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Abstract. We consider dilute Bose gases on the three-dimensional unit
torus that interact through a pair potential with scattering length of or-
der Nκ−1, for some κ > 0. For the range κ ∈ [0, 1

43
), Adhikari et al.

(Ann Henri Poincaré 22:1163–1233, 2021) proves complete BEC of low
energy states into the zero momentum mode based on a unitary renor-
malization through operator exponentials that are quartic in creation and
annihilation operators. In this paper, we give a new and self-contained
proof of BEC of the ground state for κ ∈ [0, 1

20
) by combining some of

the key ideas of Adhikari et al. (Ann Henri Poincaré 22:1163–1233, 2021)
with the novel diagonalization approach introduced recently in Brooks
(Diagonalizing Bose Gases in the Gross–Pitaevskii Regime and Beyond,
arXiv:2310.11347), which is based on the Schur complement formula. In
particular, our proof avoids the use of operator exponentials and is signif-
icantly simpler than Adhikari et al. (Ann Henri Poincaré 22:1163–1233,
2021).

1. Introduction and Main Result

We consider N interacting bosons in Λ := T
3 = R

3/Z
3 with Hamiltonian

HN =
N∑

i=1

−Δxi
+

∑

1≤i<j≤N

N2−2κV (N1−κ(xi − xj)), (1)

acting in L2
s(Λ

N ), the Hilbert space consisting of functions in L2(ΛN ) that
are invariant with respect to permutations of the N particles. We assume the
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interaction potential V ∈ L1(R3) to have compact support, to be radial and
to be pointwise non-negative.

Note that analyzing HN is equivalent to analyzing the Hamiltonian of
N bosons interacting through the unscaled potential V in R

3/LZ
3 for L =

N1−κ. In this sense, we consider regimes of strongly diluted systems of bosons
with number of particles density N3κ−2 � 1 (as long as κ < 2

3 ). The case
κ = 0 corresponds to the Gross–Pitaevskii (GP) regime and the case κ =
2
3 corresponds to the usual thermodynamic limit (with number of particles
density equal to one).

In this paper, we are interested in understanding low energy properties of
the Bose gas in regimes that interpolate between the GP and thermodynamic
limits. Based on [20,32], it is well-known that the ground state energy EN :=
inf spec(HN ) is equal to

EN = 4πaN1+κ + o(N1+κ),

where a denotes the scattering length of the potential V and where o(N1+κ)
denotes an error of subleading order, that is, limN→∞ o(N1+κ)/N1+κ = 0.
Recall that under our assumptions, the scattering length of V is characterized
by

8πa = inf
{ ∫

R3
dx

(
2|∇f(x)|2 + V (x)|f(x)|2

)
: lim

|x|→∞
f(x) = 1

}
.

A question closely related to the computation of the ground state energy
is whether the ground state exhibits Bose–Einstein condensation (BEC). If
ψN denotes the ground state vector, this means that the largest eigenvalue
of the associated reduced one particle density matrix γ

(1)
N = tr2,...,N |ψN 〉〈ψN |

remains of size one in the limit N → ∞:

lim inf
N→∞

‖γ
(1)
N ‖op > 0.

Proving BEC in the thermodynamic limit is a difficult open problem in
mathematical physics. For strongly diluted systems, on the other hand, there
has recently been great progress in proving that low energy states exhibit BEC.
The first proof of BEC has been obtained in [28] in the GP regime,1 implying
that for ϕ0 := 1|Λ ∈ L2(Λ), one has that

lim
N→∞

〈ϕ0, γ
(1)
N ϕ0〉 = 1. (2)

This result has later been extended to approximate ground states in [29,
35] and the works [5,8] have proved (2) with the optimal rate of convergence.
Since then, several generalizations and simplified proofs have been obtained
in [1,9,13,17,21,26,33,34]. Notice that such results can be used to derive the
low energy excitation spectrum of HN in accordance with Bogoliubov theory
[10], see e.g. [2,7,8,11,14,16,18,19,27,36].

1It is worth to point out that the arguments of [28], which build on energy bounds from

[31,32], can in fact be used to prove BEC in the parameter range κ ∈ [0, 1
10

); see also [30,

Chapter 7].
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In recent years, progress has also been made in regimes that interpolate
between the GP and thermodynamic limits. Based on unitary renormaliza-
tions developed first in the dynamical context [4,12] and in the context of
the derivation of the excitation spectrum in the GP regime [6,7], the work [1]
proves BEC for approximate ground states in regimes κ ∈ [0, 1

43 ). A different
method that is based on box localization arguments has been introduced in
[21] which proves BEC in the larger parameter range κ ∈ [0, 2

5 + ε), for some
sufficiently small ε > 0. This result represents currently the best available pa-
rameter range and it is closely tied to the computation of the second-order
correction to the ground state energy, which turns out to be of order N5κ/2

[3,23–25,37].
The methods introduced in [1,21] have both certain advantages. While

[21] obtains the currently best parameter range and applies to a large class
of potentials including hard-core interactions, it is based on box localization
arguments and therefore involves the change of boundary conditions.2 This
makes the derivation of suitable lower bounds more complicated, compared
to the translation invariant setting, and essentially restricts the method to
obtaining lower bounds while upper bounds require separate tools. The method
of [1], on the other hand, does not require localization and enables both upper
and lower bounds at the same time. However, it only applies to soft potentials
satisfying some mild integrability assumption. Moreover, controlling the error
terms in the operator expansions quickly becomes rather challenging and this is
among the main reasons why the method only works in a much more restricted
parameter range.

In this paper, our goal is to revisit the strategy of [1]. However, instead
of renormalizing the system through unitary conjugations by quartic operator
exponentials, we proceed as in [16] whose renormalization is based on the Schur
complement formula applied to the two body problem and on lifting it in a
suitable sense to the N body setting. As a consequence, our proof becomes sig-
nificantly simpler and shorter compared to the one in [1]. Although our results
are still only valid in a small parameter range compared to [21], our arguments
are elementary, self-contained and do neither require box localization methods
nor operator exponential expansions.

Theorem 1. Let HN be defined as in (1) for κ ∈ [0, 1
20 ) and denote by γ

(1)
N the

one particle reduced density associated with its normalized ground state vector
ψN . Then,

lim
N→∞

〈ϕ0, γ
(1)
N ϕ0〉 = 1.

2To be more precise, the localization procedure of [21] replaces the standard Laplacian in
the periodic setting by a more involved localized kinetic energy operator, see [21, Eq. (2.7)]
For a recent overview that focuses on the key steps of the energy bounds in the simpler
translation invariant setting, see [22].



C. Brennecke et al. Ann. Henri Poincaré

Remark. 1. Theorem 1 applies to the ground state vector ψN of HN . With
some additional effort that involves the use of number of particles local-
ization arguments, we expect that our results could also be proved for ap-
proximate ground states φN that satisfy 〈φN ,HNφN 〉 ≤ 4πaN1+κ+o(N).
To keep our arguments as short and simple as possible, we omit the details
and focus on the ground state vector ψN .

2. In our proof of Theorem 1, we assume the relatively mild a priori in-
formation that the ground state energy EN is bounded from above by
EN ≤ 4πaN1+κ + o(N), if κ < 1

20 . Based on ideas similar to those
presented below, this could be proved with little additional effort in a
self-contained way. Since this has already been explained in [16] (which
obtains a more precise upper bound on EN for all κ < 2

13 based on the
evaluation of the energy of suitable trial states, see [16, Theorem 3]),
however, we refer the interested reader to [16] for the details.

2. Proof of Theorem 1

In the following, let us denote by ak and a∗
k the annihilation and, respectively,

creation operators associated with the plane waves x �→ ϕk(x) := eikx ∈ L2(Λ)
of momentum k, for k ∈ Λ∗ := 2πZ

3. They satisfy the canonical commutation
relations [ap, a

∗
q ] = δp,q and [ap, aq] = [a∗

p, a
∗
q ] = 0, and they can be used to

express HN as

HN =
∑

r∈Λ∗
|r|2a∗

rar +
Nκ

2N

∑

p,q,r∈Λ∗
V̂ (r/N1−κ)a∗

p+ra
∗
q−rapaq,

where V̂ (r) =
∫

R3 dx e−irxV (x) denotes the standard Fourier transform of V .
Now, denote by VN the two body operator that multiplies by N2−2κV

(N1−κ(x1 − x2)) in L2(Λ2) and define for α ∈ [0, 1 − κ] the low-momentum
set

PL :=
{
p ∈ Λ∗ : |p| ≤ Nα

}
. (3)

Denote, moreover, by ΠL : L2(Λ2) → L2(Λ2) the orthogonal projection onto

span(ϕk ⊗ ϕl : k, l ∈ PL)

and set ΠH := 1 − ΠL. Then, as explained in detail in [16], a straightforward
application of the Schur complement formula implies the many body lower
bound

HN ≥
∑

r∈Λ∗
+

|r|2c∗
rcr +

Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗
p+ra∗

q−rapaq − RN ,

(4)
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where we set Λ∗
+ := Λ∗\{0} as well as

cr := ar +
Nκ

N

∑

(p,q)∈P2
L

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗
p+q−rapaq,

η := N1−κ ΠH

[
ΠH(−Δx1 − Δx2 + VN )ΠH

]−1ΠHVNΠL,

Vren := N1−κ
(
VN − VNΠH

[
ΠH(−Δx1 − Δx2 + VN )ΠH

]−1ΠHVN

)
,

(5)

and where the three body error term RN is given by

RN := N2κ

N2

∑
r,p,q,s,t∈Λ∗

|r|2〈η ϕp ⊗ ϕq, ϕp+q−r ⊗ ϕr〉〈ϕs+t−r ⊗ ϕr, η ϕs ⊗ ϕt〉

×a∗
pa

∗
qa

∗
s+t−rap+q−rasat. (6)

Notice that we used that both η and Vren preserve the total momentum in
L2(Λ2).

Let us briefly comment on the main ideas leading to (4). Viewing VN =
ΠLVNΠL + (ΠHVNΠL + h.c.) + ΠHVNΠH and hence the Hamiltonian H2 :=
−Δx1 − Δx2 + VN of the two body problem as a block matrix, one can block-
diagonalize the latter using the Schur complement formula. This renormalizes
the low-momentum interaction to Nκ−1ΠLVrenΠL, while the large momentum
interaction ΠHVNΠH is left untouched. The (non-symmetric) map that block-
diagonalizes H2 is of the form Sη = 1 + Nκ−1η and, in order to obtain an
analogous renormalization of the many body interaction, it seems natural to
lift Sη to the unitary generalized Bogoliubov transformation

Uη := exp(Dη − D∗
η)

( ≈ 1 + Dη − D∗
η

)
, where

Dη :=
Nκ

2N

∑

p,q,r∈Λ∗:(p,q)∈P2
L,

(p−r,q+r)∈(P2
L)c

〈ϕp−r ⊗ ϕq+r, η ϕp ⊗ ϕq〉a∗
p−ra

∗
q+rapaq.

On a conceptual level, this approach corresponds to the one pursued in
[1] (in particular, the role of η defined in (5) is similar to that of ηH defined in
[1] through the zero energy scattering equation). Compared to that a key idea
of [16] is to expand HN directly around powers of suitably modified creation
and annihilation operators, including e.g. cr = ar + [ar,Dη] (≈ U∗

η ar Uη). This
leads to the low-momentum renormalization of the many body interaction in a
simple way and avoids the use of operator exponential expansions. Notice that
this approach is reminiscent of previously introduced ideas in [15,23]. Finally,
let us stress that, although the bound (4) is all we need in view of Theorem 1,
Brooks [16] derives in fact exact algebraic identities. Similarly as in [1], what is
dropped in (4) is the non-renormalized high momentum part of the potential
energy.

Proceeding as in [16, Lemma 1], let us record the useful upper bounds
∣∣〈ϕk1 ⊗ ϕk2 , Vrenϕk3 ⊗ ϕk4〉

∣∣ ≤ C,

∣∣〈ϕk1 ⊗ ϕk2 , Vrenϕk3 ⊗ ϕk4〉 − 8πa
∣∣≤ CNκ−1

(
Nα +

4∑

i=1

N−α|ki|2
)

,
(7)
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for all k1, k2, k3, k4 ∈ Λ∗ satisfying k1 +k2 = k3 +k4 and 〈ϕk1 ⊗ϕk2 , Vrenϕk3 ⊗
ϕk4〉 = 0 in case k1 + k2 �= k3 + k4. The bounds (7) imply in particular that

∣∣〈ϕk1 ⊗ ϕk2 , η ϕk3 ⊗ ϕk4〉
∣∣ ≤ C δk1+k2,k3+k4

|k1|2 + |k2|2 1(P2
L)c((k1, k2))1P2

L
((k3, k4)). (8)

For completeness, we prove (7) and (8) in Appendix A, following [16, Appendix
A].

Based on (4), (7) and (8), the proof of Theorem 1 follows by carefully
estimating the three terms on the r.h.s. in (4) and by combining these esti-
mates with some mild a priori information on the ground state energy. Before
summarizing the key steps, let us introduce the following additional notation:
for every ζ ≥ 0, we set

N>ζ :=
∑

r∈Λ∗:|r|>ζ

a∗
rar

and similarly, we define N≥ζ ,N<ζ and N≤ζ . Moreover, we set N := N≥0 (≡
N), N+ := N>0 and K :=

∑
r∈Λ∗

+
|r|2a∗

rar. It is an elementary observation
that

1 − 〈ϕ0, γ
(1)
N ϕ0〉 = N−1〈ψN ,N+ψN 〉.

Equipped with the previous identity, the key of our proof is to derive a coer-
civity bound

HN ≥ 4πaN1+κ + cN+ + E
for some constant c > 0 and some error E which is of size o(N) in the ground
state ψN . The number of excitations N+ is extracted from the modified kinetic
energy operator in (4) (the first term on the r.h.s. in (4)) while the leading
order energy 4πaN1+κ is extracted from the renormalized potential energy
(the second term on the r.h.s. in (4)). This is explained in Lemmas 2 and 3
which represent the key of the whole argument.

The error terms, on the other hand, turn all out to be related to the
number of excitations with large momenta. Following [1], the key tool we use
below to control such errors is a simple Markov bound combined with the
trivial fact that EN ≤ CN1+κ:

N>Nβ ≤ N−2βK ≤ N−2βHN . (9)

In particular 〈ψN ,N>Nβ ψN 〉 ≤ CN1+κ−2β = o(N) as soon as 2β > κ,
if ψN denotes an approximate ground state vector. In Lemma 5, we slightly
generalize the bound (9) to products of the kinetic energy with number of
particles operators for large momenta.

Lemma 2. Suppose δ ∈ (κ
2 , α), then we have that

∑

r∈Λ∗
+

|r|2c∗
rcr ≥ 4π2

(N<Nδ − a∗
0a0

)
+ Eδ
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for a self-adjoint operator Eδ which satisfies for some C > 0 and N large
enough that

±Eδ ≤ CNκ+ δ
2 − 3α

2 −1(K + N)N>Nα/3.

Proof. Recalling the definition of cr in (5) and setting

dr =
Nκ

N

∑

(p,q)∈P2
L

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗
p+q−rapaq,

so that cr = ar + dr, we lower bound
∑

r∈Λ∗
+

|r|2c∗
rcr − 4π2

(N<Nδ − a∗
0a0

)

≥
∑

r∈Λ∗
+:0<|r|<Nδ

4π2c∗
rcr −

∑

r∈Λ∗
+:0<|r|<Nδ

4π2a∗
rar

=
∑

r∈Λ∗
+:0<|r|<Nδ

4π2
(
d∗

rar + a∗
rdr + d∗

rdr

)

≥ 4π2Nκ

N

∑

p,q,r∈Λ∗:0<|r|<Nδ

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗
ra

∗
p+q−rapaq + h.c.,

where in the first and last steps, we used the positivity of c∗
rcr ≥ 0 and d∗

rdr ≥
0, respectively. With the bound (8) and Cauchy–Schwarz, we then obtain for
ξ ∈ L2

s(Λ
N )

∣∣∣∣N
κ−1

∑

p,q,r∈Λ∗:0<|r|<Nδ

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉〈ξa∗
ra

∗
p+q−rapaqξ〉

∣∣∣∣

≤ CNκ−2α−1
∑

(p,q,r)∈P 3
L:

0<|r|<Nδ, |p|>Nα/3, p+q−r∈Pc
L

|r|
|q| + 1

‖arap+q−rξ‖ |q| + 1
|r| ‖apaqξ‖

≤ CNκ+ δ
2 − 3α

2 −1〈ξ, (K + N)N>Nα/3ξ〉.
Notice that due to the constraint p+q−r ∈ Pc

L and the condition |r| < N δ

for δ < α, at least one of the momenta p and q has to be larger than Nα/3 for
large N . �

Lemma 3. There exists a constant C > 0 such that
Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗
p+ra

∗
q−rapaq

≥ 4πaN1+κ − CNκN>Nα − CNκ+3α − CN2κ+2α−1(K + N)
(10)

Proof. We use the bound (7) together with the fact that |p|, |q|, |r| ≤ 2Nα if
p, q, p− r, q + r ∈ PL to replace Vren as follows: For every ξ ∈ L2

s(Λ
N ), we have
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that
Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

∣∣〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉 − 8πa
∣∣|〈ξ, a∗

p+ra
∗
q−rapaqξ〉|

≤ CN2κ+α−2
∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

|p + r| + 1
|p| + 1

‖ap+raq−rξ‖ |p| + 1
|p + r| + 1

‖apaqξ‖

≤ CN2κ+2α−1〈ξ, (K + N)ξ〉.
As a consequence, we get the lower bound

Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗
p+ra

∗
q−rapaq

≥ 4πaNκ

N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

a∗
p+ra

∗
q−rapaq − CN2κ+2α−1(K + N).

The lemma now follows by combining this estimate with the lower bound
4πaNκ

N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

a∗
p+ra∗

q−rapaq

=
4πaNκ

N

∑

r∈Λ∗

( ∑

q∈PL:
q+r∈PL

a∗
qaq+r

)∗( ∑

q∈PL:
q+r∈PL

a∗
qaq+r

)
− 4πaNκ

N

∑

p,r∈Λ∗:
p,p+r∈PL

a∗
p+rap+r

≥ 4πaNκ

N

( ∑

q∈PL

a∗
qaq

)∗( ∑

q∈PL

a∗
qaq

)
− 4πaNκ

N

∑

p,r∈Λ∗:
p,p+r∈PL

a∗
p+rap+r

=
4πaNκ

N

(
N − N>Nα

)2 − 4πaNκ

N

∑

p,r∈Λ∗:
p,p+r∈PL

a∗
p+rap+r

≥ 4πaN1+κ − 8πaNκN>Nα − CNκ+3α,

where in the last step we dropped the positive contribution proportional to
N 2

>Nα and where we used that N≤Nα ≤ N as well as |PL| ≤ CN3α. �
Lemma 4. Let RN be as in (6) and let 0 ≤ β < α. Then, there exists C > 0
such that for N large enough, we have that
±RN ≤ CN2κ−2α−2

(
N4α(N>Nβ + N3α) + N

5
2

α+ 3
2

β+ 1
2 (N>Nβ + N3α)

1
2 + N

3
2

α+ 5
2

β+1
)

× (K + N + N5β
)(N>Nα/3 + 1

)
.

Proof. Given ξ ∈ L2
s(Λ

N ), we apply the bound (8) to get

|〈ξ, RNξ〉| ≤ CN2κ

N2

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

(p+q−r,r),(s+t−r,r)∈(P2
L)c,

(p,q),(s,t)∈P2
L

|r|2|〈ξ, a∗
pa∗

qa∗
s+t−rap+q−rasatξ〉|

(|p + q − r|2 + |r|2)(|s + t − r|2 + |r|2)

≤ CN2κ−2α−2
∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

(p+q−r,r),(s+t−r,r)∈(P2
L)c,

(p,q),(s,t)∈P2
L

|〈ξ, a∗
pa∗

qa∗
s+t−rap+q−rasatξ〉|.
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In order to control the sum on the right-hand side, we split it according
to two types of restrictions: First, consider another scale Nβ , for β < α, and
consider the cases in which the momenta p, q, s, t ∈ P4

L are smaller or greater
than Nβ . We consider the cases

(1) |p|, |q|, |s|, |t| ≤ Nβ ,

(3) |p|, |q| > Nβ and |s|, |t| ≤ Nβ ,

(5) |p|, |q|, |s| > Nβ and |t| ≤ Nβ ,

(2) |p| > Nβ and |q|, |s|, |t| ≤ Nβ ,

(4) |p|, |s| > Nβ and |q|, |t| ≤ Nβ ,

(6) |p|, |q|, |s|, |t| > Nβ .

(11)

Furthermore, the conditions (p+q−r, r), (s+ t−r, r) ∈ (P2
L)c imply that

at least one of p, q, p + q − r and one of s, t, s + t − r is greater than Nα/3: we
consider the cases

(a) |p + q − r|, |s + t − r| > Nα/3,

(c) |p + q − r|, |s| > Nα/3,

(b) |p|, |s + t − r| > Nα/3,

(d) |p|, |s| > Nα/3.

(12)

Now, using symmetries among and within the pairs (p, q) ∈ P2
L and

(s, t) ∈ P2
L, one readily sees that for N large enough, such that Nβ < Nα/3,

we have that

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

(p+q−r,r),(s+t−r,r)∈(P2
L)c,

(p,q),(s,t)∈P2
L

|〈ξ, a∗
pa

∗
qa

∗
s+t−rap+q−rasatξ〉|

≤ C

( 6∑

j=1

Σja(ξ) +
6∑

j=2

Σjb(ξ) + Σ5c(ξ) +
6∑

j=4

Σjd(ξ)
)

,

where Σjα, for j ∈ {1, . . . , 6} and α ∈ {a, b, c, d}, refers to the contribution

Σjα(·) :=
∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

p+q−r,s+t−r satisfy j) and α)

|〈·, a∗
pa

∗
qa

∗
s+t−rap+q−rasat·〉| ≥ 0.
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Here, the restriction labels j ∈ {1, . . . , 6} and α ∈ {a, b, c, d} refer to
(11) and (12), respectively. Applying basic Cauchy–Schwarz estimates as in
Lemmas 2 and 3, we find

Σ1a ≤ CN4β+1(K + N)(N>Nα/3 + 1),

Σ2a, Σ3a ≤ CN2α+2β+ 1
2 (K + N)(N>Nα/3 + 1)(N>Nβ + 1)

1
2 ,

Σ2b ≤ CN
3
2

α+ 5
2

β+1(K + N)(N>Nα/3 + 1),

Σ3b ≤ C
(
N

3
2

α+ 5
2

β+ 1
2 (N>Nβ + N3α)

1
2 + N3α+β(N>Nβ + N3α)

)

× (K + N + N5β)(N>Nα/3 + 1),

Σ4a, Σ5a, Σ6a ≤ CN4α(K + N)(N>Nα/3 + 1)(N>Nβ + 1),

Σ4b, Σ5b, Σ6b ≤ C
(
N

5
2

α+ 3
2

β+ 1
2 (N>Nβ + 1)

1
2 + N4α(N>Nβ + 1)

)
(K + N)(N>Nα/3 + 1),

Σ5c ≤ C
(
N2α+2β+ 1

2 (N>Nβ + 1)
1
2 + N

7
2

α+ 1
2

β(N>Nβ + 1)
)
(K + N)(N>Nα/3 + 1),

Σ4d, Σ5d, Σ6d ≤ C
(
N

5
2

α+ 3
2

β+ 1
2 (N>Nβ + 1)

1
2 + N4α(N>Nβ + 1) + Nα+3β+1)

× (K + N)(N>Nα/3 + 1).

Here, an inequality of the form Σjα ≤ L for a non-negative self-adjoint
operator L refers to the statement that Σjα(ξ) ≤ 〈ξ,L ξ〉, for all ξ ∈ L2

s(Λ
N ).

In order to illustrate more explicitly how to bound the above terms, consider
for example Σ1a: Here, we bound

Σ1a ≤
∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

|p|,|q|,|s|,|t|≤Nβ

|p+q−r|,|s+t−r|>Nα/3

‖apaqas+t−r · ‖‖ap+q−rasat · ‖

≤

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

|p|,|q|,|s|,|t|≤Nβ

|p+q−r|,|s+t−r|>Nα/3

( |p| + 1
|s| + 1

)2

‖apaqas+t−r · ‖2

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

×

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

|p|,|q|,|s|,|t|≤Nβ

|p+q−r|,|s+t−r|>Nα/3

( |s| + 1
|p| + 1

)2

‖ap+q−rasat · ‖2

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

≤ CN4β+1(K + N)(N>Nα/3 + 1).

The remaining contributions can be controlled in the same way, except
the term Σ3b: In this case, all momenta appearing in the creation operators
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are high, and in order to efficiently use the kinetic energy, we bound this term
in a more involved way by

Σ3b ≤
∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

|q|>Nβ,|s|,|t|≤Nβ,
|p|,|s+t−r|>Nα/3

|s| + 1

|t| + 1
‖(Ns + 1)

1
2 apas+t−r · ‖ |t| + 1

|s| + 1
‖(Nq + 1)

1
2 ap+q−rat · ‖

≤

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

|q|>Nβ,|p+q−r|,|s|,|t|≤Nβ,
|p|,|s+t−r|>Nα/3

( |s| + 1

|t| + 1

)2(
‖N

1
2

s apas+t−r · ‖2 + ‖apas+t−r · ‖2
)

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

×

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

|q|>Nβ,|p+q−r|,|s|,|t|≤Nβ,
|p|,|s+t−r|>Nα/3

( |t| + 1

|s| + 1

)2(
‖N

1
2

q ap+q−rat · ‖2 + ‖ap+q−rat · ‖2
)

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

+

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

|q|,|p+q−r|>Nβ,|s|,|t|≤Nβ,
|p|,|s+t−r|>Nα/3

( |s| + 1

|t| + 1

)2(
‖N

1
2

s apas+t−r · ‖2 + ‖apas+t−r · ‖2
)

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

×

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

r∈Λ∗
+,p,q,s,t∈Λ∗:p,q,s,t,

|q|,|p+q−r|>Nβ,|s|,|t|≤Nβ,
|p|,|s+t−r|>Nα/3

( |t| + 1

|s| + 1

)2(
‖N

1
2

q ap+q−rat · ‖2 + ‖ap+q−rat · ‖2
)

⎞

⎟⎟⎟⎟⎟⎟⎠

1/2

≤ (
N

3
2

α+5
2

β+1
2 (N>Nβ + N3α)

1
2 +N3α+β(N>Nβ + N3α)

)
(K +N+N5β)(N>Nα/3+1),

where we set Ns := a∗
sas.

Collecting the above estimates and multiplying by a factor N2κ−2α−2, we
arrive at

N2κ−2α−2
∑

r∈Λ∗
+,p,q,s,t∈Λ∗:

(p+q−r,r),(s+t−r,r)∈(P2
L)c,

(p,q),(s,t)∈P2
L

|〈ξ, a∗
pa∗

qa∗
s+t−rap+q−rasatξ〉|

≤ CN2κ−2α−2〈ξ,
(
N4α(N>Nβ + N3α) + N

5
2

α+ 3
2

β+ 1
2 (N>Nβ + N3α)

1
2 + N

3
2

α+ 5
2

β+1)

× (K + N + N5β)(N>Nα/3 + 1)ξ〉. �

Before concluding Theorem 1, the last ingredient that we need is some
mild a priori information on the energy of the ground state vector ψN , as
remarked around Eq. (9).
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Lemma 5. Let ψN denote the normalized ground state vector of HN , defined
in (1), and let β ≥ 0. Then, ψN satisfies the a priori bounds

〈ψN ,N>Nβ ψN 〉 ≤ CN1+κ−2β ,

N−1〈ψN ,KN>Nβ ψN 〉 ≤ CN1+2κ−2β + CN
3
2 κ+ 1

2 β ,

N−2〈ψN ,KN 2
>Nβ ψN 〉 ≤ CN1+3κ−4β + CNβ+2κ + CN

5
2 κ− 3

2 β .

Proof. The first bound is a direct consequence of (9) and the fact that EN ≤
CN1+κ. For the bound on KN≥Nβ , we use a commutator argument as in
[1,6,7]. We bound

N−1〈ψN ,KN>Nβ ψN 〉 ≤ N−1〈ψN ,KψN 〉 1
2 〈ψN ,N>Nβ KN>Nβ ψN 〉 1

2

≤ CN
κ
2 − 1

2 〈ψN ,N>Nβ KN>Nβ ψN 〉 1
2

and then
1
N

〈ψN ,N>Nβ KN>Nβ ψN 〉

≤ 1
N

〈ψN ,N>Nβ HNN>Nβ ψN 〉

=
EN

N
〈ψN ,N 2

>Nβ ψN 〉 +
1
N

〈ψN ,N>Nβ

[
HN ,N>Nβ

]
ψN 〉

≤ CNκ−2β〈ψN ,KN>Nβ ψN 〉 +
1
N

〈ψN ,N>Nβ

[
HN ,N>Nβ

]
ψN 〉.

To estimate the commutator contribution on the r.h.s. in the previous equation,
we write

HN − K =
1
2

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))ǎ∗

xǎ∗
yǎxǎy =: VN ,

where ǎx :=
∑

p∈Λ∗ eipxap denotes the usual operator valued distribution
annihilating a particle at x ∈ Λ, and we note [K,N>Nβ ] = 0 as well as
[VN ,N>Nβ ] = [N≤Nβ ,VN ] with

[N≤Nβ ,VN

]
=

∑

p∈Λ∗:|p|≤Nβ

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))eipxǎ∗

pǎ
∗
yǎxǎy + h.c.

Now, basic Cauchy–Schwarz estimates imply that

N−1
∣∣〈ψN , N>Nβ

[N≤Nβ , VN

]
ψN

〉∣∣

≤ CN−1
∑

p∈Λ∗:|p|≤Nβ

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖apǎy N>Nβ ψN‖‖ǎxǎyψN‖

+ CN−1
∑

p∈Λ∗:|p|≤Nβ

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖apǎyψN‖‖ǎxǎy N>Nβ ψN‖

≤ CN
β

2
+ κ

2
−1(‖(K + a∗

0a0)
1
2 N>Nβ ψN‖‖V1/2

N ψN‖
+ ‖(K + a∗

0a0)
1
2 ψN‖‖V1/2

N N>Nβ ψN‖)

≤ CN
β

2
+κ− 1

2 ‖H
1
2
NN>Nβ ψN‖ + CN

β

2
+κ‖N>Nβ ψN‖.
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Combining the previous estimates with ab ≤ a2

2 + b2

2 , we conclude
1

N
〈ψN , N>Nβ HNN>Nβ ψN 〉

≤ CNκ−2β〈ψN , KN>Nβ ψN 〉 + CN
β

2
+κ− 1

2 ‖H
1
2
NN>Nβ ψN‖ + CN

β

2
+κ‖N>Nβ ψN‖

≤ CNκ−2β〈ψN , KN>Nβ ψN 〉 + CNβ+2κ +
1

2N
〈ψN , N>Nβ HNN>Nβ ψN 〉

and therefore
1
N

〈ψN ,N>Nβ HNN>Nβ ψN 〉 ≤ CNκ−2β〈ψN ,KN>Nβ ψN 〉 + CNβ+2κ.

As a consequence, we obtain that

N−1〈ψN ,KN>Nβ ψN 〉 ≤ CN1+2κ−2β + CN
3
2 κ+ 1

2 β ,

N−2〈ψN ,N>Nβ KN>Nβ ψN 〉 ≤ CN1+3κ−4β + CNβ+2κ + CN
5
2 κ− 3

2 β .

�

We are now ready to prove our main result.

Proof of Theorem 1. Let ψN denote the normalized ground state vector of HN ,
given some parameter κ ∈ [0, 1

20 ). Let PL be defined as in (3) and choose

α := (1 + ε)
41
10

κ

for some sufficiently small ε > 0; in particular α ∈ [0, 1 − κ]. Now, by (4), we
have that

〈ψN , HNψN 〉 ≥
∑

r∈Λ∗
+

|r|2〈ψN , c∗
rcrψN 〉 − 〈ψN , RNψN 〉

+
Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉〈ψN , a∗
p+ra∗

q−rapaqψN 〉

and our goal is to estimate the terms on the right-hand side. We start with
the kinetic energy term. Combining the bounds from Lemmas 2 and 5, we find
that

∑

r∈Λ∗
+

|r|2〈ψN , c∗
rcrψN 〉 − 4π2〈ψN ,N+ψN 〉

≥ −CN1+κ−2δ − CN1+3κ+ 1
2 δ− 7

2 α − CN
5
2 κ+ 1

2 δ−α = o(N),

where we used (9), the choice κ
2 < δ < α and the identity N<Nδ − a∗

0a0 =
N+ − N≥Nδ .

Proceeding similarly for the remaining error terms, we obtain from Lemma
3 that

Nκ

2N

∑

p,q,r∈Λ∗:
p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉〈ψN , a∗
p+ra

∗
q−rapaqψN 〉

≥ 4πaN1+κ − CN1+2κ−2α − CNκ+3α = 4πaN1+κ + o(N)
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and from Lemma 4, assuming β = (1 + ε) 5
2κ for sufficiently small ε > 0, that

|〈ψN , RNψN 〉| ≤ CN1+5κ−2β + CN
1
2+ 9

2 κ+ 5
2 α−2β + CN1+ 9

2 κ+ 1
2 β− 3

2 α

+ CN
1
2+4κ+α+ 1

2 β + CN1+4κ+ 5
2 β− 5

2 α

= o(N) + CN
1
2+ 5

2 α− 1
2 κ+O(ε) + CN

1
2+ 21

4 κ+α+O(ε) = o(N).

Combining this with the ground state energy upper bound EN ≤ 4πaN1+κ

+ o(N), as pointed out in the second remark after Theorem 1, we get

4πaN1+κ + o(N) ≥ 〈ψN ,HNψN 〉 ≥ 4πaN1+κ + 4π2〈ψN ,N+ψN 〉 + o(N)

and thus conclude that

lim
N→∞

N−1〈ψN ,N+ψN 〉 = lim
N→∞

(
1 − 〈ϕ0, γ

(1)
N ϕ0〉

)
= 0.

�
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L on L2(Λ2). Let us begin with a few elementary observations: it is clear that
the operator N1−κVN preserves the total momentum and that

〈N1−κVN 〉pq,st ≤δp+q,s+t

∫

Λ2
dx1dx2 N3−3κV (N1−κ(x1 − x2))≤δp+q,s+t‖V ‖1.

Combining this with the fact that −Δx1 − Δx2 + VN and hence its pseudo-
inverse

R := ΠH

[
ΠH(−Δx1 − Δx2 + VN )ΠH

]−1ΠH

from ΠHL2(Λ2) to ΠHL2(Λ2) also preserve the total momentum, we get that

〈Vren〉pq,st ≤ Cδpq,st sup
p,q∈Λ∗

(
1 + N1−κ

〈
V

1/2
N ΠHV

1/2
N RV

1/2
N ΠHV

1/2
N

〉
pq,pq

+ N1−κ
〈
V

1/2
N ΠLV

1/2
N RV

1/2
N ΠLV

1/2
N

〉
pq,pq

)
.

To control the right-hand side, we make use of the operator inequalities

0 ≤ ΠHV
1/2
N RV

1/2
N ΠH ≤ 1 and R ≤ N−2αΠH ≤ N−2α.

This implies on the one hand that

N1−κ
〈
V

1/2
N ΠHV

1/2
N RV

1/2
N ΠHV

1/2
N

〉
pq,pq

≤ 〈N1−κVN 〉pq,pq = ‖V ‖1

and on the other hand that

N1−κ
〈
V

1/2
N ΠLV

1/2
N RV

1/2
N ΠLV

1/2
N

〉
pq,pq

≤ N−2α‖V ‖1‖ΠLV
1/2
N ϕp ⊗ ϕq‖2

∞.

Looking at the Fourier expansion

ΠLV
1/2
N ϕp ⊗ ϕq =

∑

s∈PL:p+q−s∈PL

N2κ−2̂V 1/2((s − p)/N1−κ)ϕs ⊗ ϕp+q−s,

the assumptions that V ∈ L1(R3) having compact support and that α ≤
1 − κ imply that ‖ΠLV

1/2
N ϕp ⊗ ϕq‖∞ ≤ CNα so that altogether |〈Vren〉pq,st| ≤

Cδpq,st.
Next, let us switch to the second bound in (7). We first show that

|〈Vren〉00,00 − 8πa| ≤ CNα+κ−1. (13)

Up to minor modifications, this bound follows as in [16, Appendix A], so
let us focus on the key steps. Denote by f the zero energy scattering solution
in R

3 such that

(−2Δ + V )f = 0

with lim|x|→∞ f(x) = 1. It is well-known (see e.g. [30, Appendix C]) that
0 ≤ f ≤ 1, that f is radial and that for x ∈ R

3 outside the support of V , we
have that f(x) = 1− a/|x|. Moreover, a basic integration by parts shows that

8πa =
∫

R3
dx V (x)f(x) =

∫

Λ

dx N3−3κ(V f)(N1−κx).

Let us denote w := 1 − f which is easily seen to satisfy the bounds

w(x) ≤ C

|x| , |ŵ(p)| ≤ C

1 + |p|2
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for some constant C > 0 (e.g. based on the identity w = (−2Δ)−1V f). More-
over, pick a smooth bump function χ ∈ C∞

c (B1/2(0)) such that χ(x) = 1 if
|x| ≤ 1

4 and define

(x1, x2) �→ φN (x1 − x2) := χ(x1 − x2)w(N1−κ(x1 − x2)) ∈ L2(Λ2).

By slight abuse of notation, we identify φN with the associated multipli-
cation operator in L2(Λ2). As explained in [16], we then have the identity

RVNϕ0 ⊗ ϕ0 = φNϕ0 ⊗ ϕ0 + RζNϕ0 ⊗ ϕ0 − (1 − RVN )ΠLφNϕ0 ⊗ ϕ0,

where ζN (x1 − x2) := Nκ−1ζ(x1 − x2) for

x �→ ζ(x) := 2a
(Δχ)(x)

|x| − 4a
(∇χ)(x) · (x)

|x|3 ∈ C∞
0

(
B1/2(0) ∩ B

c

1/4(0)
)
.

Using that 8πa = N1−κ〈VN , (1 − φN )〉00,00, this yields

〈Vren〉00,00 = 8πa + N1−κ〈RVN , ζN 〉00,00 + N1−κ〈VN , (1 − RVN )ΠLφN 〉00,00.

Now observe that for |p| > Nα, we have that

〈RVN 〉−pp,00 =
−〈VNRVN 〉−pp,00

2|p|2 +
〈VN − ΠL(1 − VNR)VN 〉−pp,00

2|p|2

=
〈VN (1 − RVN )〉−pp,00

2|p|2
(14)

and otherwise 〈RVN 〉−pp,00 = 0 (by definition of R) s.t. N1−κ〈RVN , ζN 〉00,00 ≤
CNκ−1. Similarly, |φ̂N (p)| ≤ CNκ−1(1 + |p|2)−1 and Cauchy-Schwarz imply
that

|N1−κ〈VN , (1 − RVN )ΠLφN 〉00,00|
≤ C‖V ‖1

(‖ΠLφN‖∞ + N−α‖ΠLV
1/2
N ΠLφN‖∞

) ≤ CNα+κ−1.

Combining the previous estimates yields (13). In fact, using N1−κ〈VN (1−
φN )〉p+r q−r,pq = V̂ f(r/N1−κ), we can also compute 〈Vren〉00,00 to higher pre-
cision and obtain that

〈Vren〉00,00 = 8πa +
Nκ−1

2

∑

0 �=s∈PL

(8πa)2

|s|2 + O(Nκ−1) + O(N2κ+2α−2).

We omit the details as the second term is irrelevant for our range of κ, it only
becomes relevant if one wants to consider the Lee–Huang–Yang order.

To get (7), we combine (13) with two further steps. On the one hand, we
have that

|〈Vren〉pq,st − 〈Vren〉(p+q)0,(s+t)0| ≤ CNκ−1
(|p| + |q| + |s| + |t|) (15)

whenever p + q = s + t. This bound follows very similarly as the first bound
in (7): Since VN is a multiplication operator, (15) clearly holds if we re-
place Vren by N1−κVN . Hence, it is enough to prove (15) for Vren replaced
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by N1−κVNRVN . In this case, we write

N1−κ〈VNRVN 〉pq,st − N1−κ〈VNRVN 〉(p+q)0,(s+t)0

= N1−κ〈ϕp ⊗ ϕq, VNRVN (ϕs ⊗ ϕt − ϕs+t ⊗ ϕ0)〉
+ N1−κ〈(ϕp ⊗ ϕq − ϕp+q ⊗ ϕ0), VNRVNϕs+t ⊗ ϕ0〉.

Now, given any pair k, l ∈ Λ∗, a direct computation shows that

N1−κ‖V
1/2
N (ϕk ⊗ ϕl − ϕk+l ⊗ ϕ0)‖2 = 2V̂ (0) − 2V̂ (l/N1−κ) ≤ C|l|2

N2−2κ
.

Note that the last step follows from a second-order Taylor expansion
and the fact that (∇pV̂ (./N1−κ)(0) = N2−2κ

∫
R3 dx (−ix)V (x) = 0, V being

radial. Similarly, we get

N
−2α‖ΠLV

1/2
N (ϕk ⊗ ϕl − ϕk+l ⊗ ϕ0)‖2

∞

= N
−2α

∥∥∥
∑

s∈PL:
k+l−s∈PL

N
2κ−2(

̂V 1/2((s − k)/N
1−κ

) − ̂V 1/2((s − k − l)/N
1−κ

)
)
ϕs ⊗ ϕk+l−s

∥∥∥
2

∞

≤ C|l|2/N
2−2κ

.

Proceeding now as in the proof of the first bound in (7), we obtain (15).
Combining (15) with (13), the second bound in (7) thus follows if we

prove that

|〈VNRVN 〉p0,p0 − 〈VNRVN 〉00,00| ≤ CN2κ−α−2|p|2 (16)

for every p ∈ Λ∗
+. This can be proved similarly as detailed in [16, Appendix

A]: Define

−Δ(p) := (−i∇x1 + p)2 − Δx2 , R(p) := Π+
H

[
Π+

H(−Δ(p) + VN )Π+
H

]−1Π+
H,

where the orthogonal projection Π+
H maps onto

span{ϕk ⊗ ϕl : (k, l) ∈ (P2
L)c and l �= 0}.

Notice that this ensures 〈ξ,−Δ(p)ξ〉 ≥ 4π2 for every ξ ∈ Π+
HL2(Λ2), by

construction of the projection Π+
H. In particular, R(p) is well-defined. Now,

based on the observation

〈VNRVN 〉p0,p0 = 〈VNe−ipx1Reipx1VN 〉00,00

and the fact that −Δ(p) = e−ipx1(−Δx1 −Δx2)e
ipx1 for p ∈ Λ∗, it follows that

〈VNe−ipx1Reipx1VN 〉00,00 − 〈VNR(p)VN 〉00,00

= −〈VNR(p)e−ipx1ΠL(1 − VNR)VN 〉00,p0 + 〈VN (1 − R(p)VN )Π+
L e−ipx1RVN 〉00,p0.

Here, we set Π+
L := 1 − Π+

H. Since VNR(p) preserves the total momentum and
projects onto a subset of (P2

L)c, we have that

〈VNR(p)e−ipx1ΠL(1 − VNR)VN 〉00,p0

=
∑

q∈Pc
L∩Λ∗

+; s,t∈PL

〈VNR(p)〉00,−qq〈ϕ−q ⊗ ϕq, ϕs−p ⊗ ϕt〉〈(1 − VNR)VN 〉st,p0 = 0.
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On the other hand, using that R = ΠHR so that

〈RVN 〉(p−q)q,p0 =
〈VN − VNRVN 〉(p−q)q,p0

|p − q|2 + |q|2 − 〈ΠL(1 − VNR)VN 〉(p−q)q,p0

|p − q|2 + |q|2

=
〈VN − VNRVN 〉(p−q)q,p0

|p − q|2 + |q|2
if (p − q, q) ∈ (P2

L)c and 〈RVN 〉(p−q)q,p0 = 0 otherwise, we obtain that
∥∥Π+

L e−ipx1RVNeipx1
∥∥

∞ ≤
∑

s∈PL

|〈RVN 〉(p−s)s,p0| ≤ CNα+κ−1,

∥∥Π+
L V

1/2
N Π+

L e−ipx1RVNeipx1
∥∥

∞ ≤
∑

s,t∈PL

C

N3−3κ(1 + |t|2) ≤ CN2α+κ−1.

Hence, arguing similarly as in the previous steps, we find that

|〈VN (1 − R(p)VN )Π+
L e−ipx1RVN 〉00,p0|

≤ CNκ

N

(∥∥Π+
L e−ipx1RVNeipx1

∥∥
∞ + N−α

∥∥Π+
L V

1/2
N Π+

L e−ipx1RVNeipx1
∥∥

∞
)

≤ CNα+2κ−2.

Notice here that we used additionally the operator inequalities −Δ(p) ≥
N2αΠ+

H and, as a consequence, R(p) ≤ N−2αΠ+
H ≤ N−2α in the image

Π+
H

(
1P=0 L2(Λ2)

)
= Π+

H span{ϕs ⊗ ϕ−s : s ∈ Λ∗} = span{ϕs ⊗ ϕ−s : |s| > Nα}
of the space of zero total momentum P := −i∇x1 − i∇x2 under Π+

H, and that
both

V
1/2
N Π+

L V
1/2
N Π+

L e−ipx1RVNeipx1 ∈ L2(Λ2) and V
1/2
N Π+

L V
1/2
N ∈ L2(Λ2)

have zero total momentum.
Collecting the previous bounds, proving (16) reduces to proving that

|〈VNR(p)VN 〉00,00 − 〈VNRVN 〉00,00| ≤ CN2κ−α−2|p|2.
To show this, we use that

|〈R(sp)VN 〉−qq,00| =
|〈VN − VNR(sp)VN 〉−qq,00|

|sp − q|2 + |q|2 ≤ CNκ−1

|sp − q|2 + |q|2
for all s ∈ [0, 1] and |q| > Nα (otherwise 〈R(sp)VN 〉−qq,00 = 0). Together with

〈VNR(p)VN 〉00,00 = 〈VNR(−p)VN 〉00,00

and a second-order Taylor expansion, we find that

|〈VNR(p)VN 〉00,00 − 〈VNRVN 〉00,00| ≤ CN2κ−2|p|2
∫

|q|>Nα

dq |q|−4 ≤ N2κ−α−2|p|2,

which implies (16) and thus (7).
Finally, Eq. (8) is a direct consequence of the identity (−Δx1 − Δx2)η =

ΠHVrenΠL and the bound (7) implying that (|p|2+|q|2)|〈η〉pq,st| ≤ Cδpq,st1(P2
L)c

((p, q))1P2
L
((s, t)). �
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[33] Nam, P.T., Napiórkowski, M., Ricaud, J., Triay, A.: Optimal rate of condensation
for trapped bosons in the Gross–Pitaevskii regime. Anal. PDE 15(6), 1585–1616
(2022)

[34] Nam, P.T., Ricaud, J., Triay, A.: The condensation of a trapped dilute Bose gas
with three-body interactions. Probab. Math. Phys. 4, 91–149 (2023)

[35] Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems:
the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)

[36] Nam, P.T., Triay, A.: Bogoliubov excitation spectrum of trapped Bose gases in
the Gross–Pitaevskii regime. J. Math. Pures Appl. 176, 18–101 (2023)

[37] Yau, H.-T., Yin, J.: The second order upper bound for the ground state energy
of a Bose gas. J. Stat. Phys. 136(3), 453–503 (2009)

http://arxiv.org/abs/2311.07433
https://doi.org/10.4171/ECR/18-1/7
https://doi.org/10.1142/S0129055X23600048
https://doi.org/10.1142/S0129055X23600048
http://arxiv.org/abs/2304.02405
https://doi.org/10.1017/fms.2022.78
https://doi.org/10.1017/fms.2022.78


A Short Proof of Bose–Einstein Condensation

Christian Brennecke
Institute for Applied Mathematics
University of Bonn
Endenicher Allee 60
53115 Bonn
Germany

Morris Brooks, Cristina Caraci and Jakob Oldenburg
Institute for Mathematics
University of Zurich
Winterthurerstrasse 190
8057 Zurich
Switzerland
e-mail: jakob.oldenburg@math.uzh.ch

Communicated by Vieri Mastropietro.

Received: January 22, 2024.

Accepted: June 16, 2024.


	A Short Proof of Bose–Einstein Condensation in the Gross–Pitaevskii Regime and Beyond
	Abstract
	1. Introduction and Main Result
	2. Proof of Theorem 1 
	Acknowledgements
	A Proof of the Bounds (7) and (8)
	References


