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Abstract

In the influence maximization (IM) problem, we are given a social network and a budget
𝑘 , and we look for a set of 𝑘 nodes in the network, called seeds, that maximize the
expected number of nodes that are reached by an influence cascade generated by the
seeds, according to some stochastic model for influence diffusion. Extensive studies
have been done on the IM problem, since this definition by ? ]. However, most of the
work focuses on the non-adaptive version of the problem where all the 𝑘 seed nodes
must be selected before the cascade starts. In this paper we study the adaptive IM,
where the nodes are selected sequentially one by one, and the decision on the 𝑖-th seed
can be based on the observed cascade produced by the first 𝑖 − 1 seeds. We focus on the
full-adoption feedback in which we can observe the entire cascade of each previously
selected seed under the independent cascade model where each edge is associated with
an independent probability of diffusing influence.

Previous works showed that there are constant upper bounds on the adaptivity gap,
which compares the performance of an adaptive algorithm against a non-adaptive one,
but the analyses used to prove these bounds only works for specific graph classes such
as in-arborescences, out-arborescences, and one-directional bipartite graphs. Our main
result is the first sub-linear upper bound that holds for any graph. Specifically, we show
that the adaptivity gap is upper-bounded by 3√𝑛 + 1, where 𝑛 is the number of nodes
in the graph. Moreover, we improve over the known upper bound for in-arborescences
from 2𝑒/(𝑒 − 1) ≈ 3.16 to 2𝑒2/(𝑒2 − 1) ≈ 2.31. Then, we consider (𝛽, 𝛾)-bounded-
activation graphs, where all nodes but 𝛽 influence in expectation at most 𝛾 ∈ [0, 1)
neighbors each; for this class of influence graphs we show that the adaptivity gap is
at most

√
𝛽 + 1

1−𝛾 . Finally, we study 𝛼-bounded-degree graphs, that is the class of
undirected graphs in which the sum of node degrees higher than two is at most 𝛼, and
show that the adaptivity gap is upper-bounded by

√
𝛼 + 𝑂 (1); we also show that in

0-bounded-degree graphs, i.e. undirected graphs in which each connected component
is a path or a cycle, the adaptivity gap is at most 3𝑒3/(𝑒3 − 1) ≈ 3.16.

To prove our bounds, we introduce new techniques to relate adaptive policies with
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non-adaptive ones that might be of their own interest.

Keywords: influence maximization, adaptive optimization, adaptivity gap, graph
algorithms

1. Introduction

In the Influence Maximization (IM) problem, we are given a social network, a
stochastic model for diffusion of influence over the network, and a budget 𝑘 . We are
asked to find a set of 𝑘 nodes, called seeds, that maximize their spread of influence,
which is the expected number of nodes reached by a cascade of influence diffusion,
generated by the seeds, according to the given diffusion model. One of the most studied
model for influence diffusion is the Independent Cascade (IC), where each edge is
associated with an independent probability of transmitting influence from the source
node to the tail node. In the IC model, the spread of influence is a monotone submodular
function of the seed set, therefore a greedy algorithm guarantees a 1− 1

𝑒
approximation

factor for the IM problem [? ]. Since this definition [? ? ] and formalization as an
optimization problem [? ? ], the IM problem and its variants have been extensively
investigated, motivated by applications in viral marketing [? ], adoption of technological
innovations [? ], and outbreak or failure detection [? ]. See ? ? ] for surveys on the IM
problem.

Recently, ? ] initiated the study of the IM problem under the framework of adaptive
optimization, where, instead of selecting all the seeds at once in the beginning of the
process, we can select one seed at a time and observe to some extent, the portion of
the network reached by a new selected seed. The advantage is that the decision on
the next seed to choose can be based on the observed spread of previously selected
seeds, usually called feedback. Two main feedback models have been introduced: in
the full-adoption feedback, the whole spread from each seed can be observed, while in
the myopic feedback, one can only observe the direct neighbors of each seed.

An interesting application of adaptive strategies under both feedback models can
be encountered in viral marketing [? ]: Assume that a company is selling a new
product and wants to advertise it to the largest number of possible buyers in order to
increase its revenue. The company can use a limited budget to initially promote the
product to some persons (i.e., the seeds) and, by exploiting the word-of-mouth effect,
the product will be indirectly advertised to many other people in the underlying social
network. In a non-adaptive strategy, the company selects the seeds at the beginning,
without observing how the word-of-mouth effect contributes to the product advertising.
A disadvantage of such a strategy is that some selected seed could be useless, e.g., it
could have been already reached by the word-of-mouth induced by other seeds. To
overcome this issue, the company could resort to an adaptive strategy to observe, for
each selected seed, the set of people reached by the word-of-mouth and choose the
next seeds focusing on the users that have not yet been reached. Under full-adoption
feedback, the company is able to know exactly all people influenced by the advertising
campaign, thus the company can avoid to advertise again the product to such people.
Instead, under myopic feedback, the observation is restricted to the neighbors of the
selected seeds, thus the useless seeding can only be partially avoided.
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In this work, we focus on the model of full-adoption feedback. Golovin and Krause
considered the Independent Cascade model and showed that, under full-adoption feed-
back, the objective function satisfies the property of adaptive submodularity (introduced
in the same paper) and therefore a greedy algorithm achieves a 1 − 1

𝑒
approximation

for the adaptive IM problem. They also conjectured that there exists a constant factor
approximation algorithm for the myopic feedback model, which has been found by ? ]
who proposed a 1

4

(
1 − 1

𝑒

)
-approximation algorithm.

However, the approximation ratio for the adaptive IM problem, which compares a
given adaptive algorithm with an optimal adaptive one, does not measure the benefits
of implementing adaptive policies over non-adaptive ones. In order to measure the
superiority of adaptive policies over non-adaptive ones, ? ? ? ] analyzed the adaptivity
gap, which is the supremum, over all possible inputs, of the ratio between the spread
of an optimal adaptive policy and that of an optimal non-adaptive one. We remark
that implementing a non-adaptive policy is simpler than using an adaptive one, as the
former does not require to observe the feedback from the seed selection and all seeds
are computed at the beginning. Thus, if the adaptivity gap is sufficiently low, we have
that the seed set computed by an optimal non-adaptive policy (or an almost optimal one,
such as the non-adaptive greedy algorithm) guarantees an expected influence spread
that is close to that achievable in an optimal adaptive way (or that achieved by an almost
optimal adaptive policy, such as the adaptive greedy algorithm).

In [? ], Peng and Chen considered independent cascade model with myopic feedback
and showed that the adaptivity gap is between 𝑒

𝑒−1 and 4 for any graph. In [? ], the
same authors showed some upper and lower bounds on the adaptivity gap in the case
of full-adoption feedback, still under independent cascade, for some particular graph
classes. Specifically, they showed that the adaptivity gap is in the interval

[
𝑒

𝑒−1 ,
2𝑒
𝑒−1

]
for in-arborescences and it is in the interval

[
𝑒

𝑒−1 , 2
]

for out-arborescences. Moreover,
it is equal to 𝑒

𝑒−1 in one-directional bipartite graphs. In order to show these bounds,
they followed an approach introduced by ? ], which consists in transforming an adaptive
policy into a non-adaptive one by means of multilinear extensions, and constructing a
Poisson process to relate the influence spread of the non-adaptive policy to that of the
adaptive one. For general graphs and full-adoption feedback, the only known upper
bounds on the adaptivity gap are linear in the size of the graph and can be trivially
derived.

1.1. Our Contribution
In this paper, we consider the independent cascade model with full-adoption feed-

back, and show the first sub-linear upper bound on the adaptivity gap that holds for
general graphs. In detail, we show that the adaptivity gap is at most ⌈𝑛1/3⌉ (Theorem 3),
where 𝑛 is the number of nodes in the graph; as a corollary of Theorem 3 (Corollary 1),
we also show that the non-adaptive greedy algorithm guarantees a Ω(1/𝑛1/3) approxi-
mation to the adaptive optimum. Moreover, we tighten the upper bound on the adaptivity
gap for in-arborescences by showing that it is at most 2𝑒2

𝑒2−1 < 2𝑒
𝑒−1 (Theorem 1).

Using similar techniques we study the adaptivity gap of two classes of influence
graphs introduced in this work: (𝛽, 𝛾)-bounded-activation graphs, where all nodes but
𝛽 influence in expectation at most 𝛾 ∈ [0, 1) neighbors each, and 𝛼-bounded-degree
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graphs, which is the class of influence graphs where the sum of node degrees higher
than two is at most 𝛼. (𝛽, 𝛾)-bounded-activation graphs are well-motivated by social
networks in which most nodes have a limited power of influence, and 𝛼-bounded-degree
graphs can be encountered in several graph topologies (see, for instance, Example 1).
We show that the adaptivity gap of (𝛽, 𝛾)-bounded-activation graphs and 𝛼-bounded-
degree graphs is upper-bounded by

√
𝛽 + 1

1−𝛾 and
√
𝛼 + 𝑂 (1) (Theorems 4 and 5),

respectively, and these values are smaller than that of 𝑂 (𝑛1/3) for several influence
graph classes. Furthermore, in 0-bounded-degree graphs, i.e. undirected graphs in
which each connected component is a path or a cycle, the adaptivity gap is at most 3𝑒3

𝑒3−1
(Theorem 6). In Table 1 we summarize the obtained results on the adaptivity gap of the
considered graph classes, and we compare our bounds with the existing ones.

Previous UB Our UB
General Graphs x ⌈𝑛1/3⌉
In-arborescences 2𝑒

𝑒−1 [? ] 2𝑒2

𝑒2−1
(𝛽, 𝛾)-bounded-activation //

√
𝛽 + 1

1−𝛾
𝛼-bounded-degree //

√
𝛼 +𝑂 (1)

Paths or Cycles // 3𝑒3

𝑒3−1

Table 1: The table compares our upper bounds (UB) on the adaptivity gap with the existing ones, for the
considered graph classes. Symbol “x” is used if no sub-linear upper bound was known, and symbol “//”
denotes the cases that, prior to this work, had not been studied yet.

To prove our bounds, we introduce new techniques to connect adaptive policies
with non-adaptive ones that might be of their own interest (further details are given in
the paragraph “General outline of the proof technique” in Section 3). In particular, we
resort to a simple randomized hybrid non-adaptive policy, that differs from the main
approaches previously used in adaptive influence maximization and other adaptive
optimization problems: (i) the Poisson process [? ] combined with the multi-linear
extension of submodular set-functions [? ], which represent the main probabilistic
technique adopted by ? ] and ? ], and (ii) the random walk on the decision tree [? ? ],
that is a tool applied by ? ? ] and ? ].

1.2. Related Work
Non-Adaptive Influence Maximization. Several studies based on general graphs [? ?
? ? ] have been conducted since the seminal paper by ? ]. ? ] studied the influence
maximization problem on undirected graphs and proved that it is APX-hard for both
the independent cascade and the linear threshold problem. ? ] proposed an efficient
algorithm that runs in quasilinear time and still guarantees an approximation factor of
1− 1

𝑒
− 𝜖 , for any 𝜖 > 0. ? ] proposed an algorithm which is experimentally close to the

optimal one under the independent cascade model. ? ] consider unknown graphs for the
influence maximization problem and devised an algorithm which achieves a fraction
between 0.6 and 0.9 of the influence spread with minimal knowledge of the graph
topology. Extensive literature reviews on influence maximization and its machinery is
provided by ? ] and ? ].
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Adaptive Influence Maximization. ? ] considered the independent cascade model under
the full-adoption feedback. By exploiting the adaptive submodularity property, they
showed that the adaptive greedy algorithm guarantees a 1 − 1

𝑒
− 𝜖 approximation. ?

] analyzed the efficiency of the adaptive greedy under diffusion models that do not
satisfy the adaptive submodularity, and showed a constant approximation factor for
one-directional bipartite graphs under the triggering model.

The myopic feedback model (in which, one can only observe the nodes influenced
by the seed nodes) has been introduced in [? ] and further analyzed in [? ? ? ].
? ] showed that both non-adaptive and adaptive greedy algorithms achieve a fraction
1
4

(
1 − 1

𝑒

)
≈ 0.158 of the optimal adaptive policy (up to an arbitrarily small addend

𝜖 > 0), under the myopic model and for general graphs; this result was recently
improved by ? ], who showed that the non-adaptive and adaptive greedy algorithms
are respectively 1

2

(
1 − 1

𝑒

)
≈ 0.316 and 1 − 1√

𝑒
≈ 0.393 approximate to the optimal

adaptive policy (up to an arbitrarily small addend 𝜖 > 0).
In Table 2 we provide the approximation factors guaranteed by the adaptive and the

non-adaptive greedy algorithms in the context of adaptive influence maximization.

Non-adaptive Greedy Adaptive Greedy
Full-ad. Ω(1/𝑛1/3) [*] 1 − 1

𝑒
− 𝜖 [? ]

Myopic 1
4

(
1 − 1

𝑒

)
− 𝜖 [? ] 1

4

(
1 − 1

𝑒

)
− 𝜖 [? ]

1
2

(
1 − 1

𝑒

)
− 𝜖 [? ]

(
1 − 1√

𝑒

)
− 𝜖 [? ]

Table 2: The table represents the approximation ratios guaranteed by the adaptive and the non-adaptive
greedy algorithms in the context of adaptive influence maximization, under both full-adoption and myopic
feedback. We use symbol “∗” to denote the results obtained in this work.

Several works on the adaptive influence maximization problem [? ? ? ? ? ? ?
? ? ? ? ] evolved after the concept was introduced by ? ], and explore adaptive
optimization under different settings.

? ] capture the scenario in which, instead of considering one round, the diffusion
process takes over 𝑇 rounds, and a seed set of at most 𝑘 nodes is selected at each
round. The authors designed a greedy approximation algorithm that guarantees a
constant approximation ratio. ? ] introduced a new version of the adaptive influence
maximization problem by adding a time constraint. Other than the classic full-adoption
and myopic feedback model, ? ], and ? ], have also introduced different feedback models
that use different parameters to overcome the need of submodularity to guarantee a
good approximation. ? ] and ? ] proposed a framework that generalizes the adaptive
influence maximization problem in which, at each step, a batch of nodes is selected in
a non-adaptive way (instead of a single node as in classic adaptive IM), and then the
resulting spread is observed to select the subsequent batches; in particular, they showed
an approximation factor of 1− 𝑒𝜌𝑏 (𝜖 −1) , where 𝜌𝑏 = 1− (1− 1/𝑏)𝑏 and 𝑏 is the size of
each batch. Another multi-batches variant of adaptive IM problems has been studied by
? ], who provided an approximation algorithm and a heuristic algorithm for the related
computational problems.
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Adaptivity Gaps. Adaptivity gaps for the problem of maximizing stochastic monotone
submodular functions have been studied by ? ]. A series of work studied adaptivity
gaps for a two-step adaptive influence maximization problem [? ? ? ? ]. Gupta et
al. [? ? ] and ? ] worked on the adaptivity gaps for stochastic probing.

A recent line of studies [? ? ? ] focuses on finding the adaptivity gaps on different
graph classes using the classical feedback models. ? ] confirmed a conjecture of ?
], which states that the adaptivity gap of the independent cascade model with myopic
feedback is constant. In particular, they showed that the adaptivity gap belongs to
[ 𝑒
𝑒−1 , 4]. The above upper bound has been recently lowered to 2𝑒

𝑒−1 ≈ 3.16 by ? ]. ? ]
introduced the greedy adaptivity gap, which compares the performance of the adaptive
and the non-adaptive greedy algorithms. They showed that the infimum of the greedy
adaptivity gap is 1 − 1

𝑒
for every combination of diffusion and feedback models.

The most related work to our results is that of ? ], as they derived upper and lower
bounds on the adaptivity gap under the independent cascade model with full-adoption
feedback, when the considered graphs are in-arborescences, out-arborescences, or one-
directional bipartite graphs. In particular, they showed that the adaptivity gaps of
in-arborescences and out-arborescences are in the intervals

[
𝑒

𝑒−1 ,
2𝑒
𝑒−1

]
and

[
𝑒

𝑒−1 , 2
]
,

respectively, and they provided a tight bound of 𝑒
𝑒−1 on the adaptivity gap of one-

directional bipartite graphs. Under the more general triggering model, a constant upper
bound of 2 on the adaptivity gap of one-directional bipartite graphs was provided by ?
].

In Table 3 we summarize the main results on the adaptivity gap of influence maxi-
mization under the independent cascade model.

General In-arb. Out-arb. Bipartite
Full-ad. UB ⌈𝑛1/3⌉ [*] 2𝑒

𝑒−1 [? ], 2𝑒2

𝑒2−1 [*] 2 [? ] 𝑒
𝑒−1 [? ]

LB 𝑒
𝑒−1 [? ] 𝑒

𝑒−1 [? ] 𝑒
𝑒−1 [? ] 𝑒

𝑒−1 [? ]
Myopic UB 4 [? ], 2𝑒

𝑒−1 [? ] // // 𝑒
𝑒−1 [? ]

LB 𝑒
𝑒−1 [? ? ] // // 𝑒

𝑒−1 [? ? ]

Table 3: The table represents the existing bounds on the adaptivity gap of influence maximization under
the independent cascade model, for both full-adoption and myopic feedback, and different graph topologies
(general graphs, in-arborescences, out-arborescences, one-directional bipartite graphs). The acronyms “UB”
and “LB” refer to upper and lower bounds, respectively. We use symbol “∗” to denote the results obtained in
this work, and symbol “//” to denote cases which have not been studied yet (to the best of our knowledge).

1.3. Organization of the Paper
In Section 2 we give the preliminary definitions and notations which this work is

based on. Sections 3–5 are devoted to the main technical contribution of the paper, i.e.,
adaptivity gaps of in-arborescences, general graphs and other influence graphs ((𝛽, 𝛾)-
bounded-activation graphs and 𝛼-bounded-degree graphs). In Section 6, we highlight
some future research directions.

2. Preliminaries

For two integers ℎ and 𝑘 , ℎ ≤ 𝑘 , let [𝑘]ℎ := {ℎ, ℎ + 1, . . . , 𝑘} and [𝑘] := [𝑘]1.
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Independent Cascade Model. In the independent cascade model (IC), we have an
influence graph 𝐺 = (𝑉 = [𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸), where 𝑝𝑢𝑣 ∈ [0, 1] is an activation
probability associated to each edge (𝑢, 𝑣) ∈ 𝐸 . Given a set of seed nodes 𝑆 ⊆ 𝑉 which
are initially active, the diffusion process in the IC model is defined in 𝑡 ≥ 0 discrete
steps as follows: (i) let 𝐴𝑡 be the set of active nodes which are activated at each step
𝑡 ≥ 0; (ii) 𝐴0 := 𝑆; (iii) given a step 𝑡 ≥ 0, for any edge (𝑢, 𝑣) such that 𝑢 ∈ 𝐴𝑡 , node
𝑢 can activate node 𝑣 with probability 𝑝𝑢𝑣 independently from any other node, and, in
case of success, 𝑣 is included in 𝐴𝑡+1; (iv) the diffusion process ends at a step 𝑟 ≥ 0
such that 𝐴𝑟 = ∅, i.e., no node can be activated at all, and

⋃
𝑡≤𝑟 𝐴𝑡 is the influence

spread, i.e., the set of nodes activated/reached by the diffusion process.
The above diffusion process can be equivalently defined as follows. The live-edge

graph 𝐿 = (𝑉, 𝐿(𝐸)) of 𝐺 is a random graph made from 𝐺, where 𝐿 (𝐸) ⊆ 𝐸 is a
subset of edges such that each edge (𝑢, 𝑣) ∈ 𝐸 is included in 𝐿 (𝐸) with probability 𝑝𝑢𝑣 ,
independently from the other edges. Given a live-edge graph 𝐿, let 𝑅(𝑆, 𝐿) := {𝑣 ∈ 𝑉 :
there exists a path from 𝑢 to 𝑣 in 𝐿 for some 𝑢 ∈ 𝑆}, i.e., the set of nodes reached by 𝑆

in the live-edge graph 𝐿. Informally, if 𝑆 is the set of seed nodes, and 𝐿 is a live-edge
graph, 𝑅(𝑆, 𝐿) equivalently denotes the set of nodes which are reached/activated by the
above diffusion process. Given a set of seed nodes 𝑆, the expected influence spread of
𝑆 is defined as 𝜎(𝑆) := E𝐿 [|𝑅(𝑆, 𝐿) |].

Non-adaptive Influence Maximization. The non-adaptive influence maximization prob-
lem under the IC model is a computational problem that is defined as follows: given an
influence graph 𝐺 and an integer 𝑘 ≥ 1, we are to find a set of seed nodes 𝑆 ⊆ 𝑉 with
|𝑆 | = 𝑘 such that 𝜎(𝑆) is maximized.

Adaptive Influence Maximization. Differently from the non-adaptive setting, in which
all the seed nodes are activated at the beginning and then the influence spread is
observed, an adaptive policy activates the seeds sequentially in 𝑘 steps, one seed node
at each step, and the decision on the next seed node to select is based on the feedback
resulting from the observed spread of the previously selected nodes. The feedback
model considered in this work is full-adoption: when a node is selected, the adaptive
policy observes its entire influence spread.

An adaptive policy under the full-adoption feedback model is formally defined as
follows. Given a live-edge graph 𝐿, the realization 𝜙𝐿 : 𝑉 → 2𝑉 associated to 𝐿

assigns to each node 𝑣 ∈ 𝑉 the value 𝜙𝐿 (𝑣) := 𝑅({𝑣}, 𝐿), i.e., the set of nodes activated
by 𝑣 under a live-edge graph 𝐿. Given a set 𝑆 ⊆ 𝑉 , a partial realization 𝜓 : 𝑆 → 2𝑉 is
the restriction to 𝑆 for some realization, i.e., there exists a live-edge graph 𝐿 such that
𝜓(𝑣) = 𝜙𝐿 (𝑣) for any 𝑣 ∈ 𝑆. Given a partial realization 𝜓 : 𝑆 → 2𝑉 , let 𝑑𝑜𝑚(𝜓) := 𝑆,
i.e., 𝑑𝑜𝑚(𝜓) is the domain of partial realization 𝜓, let 𝑅(𝜓) :=

⋃
𝑣∈𝑆 𝜓(𝑣), i.e., 𝑅(𝜓)

is the set of nodes reached/activated by the diffusion process when the set of seed
nodes is 𝑆, and let 𝑓 (𝜓) := |𝑅(𝜓) |. A partial realization 𝜓′ is a sub-realization
of 𝜓 (or, equivalently, 𝜓′ ⊆ 𝜓), if 𝑑𝑜𝑚(𝜓′) ⊆ 𝑑𝑜𝑚(𝜓) and 𝜓′ (𝑣) = 𝜓(𝑣) for any
𝑣 ∈ 𝑑𝑜𝑚(𝜓′). We observe that a partial realization 𝜓 can be equivalently represented
as {(𝑣, 𝑅({𝑣}, 𝐿)) : 𝑣 ∈ 𝑑𝑜𝑚(𝜓)} for some live-edge graph 𝐿. Some of the above
definitions are illustrated in Figure 2.
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v1
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v6 v7

v8 v9 v10

φL(v1)

φL(v6)

Figure 1: The figure represents an influence graph 𝐺 having 10 nodes. Each arrow is an edge, and the set of
non-dotted edges represents the live-edge graph 𝐿. The seed set is 𝑆 = {𝑣1, 𝑣6} (i.e., the black nodes), the
set of nodes reached by 𝑣1 and 𝑣6 is 𝑅 (𝑆, 𝐿) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣9, 𝑣10} (i.e., the grey nodes), and
the nodes that remain non-active are 𝑣7 and 𝑣8 (i.e., the white ones). The partial realization 𝜓 : 𝑆 → 2𝑉
observed by seeding the nodes in 𝑑𝑜𝑚(𝜓) = 𝑆 verifies 𝜓 (𝑣1 ) = 𝜙𝐿 (𝑣1 ) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and
𝜓 (𝑣6 ) = 𝜙𝐿 (𝑣6 ) = {𝑣3, 𝑣6, 𝑣9, 𝑣10}, where 𝜙𝐿 denotes the realization associated with live-edge graph 𝐿.

An adaptive policy 𝜋 takes as input a partial realization 𝜓 and, either returns a
node 𝜋(𝜓) ∈ 𝑉 and activates it as seed, or interrupts the activation of new seed nodes,
e.g., by returning a string 𝜋(𝜓) := 𝑆𝑇𝑂𝑃; furthermore, we assume w.l.o.g. that an
adaptive policy 𝜋 chooses each seed based only on the observation of 𝑅(𝜓) (i.e., the
set of nodes activated by the previous seeds) and |𝑑𝑜𝑚(𝜓) | (i.e., the number of seeds
previously selected), that is, 𝜋(𝜓) = 𝜋(𝑅(𝜓), |𝑑𝑜𝑚(𝜓) |). An adaptive policy 𝜋 can
be run as in Algorithm 1.1 The expected influence spread of an adaptive policy 𝜋 is
defined as 𝜎(𝜋) := E𝐿 [ 𝑓 (𝜓𝜋,𝐿)], i.e., it is the expected value (taken on all the possible
live-edge graphs) of the number of nodes reached by the diffusion process at the end of
Algorithm 1. We say that |𝜋 | = 𝑘 if policy 𝜋 always return a partial realization 𝜓𝜋,𝐿

with |𝑑𝑜𝑚(𝜓𝜋,𝐿) | = 𝑘 . The adaptive influence maximization problem under the IC
model is the computational problem that, given an influence graph 𝐺 and an integer
𝑘 ≥ 1, asks to find an adaptive policy 𝜋 that maximizes the expected influence spread
𝜎(𝜋) subject to a constraint |𝜋 | = 𝑘 .

Adaptivity gap. Given an influence graph 𝐺 and an integer 𝑘 ≥ 1, let 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)
(resp. 𝑂𝑃𝑇𝐴(𝐺, 𝑘)) denote the optimal value of the non-adaptive (resp. adaptive)
influence maximization problem with input 𝐺 and 𝑘 . Given a class of influence graphs

1The assumption that 𝜋 can only observe 𝑅 (𝜓) and 𝑑𝑜𝑚(𝜓) is done to make the adaptive policy more
realistic. Indeed, assuming that a seed 𝑣1 is activated before seed 𝑣2, and a node 𝑢 has been already activated
by 𝑣1, it might unfeasible to know if 𝑣2 would have influenced 𝑢 without the help of seed 𝑣2. We also observe
that the above assumption is done without loss of generality. Indeed, to the aim of designing an optimal
adaptive policy under the full-feedback model, it is sufficient to observe which nodes have been influenced
by the previous seed selections, without necessarily knowing if a new seed could have reached a node that
was previously influenced by some previous seed.
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Algorithm 1 Adaptive algorithm
Require: an influence graph 𝐺 and an adaptive policy 𝜋;
Ensure: a partial realization;

1: let 𝐿 be the live-edge graph;
2: let 𝜓 := ∅ (i.e., 𝜓 is the empty partial realization);
3: while 𝜋(𝜓) ≠ 𝑆𝑇𝑂𝑃 do
4: 𝑣 := 𝜋(𝜓);
5: 𝜓 := 𝜓 ∪ {(𝑣, 𝑅({𝑣}, 𝐿))};
6: end while
7: return 𝜓𝜋,𝐿 := 𝜓;

G and an integer 𝑘 ≥ 1, the 𝑘-adaptivity gap of G is defined as

𝐴𝐺 (G, 𝑘) := sup
𝐺∈G

𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ,

and measures how much an adaptive policy outperforms a non-adaptive solution for
the influence maximization problem applied to influence graphs in G, when the max-
imum number of seed nodes is 𝑘 . The adaptivity gap of G is defined as 𝐴𝐺 (G) :=
sup𝑘≥1 𝐴𝐺 (G, 𝑘). We observe that for 𝑘 = 1 or 𝑛 ≤ 𝑘 the 𝑘-adaptivity gap is trivially
equal to 1, thus we omit such cases in the following.

In Table 4 we summarize the notation in Influence Maximization defined in this
section.

Symbol Meaning
𝐺 input graph
𝑉 = [𝑛] set of 𝑛 nodes
𝐸 set of edges
𝑝𝑢,𝑣 diffusion probability of edge (𝑢, 𝑣)
𝐿 live-edge graph
𝑅(𝑆, 𝐿) set of nodes reached by 𝑆 in graph 𝐿

𝜎(𝑆) expected influence spread E𝐿 [|𝑅(𝑆, 𝐿) |] generated by 𝑆

𝜙𝐿 : 𝑉 → 2𝑉 realization associated with 𝐿

(i.e., 𝜙𝐿 (𝑣) := 𝑅({𝑣}, 𝐿) for any 𝑣 ∈ 𝑉)
𝜓 partial realization of 𝜙𝐿

(i.e., the realization 𝜙𝐿 restricted to the selected seed set 𝑆)
𝑑𝑜𝑚(𝜓) the domain 𝑆 of 𝜓
𝑅(𝜓) ⋃

𝑣∈𝑑𝑜𝑚(𝜓) 𝜓(𝑣)
𝑓 (𝜓) |𝑅(𝜓) |
𝜓′ ⊆ 𝜓 𝜓′ is a sub-realization of 𝜓
𝜋 generic adaptive policy
𝑂𝑃𝑇𝐴(𝐺, 𝑘) adaptive optimal value of a policy selecting 𝑘 seeds in graph 𝐺

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) non-adaptive optimal value for 𝑘 seeds in graph 𝐺

Table 4: Notation on Influence Maximization
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3. Adaptivity Gap for In-arborescences

An in-arborescence is a graph 𝐺 = (𝑉, 𝐸) that can be constructed from a rooted tree
𝑇 = (𝑉, 𝐹), by adding in 𝐸 an edge (𝑣, 𝑢) if 𝑢 is a father of 𝑣 in tree 𝑇 . In-arborescences
have been widely studied in the context of influence maximization (see, for instance,
[? ? ? ]), and can be successfully used to represent diffusion networks possessing a
hierarchical structure, where each node can influence its father, and indirectly, some of
its ancestors. An upper bound of 2𝑒

𝑒−1 ≈ 3.16 on the adaptivity gap of in-arborescences
has been provided in [? ].

In this section we provide an improved upper bound for such graphs.
Theorem 1. If G is the class of all the in-arborescences, then

𝐴𝐺 (G, 𝑘) ≤ 2
1 − (1 − 2/𝑘)𝑘

≤ 2𝑒2

𝑒2 − 1
≈ 2.31, ∀𝑘 ≥ 2.

Let 𝐺 = (𝑉 = [𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be an in-arborescence, where 𝑛 > 𝑘 is the
number of nodes. To show the claim of Theorem 1, we need some preliminary notations
and lemmas. Given a partial realization 𝜓, and a node 𝑣 ∈ 𝑉 , let

Δ(𝑣 |𝜓) := E𝐿 [ 𝑓 (𝜓 ∪ {(𝑣, 𝑅({𝑣}, 𝐿))}) − 𝑓 (𝜓) |𝜓 ⊆ 𝜙𝐿],

i.e., Δ(𝑣 |𝜓) is the expected increment of the influence spread due to node 𝑣 when the
observed partial realization is 𝜓. We have the following claim (from [? ]), holding even
for general graphs, whose proof is trivial.
Claim 1 (Adaptive Submodularity [? ]). Let 𝐺 be an arbitrary influence graph. For
any partial realizations 𝜓, 𝜓′ of 𝐺 such that 𝜓 ⊆ 𝜓′, and any node 𝑣 ∉ 𝑅(𝜓′), we have
that Δ(𝑣 |𝜓′) ≤ Δ(𝑣 |𝜓).

An adaptive policy 𝜋 is called randomized if, for any partial realization𝜓, node 𝜋(𝜓)
is not selected deterministically (in general), but randomly (according to a probability
distribution 𝑝𝜓 depending on 𝜓). Given a vector y = (𝑦1, . . . , 𝑦𝑛) such that 𝑦𝑣 ∈ [0, 1]
for any 𝑣 ∈ 𝑉 , we say that P(𝜋) = y if the probability that each node 𝑣 belongs to
𝑑𝑜𝑚(𝜓𝜋,𝐿) is 𝑦𝑣 , where 𝜓𝜋,𝐿 is the partial realization returned by Algorithm 1 with
policy 𝜋. Let 𝑂𝑃𝑇𝐴(𝐺, y) be the optimal expected influence spread 𝜎(𝜋) over all the
randomized adaptive policies 𝜋 such that P(𝜋) = y.2

Let 𝜋∗ be an optimal adaptive policy for the adaptive influence maximization prob-
lem (with |𝜋∗ | = 𝑘), and let x = (𝑥1, . . . , 𝑥𝑛) be the vector such that P(𝜋∗) = x. As
|𝜋∗ | = 𝑘 , we have that

∑
𝑣∈𝑉 𝑥𝑣 = 𝑘 .

For any 𝑡 ∈ [𝑘]0, let 𝑆𝑡 be the optimal set of 𝑡 seed nodes in the non-adaptive
influence maximization problem, i.e., such that𝑂𝑃𝑇𝑁 (𝐺, 𝑡) = E𝐿 ( |𝑅(𝑆𝑡 , 𝐿) |). Let𝜓𝑡 ,𝐿

be the random variable denoting the sub-realization of 𝜙𝐿 such that 𝑑𝑜𝑚(𝜓𝑡 ,𝐿) = 𝑆𝑡 .
Let 𝜌 be the random variable equal to node 𝑣 ∈ 𝑉 with probability 𝑥𝑣/𝑘 . Observe
that the above random variable is well-defined, as

∑
𝑣∈𝑉 (𝑥𝑣/𝑘) = 𝑘/𝑘 = 1. For any

𝑡 ∈ [𝑘], let 𝜓𝜌,𝑡 ,𝐿 be the random variable denoting the sub-realization of 𝜙𝐿 such that
𝑑𝑜𝑚(𝜓𝜌,𝑡 ,𝐿) = 𝑆𝑡−1 ∪ {𝜌}.

2We observe that, if y is arbitrary, a deterministic policy 𝜋 verifying P(𝜋 ) = y might not exists, and the
introduction of randomization solves this issue.
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General outline of the proof technique. We observe that 𝜓𝜌,𝑡 ,𝐿 is the partial realization
coming from the following hybrid non-adaptive policy: initially, we activate the first
𝑡 − 1 seed nodes as in the optimal non-adaptive solution guaranteeing an expected
influence spread of 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1); then, we randomly choose a node 𝑣 according to
random variable 𝜌 and we select 𝑣 as 𝑡-th seed node (if not already selected as seed). We
use this hybrid non-adaptive policy as a main tool to obtain an improved upper bound
on the adaptivity gap for in-arborescences. In Lemma 1, holding even for general
graphs, we relate the hybrid non-adaptive policy and the optimal non-adaptive solution,
with the optimal adaptive policy. Lemma 1, together with Lemma 2 (that is similar to
Lemma 3.8 in [? ]), is used in the main proof of the theorem to relate 𝑂𝑃𝑇𝑁 (𝐺, 𝑡) with
𝑂𝑃𝑇𝐴(𝐺, 𝑘) for any 𝑡 ∈ [𝑘], and this leads to our upper bound.

The proof structure of Lemma 1 exhibits some similarities with Lemma 6 of ? ]
and Lemma 3.3 of ? ], but in their approach, they relate non-adaptive policies based
on the Poisson process and multi-linear extensions, with the optimal adaptive policy.
One disadvantage of the Poisson process adopted in [? ] is that the number 𝑋 of seed
nodes selected by the corresponding non-adaptive policy is equal to 𝑘 under expectation
(i.e., E(𝑋) = 𝑘), and determining the expected influence spread w.r.t. random variable
𝑋 has implied a further loss in the final upper bound (see Lemma 3.9 and inequality
(21) of Theorem 3.1 in [? ]). Instead, by using the hybrid-non-adaptive policy, we
guarantee that the number of selected seed nodes at each step 𝑡 ∈ [𝑘] is exactly equal
to 𝑡, independently from the considered random execution. This property allow us to
avoid the expectations w.r.t. the number of selected seed nodes, and this leads to a
further improvement of the resulting upper bound on the adaptivity gap.
Lemma 1. Let 𝐺 be an arbitrary influence graph. For any 𝑡 ∈ [𝑘], and any fixed partial
realization 𝜓 of 𝐺 such that P[𝜓𝑡−1,𝐿 = 𝜓] > 0, we have

𝑂𝑃𝑇𝐴(𝐺, 𝑘) ≤ 𝜎(𝑅(𝜓)) + 𝑘 · E𝐿,𝜌

[
𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿 = 𝜓

]
.

Proof. We have

𝑘 · E𝐿,𝜌

[
𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿 = 𝜓

]
=𝑘 ·

∑︁
𝑣∈𝑉

P[𝜌 = 𝑣] · Δ(𝑣 |𝜓)

=𝑘 ·
∑︁

𝑣∈𝑉\𝑅 (𝜓)

𝑥𝑣

𝑘
· Δ(𝑣 |𝜓) (1)

=
∑︁

𝑣∈𝑉\𝑅 (𝜓)
𝑥𝑣 · Δ(𝑣 |𝜓), (2)

where (1) holds since Δ(𝑣 |𝜓) = 0 for any 𝑣 ∈ 𝑅(𝜓).
Let x′ = (𝑥′1, . . . 𝑥

′
𝑛) be the vector such that 𝑥′𝑣 = 1 if 𝑣 ∈ 𝑅(𝜓), and 𝑥′𝑣 = 𝑥𝑣

otherwise. As 𝑥′𝑣 ≥ 𝑥𝑣 for any 𝑣 ∈ 𝑉 we have

𝑂𝑃𝑇𝐴(𝐺, 𝑘) ≤ 𝑂𝑃𝑇𝐴(𝐺,x) ≤ 𝑂𝑃𝑇𝐴(𝐺,x′). (3)

Let 𝜋′ be the optimal randomized adaptive policy such that P(𝜋′) = x′. Policy 𝜋′

selects each node in 𝑅(𝜓) with probability 1, thus we can assume that such seed nodes
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are selected at the beginning and that the adaptive policy starts by observing the resulting
partial realization. Furthermore, we can assume w.l.o.g. that each seed 𝑣 selected by
𝜋′ does not belong to 𝑅(𝜓′), where 𝜓′ denotes the partial realization observed before
selecting the new seed 𝑣 (that is, 𝑅(𝜓′) is the set of nodes reached by the previous
influence spread). Indeed, if it was 𝑣 ∈ 𝑅(𝜓′), we would have 𝑅({𝑣}, 𝐿) ⊆ 𝑅(𝜓′),
thus the selection of 𝑣 would not influence any further node. Given 𝑗 ∈ [𝑛], let Δ′ ( 𝑗)
denote the expected increment of the influence spread when 𝜋′ selects the 𝑗-th seed
node (in order of selection, and without considering in the count the initial seeds of
𝑅(𝜓)); analogously, let Δ′ ( 𝑗 |𝑣) denote the expected increment of the influence spread
when 𝜋′ selects the 𝑗-th seed node, conditioned by the fact that the 𝑗-th seed is node
𝑣.3 We get

𝑂𝑃𝑇𝐴(𝐺,x′)

=𝜎(𝑅(𝜓)) +
∑︁
𝑗

Δ′ ( 𝑗)

=𝜎(𝑅(𝜓)) +
∑︁
𝑗

∑︁
𝑣∈𝑉\𝑅 (𝜓)

P[the 𝑗-th seed node is 𝑣] · Δ′ ( 𝑗 |𝑣)

=𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)

∑︁
𝑗

P[the 𝑗-th seed node is 𝑣] · Δ′ ( 𝑗 |𝑣)

=𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)

∑︁
𝑗

P[the 𝑗-th seed node is 𝑣]·

·E𝜋′ [Δ(𝑣 |𝜓′) |𝑣 = 𝜋′ (𝜓′) for some 𝜓′ ⊇ 𝜓 observed at step 𝑗]

≤𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)

∑︁
𝑗

P[the 𝑗-th seed node is 𝑣] · Δ(𝑣 |𝜓) (4)

=𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)
P[𝑣 is selected as seed] · Δ(𝑣 |𝜓)

=𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)
𝑥′𝑣 · Δ(𝑣 |𝜓)

=𝜎(𝑅(𝜓)) +
∑︁

𝑣∈𝑉\𝑅 (𝜓)
𝑥𝑣 · Δ(𝑣 |𝜓), (5)

where (4) holds since Δ(𝑣 |𝜓′) ≤ Δ(𝑣 |𝜓) for any partial realization 𝜓′ ⊇ 𝜓 by adaptive
submodularity (Claim 1). By putting together (2), (3), and (5), we get

𝜎(𝑅(𝜓)) + 𝑘 · E𝐿,𝜌

[
𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿 = 𝜓

]
=𝜎(𝑅(𝜓)) +

∑︁
𝑣∈𝑉\𝑅 (𝜓)

𝑥𝑣 · Δ(𝑣 |𝜓)

≥𝑂𝑃𝑇𝐴(𝐺,x′)
≥𝑂𝑃𝑇𝐴(𝐺, 𝑘),

3If an execution of 𝜋′ requires less than 𝑗 steps, we assume that the increase of the influence spread at
step 𝑗 (that contributes to the expected values Δ′ ( 𝑗 ) and Δ′ ( 𝑗 |𝑣)) is null.
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thus showing the claim. □

Lemma 2. If the input influence graph 𝐺 is an in-arborescence, then

𝜎(𝑅(𝜓𝑡−1,𝐿)) ≤ 𝑓 (𝜓𝑡−1,𝐿) +𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)
for any live-edge graph 𝐿 and 𝑡 ∈ [𝑘].

Proof. Given a subset 𝑈 ⊆ 𝑉 , let 𝜕𝑈 := {𝑢 ∈ 𝑈 : ∃(𝑢, 𝑣) ∈ 𝐸, 𝑣 ∉ 𝑈}. We have
that 𝜎(𝑅(𝜓)) ≤ |𝑅(𝜓) | + 𝜎(𝜕𝑅(𝜓)) = 𝑓 (𝜓) + 𝜎(𝜕𝑅(𝜓)) for any partial realization
𝜓. Thus, to show the claim, it suffices to show that 𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤ 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 −
1). For in-arborescences, we have that |𝜕𝑅(𝜓𝑡−1,𝐿) | ≤ |𝑑𝑜𝑚(𝜓𝑡−1,𝐿) | = 𝑡 − 1, thus
𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤ 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1). □

Armed with the above lemmas, we can now prove Theorem 1.

Proof of Theorem 1. For any 𝑡 ∈ [𝑘], we have

𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1))
=𝑘 · (𝜎(𝑆𝑡 ) − 𝜎(𝑆𝑡−1))
=𝑘 · (E𝐿 [ 𝑓 (𝜓𝑡 ,𝐿)] − E𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)])
≥𝑘 · (E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿)] − E𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)]) (6)
=𝑘 · (E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿)] − E𝐿,𝜌 [ 𝑓 (𝜓𝑡−1,𝐿)])
=𝑘 · E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿)]
=E𝜓𝑡−1,𝐿

[
𝑘 · E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿]

]
≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑅(𝜓𝑡−1,𝐿))] (7)
≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝑓 (𝜓𝑡−1,𝐿) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)] (8)
=E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑡−1,𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)] − E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)]
=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑆𝑡−1) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)
=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 2 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), (9)

where (6) holds since 𝑑𝑜𝑚(𝜓𝑡 ,𝐿) is the optimal set of 𝑡 seed nodes for the non-adaptive
influence maximization problem, (7) comes from Lemma 1, and (8) comes from
Lemma 2. Thus, by (9), we get 𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡−1)) ≥ 𝑂𝑃𝑇𝐴(𝐺, 𝑘) −2 ·
𝑂𝑃𝑇𝑁 (𝐺, 𝑡−1), that after some manipulations leads to the following recursive relation:

𝑂𝑃𝑇𝑁 (𝐺, 𝑡) ≥ 1
𝑘
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘) +

(
1 − 2

𝑘

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), ∀𝑡 ∈ [𝑘] . (10)

By applying iteratively (10), we get

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 1
𝑘
·
𝑘−1∑︁
𝑡=0

(
1 − 2

𝑘

) 𝑡
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘) = 1 − (1 − 2/𝑘)𝑘

2
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘),

that leads to
𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤ 2

1 − (1 − 2/𝑘)𝑘
≤ 2

1 − 𝑒−2 =
2𝑒2

𝑒2 − 1
,

and this shows the claim. □

13



4. Adaptivity Gap for General Influence Graphs

In this section, we exhibit upper bounds on the 𝑘-adaptivity gap of general graphs.
In the following theorem, we first give an upper bound that is linear in the number of
seed nodes.
Theorem 2. Given an arbitrary class of influence graphs G and 𝑘 ≥ 2, we get
𝐴𝐺 (G, 𝑘) ≤ 𝑘 .

Proof. Let 𝐺 = (𝑉 = [𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be an arbitrary influence graph. Let 𝜋∗ be
an optimal adaptive policy subject to |𝜋∗ | = 𝑘 , and let 𝜓𝑡 , 𝜋∗ ,𝐿 be the partial realization
observed when the 𝑡-th seed node has been selected by Algorithm 1 with policy 𝜋∗. Fix
𝑡 ∈ [𝑘], a partial realization 𝜓 such that P[𝜓𝑡−1, 𝜋∗ ,𝐿 = 𝜓] > 0, and let 𝑣 = 𝜋∗ (𝜓) be
the node selected by policy 𝜋∗ under partial realization 𝜓. We have that

E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋∗ ,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋∗ ,𝐿) |𝜓𝑡−1, 𝜋∗ ,𝐿 = 𝜓]
=Δ(𝑣 |𝜓)
≤Δ(𝑣 |∅) (11)
=𝜎({𝑣)})
≤𝑂𝑃𝑇𝑁 (𝐺, 1), (12)

where (11) holds by adaptive submodularity (Claim 1). Thus, we get

𝑂𝑃𝑇𝐴(𝐺, 𝑘) =E𝐿 [ 𝑓 (𝜓𝑘, 𝜋∗ ,𝐿)]

=

𝑘∑︁
𝑡=1

E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋∗ ,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋∗ ,𝐿)]

=

𝑘∑︁
𝑡=1

E𝜓𝑡−1, 𝜋∗ ,𝐿 [E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋∗ ,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋∗ ,𝐿) |𝜓𝑡−1, 𝜋∗ ,𝐿]]

≤𝑘 · E𝜓𝑡−1, 𝜋∗ ,𝐿 [𝑂𝑃𝑇𝑁 (𝐺, 1)] (13)
=𝑘 · 𝑂𝑃𝑇𝑁 (𝐺, 1)
≤𝑘 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘), (14)

where (13) comes from (12), and the claim follows. □

In the next theorem we give an upper bound on the adaptivity gap that is sublinear
in the number of nodes of the considered graph.
Theorem 3. If G is the class of influence graphs having at most 𝑛 nodes, we get
𝐴𝐺 (G) ≤ ⌈𝑛1/3⌉ .

Let 𝐺 = (𝑉, 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be the input influence graph. To show Theorem 3, we
recall the preliminary notations considered for the proof of Theorem 1, and we give a
further preliminary lemma.
Lemma 3. Given a set 𝑈 ⊆ 𝑉 of cardinality ℎ ≥ 𝑘 , we have 𝜎(𝑈) ≤ ℎ

𝑘
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘).
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Proof. For any 𝑡 ∈ [ℎ]0, let 𝑈𝑡 := ∅ if 𝑡 = 0, and 𝑈𝑡 := 𝑈𝑡−1 ∪ {𝑣𝑡 }, where 𝑣𝑡 ∈
arg max𝑣∈𝑈\𝑈𝑡−1 (𝜎(𝑈𝑡−1 ∪ {𝑣}) − 𝜎(𝑈𝑡−1)). We have that Δ𝑡 := 𝜎(𝑈𝑡 ) − 𝜎(𝑈𝑡−1) is
non-increasing in 𝑡 ∈ [ℎ]. Indeed, given 𝑡 ∈ [𝑘 − 1], we have that

Δ𝑡+1 =𝜎(𝑈𝑡+1) − 𝜎(𝑈𝑡 )
=𝜎(𝑈𝑡 ∪ {𝑣𝑡+1}) − 𝜎(𝑈𝑡 )
≤𝜎(𝑈𝑡−1 ∪ {𝑣𝑡+1}) − 𝜎(𝑈𝑡−1) (15)
≤ max

𝑣∈𝑈\𝑈𝑡−1
(𝜎(𝑈𝑡−1 ∪ {𝑣}) − 𝜎(𝑈𝑡−1))

=𝜎(𝑈𝑡−1 ∪ {𝑣𝑡 }) − 𝜎(𝑈𝑡−1)
=Δ𝑡 , (16)

where (15) holds since 𝜎 is a submodular set-function (see [? ]). Thus, we necessarily
have

𝜎(𝑈)
ℎ

=

∑ℎ
𝑡=1 Δ𝑡

ℎ

≤
∑𝑘

𝑡=1 Δ𝑡 (ℎ/𝑘)
ℎ

(17)

=

∑𝑘
𝑡=1 Δ𝑡

𝑘

=
𝜎(𝑈𝑘)

𝑘

≤𝑂𝑃𝑇𝑁 (𝐺, 𝑘)
𝑘

, (18)

where (17) comes from (16). By (18), the claim follows. □

We are now ready to show Theorem 3. In particular, we will first invoke Theorem 2
to show the claim if 𝑘 is sufficiently small. Then, to cope with the remaining cases, we
will use Lemma 1 as in the proof of Theorem 1, and Lemma 3 will play a similar role
as Lemma 2 in Theorem 1.

Proof of Theorem 3. We assume w.l.o.g. that 𝑘 > ⌈𝑛1/3⌉ and that 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) <

(⌈𝑛1/3⌉)2. Indeed, if 𝑘 ≤ ⌈𝑛1/3⌉, by Theorem 2 the claim holds, and if 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥
(⌈𝑛1/3⌉)2, then 𝑂𝑃𝑇𝐴 (𝐺,𝑘 )

𝑂𝑃𝑇𝑁 (𝐺,𝑘 ) ≤ |𝑉 |
𝑂𝑃𝑇𝑁 (𝐺,𝑘 ) ≤ 𝑛

( ⌈𝑛1/3 ⌉ )2 ≤ ⌈𝑛1/3⌉, and the claim holds as
well. For any 𝑡 ∈ [𝑘], we have

𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1))
≥𝑘 · (E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿)] − E𝐿,𝜌 [ 𝑓 (𝜓𝑡−1,𝐿)]) (19)
=E𝜓𝑡−1,𝐿

[
𝑘 · E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿]

]
(20)

≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑅(𝜓𝑡−1,𝐿))] (21)
=E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑡−1,𝐿 [𝜎(𝑅(𝜓𝑡−1,𝐿))]
≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑘,𝐿

[𝜎(𝑅(𝜓𝑘,𝐿))]
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≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑘,𝐿

[ |𝑅(𝜓𝑘,𝐿) |
𝑘

· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)
]

(22)

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) −
E𝜓𝑘,𝐿

[|𝑅(𝜓𝑘,𝐿) |]
𝑘

· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

≥𝑂𝑃𝑇𝐴(𝐺, 𝑘) −
E𝜓𝑘,𝐿

[|𝑅(𝜓𝑘,𝐿) |]
⌈𝑛1/3⌉ + 1

· ((⌈𝑛1/3⌉)2 − 1) (23)

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − (⌈𝑛1/3⌉ − 1) · E𝜓𝑘,𝐿
[|𝑅(𝜓𝑘,𝐿) |]

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − (⌈𝑛1/3⌉ − 1) · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘), (24)

where (19) and (20) are obtained similarly as in Theorem 1, (21) comes from Lemma
1, (22) comes from Lemma 3, and (23) comes from the hypothesis 𝑘 > ⌈𝑛1/3⌉
and 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) < (⌈𝑛1/3⌉)2. By (24), we get 𝑂𝑃𝑇𝑁 (𝐺, 𝑡) − 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1) ≥
(𝑂𝑃𝑇𝐴(𝐺, 𝑘) − (⌈𝑛1/3⌉ − 1) · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘))/𝑘 for any 𝑡 ∈ [𝑘], and by summing such
inequality over all 𝑡 ∈ [𝑘], we get

𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

=

𝑘∑︁
𝑡=1

(𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1))

≥
𝑘∑︁
𝑡=1

𝑂𝑃𝑇𝐴(𝐺, 𝑘) − (⌈𝑛1/3⌉ − 1) · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)
𝑘

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − (⌈𝑛1/3⌉ − 1) · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘). (25)

Finally, (25) implies that 𝑂𝑃𝑇𝐴(𝐺, 𝑘) ≤ ⌈𝑛1/3⌉ · 𝑂𝑃𝑇𝑁 (𝐺, 𝑘), and this shows the
claim. □

By definition of adaptivity gap, we have that any 𝛼-approximation to the non-
adaptive optimal solution is also an 𝛼/𝐴𝐺 (G) approximation to the adaptive optimum,
where G denotes the class of influence graphs with at most 𝑛 nodes and 𝐴𝐺 (G) denotes
its adaptivity gap. The non-adaptive greedy algorithm for IM selects 𝑘 seeds in 𝑘

steps, and at each step it selects, as new seed, a node that approximately maximizes the
expected increment of the influence spread without observing any feedback; ? ] showed
that the non-adaptive greedy algorithm guarantees a

(
1 − 1

𝑒
− 𝜖

)
-approximation to the

non-adaptive optimum. Thus, the following corollary of Theorem 3 immediately holds:

Corollary 1. The non-adaptive greedy algorithm guarantees an expected influence
spread of at least

(
1 − 1

𝑒
− 𝜖

)
/⌈𝑛1/3⌉ = Ω(1/𝑛1/3) the adaptive optimum.

5. Adaptivity Gap for Other Influence Graphs

In this section, as further application of the approaches exploited in Theorems 1 and
3, we introduce the classes of (𝛽, 𝛾)-bounded-activation graphs and 𝛼-bounded-degree
graphs, that include several interesting graph topologies, and we get upper bounds on
the adaptivity gap for such graphs.
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5.1. (𝛽, 𝛾)-bounded-activation graphs.
Let 𝑁 (𝑢) := {𝑣 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸} denote the set of out-neighbors of node 𝑢. Given

an integer 𝛽 ≥ 0 and a real value 𝛾 ∈ [0, 1), an influence graph𝐺 = (𝑉, 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸)
is a (𝛽, 𝛾)-bounded-activation graph if there exists 𝑆 ⊆ 𝑉 with |𝑆 | ≤ 𝛽 such that∑

𝑣∈𝑁 (𝑢) 𝑝𝑢,𝑣 ≤ 𝛾 for any 𝑢 ∈ 𝑉 \ 𝑆. Informally, the class of (𝛽, 𝛾)-bounded-activation
graphs coincides with all the influence graphs such that all nodes but 𝛽 influence
in expectation at most 𝛾 neighbors each. We observe that (𝛽, 𝛾)-bounded-activation
graphs are well-motivated by social networks in which most nodes have a limited power
of influence. By doing a parallelism with epidemic processes in social networks, the
parameter 𝛾 is analogue to the basic reproduction number [? ? ] (often denoted as
𝑅0), that measures the transmission potential of a disease and is defined as the average
number of people who can be directly infected by an already infected person. Indeed,
in our influence maximization scenario, by setting 𝛾 ∈ [0, 1) we are assuming that the
basic reproduction number is lower than one for all people, except at most 𝛽.

In the following theorem, whose proof is partially based on Theorem 2 and Lemma 3,
we provide an upper bound on the adaptivity gap of (𝛽, 𝛾)-bounded-activation graphs,
for any integer 𝛽 ≥ 0 and 𝛾 ∈ [0, 1).
Theorem 4. Given an integer 𝛽 ≥ 0 and 𝛾 ∈ [0, 1), let G be the class of (𝛽, 𝛾)-bounded-
activation graphs. Then

𝐴𝐺 (G, 𝑘) ≤ min

{
𝑘,

max{𝛽, 𝑘} · min{1, 𝛽} + 𝑘
1−𝛾

𝑘

}
(26)

≤ max


√︂(

1
1−𝛾

)2
+ 4𝛽 + 1

1−𝛾

2
,min{1, 𝛽} + 1

1 − 𝛾


≤

√︁
𝛽 + 1

1 − 𝛾
.

for any 𝑘 ≥ 2.
Let 𝐺 = (𝑉 = [𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be a (𝛽, 𝛾)-bounded-activation graph. To show

the claim of Theorem 4, we recall the notations from Theorem 1 and we give some
preliminary lemmas.

Let 𝑆 be the set of nodes such that |𝑆 | ≤ 𝛽 and
∑

𝑣∈𝑁 (𝑢) 𝑝𝑢,𝑣 ≤ 𝛾 for any 𝑢 ∈
𝑉 \ 𝑆. Let 𝐺 \ 𝑆 be the graph obtained from 𝐺 by removing the nodes in 𝑆 and their
adjacent edges, and let𝑂𝑃𝑇𝑁 (𝐺\𝑆, 1) denote the optimal non-adaptive influence spread
𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1) achieved by a unique seed in graph 𝐺 \ 𝑆. In the following lemma, we
provide an upper bound for the optimal adaptive influence spread 𝑂𝑃𝑇𝐴(𝐺, 𝑘) in 𝐺.
Lemma 4. We have that 𝑂𝑃𝑇𝐴(𝐺, 𝑘) ≤ 𝜎(𝑆) + 𝑘 · 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1).

Proof. Let 𝜋̂ be an optimal adaptive policy that first selects the nodes in 𝑆 and then
adaptively selects 𝑘 nodes. By construction, we have that

𝑂𝑃𝑇𝐴(𝐺, 𝑘) ≤ 𝜎(𝜋̂). (27)
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Let 𝜓0, 𝜋̂,𝐿 denote the partial realization observed by 𝜋̂ after the selection of 𝑆, and let
𝜓𝑡 , 𝜋̂,𝐿 be the partial realization observed after the selection of the 𝑡-th seed node in
𝑉 \ 𝑆. By exploiting the adaptive submodularity (Claim 1) similarly as in the proof of
Theorem 2, one can easily show that

E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋̂,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋̂,𝐿) |𝜓𝑡−1, 𝜋̂,𝐿 = 𝜓] ≤ 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1) (28)

for any fixed partial realization 𝜓 (with P[𝜓𝑡 , 𝜋̂,𝐿) = 𝜓] > 0) and any 𝑡 ∈ [𝑘]. Thus, we
get

𝜎(𝜋̂) =E𝐿 [ 𝑓 (𝜓𝑘, 𝜋̂,𝐿)]

=E𝐿 [ 𝑓 (𝜓0, 𝜋̂,𝐿)] +
𝑘∑︁
𝑡=1

E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋̂,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋̂,𝐿)]

=E𝐿 [ 𝑓 (𝜓0, 𝜋̂,𝐿)] +
𝑘∑︁
𝑡=1

E𝜓𝑡−1, 𝜋̂,𝐿 [E𝐿 [ 𝑓 (𝜓𝑡 , 𝜋̂,𝐿) − 𝑓 (𝜓𝑡−1, 𝜋̂,𝐿) |𝜓𝑡−1, 𝜋̂,𝐿]]

≤E𝐿 [ 𝑓 (𝜓0, 𝜋̂,𝐿)] + 𝑘 · E𝜓𝑡−1, 𝜋̂,𝐿 [𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1)] (29)
=E𝐿 [ 𝑓 (𝜓0, 𝜋̂,𝐿)] + 𝑘 · 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1)
=𝜎(𝑆) + 𝑘 · 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1), (30)

where (29) comes from (28). By putting (27) and (30) together, the claim follows. □

In the following lemma, we provide an upper bound for 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1) in terms
of parameter 𝛾.
Lemma 5. We have that 𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1) ≤ 1

1−𝛾 .

Proof. Let 𝑣0 be the node that maximizes the expected influence spread in 𝐺 \ 𝑆 when
selected as unique seed. For any live-edge graph 𝐿 and 𝑗 ∈ [𝑛− 1]0, let 𝐴( 𝑗 , 𝐿) denote
the set of nodes activated at the 𝑗-th round of diffusion when 𝑣0 is the initial seed node
of 𝐺 \𝑆, i.e., 𝐴(0, 𝐿) = {𝑣0} and 𝐴( 𝑗 , 𝐿) is the set of neighbors of 𝐴( 𝑗 −1, 𝐿) activated
by 𝐴( 𝑗 − 1, 𝐿). We can easily observe that

E𝐿 [|𝐴( 𝑗 , 𝐿) |]

=
∑︁

𝑣∈𝐺\𝑆̂

P[𝑣 ∈ 𝐴( 𝑗 , 𝐿) |]

≤
∑︁

𝑣∈𝐺\𝑆̂

∑︁
𝑃 = (𝑣0 , 𝑣1 , . . . , 𝑣 𝑗 := 𝑣):

𝑃 is a path of 𝐺 \ 𝑆̂ from 𝑣0 to 𝑣 having 𝑗 edges

𝑝𝑣0 ,𝑣1 · 𝑝𝑣1 ,𝑣2 · · · 𝑝𝑣 𝑗−2 ,𝑣 𝑗−1 · 𝑝𝑣 𝑗−1 ,𝑣 𝑗

=
∑︁

𝑃=(𝑣0 ,𝑣1 ,...,𝑣 𝑗 ):
𝑃 is a path of 𝐺 \ 𝑆̂ from 𝑣0 having 𝑗 edges

𝑝𝑣0 ,𝑣1 · 𝑝𝑣1 ,𝑣2 · · · 𝑝𝑣 𝑗−2 ,𝑣 𝑗−1 · 𝑝𝑣 𝑗−1 ,𝑣 𝑗

=
∑︁

𝑣1∈𝑁 (𝑣0 )∩𝑆̂

𝑝𝑣0 ,𝑣1

∑︁
𝑣2∈𝑁 (𝑣1 )∩𝑆̂

𝑝𝑣1 ,𝑣2

∑︁
𝑣3∈𝑁 (𝑣2 )∩𝑆̂

· · · 𝑝𝑣 𝑗−2 ,𝑣 𝑗−1

∑︁
𝑣 𝑗 ∈𝑁 (𝑣 𝑗−1 )∩𝑆̂

𝑝𝑣 𝑗−1 ,𝑣 𝑗
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for any 𝑗 ∈ [𝑛 − 1]. Thus

𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1)

=E𝐿


𝑛−1∑︁
𝑗=0

|𝐴( 𝑗 , 𝐿) |


=E𝐿 [|𝐴(0, 𝐿) |] +
𝑛−1∑︁
𝑗=1

E𝐿 [|𝐴( 𝑗 , 𝐿) |]

≤1 +
𝑛−1∑︁
𝑗=1

∑︁
𝑣1∈𝑁 (𝑣0 )∩𝑆̂

𝑝𝑣0 ,𝑣1

∑︁
𝑣2∈𝑁 (𝑣1 )∩𝑆̂

· · ·

≤𝛾2︷                                                     ︸︸                                                     ︷
∑︁

𝑣 𝑗−1∈𝑁 (𝑣 𝑗−2 )∩𝑆̂

𝑝𝑣 𝑗−2 ,𝑣 𝑗−1

≤𝛾︷                    ︸︸                    ︷∑︁
𝑣 𝑗 ∈𝑁 (𝑣 𝑗−1 )∩𝑆̂

𝑝𝑣 𝑗−1 ,𝑣 𝑗︸                                                                        ︷︷                                                                        ︸
≤𝛾 𝑗−1︸                                                                                                ︷︷                                                                                                ︸

≤𝛾 𝑗

≤1 +
𝑛−1∑︁
𝑗=1

𝛾 𝑗 ≤
∞∑︁
𝑗=0

𝛾 𝑗 =
1

1 − 𝛾
,

and this shows the claim. □

We are ready to show Theorem 4.

Proof of Theorem 4. We first show the upper bound in (26). By Theorem 2, we have
that 𝑘 is an upper bound on the 𝑘-adaptivity gap. Thus, it is sufficient to show that
max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘

1−𝛾
𝑘

is an upper bound on the 𝑘-adaptivity gap. We have that

𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤ 𝜎(𝑆) +𝑂𝑃𝑇𝑁 (𝐺 \ 𝑆, 1) · 𝑘

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) (31)

≤
𝜎(𝑆) + 𝑘

1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) (32)

≤
𝑂𝑃𝑇𝑁 (𝐺, 𝛽) + 𝑘

1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) , (33)

where (31) and (32) follows from Lemmas 4 and 5, respectively.
If 𝛽 = 0, by using 𝑂𝑃𝑇𝑁 (𝐺, 𝛽) = 0 and 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 𝑘 in (33), we get that (33)

is at most
𝑘

1−𝛾
𝑘

=
max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘

1−𝛾
𝑘

, and this shows (26).
If 1 ≤ 𝛽 ≤ 𝑘 , by continuing from (33), we get

𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤

𝑂𝑃𝑇𝑁 (𝐺, 𝛽) + 𝑘
1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘)
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≤
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) + 𝑘

1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

≤
𝑘 + 𝑘

1−𝛾

𝑘
, (34)

where (34) holds since 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 𝑘 . As (34) is equal to
max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘

1−𝛾
𝑘

,
inequality (26) holds if 1 ≤ 𝛽 ≤ 𝑘 .

Finally, if 𝛽 > 𝑘 , by continuing from (33), we get

𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤

𝑂𝑃𝑇𝑁 (𝐺, 𝛽) + 𝑘
1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

≤
𝛽

𝑘
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) + 𝑘

1−𝛾

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) (35)

≤
𝛽

𝑘
· 𝑘 + 𝑘

1−𝛾

𝑘
, (36)

where (35) follows from Lemma 3 and (36) holds since 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 𝑘 . As (36) is

equal to
max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘

1−𝛾
𝑘

, inequality (26) holds if 𝛽 > 𝑘 .

We conclude that min
{
𝑘,

max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘
1−𝛾

𝑘

}
is an upper bound on the 𝑘-

adaptivity gap. Furthermore, as 𝑘 and
max{𝛽,𝑘} ·min{1,𝛽}+ 𝑘

1−𝛾
𝑘

are respectively increasing
and non-increasing in 𝑘 (for any fixed integer 𝛽 ≥ 0), the real value 𝑘 such that the two
quantities are equal is a further upper bound on the adaptivity gap, and such value is

𝑘 = max


√︂(

1
1−𝛾

)2
+ 4𝛽 + 1

1−𝛾

2
,min{1, 𝛽} + 1

1 − 𝛾


≤ max


√︂(

1
1−𝛾

)2
+

√︁
4𝛽 + 1

1−𝛾

2
,min{1, 𝛽} + 1

1 − 𝛾


= max

{√︁
𝛽 + 1

1 − 𝛾
,min{1, 𝛽} + 1

1 − 𝛾

}
=

√︁
𝛽 + 1

1 − 𝛾
.

Thus, max


√︂(
1

1−𝛾

)2
+4𝛽+ 1

1−𝛾

2 ,min{1, 𝛽} + 1
1−𝛾

 and
√
𝛽 + 1

1−𝛾 are further upper bounds

on the adaptivity gap.
□
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5.2. 𝛼-bounded-degree graphs.
In the following, when we refer to undirected influence graphs, we assume that,

for any undirected edge {𝑢, 𝑣}, there are two directed edges (𝑢, 𝑣) and (𝑣, 𝑢) having
respectively two (possibly) distinct probabilities 𝑝𝑢𝑣 and 𝑝𝑣𝑢.

Given an undirected graph 𝐺 = (𝑉, 𝐸) and a node 𝑣 ∈ 𝑉 , let 𝑑𝑒𝑔𝑣 (𝐺) de-
note the degree of node 𝑣 in graph 𝐺. Given an integer 𝛼 ≥ 0, an influence
graph 𝐺 = (𝑉, 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) is an 𝛼-bounded-degree graph if it is undirected and∑

𝑣∈𝑉 :𝑑𝑒𝑔𝑣 (𝐺)>2 𝑑𝑒𝑔𝑣 (𝐺) ≤ 𝛼, i.e., the sum all the node degrees higher than 2 is at
most 𝛼; we observe that the definition of 𝛼-bounded degree graphs does not depends
on the influence probabilities, but on the graph topology only.
Example 1. Given an undirected graph 𝐺, a simple subpath 𝑃 (resp. cycle 𝐶) of 𝐺
is standard if all the nodes of 𝑃 but the first and the last one (resp. all the nodes of
𝐶) have degree 2. The standard contraction of 𝐺 is the multigraph 𝐺′ obtained by
replacing each standard simple subpath 𝑃 = (𝑣1, . . . , 𝑣𝑡 ) of 𝐺 with an edge connecting
𝑣1 and 𝑣𝑡 , and by deleting all the standard cycles. There are several interesting classes
of 𝛼-bounded-degree graphs characterized by the topological structure of their standard
contraction:

• The set of 0-bounded-degree graphs is made of all the graphs 𝐺 such that each
connected component of 𝐺 is either an undirected path or an undirected cycle;
equivalently, the set of 0-bounded-degree graphs is made of all the graphs 𝐺

whose standard contraction is the (possibly empty) union of several disconnected
edges.

• If the standard contraction of a graph 𝐺 is homeomorphic to a star with ℎ edges,
then 𝐺 is a ℎ-bounded-degree graph.

• If the standard contraction of a graph 𝐺 is homeomorphic to a parallel-link
multigraph with ℎ edges (that is, a multigraph with ℎ edges connecting two
nodes), then 𝐺 is a 2ℎ-bounded-degree graph.

• If the standard contraction of a graph 𝐺 is homeomorphic to a cycle with ℎ

chords, then 𝐺 is a 6ℎ-bounded-degree graph.

• If the standard contraction of a graph 𝐺 is homeomorphic to a clique with ℎ

nodes, then 𝐺 is a ℎ(ℎ − 1)-bounded-degree graph.

Also in light of the above examples, we have that the study of 𝛼-bounded-degree-
graphs is mainly of theoretical interest, as most of the networks belonging to this class
are interesting from a geometric point of view (e.g., cycles, paths, standard contractions
of parallel-link graphs) but they are unlikely to appear as real-world social networks.
Anyway, such graphs constitute an interesting application of our techniques when the
node degrees are somewhat constrained, and could probably constitute a further starting
point to study more realistic network topologies having similar node degrees constraints
(e.g., power-law networks [? ]).

In the following theorem, we provide an upper bound on the adaptivity gap of
𝛼-bounded-degree graphs for any 𝛼 ≥ 0 (the proof is deferred to the appendix).
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Theorem 5. Given 𝛼 ≥ 0, let G be the class of 𝛼-bounded-degree graphs. Then

𝐴𝐺 (G, 𝑘) ≤ min
{
𝑘,

𝛼

𝑘
+ 2 + 1

1 − (1 − 1/𝑘)𝑘

}
≤

√︁
4(𝑒 − 1)2𝛼 + (3𝑒 − 2)2 + 3𝑒 − 2

2(𝑒 − 1)
for any 𝑘 ≥ 2, i.e., 𝐴𝐺 (G) ≤

√
𝛼 +𝑂 (1).

For the particular case of 0-bounded-degree graphs, the following theorem provides
a better upper bound on the adaptivity gap (the proof is deferred to the appendix).
Theorem 6. Let G be the class of 0-bounded-degree graphs. Then

𝐴𝐺 (G, 𝑘) ≤ min
{
𝑘,

3
1 − (max{0, 1 − 3/𝑘})𝑘

}
≤ 3𝑒3

𝑒3 − 1
≈ 3.16,

for any 𝑘 ≥ 2.

6. Future Works

The first problem that is left open by our results is the gap between the constant
lower bound provided by ? ] and our upper bound on the adaptivity gap for general
graphs. Besides trying to lower the upper bound, a possible direction could be that
of increasing the lower bound by finding instances with a non constant adaptivity gap.
Since the lower bound given in [? ] holds even when the graph is a directed path, one
direction could be to exploit different graph topologies.

Although in this work we have improved the upper bound on the adaptivity gap of
in-arborescence, there is still a gap between upper and lower bound, thus another open
problem is to close it. It would be also interesting to find better bounds on the adaptivity
gap of other graph classes, like e.g. out-arborescences.

A further interesting research direction is to study the adaptivity gap of some graph
classes modelling real-world networks, both theoretically and experimentally.

Finally, most of the work on adaptive IM has been done for the independent cascade
model, and other diffusion models (e.g., the linear threshold and the triggering mod-
els) have been less investigated. We observe that in many diffusion models different
from the independent cascade (e.g., the linear treshold and the triggering models) the
objective function is not adaptive submodular under both myopic and full-adoption
feedbacks and the standard analysis of the greedy approach does not guarantee an ef-
ficient approximation. For the general triggering model, ? ] overcome this problem
by exploiting submodularity ratio, but constant bounds on both the adaptivity gap and
the approximation ratio are guaranteed for bipartite graphs only, and the study of other
graph topologies is still open. The techniques introduced in this paper to relate adaptive
policies with non-adaptive ones might be useful to find better upper bounds on the
adaptivity gaps in different diffusion/feedback models4 or in different graph classes.

4An interesting diffusion mdoel that could be investigated in terms of adaptivity gap is the batch model [?
? ] discussed in the related work, in which a batch of nodes is selected at each step, and then the influence
spread is observed. We strongly believe that each batch of nodes could be treated as a single node, when
applying our approach to relate a non-adaptive policy with the optimal adaptive one. Then, by applying the
adaptive submodularity, we think that our approach would allow to show upper bounds on the adaptivity gap
that are similar to those obtained in this work.
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Appendix A. Missing Proofs

Appendix A.1. Proof of Theorem 5
Let 𝐺 = (𝑉 = [𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be an 𝛼-bounded-degree graph, and we recall

the preliminary notations from Theorem 1. The proof of Theorem 5 is a non-trivial
generalization of Theorem 1. In particular, the proof resorts to Theorem 2 to get the
upper bound of 𝑘 and, by following the approach of Theorem 1, the following technical
lemma is used in place of Lemma 2 to get the final upper bound.
Lemma 6. When the input influence graph𝐺 is an 𝛼-bounded-degree graph with 𝛼 ≥ 0,
we have that 𝜎(𝑅(𝜓𝑡−1,𝐿)) ≤ 𝑓 (𝜓𝑡−1,𝐿) +

(
𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) for any 𝑡 ∈ [𝑘] and

live-edge graph 𝐿.

Proof. Given a subset 𝑈 ⊆ 𝑉 , let 𝜕𝑈 := {𝑢 ∈ 𝑈 : ∃(𝑢, 𝑣) ∈ 𝐸, 𝑣 ∉ 𝑈}. We have
that 𝜎(𝑅(𝜓)) ≤ |𝑅(𝜓) | +𝜎(𝜕𝑅(𝜓)) = 𝑓 (𝜓) +𝜎(𝜕𝑅(𝜓)) for any partial realization 𝜓.
Thus, to show the claim, it suffices to show that

𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤
(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘).

Let 𝑈 ⊆ 𝑉 such that 𝑈 has at most 𝑘 connected components. Let 𝐴 be the set of
connected components containing at least one node of degree higher than 2, and let 𝐵
be the set of the remaining components, i.e., containing nodes with degree in [2]0 only.
By definition of 𝐴 and 𝐵, we necessarily have that |𝜕𝐴| ≤ ∑

𝑣∈𝑉 :𝑑𝑒𝑔𝑣 (𝐺)>2 𝑑𝑒𝑔𝑣 (𝐺) ≤ 𝛼

and |𝜕𝐵| ≤ 2𝑘 . Thus |𝜕𝑈 | ≤ |𝜕𝐴| + |𝜕𝐵| ≤ 𝛼 + 2𝑘 , and the next claim follows.
Claim 2. Given a subset 𝑈 ⊆ 𝑉 made of at most 𝑘 connected components, then
|𝜕𝑈 | ≤ 𝛼 + 2𝑘 .

Now, we have that

𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤𝜎(𝜕𝑅(𝜓𝑘,𝐿))

≤
|𝜕𝑅(𝜓𝑘,𝐿) |

𝑘
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) (A.1)

≤𝛼 + 2𝑘
𝑘

· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘), (A.2)

where (A.1) comes from Lemma 3, and (A.2) holds since 𝑅(𝜓𝑘,𝐿) contains at most 𝑘
connected components and because of Claim 2. Thus, by (A.2), the claim of the lemma
follows. □

We can now prove Theorem 5.
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Proof of Theorem 5. For any 𝑡 ∈ [𝑘], we have

𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1))
≥𝑘 · (E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿)] − E𝐿,𝜌 [ 𝑓 (𝜓𝑡−1,𝐿)]) (A.3)
=E𝜓𝑡−1,𝐿

[
𝑘 · E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿]

]
(A.4)

≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑅(𝜓𝑡−1,𝐿))] (A.5)

≥E𝜓𝑡−1,𝐿

[
𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝑓 (𝜓𝑡−1,𝐿) −

(𝛼
𝑘
+ 2

)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

]
(A.6)

=E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑡−1,𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)] −
(𝛼
𝑘
+ 2

)
· E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝑁 (𝐺, 𝑘)]

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑆𝑡−1) −
(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

=𝑂𝑃𝑇𝐴(𝐺, 𝑘) −
(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), (A.7)

where (A.3) and (A.4) are obtained similarly as in Theorem 1, (A.5) comes from
Lemma 1 and (A.6) comes from Lemma 6. Thus, by (A.7), we get the following
recursive relation:

𝑂𝑃𝑇𝑁 (𝐺, 𝑡) ≥ 1
𝑘

(
𝑂𝑃𝑇𝐴(𝐺, 𝑘) −

(𝛼
𝑘
+ 2

)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

)
+

(
1 − 1

𝑘

)
𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1),

(A.8)
for any 𝑡 ∈ [𝑘]. By applying iteratively (A.8), we get

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 1
𝑘
·
(
𝑂𝑃𝑇𝐴(𝐺, 𝑘) −

(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

)
·
𝑘−1∑︁
𝑡=0

(
1 − 1

𝑘

) 𝑗

=

(
𝑂𝑃𝑇𝐴(𝐺, 𝑘) −

(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

)
·
(
1 −

(
1 − 1

𝑘

) 𝑘)
;

then, by manipulating inequality

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥
(
𝑂𝑃𝑇𝐴(𝐺, 𝑘) −

(𝛼
𝑘
+ 2

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑘)

)
·
(
1 −

(
1 − 1

𝑘

) 𝑘)
,

we get
𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤ 𝛼

𝑘
+ 2 + 1

1 − (1 − 1/𝑘)𝑘
≤ 𝛼

𝑘
+ 2 + 1

1 − 𝑒−1 . (A.9)

By Theorem 2, we have that 𝑂𝑃𝑇𝐴 (𝐺,𝑘 )
𝑂𝑃𝑇𝑁 (𝐺,𝑘 ) ≤ 𝑘 , thus, by (A.9), we get

𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤ min

{
𝑘,

𝛼

𝑘
+ 2 + 1

1 − (1 − 1/𝑘)𝑘

}
≤ min

{
𝑘,

𝛼

𝑘
+ 2 + 1

1 − 𝑒−1

}
≤

√︁
4(𝑒 − 1)2𝛼 + (3𝑒 − 2)2 + 3𝑒 − 2

2(𝑒 − 1) , (A.10)
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where (A.10) is equal to the real value of 𝑘 ≥ 0 such that 𝑘 = 𝛼
𝑘
+ 2 + 1

1−𝑒−1 . By (A.10)
the claim follows. □

Appendix A.2. Proof of Theorem 6
The proof of Theorem 6 is similar to that of Theorem 1. Let 𝐺 = (𝑉 =

[𝑛], 𝐸, (𝑝𝑢𝑣) (𝑢,𝑣) ∈𝐸) be a 0-bounded-degree graph. We recall the notation from The-
orem 1 and we give the following preliminary lemma, whose proof is analogue to that
of Lemma 2.
Lemma 7. When the input influence graph 𝐺 is a 0-bounded-degree graph, we have

𝜎(𝑅(𝜓𝑡−1,𝐿)) ≤ 𝑓 (𝜓𝑡−1,𝐿) + 2 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), (A.11)

for any 𝑡 ∈ [𝑘] and live-edge graph 𝐿.

Proof. As in Lemma 2, we show that 𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤ 2 ·𝑂𝑃𝑇𝑁 (𝐺, 𝑡−1). First of all,
we assume that 𝑡 ≥ 2, otherwise 𝜎(𝑅(𝜓𝑡−1,𝐿)) and the claim holds. By Lemma 3, we
have that 𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤ |𝜕𝑅 (𝜓𝑡−1,𝐿 ) |

𝑡−1 ·𝑂𝑃𝑇𝑁 (𝐺, 𝑡 −1). As 𝐺 is a 0-bounded-degree
graph, we have that |𝜕𝑅(𝜓𝑡−1,𝐿) | ≤ 2(𝑡 − 1). By considering the above inequalities,
we get 𝜎(𝜕𝑅(𝜓𝑡−1,𝐿)) ≤ |𝜕𝑅 (𝜓𝑡−1,𝐿 ) |

𝑡−1 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1) ≤ 2(𝑡−1)
𝑡−1 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1) =

2 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), and the claim follows. □

We are ready to show Theorem 6.

Proof of Theorem 6. By Theorem 2, we have that 𝑘 is an upper bound on the 𝑘-
adaptivity gap, thus it is sufficient showing that 3

1−(max{0,1−3/𝑘})𝑘 is a further upper
bound. If 𝑘 ≤ 3 the claim trivially holds, since 𝑘 is an upper bound on the 𝑘-adaptivity
gap. Then, we assume that 𝑘 > 3, and it is sufficient showing that 3

1−(1−3/𝑘 )𝑘 is an
upper bound. For any 𝑡 ∈ [𝑘], we have

𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1))
≥𝑘 · (E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿)] − E𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)]) (A.12)
=E𝜓𝑡−1,𝐿

[
𝑘 · E𝐿,𝜌 [ 𝑓 (𝜓𝜌,𝑡 ,𝐿) − 𝑓 (𝜓𝑡−1,𝐿) |𝜓𝑡−1,𝐿]

]
(A.13)

≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑅(𝜓𝑡−1,𝐿))] (A.14)
≥E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝑓 (𝜓𝑡−1,𝐿) − 2 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)] (A.15)
=E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝐴(𝐺, 𝑘)] − E𝜓𝑡−1,𝐿 [ 𝑓 (𝜓𝑡−1,𝐿)] − 2 · E𝜓𝑡−1,𝐿 [𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)]
=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 𝜎(𝑆𝑡−1) − 2 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)
=𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 3 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), (A.16)

where (A.12) and (A.13) are obtained similarly as in Theorem 1, (A.14) comes from
Lemma 1 and (A.15) comes from Lemma 7. Thus, by (A.16), we get 𝑘 · (𝑂𝑃𝑇𝑁 (𝐺, 𝑡) −
𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1)) ≥ 𝑂𝑃𝑇𝐴(𝐺, 𝑘) − 3 · 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), that after some manipulations
leads to the following recursive relation:

𝑂𝑃𝑇𝑁 (𝐺, 𝑡) ≥ 1
𝑘
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘) +

(
1 − 3

𝑘

)
· 𝑂𝑃𝑇𝑁 (𝐺, 𝑡 − 1), ∀𝑡 ∈ [𝑘] . (A.17)
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By applying iteratively (A.17), we get

𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≥ 1
𝑘
·
𝑘−1∑︁
𝑡=0

(
1 − 3

𝑘

) 𝑡
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘) = 1 − (1 − 3/𝑘)𝑘

3
· 𝑂𝑃𝑇𝐴(𝐺, 𝑘),

that leads to
𝑂𝑃𝑇𝐴(𝐺, 𝑘)
𝑂𝑃𝑇𝑁 (𝐺, 𝑘) ≤ 3

1 − (1 − 3/𝑘)𝑘
≤ 3

1 − 𝑒−3 , (A.18)

and this shows the claim. □
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