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Abstract
Optimal control problems driven by evolutionary partial differential equations arise in many
industrial applications and their numerical solution is known to be a challenging problem.
One approach to obtain an optimal feedback control is via the Dynamic Programming prin-
ciple. Nevertheless, despite many theoretical results, this method has been applied only to
very special cases since it suffers from the curse of dimensionality. Our goal is to mitigate
this crucial obstruction developing a version of dynamic programming algorithms based on
a tree structure and exploiting the compact representation of the dynamical systems based on
tensors notations via a model reduction approach. Here, we want to show how this algorithm
can be constructed for general nonlinear control problems and to illustrate its performances
on a number of challenging numerical tests introducing novel pruning strategies that improve
the efficacy of themethod. Our numerical results indicate a large decrease inmemory require-
ments, as well as computational time, for the proposed problems. Moreover, we prove the
convergence of the algorithm and give some hints on its implementation.

Keywords Dynamic programming · Optimal control · Tree structure · Model order
reduction · Error estimates · Tree structure algorithm

Mathematics Subject Classification 49L20 · 49J15 · 49J20 · 93B52

1 Introduction

Feedback control is a fundamental concept in engineering and applied mathematics, where
the goal is to design a system that can regulate a process to achieve a desired behavior. One of
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the most powerful tools in feedback control is the Hamilton Jacobi Bellman (HJB) equation,
which provides a framework for optimal control of dynamical systems. The HJB equation is a
Partial Differential Equation (PDE) that arises from the calculus of variations and has a wide
range of applications, including e.g. robotics, aerospace and finance. The main disadvantage
of this approach comes in the form of the so-called curse of dimensionality; the phenomenon
for which the complexity of a problem increases exponentially as the number of variables or
dimensions involved in the problem grows. In real applications, the dynamical system may
be described by a large number of state variables either because the continuous problem is in
high-dimension or because the dynamical system is obtained via a discretization in space of a
PDE. In the context of linear dynamics and quadratic cost functional, the HJB is equivalent to
the Differential Riccati Equation for the finite horizon control problem and to the Algebraic
Riccati Equation in the infinite horizon case. This setting has been widely researched, leading
to several promising high-dimensional solvers [12, 31].

For general nonlinear problems, a Riccati-like reformulation does not exist and the HJB
equation must be tackled directly. In the recent years several efforts have been employed
in the mitigation of the curse of dimensionality arising in optimal control, among those we
mention sparse grids [24], max-plus algebra [1, 2, 15, 37], artificial neural networks [16, 26,
35, 38, 39, 46, 56], the application of tensor formats [19, 40, 45] and radial basis functions
[6].

In this paper we aim tomitigate the curse of dimensionality via a graph-based optimization
algorithm, the Tree Structure Algorithm (TSA) for the resolution of the finite horizon HJB
problem [3]. The TSA leads to the construction of a tree in the direction of all the possible
controlled trajectories. Due to its flexible structure, this technique has been already applied in
different settings, e.g. high-order schemes [4] and high-dimensional semidiscrete PDEs [7]
and its convergence is ensured by rigorous error estimates [48]. Furthermore, a geometrical
pruning based on the distance of the nodes has been introduced to avoid the exponential
growth of the tree and obtain a quadratic growth rate in the context of LQR problems [48].
Unfortunately, for general nonlinear problems this criterion may be not effective since the
tree nodes may spread out faster, leading to a further curse of dimensionality. This is the first
shortcoming of the TSA that we will aim to address in this paper. We will investigate:

• a bilinear setting where the application of the geometrical pruning also yields a good
reduction in the cardinality of the tree,

• an optimal control problem based on monotone controls with an efficient tree-based data
structure,

• a statistical pruning rule based on the iterative knowledge of the value function on the
tree nodes.

Themain novelty of the paper lies in the introduction of these innovative pruning strategies
that significantly augment the effectiveness of the method.

A second shortcoming of the TSA that we address in this paper is related to the computa-
tional cost of evaluating and constructing full-dimensional tree nodes. Given the exponential
growth in the cardinality of the tree, that can merely be mitigated by pruning techniques, a
massive computational effort may be required to construct and evaluate the discrete problem
on the tree nodes, as the dimension of the discrete problem is increased.

A first attempt to address this issue was proposed in [7] where the authors applied a
combination of the Proper Orthogonal Decomposition (POD) [55] for the linear part of the
problem and Discrete Empirical Interpolation method (DEIM) [13] for the nonlinear terms,
to reduce the complexity of the problem. The coupling of the POD technique and the HJB
equation dates back to the pioneering paper by Kunisch and co-authors [34], which was then
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further developed in a series of works [27, 33, 36]. Nevertheless, in this setting, the POD-
DEIM algorithm itself has some computational drawbacks. More precisely, the dimension
of the vectors that need to be stored for constructing the tree and the POD and DEIM spaces
increase exponentially to the order of the dimension of the underlying dynamical system. This
may lead to a large bottleneck in the computation of the reduced spaces for larger problems.

Instead, in this paper, we take advantage of the composite structure of a subset of semilin-
ear PDEs, where the underlying PDEs can be written and discretized in Array form, leading
to discrete semilinear Matrix and Tensor equations [17, 29, 41, 49]. Given this particular
structure, we aim to show how the tree can be constructed in low-dimension by applying
a Higher-Order POD-DEIM (HO-POD-DEIM) model order reduction [29] to the discrete
problem and then solving the HJB equation on the low-dimensional tree. Our computational
results on several benchmark problems indicate that the new algorithm leads to memory
requirements that increase linearly in the dimension of the underlying dynamical system,
instead of exponentially. Furthermore, the convergence of the proposed technique is estab-
lished by the derivation of rigorous error estimates for the reduced discrete dynamical system
and for the discrete value function computed on the reduced tree. These theoretical results
extend the error bounds obtained in [52] to semi-implicit schemes as well as the proposed
HO-POD-DEIM technique.

Our construction focuses on general high-dimensional semidiscretized PDEs.A simplified
matrix-oriented version of our framework is experimentally explored for the Navier–Stokes
(NS) equation in the companion manuscript [22], where the application to systems of dif-
ferential equations is also discussed. In the previous work, the method was developed for a
two-dimensional NS equation. In contrast, the current paper addresses general d-dimensional
PDEs. Additionally, we introduce a novel snapshot selection technique and an efficient mem-
ory allocation strategy, which reduces memory requirements during the offline phase. The
NS equation is a well-known example recognized for its computational expense, where the
application ofMOR techniques helps in the computation of the solution (see e.g. [43, 44, 53]).
Here we consider complex problems in high dimension, showing the promising numerical
results on benchmark problems. Furthermore, we deepen the analysis of all the ingredients
of this newmethodology, including pruning techniques, error estimates and important imple-
mentational nuances. We believe that the numerical simulations presented in the last section
illustrate that DP is now also feasible for more complex, higher-dimensional problems from
a computational point of view, and we hope that this brings it closer to the application of
challenging industrial problems.

The paper is organized as follows. In the second section we introduce the optimal control
framework and the Tree Structure Algorithm. Section3 is devoted to theModel Order Reduc-
tion setting and its coupling with the TSA, whereas in Sect. 4 we present some hints for an
efficient implementation of the proposed algorithm. In Sect. 5 we examine different pruning
criteria for the TSA showing some results in the reduction of the cardinality of the tree, and
Sect. 6 presents an error bound for the approximation of the value function via the reduced
order model algorithm. Finally, in the last section we present some numerical experiments
to show the effectiveness of the proposed method.
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2 The Optimal Control Problem

Let us consider the classical finite horizon optimal control problem that we use as a model
problem. The system is driven by

{
ẏ(s) = f (y(s), u(s), s), s ∈ (t, T ],
y(t) = x ∈ R

N .
(2.1)

Here, y : [t, T ] → R
N is the solution, u : [t, T ] → R

m is the control, f : RN × R
m ×

[t, T ] → R
N is the dynamics and

U = {u : [t, T ] → U ,measurable}
is the set of admissible controls whereU ⊂ R

m is a compact set.We define the cost functional
for the finite horizon optimal control problem as

Jx,t (u) :=
∫ T

t
L(y(s, u), u(s), s) ds + g(y(T )), (2.2)

where L : RN × R
m × [t, T ] → R is the running cost and g : RN → R is the final cost. In

the present work we will assume that the functions f , L and g are bounded:

| f (x, u, s)| ≤ M f , |L(x, u, s)| ≤ ML , |g(x)| ≤ Mg,

∀ x ∈ R
N , u ∈ U ⊂ R

m, s ∈ [t, T ], (2.3)

the functions f and L are Lipschitz-continuous with respect to the first variable

| f (x, u, s) − f (y, u, s)| ≤ L f |x − y|, |L(x, u, s) − L(y, u, s)| ≤ LL |x − y|,
∀ x, y ∈ R

N , u ∈ U ⊂ R
m, s ∈ [t, T ], (2.4)

and finally the cost g is also Lipschitz-continuous:

|g(x) − g(y)| ≤ Lg|x − y|, ∀x, y ∈ R
N . (2.5)

Note that these assumptions guarantee uniqueness for the trajectory y(t) by the
Carathéodory theorem (we refer to e.g. [10] for a precise statement).

The aim is to construct a state-feedback control law u(t) = Φ(y(t), t), in terms of the
state equation y(t), where Φ is the feedback map. The optimality conditions are derived via
the well-known Dynamic Programming Principle (DPP) introduced by R. Bellman. We first
introduce the value function for an initial datum (x, t) ∈ R

N × [t, T ]:
v(x, t) := inf

u∈U Jx,t (u) (2.6)

which can be represented via the DPP, i.e. for every τ ∈ [t, T ]:

v(x, t) = inf
u∈U

{∫ τ

t
L(y(s), u(s), s)ds + v(y(τ ), τ )

}
. (2.7)

Due to (2.7) the HJB can be derived for every x ∈ R
N , s ∈ [t, T ):⎧⎨

⎩
−∂v

∂s
(x, s) + max

u∈U {−L(x, u, s) − ∇v(x, s) · f (x, u, s)} = 0,

v(x, T ) = g(x).
(2.8)
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Once the value function is known, by e.g. solving (2.8), then the optimal feedback control
can be obtained as:

u∗(t) := argmax
u∈U

{−L(x, u, t) − ∇v(x, t) · f (x, u, t)} . (2.9)

Remark 2.1 The conditions outlined in this section are employed in [47] to establish the first-
order convergence of the scheme. It is important to note that these conditions are stringent
and are not satisfied by the examples presented in the section dedicated to numerical tests.
The relaxation of these conditions will be a focus of future research.

2.1 Dynamic Programming on a Tree Structure

Webriefly sketch the essential features of the dynamic programming approach on a tree based
on the discrete approximation of the dynamical system. More details on the tree structure
algorithm can be found in [3] where the algorithm and several tests have been presented.

It is hard to find analytical solutions of the HJB Eq. (2.8) due to the nonlinearity and
classical approximation methods, e.g. finite difference or semi-Lagrangian schemes, need a
space discretization that is impossible to manage in high-dimension (see the book [21] for a
comprehensive analysis of approximation schemes for Hamilton-Jacobi equations). This has
motivated different approaches to mitigate the “curse of dimensionality”.

We consider the discretized problem with a time step Δt := [(T − t)/Nt ] where Nt is the
number of temporal time steps{

V n(x) = min
u∈U [Δt L(x, u, tn) + V n+1(x + Δt f (x, u, tn))], n = Nt − 1, . . . , 0,

V Nt (x) = g(x), x ∈ R
N ,

(2.10)
where tn = t + nΔt, tNt = T , and V n(x) := V (x, tn). The classical approach computes the
solution through the application of an interpolation operator to obtain the term V n+1(x +
Δt f (x, u, tn)) based on the values sitting on the grid nodes. This direction will be abandoned
to build a tree structure and computing (2.10) only on a tree structure. Starting from the initial
condition x , we consider all the nodes obtained following the discrete dynamics, e.g. for the
explicit Euler scheme with different discrete controls u j . This gives in one step the points

ζ 1
j = x + Δt f (x, u j , t0), j = 1, . . . , M . (2.11)

We assume that the control set U is a hypercube in R
m discretized in all directions with

constant step-size Δu, obtaining a discrete control set with a finite number of pointsUΔu =
{u1, . . . , uM } that in the sequel we continue to denote byU (with a slight abuse of notation).

Therefore, from every point x we can reach M points by (2.11). Identifying the root of the
tree with T 0 = {x} we obtain the first level of the tree T 1 = {ζ 1

1 , . . . , ζ 1
M }. We can proceed

in this way so that all the nodes at the n−th time level, will be given by

T n = {ζ n−1
i + Δt f (ζ n−1

i , u j , tn−1); j = 1, . . . , M, i = 1, . . . , Mn−1}
and all the nodes belonging to the tree can be shortly defined as

T := {ζ n
j ; j = 1, . . . , Mn, n = 0, . . . , Nt },

where the nodes ζ n
i are the result of the dynamics at time tn with the controls {u jk }n−1

k=0:

ζ n
in = ζ n−1

in−1
+ Δt f (ζ n−1

in−1
, u jn−1 , tn−1) = x + Δt

n−1∑
k=0

f (ζ k
ik , u jk , tk),
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with ζ 0 = x , ik =
⌊
ik+1

M

⌋
and jk ≡ ik+1mod M , where ζ k

i ∈ R
N , i = 1, . . . , Mk and 
·�

is the ceiling function.
Despite the fact that the tree structure allows the resolution of high dimensional problems,

the construction may be expensive since |T | = O(MNt ), where Nt the number of time steps
and M is the number of controls. Whenever M or Nt are too large, the construction turns
out to be infeasible due to the memory allocation. In Sect. 5 we will introduce two pruning
criteria and theoretical results on the reduction of the cardinality, showing their efficiency in
avoiding the allocation memory problem.

Once the tree structure T has been constructed, we compute the numerical value function
V (x, t) on the tree nodes as

V (x, tn) = V n(x), ∀x ∈ T n, (2.12)

where tn = t + nΔt . It is now straightforward to evaluate the value function. Since the TSA
defines a grid T n = {ζ n

j }M
n

j=1 for n = 0, . . . , Nt , we can approximate (2.8) as follows:
⎧⎪⎪⎨
⎪⎪⎩
V n(ζ n

i ) = min
u∈U {V n+1(ζ n

i + Δt f (ζ n
i , u, tn)) + Δt L(ζ n

i , u, tn)},
ζ n
i ∈ T n , n = Nt − 1, . . . , 0,

V Nt (ζ
Nt
i ) = g(ζ Nt

i ), ζ
Nt
i ∈ T Nt ,

(2.13)

where the minimization is computed by comparison on the discretized set of controls U .

Remark 2.2 In the current framework, the curse of dimensionality in the state space has
been exchanged for the curse of dimensionality in the control space and the number of time
steps. The aforementioned pruning criteria help to alleviate these limitations; however, as
the dimension of the control set increases, the complexity of the TSA becomes excessively
demanding. Our primary focus is on low-dimensional controls, a framework of significant
interest in practical applications, as it involves minimizing a specific cost functional with the
addition of only a few inputs into the dynamics.

3 Reduced Order Models on a Tree Structure

Despite the fact that the tree structure algorithm avoids the construction of a grid in high
dimensions, the resulting memory requirements can still be overwhelming. A first step
towards relieving this computational demand via model order reduction was presented in
[7]. More precisely, the POD-DEIM algorithm from [13, 20] is used to reduce the dimen-
sion of the discrete dynamical system, so that the the tree construction is performed in low
dimension. Nevertheless, the POD-DEIM algorithm itself has some computational draw-
backs. Firstly, if the discrete dynamical system from the finite difference semi-discretization
of a PDE in dimension d , the memory requirements in both the offline and online phases
of POD-DEIM are of O(N ), where N = ∏d

i=1 ni , where ni is the number of discretization
nodes in the i th spatial direction. A similar increase in memory requirements is experienced
for other discretization techniques.

Instead, for high-dimensional semi-discrete PDEs, we couple the tree structure algorithm
with the multilinear POD-DEIM algorithm presented in [30] for the 2D case and in [29]
for higher dimensions. This will decrease the memory requirements to O(Ñ ), with Ñ =∑d

i=1 ni . A detailed comparative analysis of the computation complexity of POD-DEIM and
multilinear POD-DEIM in the 2D setting can be found in Appendix A of [30].
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To this end, wewill first discuss some basic tensor notation required for the new algorithm,
after which we will review the standard HJB-POD algorithm, before introducing the new
multilinear one.

3.1 Notation and Tensor Basics

The third mode of a third-order tensor TTT ∈ R
n1×n2×n3 , is given by (see e.g., [32])

TTT (3) = (
T1, T2, · · · , Tn2

)
,

where T i ∈ R
n3×n1 , i = 1, 2, . . . , n2 is referred to as a lateral slice, and TTT (3) is a matrix in

R
n3×n1n2 . Multiplication between a tensor and a matrix, is done via the m−mode product,

which, for a tensor TTT ∈ R
n1×n2×n3 and a matrix M ∈ R

n×nm , we express as

QQQ = TTT ×m M ⇐⇒ QQQ(m) = MTTT (m),

in the m-th mode, for m = 1, 2, 3. For a d−dimensional tensor TTT , the m mode product with
a matrix Mm ∈ R

n×nm in all d dimensions will be expressed as

TTT
d×

m=1

Mm .

The Kronecker product of two matrices M ∈ R
m1×m2 and N ∈ R

n1×n2 is defined as

M ⊗ N =
⎛
⎜⎝

M1,1N · · · M1,m2N
...

. . .
...

Mm1,1N · · · Mm2,m2N

⎞
⎟⎠ ∈ R

m1n1×m2n2 ,

and the vec(·) operator stacks the columns of a matrix one after the other to form a long
vector. For a third order tensor, the vectorization is applied via the first mode unfolding.
Furthermore,

(M ⊗ N)vec(X) = vec(NXM�). (3.1)

As a result, ifXXX ∈ R
n1×n2×n3 , and X = XXX�

(3), then

(L ⊗ M ⊗ N)vec (XXX ) = vec
(
(M ⊗ N)XL�) . (3.2)

More important properties include (see, e.g., [25]): (i) (M ⊗ N)� = M� ⊗ N�; (ii)
(M1 ⊗ N1)(M2 ⊗ N2) = (M1M2 ⊗ N1N2); and (iii) ‖M ⊗ N‖2 = ‖M‖2‖N‖2.

3.2 POD-DEIM Reduced Dynamics

Consider the nonlinear dynamical system (2.1). In what follows we will assume without
loss of generality that the linear and nonlinear terms on the right-hand side can be explicitly
separated to yield a semilinear system of the form{

ẏ(s) = f ( y(s), u(s), s) := L y(s) + f ( y(s), u(s), s), s ∈ (t, T ],
y(t) = x ∈ R

N ,
(3.3)

where L ∈ R
N×N and f : RN ×R

m×[t, T ] → R
N is a continuous function in all arguments

and locally Lipschitz-type with respect to the first variable.

123



41 Page 8 of 35 Journal of Scientific Computing (2024) 101 :41

In [7] the authors reduce the number of variables involved in the system (3.3) by means of
POD-DEIM. More precisely, given ns time instances in the timespan (t, T ] and M discrete
controls, consider constructing a tree structure as described in Sect. 2.1 to obtain a set of
solution snapshots T = {ζ n

j ; j = 1, . . . , Mn, n = 0, . . . , ns}, i .e. all the nodes of the tree,
and consider the snapshot matrix

S = [ζ 0
1 , ζ 1

1 , . . . , ζ M
1 , . . . , ζ

ns
1 , . . . , ζ

ns
Mns ] ∈ R

N×|T |, S = Range(S).

A POD basis of dimension k ≤ |T | is obtained by orthogonal reduction of the matrix S.
That is, given the Singular Value Decomposition (SVD)

S = VΣW�, V ,W ∈ R
N×|T |,Σ ∈ R

ns×ns ,

the POD basis is given by {v1, . . . , vk}, where V k = [v1, . . . , vk] ∈ R
N×k is the matrix

of truncated left singular vectors related to the k largest singular values contained on the
diagonal of Σ .

Given the matrix V k , the state vector y(s) can be approximated as y(s) ≈ V k ŷ(s), for
all s ∈ (t, T ], where ŷ(s) ∈ R

k solves the reduced dynamical system{ ˙̂y(s) = V�
k f (V k ŷ(s), u(s), s) := V�

k LV k ŷ(s) + V�
k f (V k ŷ(s), u(s), s),

ŷ(t) = V�
k x .

(3.4)

To ensure that the reduced model can be simulated with a computational cost independent of
N , we need to avoid lifting the nonlinear term before projection onto the low-dimensional
space. Consequently, the Discrete Empirical Interpolation Method (DEIM) from [13] is used
to interpolate the nonlinear function.

To this end we consider an approximation of the form

f (V k ŷ(s), u(s), s) ≈ Φ p f̂ (V k ŷ(s), u(s), s), f̂ (V k ŷ(s), u(s), s) ∈ R
p,

where Φ p = [ϕ1, . . . ,ϕ p] ∈ R
N×p , with p � N , and {ϕ1, . . . ,ϕ p} is a POD basis of

dimension p obtained from evaluating f on the set of snapshots T . The overdetermined
system is solved by interpolation, ensuring that the left and right side of the equation is
equal at p selected points. That is, given the matrix P = [eρ1 , . . . , eρp ] ∈ R

p contain-
ing a subset of columns of the identity matrix, we ensure that P� f (V k ŷ(s), u(s), s) =
P�Φ p f̂ (V k ŷ(s), u(s), s), so that

f (V k ŷ(s), u(s), s) ≈ f̃ (̂ y(s), u(s), s) := Φ p(P�Φ p)
−1P� f (V k ŷ(s), u(s), s).

Throughout this paper we deal with nonlinear functions that are evaluated element-wise, so
that

f̃ (̂ y(s), u(s), s) = Φ p(P�Φ p)
−1 f (P�V k ŷ(s), u(s), s),

and the nonlinear term is only evaluated at p entries.

3.3 AMultilinear HJB-POD-DEIM Algorithm on a Tree Structure

In this section we illustrate how, under certain hypotheses, the discrete system (3.3) can
be expressed, integrated and reduced in terms of multilinear arrays; see e.g., [17, 29, 41,
49]. We focus specifically on the case where the discrete system (3.3) stems from the space
discretization of a semilinear PDE of the form⎧⎨

⎩
∂s y(s, x) = L (y(s, x)) + f (∇ y(s, x), y(s, x), u(s), s),

s ∈ (t, T ], x ∈ Ω,

y(t, x) = ỹ(x), x ∈ Ω,

(3.5)
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with L a linear differential operator, f a generic nonlinear operator and Ω ⊂ R
d , for

d = 2, 3.

3.3.1 Discretization in Terms of Multilinear Arrays

Consider the operatorL to be a second order differential operator with separable coefficients.
Then, the physical domain can be mapped to a hypercubic domain Ω = [a1, b1] × · · · ×
[ad , bd ], if the operator is discretized via a tensor basis. Examples of such discretizations
include, but are not limited to, spectral methods, and finite differences on parallelepipedal
domains. See, e.g., [29, 41, 49] for more information regarding the assumptions on the
operators, domains and discretization techniques. Here we consider L as a d−dimensional
Laplace operator for illustration purposes, but more general operators can also be treated.
Under these conditions, it holds (from (3.3)) that

L =
d∑

m=1

Ind ⊗ · · · ⊗ Am ⊗ · · · ⊗ In1 ∈ R
N×N ,

where Am ∈ R
nm×nm contains the approximation of the second derivative in the xm direction.

We will also consider problems where the nonlinear term f depends on the first derivative
of the state vector, so that we also define the matrix

D =
d∑

m=1

Ind ⊗ · · · ⊗ Bm ⊗ · · · ⊗ In1 ∈ R
N×N ,

where Bm ∈ R
nm×nm contains the approximation of the first derivative in the xm direction.

The vectors y(t) ∈ R
N from (3.3) then represent the vectorization of the elements of a tensor

YYY(t) ∈ R
n1×···×nd , such that y(t) = vec(YYY(t)), L y = vec (A(YYY)) and Dy = vec (D(YYY)),

where1

A(YYY) :=
d∑

m=1

YYY ×m Am and D(YYY) :=
d∑

m=1

YYY ×m Bm . (3.6)

We refer the reader back to Sect. 3.1 for a description of how the vec operator relates the
entries of the tensor YYY(t) and the vector y(t). Moreover, if the function F : S × [0, t f ] →
R
n1×···×nd represents the function f evaluated at the entries of the arrayYYY andD(YYY), then it

holds that f (Dy, y(s), u(s), s) = vec (F (D(YYY),YYY, u(s), s)), and (3.3) can be written in
the form {

ẎYY(s) = A(YYY(s)) + F (D(YYY(s)),YYY(s), u(s), s) ,

YYY(t) = XXX ∈ R
n1×···×nd .

(3.7)

The boundary conditions are contained in the matrices Am and Bm , m = 1, . . . , d; see e.g.,
[17, 41]. From here on forward we consider the case where n1 = · · · = nd = n, so that
N = nd .

3.3.2 Higher-Order POD (HO-POD) Model Reduction

As it has been shown in [29], great savings in terms of memory requirements and computa-
tional time can be obtained by applying model order reduction directly to the system (3.7)

1 For the case d = 2, (3.6) are Sylvester operators of the form A1Y + Y A�
2 and B1Y + Y B�

2 respectively
[49]. If d = 3, these operators can respectively be expressed as YYY ×1 A1 + YYY ×2 A2 + YYY ×3 A3 and
YYY ×1 B1 +YYY ×2 B2 +YYY ×3 B3.
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instead of first vectorizing and applying model reduction to the vectorized system (3.3). To
this end, we consider an approximation of the tensor YYY(s) of the form

YYY(s) ≈ ỸYY(s) := ŶYY(s)
d×

m=1

Vm,

where Vm ∈ R
nm×km are tall matrices with orthonormal columns and ŶYY(s) ∈ R

k1×···×kd

(km � n, with m = 1, 2, 3 . . . , d) satisfies the low-dimensional equation{ ˙̂YYY(s) = Â(ŶYY(s)) + F̂
(
D̂(ŶYY(s)), ŶYY(s), u(s), s

)
,

ŶYY(t) = XXX×d
m=1 V

�
m ∈ R

k1×···×kd ,
(3.8)

where

F̂
(
D̂(ŶYY(s)), ŶYY(s), u(s), s

) = F
(
D(ỸYY(s)), ỸYY(s), u(s), s

) d×
m=1

V�
m (3.9)

and

Â(ŶYY) :=
d∑

m=1

ŶYY ×m Âm, Âm = V�
m AmVm . (3.10)

The matrices Vm ∈ R
nm×km can be obtained via the HO-POD algorithm described in [29].

That is, given a set of snapshots {YYY(si )}nsi=1, each matrix Vm is constructed in order to
approximate the left range space of the matrix

SSS(m) = (
YYY(m)(s1), . . . ,YYY(m)(sns )

) ∈ R
n×nd−1ns , for m = 1, . . . , d,

where m represents the mode along which the tensor is unfolded to form the matrices
YYY(m)(si ), i = 1, . . . , ns , and SSS ∈ R

n×···×n is a tensor of order d containing the snapshots.
Note that neither the matrices SSS(m) or the tensor SSS is ever explicitly constructed or stored.
Instead we follow the dynamic algorithm initially introduced in [30] for approximating the
left range space ofSSS(m). In [29] a simpler algorithm was used to construct the approximation
space in the tensor setting. Here we implement the more refined dynamic algorithm for the
tensor setting; the inclusion of snapshot information is discussed here, whereas snapshot
selection will be presented in Sect. 4.

Suppose κ2 is the maximum admissible dimension for the reduced space in all modes,
selected a-priori, and consider the initial condition YYY(t). Let

YYY(t) ≈ CCC(t)
d×

m=1

U (0)
m , (3.11)

represent the sequentially truncated higher order SVD3 (STHOSVD) [54] of YYY(t), where
U (0)

m contains the first κ dominant left singular vectors of YYY(m)(t). For each mode these left

singular vectors are collected into the matrix Ṽm = U (0)
m , m = 1, . . . , d .

Subsequently, suppose the snapshot at time instance s j has been selected for inclusion
into the approximation space and let

YYY(s j ) ≈ CCC(s j )
d×

m=1

U ( j)
m , (3.12)

2 We refer the reader to [30] for a detailed experimental analysis on the role of the parameter κ .
3 For the case d = 2, however, we just use the standard MATLAB SVD function.
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represent the STHOSVD of the selected snapshot and let Σ
( j)
m contain the first κ singular

values ofYYY(m)(s j ) on themain diagonal. The approximation spaces are updated by appending
the new singular values and vectors, so that

Ṽm ← [Ṽm,U ( j)
m ], and Σ̃m ← blkdiag(Σ̃m,Σ

( j)
m ).

Eventually the diagonal entries of Σ̃m are reordered decreasingly and truncated so that the
largest κ values are retained, with the vectors in Ṽm reordered and truncated accordingly.
This procedure is summarized in Algorithm 1.

At the end of the procedure, when all snapshots have been processed, the final basis
vectors are obtained by orthogonal reduction of the matrices Ṽm . More precisely, let Ṽm =
Vm Σm W

�
m be the SVD of Ṽm . The final basis matrices Vm are obtained by truncating the

first km dominant singular vectors of Vm according to the criterion√√√√ κ∑
i=km+1

(σ
(i)
m )2 < τ

√√√√ κ∑
i=1

(σ
(i)
m )2, (3.13)

for some τ ∈ (0, 1), where σ
(i)
m is the i-th diagonal element of Σm .

Algorithm 1 Appending a new snapshot to the constructed space

1: Given Ṽm ∈ R
n×κ , Σ̃m ∈ R

κ×κ , and a new snapshotYYY(s j ) ∈ R
n×···×n for m = 1, . . . , d

2: Compute the STHOSVD ofYYY(s j ) to obtain (3.12)
3: for m = 1, . . . , d do
4: Let Σ( j)

m contain the first κ singular values ofYYY(m)(s j ) on the main diagonal

5: Append: Ṽm ← [Ṽm ,U( j)
m ] & Σ̃m ← blkdiag(Σ̃m , Σ

( j)
m ).

6: Decreasingly order the entries of Σ̃m and keep the first κ
7: Order Ṽm accordingly and keep the first κ vectors of each;
8: Output the new space vectors Ṽm ∈ R

n×κ and singular values Σ̃m ∈ R
κ×κ

9: end for

3.3.3 Higher-Order DEIM (HO-DEIM) Approximation of the Nonlinear Term

It is clear from (3.9) that a bottleneck forms around the reduced nonlinear term, similar to
the vector setting. To this end, we consider the HO-DEIM algorithm from [29] to circumvent
the issue. Consequently, suppose the tall matrices Φm ∈ R

nm×pm , for m = 1, 2, . . . , d , have
been constructed as the output of the HO-POD method described above for the snapshots
{F (D(YYY(si )),YYY(si ), u(si ), si )}nsi=1. Furthermore, consider d matrices Pm ∈ R

nm×pm each
containing a subset of columns of the nm × nm identity matrix. The matrices Pm are each
respectively obtained as the output of the q-deim algorithm [20] with input Φ�

m . The ho-
deim approximation of (3.9) is then given by

F̂
(
D̂(ŶYY(s)), ŶYY(s), u(s), s

) ≈ F
(
D(ỸYY(s)), ỸYY(s), u(s), s

) d×
m=1

Fm

= F̂ deim
(
D̂(ŶYY(s)), ŶYY(s), u(s), s

)
,

(3.14)

where

Fm = V�
mΦm(P�

mΦm)−1P�
m .
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If F is evaluated element-wise at the components of ỸYY(s) and D(ỸYY(s)), then it holds that

F
(
D(ỸYY(s)), ỸYY(s), u(s), s

)∧:= F
(
D(ỸYY(s)), ỸYY(s), u(s), s

) d×
m=1

P�
m

= F
(
D(ỸYY(s))

d×
m=1

P�
m , ỸYY(s)

d×
m=1

P�
m , u(s), s

)
.

(3.15)

In this case the nonlinear term is evaluated at only p1 p2 · · · pm entries.

3.3.4 The Reduced Optimal Control Problem on a Tree Structure

In this section we explore how the full procedure combining the tree structure algorithm and
the HO-POD-DEIM Model reduction technique is split into an offline and online stage to
solve the HJB Eq. (2.8) and determine the optimal control (2.9).
Offline Stage The offline stage consists of two important steps, namely snapshot collection
and basis construction. To this end, we select a coarse time step Δ̂t and control set Û .
The basis is constructed on the fly following Sects. 3.3.2–3.3.3, on the nodes of the tree,
which is constructed following Sect. 2.1. This is a computationally expensive step, as the
full-dimensional space is explored in this phase. To this end, we discuss a collection of
nuances related to the implementation in Sect. 4.
Online Stage At this stage, the computed basis vectors are exploited to construct a reduced
dimensional tree, approximate the reduced value function and compute the optimal trajectory
at a fraction of the initial cost.

• Construction of the reduced tree. Here we fix the desired wider discrete control set
Û ⊂ Ũ and/or a smaller time step Δt ≤ Δ̂t for the resolution of the HO-POD-DEIM
reduced dynamical system

{ ˙̂YYY(s) = Â(ŶYY(s)) + F̂ deim
(
D̂(ŶYY(s)), ŶYY(s), u(s), s

)
,

ŶYY(t) = XXX×d
m=1 V

�
m ∈ R

k1×···×kd .
(3.16)

Following Sect. 2.1, we build the reduced tree T̂ as done for the offline stage. The car-
dinality of tree, however, still grows exponentially, despite the reduced dimension of
the dynamical system. As a result we analyze a collection of important pruning criteria
in Sect. 5.1 in an attempt to reduce the cardinality of the tree dynamically during the
construction.

• Approximation of the reduced value function. The value function computed in the
reduced space will be denoted by V̂ (̂x, t) and its approximation at time tn as V̂ n (̂x). Its
resolution will follow the classical scheme introduced in Sect. 2.1:⎧⎪⎪⎨

⎪⎪⎩
V̂ n (̂ζ n

i ) = min
u∈Ũ

{V̂ n+1(T n+1(̂ζ n
i , u) + Δt L̂ (̂ζ n

i , u, tn)},
ζ̂ n
i ∈ T̂ n , n = Nt − 1, . . . , 0,

V̂ Nt (̂ζ
Nt
i ) = ĝ(̂ζ Nt

i ), ζ̂
Nt
i ∈ T̂ Nt ,

(3.17)

where

L̂ (̂ζ , u, t) = L

(
ζ̂

d×
m=1

V�
m, u, t

)
,
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ĝ(̂ζ ) = g

(
ζ̂
Nt
i

d×
m=1

V�
m

)

and T n+1(̂ζ , u) stands for the time evolution of the node ζ̂ with control u at time tn+1.
• Computation of the optimal trajectory.

The optimal trajectory can be seen as a specific path in the tree structure. For this reason
during the computation of the value function we store the minimizing indices in (3.17).
Once completed the computation of the value function, the optimal path will be given
just following the tree branches which returns the minimum index.

Remark 3.1 It is important to note that, generally, a control in feedback form cannot be
derived directly at the nodes of the treewithout requiring interpolation operators. For example,
interpolation methods for scattered data can be employed to reconstruct the value function at
nodes that are not part of the tree. A preliminary work in this direction can be found in [8].

4 Hints for the Implementation

In both the offline and online phases of the procedure, great savings in terms of CPU time
and memory requirements can be obtained if implemented in an efficient way. Consequently,
in this section we discuss how the snapshots are selected and how the simulated tree nodes
can be efficiently stored to save on memory requirements in the offline phase. Moreover, we
discuss how the reduced model can be efficiently simulated at many time steps and control
inputs, to avoid high computational costs in the online phase.

4.1 Snapshot Selection

The full order model is simulated on a coarse timegrid with two control inputs which are the
two extremes of the control domain, as discussed in [7]. To avoid excessive computational
work we only include information from snapshots that are not yet well approximated in the
current basis. The condition for snapshot inclusion is given by the projection error, that is:

if:
‖YYY(si ) −YYY(si )×d

m=1 Ṽm Ṽ
�
m‖F

‖YYY(si )‖F > τ then: Include, (4.1)

for some τ ∈ (0, 1). Here the matrices Ṽm contain the current basis vectors in all modes,
updated dynamically with snapshot information from the previous selected snapshots as
described in Sect. 3.3.2. The full procedure is summarized in Algorithm 2 below.
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Algorithm 2 Snapshot collection and basis adaptation

1: Given an initial snapshotYYY(t) ∈ R
n×···×n

2: Compute the STHOSVD of YYY(t) to obtain (3.11) and the initial basis vectors Ṽm ∈ R
n×κ and singular

values Σ̃m ∈ R
κ×κ for m = 1, . . . , d

3: for i = 1, . . . , ns do
4: Solve the full order model to obtainYYY(si )
5: Check the condition (4.1)
6: if Include then
7: Update Ṽm and Σ̃m with the snapshotYYY(si ) using Algorithm 1
8: end if
9: end for
10: for m = 1, . . . , d do
11: Compute the truncated SVD of Ṽm using (3.13) to obtain Vm ∈ R

n×km

12: end for

4.2 Efficient Memory Allocation by Low-Rank Storage of Tree Nodes

One challenge of the method presented in [7] is in terms of memory in the offline phase,
since the high fidelity solutions need to be calculated and stored for several time steps and
control inputs in order to form a reduced order model. In particular, the nodes of the tree T
are vectorized and stored in a matrix T ∈ R

N×|T |, where |T | = O(MNt ), with M fixed as
the number of control inputs and Nt as the number of time steps. The exponential growth of
the second dimension greatly limits the number of snapshots that can be stored.

In this paper, we suggest the following improvement. Since the full order model is sim-
ulated in array form, the snapshots at the resulting tree nodes are either matrices or tensors.
Consequently, we can take advantage of the (possible) low-rank structure of each node. That
is, we compute the STHOSVD of each computed nodal value, truncated to the first κ singular
vectors in each mode, so thatYYY(s j ) ≈ CCC(s j )×d

m=1 U
( j)
m , with κ selected a-priori as discussed

in Sect. 3.3.2. As a result, the node can be stored in low-rank form to be recalled for later
computations. More precisely, we collect and store only the dominant singular vectors in
each mode and the low-dimensional core tensors such that

Um ← [Um,U ( j)
m ] for m = 1, . . . , d and c ← [c, vec(CCC(s j ))].

When required at the next time level, the snapshots can easily be computed from its Tucker
decomposition [32, Section 4]. This process allows us to store vectors of length n1, . . . , nd
instead of N = n1n2 · · · nd . The number of vectors stored depends on the rank of the
considered snapshots. A further advantage is that when a snapshot is selected for inclusion
into the approximation space, a HOSVD is required as discussed in Sect. 3.3.2, which will
be readily available thanks to this procedure.

Furthermore, it has been observed that only the nodes from the previous level of the tree
need to be stored, since the snapshots from the earlier levels are automatically processed and
discarded during theHO-PODbasis construction. Finally, we observe that the computation of
the value function does not require the knowledge of the nodes, but only of the corresponding
cost evaluation. In this way we are going to store only the corresponding scalar cost and the
nodes will be erased after the computation of its tree sons.

123



Journal of Scientific Computing (2024) 101 :41 Page 15 of 35 41

4.3 Efficient Simulation of the ReducedModel (3.16)

An important ingredient in the success of theHO-POD-DEIM reduction procedure is the abil-
ity to integrate the reduced model (3.16) in array form without vectorization. Semi-discrete
diffusion problems are typically classified as stiff, rendering explicit methods unsuitable.
Conversely, when nonlinear reaction terms are present, fully implicit schemes require a non-
linear solver, such as Newton’s method, at each time step. Semi-implicit approaches offer
an effective compromise (see, e.g., [28]). In this paper we consider the semi-implicit Euler
scheme, given that the considered model is typically associated with a stiff linear term and a
nonstiff nonlinear term, but several alternatives can be considered [17, 29]. More precisely,

suppose ŶYY( j)
is an approximation of ŶYY(s j ), then the linear system

(Î − ΔtÂ)ŶYY( j) = ŶYY( j−1) + ΔtF̂ deim
(
D̂(ŶYY( j−1)

), ŶYY( j−1)
, u(s j−1), s j−1

)
(4.2)

needs to evaluated at each time level s j . Once again, vectorizing the linear system (4.2) at
each time step will reduce the computational gains related to the reduction in Array form.
Instead, (4.2) can be solved in array form using the direct method presented in [29, 50].

5 Pruning Techniques

Although theoretically the tree structure enables to compute the solution for arbitrary high
dimensional problems, since we are not restricted to the direct discretization of a domain,
its construction turns to be computationally expensive, due to the exponential growth of its
cardinality, For this reason in this section we are going to introduce and analyse different
pruning criteria able to reduce the growth of the tree, but keeping the same accuracy.

5.1 Geometric Pruning

Apruning criterion based on a comparison of the nodes in euclidean normhas been introduced
in [48]. More precisely, two given nodes ζ n

i and ζ n
j will be merged if

‖ζ n
i − ζ n

j ‖ ≤ ε, with i �= j and n = 0, . . . , Nt , (5.1)

for a given threshold ε > 0. To ensure first order convergence, the threshold ε must scale as
Δt2 (we refer to [48] for more details about the error estimates). This pruning criterion has
been successfully applied to low and high dimensional problems, but the main drawback is
the expensive computation of distances in high dimension. One possible solution relies on
the projection of the data onto a lower dimension minimizing the variance of the data. This
procedure is already encoded in the algorithm described in Sect. 3.3.4, since we are reducing
the dimension of the problem keeping the main features.

5.2 Statistical Pruning

In this section we introduce a new iterative pruning criterion based on statistical information
about the value function. We suppose we are starting with a certain control set U1. First,
we construct the tree T1 based on the control set U1 and the value function computed on
the tree will be denoted by V1(x, t). Afterwards, we refine the constructed tree based on
the information on the value function: fixing a ratio ρ ∈ (0, 1] of the nodes, we retain just
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those with the lowest value function, obtaining a new tree T̃1. More precisely, we have that
|T̃1| = ρ|T1| and for every time level tn ∈ [t, T ] and every node ζ ∈ T1 there exists a node
ζ̃ ∈ T̃1 such that V1(̃ζ , tn) ≤ V1(ζ, tn). Hence, we can start with the construction of a new
tree T2 with a wider control set U2 ⊃ U1 such that the nodes are constrained in the zones
where the previous value function had the lowest values, i .e.

min
T̃ n
1

ζ̃ ≤ ζ n
j ≤ max

T̃ n
1

ζ̃ , ∀ζ n
j ∈ T n

2 , n ∈ {Nstart , . . . , Nt }

where the minimum and the maximum are computed element-wise, as well the inequalities.
The statistical pruning is applied starting from an arbitrary time tNstart since the first levels
contain few nodes. We usually will fix Nstart = 3. The entire procedure can be iterated
doubling the number of controls in each step. Computed the tree T̃k at the k-th iteration, the
subsequent tree Tk+1 will satisfy the constraint

min
T̃ n
k

ζ̃ ≤ ζ n
j ≤ max

T̃ n
k

ζ̃ , ∀ζ n
j ∈ T n

k+1, n ∈ {Nstart , . . . , Nt }. (5.2)

Since we neglect the nodes which do not satisfy (5.2), the problem can be regarded as a
state-constrained problem where the constraint is given by the relation (5.2). We refer to [5]
for more details about the coupling of the tree with state-constrained problems. The ratio
ρ is fixed such that it still retains the optimal trajectory from the previous iteration. In this
way we can ensure that the value function is not increasing during the iterative procedure.
Therefore, we denote by V n

k (x) the value function obtained in the k-th iteration at the point
x at time tn . By construction, we can notice that the iterative value function at the initial time
is non increasing, i .e.

V 0
k+1(x) ≤ V 0

k (x), ∀k ≥ 0

and bounded from below since

V n
k (x) ≥ −T M f − Mg, ∀k ≥ 0, n ∈ {0, . . . , Nt }, x ∈ T n

k ,

using the hypothesis (2.3). Hence, the iterative scheme is convergent and it can repeated until
we reach a maximum number of iterations or it satisfies a stopping criterion. In Algorithm 3
the method is sketched.

Algorithm 3 Statistical pruning
1: Choose an initial condition x0, a ratio ρ, a starting time tNstart , a tolerance tol, a maximum number of

iteration kmax and a initial number of discrete controls M
2: Build a tree T1 with M controls and compute the value function Vn

1 (x)
3: while res > tol and k ≤ kmax do
4: M := 2M − 1
5: Construct T̃k retaining a ratio ρ of Tk with the lowest value function
6: Construct Tk+1 under the constraint (5.2)
7: Compute the value function Vn

k+1(x)

8: res = |V 0
k (x0) − V 0

k+1(x0)|
9: k = k + 1
10: end while
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Fig. 1 Application of the
statistical pruning to Van der Pol
oscillator with ρ = 0.3

Fig. 2 Example of the tree T 2,n

In Fig. 1 we show an application of the statistical pruning under the Van der Pol dynamics:⎧⎨
⎩

ẏ1(t) = y2(t), t ∈ (0, T ],
ẏ2(t) = ω(1 − y21 (t))y2(t) − y1(t) + u(t), t ∈ (0, T ],
(y1(0), y2(0)) = (0.4,−0.3),

where ω = 0.15, T = 1.4 and u : [0, T ] → [0, 1]. Fixing a time step Δt = 0.2, we display
the initial full tree T1 with discrete controls {0, 1}, its refinement T̃1 with ρ = 0.3 and the
new tree T2 with discrete controls {0, 0.5, 1}.

5.3 Monotone Control

In this section we restrict the admissible set of controls to monotone controls, e.g.

U = {u : [0, T ] → U , u(·) monotone in [0, T ]}.
In economy different problems can be formulated as optimal control problemswithmono-

tone controls (e.g. adjustment theory of investment problems). Under this constraint, in [11]
Barron proved that the value function is a generalized solution of a quasi-variational inequal-
ity and its numerical treatment has been investigated in a series of papers [9, 42].We consider
the non decreasing case without loss of generality. Let us introduce the notation which will
be useful in this section. We define as TM,N the tree obtained using M discrete controls and
N time steps, while we denote as T M,N the tree constructed via monotone controls. In Fig. 2
we show the structure of the tree T 2,N . In this case we are using 2 discrete controls u1 < u2.
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When we apply u2, the corresponding subtree will have just one node for each level, since
the control cannot decrease by hypothesis.

In this framework we have a great improvement in terms of the cardinality of the tree, as
stated in the following proposition.

Proposition 1 Given M discrete controls and N time steps, the cardinality of the tree based
on monotone controls is given by

∣∣T M,N
∣∣ = (M + N )!

M !N ! (5.3)

Proof Wewill proceedby inductionon thepair (M, N ). It is easy to check that
∣∣T 1,N

∣∣ = N+1
and

∣∣T M,1
∣∣ = M + 1. Now let us suppose (5.3) holds for a pair (M, N ). First, we are going

to prove that the result holds for the pair (M, N + 1). Given the particular structure of the
tree, we can write

∣∣T M,N+1
∣∣ =

M∑
k=1

∣∣T k,N
∣∣+ 1 = (M + N + 1)! − M !(N + 1)!

M !(N + 1)! + 1 = (M + N + 1)!
M !(N + 1)! ,

obtaining the result. Afterwards, let us demonstrate it for the pair (M + 1, N ). In this case
we can split the tree in the following way

∣∣T M+1,N
∣∣ = ∣∣T M,N

∣∣+ ∣∣T M+1,N−1
∣∣ =

N∑
k=2

∣∣T M,k
∣∣+ ∣∣T M+1,1

∣∣

= (M + N + 1)! − (M + 2)!N !
(M + 1)!N ! + M + 2 = (M + N + 1)!

(M + 1)!N !
and this completes the proof. ��

When the number of discrete controls M is fixed, the cardinality described in equation
(5.3) scales as O(NM ). Conversely, when the number of time steps N is fixed, the cardinality
of the pruned tree scales as O(MN ). Thus, we observe a polynomial order of magnitude in
both cases, yielding an affordable algorithm for the computation of the optimal control.

5.4 Bilinear Control

Let us consider the following bilinear dynamical system:

ẏ = Ly + uy, u ∈ U ⊂ R. (5.4)

Discretizing (5.4) via a semi-implicit scheme, we obtain

yn = (I − Δt L)−1yn−1(1 + Δtun−1) = (I − Δt L)−n y0

n−1∏
i=0

(1 + Δtui ). (5.5)

Let us consider now a new evolution ỹn of the discrete scheme at time tn with controls
{ũi }n−1

i=0 . Then the distance between the two dynamics is given by

‖yn − ỹn‖ ≤ ‖(I − Δt L)−n y0‖
∣∣∣∣∣
n−1∏
i=0

(1 + Δtui ) −
n−1∏
i=0

(1 + Δt ũi )

∣∣∣∣∣ . (5.6)

Let us introduce a definition which will be useful in this section.
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Definition 5.1 A discrete system with discrete controls satisfies the sum-based pruning
property if for every pair of vectors (u0, . . . , un−1) and (ũ0, . . . , ũn−1) such that

n−1∑
i=0

ui =
n−1∑
i=0

ũi (5.7)

the corresponding discrete solution yn and ỹn satisfy the geometrical pruning rule, e.g.
‖yn − ỹn‖ ≤ CΔt2.

This class of discrete systems benefits from an important improvement in terms of the
cardinality of the corresponding tree, as stated in the following proposition. For the proof we
refer to Proposition 3.12 in [48].

Proposition 2 The cardinality of the tree based on a system with M discrete controls and N
time steps satisfying the sum-based pruning property is at most N (N−1)

2 (M − 1) + N + 1.

The discrete dynamics (5.5) with two discrete controls belongs to the class of the system
verifying the sum-based pruning property as stated in the next proposition.

Proposition 3 The discrete system (5.5) satisfies the sum-based pruning with 2 discrete
controls. Hence, the cardinality of the corresponding tree is at most N (N+1)

2 + 1.

Proof Let us consider two pair of vectors (u0, . . . , un−1) and (ũ0, . . . , ũn−1) verifying the
sum-based pruning property (5.7). Since we are considering two discrete control (u1, u2) ∈
U×U , the upper bound for distance (5.6) between the two corresponding dynamics becomes

‖(I − Δt L)−n y0‖
∣∣∣(1 + Δtu1)

k1(1 + Δtu2)
n−k1 − (1 + Δtu1)

k2(1 + Δtu2)
n−k2

∣∣∣
with k1, k2 ∈ {0, . . . , n}. By property (5.7) we immediately see that either k1 = k2 or
u1 = u2, which implies that the two corresponding solutions coincide. ��

It should be noted that, according to Proposition 3, the cardinality of the tree with two dis-
crete controls is reduced from O(2Nt ) to O(N 2

t ). In this scenario, the tree can be constructed
directly based on this structure without the need for any pruning criteria. Constructing the
tree with two discrete controls can serve as an efficient and cost-effective method for obtain-
ing information about the full-dimensional system. Once the basis is constructed and the
system is projected onto the lower-dimensional space, a higher number of discrete controls
can subsequently be considered.

Remark 5.1 It is important to emphasize that, in the last two cases (monotone and bilinear),
the cardinality of the tree pruned using the proposed techniques scales as O(NM

t ). This
approach is particularly effective when the number of discrete controls is relatively small
(e.g., less than 10). However, if the problem requires greater refinement in the control set,
statistical pruning is a more suitable approach.

6 An Error Bound for theMultilinear HJB-POD-DEIM Algorithm

The aim of this section is to derive an error estimate for the approximation of value function
with the HO-POD-DEIM algorithm applied to the tree structure. The main reference of this
section is [14], where the authors obtain a state space error bounds for the solutions of the
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reduced systems via a POD-DEIM approach and the application of an implicit scheme for
the time integration. Following their proof, we are going to extend the result to semi-implicit
schemes in our multilinear setting.

First of all, we consider the vectorized form of dynamical system (3.3), whose semi-
implicit discretization with stepsize Δt and discrete controls {u j }Nt−1

j=0 reads

y j − y j−1

Δt
= Ly j + f (y j−1, u j−1, t j−1), j = 1, . . . , Nt . (6.1)

Taking into account the basis in vector form

VY = Vd ⊗ · · · ⊗ V1, VF = Φd ⊗ · · · ⊗ Φ1,

P = VF

(
(Pd ⊗ · · · ⊗ P1)

�VF

)−1
(Pd ⊗ · · · ⊗ P1)

� ,

the vectorized form of the semi-implicit scheme for the reduced dynamics (3.16) reads

ŷ j − ŷ j−1

Δt
= V�

Y L VY ŷ
j + V�

Y P f (VY ŷ j−1, u j−1, t j−1), j = 1, . . . , Nt . (6.2)

Due to vectorization, it is feasible to apply existing results from the literature concerning
dynamical systems in vectorized form. It is important to emphasize that this approach is
merely an analytical technique used to establish the error bound for the approximation error.
The superior performance achieved by the multilinear form has been discussed in previous
sections and will be evident in the numerical experiments.

Our aim is to prove an error estimate between full order scheme (6.1) and reduced one
(6.2).

For this purpose we introduce the logarithmic norm of matrix A ∈ C
n×n defined as

μ(A) = sup
x∈Cn\{0}

Re(< Ax, x >)

‖x‖2 , (6.3)

where Re(z) refers to the real part of z ∈ C. The logarithmic norm plays an important role
for the stability analysis for continuous and discrete linear dynamical systems. Indeed, it is
possible to prove that ‖et A‖ ≤ etμ(A) ∀t ≥ 0 (see e.g. [51]) and by this inequality we can
state that the dynamical system is stable if μ(A) ≤ 0. The definition of this norm will be
fundamental in the treatment of the implicit part of the scheme, while the Lipschitz-continuity
of f will be employed for the estimation of the explicit part. In the following proposition we
prove that the error between the full order model (6.1) and the lifted reduced order model
(6.2) depends on the accuracy of the HO-POD and HO-DEIM basis. The proof can be found
in Appendix A.

Proposition 6.1 Given {yk}Nt
k=0 the solution of the (6.1) and {ŷk}Nt

k=0 solution of (6.2) with

controls {u j }Nt−1
j=0 and time step Δt satisfying Δt μ(V�

Y LVY ) < 1, then

Nt∑
k=0

|yk − VY ŷ
k |2 ≤ C(T )

(
Ey + E f

)
(6.4)

with

Ey =
Nt∑
j=0

|y j − VY V
�
Y y j |2, E f =

Nt−1∑
j=0

| f (y j , t j , u j ) − VFV
�
F f (y j , t j , u j )|2.
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Finally, we are ready to prove a convergence result for the continuous value function
v(x, t), solution of the HJB Eq. (2.8), and the discrete value function solution {V̂ n (̂x)}n ,
solution of the scheme (3.17). For this purpose, let us define the continuous version of the
DDP for the full model{

V (x, s) = min
u∈U {V (x + (tn+1 − s) f (x, u, s), tn+1) + (tn+1 − s) L(x, u, s)},

V (x, T ) = g(x), x ∈ R
d , s ∈ [tn, tn+1),

(6.5)

and its reduced version which reads:{
V̂ (̂x, s) = min

u∈U {V̂ (̂x + (tn+1 − s) f (x, u, s), tn+1) + +(tn+1 − s) L̂ (̂x, u, s)},
V̂ (̂x, T ) = ĝ(̂x), x̂ ∈ R

, s ∈ [tn, tn+1).
(6.6)

Given the exact value function v(x, s) and its continuous reduced approximation V̂ (VY x, s),
the following theorem provides an error estimate for the approximation of the HJB equation
by the HO-POD-DEIM approach. The assumptions and the main procedure for the following
result can be found in Theorem 5.1 in [7].

Theorem 6.1 Given v(x, s) the solution of the HJB Eq. (2.8) and its reduced approximation
V̂ (VY x, s) solution of the scheme (6.6), the following estimate holds

|v(x, s) − V̂ (VY x, s)| ≤ C(T )
(
Δt + Ey + E f

)
. (6.7)

Proof The proof follows closely the procedure adopted for Theorem 5.1 in [7]. The only
difference arises in the estimation of the projection error between the FOM and the lifted
ROM solutions and in this case we apply Proposition 6.1 to obtain the result. ��

7 Numerical Tests

In this section we test the proposed technique in different frameworks. In the first numerical
test we consider a bilinear advection–diffusion equation, comparing the vector and matrix
cases for the construction of the reduced basis. In this numerical test we employ the geomet-
rical pruning strategy in the online stage, taking into account the results obtained in Sect. 5.4
for bilinear optimal control problems for the offline stage. Moreover, a comparison between
the geometrical pruning and the monotone control is presented. The second test is devoted
to a nonlinear reaction-diffusion PDE where we show the efficiency of the statistical pruning
coupled with the MOR technique. Finally, in the third test we consider a more challenging
problem: the control of the 3D viscous Burgers’ equations, where the tree structure algorithm
is coupled with the geometrical pruning. We use this final example to indicate the power of
the proposed algorithm in terms of CPU time and memory requirements with respect to the
vector construction of the problem. The numerical tests are performed on a Dell XPS 13 with
Intel Core i7, 2.8GHz and 16GB RAM. The codes are written in Matlab R2022a.

7.1 Test 1: Advection–Diffusion Equation

In the first numerical test we conside the following bilinear advection–diffusion equation:⎧⎪⎨
⎪⎩

∂s y + (c1, c2) · ∇ y = σΔy + yu(s) (x, s) ∈ Ω × [0, T ],
y(x, s) = 0 (x, s) ∈ ∂Ω × [0, T ],
y(x, 0) = y0(x) x ∈ Ω,

(7.1)
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Table 1 Dim. of basis for POD
and HO-POD varying the number
of the grid points per dimension n
with τ = 10−4, Δt = 0.05 and
two discrete controls

n 101 121 141 161 181 201

POD 7 7 7 7 8 8

HO-POD (3, 7) (3, 7) (3, 7) (3, 7) (3, 8) (3, 8)

with

u ∈ U = {u : [0, T ] → U , u measurable}.
The aim of the optimal control is to drive the solution to the equilibrium y(x) ≡ 0 and to this
end we introduce the following cost functional:

Jy0,t (u) =
∫ T

t

(∫
Ω

|y(x, s)|2dx + |u(s)|2
)
ds +

∫
Ω

|y(x, T )|2dx .

Since we are considering a bilinear optimal control problem, we can benefit of the results
presented in Sect. 5.4, e.g. discretizing the control set with two discrete controls, the total
cardinality of the tree is order O(N 2

t ). We fix T = 1, U = [−3,−1], y0(x) = max(2 −
‖x‖2, 0), Ω = [−5, 5]2, Δ̂t = Δt = 0.05, Û = {−3,−1}, c1 = 0.5, c2 = 0 and σ = 0.
Later on we will discuss the behaviour of the algorithm considering different choices for
the coefficients c1, c2 and σ . Furthermore, we impose the truncation tolerance τ = 10−4 in
the criterion (3.13) for both methods to obtain the same projection error. In this setting the
cardinality of the tree is 3321. In Table 1 we show the dimension of the basis varying the
parameter n, where n is the number of the grid points in each direction. Since the system
is driven along an axes, the HO-POD procedure requires more basis in one direction with
respect to the other. We note that the maximum of the dimensions of the HO-POD basis is
equal to the number of POD basis for any choice of n.

In the top left panel of Fig. 3we compare theCPU time for the offline phase for the PODand
HO-POD algorithms. As stated previously, HO-POD requires less storage and enables to treat
with very high dimensional problems. In particular, we note a difference of almost two orders
of magnitude between the POD and HO-POD offline stages for n = 201. In the top right and
bottom left panels of Fig. 3 a comparison of the computational times and cardinality of the
pruned trees varying the number of discrete controls for the online phase and fixing n = 161
is presented. The HO-POD is again performing better than the POD algorithm since the
geometrical pruning turns to be more efficient in the HO-POD setting. Indeed, fixing M = 7
discrete controls, the cardinality of the HO-POD tree reaches almost order 105, against the
order ≈ 107 for the POD tree and 1016 for the unpruned tree. Given that we are exploring
various projection techniques, the resulting reduced dynamics differ, which may account for
the variation in the cardinality of the pruned trees across the different reduced settings. In the
bottom right panel of Fig. 3, we present the optimal control computed using both techniques,
with the number of discrete controls fixed at four. The behavior of the control signals is
similar, except for a shift. The total cost of the controlled HO-POD trajectory is 2.0077
compared to 2.1149 for the controlled POD dynamics, indicating superior performance in
cost minimization. Furthermore, the controls exhibit a monotone behavior, suggesting the
appropriateness of a monotone control strategy, as demonstrated in the following subsection.

The optimal trajectory computed via HO-POD with 7 discrete controls for different time
instances is displayed in Fig. 4, noting that the solution is getting closer to the stationary
solution.

Finally, Table 2 shows the different CPU times for the offline phase for the two methods.
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Fig. 3 Test 1: CPU time for the offline stage (top left), CPU time for the online stage (top right), cardinality
of the pruned tree (bottom left) and optimal controls (bottom right) for POD and HO-POD techniques

Fig. 4 Test 1: Optimal trajectory for t = 0 (left), t = 1 (central) and t = 2 (right) for HO-POD and n = 161

Table 2 Offline CPU times for
POD and HO-POD varying the
coefficient (c1, c2, σ ) with
n = 601 and Δ̂t = 0.05

(c1, c2, σ ) POD HO-POD

(1, 0, 0) 17.78s 0.67s

(1, 1, 0) 18s 1.77s

(0, 0, 1) 16.9s 0.84s

(1, 1, 1) 34s 1.73s
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Fig. 5 Test 1: Comparisonwith themonotone control. Top: CPU time for the online phase (left) and cardinality
of the tree (right) fixing 21 time steps. Bottom: CPU time for the online phase (left) and cardinality of the tree
(right) fixing 3 discrete controls

First of all, we notice that HO-POD is faster in all cases, but we obtain a particular speed-up in
presence of a one-direction convection, since the construction of the basis operates separately
in each direction.

Comparison with the monotone control
Let us now compare the performances of geometrical pruning with those obtained by

imposing monotone control in the HO-POD setting. In the previous simulation, it was
observed that the control signal exhibits a monotone behavior, making it a suitable setting
for investigating the monotone control framework. We consider two test cases:

1. The number of time steps Nt = 21 is fixed, and the number of discrete controls M is
varied within the set {3, 4, 5, 6, 7};

2. The number of discrete controls M = 3 is fixed, and the time step Δt is varied within
the set {0.05, 0.04, 0.03, 0.02, 0.01}.
The results are displayed in Fig. 5. In both cases, we observe that the online phase using

monotone control is faster than that using geometrical pruning, with both approaches exhibit-
ing similar growth rates.However, the cardinality of the tree pruned via geometrical pruning is
lower, indicating that geometrical pruningmore effectively reduces the cardinality of the tree,
albeit at the cost of an expensive node closeness check. Conversely, the monotone approach
fixes the tree structure, resulting in a more efficient algorithm. In the bottom left panel of
Fig. 5, a third-order polynomial fit is also presented, demonstrating that the cardinality of the
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Fig. 6 Test 2: Cardinality of the tree in logarithmic scale (left) and total cost (right) for Δt = 0.1 and varying
the number of controls

pruned tree grows as NM
t , where M = 3 represents the number of discrete controls. Finally,

the total costs of the two approaches are very similar and thus are not reported.

7.2 Test 2: Allen–Cahn Equation

Weconsider the following nonlinear PDEwith homogeneousNeumann boundary conditions:
⎧⎪⎨
⎪⎩

∂s y = σΔy + y
(
1 − y2

)+ y0(x)u(s) (x, s) ∈ Ω × [0, T ],
∂n y(x, s) = 0 (x, s) ∈ ∂Ω × [0, T ],
y(x, 0) = y0(x) x ∈ [−1, 1]2.

(7.2)

Our aim is to steer the solution to the unstable equilibrium y ≡ 0 minimizing the following
cost functional

Jy0,t (u) =
∫ T

t

(∫
Ω

|y(x, s)|2dx + γ |u(s)|2
)
ds +

∫
Ω

|y(x, T )|2dx .

We fix T = 1, γ = 0.01, σ = 0.1, Ω = [−1, 1]2 U = [−2, 0] and y0(x) = 2 +
cos(2πx1) cos(2πx2). Furthermore, we set Δ̂t =Δt = 0.1, τ = 10−3 and we discretize
the domain [−1, 1]2 with 601 equidistant points, obtaining a grid of 361201 points. In the
offline phase we consider 2 discrete controls (Û = {−2, 0}) and we construct a rough tree
with 2047 nodes. Since the problem is not linear, we apply the HO-POD-DEIM strategy and
the dimensions of the basis turns to be k1 = k2 = p1 = p2 = 5, hence the low dimension
solution lives in R

5×5. The offline stage took 174 seconds. In this example the dynamical
system is nonlinear and we do not have any a priori estimate for the introduced pruning
criteria. Hence, we are going to apply the statistical pruning discussed in Sect. 5.2. We fix the
ratio ρ = 0.2 and we iterative the statistical pruning strategy explained in Algorithm 3 with
a stopping tolerance tol = 10−4. The number of discrete controls in the online phase ranges
within the set {3, 5, 9, 17, 33}, and these controls are uniformly spaced over the interval
[−2, 0]. In the left panel of Fig. 6 we show the cardinality of the low dimensional tree in
logarithm scale. We recall that the cardinality of the full tree would be O(M11), where M
is the number of discrete controls, reaching an order of ≈ 1017 in the case of 33 controls.
The application of the statistical pruning achieves a great improvement in terms of memory
storage, gaining almost 12 orders of magnitudes with respect to the full tree with 33 discrete
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Fig. 7 Test 2: Optimal trajectory at t = 0 (left) and t = 0.5 (right) for Δt = 0.1 and M = 33

Fig. 8 Test 2: Optimal trajectory at t = 1 (left) for Δt = 0.1 and M = 33. Comparison of the control signals
between the LQR tool and the TSA based on HO-POD-DEIM and POD-DEIM (right)

controls. The total cost varying the number of controls is displayed in the left panel of
Fig. 6. The cost functional shows a decreasing behaviour as expected and the algorithms
stops with 33 controls since the stopping rule has been satisfied. In Fig. 7 and in the left
panel of Fig. 8 the optimal trajectories at time instances t ∈ {0, 0.5, 1} are displayed. We
note that the control signal is driving the solution to the unstable equilibrium ỹ ≡ 0. We
aim to demonstrate the efficiency of the TSA, based on the HO-POD-DEIM method, by
comparing it to the POD approach and the widely used Linear Quadratic Regulator (LQR).
The configuration of the offline stage for the POD approach is identical to that used in the
HO-POD technique. Since we are addressing a finite horizon optimal control problem, it is
necessary to solve a Differential Riccati Equation (DRE). The matrix structure of the DRE
is preserved using matrix generalizations of classic BDF methods (refer to [18] for further
details). For a meaningful comparison with the first-order scheme used in our methods, we
employ the first-order BDF method, maintaining the same time step used in the construction
of the tree structure. We observe that the POD-DEIM and HO-POD-DEIM controls coincide
at the initial and final time steps, showing some differences in the middle of the time interval.
Conversely, the LQR control takes higher values in modulus at the beginning since it does not
impose any constraints on the control set. We now aim to compare the three approaches with
respect to total costs for varying initial conditions. Consider the family of initial conditions
defined as y0(x, α) = α(2 + cos(2πx1) cos(2πx2)). In Table 3, we present the total costs
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Table 3 Comparison of the total
costs for the LQR tool and the
TSA based on HO-POD-DEIM
and POD-DEIM for different
initial conditions y0(x, α)

Method α = 1 α = 10−2 α = 10−4

HO-POD-DEIM 0.5334 3.71e−3 8.40e−5

POD-DEIM 0.5456 5.22e−3 2.45e−4

LQR 0.7863 7.53e−3 6.47e−5

for the three methods, with α varying over the set {1, 10−2, 10−4}. In the first two cases,
the HO-POD-DEIM approach achieves the lowest cost, with POD-DEIM yielding a slightly
higher, yet comparable, cost. In contrast, the LQR method results in the highest cost for
these cases. However, for the initial condition with the smallest magnitude, LQR produces
the lowest cost. This indicates that incorporating nonlinear terms in the control strategy leads
to superior performance for initial conditions of moderate magnitude, whereas for initial
conditions closer to the origin, LQR serves as an effective controller.

7.3 Test 3: 3DViscous Burgers’ Equation

Here we consider the nonlinear 3D viscous Burgers’ equation (see, e.g., [23]) given by

⎧⎪⎨
⎪⎩

∂t y1 = 1
r Δy1 − y · ∇ y1 + y1u

∂t y2 = 1
r Δy2 − y · ∇ y2 + y2u,

∂t y3 = 1
r Δy3 − y · ∇ y3 + y3u,

(7.3)

where y1(x1, x2, x3, t), y2(x1, x2, x3, t) and y3(x1, x2, x3, t) are the three velocities to be
determined, with x = (x1, x2, x3) ∈ [0, 1]3, t ∈ [0, 1] and the Reynold’s number r = 100.
Furthermore, the system is subject to homogeneous Dirichlet boundary conditions and initial
states

y1(x, y, z, 0) = 1

10
sin(2πx1) sin(2πx2) cos(2πx3)

y2(x, y, z, 0) = 1

10
sin(2πx1) cos(2πx2) sin(2πx3)

y3(x, y, z, 0) = 1

10
cos(2πx1) sin(2πx2) sin(2πx3).

A finite difference space discretization in the cube yields a system of ODEs of the form (3.7),
with nonlinear functions given by

Fi (Di (YYY i ),YYY1,YYY2,YYY3, t) =
3∑

k=1

(YYY i ×k Bki ) ◦YYYk,

for i = 1, 2, 3, where B1i ∈ R
n×n , B2i ∈ R

n×n and B3i ∈ R
n×n contain the coefficients

for a first order centered difference space discretization in the x1−, x2− and x3− directions
respectively, and n is the dimension of the discretized tensor in each spatial direction. For a
more detailed discussion on the space discretization and HO-POD-DEIM model reduction
of systems of ODEs in array form, we point the reader to [29], as well as the companion
manuscript [22].
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Fig. 9 Test: CPU time (left) and memory requirements (right) for both methods applied to (7.3)

We consider the following cost functional

Jy0,t (u) =
∫ T

t

(∫
Ω

3∑
i=1

|yi (x, s)|2dx + 1

10
|u(s)|2

)
ds +

∫
Ω

3∑
i=1

|yi (x, T )|2dx . (7.4)

The control u(t) will be taken in the following admissible set of controls

U = {u : [0, T ] → [−2, 0]}.
We therefore construct one tree for the control u containing the approximate solution of
each of the three equations at its nodes. Constructing and storing this tree of course leads
to extremely demanding memory requirements and computational effort to construct the
approximations spaces for the reduced models.

We therefore use this experiment to illustrate the massive computational gain of the HO-
POD-DEIM method, in combination with the snapshot selection algorithm and the low-rank
storage algorithm. We first investigate the computational load required in the offline phase
by the HO-POD-DEIM method as well as standard POD-DEIM applied to the system (7.3)
discretized in vector form. For the vectorized system we also apply a semi-implicit Euler
time discretization to each of the three equations, and each linear system is solved using the
Matlab function pcg preconditioned with an incomplete Cholesky factorization with a drop
tolerance of 10−4.

Below we illustrate the computational load both in terms of CPU time and memory
requirements. On the left of Fig. 9 we plot the computational time required by both methods
to construct the full-dimensional tree, with Nt = 10 and two controls, whose nodal values
are used to construct either the HO-POD-DEIM basis or the standard POD-DEIM basis. To
construct the tree, all nodal values from the previous time level need to be stored. To this end,
one of the computational bottlenecks in the construction of the reduced model is memory
requirements. Consequently, we further illustrate the power of the proposed algorithm on
the right of Fig. 9, where we plot the maximum memory required (in mb) at any point in
the offline phase of the respective algorithms. The plot indicates a massive difference in
memory requirements, mainly related to the low-rank basis construction used in the HO-
POD-DEIM algorithm, as well as the low-rank memory allocation method discussed in
Sect. 4.2. Furthermore we notice, that no data points are plotted in the vector case for n > 60,
as this is where the computer ran out of its available computational memory. Both plots are
with respect to increasing n and we select τ = 10−2 and κ = 20 a priori.
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Table 4 Dim. of basis and the
average relative error compared
to the full order model with
dimension n = 60 and τ = 10−2

y k1 k2 k3 p1 p2 p3 error

y1 6 11 12 10 18 19 2 · 10−2

y2 6 15 13 6 20 17 3 · 10−2

y3 6 12 13 5 18 18 2 · 10−2

Fig. 10 Cost functional for the
optimal control

In what follows we consider the reduced model constructed by the HO-POD-DEIM
method and investigate the efficiency of the reduction based on an offline phasewith Δ̂t = 0.1
and Û = {−2, 0}. In Table 4 we indicate the dimensions of the reduced approximation spaces
determined to comply with τ = 10−2 and n = 60. In the online phase, usingΔt = 0.1, three
discrete controls {−2,−1, 0}, and the standard geometric pruning technique, the reduced
model with dimensions specified in Table 4 required only 19s, compared to the 361s needed
by the full-order model.

Finally,we also plot the cost functional in Fig. 10 for both the full and reduced ordermodels
as well as the optimal trajectories (unfolded along the first mode) for all three equations at
t = 0, t = 0.5 and t = 1 in Fig. 11. Both these plots, indicate the convergence to the
equilibrium of the reduced model. We note that there is a visual superposition of the two
curves of the cost functional, demonstrating the effectiveness of the proposed methodology
for determining the optimal trajectory.

8 Conclusions

In this paperwehave introduced a newalgorithm for approximating optimal feedback controls
related to optimal control problems driven by evolutionary partial differential equations. The
new algorithm is based on a tree structure to avoid the construction of a grid in the solution of
the HJB equations, and exploits the compact representation of the dynamical systems based
on tensor notations via a higher-order model reduction approach. We have shown how the
algorithm can be constructed for general nonlinear control problems and given some crucial
hints on its implementation. Furthermore, we have studied the existing pruning techniques
for reducing the cardinality of the constructed tree, and introduced a new statistical pruning
technique for a further reduction in the cardinality of the tree. To guarantee the convergence
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Fig. 11 All three controlled trajectories from top to bottom respectively, unfolded along the first mode. We
plot t = 0 (left), t = 0.5 (middle) and t = 1 (right)

of the method, we derived an error estimate depending on the time step and on the accuracy
of the HO-POD-DEIM basis. Finally, numerical tests on a number of challenging benchmark
problem have been discussed, indicating the power of the method, with large savings both
in terms of computational time and, especially, memory. We believe that these promising
numerical results brings us one step closer to the application of DP in challenging, industrial
settings.

To this end, we plan to, in the near future, explore more challenging industrial problems
where the combination of the compact tensor representation of the problem and the tree
structure algorithm can give a competitive advantage to DP for feedback control problems
over possible competitors.

Appendix A: Proof of Proposition 6.1

Proof For the sake of simplicity we are going to define L̂ = V�
Y LVY , fk = f (yk, tk, uk),

f̂k = V�
Y P f (VY ŷk, uk, tk) and fk,V = V�

Y P f (VY V�
Y yk, uk, tk), where we are considering

the same control sequence {uk}Nt−1
k=0 .

We consider the error at time t j between the full model and the lifted reduced model as

E j = y j − VY ŷ
j
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and we rewrite it as a sum of two quantities

E j = ρ j + θ j

where

ρ j = y j − VY V
�
Y y j , θ j = VY V

�
Y y j − VY ŷ

j .

Multiplying (6.1) by V�
Y and adding and subtracting L̂V�

Y y j + f j−1,V we get

V�
Y

y j − y j−1

Δt
= L̂V�

Y y j + f j−1,V + R̂ j ,

with

R̂ j = V�
Y Ly j + V�

Y f j−1 − L̂V�
Y y j − f j−1,V .

Defining θ̂ j = V�
Y θ j , we obtain

θ̂ j − θ̂ j−1

Δt
= V�

Y
y j − y j−1

Δt
− ŷ j − ŷ j−1

Δt
= L̂V�

Y y j + f j−1,V + R̂ j − L̂ ŷ j − f̂ j−1.

Since
〈
θ̂ j , θ̂ j−1

〉
≤ ‖θ̂ j‖‖θ̂ j−1‖, we get

‖θ̂ j‖ − ‖θ̂ j−1‖
Δt

≤ 1

‖θ̂ j‖

〈
θ̂ j ,

θ̂ j − θ̂ j−1

Δt

〉

= 1

‖θ̂ j‖
(〈

θ̂ j , L̂
(
V�
Y y j − ŷ j

)〉
+
〈
θ̂ j , f j−1,V − f̂ j−1 + R̂ j

〉)

≤ μ(L̂)‖θ̂ j‖ + γ ‖θ̂ j−1‖ + ‖R̂ j‖,
where γ = L f‖V�

Y P‖ andwe used the definition of logarithmic norm (6.3) and the Lipschitz-
continuity of the function f . Defining ζ = 1

1−Δtμ(L̂)
and η = 1 + Δtγ and by the fact that

‖θ j‖ = ‖θ̂ j‖, it follows

‖θ j‖ ≤ ζη‖θ j−1‖ + Δt ζ‖R̂ j‖ ≤ (ζη) j‖θ0‖ + Δt
j∑

k=1

ζ kηk−1‖R̂ j−k+1‖

≤ Δtζ

⎛
⎝ j−1∑

k=0

(ζη)2k
j∑

k=1

‖R̂k‖2
⎞
⎠

1/2

,

where we note that θ0 = 0 and ζ is positive due to the assumption on the time step Δt . Let
us define q = ∑Nt−1

k=0 (ζη)2k . Recalling the definition of R̂k

R̂k = V�
Y L

(
yk − VY V

�
Y yk

)
+ V�

Y

(
fk−1 − Pf(VY V�

Y yk−1, uk−1, tk−1)
)

,

we note that

‖V�
Y

(
fk−1 − Pf(VY V�

Y yk−1, uk−1, tk−1)
)

‖
= ‖V�

Y

(
fk−1 − P fk−1 + P fk−1 − Pf(VY V�

Y yk−1, uk−1, tk−1)
)

‖
≤ c‖V�

Y ‖‖ fk−1 − VFV
�
F fk−1‖ + γ ‖ρk−1‖
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where we applied Proposition 1 from [29] with c = ∏d
m=1 ‖(Pm

�Φm)−1‖ and the Lipschitz-
continuity of the function f . Therefore, we obtain the following upper bound for the term
R̂k

‖R̂k‖ ≤ α‖ρk‖ + β‖wk−1‖
where α = ‖V�

Y L‖ + γ , β = c‖V�
Y ‖ and wk−1 = fk−1 − VFV�

F fk−1.
From these results we can get the following estimate for the generic term θ j

‖θ j‖2 ≤ (Δtζ )2q
j∑

k=1

‖R̂k‖2 ≤ 2(Δtζ )2q
j∑

k=1

(α2‖ρk‖2 + β2‖wk−1‖2)

and finally

Nt∑
j=0

‖E j‖2 =
Nt∑
j=0

‖ρ j‖2 +
Nt∑
j=1

‖θ j‖2 ≤ C(T )
(
Ey + E f

)

where

C(T ) = max{1 + 2qζ 2TΔt α2, 2qζ 2TΔtβ2}.
��

Remark A.1 Supposing that γ ≤ −μ(L̂), then ζη < 1 and we obtain the following upper
bound for the quantity q

q =
Nt−1∑
k=0

(ζη)2k ≤ 1

1 − (ζη)2Nt
.

Remark A.2 The constantC(T ) depends on the coefficient c = ∏d
m=1 ‖(Pm

�Φm)−1‖,which
is minimized applying the q-deim procedure, we refer to [20] for more details.
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