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Abstract After the recent high precision determinations of
Vus andVud , the first row of the CKM matrix shows more than
4σ deviation from unitarity. Two possible scenarios beyond
the Standard Model can be investigated in order to fill the gap.
If a 4th non-sequential quark b′ (a vector-like weak isosin-
glet) participates in the mixing, with |Vub′ | ∼ 0.04, then its
mass should be no more than 6 TeV or so. A different solu-
tion can come from the introduction of the gauge horizontal
family symmetry SU (3)� acting between the lepton families
and spontaneously broken at the scale of about 6 TeV. Since
the gauge bosons of this symmetry contribute to muon decay
in interference with Standard Model, the Fermi constant is
slightly smaller than the muon decay constant so that uni-
tarity is recovered. Also the neutron lifetime problem, that
is about 4σ discrepancy between the neutron lifetimes mea-
sured in beam and trap experiments, is discussed in the light
of the these determinations of the CKM matrix elements.

1. The Standard Model (SM) contains three fermion fami-
lies in the identical representations of the gauge symmetry
SU (3) × SU (2) × U (1) of strong and electroweak interac-
tions. One of its fundamental predictions is the unitarity of
the Cabibbo–Kobayashi–Maskawa (CKM) matrix of quark
mixing in charged current

VCKM =
⎛
⎝
Vud Vus Vub
Vcd Vcs Vcb
Vdd Vts Vtb

⎞
⎠ . (1)

Deviation from the CKM unitarity can be a signal of new
physics beyond the Standard Model (BSM). The experimen-
tal precision and control of theoretical uncertainties in the
determination of the elements in the first row of VCKM are
becoming sufficient for testing the condition

|Vud |2 + |Vus |2 + |Vub|2 = 1. (2)

a e-mail: zurab.berezhiani@lngs.infn.it (corresponding author)

Since |Vub| � 0.004 is very small, its contribution is negli-
gible and (2) reduces essentially to the check of the Cabibbo
mixing: |Vus | = sin θC , |Vud | = cos θC and |Vus/Vud | =
tan θC . In essence, this is the universality test for the W -
boson coupling (g/

√
2)W+

μ Jμ
L + h.c. to the relevant part of

the charged left-handed current

Jμ
L = VuduLγ μdL + VusuLγ μsL + νeγ

μeL + νμγ μμL

(3)

For energies smaller than W -boson mass this coupling gives
rise to the effective current × current interactions

− 4GF√
2

uL
(
VudγμdL + VusγμsL

)(
eLγ μνe + μLγ μνμ

)

(4)

which are responsible for leptonic decays of the neutron,
pions, kaons etc., as well as to the interaction

− 4GF√
2

(
eLγμνe

)(
νμγ μμL

)
(5)

responsible for the muon decay. All these couplings contain
the Fermi constant GF/

√
2 = g2/8M2

W .
Precision experimental data on kaon decays, in combina-

tion with the lattice QCD calculations of the decay constants
and form-factors, provide accurate information about |Vus |.
On the other hand, recent calculations of short-distance radia-
tive corrections in the neutron decay allow to determine |Vud |
with a remarkable precision.

In this paper we analyze the present individual determi-
nations of Vud and Vus and find significant (about 4σ ) devi-
ation from the CKM unitarity (2). We discuss two possible
BSM scenarios which can explain this deviation. In the first
one the three-family unitarity is extended to four species,
by introducing the 4th non-sequential down-type quark b′
in the form of vector-like weak isosinglet with mass of few
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TeV. The second scenario assumes the existence of horizon-
tal gauge symmetry between the lepton families which is
spontaneously broken at the scale of few TeV. The corre-
sponding flavor changing gauge bosons induce the effective
four-lepton interaction having exactly the same form as (5),
with the new Fermi-like constant GF . In this case, muon life-
time would determine Gμ = GF + GF rather than GF . In
this way, one can nicely restore the three family unitarity (2)
without introducing new quark species. We discuss implica-
tions of these scenarios for the lepton flavor violation (LFV)
and for the Standard Model precision tests. At the end, we
also discuss the problem of neutron lifetime related to the
discrepancy between its values measured using two different
(trap and beam) methods.

2. The most precise determination of |Vud | is obtained from
superallowed 0+ − 0+ nuclear β-decays which are pure
Fermi transitions sensitive only to the vector coupling con-
stant GV = GF |Vud | [1]:

|Vud |2 = K

2G2
FF t (1 + �V

R )
= 0.97147(20)

1 + �V
R

(6)

where K = 2π3 ln 2/m5
e = 8120.2776(9) × 10−10 s/GeV4

and F t is the nucleus independent value obtained from the
individual f t-values of different 0+ −0+ nuclear transitions
by absorbing in the latter all nucleus-dependent corrections,
while �V

R accounts for short-distance (transition indepen-
dent) radiative corrections. For the second step, we takeF t =
3072.07(72) s [2] obtained by averaging the individual F t-
values for fourteen superallowed 0+ − 0+ transitions deter-
mined with the best experimental accuracy, and plug in the
Fermi constant asGF = Gμ = 1.1663787(6)×10−5 GeV−2

determined from the muon decay [3]. The major uncertainty
is related to the so called inner radiative correction �V

R .
The element |Vus | can be determined from the analysis of

semileptonic K�3 decays (KLμ3, KLe3, K±e3, etc.) [4]:

f+(0)|Vus | = 0.21654 ± 0.00041 (7)

where f+(0) is the K → π�ν vector form-factor at zero
momentum transfer. On the other hand, by comparing the
kaon and pion inclusive radiative decay rates K → μν(γ )

and π → μν(γ ), one obtains [5]:

|Vus/Vud | × ( fK±/ fπ±) = 0.27599 ± 0.00038. (8)

Hence, the values |Vus | and |Vus/Vud | can be independently
determined using the lattice QCD results for the form-factor
f+(0) and the decay constant ratio fK / fπ .

3. Let us first consider the values of the CKM matrix elements
|Vus |, |Vud | and their ratio |Vus/Vud | as quoted by Particle
Data Group (PDG) review 2018 [5]:

|Vus | = 0.2238(8)

|Vus/Vud | = 0.2315(10)

Fig. 1 Upper panel: three independent |Vus | determinations A, B, C
obtained from the PDG 2018 data (9) by assuming the CKM unitarity.
The grey shaded band corresponds to the average A + B + C (with

formal error not rescaled by a factor
√

χ2
dof ). Pulls of C, B, A and A +

B are shown. Lower panel: the same for A, B, C values obtained from
the dataset (10)

|Vud | = 0.97420(21) (9)

Here |Vus | and |Vus/Vud | are obtained respectively from
Eqs. (7) and (8) using the FLAG 2017 averages of 3-
flavor lattice QCD simulations f+(0) = 0.9677(27) and
fK±/ fπ± = 1.192(5) [6]. |Vud | is obtained from Eq. (6)
by taking �V

R = 0.02361(38) as calculated in Ref. [7].
By imposing the CKM unitarity (2), the three data (9)

reduce to three independent determinations of |Vus |. These
determinations shown as A, B, C in upper panel of Fig. 1 (see
also Table 1 for numerical values) are compatible within their
error-bars. Throughout this paper A is the direct determina-
tion of |Vus | obtained from Eq. (7). B and C are the values
of |Vus | obtained respectively from |Vus/Vud | and |Vud | by
assuming unitarity. Namely, B and C are almost equal while
there is a modest tension (1.4σ ) between A and B. Their
average A + B = 0.2245(6) practically coincides with the
PDG 2018 average of |Vus | [5]. By averaging all three values
we get A + B + C = 0.2248(5) with χ2

dof = 1.7. Pulls of
A, B and C relative to this average (given in Fig. 1) are com-
patible with a standard deviation. Summarizing, the dataset
(9) adopted from PDG 2018 [5] is consistent with the CKM
unitarity (2).

However, recent progress in the determination of the
CKM elements allows to test the unitarity with improved
precision. Significant redetermination of |Vud | is related to
new calculation of inner radiative corrections with reduced
hadronic uncertainties, �V

R = 0.02467(22) [8]. Employing
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Table 1 The 1st column shows
independent |Vus |
determinations A, B, C from the
PDG dataset (9) by assuming
3-family CKM unitarity (2),
their averages and total χ2 value

CKM [PDG] CKM [post 2018] CKM+ b′ CKM +F

C 0.2257(9) 0.22780(60) 0.22443(61) 0.22460(61)

B 0.2256(10) 0.22535(45) 0.22518(45) 0.22535(45)

A 0.2238(8) 0.22333(60) 0.22333(60) 0.22350(60)

A + B 0.2245(6) 0.22463(36) 0.22452(36) 0.22469(36)

A + B + C 0.2248(5) 0.22546(31) 0.22449(31) 0.22467(31)

χ2 = 3.4 χ2 = 27.7 † χ2 = 6.1 χ2 = 6.1

|Vus | 0.2248(7) 0.2255 (12)† 0.2245(5) 0.2247(5)

|Vud | 0.97440(16) 0.97424 (27)† 0.97369(12) 0.97443(12)

The last two rows show the conservative estimation of |Vus | with error-bar rescaled by
√

χ2
dof and the corre-

sponding value of |Vud |. Other columns show the same but obtained from after 2018 dataset (10) by assuming
respectively 3-family CKM unitarity (2), unitarity extended to 4th quark b′ with |Vub′ | = 0.04, and 3-family
CKM but taking Gμ/GF = 1 + δμ with δμ = 7.6 × 10−4. Mark † in 2nd column indicates that for that large

χ2 the error-rescaling by
√

χ2
dof = 3.7 does not make much sense since the data are incompatible

also the recent result f+(0) = 0.9696(18) from new 4-flavor
(N f = 2+1+1) lattice QCD simulations [9] and the FLAG
2019 four-flavor average fK±/ fπ± = 1.1932(19) [10], one
arrives to the following:

|Vus | = 0.22333(60)

|Vus/Vud | = 0.23130(50)

|Vud | = 0.97370(14) (10)

This dataset, again by imposing the CKM unitarity, reduces
to independent |Vus | values A, B, C shown in lower panel of
Fig. 1 (numerical values are given in Table 1).

Now we see that the values A, B, C are in tensions among
each other. Namely, there is a 5.3σ discrepancy between A
and C, and 3.2σ between B and C. The tension between the
determinations A and B, both from kaon physics, is 2.7σ .
More conservatively, one can take their average A + B. The
discrepancy of the latter with C is 4.5σ . Fitting these values,
we get A + B + C = 0.22546(31) but the fit is bad, χ2

dof =
13.9. C, A and A + B have large pulls, 3.9σ , − 3.6σ and
− 2.3σ .

Let us remark that the chosen dataset (10) is rather indica-
tive since there are tensions in various determinations of |Vus |
which may disappear with more accurate lattice simulations.
In particular, we have employed the latest and most precise
result f+(0) = 0.9696(18) from 4-flavor lattice QCD sim-
ulations [9] which is perfectly compatible with the FLAG
2019 4-flavor value f+(0) = 0.9706(27) [10] which does not
include the result of Ref. [9]. Their average yields f+(0) =
0.9699(15) which would give |Vus | = 0.22326(55). How-
ever, this result from K�3 decays is discordant with the
independent determination |Vus | = 0.22567(42) from Kμ2
decays recently reported in Ref. [11]. Therefore, for deter-
mination A one can take a conservative average between
these two results, |Vus | = 0.22478(69), where the errors are
quadratically combined because of their poor compatibility.

Fig. 2 The horizontal, vertical and slightly bended bands correspond
to |Vud |, |Vus | and |Vus/Vud | from (10). The best fit point (red cross) and
1, 2 and 3σ contours are shown. The red solid line corresponds to the
three family unitarity condition (2), and the dashed red line corresponds
to the “extended” unitarity (11) with |Vub′ | = 0.04

Let us remark also that the latter determination A is well
compatible with the determination B |Vus | = 0.22535(45)

deduced from |Vus/Vud | given in (10), so that for the average
A + B we get |Vus | = 0.22518(37).

Regarding the determination of |Vud |, we adopted the
result �V

R = 0.02467(22) of Ref. [8] which is mildly dif-
ferent from the value �V

R = 0.02426(32) deduced in Ref.
[12]. For being more conservative, we can average these
two results as �V

R = 0.02454(32), without reducing the
largest uncertainty. In doing so, from Eq. (6) we obtain
|Vud | = 0.97376(10)F t (10)�V

R
= 0.97376(14) which in

turn gives determination C as |Vus | = 0.22756(72). There-
fore, between the determination C and A + B remains 3 σ

tension even with more conservative treatment.
Let us analyze our dataset (10) also in a different way.

Without imposing the unitarity condition (2), we perform
a two parameter fit of the three independent values (10). In
Fig. 2 we show the gaussian hill of the probability distribution
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with the confidence level (C.L.) contours around the best fit
point (|Vus | = 0.22449, |Vud | = 0.97369), with χ2

min = 6.1.
(This χ2–value seems large for a two parameter fit, but it is
dominated by the tension between |Vus |determinations A and
B from the kaon data which may be not real as we discussed
above.) The red solid line corresponding to the three family
unitarity condition |Vud |2 + |Vus |2 = 1 − |Vub|2 = 1 −
O(10−5) is about 4.3σ away from this hill top (�χ2 = 21.6)
which means that the new (after 2018) dataset (10) disfavors
the CKM unitarity at 99.998% C.L.

4. “If the Hill does not come to the CKM, the CKM will go to
the Hill.” The unitarity line can be moved down towards the
probability distribution hill in Fig. 2 if the unitarity condition
is extended to more families.

In fact, by introducing just one additional (fourth) family
which is also involved in quark mixing, the first row unitarity
condition (2) will be modified to

|Vud |2 + |Vus |2 + |Vub|2 = 1 − |Vub′ |2. (11)

In particular, the red dashed line in Fig. 2 passing through the
best fit point on the top of the probability hill corresponds to
|Vub′ | = 0.04 (at 95% C.L. this additional mixing is limited
as |Vub′ | = 0.04 ± 0.01). Plugging this value in Eq. (11), the
dataset (10) gives the modified determinations of |Vus | for the
three cases named above as A, B and C (for numerical values
see in 3rd column of Table 1). Clearly, the case A in this list
remains the same as in 2nd column but B and especially C are
shifted down. Figure 3 shows that consistency between these
values is significantly improved compared to lower panel of
Fig. 1. The fit for A + B + C is acceptable, χ2

dof = 3. Pulls
of C and A + B are practically vanishing. There remains a
tension between A and B but it is softened to 2.4σ from 2.7σ

of Fig. 1.
In the SM the three families (i = 1, 2, 3 is the family

index) of left-handed (LH) quarks QLi = (ui , di )L and
leptons �Li = (νi , ei )L transform as weak isodoublets of
SU (2) × U (1) and the right-handed (RH) quarks uRi , dRi
and leptons eRi are isosinglets. Their masses emerge from
the Yukawa couplings with the Higgs doublet φ:

Y i j
u φ̃ QLiuR j + Y i j

d φ QLidR j + Y i j
e φ �Li eR j + h.c. (12)

Yu,d,e being the Yukawa constant matrices and φ̃ = iτ2φ
∗.

The existence of a fourth sequential family is excluded by
the SM precision tests in combination with the lower limits
on their masses from the LHC, as well as from the LHC data
on the Higgs production via gluon fusion and and its decay in
2γ [13]. However, one can introduce additional vector-like
fermions.

Let us briefly sketch a simple picture of this type intro-
ducing just an additional vector-like couple of isosinglet
down-type quarks d4L , d4R . Since 4 species of RH quarks
d1R, d2R, d3R, d4R have identical quantum numbers, d4R can

Fig. 3 Determinations of |Vus | obtained from the dataset (10) using
Eq. (11) with |Vub′ | = 0.04

be identified as their combination which makes a mass term
M with isosinglet LH state d4L . Then, besides the standard
Yukawa terms (12) the Lagrangian should contain the addi-
tional terms

Y i4
d φ QLid4R + Md4Ld4R + h.c. (13)

Fermion masses of three normal (chiral) families emerge
from the vacuum expectation value (VEV) of the Higgs,
〈φ0〉 = vw = 174 GeV (for a convenience, we use this
normalization of the Higgs VEV instead of “standard” nor-
malization 〈φ〉 = v/

√
2, i.e. v = √

2vw). Without loss of
generality, the 3 × 3 Yukawa matrix Yu of up quarks can be
chosen diagonal, Yu = Y diag

u = diag(yu, yc, yt ), in which
bases the states u1,2,3 coincide with the mass eigenstates
u, c, t so thatmt = ytvw, etc. In this basis the Yukawa matrix
Y i j
d is non-diagonal, and in addition the terms in (13) induce

the mixing of three known down quarks with the 4th species.
Thus, 4 × 4 mass matrix of all down-type quarks has a form:

M =
(
Y i j
d vw Y i4

d vw

0 M

)
. (14)

It can be diagonalized by bi-unitary transformation M →
Mdiag = V †

LMVR where 4 × 4 unitary matrices VL ,R con-
nect d1,2,3,4 with the mass eigenstates d, s, b, b′:
⎛
⎜⎜⎝
d1

d2

d3

d4

⎞
⎟⎟⎠

L ,R

=

⎛
⎜⎜⎝
V1d V1s V1b V1b′
V2d V2s V2b V2b′
V3d V3s V3b V3b′
V4d V4s V4b V4b′

⎞
⎟⎟⎠

L ,R

⎛
⎜⎜⎝

d
s
b
b′

⎞
⎟⎟⎠

L ,R

(15)

In the context of the SM, the mixing VR of the RH quarks
is not of interest. As for the left-handed charged current we
obtain the modified 3×4 CKM mixing matrix describing W -
boson interactions between three up quarks u, c, t and four
down quarks d, s, b, b′:

ṼCKM =
⎛
⎝
Vud Vus Vub Vub′
Vcd Vcs Vcb Vcb′
Vtd Vts Vtb Vtb′

⎞
⎠ (16)
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which in fact consists of three upper rows in 4 × 4 unitary
matrix VL (15), i.e. Vud = VL1d , Vus = VL1s etc. Then
the condition (11) regards the first row of this matrix and
it stems from the unitarity of VL . As for the first column,
we have |Vud |2 + |Vcd |2 + |Vtd |2 = 1 − |V4d |2 where V4d

is the 4th row element in matrix VL which is “deleted” for
transforming the latter into ṼCKM.

Let us discuss now in which conditions one could obtain
large enough mixing with the 4th species, |Vub′ | = 0.04 or
so. From the structure of mass matrix (14), for M 
 vw

we have |Vub′ | ≈ Y 14
d vw/M . Then the LHC limit on extra

b′ mass M > 880 GeV [5] implies that |Vub′ | � 0.04 can
be obtained if the coupling constant Y 14

d in (13) is larger
than 0.2 or so. In other words, it should be much larger than
the Yukawa constant yb of the bottom quark. In turn, by
taking |Vub′ | > 0.03 and assuming (for the perturbativity)
Y 14
d < yt � 1, we get an upper limit on the extra quark

mass, M < 6 TeV or so. Thus, the mass of the extra state b′
should be in the range of few GeV.

The CKM unitarity (2) can be also corrected by intro-
ducing a 4th up quark t ′ instead of the 4th down quark b′,
or more generically by introducing both b′ and t ′ forming
in some sense a complete vector-like 4th family. In the lat-
ter case, the mixing matrix (16) would become a 4 × 4
matrix, however it will not be unitary as far as b′ and t ′
states are weak isosinglets. Interestingly, it can be shown
that introduction of a fourth vector-like isodoublet family
Q′

L ,R = (t ′, b′)L ,R can also have large enough effect for
smoothing the discrepancies between the mixing angle deter-
minations [14].

One has to remark, however, that the mixing of ordinary
quarks with 4th species induces the quark flavor changing
couplings of Z -boson at the tree-level. In the case of extra
isosinglet down quark b′ this question was discussed in Ref.
[15]. In fact, Z boson couples the neutral current of fermions
Jμ

nc = ∑
f fL ,R[I3( f ) − sin2 θW Q( f )]γ μ f where I3 and

Q are respectively weak isospin and electric charge of a
fermion f , and θW is the Weinberg angle. In the case of down
quarks d1,2,3,4 the second part proportional to Q = −1/3 is
uniform for all four states of the LH and RH chirality, and
thus it reduces to a flavor-diagonal (and vector) current also
in the mass basis d, s, b, b′, as a result of the unitarity of
the matrices VL and VR . For the RH states also the isospin
dependent part is uniform since di R , i = 1, . . . 4, all have
the same isosipns I3 = 0 and thus their mixing VR cannot
induce any flavor-changing couplings of Z in the mass basis
(d, s, b, b′)R .

However, the four LH states have different isospins,
namely d1L , d2L , d3L have I3 = −1/2 while d4L has I3 = 0.
Therefore, in the initial basis (d1, d2, d3, d4)L the isospin
part in the neutral current is represented by the matrix
Ĩ = 1

2 diag(1, 1, 1, 0). Therefore, after rotating to the mass
basis by a matrix VL , the isospin part induces non-standard

Fig. 4 The SM contribution to the muon decay mediated by W -boson
(left), and the BSM contribution mediated by the flavor-changing F–
boson (right)

couplings of Z boson to the LH states described by the matrix
VNS = V †

Ldiag(0, 0, 0, 1)VL , or explicitly

VNS =

⎛
⎜⎜⎝

|V4d |2 V ∗
4dV4s V ∗

4dV4b V ∗
4dV4b′

V ∗
4sV4d |V4s |2 V ∗

4sV4b V ∗
4sV4b′

V ∗
4bV4d V ∗

4bV4s |V4b|2 V ∗
4bV4b′

V4d V4s V4b V4b′

⎞
⎟⎟⎠

L

(17)

These couplings can induce strong flavor-changing and

CP-violating effects in K 0 − K
0

system, as well as too large
decay rates for KL → μ+μ− etc. [15]. In fact, they can be
suppressed if Vcb′ and Vtb′ are much less than Vub′ , or at least
have rather small complex parts. (Accidentally, |Vub′ | � 0.04
is comparable to |Vcb| and ten times larger than |Vub|.) The
picture with the 4th state b′ having a larger mixing with the
first family than with (heavier) 2nd and 3rd families looks
somewhat ad hoc, but it is not excluded by the present exper-
imental limits. The implications of a TeV scale extra vector-
like quarks b′ or t ′ with significant mixing with the three
normal families deserve careful analysis which will be given
in details elsewhere [14].

5. “But what if the Hill comes to the CKM?” Here we discuss
just the opposite possibility: instead of moving the unitarity
line to the probability distribution Hill in Fig. 2, we move the
Hill towards the unitarity line.

Namely, we consider that the Fermi constant GF in the
effective interaction (4) which is responsible for leptonic
decays of hadrons can be different from the effective con-
stant Gμ determined from the muon lifetime. We assume
that besides the SM interaction (5) mediated by charged W–
boson, there is also a new operator

− 4GF√
2

(eLγμμL)(νμγ μνe) (18)

mediated by a hypothetical lepton flavor changing neutral
gauge boson F . The respective diagrams, shown in Fig. 4,
have positive interference for the muon decay. Namely, by
Fierz transformation this new operator can be brought to the
form (5), so that the sum of these two diagrams effectively
gives the operator

− 4Gμ√
2

(
eLγμνe

)(
νμγ μμL

)
, (19)
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Fig. 5 The same as on Fig. 2 but with the bands of |Vud |, |Vus | and
|Vud/Vus | taken as in (21) with 1 + δμ = 1.00076. The red line corre-
sponds to 3-family unitarity (2) as in Fig. 2

the same as (5) but with the coupling constant

Gμ = GF + GF = GF (1 + δμ),
GF
GF

≡ δμ > 0. (20)

Constant Gμ = 1.1663787(6) × 10−5 GeV−2 is deter-
mined with great precision from the muon decay [3]. Now
Eqs. (6) and (7), instead of |Vud | and |Vus |, are determining
respectively the values |Vud |×GF/Gμ and |Vus |×GF/Gμ.
Instead the value of |Vus/Vud | determined from (8) remains
unchanged since the Fermi constant cancels out. Thus, under
our hypothesis, the dataset (10) should be modified to the
following:

|Vus | = 0.22333(60) × (1 + δμ)

|Vus/Vud | = 0.23130(50)

|Vud | = 0.97370(14) × (1 + δμ) (21)

Now, involving the extra parameter δμ but assuming the 3-
family unitarity (2), the fit of the above dataset has acceptable
quality, χ2 = 6.1, and the best fit point corresponds to δμ =
0.00076. This situation is shown in Fig. 5 in which the values
of |Vud | and |Vus | are determined by taking δμ = 0.00076.
By this choice of the extra parameter the fit becomes perfectly
compatible with the unitarity (2). The probability distribution
Hill is moved up so that its top now lies on the unitarity line.

By imposing the unitarity condition |Vud |2 + |Vus |2 =
1 − |Vub|2, the list (21) can be transformed in δμ depen-
dent determinations A, B, C of |Vus |. Figure 6 shows these
determinations for δμ = 0.00076. Taking into account that
GF/

√
2 = g2/8M2

W = 1/4v2
w, where vw = 174 GeV is the

weak scale, and parametrizing similarly GF/
√

2 = 1/4v2
F ,

we see that δμ = GF/GF = 0.00076 corresponds to
vF/vw = 36.3, or to the flavor symmetry breaking scale
vF = 6.3 TeV. More widely, the 1σ interval of the param-
eter δμ consistent with unitarity at the 68% C.L. is δμ =
(7.6 ± 1.6) × 10−4 which corresponds to the new scale in
the interval vF = [5.7 ÷ 7.1] TeV.

Fig. 6 Determinations of |Vus | obtained from (21)

6. The non-abelian gauge horizontal flavor symmetry GH

between the fermion families can be the key for understand-
ing the quark and lepton mass and mixing pattern [16–20].
Namely, the form of the Yukawa matrices Yu,d,e in (12) can
be determined by the GH symmetry breaking pattern, i.e.
by the VEV structure of the horizontal scalar fields (flavons)
responsible for this breaking. Then the fermion mass hierar-
chy is related to the hierarchy between these VEVs. In Refs.
[16,17] this conjecture was coined as hypothesis of horizon-
tal hierarchies (HHH). In this picture the fermion masses
emerge from the higher order operators involving, besides
the Higgs doublet φ, also flavon scalars which transfer their
VEV structure to the Yukawa matrices Yu,d,e. These so called
“projective” operators in the UV-complete renormalizable
theory can be obtained via integrating out some extra heavy
fields, scalars [18–20] or vector-like fermions [16,17]. In par-
ticular, this concept implies that the fermion masses cannot
emerge if GH symmetry is unbroken. Thus, GH cannot be
a vector-like symmetry but it should have a chiral charac-
ter transforming the LH and RH particle species in different
representations. In particular, in Refs. [16–26] the horizon-
tal symmetry GH was considered as SU (3)H with the LH
fermions of the three families transforming as triplets and
the RH ones as anti-triplets, as it is motivated by the grand
unification.

However, in the Standard Model framework one has more
possibilities. Namely, in the limit of vanishing Yukawa cou-
plings Yu,d,e → 0 in (12), the SM Lagrangian acquires a
maximal global chiral symmetryU (3)Q ×U (3)u ×U (3)d ×
U (3)� ×U (3)e under which fermion species Q, u etc. trans-
form as triplets of independentU (3) groups. It is tempting to
consider that the non-abelian SU (3) factors of this maximal
flavor symmetry are related to gauge symmetries.1

1 Gauging of chiral U (1) factors is problematic because of anomalies.
In fact, one combination of U (1) factors can be rendered practicable
via the Green–Schwarz mechanism and there are fermion mass models
in which such anomalous gauge symmetry U (1)A is used as a flavor
symmetry [27–30].

123



Eur. Phys. J. C (2020) 80 :149 Page 7 of 12 149

Let us concentrate on the lepton sector and discuss the
gauge symmetry SU (3)� × SU (3)e [31] under which the LH
and RH lepton fields transform as

�Lα =
(

να

eα

)

L
∼ (3�, 1), eRγ ∼ (1, 3e) (22)

where α = 1, 2, 3 and γ = 1, 2, 3 are the indices of SU (3)�
and SU (3)e respectively. This set of fermions is not anomaly
free. The ways of the anomaly cancellation were discussed
in Ref. [31] and in this letter we shall not concentrate on this
issue.2

For breaking SU (3)�×SU (3)e we introduce flavon fields,
three triplets ηiα of SU (3)� and three triplets ξiγ of SU (3)e,
i = 1, 2, 3. Then the charged lepton masses emerge from the
gauge invariant dimension–6 operator

yi j
M2 ηiαξ

γ

j φ �LαeRγ + h.c. (23)

where yi j are order one constants, φ is the Higgs doublet and
M is a cutoff scale. In an UV-complete theory such operators
can be induced via seesaw-like mechanism by integrating
out some heavy scalar or fermion states [16–20]. However,
concrete model building is not the scope of this paper, and for
our demonstration effective operator analysis is sufficient. As
for the neutrinos, their Majorana masses are induced by the
higher order operator

hi j
M3

ν

ηα
i η

β
j φφ �TLαC�β + h.c. (24)

where hi j = h ji . The cutoff scale Mν of this operator is not
necessarily the same as the scale M of operator (23).

In order to generate non-zero masses of all three leptons
e, μ, τ , all three SU (3)� flavons ηi as well as SU (3)e ξi
should have non-zero VEVs with disoriented directions. This
means that the VEVs 〈ηiα〉 should form a rank-3 matrix.
Without losing generality, the flavon basis can be chosen so
that the matrix 〈ηiα〉 is diagonal, 〈ηiα〉 = wiδiα , i.e. the flavon
VEVs are orthogonal:

〈η1〉 =
⎛
⎝

w1

0
0

⎞
⎠ , 〈η2〉 =

⎛
⎝

0
w2

0

⎞
⎠ , 〈η3〉 =

⎛
⎝

0
0
w3

⎞
⎠ (25)

Analogously, for ξ -flavons we take 〈ξiγ 〉 = viδiγ . After plug-
ging these VEVs into (23) we obtain the leptonic Yukawa
matrices in the SM Lagrangian (12) as

Y i j
e = yi j

wiv j

M2 (26)

2 One could consider also the case of vector-like horizontal symme-
try SU (3)V under which both �L and eR (and RH neutrinos NR) all
transform as a triplet, or its SU (2) subgroup. Such a symmetry is
anomaly-free and it also has a custodial property for suppression of
flavor-changing [32] discussed in this section. However, it allows a
degenerate spectrum between the fermion families in the exact symme-
try limit, and thus does not meet the paradigm of HHH.

Since the couplings (23) should give the lepton mass hier-
archy, we consider that the latter emerges due to the VEV
hierarchy v3 
 v2 
 v1 in SU (3)e symmetry breaking, i.e.
v3 : v2 : v1 ∼ mτ : mμ : me as it is described in Ref. [31]. On
the other hand, operator (24) should give the observed neu-
trino mass pattern, mi j

ν = hi jwiw jv
2
w/M3

ν , and in particular
the large neutrino mixing. This implies that SU (3)� breaking
flavons η should have comparable VEVs, w3 ∼ w2 ∼ w1.

Gauge bosonsFμ
a of SU (3)� associated to the Gell–Mann

matrices λa , a = 1, 2, . . . 8, interact as gFμ
a Jaμ with the

respective currents Jaμ = J (e)
aμ + J (ν)

aμ = 1
2 eLγμλaeL +

1
2νLγμλaνL , where g is the gauge coupling constant, eL =
(e1, e2, e3)

T
L and νL = (ν1, ν2, ν3)

T
L respectively denote the

family triplets of the LH charged leptons and neutrinos.
At low energies these couplings induce four-fermion (cur-

rent × current) interactions:

Leff = −g2

2
Jμ
a

(
M2

)−1

ab
Jbμ (27)

where M2
ab is the squared mass matrix of gauge bosons Fμ

a

which in the flavon VEV basis (25) is essentially diagonal
apart of a non-diagonal 2×2 block related toFμ

3 -Fμ
8 mixing.

Namely, the masses of Fμ
1,2, Fμ

4,5 and Fμ
6,7 are

M2
1,2 = g2

2
(w2

2 + w2
1) = g2

2
v2
F ,

M2
4,5 = g2

2
(w2

3 + w2
1), M2

6,7 = g2

2
(w2

3 + w2
2). (28)

As for Fμ
3 and Fμ

8 they have a mass mixing and their mass
matrix reads

M2
38 = g2

2

(
w2

2 + w2
1

1√
3
(w2

1 − w2
2)

1√
3
(w2

1 − w2
2)

1
3 (4w2

3 + w2
1 + w2

2)

)
. (29)

Notice that if w1 = w2 = vF/
√

2, this matrix becomes
diagonal. In the following, for the simplicity of our demon-
stration, we analyze this case.3 Then for the gauge boson
masses we have M2

a = (g2/2)(xavF )2, where

x2
1,2,3 = 1, x2

4,5,6,7 = r + 1

2
, x2

8 = 2r + 1

3
(30)

and r = 2w2
3/v

2
F . Then operators (27) can be rewritten as

Leff = Leν
eff + Lee

eff + Lνν
eff where

Leν
eff = −2GF√

2

8∑
a=1

(
eL γ μ λa

xa
eL

)(
νL γμ

λa

xa
νL

)

Lee
eff = −GF√

2

8∑
a=1

(
eL γμ

λa

xa
eL

)2

3 Similar analysis can be done also for a general case w1 
= w2, along
the lines of Ref. [31] where such analysis was done for the RH gauge
sector SU (3)e .
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Lνν
eff = −GF√

2

8∑
a=1

(
νL γμ

λa

xa
νL

)2 (31)

where 4GF/
√

2 = 1/v2
F . Obviously, the factor g2/2 in oper-

ators cancels out and the strength of these operators is deter-
mined solely by the VEVs (25).

The first term Leν
eff contains operator (18) which con-

tributes to the muon decay μ → eνμν̄e as Gμ = GF + GF .
It is induced by exchange of gauge bosons Fμ

1 and Fμ
2 , or

more precisely by the combination (Fμ
1 ± iFμ

2 )/
√

2, as in
second diagram of Fig. 4. As it was pointed out in the pre-
vious section, for restoring the CKM unitarity one needs
δμ = GF/GF = (vw/vF )2 to be around 7 × 10−4 which
corresponds to the flavor scale vF = 6 ÷ 7 TeV.

The similar operators in Leν
eff mediated by the gauge

bosons Fμ
4,5 and Fμ

6,7 contribute to the taon leptonic decays
τ → eντ ν̄e and τ → μντ ν̄μ which rates are well consistent
with the SM predictions [33]. Then, in the case w1,2,3 ∼ vF
but w1 
= w2, the branching ratio �(τ → μντ ν̄μ)/�(τ →
eντ ν̄e) can have order GF/GF ∼ δμ deviation from the
SM prediction which can be experimentally testable. For a
comparison, the present experimental value of this ratio is
0.9762(28) [5], which is 1.3σ larger than the SM predicted
value 0.9726. In addition, the terms in Leν

eff with the diago-
nal generators λ3 and λ8 give rise to non-standard neutrino
interactions with leptons. But respective coupling constants
are of the order of GF = δμGF , and hence well below the
experimental constraints.

The last term Lνν
eff in (31) contains the non-standard inter-

actions between neutrinos, but present experimental limits on
the neutrino self-interactions are very weak. However, sec-
ond term Lee

eff in (31) containing charged leptons in principle
is testable for the scale vF of few TeV.

Interestingly, if the flavor eigenstates e1, e2, e3 are the
mass eigenstates e, μ, τ , the terms (31) do not contain
any LFV operators inducing processes like μ → 3e,
τ → 3μ etc. However, the lepton flavor-conserving con-
tact operators − 4π

�2
L
(eLγμeL)2, − 2π

�2
L
(eLγ μeL)(μLγμμL),

etc. are restricted by the ‘compositeness’ limits �−
L (eeee) >

10.3 TeV and �−
L (eeμμ) > 9.5 TeV. Comparing these oper-

ators with the corresponding terms in (31) and taking into
account the relations (30), the ‘compositeness’ scales can be
expressed in terms of the scale vF . Hence, we obtain the limit

vF >

(
r + 1

r + 0.5

)1/2

× 2.1 TeV. (32)

Here the r–dependent pre-factor approaches 1 when r 
 1
and it becomes

√
2 in the opposite limit r � 1. Thus, the

strongest limit emerges in the latter case, vF > 3 TeV or
so, which is anyway fulfilled for our benchmark range vF �
(6 ÷ 7) TeV.

The flavor eigenstates e1, e2, e3 coincide with the mass
eigenstates e, μ, τ , if the Yukawa matrix Y i j

e in (26) is diag-
onal. This can be achieved by imposing some additional dis-
crete symmetries between the flavons ηi and ξi of SU (3)� and
SU (3)e sectors which would forbid the non-diagonal terms
yi j in operator (23). However, in general case the initial fla-
vor basis of the LH leptons is related to the mass basis by the
unitary transformation
⎛
⎝
e1

e2

e3

⎞
⎠

L

= UL

⎛
⎝

e
μ

τ

⎞
⎠

L

=
⎛
⎝
U1e U1μ U1τ

U2e U2μ U2τ

U3e U3μ U3τ

⎞
⎠

⎛
⎝

e
μ

τ

⎞
⎠

L

(33)

Then, in the basis of mass eigenstates, the operatorsLee
eff read

as in (31) but with the substitution λa/xa → U †(λa/xa)U .
Interestingly, in the limit r = 1, i.e. when the VEVs w1,2,3

are equal and so xa = 1, all flavor bosons Fμ
a have equal

masses, and the substitution λa → U †λaU is simply a basis
redetermination of the Gell-Mann matrices. Therefore, no
LFV effects will emerge in this case since the global SO(8)�
symmetry acts as a custodial symmetry. Namely, by Fierz
transformations, using also the Fierz identities for the Gell-
Mann matrices, we obtain

− GF√
2

8∑
a=1

(
eLγμλaeL

)2 = −4

3

GF√
2

(
eLγμeL

)2 (34)

Obviously, the latter expression is invariant under the unitary
transformation (33).

In general case r 
= 1, the mixing (33) gives rise to the
LFV operators as e.g. the one inducing μ → 3e decay:

−4Gμeee√
2

(
eLγ μμL

)(
eLγ μeL

) + h.c.,

4Gμeee√
2

= C(r)

2v2
F

[
1 + 1 − r

r
|U3e|2

]
U∗

3eU3μ, (35)

where the function C(r) = (r − 1)r
[
(r + 1)(r + 0.5)

]−1 is
limited as |C(r)| < 1, reaching the maximal value at r 
 1,
and it vanishes at r = 1. Then, taking |U3e| � 1, we obtain
for the branching ratio of μ → 3e decay

�(μ → eeē)

�(μ → eνμν̄e)
= 1

2

∣∣∣∣
Gμeee

GF

∣∣∣∣
2

= 1

8

(
δμC(r)|U∗

3eU3μ|)2

(36)

The experimental upper bound on this branching ratio is
10−12 [5]. Taking δμ = (vw/vF )2 = 7 × 10−4, the limit
δμ|CU∗

3eU3μ|/√8 < 10−6 translates into |CU∗
3eU3μ| <

0.4 × 10−2 which is nicely satisfied if the lepton mixing
angles in (33) are comparable with the CKM mixing angles
in (1) or even larger. E.g. if the VEV ratio is in between
r = 0.5÷1.5, then |C(r)| < 1/7 so that |U∗

3eU3μ| < (1/6)2

or so would suffice for properly suppressing the μ → 3e
decay rate. This means that in this case the matrix elements
|U3μ| and |U3e| can be almost as large as the Cabibbo angle

123



Eur. Phys. J. C (2020) 80 :149 Page 9 of 12 149

sin θC = Vus . The experimental limits on other LFV effects
as e.g. τ → 3μ are weaker, and following the lines of Ref.
[31] one can show that in our model with vF � 6 TeV or
so, they are fulfilled even for whatever large mixings in (33).
Once again, for r = 1 all LFV effects are vanishing owing
to custodial symmetry, see Eq. (34).

7. Let us discuss briefly how the hypothesis Gμ 
= GF could
affect the SM precision tests. In the SM, at tree level, the weak
gauge boson masses are MW = gvw/

√
2 = evw/

√
2 sin θW

and MZ = MW / cos θW where θW is the weak angle. For
precision tests the radiative corrections are important which
depend also on the top quark and Higgs mass.

The world averages of experimentally measured masses
of Z and W reported by PDG 2018 are [5]:

Mexp
Z = 91.1876(21) GeV,

Mexp
W = 80.379(12) GeV, (37)

while the SM global fit yields to the following values:

MSM
Z = 91.1884(20) GeV,

MSM
W = 80.358(4) GeV. (38)

Hence, the theoretical and experimental values of Z -mass are
in perfect agreement while for W -boson the two values have
about 1.6σ discrepancy:

Mexp
W − MSM

W = (21 ± 13) MeV (39)

In the SM the mass of W -boson, including radiative cor-
rections, is determined as

MW = A0

ŝZ (1 − �r̂W )1/2 (40)

where A0 = (πα/
√

2GF )1/2 = 37.28039(1) GeV taking
GF = Gμ, the factor 1 − �r̂W = 0.93084(8) includes
the main radiative corrections and ŝ2

Z = 1.0348(2)s2
W is

the corrected value of sin2 θW (MZ ) by including the top
and Higgs mass dependent corrections. The theoretical mass
MW = 80.358(4) GeV (38) is then obtained by substituting
in (40) the value ŝ2

Z = 0.23122(3) obtained from the SM
global fit [5]. In our scenario, however, GF 
= Gμ. Should
we just set in A0 instead of GF = Gμ the “corrected” value
GF = (1+ δμ)−1Gμ, then A0 should be rescaled by a factor
(1 + δμ)1/2, and correspondingly the “theoretical” value of
MW (40) too. In particular, for δμ = 7 × 10−4 we would get
MW = 80.386 GeV, right in the ball-park of the experimental
values (38). However, this is not the right thing to do.

In the global fit of SM MZ is one of the input parame-
ters with smallest experimental errors, along with the fine
structure constant α and the “muon” Fermi constant Gμ.
Essentially, this is the main reason of the good coincidence
between Mexp

Z and MSM
Z . In fact, the SM implies the relation

MZ = MW

ĉZ ρ̂1/2 = A0

ŝZ ĉZ (1 − �r̂W )1/2ρ̂1/2 (41)

where ρ̂ = 1 + ρt + δρ = 1.01013(5) includes the
weak isospin breaking effects, dominantly from the quadratic
mt dependent corrections ρt = 3GFm2

t /8
√

2π2. There-
fore, taking the experimental value of Z -mass (37), Eq.
(41) can be used for determination of ŝ2

Z parameter, ŝ2
Z =

0.23123(3). This, in turn, from MW = MZ ρ̂1/2ĉZ gives
MW = 80.357(4)SM GeV, i.e. practically the same as the
global fit result (38). This is because the determination of the
parameter ŝ2

Z in the SM global fit is dominated by the results
of Z -pole measurements.

However, in our scenario rescaling A0 → A0(1 +
δμ)1/2 changes the value of ŝ2

Z . In particular, taking δμ =
(7.6 ± 1.6) × 10−4, we get ŝ2

Z = 0.23148(3)SM(5)δμ .
Then, again from MW = MZ ρ̂1/2ĉZ , we get MW =
80.344(4)SM(3)δμ GeV. Thus, unfortunately, while the effect
is there, in reality it goes right to the opposite direction. So,
our determination of MW differs from MSM

W , MSM
W −Mour

W =
(13 ± 3) MeV. Thus, with MSM

W already being in tension
with the experimental value (37), our result has more tension:
Mexp

W − Mour
W = (35 ± 13) MeV (2.7σ ).4 If the tension will

increase with future precision, this would mean that one has
to admit at least some minimal step beyond the SM. The rela-
tion between W and Z masses can be improved by increasing
of ρ-parameter via e.g. the VEV ∼ 1 GeV of a scalar triplet
of the electroweak SU (2)×U (1), or by diminishing Z mass
by few MeV e.g. via its mixing with some extra gauge bosons
like Z ′ at the TeV scale or perhaps also with the flavor gauge
bosons considered in the previous section.

8. The value |Vud | can be extracted also from free neutron
decay by combining the results on the measurements of the
neutron lifetime τn with those of the axial current coupling
constant gA. The master formula reads (see e.g. in a recent
review [34]):

|Vud |2 = K/ ln 2

G2
FFnτn (1 + 3g2

A)(1 + �V
R )

= 5024.46(30) s

τn(1 + 3g2
A)(1 + �V

R )
(42)

where Fn = fn(1 + δ′
R) is the neutron f -value fn =

1.6887(1) corrected by the long-distance QED correction
δ′
R = 0.01402(2) [35]. This equation, taking the values

τn = 880.2 ± 1.0 s, gA = 1.2724 ± 0.0023 adopted in
PDG 2018 [5], and �V

R = 0.02361(38) [7], would give the
value

|Vud | = 0.97577(55)τn (146)gA (18)�V
R

= 0.97577(157)(43)

which has an order of magnitude larger error than |Vud | =
0.97420(10)F t (18)�V

R
= 0.97420(21) obtained from (6)

and used in (9), due to large uncertainties in τn and gA.

4 Let us remark that the tension with the latest results of ATLAS
MATL

W = 80.370(19) is much weaker (1.3σ ), MATL
W − Mour

W =
(26 ± 20) MeV.
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Fig. 7 The red band shows the precision relation (44) between gA and
τn . Black triangles with horizontal error bars show values of gA reported
in Refs. [37–39] and vertical grey band corresponds to their average
(45). Green circles show values of τn reported by trap experiments [42–
50] with respective error bars and horizontal green band shows their
average (47). Blue squares and blue horizontal band show the the same
for beam experiments [51,52]

However, rather than for determination of |Vud |, Eq. (42)
can be used for a consistency check. Namely, by comparing
it with Eq. (6) we get a relation between τn and gA [36]:

τn = 2F t

ln 2Fn(1 + 3g2
A)

= 5172.0(1.1) s

1 + 3g2
A

(44)

In Fig. 7 this relation is shown by the red band. This formula
is very accurate since the common factors in Eqs. (6) and
(42) including the Fermi constant and radiative corrections
�V

R cancel out.
For the axial current coupling gA, the PDG 2018 quotes

the value gA = 1.2724 ± 0.0023. However, the results
of the latest and most accurate experiments [37–39] which
measured β-asymmetry parameter using different techniques
(the cold neutrons in PERKEO II and PERKEO III experi-
ments [37,39] and ultra-cold neutrons in the UCNA experi-
ment [38]), are in perfect agreement among each other, and
their average determines the axial current coupling gA with
impressive (better than one per mille) precision:

gA = 1.27625 ± 0.00050. (45)

Figure 7 shows the results of Refs. [37–39] and their average
(vertical grey band). For gA in this range Eq. (44) gives the
Standard Model prediction for the neutron lifetime

τSM
n = 878.7 ± 0.6 s (46)

From the experimental side, the neutron lifetime is mea-
sured in two types of experiments. The trap experiments
measure the disappearance rate of the ultra-cold neutrons
(UCN) by counting the survived neutrons after storing them
for different times in the UCN traps and determine the neu-
tron decay width �n = τ−1

n . The beam experiments are the
appearance experiments, measuring the width of β-decay

n → peν̄e, �β = τ−1
β , by counting the produced protons in

the monitored beam of cold neutrons. In the Standard Model
the neutron decay should always produce a proton, and so
both methods should measure the same value �n = �β .

However, there is tension between the results obtained
using these two methods, which was pointed out in Refs.
[40,41]. Figure 7 clearly demonstrates the discrepancy.
Namely, by averaging the presently available results of eight
trap experiments [42–50] one obtains:5

τtrap = 879.4 ± 0.6 s, (47)

which is compatible with τSM
n (46). In particular, this value

of τn together with new gA (45) and new value �V
R =

0.02467(22) [8], determines |Vud | with the precision more
than 3 times better than in (43):

|Vud | = 0.97327(33)τn (32)gA (10)�V
R

= 0.97327(47). (48)

This is compatible with |Vud | = 0.97370(10)F t (10)�V
R

=
0.97370(14) from supeallowed 0+ − 0+ decays used in (10)
but has 3 times larger error than the latter. For making it
competitive with the latter determination, the neutron life-
time should be measured with precision of 0.1 s and gA with
precision 3 times better than in (45), which can be realistic
in future experiments.

On the other hand, the beam experiments [51,52] yield
the value

τbeam = 888.0 ± 2.0 s (49)

which is 4.4σ away from the SM prediction (46). Therefore, it
is more likely that the true value of the neutron lifetime is the
one measured by trap experiments (47) which is consistent
with the SM prediction (46).

About 1 per cent deficit of produced protons in the beam
experiments [51,52] might be due to some unfixed system-
atic errors. Alternatively, barring the possibility of uncon-
trolled systematics and considering the problem as real, a
new physics must be invoked which could explain about one
per cent deficit of protons produced in the beam experiments.
One interesting possibility can be related to the neutron–
mirror neutron (n − n′) oscillation [53–55], provided that
ordinary and mirror neutrons have a tiny mass difference 300
neV or so [56]. Then in large magnetic fields (5 Tesla) used
in beam experiments n − n′ conversion probability can be
resonantly enhanced to about ∼ 0.01, and the corresponding
fraction of neutrons converted in mirror neutrons will decay

5 The PDG 2018 average τn = 880.2±1.0 s includes the results of five
trap experiments [42–47] and two beam experiments [51,52]. The error

enlarged by a factor
√

χ2
dof ≈ 2, essentially for a loose compatibility

between the data obtained from the trap and the beam experiments. This
average does not include the results of three recent trap experiments
[48–50] published in 2018.
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in an invisible (mirror) channel without producing ordinary
protons.

Concluding this section, let us remark that the recent accu-
rate calculations of the short-range radiative corrections �V

R
[8,12] and respective redetermination of Vud has no influ-
ence on the determination of τn (46) obtained from Eq. (44).
In fact, the latter equation directly relates the neutron life-
time to the value F t accurately measured in superallowed
0+ − 0+ nuclear transitions and to the value gA obtained
from accurate measurements of β-asymmetry. Notice that
the relation (44) remains valid also in the presence of non-
standard vector GV or axial GA coupling constants (which
can be the case if some non-standard interactions mediated
by new vector bosons also contribute to the neutron decay)
since the value GV (independently whether it is equal to
GF |Vud | or not) anyway cancels out [57]. Hence, only the
ratio gA = GA/GV remains relevant which is accurately
determined from the measurements of β-asymmetry. In par-
ticular, Eq. (44) remains valid in our model with GF 
= Gμ

discussed in previous section.
9. In this paper we discussed the CKM unitarity problem.
The present experimental and theoretical accuracy in the
determination of the first row elements in the CKM matrix
(1) indicates towards 4.3σ deviation from the unitarity (2).
We investigated two new physics scenarios which could set-
tle the problem. The respective results are summarized in
Table 1.

The first, rather straightforward possibility is related to the
existence of extra weak isosinglet down-type quark b′ with
the mass of few TeV which should have a rather large mix-
ing with the first family, |Vub′ | � 0.04. However, apart of the
persistent question “who has ordered that?”, this scenario has
some unnatural features related to the flavor-changing phe-
nomena. In particular, given that |Vub′ | � 0.04, then b′ will

induce too large effects in K 0−K
0

system etc. unless its mix-
ings with 2nd and 3rd families Vcb′ and Vtb′ are rather small.
Perhaps such a situation is possible by some conspiracies,
but a priori it looks rather weird.

As another possibility for restoring unitarity, one can intro-
duce additional effective operator contributing to the muon
decay in positive interference with the Standard Model con-
tribution. In this case the Fermi constant would be slightly
different from muon decay constant, GF = Gμ/(1 + δμ),
where δμ � 7×10−4 would suffice for unitarizing the CKM
matrix. Namely, the values of Vus and Vud (which are nor-
mally extracted by assuming GF = Gμ) are shifted by a
factor 1 + δμ while their ratio is not affected. The needed
effective operator can be mediated by a flavor changing boson
of a gauge horizontal symmetry SU (3)� between the three
lepton families which is spontaneously broken at the scale of
few TeV.

The scenario with gauge inter-family symmetry SU (3)�×
SU (3)e acting on left-handed and right-handed leptons can
give a natural understanding of the mass hierarchy among
charged leptons and large mixing of neutrinos as a conse-
quence of spontaneous breaking pattern of this symmetry.
Interestingly, despite the fact that these gauge bosons have
flavor-changing couplings with the leptons, their exchanges
do not induce dramatic LFV effects as e.g. μ → 3e, τ → 3μ

decays etc. since these effects can be kept under control
thanks to approximate custodial symmetry.

Analogously, one can consider the inter-family gauge
symmetry SU (3)Q × SU (3)u × SU (3)d between the quarks.
Its breaking pattern can be at the origin of the quark mass and
mixing spectrum. Interestingly, the flavor-changing gauge
bosons of SU (3)Q can contribute to the hadronic decays of
kaons, hyperons, etc. In supersymmetric extension of the SM,
the chiral gauge symmetries SU (3)� × SU (3)e for leptons
and SU (3)Q × SU (3)u × SU (3)d for quarks can be also
motivated as a natural tool for realizing the minimal flavor
violation scenario [58–60].

There is the interesting possibility that these flavor gauge
symmetries are common symmetries between particles of
ordinary and mirror sectors, which is also motivated by the
possibility of cancellation of triangle anomalies of gauge
SU (3) factors between the ordinary and mirror fermions
[61]. Mirror matter is also a viable candidate for dark mat-
ter (see e.g. reviews [62–64]). Since flavor gauge bosons are
messengers between the two sectors, they can mediate new
flavor violating phenomena such as muonium–mirror muo-
nium, kaon–mirror kaon oscillations, etc. [31] and also can
give a possible portal for direct detection of mirror matter
in dark matter detectors [65,66]. Cosmological implications
and limits were discussed in Ref. [31].
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