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Abstract

Data-centers have recently experienced a fast growth in energy demand, mainly due to cloud computing,
a paradigm that lets the users access shared computing resources (e.g., servers, storage, etc.). Several
techniques have been proposed in order to alleviate this problem, and numerous power models have been
adopted to predict the servers’ power consumption. Some of them consider many server resources, some
others account for only the CPU, that has proven to be the component responsible for the largest part of a
server’s power consumption. All these models work with generally inaccurate input parameters. However,
none of them takes into account the effects of such inaccuracy on the model outputs. This paper inves-
tigates how epistemic (parametric) uncertainty affects a power model. Studying the impact of epistemic
uncertainty on power consumption models makes it possible to consider loads with a probability density
while investigating the battery depletion time or the amount of energy required for a given task.

Keywords: power consumption, energy consumption, power models, epistemic uncertainty, parametric
uncertainty, uncertainty propagation, M/M/c/K

1 Introduction

Servers’ energy consumption is now one of the main issues to be considered while

developing new applications. For example, the U.S. data-centers energy consump-

tion is estimated to be 73 billion kWh in 2020 [31]. Another energy consumption

related problem is about managing those big infrastructures in order to improve
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their efficiency and fault tolerance [19]. Furthermore, uninterruptible power sup-

plies (UPS) are used for emergency power when the main power source fails. To

better investigate these problems and to decrease the global amount of energy con-

sumed by data-centers, accurate power consumption models are required. In past

years, scientific and business organizations provided several power models to esti-

mate the data-centers power consumption [11,1,14]. Depending on the granularity

at which the problem is studied, the power models consider only few resources or

the whole data-center.

The power consumption models are generally solved with fixed values for their

input parameters. However, since those parameters are estimated from finite num-

ber of collected samples, they introduce into the model some uncertainties due to

partial information. Thus, the uncertainty needs to be propagated from the inputs

to the output. This kind of parametric uncertainty is called epistemic uncertainty

[21].

In this paper we wish to apply epistemic uncertainty propagation to power con-

sumption estimation, when the data-center arrivals forms a homogeneous Poisson

process and service times are exponentially distributed (i.e., the rates are fixed over

time). Although several works in literature take into consideration aleatory uncer-

tainty while analyzing a general model [13,30], just a few consider the epistemic un-

certainty. Indeed, while aleatory uncertainty is due to the natural variations of the

physical phenomenon modeled by the system, epistemic uncertainty is introduced

into the model by a lack of knowledge (i.e., finite number of observations, that in our

case makes estimation of Λ and M inaccurate) and needs to be propagated to the

output. Albeit in the former case the uncertainty is reduced improving the model

itself, in the latter one it may be curtailed by collecting a larger amount of samples

for a more accurate input parameter estimation. For this reason, we assume some

of the input parameters of the power model are assessed with uncertainty, thus to

be stochastic. Those input parameters become input random variables (r.v.) with a

probability density function (pdf). Thus, the power model does not return an exact

value, but some stochastic results with a confidence interval. Hereinafter, we refer

to r.v. with capital letters, and use the small ones to refer to their observed values.

In order to propagate the uncertainty from model inputs to its outputs, we adopt

a multi-dimensional integration technique [21,23,22] that has been already applied

to dependability models. To the best of our knowledge, epistemic uncertainty has

never been applied to models that estimate the servers’ power consumption.

In order to investigate how epistemic uncertainty propagation affects the power

consumption of a machine, we collect several samples while performing some bench-

marks, thus considering different resource utilizations. In particular, we observed

an ASUS desktop computer with an Intel i7-3770 CPU@3.4GHz, with 4 cores and a

Simultaneous multi-threading (SMT) level of 2 (i.e., it can concurrently run 8 par-

allel threads, in spite of the 4 physical cores), a 16GB memory, a dedicated GeForce

GTX 560 GPU, two hard disk drives and a solid state disk, and running an Ubuntu

14.04 OS. Albeit some relationships between CPU utilization and server’s power

consumptions are given in [11], they are affected by SMT when its level is higher
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than 1 [5]. For the sake of simplicity, in this paper we assume the machine we

consider has SMT = 1, thus we turn off four of the eight available logical CPUs in

order to have one thread for each physical core.

As said in [11], CPU utilization is generally the only parameter we need to

estimate a server’s power consumption. For this reason, the machine analyzed

in this paper is modeled only considering its CPU. In particular, we model it as

an M/M/c/K queue, where inter-arrival and service times are exponentially dis-

tributed, the number of available servers is c = 4 (i.e., the 4 physical cores), and

K is the maximum capacity of the queue, since data-centers usually have a finite

buffer [26]. When dealing with data-centers and cloud resources, new tasks arrival

and execution times (e.g., virtual machines and users requests) are often assumed to

be exponentially distributed [24,37,2]. Although an empirically measured workload

would be more accurate, the exponentially distributed one is typically adopted when

analyzing queuing models [20]. Moreover, besides letting us easily estimate the den-

sity of inter-arrival and service rates [21], Λ and M , respectively, the M/M/c/K

model also allows to consider an always stable system, without requiring further

assumptions on the observed values, λ and μ, of the two random variables. Setting

the capacity K to high values, we can analyze queues with large capacity, without

dealing with the stability condition, (i.e., λ < c · μ).
The obtained theoretic results are then applied to a practical case. We consider

an uninterruptible power supply that starts working after the main power source

fails. In particular, we wish to study the backup battery life when it is strained by

a constant load whose characteristics are affected by epistemic uncertainty. Indeed,

the load of a UPS may be derived from the power consumption of the server the

battery must keep on. Since such a power consumption (i.e., the output of the power

model) is uncertain due to the epistemic uncertainty of the input parameters, the

UPS load cannot be estimated with certainty.

The remainder of this paper is structured as follows. In Section 2 previous work

about existing power models, epistemic uncertainty propagation and battery models

is discussed. In Section 3 the adopted power model is presented, and the densities

of its input random variable are investigated starting from the samples collected

during several measurement campaigns. Section 4 defines the equations used in

this paper for uncertainty propagation, describes the obtained results and validates

them against the measured data. In Section 5 the UPS case-study is investigated,

and Section 6 concludes the paper.

2 Related work

Several power models have been proposed during recent years for studying and

developing new techniques to decrease data-centers power consumption. In [29],

Priya et al. described the main power consumption models used for data-centers.

The linear model proposed by Fan et al. in [11] is the most used one in the literature

[6,12,39]. In this case, power consumption is assumed to linearly grow with CPU
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utilization, following the equation:

P (U) = Pidle + (Pbusy − Pidle) · U (1)

where Pidle and Pbusy are the power consumptions of an idle server and a fully

utilized one, respectively, whereas U is the CPU utilization. This model is adopted

in [39] to identify the data-center cooling energy saving potential, and in [12] to

model a predictive control that is able to save a significant amount of energy. Cerotti

et al. [6] used the linear model to study the power consumption of Pool depletion

systems.

Fan et al. also introduced a non-linear model where power consumption increases

monotonically with the CPU utilization. The equation that defines the non-linear

model is:

P (U) = Pidle + (Pbusy − Pidle) · (2U − U r) (2)

where r is a calibration parameter that is estimated through experiments.

Buyya et al. [3] proposed a power model similar to the one introduced in [11]

in order to deal with the energy-aware resource allocation in cloud environments.

Since the ratio between Pidle and Pbusy is generally known (e.g., 70%), they adopted

the model:

P (U) = c · Pbusy + (1− c) · Pbusy · U (3)

where c = Pidle/Pbusy. This power model has also been used in [4] to propose an

adaptation strategy for managed Cassandra data centers.

Due to the small number of required parameters, these are the simplest available

power models. Nonetheless, several other more accurate power models have been

proposed in literature. The cost of a greater accuracy is the complexity of the model

itself. For example, since dynamic voltage/frequency scaling (DVFS) and hyper-

threading have been adopted to decrease server’s energy consumption, researchers

also proposed some power models that take into consideration these two techniques.

It is the case of [5] where CPU utilization in Eq. (1) has been weighted by a factor

Δ defined as:

Δ =

(
Cth

Tth
αth +

Ccr

Tcr
αcr

)
·
(

fr

frmax

)η

(4)

where αth, αcr and η are evaluated by a fitting procedure, Cth (Ccr) and Tth (Tcr)

are the number of used threads (cores) and the total number of available threads

(cores), respectively, fr is the average CPU frequency and frmax is the maximum

one.

Other power models consider several server components besides the CPU. For

example, Bohra et al. [1] used the following model:

P = Pidle + ccpu · ξcpu + ccache · ξcache + cmem · ξmem + cdisk · ξdisk (5)

where cr is the weight of the monitored system events ξr for resource r (i.e., CPU,

cache, memory and disk).

Other available models take into consideration the power consumption of the

whole data-center. For example, Gosh et al. [14] proposed a stochastic model to
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evaluate the performability of an IaaS Cloud environment and its cost. In particular,

they grouped all the physical machines into three different pools (i.e., hot, warm and

cold) based on their current status (i.e., running, turned on and not ready, turned

off, respectively). Thus, they gave different costs to performance and dependability

parameters in order to evaluate and eventually optimize the cost and capacity of the

considered environment. While considering the power consumption of the physical

machines and its cost, they also take into account the cooling cost. Indeed, the

power consumption for cooling mechanisms is estimated to be between 30% and

50% of the data-center total power consumption [25,10].

For the purpose of this paper, we first adopt the power model in Eq. (2) and,

similarly to what has been done by Buyya et al. in [3], we further reduce the number

of required input parameters expressing Pbusy as a function of Pidle.

As said in Section 1, in this paper we wish to apply epistemic uncertainty prop-

agation techniques to data-centers power consumption estimation. Epistemic un-

certainty – due to a lack of knowledge, and generally ascribed to the finite number

of collected samples during the measurement campaign [9,40] – must not be con-

fused with aleatory uncertainty. Indeed, differently from the epistemic uncertainty

that is considered in this paper, aleatory uncertainty is caused by variations in the

analyzed physical phenomenon [32,34].

Epistemic uncertainty has been considered in dependability models [22,28] and

performance related models [36]. To the best of our knowledge, epistemic uncer-

tainty has never been incorporated in the predictions of a power model. For this

purpose, we resort to the multiple integral equations given in [21]. In particular,

consider a set of input random variables {Θi, i = 1, 2, ..., l} and an output measure

M defined as a random variable M = g(Θ1,Θ2, ...,Θl). Computing the output mea-

sure at specific parameter values can be seen as computing the conditional measure

M(Θ1 = θ1,Θ2 = θ2, ...,Θl = θl) (henceforward denoted by M(•)) because of the

uncertainty introduced by the input parameters. Applying theorem of total prob-

ability [35] and using joint epistemic density fΘ1,Θ2,...,Θl
(θ1, θ2, ..., θl) (hereinafter

denoted by f(•)), the conditional measure M(•) can be unconditioned. Thus, Cdf

of the measure M is computed as follows:

FM (m) =

∫
...

∫
1(M(•) < m) · f(•) dθ1 ... dθl (6)

where 1(ζ) is an indicator variable that is 1 when the event ζ is verified, and 0

otherwise. Instead, the expected values of measure M is computed as:

E[M ] =

∫
...

∫
M(•) · f(•) dθ1 ... dθl (7)

For the sake of simplicity, in this paper, we assume the epistemic random variables

to be independent, thus the joint epistemic density is given by the product of the

marginals:

f(•) = fΘ1,Θ2,...,Θl
(θ1, θ2, ..., θl) = fΘ1(θ1) · fΘ2(θ2) · ... · fΘl

(θl)
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While considering the exploitation case, we investigate the lifetime distribution

of a UPS battery when the power model adopted to estimate the system power

consumption is using uncertain input parameters. Several battery models have

been proposed in the literature: some of them, such as the electro-chemical models

[8], are very accurate and need several input parameters to work; some others, like

the kinetic battery model (KiBaM) [18,16], need just a few parameters and may be

easily used also by inexperienced users. In this paper, we adopt the latter model.

The KiBaM is an accurate and simple model [18,16] that divides the stored

charge into two different wells: the available charge and the bound charge. The

two wells are connected by a pipe and the charge can migrate in both directions –

based on the level of charge in the two wells – at a given rate ω. At the beginning,

a fraction φ = [0, 1] of the total capacity is in the available charge well, and the

remaining 1− φ fraction is in the bound charge well. When the battery is strained,

only the available charge may be used, whereas the bound charge slowly becomes

available charge. For the purpose of this paper, we are interested in the lifetime

equation. It is derived in [18] by solving the differential equations that models the

change of the charge of both the wells that, when the load is assumed to be constant,

is:

I · t+ (1− φ) · I
φ

· 1− e−ω′t

ω′
= γ̂ (8)

where I is the load that is straining the battery, t is the lifetime of the battery, γ̂ is

the battery full capacity and ω′ = ω/[φ(1− φ)].

Although [16] has already analyzed how uncertainty on input parameters (i.e.,

initial capacity and load) affects the KiBaM performance in predicting the GomX-

1 4 satellite state of charge, they expressed the uncertainty on the output measure

without considering the number of observations of the input parameters. In this

sense, our technique lets the users consider the amount of samples to be collected

in order to get a more accurate output measure.

3 Modeling M/M/c/K queues power consumption

For the purpose of this paper, the power model presented in [11] and defined

by Eq. (2) is our starting point. Stress 5 is the benchmark we used to gen-

erate the CPU workload. In order to consider different CPU utilization (i.e.,

U = {0%, 25%, 50%, 75%, 100%}), we made Stress work with a different amount

of threads (i.e., Threads = {0, 1, 2, 3, 4}). Note that, power consumption samples

observed when U = 0% and U = 100% are Pidle and Pbusy samples, respectively.

Before adopting Eq. (2) to study the power consumption of a server, sam-

ples collection and parameters estimation are required. As previously said, the

finite number of observation for the input parameters is the source of epistemic

uncertainty. Thus, in this paper, uncertainty is introduced into the system by the

stochastic parameters Pidle, Pbusy, r and U .

4 https://gomspace.com/gomx-1.aspx
5 https://people.seas.harvard.edu/~apw/stress/
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Fig. 1. Q-Q plot representing the linear relationship between Pidle and Pbusy samples.

In order to decrease the number of random variables, we express Pbusy as a

function of Pidle. To this end, samples analysis and algebraic manipulation have

been performed and a linear relationship between the two parameters has been

identified. The relationship is defined by the equation Pbusy = m ·Pidle+q where, in

the case of the architecture described in Section 1, m = 0.796211 and q = 61.8296.

In Fig. 1 a Q-Q shows the existing linear relationship between Pbusy and Pidle.

Some points are not fitted by the linear equation. We argue those outliers are due

to background processes that were executed during the measurement campaign,

making the system collect some Pidle samples when U �= 0%.

Thus, power model given in Eq. (2) is extended considering the linear relation-

ship, and it becomes:

P (U,Pidle, r) = Pidle + [q + (m− 1) · Pidle] · (2U − U r) (9)

with m = 0.796211 and q = 61.8296.

The effectiveness of the power model defined by Eq. (9) is shown in Fig. 2,

where a Q-Q plot compares [PEst|U ], the distribution of the system power con-

sumption estimated through Eq. (9) with a fixed value U , with PSamp(U), the

power consumption distribution estimated from the samples collected during the

measurement campaign for the considered utilization level U . In particular, each

realization of [PEst|U ] is determined starting from the sampled distribution of the

system idle, PSamp(0), the considered utilization level U , and the calibration param-

eter r = 1.45862 (where such value has been estimated from the collected samples).

In particular we have:

[PEst|U ] = PSamp(0) + [61.8296− 0.203789 · PSamp(0)] · (2U − U1.45862) (10)

As it can be seen, the obtained curves are closely aligned to the 45◦ line for all

values of U , showing that the proposed procedure is capable of estimating very well

the real power consumption distribution for a given utilization level U .

As stated in Section 1, we consider an M/M/c/K queue to avoid stability issues.

M. Gribaudo et al. / Electronic Notes in Theoretical Computer Science 337 (2018) 67–86 73



Fig. 2. Q-Q plot comparing the distribution of the estimated power consumption [PEst|U ] against the
sampled one PSamp(U).

Thus, solving the proper continuous time Markov chain (CTMC), U is computed

through equation [33]:

U = 1−
c∑

i=0

(c− i) · πi
c

(11)

where the probability to be in state i of the considered CTMC, πi, is defined as:

πi =

⎧⎨
⎩

Λi

i!M i · π0 for 0 ≤ i ≤ c

Λi

ci−cc!M i · π0 for c ≤ i ≤ K
(12)

and π0, the probability to be in state 0, is:

π0 =

(
c−1∑
i=0

Λi

i!M i
+

K∑
i=c

Λi

ci−cc!M i

)−1
(13)

Assuming to know the number of cores of the considered architecture, c, and its

buffer capacity, K, the utilization of the resource is a stochastic object on the two

r.v. Λ and M , the arrival and service rates, respectively.

Deriving queue utilization, U , starting from Λ and M estimates as in Eq. (11),

instead of collecting utilizations samples, has a two-fold advantage: i) differently

from U , Λ and M estimation does not require to determine an optimal time window;

ii) it enables what-if analysis, thus to study the system under different values of

inter-arrival and service rates.

The densities of the input random variables that may affect the output of the

power model (i.e., arrival rate Λ, service rate M , Pidle and calibration parameter r)

are here analyzed.

As said and proved in [21,23,22], the rate of an exponential distribution deter-

mined from a finite set of its samples is Erlang distributed. It is the case of the

arrival and service rates when dealing with M/M/c/K queues. In particular, since

arrival (service) time, X, is exponentially distributed with rate λ (resp. μ), the
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Fig. 3. On the left, the density of the collected Pidle samples compared to a Normal(58.992, 0.619657) one.
On the right, a Q-Q plot that compares the collected samples to the random variates estimated through
the Normal distribution.

random variable SX =
∑kx

i=1Xi follows a kX -stage Erlang distribution with rate

parameter λ (resp. μ), and its pdf, given Λ = λ (resp. M = μ), is:

fSΛ|Λ(sΛ|λ) =
λkΛskΛ−1Λ e−λsΛ

(kΛ − 1)!
, fSM |M (sM |μ) = μkM skM−1M e−μsM

(kM − 1)!
(14)

Applying Bayes theorem and using Jeffreys’ prior for Λ (resp. M) (i.e., fΛ(λ) =

sΛ/λ, and fM (μ) = sM/μ) as done in [22], the pdf of rate parameter Λ (resp. M)

is derived as:

fΛ|SΛ
(λ|sΛ) = λkΛ−1skΛΛ e−λsΛ

(kΛ − 1)!
= Erlang(kΛ, sΛ) ,

fM |SM
(μ|sM ) =

μkM−1skMe−μsM

(kM − 1)!
= Erlang(kM , sM )

(15)

With regard to the densities of Pidle and calibration parameter r, we use Math-

ematica [17] to fit the collected samples and find their densities. The results that

estimate the Pidle density are shown in Fig. 3. They have been derived after col-

lecting 20000 samples. In particular, in Fig. 3a the pdf of the collected samples

is compared to the one of the estimated Normal(58.992, 0.619657) distribution. In

Fig. 3b a Q-Q plot is used to analyze the two densities. The results confirm that

the density of the Pidle samples observed during the measurement campaign can

be approximated by the estimated Normal distribution. The coefficient of varia-

tion (cv) is computed as the ratio of the standard deviation to the mean, and for

Pidle ∼ Normal(58.992, 0.619657) it is cv = 0.0105. Since it is larger than 1%, the

impact of Pidle density on the output of the model described by Eq. (9) is further

analyzed in the next Section.

In order to evaluate the calibration parameter r density, 3700 samples have been

collected for each considered value of utilization, U ; for this purpose, we used 3700

samples since it has been found to be a good trade-off between the quality of the

measure and the time required for samples collection. Then, 100 sets have been cre-

ated, each one composed by 185 randomly selected samples (i.e., 37 samples for each

value of U). Finally, starting from the 100 sets, Mathematica is used to estimate
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Fig. 4. On the left, the density of the estimated r samples compared to a Normal(1.45862, 0.00439) one.
On the right, the Cdf of the normal distribution.

the values of parameter r and its density. The results are shown in Fig. 4, where the

pdf and cumulative distribution function (Cdf) of r ∼ Normal(1.45862, 0.00439) is

plotted. Due to its small coefficient of variation, cv = 0.003, calibration parameter

r is not considered as a source of uncertainty for the purpose of this paper and it is

assumed to be exactly known.

4 Epistemic uncertainty in power models

In this Section, the techniques used to study uncertainty propagation in power

model described by Eq. (9) are presented. In order to identify the parameters

that must be considered to obtain more accurate results, we analyze two different

cases: i) the uncertainty is introduced into the system by Pidle, Λ and M , and ii)

only Λ and M are the sources of uncertainty. Then, the validation of the chosen

equation is performed, using Monte Carlo samples, for some different values of

resource utilization, U .

4.1 Epistemic uncertainty in M/M/c/K queues

The equations for epistemic uncertainty propagation presented in Section 2 are now

extended and adapted to the case of power consumption estimation in M/M/c/K

queues.

As said in Section 3, for the purpose of this paper we assume epistemic uncer-

tainty is introduced into the system by input random variables Pidle, Λ and M , since

Pbusy is expressed as a function of Pidle and the density of the calibration parameter

r has a small coefficient of variation.

Considering three input parameters are introducing uncertainty into the power

model, a three-dimensional integral (i.e., one for each input random variable) is

required to compute the unconditional Cdf and expected value of the output met-

ric. In particular, assuming the epistemic random variables to be independent as
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Fig. 5. The power consumption Cdf (a) and expected value (b) plotted as a function of the collected samples

for the two input parameters, when λ̂ = 6.4 j/s and μ̂ = 2.25 j/s.

said in Section 2, the Cdf described in Eq. (6) becomes:

FP (U |Pidle=p,Λ=λ,M=μ)(x) =∫ ∞

0

∫ ∞

0

∫ ∞

0
1(P (U |Pidle = p,Λ = λ,M = μ) ≤ x)·

fΛ(λ) · fM (μ) · fPidle
(p) dλ dμ dp

(16)

and the expected value in Eq. (7) is computed as:

E[P (U |Pidle = p,Λ = λ,M = μ)] =∫ ∞

0

∫ ∞

0

∫ ∞

0
P (U |Pidle = p,Λ = λ,M = μ)·

fΛ(λ) · fM (μ) · fPidle
(p) dλ dμ dp

(17)

The limits of integration of each input parameter vary between 0 and infinity since

there are not constraints on the values the input parameters may assume. In par-

ticular, since we are considering a finite capacity M/M/c/K queue, the system is

always stable and no constraints on the value of Λ are given. The epistemic densities

of r.v. Λ and M , i.e., fΛ(λ) and fM (μ), are given in Eq. (15), whereas fPidle(p) is

the Pidle probability density function, that is Pidle ∼ Normal(58.992, 0.619657) as

shown in Section 3.

Let us call respectively kλ and kμ the number of samples collected before esti-

mating the values of Λ and M . The Cdf of the power consumption and its expected

value derived through Eqs. (16) and (17), respectively, are shown in Fig. 5. They

have been solved through numerical integrations – performed by Mathematica –

due to the complexity to get closed form solutions. Both the statistical measures

are plotted against the number of samples collected for Λ and M estimation. For

the sake of simplicity, only the case when kλ = kμ (i.e., the same number of samples

is collected to estimate arrival and service rates) is represented in Fig. 5, and only

U � 70% is considered (i.e., average arrival rate λ̂ = 6.4 jobs/second, and average

service rate μ̂ = 2.25 jobs/second). As expected, the results show the importance

to collect as many samples as possible for each input parameter to make their con-
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Fig. 6. 95% confidence interval for the power model input parameters Λ and M as a function of the number

of observations. On the left, the confidence interval length for λ̂ = 6.4 j/s; on the right, the confidence
interval length for μ̂ = 2.25 j/s.

fidence interval tighter. Indeed, starting from the number of collected samples, k,

it is possible to derive the confidence interval of an exponential distributed random

variable as follows [23]:

2d =
1

2sk

{
χ2
2k,α/2 − χ2

2k,1−α/2
}

(18)

where d is the half-width of the confidence interval of the considered input random

variable, sk is the sum of the k collected samples and χ2
2k,1−α/2 is the critical value

of the chi-square distribution with 2k degrees of freedom. The confidence interval

length of r.v. Λ and M , computed with Eq. (18) for U � 70%, are plotted in Fig.

6 as a function of the number of observations. The straight lines are the lower and

upper bounds, while the dashed ones are the average values λ̂ = 6.4 j/s and μ̂ = 2.25

j/s. Similar results may be obtained for different resource utilization, varying the

average arrival rate, λ̂.

In order to evaluate the impact of Pidle input random variable on the output

metric of the considered power model, we adapt Eqs. (16) and (17) to make them

take into account only the effect of Λ and M , assuming Pidle is estimated with

certainty. Thus, they become:

FP (U |Λ=λ,M=μ)(x) =∫ ∞

0

∫ ∞

0
1(P (U |Λ = λ,M = μ) ≤ x) · fΛ(λ) · fM (μ) dλ dμ

(19)

and

E[P (U |Λ = λ,M = μ)] =∫ ∞

0

∫ ∞

0
P (U |Λ = λ,M = μ) · fΛ(λ) · fM (μ) dλ dμ

(20)

respectively. Also in this case numerical solutions have been derived. Since the

results computed through Eqs. (19) and (20) for U � 70% are similar to those
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Fig. 7. P-P plot that compares the power consumption Cdfs computed through Eqs. (16) and (19), when
kλ = kμ = 10.

depicted in Fig. 5, they are not plotted. In order to show that the Cdfs and

expected values derived in the two different ways are identical, a P-P plot is used

for the Cdfs comparison and is depicted in Fig. 7. For the sake of space, only the

P-P plot for kλ = kμ = 10 is shown here. Similar results are obtained considering

the Cdfs obtained with larger values of kλ = kμ.

Based on the presented results, we can assert the epistemic uncertainty intro-

duced by Pidle into the considered power model is negligible, and the uncertainty

analysis can be performed just studying the densities of Λ and M , thus adopting

Eq. (19) to derive the Cdf of the power consumption, and Eq. (20) for its expected

value. Note that this assumption has also the effect of reducing the computational

complexity, allowing to deal with only a 2-dimensional integral.

Finally, in the limiting case kλ, kμ → ∞, the Erlang distributed input r.v. have a

zero variance, thus they are deterministic distributed (or degenerate) [15] and they

take a single value (i.e., λ = λ̂ and μ = μ̂). In this case, the considered model is no

more affected by epistemic uncertainty, and it may be studied without accounting

for epistemic uncertainty propagation.

4.2 Validation

In order to validate Eq. (19) that is used to derive the Cdf of the power model given

in Eq. (9) for M/M/c/K queues, we run a further benchmark on the architecture

presented in Section 1. The benchmark consists in executing a given number of

CPU intensive requests. The arrival and service times for each request are passed

by the user at the beginning of the test.

For the purpose of this validation, we generate 1000 exponentially distributed

samples for arrival and service times. This step is repeated for each value of

resource utilization that has been studied. In particular, the average service

rate μ̂ is set to 2.25 jobs/second, and the average arrival rate varies among

λ̂ = {0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2} jobs/second, in order to consider different

resource utilizations, that are derived as shown by Eq. (11).
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Fig. 8. The results for U � 9% are depicted on the left, those for U � 70% are depicted on the right.

In addition to the generated arrival and service times samples, we also collect the

power consumption measures recorded by a Yokogawa WT210 power meter 6 .

For the sake of clarity, only the results for U � 9% and U � 70% (i.e., λ̂ = 0.8

and λ̂ = 6.4, respectively) are depicted in Fig. 8.

They are plotted as a function of the number of samples observed for arrival and

service rates estimation, kλ and kμ, that in this paper are assumed to be always

equal. In both the figures, the lower and upper bounds (i.e., the straight blue lines)

have been derived starting from the power consumption Cdf computed through Eq.

(19). Then, the 95% confidence interval has been derived for each Cdf, and the two

bounds have been plotted varying the number of observations. Eq. (20) is used to

compute the expected value in both the figure (i.e., the dashed green line).

The samples of arrival and service times are used to plot the estimated power

consumption (the red dots). For this purpose, kλ and kμ samples (i.e., the number of

considered Monte Carlo samples) are averaged in order to derive the mean arrival

and service rates (i.e., λ̂ and μ̂), respectively. Then, after using these values to

compute U as in Eq. (11), it is possible to estimate average power consumption

through Eq. (9), with Pidle and r set to their mean values. The larger the number

of observations of arrival and service times, the more accurate the estimated power

consumption.

As expected, the power consumption estimates usually lie between the two

bounds and they are closer to the average one when a larger amount of samples

is observed.

Finally, the power consumption measured by means of the power meter is de-

picted in the two graphs as a black dotted line. In both the cases, the measured

power consumption and its expected value are close after collecting few samples of

arrival and service rates.

6 http://tmi.yokogawa.com/products/digital-power-analyzers/digital-power-analyzers/
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5 Exploitation: life of a UPS battery

In this Section we apply the previous considerations about uncertainty propagation

in power models to a real exploitation case. We analyze a UPS battery that starts

working after the power source failed. In particular, we wish to estimate the battery

lifetime of a UPS that must keep on a server which is processing a constant workload.

Three main UPS architectures exists [38]: i) on-line UPS, that provides electrical

power from the battery whether there is a failure or not; ii) standby UPS, that

provides electrical power from the battery only if power source failed; iii) line-

interactive UPS, that are high-class standby UPS. For the purpose of this paper,

distinction between the three architectures is irrelevant since we study the UPS unit

when power source has already failed.

Furthermore, batteries are usually not fully drained in order to prevent damages

[7]. Thus, a UPS unit is shut down when the battery capacity is lower than a fixed

threshold. Nevertheless, in this paper we assume the battery can be completely

depleted and the UPS unit does not shut down until the battery is exhausted.

Note that, the standard UPS battery configuration may be considered after some

adjustments to Eq. (8).

The battery lifetime is derived solving the kinetic battery model for fixed load

given in Eq. (8). For that purpose, we set φ = 1/2 and ω = 1/100 as done by

Hermanns et al. in [16]. They also assumed the battery initial capacity is uniform

distributed between 70% and 90% of full capacity γ̂, thus assuming to deal with

a random environment. Furthermore, in our case, load I is affected by epistemic

uncertainty due to the finite number of samples collected for the input parameters

Λ and M (i.e., arrival and service rates, respectively). Indeed, we derive load I

starting from server utilization in Eq. (11); utilization is used to compute the

server’s power consumption through Eq. (9), that is divided by voltage ΔV to

obtain the load I (i.e., I = P (U,Pidle, r)/ΔV ). This is a different assumption with

respect to [16], where also the load was affected by aleatory uncertainty. Finally,

voltage is ΔV = 12 V and full capacity γ̂ = 9 Ah, that are from the specifications

of Trust OXXTRON 1000VA UPS 7 .

Starting from Eq. (8), we define battery lifetime L as:

L(λ, μ, γ) = t | I(λ, μ) · t+ (1− φ) · I(λ, μ)
φ

· 1− e−ω′t

ω′
= γ

For the sake of simplicity, we have dropped from L its dependency on λ, μ and γ.

Thus, we propagate the epistemic uncertainty of input parameters Λ and M to the

battery lifetime as follows:

FL(l) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
1(L ≤ l) · fΛ(λ) · fM (μ) · fΓ(γ) dλ dμ dγ (21)

7 http://www.trust.com/en/product/17680-oxxtron-1000va-ups
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Fig. 9. Battery lifetime Cdfs when the resource utilization is U � 9% (on the left) and U � 70% (on the
right).

where

fΓ(γ) ∼ Uniform

(
70γ̂

100
,
90γ̂

100

)
and fΛ(λ) and fM (μ) are given in Eq. (15).

The Cdfs obtained solving Eq. (21) for λ = 0.8 j/s and λ = 6.4 j/s are depicted

in Figs. 9a and 9b, respectively. Although tighter confidence intervals are derived

increasing the number of observation for arrival and service rates from 10 to 100, a

smaller improvement is obtained when the number of collected samples is further

increased. Indeed, in both the cases depicted in Fig. 9, the Cdf of the battery

lifetime for kλ = kμ = 1000 is very similar to the one derived with kλ = kμ = 100.

In fact, in this case the inaccuracy of the output measure is mainly due to the

aleatory uncertainty introduced by the unknown battery capacity γ. That may also

be seen considering the limiting case for kλ, kμ → ∞ discussed in Section 4, when

arrival and service rates, Λ and M , follows a degenerate distribution (i.e., they are

known with certainty), while the full capacity γ is still uniformly distributed. The

battery lifetime Cdf for kλ = kμ = 1000 and kλ, kμ → ∞, when λ = 6.4 j/s, are

plotted in Fig. 10, where it is shown that the difference between the two Cdfs is

negligible. Similar results are obtained for λ = 0.8 j/s.

6 Conclusion

In this paper we apply epistemic uncertainty propagation to power consumption

models. To the best of our knowledge, this is the first time epistemic uncertainty

propagation is used to study this kind of problem. Indeed, in previous work the

input parameters have always been considered exact, independently on the number

of observed samples for their estimations.

The nonlinear power model presented by Fan et al. in [11] is the one we use to

analyze our machine that we model as an M/M/c/K queue. We prove the measured

power consumption fit the one estimated by the chosen power model. Moreover, we

also show that uncertainty of Pidle and calibration parameter r are negligible and

do not deeply affect the output of the model, since the two input parameters have a
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Fig. 10. Battery lifetime Cdfs when the resource utilization is U � 70% and the number of collected samples
is 1000 or tends to infinity.

small coefficient of variation. Thus, we assume only arrival and service rates (Λ and

M , respectively) are the input parameters which introduce epistemic uncertainty

into the power model. Then, the technique to study the epistemic uncertainty

propagation is shown and it is validated using Monte Carlo method and measuring

the power consumption of our machine. Finally, the theoretical results are applied

to a case-study, where a UPS unit is taken into account. In particular, we estimate

how epistemic and aleatory uncertainties impact on the output measure of a model

that estimates the lifetime of a UPS battery when it must serve a constant load

affected by epistemic uncertainty.

In the future, three main aspects may interestingly extend this paper. First,

different power models may be considered in order to analyze different situations;

for examples, as said in Section 2, there are power consumption models that let the

users consider dynamic voltage/frequency scaling and simultaneous multi-threading,

or through which is possible to evaluate the power consumption of a whole data-

center. Since a larger number of input parameters is required to use more accurate

power models, the multi-dimensional integral technique adopted in this paper could

be hardly utilized, thus other uncertainty propagation techniques should be used.

Second, the M/M/c/K queue may be substituted by an M/M/c/K/Setup

model; queues with setup have c servers that may be turned on/off based on the

incoming workload. However, the off servers require a Setup time in order to be

properly activated and process new requests. Queues with setup are usually adopted

to model data-centers [26,27] and to study their power-performance trade-off. Since

the setup time must be estimated from the collected samples, it may be useful to

further investigate this kind of models using epistemic uncertainty, in order to better

understand how that parameter affects the output measures.

The third direction that may be pursued is about the UPS battery case-study.

In particular, it may be interesting to study the UPS system performability, thus

considering also the power source failure and repair rates. Indeed, also those two
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parameters are introducing some epistemic uncertainties into the battery model, and

they should be taken into account with the already studied input random variables

in order to obtain more accurate results.
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[16] Hermanns, H., J. Krčál and G. Nies, How is your satellite doing? battery kinetics with recharging and
uncertainty, Leibniz Transactions on Embedded Systems 4 (2017), pp. 04–1.

M. Gribaudo et al. / Electronic Notes in Theoretical Computer Science 337 (2018) 67–8684



[17] Inc., W. R., Mathematica, Version 11.1, champaign, IL, 2017.

[18] Jongerden, M. R. and B. R. Haverkort, Which battery model to use?, IET software 3 (2009), pp. 445–
457.

[19] Kontorinis, V., L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M. Tullsen and T. S.
Rosing, Managing distributed ups energy for effective power capping in data centers, in: Computer
Architecture (ISCA), 2012 39th Annual International Symposium on, IEEE, 2012, pp. 488–499.

[20] Meisner, D., J. Wu and T. F. Wenisch, Bighouse: A simulation infrastructure for data center systems,
in: Performance Analysis of Systems and Software (ISPASS), 2012 IEEE International Symposium
on, IEEE, 2012, pp. 35–45.

[21] Mishra, K. and K. S. Trivedi, Uncertainty propagation through software dependability models, in:
Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International Symposium on, IEEE, 2011,
pp. 80–89.

[22] Mishra, K. and K. S. Trivedi, Closed-form approach for epistemic uncertainty propagation in analytic
models, in: Stochastic Reliability and Maintenance Modeling, Springer, 2013 pp. 315–332.

[23] Mishra, K., K. S. Trivedi and R. R. Some, Uncertainty analysis of the remote exploration and
experimentation system, Journal of Spacecraft and Rockets 49 (2012), pp. 1032–1042.

[24] Nan, X., Y. He and L. Guan, Optimal resource allocation for multimedia cloud based on queuing model,
in: Multimedia signal processing (MMSP), 2011 IEEE 13th international workshop on, IEEE, 2011,
pp. 1–6.

[25] Pakbaznia, E. and M. Pedram, Minimizing data center cooling and server power costs, in: Proceedings
of the 2009 ACM/IEEE international symposium on Low power electronics and design, ACM, 2009,
pp. 145–150.

[26] Phung-Duc, T., Multiserver queues with finite capacity and setup time, in: International Conference
on Analytical and Stochastic Modeling Techniques and Applications, Springer, 2015, pp. 173–187.

[27] Phung-Duc, T., Exact solutions for m/m/c/setup queues, Telecommunication Systems 64 (2017),
pp. 309–324.

[28] Pinciroli, R., K. Trivedi and A. Bobbio, Parametric sensitivity and uncertainty propagation in
dependability models, in: 10th EAI International Conference on Performance Evaluation Methodologies
and Tools, ACM, 2017, pp. 44–51.

[29] Priya, B., E. S. Pilli and R. C. Joshi, A survey on energy and power consumption models for greener
cloud, in: Advance Computing Conference (IACC), 2013 IEEE 3rd International, IEEE, 2013, pp.
76–82.

[30] Rosenberg, C., R. Mazumdar and L. Kleinrock, On the analysis of exponential queuing systems with
randomly changing arrival rates: stability conditions and finite buffer scheme with a resume level,
Performance Evaluation 11 (1990), pp. 283–292.

[31] Shehabi, A., S. Smith, N. Horner, I. Azevedo, R. Brown, J. Koomey, E. Masanet, D. Sartor, M. Herrlin
and W. Lintner, United states data center energy usage report, Lawrence Berkeley National Laboratory,
Berkeley, California. LBNL-1005775 Page 4 (2016).

[32] Strack, O., R. Leavy and R. M. Brannon, Aleatory uncertainty and scale effects in computational
damage models for failure and fragmentation, International Journal for Numerical Methods in
Engineering 102 (2015), pp. 468–495.

[33] Sztrik, J., Basic queueing theory, University of Debrecen, Faculty of Informatics 193 (2012).
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