not shown in the paper.

ACKNOWLEDGEMENTS

We thank anonymous reviewers for their feedback. This research
was partially supported by a FACEPE grant (APQ-0783-1.03/21) and
the US National Science Foundation under Grant No. CCF-1652517.

Comparing and Combining File-based Selection and Similarity-based Prioritization towards Regression Test Orchestration

REFERENCES

(1]

[2]

B3

=

[s

l6

7

(8]

[

[10

(1]

[12]

(13]

[14

[15

=
&

(17

[18

Ovidiu Banias. 2019. Test case selection-prioritization approach based on memo-
ization dynamic programming algorithm. Information and Software Technology
115 (2019), 119-130.

Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1-12.

Nauman Bin Ali, Emelie Engstrom, Masoumeh Taromirad, Mohammad Reza
Mousavi, Nasir Mehmood Minhas, Daniel Helgesson, Sebastian Kunze, and Mahsa
Varshosaz. 2019. On the search for industry-relevant regression testing research.
Empirical Software Engineering 24, 4 (Aug. 2019), 2020-2055. https://doi.org/10.
1007/510664-018-9670-1 ISBN: 1066401896 Publisher: Springer New York LLC.
Hagai Cibulski and Amiram Yehudai. 2011. Regression test selection techniques
for test-driven development. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops. IEEE, 115-124.

Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015.
Coverage-based regression test case selection, minimization and prioritization: A
case study on an industrial system. Software Testing, Verification and Reliability
25, 4 (2015), 371-396.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 235-245.

Michael G Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical evaluation of pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 234-245.

Vahid Garousi, Ramazan Ozkan, and Aysu Betin-Can. 2018. Multi-objective
regression test selection in practice: An empirical study in the defense software
industry. Information and Software Technology 103 (2018), 40-54.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the 2015 In-
ternational Symposium on Software Testing and Analysis (Baltimore, MD, USA)
(ISSTA 2015). Association for Computing Machinery, New York, NY, USA, 211-222.
https://doi.org/10.1145/2771783.2771784

Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An Em-
pirical Evaluation and Comparison of Manual and Automated Test Selection. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE '14). Association for Computing Machinery,
New York, NY, USA, 361-372. https://doi.org/10.1145/2642937.2643019

Renan Greca, Breno Miranda, Milos Gligoric, and Antonia Bertolino. 2022.
Comparing and Combining File-based Selection and Similarity-based Prioritiza-
tion towards Regression Test Orchestration (Replication Package) (1.2). https:
//doi.org/10.5281/zenodo.6402708

Mark Harman. 2011. Making the case for MORTO: Multi objective regression test
optimization. In 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 111-114.

Mark Harman and Peter O’'Hearn. 2018. From start-ups to scale-ups: Opportuni-
ties and open problems for static and dynamic program analysis. In Proceedings
of the 18th International Working Conference on Source Code Analysis and Manipu-
lation (SCAM 18). IEEE, 1-23.

Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-Box and Black-Box Test Prioritization. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 523-534. https:
//doi.org/10.1145/2884781.2884791

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437-440.
Passant Kandil, Sherin Moussa, and Nagwa Badr. 2017. Cluster-based test cases
prioritization and selection technique for agile regression testing. Journal of
Software: Evolution and Process 29, 6 (2017), e1794.

Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017.
Effective Regression Test Case Selection: A Systematic Literature Review. Comput.
Surveys 50, 2 (June 2017), 1-32. https://doi.org/10.1145/3057269

Saif Ur Rehman Khan, Sai Peck Lee, Nadeem Javaid, and Wadood Abdul. 2018.
A systematic review on test suite reduction: Approaches, experiment’s quality

125

[19

[21

[22]

[23

[24]

[25

[26

[27]

[28

[29]

[30

[31

@
S

[33

[34]

[35

'S
o

[37

AST °22, May 17-18, 2022, Pittsburgh, PA, USA

evaluation, and guidelines. IEEE Access 6 (2018), 11816-11841.

Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster
Tumeng. 2018. Test case prioritization approaches in regression testing: A sys-
tematic literature review. Information and Software Technology 93 (Jan. 2018),
74-93. https://doi.org/10.1016/].infsof.2017.08.014

Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Séder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting continuous integration by code-churn based
test selection. In 2015 IEEE/ACM 2nd International Workshop on Rapid Continuous

Software Engineering. IEEE, 19-25.
Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An extensive study of static regression test selection
in modern software evolution. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 583-594.

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 643-653.

Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. 2019. How
Do Static and Dynamic Test Case Prioritization Techniques Perform on Modern
Software Systems? An Extensive Study on GitHub Projects. IEEE Transactions on
Software Engineering 45, 11 (2019), 1054-1080. https://doi.org/10.1109/TSE.2018.
2822270

Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST Approaches to Scalable Similarity-Based Test Case Prioritization. In
International Conference on Software Engineering. 222-232.

Armin Najafi, Weiyi Shang, and Peter C Rigby. 2019. Improving test effectiveness
using test executions history: An industrial experience report. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 213-222.

R H Rosero, O S Gomez, and G Rodriguez. 2016. 15 Years of Software Regres-
sion Testing Techniques - A Survey. International Journal of Software Engineer-
ing and Knowledge Engineering 26, 5 (2016), 675-689. https://doi.org/10.1142/
50218194016300013

Gregg Rothermel and Mary Jean Harrold. 1994. A Framework for Evaluating
Regression Test Selection Techniques. In International Conference on Software
Engineering. 201-210.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
combining test-suite reduction and regression test selection. In Proceedings of
the 2015 10th joint meeting on foundations of software engineering. 237-247.
Dennis Silva, Ricardo Rabelo, Matheus Campanha, Pedro Santos Neto, Pe-
dro Almir Oliveira, and Ricardo Britto. 2016. A hybrid approach for test case
prioritization and selection. In 2016 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 4508-4515.

Quinten David Soetens, Serge Demeyer, Andy Zaidman, and Javier Pérez. 2016.
Change-based test selection: an empirical evaluation. Empirical software engi-
neering 21, 5 (2016), 1990-2032.

Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in continu-
ous integration. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 12-22.

Andras Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101-132.

Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017. File-
level vs. Module-level Regression Test Selection for .NET. In Symposium on the
Foundations of Software Engineering, Industrial Track. 848-853.

Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67-120.

Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster fault finding at Google
using multi objective regression test optimisation. In 8th European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE’11), Szeged, Hungary.

Lingming Zhang. 2018. Hybrid regression test selection. In International Confer-
ence on Software Engineering. 199-209.

