Session 5: Local Graph Problems PODC 21, July 26-30, 2021, Virtual Event, Italy

N)
Py Locally Checkable Problems in Rooted Trees”

Alkida Balliu Sebastian Brandt Dennis Olivetti
alkida.balliu@cs.uni-freiburg.de brandts@ethz.ch dennis.olivetti@cs.uni-freiburg.de
University of Freiburg ETH Zurich University of Freiburg

Freiburg, Germany Zurich, Switzerland Freiburg, Germany

Aleksandr Tereshchenko
aleksandr.tereshchenko@aalto.fi
Aalto University
Espoo, Finland

Jukka Suomela
jukka.suomela@aalto.fi
Aalto University
Espoo, Finland

Jan Studeny
jan.studeny @aalto.fi
Aalto University
Espoo, Finland

ABSTRACT

Consider any locally checkable labeling problem IT in rooted regular
trees: there is a finite set of labels ¥, and for each label x € 3 we
specify what are permitted label combinations of the children for
an internal node of label x (the leaf nodes are unconstrained). This
formalism is expressive enough to capture many classic problems
studied in distributed computing, including vertex coloring, edge
coloring, and maximal independent set.

We show that the distributed computational complexity of any
such problem II falls in one of the following classes: it is O(1),
O(log* n), ©(logn), or n®(M) rounds in trees with n nodes (and all
of these classes are nonempty). We show that the complexity of any
given problem is the same in all four standard models of distributed
graph algorithms: deterministic LOCAL, randomized LOCAL, de-
terministic CONGEST, and randomized CONGEST model. In par-
ticular, we show that randomness does not help in this setting, and
the complexity class ©(loglog n) does not exist (while it does exist
in the broader setting of general trees).

We also show how to systematically determine the complexity
class of any such problem II, i.e., whether II takes O(1), ©(log" n),
©(logn), or n®M rounds. While the algorithm may take expo-
nential time in the size of the description of I, it is nevertheless
practical: we provide a freely available implementation of the clas-
sifier algorithm, and it is fast enough to classify many problems of
interest.

CCS CONCEPTS

« Theory of computation — Distributed computing models;
Distributed algorithms.

KEYWORDS

Distributed algorithms; LOCAL model; CONGEST model; Rooted
trees; LCL problems

*The extended version of this work is available in [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °21, July 26-30, 2021, Virtual Event, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8548-0/21/07...$15.00
https://doi.org/10.1145/3465084.3467934

ACM Reference Format:

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studeny, Jukka Suomela,
and Aleksandr Tereshchenko. 2021. Locally Checkable Problems in Rooted
Trees. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing (PODC °21), July 26-30, 2021, Virtual Event, Italy. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3465084.3467934

1 INTRODUCTION

We aim at systematizing and automating the study of computational
complexity in the field of distributed graph algorithms. Many key
problems of interest in the field are locally checkable. While it is
known that questions related to the distributed computational com-
plexity of locally checkable problems are undecidable in general
graphs [12, 22], there is no known obstacle that would prevent
one from completely automating the study of locally checkable
problems in trees. Achieving this is one of the major open problems
in the field: currently only parts of the complexity landscape are
known to be decidable [15], and the general decidability results are
primarily of theoretical interest; practical automatic techniques are
only known for specific families of problems [3, 12, 16].

In this work we show that the study of locally checkable graph
problems can be completely automated in regular rooted trees. We
not only give a full classification of the distributed complexity of
any such problem (in all the usual models of distributed computing:
deterministic and randomized LOCAL and CONGEST), but we also
present an algorithm that can automatically determine the com-
plexity class of any given problem (with one caveat: our algorithm
determines if the complexity is n®W | but not the precise expo-
nent in this case). Even though the algorithm takes in the worst
case exponential time in the size of the problem description, it is
nevertheless practical: we have implemented it for the case of bi-
nary trees, and it is in practice very fast, classifying e.g. the sample
problems that we present here in a matter of milliseconds [25].

1.1 Setting

In this work we study locally checkable problems defined in regular,
unlabeled, rooted trees. For our purposes, such a problem II is
specified as a triple (4,2, C), where § € N is to the number of
children for the internal nodes, ¥ is a finite set of labels, and C is
the set of permitted configurations. Each configuration looks like
X :Y1y2 - - - Y5, indicating that if the label of an internal node is x,
then one of the possible labelings for its § children is y1, y2, . . ., ys,
in some order. The leaf nodes are unconstrained.

https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3465084.3467934
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3465084.3467934&domain=pdf&date_stamp=2021-07-23

Session 5: Local Graph Problems

1.2 Example: 3-coloring

Consider the problem of 3-coloring binary trees, i.e., trees in which
internal nodes have § = 2 children. The possible labels of the nodes
are X = {1, 2,3}. The color of a node has to be different from the
colors of any of its children; hence we can write down the set of
configurations e.g. as follows:

C={1:221:231:33,
2:11,2:13,2:33,
3:11,3:12 3:22}.

1

We emphasize that the ordering of the children is irrelevant here;
hence 1 : 23 and 1 : 32 are the same configuration. It is easy to verify
that this is a straightforward correct encoding of the 3-coloring
problem in binary trees.

It is well-known that this problem can be solved in the LOCAL
model of distributed computing in O(log* n) rounds in rooted trees,
using the technique by Cole and Vishkin [18], and this is also known
to be tight, both for deterministic and randomized algorithms [20,
21].

One can also in a similar way define the problem of 2-coloring
binary trees; it is easy to check that this is a global problem, with
complexity ©(n) rounds:

c={1:222:11}. (2)

1.3 Example: maximal independent set

Let us now look at a bit more interesting problem: maximal inde-
pendent sets (MIS). Let us again stick to binary trees, ie., § = 2
children. The first natural idea would be to try to use only two
labels, 0 and 1, with 1 indicating that a node is in the independent
set, but this is not sufficient to express both the notion of indepen-
dence and the notion of maximality. However, three labels will be
sufficient to correctly capture the problem. We set 3 = {1, q,b},
with 1 indicating that a node is in the independent set, and choose
the following configurations:

C={1:aa,1:ab,l:bb,a:bb,b:bl,b:ll}. 3)

Now it takes a bit more effort to convince oneself that this indeed
correctly captures the idea of maximal independent sets. The key
observations are these: a node with label 1 cannot be adjacent to
another node with label 1, a node with label a has to have 1 above
it, and a node with label b has to have 1 below it, so nodes with
label 1 clearly form a maximal independent set. Conversely, given
any maximal independent set X we can find a corresponding label
assignment if we first assign labels 1 to nodes in X, then assign
labels b to the parents of the nodes in X, and finally label the
remaining nodes with label a. The only minor technicality is that
the configurations ensure a correct solution for the internal parts of
the tree, but as is often the case, once the internal parts are solved
correctly, one can locally fix the labels near the root and the leaves.

Maximal independent set is a well-known symmetry-breaking
problem, and e.g. in the case of a directed path (§ = 1) it is known to
be as hard as e.g. 3-coloring. Hence one might expect that the above
problem for binary trees also has got the complexity of ©(log* n)
rounds in the LOCAL model. This is not the case—maximal indepen-
dent set in rooted binary trees can be solved in constant time! Indeed,

264

PODC 21, July 26-30, 2021, Virtual Event, Italy

this is a good example of a non-trivial constant-time-solvable prob-
lem. It can be solved in exactly 4 rounds, using the following idea
(again, omitting some minor details related to what happens e.g.
near the root).

First, we need to pick some consistent way of referring to your
“left” child and the “right” child (we can use a port numbering if
available, or simply order the children by their unique identifiers).
Label all nodes first with an empty string. Then we repeat the
following step for 4 times: add 0 to your string and send it to your
left child, and add 1 to your string and send it to your right child.
Your new label is the label that you received from your parent. This
way all nodes get labeled with a 4-bit string. A key property is
this: if my string is xyzw, the string of my parent is Oxyz or 1xyz.
Finally, interpret the binary string as a number between 0 and 15,
and output the corresponding element of the following string (using
0-based indexing):

b1abbb1bb11bbb1b. ()

One can verify the correctness of the algorithm by checking all
23 possible cases: for example, if a node is labeled with x010, it
will output either symbol 2 of (4), which is a, or symbol 10, which
is 1. Its two children will have labels 0100 and 0101, so they will
output symbols 4 and 5 of (4), which are b and b. This results in a
configuration a : bb or 1 : bb, both of which are valid in (4).

The key point of the example is this: even though the algorithm
is somewhat involved, we can use the computer program accompa-
nying in this work to automatically discover this algorithm and to
determine that this problem is indeed constant-time solvable! Also,
this problem demonstrates that there are O(1)-round-solvable lo-
cally checkable problems in rooted regular trees that require strictly
more than zero rounds, while e.g. in the previously-studied family
of binary labeling problems [3] all O(1)-round-solvable problems
are known to be zero round solvable.

1.4 Example: branch 2-coloring

As the final example, let us consider the following problem, with
d=2and X = {1,2}:

c={1:12,2:11}. (5)

This problem is, in essence, 2-coloring with a choice: starting with a
node of label 1 and going downwards, there is always a monochro-
matic path labeled with 1,1,1,1,..., and a properly colored path
labeled with 1,2, 1, 2,. ... It turns out that the choice makes enough
of a difference: the complexity of this problem is ®(log n) rounds.
We encourage the reader to come up with an algorithm and a
matching lower bound—with our techniques we get a tight result
immediately.

1.5 Contributions

As we have seen, the family of locally checkable problems in regular
rooted trees is rich and expressive. Using auxiliary labels similar
to what we saw in the MIS example in Section 1.3, we can encode,
in essence, any locally checkable labeling problem (LCL problem)
[22] in the classic sense, as long as the problem is such that the
interesting part is related to what happens in the internal parts of
regular trees. We have already seen that there are problems with at
least four distinct complexity classes: O(1), ©(log* n), ©(log n), and

Session 5: Local Graph Problems

PODC 21, July 26-30, 2021, Virtual Event, Italy

Table 1: An overview of the landscape and decidability of the round complexity of LCL problems in the LOCAL model. The
case studied in the present work (unlabeled, rooted, regular trees) is highlighted with shading, and the darker shade indicates
the key new results. The decidability is given assuming P # PSPACE # EXPTIME. We have listed a few key references for each
column, focusing on decidability aspects; the overall picture of the complexity landscape is the result of a long sequence of

papers, including [5, 6, 8, 11, 14, 18, 20, 21].

Setting Paths and cycles Trees General
unlabeled input v v v v v v v
regular v v v v v v
directed or rooted v v v
binary output v v
homogeneous v
Complexity O(1) D+R D+R D+R D+R D+R D+R D+R D+R D+R D+R
classes e - — — — — - = — - —
O(loglog™ n) — — — — — — = ? ? D+R
e — - - — — — = ? ? D+R
O(log" n) — D+R D+R D+R D+R — D+R D+R D+R D+R
O(loglogn) — - - — R R = R R R
O(log” log n) — — - - — — = — — ?
O(logn) — — — — D+R D+R D+R D+R D+R D+R
e - - - - - - - - - D+R
e(nl/k) - — - - — — (n) ? (n) D+R
- - - - - - - - - - D+R
O(n) D+R D+R D+R D+R - D+R D+R D+R D+R D+R
Decidability P v v v — ? (D) ? ? - —
PSPACE v v v ? ? (D) ? ? — -
EXPTIME v v v ? ? (D) (k) ? ? -
decidable v v v v ? (D) v (H) (H) —
References [3,12,22] [12,22] [16] [1] [9] [3] this [13,15] [13,15] [12,22]
work
Legend V'=yes, ?=unknown, — =notpossible, @ > 1, k=2,3,....

D = class exists for deterministic algorithms, R = class exists for randomized algorithms.

(n) = the current construction assumes the knowledge of n; unknown without this information.
(k) = does not determine the value of k for the class ©(n!/¥).

(D) = known only for deterministic complexities, unknown for randomized.

(H) = known only for classes between Q(logn) and O(n).

©(n). In the extended version of this work [2] we also show how
to generate problems of complexity O(n'/k) for any k =1,2,3,...

We prove in this work that this list is exhaustive: any problem that
can be represented in our formalism has got the complexity O(1),
O(log* n), ©(log n), or @(nl/k) in rooted regular trees with n nodes.
This is a robust result that does not depend on the specific choice of
the model of computing: the complexity of a given problem is the
same, regardless of whether we are looking at the LOCAL model
or the CONGEST model, and regardless of whether we are using
deterministic or randomized algorithms.

One of the surprising consequences is that randomness does not
help in rooted regular trees. In unrooted regular trees there are
problems (the canonical example being the sinkless orientation prob-
lem) that can be solved with the help of randomness in ®(log log n)

265

rounds, while the deterministic complexity is ®(log n) [12]. This
class of problems disappears in rooted trees.

Our main contribution is that the complexity of any given problem
in this formalism is decidable: there is an algorithm that, given the
description of a problem II as a list of permitted configurations,
outputs the computational complexity of problem II, putting it
in one of the four possible classes, i.e., determines whether the
complexity is O(1), ©(log* n), ©(log n), or @(nl/k) for some k; in
the fourth case our algorithm does not determine the exponent
k, but then one could (at least in principle) use the more general
decision procedure by Chang [13] to determine the value of k.

While our algorithm takes in the worst case exponential time
in the size of the description of I, the approach is nevertheless
practical. We have implemented the algorithm for the case of § = 2,

Session 5: Local Graph Problems

and made it freely available online [25]. Even though it is not at
all optimized for performance, it classifies for example all of our
sample problems above in a matter of milliseconds.

We summarize our key results and compare them with prior
work in Table 1.

2 RELATED WORK

2.1 Landscape of LCL problems in the LOCAL
model

Paths and cycles. We know that, on graph families such as paths
and cycles, there are LCLs with complexities (both deterministic and
randomized) of O(1) (e.g., trivial problems), ©(log" n) [18, 20, 21]
(e.g., 3-coloring), and O(n) (e.g., global problems such as properly
orienting a path/cycle). In these families of graphs, there are no
LCLs with round complexity between w(1) and o(log” n) [22], and
between w(log® n) and o(n) [14]. These works show that the only
possible complexities for LCL problems on paths and cycles are
0(1), ©(log™ n), and ©(n), and randomness does not help in solving
problems faster.

Trees. For the case of the graph family of trees almost everything
is understood nowadays. As in the case of paths and cycles, we have
LCLs with time complexities (both deterministic and randomized)
0O(1), ©(log" n), and O(n). On trees, we know that there is more:
there are LCL problems with both deterministic and randomized
complexity of ©(log n) (e.g., problems of the form “copy the input
of the nearest leaf”), and ©(n'/¥) for any k > 2 [15]. Moreover,
there are cases where randomness helps, in fact there are problems
that have ©(log n) deterministic and ®(loglog n) randomized com-
plexity [11]. As far as gaps are concerned, let us first consider the
spectrum of time complexities of w(log* n), and then the one of
o(log™ n). Chang et al. [14] showed that the deterministic complex-
ity of any LCL problem on bounded-degree trees is either O(log™ n)
or Q(logn), while its randomized complexity is either O(log* n)
or Q(loglog n). Moreover, Chang and Pettie [15] showed that any
algorithm that takes n°(!) rounds can be sped up to run in O(log n)
rounds. Balliu et al. [5] showed that there is a gap between w(y/n)
and o(n) for deterministic algorithms, and Chang [13] extended
these results and showed that there is a gap between w(n'/*) and
o(n!/ (k=1 for any k > 2, for both deterministic and randomized
algorithms. The spectrum of time complexities of o(log™ n) is still
not entirely understood. Chang and Pettie [15] showed that ideas
similar to Naor and Stockmeyer [22] can be used to prove that
there are no LCLs on bounded-degree trees with time complexity
between w(1) and o(loglog® n). Also, in the same paper, the au-
thors conjectured that it should be possible to extend this gap up to
o(log™ n). While this still remains an open question, Balliu et al. [9]
showed that such a gap exists for a special subclass of LCLs, called
homogeneous LCLs.

General graphs. As in the case of trees, also on general bounded-
degree graphs we have LCLs with the same time complexities, so
the question is if there are also the same gaps, or if in the case of
general graphs we have a denser spectrum of complexities. First of
all, the gaps of the lower spectrum on trees hold also on general
graphs: we still have the w(1) — o(loglog™ n) gap for both deter-
ministic and randomized algorithms, the w(log* n) - o(log n) for

266

PODC 21, July 26-30, 2021, Virtual Event, Italy

deterministic algorithms, and the w(log” n) — o(loglog n) gap for
randomized algorithms. Also, Chang and Pettie [15] showed that
any o(log n)-round randomized algorithm can be sped up to run in
O(TiLL) rounds, where T || is the time required for solving with
randomized algorithms the distributed constructive Lovasz Local
Lemma problem (LLL) [17] under a polynomial criterion. By combin-
ing this result with the results on the complexity of LLL by Fischer
and Ghaffari [19] and the network decomposition one by Rozhon
and Ghaffari [24], we get a gap for randomized algorithms between
w(poly(loglogn)) and o(log n). Balliu et al. [8] showed that, differ-
ently from the case of trees, the regions between w(loglog* n) and
o(log* n) and between w(log n) and o(n) are dense. In fact, there
are infinitely many LCLs with time complexity (both deterministic
and randomized) that fall into these regions. Also, in the case of
trees, randomness either helps exponentially or not at all, while in
the case of general graphs this is not the case anymore. In fact, Bal-
liu et al. [6] showed that there are LCL problems on general graphs
where randomness helps only polynomially by defining LCLs with
deterministic complexity ®(logk n) and randomized complexity
@)(logk_1 nloglogn), for any integer k > 1.

Special settings. Over the years, researchers have investigated the
complexity of interesting subclasses of LCLs. We already mentioned
homogeneous LCLs on trees [9], that, on a high level, are LCLs for
which the hard instances are A-regular trees. For this subclass of
LCL problems, the spectrum of deterministic complexities consists
of 0(1), ©(log™ n), and ©(log n). Also, as in the case of trees, there
are cases where randomness helps: there are homogeneous LCLs
with O(log n) deterministic and ©(loglog n) randomized complex-
ity. These are the only possible complexities for homogeneous LCLs.
Brandt et al. [12] studied LCLs on d-dimensional torus grids, and
showed that there are LCLs with complexity (both deterministic
and randomized) O(1), ©(log* n), and @(nl/d). The authors showed
that these are the only possible complexities, implying that random-
ness does not help. Balliu et al. [3] studied binary labeling problems,
that are LCLs that can be expressed with no more than two labels
in the edge labeling formalism [4, 23] (such LCLs include, for exam-
ple, sinkless orientation). The authors showed that, in trees, there
are no such LCLs with deterministic round complexity between
(1) and o(log n), and between w(log n) and o(n), proving that the
spectrum of deterministic complexities of binary labeling problems
in bounded-degree trees consists of O(1), ©(logn) and ©(n). The
authors also studied the randomized complexity of binary labeling
problems that have deterministic complexity ©(logn), showing
that for some of them randomness does not help, while for some
others it does help (note that from previous work we know that,
in this case, randomness either helps exponentially or not at all).
Determining the tight randomized complexity of all binary labeling
problems is still an open question.

2.2 Decidability of LCL problems

As we have seen, there are often gaps in the spectrum of distributed
complexities of LCLs. Hence, a natural question that arises is the
following: given a specific LCL, can we decide on which side of the
gap it falls? In other words, are these classifications of LCL problems
decidable? We can push this question further and ask whether it
is possible to automate the design of distributed algorithms for

Session 5: Local Graph Problems

optimally solving LCLs. There is a long line of research that has
investigated these kind of questions.

For graph families that consist of unlabeled paths and cycles
(that is, nodes do not have any label in input), the complexity of
a given LCL is decidable [12, 16, 22]. The next natural question
is whether we have decidability in the case of trees (rooted or
not). Because the structure of a tree can be used to encode input
labels, researchers had to first understand the role of input labels in
decidability. For this purpose, Balliu et al. [1] studied the decidability
of labeled paths and cycles, showing that the complexity of LCLs
in this setting is decidable, but it is PSPACE-hard to decide it, and
this PSPACE-hardness result extends also for the case of bounded-
degree unlabeled trees (since the structure of the tree may encode
input labels). The authors also show how to automate the design
of asymptotically optimal distributed algorithms for solving LCLs
in this context. Later, Chang [13] improved these results showing
that, in this setting, it is EXPTIME-hard to decide the complexity
of LCLs. While the decidability on bounded degree trees is still
an open question, there are some positive partial results in this
direction. In fact, Chang and Pettie [15] along with the w(logn) -
no() gap, showed also that we can decide on which side of the gap
the complexity of an LCL lies. Moreover, Balliu et al. [3] showed
that, the deterministic complexity of binary labeling problems on
trees is decidable and we can automatically find optimal algorithms
that solve such LCLs. The works of Brandt [10] and Olivetti [23]
played a fundamental role in further understanding to which extent
we can automate the design of algorithms that optimally solve
LCLs.

Unfortunately, in general, the complexity of an LCL is not decid-
able. In fact, Naor and Stockmeyer showed that, even on unlabeled
non-toroidal grid graphs, it is undecidable whether the complexity
of agiven LCL is O(1) [22]. For unlabeled toroidal grids, Brandt et al.
[12] showed that, given an LCL, it is decidable whether its complex-
ity is O(1), but it is undecidable whether its complexity is ©(log" n)
or ©(n). On the positive side, the authors showed that, given an
LCL with round complexity O(log™ n), one can automatically find
an O(log™ n) rounds algorithm that solves it.

3 ROAD MAP

We will start by providing some useful definitions in Section 4.
Then, in Section 5 we will consider the spectrum of complexities
in the Q(logn) region. We will define an object called certificate
for O(log n) solvability, for which we will prove, in Theorem 5.3,
that we can decide the existence in polynomial time. We will prove
in Theorem 5.1 that, if such a certificate for a problem exists, then
the problem can be solved in O(logn) time with a deterministic
algorithm, even in the CONGEST model, while if such a certificate
does not exist then we will prove in Theorem 5.2 that the problem
requires n) rounds, even in the LOCAL model and even for ran-
domized algorithms. By combining these results, we will essentially
obtain a decidable gap between w(logn) and n°() that is robust on
the choice of the model.

We will then consider, in Section 6, the spectrum of complexities
in the O(log n) region. We will define the notion of certificate for
O(log™ n) solvability, and we will prove, in Theorem 6.5, that we can
decide in exponential time if such a certificate exists. We will also

267

PODC 21, July 26-30, 2021, Virtual Event, Italy

prove, in Theorem 6.2, that the existence of such a certificate implies
a deterministic O(log™ n) algorithm for the CONGEST model, while
we will prove in Theorem 6.4 that the non-existence of such a
certificate implies an Q(logn) randomized lower bound for the
LOCAL model. Hence, also in this case we obtain a decidable gap
that is robust on the choice of the model.

Finally, we will consider in Section 7 the spectrum of complexities
in the O(log" n) region. We will define the notion of certificate for
O(1) solvability, that will be nothing else than a certificate for
O(log* n) solvability that has some special property. We will show
in Theorem 7.4 that, also in this case, we can decide its existence in
exponential time, and we will show in Theorem 7.2 that its existence
implies a constant time deterministic algorithm for the CONGEST
model, while we will show in Theorem 7.3 that the non-existence
implies an Q(log* n) lower bound for the LOCAL model. Hence,
we will obtain that there are only four possible complexities, O(1),
©(log* n), ©(logn), and nM | and that for all problems we can
decide which of these four complexities is the right one.

For the fine-grained structure inside the n2(class we refer to
the prior work [7, 13]; while these papers study the case of unrooted
trees, we note that the orientation can be encoded as a locally
checkable input, and the results are also applicable here. It follows
that there are only classes O(1), ©(log* n), ©(logn), and e(nl/k)
for k = 1,2,..., and the exact class (including the value of k) is
decidable.

4 DEFINITIONS

In this section we define some notions that will be used in the
following sections.

Input graphs. We assume that all input graphs will be unlabeled
rooted trees where each node has either exactly é or 0 children for
some positive integer §. That is, input graphs are full §-ary trees.

For convenience, when not specified otherwise, a tree T is as-
sumed to be a full §-ary tree.

Models of computing. The models that we consider in this work
are the classical LOCAL and CONGEST model of distributed com-
puting. Let G be any graph with n nodes and maximum degree A.
In the LOCAL model, each node of G is equipped with an identifier
in {1,2,...,poly(n)}, and the initial knowledge of a node consists
of its own identifier, its degree (i.e., the number of incident edges),
the total number n of nodes, and A (in the case of rooted trees,
each node knows also which of its incident edges connects it to
its parent). Nodes try to learn more about the input instance by
communicating with the neighbors. The computation proceeds in
synchronous rounds, and at each round nodes send messages to
neighbors, receive messages from them, and perform local computa-
tion. Messages can be arbitrarily large and the local computational
can be of arbitrary complexity. Each node must terminate its com-
putation at some point and decide on its local output. The running
time of a distributed algorithm running at each node in the LOCAL
model is determined by the number of rounds needed such that all
nodes have produced their local output. In the randomized version
of the LOCAL model, each node has access to a stream of random
bits. The randomized algorithms considered in this paper are Monte
Carlo ones, that is, a randomized algorithm of complexity T that

Session 5: Local Graph Problems

solves a problem P must terminate at all nodes upon T rounds and
this should result in a global solution for P that is correct with
probability at least 1 — 1/n.

There is only one difference between the CONGEST and the
LOCAL model, and it lies in the size of the messages. While in the
LOCAL model messages can be arbitrarily large, in the CONGEST
model the size of the messages is bounded by O(log n) bits.

LCL problem. We define LCL problems as follows.

Definition 4.1 (LCL problem). An LCL problem is a triple IT =
(8,2, C) where:
e § is the number of allowed children;
e X is a finite set of (output) labels;
e C is a set of tuples of size § + 1 from
configurations.

3+ called allowed

We will use different possible notations for the configurations. A
configuration (a, by, ..., bs) will also be written as (a : by, ..., bs),
in order to highlight that the label a is for the parent and by, ..., bs
are the label of its leaves. Sometimes we will omit the commas,
and just write (a : by ...bs). Sometimes even the parenthesis will
be omitted, obtaining a : by ... bg, that is the notation used in e.g.
Section 1.3. As a shorthand notation, for an LCL problem II, we
will also denote the labels and configurations of II by X1y and Cy.

Definition 4.2 (solution). A solution to an LCL problem II for a
tree T is a labeling function A for which:
e every node v € T is labeled by a label A(v) from Zpy;
e every node v € T with § children vy,...,05 satisfies that
there exists a permutation p: {1,...,8} — {1,...,8} such
that (A(v) : Mvp(1)), - .-, Moy (s))) is in Cp.

In other words, a solution is a labeling for the nodes that must
satisfy some local constraints. Note that only nodes with § children
are constrained, but that such LCL problems could be well-defined
even on non-full §-ary trees (nodes with a number of children
different from § are unconstrained). Full §-ary trees are the hardest
instances for the problems.

Definition 4.3 (restriction). Given an LCL problem II = (6, %, C),
a restriction of II to labels £ C ¥ is a new LCL problem I’ =
(8,27, C’) where C’ is obtained by keeping all and only the config-
urations in C that only use labels in 3’

Definition 4.4 (path-form of an LCL problem). Let IT be an LCL
problem. The path-form of II, denoted by TIP2th is a problem on
directed paths defined as follows. We transform each configuration
c e Cofforme=(a: by, by.,bs) to § configurations of Hpath,
(a:bj), forall1 <i<§é.

Definition 4.5 (automaton associated with path-form of an LCL
problem; [16]). Let ITP2th be the path-form of an LCL problem II.
The automaton M (ITP21) is a nondeterministic unary semiautoma-
ton such that:

e The set of states is Zppan (= Z1).

e There is a transition from state a to state b whenever the

configuration (a : b) is in Cppatn.

Definition 4.6 (flexible state of an automaton; [16]). A state a
from M (ITP2th) is flexible with flexibility K = flexibility(a) if for
all k > K there is a walk a ~> a of length exactly k in M (ITPath)

268

PODC 21, July 26-30, 2021, Virtual Event, Italy

As the set of states of the automation is the set of labels, we can
expand the notion of flexibility of a state to the notion of flexibility
of a label.

Definition 4.7 (path-flexibility). Let IT be an LCL problem and
11P2th jts path-flexible form. A label o € Sy is path-flexible if o is
a flexible state in automaton M (ITP*™*), and path-inflexible other-
wise.

Definition 4.8 (ruling set). Let G be a graph. A (k, [)-ruling set is
a subset S of vertices of G such that the distance between any two
vertices in S is at least k, and the distance between any vertex in G
and the closest vertex in S is at most .

5 SUPER-LOGARITHMIC REGION

In this section we prove that there is no LCL problem IT with dis-
tributed time complexity between w(logn) and n°V). Also, we
prove that, given a problem II, we can decide if its complexity is
O(logn) or n() Moreover, we prove that randomness cannot
help: if a problem has randomized complexity O(log n), then it has
the same deterministic complexity.

High level idea. The key idea is that we iteratively prune the
description of problem IT by removing subsets of labels that we call
path-inflexible—these are sets of labels that require long-distance
coordination (cf. 2-coloring). After each such step, we may arrive at
a subproblem that contains a new path-inflexible set, but eventually
the pruning process will terminate, as there is only a finite number
of labels.

Assume the pruning process terminates after k steps. Let Xj,
Xa, ..., X be the sets of labels we removed during the process, and
let X” be the set of labels that is left after no path-inflexible labels
remain. We have two cases:

(1) Set X’ is empty. In this case we can show that the round
complexity of the problem II is at least Q(n'/*). To prove
this, we make use of a k-level construction that generalizes
the one used for Zé-coloring in [15]; each level consists of
large enough constant-size balanced subtrees and paths of
length ©(n!/¥). We argue that, roughly speaking, there must
exist a path of length ©(n!/) that will be labeled using only
labels from set X; for some i, and we prove that this requires
coordination over distance @(nl/ ky.

(2) Set X’ is non-empty. But now we are left with a non-empty
path-flexible subproblem IT” C II, and we can make use of the
flexibility to solve I1” in O(log n) rounds. Hence the original
problem II is also solvable in O(log n) rounds.

We say that problem II has a certificate for O(log n) solvability if
and only if the set X’ is non-empty.

In the full version of this work [2] we prove the following theo-
rems.

Theorem 5.1. Let I be a problem having a certificate for O(log n)
solvability. ThenI1 is solvable in O(log n) rounds in the CONGEST
model.

Theorem 5.2. Let IT be an LCL problem having no certificate for
O(log n) solvability. Then both the randomized and the deterministic
complexity of II in the LOCAL model is Q(nt/k) for somek > 1.

Session 5: Local Graph Problems

Theorem 5.3. Whether an LCL problem I1 has round complexity
O(logn) or n() can be decided in polynomial time.

6 SUBLOGARITHMIC REGION

In this section we prove that there is no LCL problem IT with dis-
tributed time complexity between w(log™ n) and o(log n). Also, we
prove that, given a problem II, we can decide if its complexity is
O(log™ n) or Q(log n). Moreover, we prove that randomness cannot
help: if a problem has randomized complexity O(log™ n), then it has
the same deterministic complexity.

High level idea. Informally, we prove that all problems that are
O(log™ n) solvable can be solved in a normalized way, that is the
following:

e Split the rooted tree in constant size rooted subtrees, where
each root has some minimum distance from the leaves. Note
that each leaf is the root of another subtree.

e In each subtree, assign labels to the leaves, such that for any
assignment to the root, the subtree can be completed with a
valid labeling.

e Complete the labeling in each subtree independently.

Note that the only part requiring ©(log* n) is the first one, while
the rest requires constant time. We then also prove that we can
decide if there is a subset of labels, and an assignment for the leaves
of the subtrees, that satisfies the second point.

The certificate. We start by defining what is a uniform certificate
of O(log™ n) solvability. Informally, it is a sequence of labeled trees
having the same depth and the leaves labeled in the same way, such
that for each label used in the trees there is a tree with the root
labeled with that label. An example of such a certificate for the
3-coloring problem is depicted in Figure 1.

Definition 6.1 (uniform certificate for O(log™ n) solvability). Let
II be an LCL problem. A uniform certificate of O(log™ n) solvability
for IT = (Cry, 1) with labels X4 = {0y, ...,0:} € 21 and depth d
is a sequence 7 of t labeled trees (denoted by 7;) such that:

(1) Each tree is a complete §-ary tree of depth d (d has to be at
least one).

(2) Each tree 7; is labeled by labels from X4 and correct w.r.t.
configurations Ci.

(3) Let T ; be the tree obtained by starting from 7; and removing
the labels of all non-leaf nodes. It must hold that all trees 7 ;
are isomorphic, preserving the labeling.

(4) Root of tree 7; is labeled with label o;.

In the full version of this work [2] we prove the following theo-
rems.

Theorem 6.2. Assume that a uniform certificate of O(log™ n) solv-
ability for 11 exists. Then I1 can be solved in O(log* n) rounds in the
CONGEST model.

Theorem 6.3. If II has deterministic complexity o(log n) then there
exists a certificate of O(log™ n) solvability.

Theorem 6.4. Let IT be an LCL problem for which no certificate for
O(log™ n) solvability exists. Then, the randomized and deterministic
complexity of II in the LOCAL model is Q(logn).

269

PODC 21, July 26-30, 2021, Virtual Event, Italy

(a) Problem: 3-coloring in binary trees

SbDEHEBEDS b
SoebIb

(b) Finding a certificate

4 N
&6 OO

(cle)®l®)

certificate builder

(.23
G2 .2
01000,

simplified temporary tree
(already balanced in this case)

)

(c) Certificate for O(log* n)-round solvability

all possible roots

identical bottom levels

Figure 1: Finding a uniform certificate for O (log* n) solvabil-
ity (Definition 6.1) for the 3-coloring problem (Section 1.2).

Theorem 6.5. Whether an LCL problem I1 has round complexity
O(log* n) or Q(logn) can be decided in time at most exponential in
the size of the LCL problem.

7 SUB-LOG-STAR REGION

In this section we prove that there is no LCL problem IT with dis-
tributed time complexity between w(1) and o(log* n). Also, we
prove that, given a problem II, we can decide if its complexity is
0O(1) or Q(log" n). Moreover, we prove that randomness cannot
help: if a problem has randomized complexity O(1), then it has the
same deterministic complexity.

High level idea. We prove that deciding if a problem II can be
solved in constant time is surprisingly simple: a problem is O(1)
rounds solvable if and only if it can be solved in O(log" n) rounds
and IT contains an allowed configuration of a specific form. This
configuration must allow a node to have the same label ¢ of one
child, the labels used by this configuration should be contained in
the ones used by some certificate for O(log™ n) solvability, and ¢
should be used by at least one leaf of the certificate. If we consider

Session 5: Local Graph Problems

(a) Problem: maximal independent set in binary trees

(b) Finding a certificate where one of the leaf nodes is labeled with b

certificate builder

PODC 21, July 26-30, 2021, Virtual Event, Italy

extend to
a balanced tree

simplified temporary tree

(c) Certificate for O(1)-round solvability

all possible roots

identical bottom levels

b can be followed by b

b as one leaf

Figure 2: Finding a certificate for O(1) solvability (Definition 7.1) for the maximal independent set problem (Section 1.3).

the definition of the MIS problem given in Section 1.3, we can
see that it allows the configuration (b : b1), and informally this

configuration is what makes the problem constant time solvable.

Note that, however, the algorithm that we can obtain by using
this certificate, while still being constant time, may have a worse
complexity compared to the one described in Section 1.3. On the
other hand, we can see that in the definition of the 3-coloring
problem given in Section 1.2 there is no configuration of this form,
and this is what makes the problem Q(log™ n).

Informally, the reason is the following. The n that appears in
O(log™ n) complexities does not usually refer to the size of the
graph, but to the range of the identifiers assigned to the nodes. In
fact, in the proof of Theorem 6.2, O(log" n) is spent only to compute
some ruling set, while the rest only requires constant time, and
in order to compute such a ruling set, a distance-k coloring, for
some large enough k, is sufficient. Unfortunately, it is not possible
to compute a distance-k coloring in constant time, but as we will

show, some defective coloring will be sufficient for our purposes.

We show that in constant time we can produce some defective
distance-k coloring, for some large enough constant k, such that:

o we can label defective nodes with the special configuration,
e unlabeled nodes are properly colored, and

270

o labeled nodes that are in different connected components
are far enough from each other.

We can then complete the partial labeling in constant time with
the help of the certificate, similarly to how we use the certificate
of O(log™ n) solvability to solve problems in O(log™ n) rounds, but
this time we can speed the computation of the ruling set up, and
make it run in constant time by exploiting the distance-k coloring.
In the other direction, we show that if the special configuration
does not exist, or if it does not satisfy the required properties, then
any algorithm solving the problem can also be used to solve the
coloring problem with a constant size palette, that is known to
require Q(log" n) rounds.

The certificate. We start by defining what is a certificate for O(1)
solvability, that is nothing else but a certificate for O(log" n) solv-
ability and a configuration of some specific form. An example of
such a certificate for the MIS problem is depicted in Figure 2.

Definition 7.1. Let IT be an LCL problem. A certificate for O(1)
solvability for problem II is a pair S consisting of a certificate for
O(log™ n) solvability 7~ and a configuration (a : by,...,qa,...,bs) €
Crp where a,b; € X4 and at least one leaf of the trees in 7 is
labeled a.

Session 5: Local Graph Problems

O(1) solvability. We now prove that we can use a certificate for
O(1) solvability to construct an algorithm that solves the problem
I in constant time. Informally, we first spend a constant number
of rounds to try to construct some distance-k coloring. This color-
ing cannot always be correct, since the coloring problem requires
Q(log* n) rounds. We will use the special configuration to label
nodes in which the coloring procedure failed. The coloring will also
satisfy some desirable property, such as having improperly colored
regions that are far enough from each other. This will give us a
proper distance-k coloring in the unlabeled regions, and we will
use this coloring to complete the labeling in constant time.

In the full version of this work [2] we prove the following theo-
rems.

Theorem 7.2. Any LCL problem II that has a certificate of O(1)
solvability is constant time solvable with a deterministic CONGEST
algorithm.

Theorem 7.3. Let IT be an LCL problem for which no certificate
for O(1) solvability exists. Then, the randomized and deterministic
complexity of 11 in the LOCAL model is Q(log™ n).

Theorem 7.4. Whether an LCL problem I1 has round complexity
O(1) or Q(log* n) can be decided in time at most exponential in the
size of the LCL problem.

8 FUTURE WORK

While we completely characterize all complexities for LCLs in
rooted trees in both LOCAL and CONGEST, for both determin-
istic and randomized algorithms, and we show that we can decide
what is the complexity of a given problem, there are many questions
that are left open.

The first question regards the running time of the algorithm
that tries to find a certificate for O(log™ n) solvability. The current
running time is exponential, and an open question is whether we
can find such a certificate in polynomial time, or if we can prove that
e.g. deciding the existence of a certificate is an NP-hard problem.

The second question regards the complexity class of n®M While
we present a practical algorithm that determines if the complexity
is @(nl/k) for some k = 1,2, ..., our algorithm does not determine
the precise value of k, it only gives an upper bound. Whether there
is an efficient algorithm for finding the value of k remains open.

Another natural question regards extending our results to un-
rooted trees. While decidability is known in the Q(logn) region, it
is known to require exponential time [13]. In our setting, we can
decide if a problem is O(logn) or n() in polynomial time, and
it is an open question whether it is possible to obtain an analo-
gous decidability result for regular unrooted trees. Also, deciding
if a problem on regular trees requires O(1), ©(log™ n), or Q(log n)
rounds is a major open question.

ERRATA

A prior version of this work contained a mistake in the classification
in the n® region. It was erroneously claimed that the only possi-
ble complexity class in this region is ©(n), which is not the case.
We are thankful for Yi-Jun Chang for pointing out this mistake; in
the extended version of this work [2] (with Yi-Jun Chang as a new
coauthor) we will discuss this region in more detail.

271

PODC 21, July 26-30, 2021, Virtual Event, Italy

ACKNOWLEDGMENTS

We would also like to thank Yannic Maus for helpful feedback on
related work, Juho Hirvonen for useful discussions, Mikaél Rabie
for pointing out subtle errors, and anonymous reviewers for their
helpful feedback on previous versions of this work. The authors
wish to acknowledge CSC — IT Center for Science, Finland, for
computational resources.

REFERENCES

[1] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaél Rabie, and
Jukka Suomela. 2019. The distributed complexity of locally checkable problems
on paths is decidable. In Proc. 38th ACM Symposium on Principles of Distributed
Computing (PODC 2019). ACM Press, 262-271. https://doi.org/10.1145/3293611.
3331606 arXiv:1811.01672

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studeny, Jukka
Suomela, and Aleksandr Tereshchenko. 2021. Locally Checkable Problems in
Rooted Trees. arXiv:2102.09277

Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis
Olivetti, and Jukka Suomela. 2020. Classification of distributed binary labeling
problems. In Proc. 34th International Symposium on Distributed Computing (DISC
2020) (LIPIcs, Vol. 179). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 17:1-
17:17. https://doi.org/10.4230/LIPIcs.DISC.2020.17 arXiv:1911.13294

Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaél Rabie,
and Jukka Suomela. 2019. Lower bounds for maximal matchings and maximal in-
dependent sets. In Proc. 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2019). IEEE, 481-497. https://doi.org/10.1109/FOCS.2019.00037
arXiv:1901.02441

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. 2020. Almost
global problems in the LOCAL model. Distributed Computing. https://doi.org/10.
1007/s00446-020-00375-2 arXiv:1805.04776

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. 2020. How
much does randomness help with locally checkable problems?. In Proc. 39th
ACM Symposium on Principles of Distributed Computing (PODC 2020). ACM Press,
299-308. https://doi.org/10.1145/3382734.3405715 arXiv:1902.06803

Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and
Jukka Suomela. 2021. Locally Checkable Labelings with Small Messages.
arXiv:2105.05574

Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempidinen, Dennis
Olivetti, and Jukka Suomela. 2018. New classes of distributed time complexity.
In Proc. 50th ACM Symposium on Theory of Computing (STOC 2018). ACM Press,
1307-1318. https://doi.org/10.1145/3188745.3188860 arXiv:1711.01871

Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. 2019. Hardness
of minimal symmetry breaking in distributed computing. In Proc. 38th ACM
Symposium on Principles of Distributed Computing (PODC 2019). ACM Press,
369-378. https://doi.org/10.1145/3293611.3331605 arXiv:1811.01643

Sebastian Brandt. 2019. An Automatic Speedup Theorem for Distributed Problems.
In Proc. 38th ACM Symposium on Principles of Distributed Computing (PODC 2019).
ACM, 379-388. https://doi.org/10.1145/3293611.3331611

Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempidinen,
Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the dis-
tributed Lovasz local lemma. In Proc. 48th ACM Symposium on Theory of Comput-
ing (STOC 2016). ACM Press, 479-488. https://doi.org/10.1145/2897518.2897570
arXiv:1511.00900

Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempidinen, Patric
R.]. Ostergard, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemystaw
Uznaniski. 2017. LCL problems on grids. In Proc. 36th ACM Symposium on Principles
of Distributed Computing (PODC 2017). ACM Press, 101-110. https://doi.org/10.
1145/3087801.3087833 arXiv:1702.05456

Yi-Jun Chang. 2020. The Complexity Landscape of Distributed Locally Check-
able Problems on Trees. In Proc. 34th International Symposium on Distributed
Computing (DISC 2020) (LIPIcs, Vol. 179). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 18:1-18:17. https://doi.org/10.4230/LIPIcs.DISC.2020.18

Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2019. An Exponential Separation
between Randomized and Deterministic Complexity in the LOCAL Model. SIAM
J. Comput. 48, 1 (2019), 122-143. https://doi.org/10.1137/17M1117537

Yi-Jun Chang and Seth Pettie. 2019. A Time Hierarchy Theorem for the LOCAL
Model. SIAM J. Comput. 48, 1 (2019), 33-69. https://doi.org/10.1137/17M1157957
Yi-Jun Chang, Jan Studeny, and Jukka Suomela. 2021. Distributed graph problems
through an automata-theoretic lens. In Proc. 28th International Colloquium on
Structural Information and Communication Complexity (SIROCCO 2021) (LNCS).
Springer. arXiv:2002.07659

Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. 2017. Distributed algorithms for
the Lovasz local lemma and graph coloring. Distributed Comput. 30, 4 (2017),
261-280. https://doi.org/10.1007/s00446-016-0287-6

[2

[5

G

[10

[11

[12

(13

(14]

=
&

[16

(17

https://doi.org/10.1145/3293611.3331606
https://doi.org/10.1145/3293611.3331606
https://arxiv.org/abs/1811.01672
https://arxiv.org/abs/2102.09277
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://arxiv.org/abs/1911.13294
https://doi.org/10.1109/FOCS.2019.00037
https://arxiv.org/abs/1901.02441
https://doi.org/10.1007/s00446-020-00375-2
https://doi.org/10.1007/s00446-020-00375-2
https://arxiv.org/abs/1805.04776
https://doi.org/10.1145/3382734.3405715
https://arxiv.org/abs/1902.06803
https://arxiv.org/abs/2105.05574
https://doi.org/10.1145/3188745.3188860
https://arxiv.org/abs/1711.01871
https://doi.org/10.1145/3293611.3331605
https://arxiv.org/abs/1811.01643
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/2897518.2897570
https://arxiv.org/abs/1511.00900
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3087801.3087833
https://arxiv.org/abs/1702.05456
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://arxiv.org/abs/2002.07659
https://doi.org/10.1007/s00446-016-0287-6

Session 5: Local Graph Problems

[18]

[19]

[20

[21]

Richard Cole and Uzi Vishkin. 1986. Deterministic Coin Tossing with Applications
to Optimal Parallel List Ranking. Inf. Control. 70, 1 (1986), 32-53. https://doi.org/
10.1016/S0019-9958(86)80023-7

Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic Distributed Al-
gorithms for Lovasz Local Lemma, and the Complexity Hierarchy. In Proc.
31st International Symposium on Distributed Computing (DISC 2017) (LIPIcs,
Vol. 91). Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 18:1-18:16. https:
//doi.org/10.4230/LIPIcs.DISC.2017.18

Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM j. Comput.
21,1 (1992), 193-201. https://doi.org/10.1137/0221015

Moni Naor. 1991. A Lower Bound on Probabilistic Algorithms for Distributive
Ring Coloring. SIAM j. Discret. Math. 4, 3 (1991), 409-412. https://doi.org/10.

272

[22
[23

[24

[25

]

]

PODC 21, July 26-30, 2021, Virtual Event, Italy

1137/0404036

Moni Naor and Larry J. Stockmeyer. 1995. What Can be Computed Locally? SIAM
J. Comput. 24, 6 (1995), 1259-1277. https://doi.org/10.1137/S0097539793254571
Dennis Olivetti. 2020. Round Eliminator: a tool for automatic speedup simulation.
https://github.com/olidennis/round- eliminator

Vaclav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-time deterministic
network decomposition and distributed derandomization. In Proc. 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2020). ACM, 350-363.
https://doi.org/10.1145/3357713.3384298

Jan Studeny and Aleksandr Tereshchenko. 2021. Rooted Tree Classifier. https:
//github.com/jendas1/rooted-tree-classifier

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0404036
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://doi.org/10.1145/3357713.3384298
https://github.com/jendas1/rooted-tree-classifier
https://github.com/jendas1/rooted-tree-classifier

	Abstract
	1 Introduction
	1.1 Setting
	1.2 Example: 3-coloring
	1.3 Example: maximal independent set
	1.4 Example: branch 2-coloring
	1.5 Contributions

	2 Related work
	2.1 Landscape of LCL problems in the LOCAL model
	2.2 Decidability of LCL problems

	3 Road map
	4 Definitions
	5 Super-logarithmic region
	6 Sublogarithmic region
	7 Sub-log-star region
	8 Future work
	Acknowledgments
	References

