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Abstract

Mobile platforms are rapidly and continuously changing, with support for new sensors,
APIs, and programming abstractions. Static analysis is gaining a growing interest,
allowing developers to predict properties about the run-time behavior of mobile apps
without executing them. Over the years, literally hundreds of static analysis techniques
have been proposed, ranging from structural and control-flow analysis to state-based
analysis.
In this paper, we present a systematic mapping study aimed at identifying, evaluating
and classifying characteristics, trends and potential for industrial adoption of existing
research in static analysis of mobile apps. Starting from over 12,000 potentially relevant
studies, we applied a rigorous selection procedure resulting in 261 primary studies
along a time span of 9 years. We analyzed each primary study according to a
rigorously-defined classification framework. The results of this study give a solid
foundation for assessing existing and future approaches for static analysis of mobile apps,
especially in terms of their industrial adoptability.
Researchers and practitioners can use the results of this study to (i) identify existing
research/technical gaps to target, (ii) understand how approaches developed in
academia can be successfully transferred to industry, and (iii) better position their (past
and future) approaches for static analysis of mobile apps.

Keywords: Software engineering, Static analysis, Mobile apps, Systematic mapping
study

1 Introduction
Nowadays, the digital media usage time is driven by mobile devices, with smartphone and
tablets accounting for 66% of all time spent, against desktop usage which accounts for
34% only [2]. Specifically, more than 80% of mobile minutes in all markets are spent on
mobile apps [35]. Indeed, the development of mobile apps is exponentially growing since
the establishment of a number of app stores from where to download and install them.
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The main key success factors of mobile apps is in fact the distribution model offered
by dedicated app stores, such as Google Play for Android apps, and the Apple app store
for iOS apps. As of today, these stores make available millions of mobile apps of different
categories to millions of people, who use them for their everyday activities like purchas-
ing products, messaging, etc. [2]. Clearly, this is a highly competitive business in which
even the smallest error may have a tremendous financial impact. Revenue and profit of a
mobile app is often proportional to the number of its users [240], who may enjoy using
the app (and possibly rate it positively in the store) or dislike it (and possibly abandon it
or even leaving a negative review in the store). This implies that improving the level of
users satisfaction is fundamental for app developers to both keep existing users active and
attract new ones.
Technically,mobile apps consist of executable files that are downloaded directly to the

end user’s device and stored locally. Mobile apps are developed atop the services provided
by their underlying mobile platform (e.g., Android). Those services are exposed via a
dedicated Application Programming Interface (API) withmethods related to communica-
tion and messaging, graphics, security. Programming languages and tools for developing
mobile apps are platform-specific (e.g., Java code for Android apps, and Swift code for
Apple iOS apps), and present many challenges that may hamper the success of a mobile
app as a whole [122, 249]. As empirically emerged in [122], app developers strongly need
better analysis and testing support, with a focus on important features like mobility, loca-
tion services, sensors, as well as different gestures and inputs. Indeed, although it may be
assumed that app developers are adhering to development best practices – mainly related
to well-established software engineering principles and design patterns – there is still
the need of assessing, or even guaranteeing, properties about apps with a certain degree
of confidence. Examples of those properties include: low energy consumption, efficient
use of computational resources, security, performance, and reliability. Satisfying these
needs would allow (i) app developers to raise the level of quality of their products and,
potentially, their revenues, (ii) app users to use high-quality products in their everyday
activities, and (iii) app store moderators (e.g., Google and Apple) to raise the overall level
of quality and trustworthiness of their stores.
Static program analysis allows for predicting (precise or approximated) quantitative

and qualitative properties related to the run-time behavior of a program without actu-
ally executing it [189]. For instance, static analysis techniques allow for statically inferring
cost-related properties (such as the estimation of the maximal number of loop itera-
tions and the related worst-case execution time), as well as properties related to resource
consumption [13] (such as memory/heap usage and energy consumption).
Under this perspective, static analysis of mobile apps can be a valuable instrument for

both (i) app developers, who can use it to quickly get non-trivial insights about their apps
(e.g., subtle security issues, energy hotspots due to some programming antipattern, inef-
ficient use of hardware sensors) and (ii) app store moderators, who can use static analysis
for systematically assessing the level of quality of the apps they distribute, possibly identi-
fying those apps with an unacceptable level of quality (e.g., apps with well-known security
flaws, apps asking for suspicious permissions, apps with strong energy inefficiencies).
Static analysis of mobile apps is gaining a growing interest in both academia and

industry. Literally hundreds of (often overlapping) kinds of (theoretical and practical)
static analysis approaches exist in the literature, ranging from structural and control-flow
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analysis, to data-flow and state-based analysis, interval analysis (used in optimizing com-
pilers) and so on [189]. Such approaches exploit static analysis techniques from different
perspectives and belong to extremely different research areas of software engineering,
such as software analytics, security, testing, verification. Industrial tools are also emerging
and being maintained by key players in the technological panorama. For example, Face-
book’s Infer1 applies separation logic and bi-abduction for inter-procedural analysis [42]
and it is used by Facebook itself, Spotify, Mozilla, the AmazonWeb Services division, etc.
The goal of this paper is to precisely characterize existing software engineering research

on static analysis of mobile apps from three different perspectives, namely: (i) research
trends, (ii) the characteristics of the proposed approaches, and (iii) their potential for
industrial adoption.
In order to achieve this goal, we applied the systematic mapping study methodol-

ogy [203, 257]. The aim of this methodology is to provide an objective, replicable, and
unbiased approach to answer a set of research questions about the state of the art on a
given topic. In this paper, we systematically selected 261 primary studies from over 12,000
potentially relevant publications on static analysis of mobile apps. Then, we defined a
classification framework for categorizing the selected approaches and rigorously applied
it to the 261 primary studies. Finally, we synthesized the obtained data to let emerge a
crystal-clear snapshot of the state of the art on static analysis of mobile apps.
The main contributions of this study are:

1 a classification framework for categorizing, comparing, and evaluating approaches
for static analysis of mobile apps according to a number of parameters (e.g.,
analysis goal, supported platforms, type and number of needed inputs, types of
supported analysis);

2 an up-to-date map of the state of the art in static analysis of mobile apps;
3 an evaluation of the potential for industrial adoption of existing research results on

static analysis of mobile apps;
4 a discussion of the emerging challenges and their implications for future research

on static analysis for mobile apps;
5 a replication package for independent replication and verification of this study.

The audience of this study is composed of both (i) researchers interested in adopt-
ing existing static analysis approaches, possibly to further contribute to this research
area by targeting (a subset of ) the identified research challenges (see Section 9), and (ii)
app developers interested to critically understand existing research results and thereby to
adopt/extend those approaches in the context of their products. The latter point is spe-
cially relevant since in this study we also assessed how approaches developed in academia
can be successfully transferred and adopted in industrial projects. As a concrete case,
the Infer approach lays its theoretical foundations in academic results developed by
researchers from the Imperial College and the QueenMary University of London [42, 43],
and it is now used by top tech companies such as Facebook, Amazon, Spotify, Mozilla,
Sky.
The rest of the paper is organized as follows. Section 2 provides background informa-

tion on the mobile apps ecosystem and static program analysis. Section 3 puts our study

1http://fbinfer.com

http://fbinfer.com
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in context with respect to related work. The design of our study from a methodologi-
cal perspective is provided in Section 4. The main results of our study are reported in
Sections 5, 6, 7, and 8. Section 9 discusses and puts the achieved results in context by also
elaborating on future research challenges. Threats to validity are reported in Section 10.
Section 11 closes the paper.

2 Background
This section provides the reader with background notions on the mobile apps ecosystem
(Section 2.1) and static program analysis (Section 2.2).

2.1 The mobile apps ecosystem

A mobile app (short for mobile application) is a computer program designed to run
on mobile devices such as smartphones and tablet computers. Mobile apps were orig-
inally offered for general productivity and information retrieval, including email, cal-
endar, contacts, stock market and weather information. However, public demand drove
rapid expansion into other categories and nowadays, according to a 2017 report, the
global app economy is worth 1.3$ trillions and is predicted to grow to 6.3$ trillions
in 2021 [9].
Mobile apps fall broadly into three categories: native, web-based, and hybrid [227].

Native apps run on a device’s operating system and are required to be adapted for differ-
ent devices. Web-based apps require a web browser on a mobile device. Hybrid apps are
web-based apps hosted inside a native application.
Apps that are not pre-installed are generally distributed to end-users through app

stores, application distribution platforms first appeared in 2008. Dedicated app stores
are typically operated by the owners of the mobile operating systems (such as the Apple
App Store2, Google Play3, and the Windows Phone Store4). Generally, mobile apps are
downloaded directly from the distribution platform to a target mobile device. Currently,
Android and iOS platforms, the two most prominent mobile operating systems, make up
over 99% of smartphone sales worldwide [114].
Still, being relatively new, mobile apps present a wide array of issues and challenges

for both end users and developers. On the one hand, when using mobile apps, end
users often face issues that stem from poor quality of development (such as apps that
exhibit frequent crashes, lack in responsiveness or consume an abnormal amount of
energy or memory) or deliberate malicious behavior (such as apps that invade pri-
vacy or are unethical [128]). On the other hand, developers face multiple challenges
when developing apps for mobile devices such as fragmentation, both across mul-
tiple platforms and within the same platform, lack of robust monitoring, analysis
and testing tools, as well as having to keep up with frequent platform updates and
changes [123].
In the following section, we provide a concise summary of the topic on which our

research focusses, namely static program analysis techniques, followed by a concrete
example of one of such techniques.

2https://www.apple.com/it/ios/app-store/
3https://play.google.com/
4https://www.microsoft.com/store/apps/windows-phone

https://www.apple.com/it/ios/app-store/
https://play.google.com/
https://www.microsoft.com/store/apps/windows-phone
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2.2 Static program analysis

The denomination static program analysis encloses a set of static compile-time
techniques that predict computable approximations of values or behaviors arising at
run-time when executing a program [189]. When applied to mobile apps, static pro-
gram analysis can be an effective instrument for both app developers an app store
moderators (e.g., Google, Apple) to predict and evaluate (precise or approximated)
quantitative and qualitative properties related to the run-time behavior of mobile apps
without actually executing them. Hence, it can be a valuable instrument to create
apps with better quality in a world where a low-quality releases can have devastating
consequences [123].
In the literature, static analysis of mobile apps has been applied with variety of goals

in mind, ranging from malware and privacy leaks detection to detection of bugs in the
app source, to reduction of energy and memory consumption [15, 16, 93, 113, 143].
To achieve these goals, researchers have experimented with a variety of different static
analysis techniques. Among the ones worth mentioning, there is data-flow analysis,
in which a program is considered as a graph: nodes are elementary blocks and edges
describe how control passes from one block to another [189]. Taint Analysis is a special
case of data-flow analysis that aims to detect the existence of a data flow from sen-
sitive data sources, often simply referred as sources, to untrusted program statements,
called sinks [113]. Type Analysis aims to verify the type safety of a program, i.e., if we
can guarantee that the eventual value of any expression in the program will not violate
the expression’s static type. In other words, type analysis aims to detect type errors in
a program source code. Abstract interpretation is a sound approximation of the seman-
tics of a program, based on monotonic functions over ordered sets. It is able to extract
information about the semantics of a program without performing all the calculations.
Program slicing aims to compute the set of program statements, referred to as the pro-
gram slice, which may affect the values at some point of interest, referred to as a slicing
criterion.
In some cases, static analysis approaches rely on additional inputs other than the pro-

gram itself (e.g., knowledge bases, code mappings), either to improve the accuracy of the
analysis or to perform broader kinds of analyses that would be impossible without. When
the analysis makes use of information collected at run-time, while executing the program,
we refer to it as hybrid analysis.
Approaches for static analysis of mobile apps can be generic or platform specific. The

latter approaches are able to analyze only apps developed for a specific mobile platform,
as the analysis leverages or focuses on programming constructs that are available only on
that platform (e.g., Android Intents).
Example – In the remaining of this section, we describe CHEX [170], one of the iden-
tified primary studies, in order to give a concrete idea about the typical traits and
features of a software engineering techniques for static analysis of mobile apps. The
main goal of CHEX is to automatically detect component hijacking vulnerabilities, a
specific class of security vulnerabilities existing on the Android platform. In this sense,
CHEX is Android-specific. These vulnerabilities have been modeled from a data-flow
analysis perspective, thus enabling their identification via a reachability analysis on cus-
tom system dependence graphs. In [170], the authors also devised novel techniques to
tackle analysis challenges arising from the Android’s programming paradigm, such as
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multiple app entry points and asynchronous code execution. CHEX has been imple-
mented on top of Dalysis, a generic static analysis framework that the authors built
to support many types of analysis on Android app bytecode. CHEX was evaluated on
5,486 real Android apps and correctly identified 254 potential component hijacking
vulnerabilities.

3 Related work on static analysis of mobile apps
In this section, we discuss other existing studies related to our work. Literature reviews,
surveys and mapping studies on either static analysis approaches or analysis methodolo-
gies and techniques applied to mobile apps that can be considered as research related to
our study.
Based on our knowledge, we found no systematic mapping study (SMS) and only one

systematic literature review (SLR) on the specific topic of static analysis of mobile apps
[151]. Thus, in the following, we first discuss in more detail the SLR reported in [151],
which is a valuable and solid work study closely related to ours. Then, we discuss other
works in the literature that, although having different scopes and objectives, can be related
to our research.
Similarly to our SMS, the SLR in [151] reviewed publications on approaches involv-

ing the use of static analysis for mobile apps. The main difference between the SLR
in [151] and our SMS is methodological; as extensively discussed in [203] and [134],
SLRs aim at synthesizing evidence with a very specific goal in mind (e.g., which static
analysis technique achieves higher accuracy in specific contexts), whereas systematic
maps are primarily concerned with structuring a research area [203], providing an
overview of the direction and intensity of the scientific interest over a specific topic
(static analysis for mobile apps in our case), which sub-topics are covered, and rele-
vant research gaps and trends. This difference in aim implies profound methodological
differences throughout the whole research protocol, ranging from the nature of the
research questions, the broadness of the searchers, and most importantly the synthesised
findings.
In the following, we provide an overview of the main methodological differences

among our study and the one in [151]. In addition to Android, our study considered
also other platforms. As per the search strategy, the main difference is that we per-
formed a manual search of top venues for SE and programming languages, followed
by backward snowballing and then forward snowballing; in [151], the authors per-
formed automatic search followed by manual search of top venues for SE, programming
languages, security and privacy, and then authors’ self-check followed by backward snow-
balling. Concerning the selections criteria, we considered only peer reviewed work, by
excluding studies in the form of editorials and tutorial, as well as short and poster papers,
secondary or tertiary studies. In [151], only short papers were excluded. Moreover, dif-
ferently from them, we accounted for the existence of some kind of evaluation together
with the availability of an implementation. As a result, they collected 124 research
papers, in the timespan 2011-2015; we have a better coverage made of 261 primary
studies in the timespan 2007-2019. Finally, similarly to [151], in our study we perform
a vertical analysis of the extracted data (i.e., we perform an in-depth analysis of the
extracted data for each parameter of our classification framework); in addition, in our
study we also complement the vertical analysis with horizontal analysis (i.e., we build
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contingency tables across pairs of parameters and investigate on emerging interesting
correlations).
Importantly, in [151], the authors do not consider the potential for industrial adop-

tion of existing research on static analysis of mobile apps, as we do through our research
question RQ3. This is a substantial difference that permitted us to identify in the state of
the art those approaches to static analysis of mobile apps that are ready for technologi-
cal transfer and industrial adoption. Another profitable difference is in the nature of the
study, SLR versus SMS, and in the target audience. As already introduced, in our SMS we
target both researchers and practitioners, such as app developers, who are interested in
selecting/choosing existing static analysis approaches, and want to critically understand
what they offer and how, in order to opt for their adoption or possible industrial transfer.
The SLR in [151] more specifically targets researchers and practitioners that want to pro-
pose a new approach to static analysis or to extend existing ones. In this sense, we believe
that our work and the work in [151] complement one another, and together they consti-
tute a valuable asset to the academic and industrial world in the wide spectrum of static
analysis.
In [87], a survey about static analysis and model checking approaches for searching

patterns and vulnerabilities within a software system is reported. The authors examine the
proposed algorithms and their effectiveness in finding bugs. A peculiarity of this research
is the comparison between static analysis algorithms and mathematical logic languages
for model checking.
In [204], the authors report on a survey about static analysis for identifying security

issues and vulnerabilities in software systems in general (not specific to mobile apps).
For each type of security vulnerability, the authors present both relevant studies and the
implementation details of the used static analysis algorithms.
A systematic mapping study is reported in [65]. The study was conducted for classifying

and analysing approaches that combine different static and dynamic quality assurance
techniques. The study includes a discussion about reported effects, characteristics, and
constraints of the various existing techniques.
A literature review about mobile usability models can be found in [105], as a means for

validating a specific usability model. Among the main results, from this literature review
it emerges that usability is usually measured in terms of three key indicators, namely,
effectiveness, efficiency and satisfaction.
Even if some of the above mentioned works are about static analysis, none of them is

specifically focussed on the static analysis of mobile apps, and none of them is a systematic
literature review.

4 Study design
This research was organized into three main phases, which are well-established when it
comes to systematic literature studies [132, 257]: planning, conducting, and documenting.
Planning. We established the need for performing a review on static analysis of mobile
app (Section 3), we identified the main research questions (Section 4.1), and we defined
the protocol to be followed by the involved researchers.
Conducting. We performed the mapping study by following all the steps defined in
our research protocol, namely: (i) search and selection of primary studies, i.e., the
relevant research articles on static analysis methods and techniques of mobile apps
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Table 1 Goal of this research

Purpose Identify, classify, and evaluate

Issue trends, characteristics and potential for industrial adoption

Object of existing research in static analysis of mobile apps

Viewpoint from a researcher’s and practitioner’s point of view.

(Section 4.2), (ii) extraction of relevant data from each primary study according to a
rigorously-defined classification framework (Section 4.3), and (iii) synthesis of main find-
ings emerging from the analysis and summary of the data extracted in the previous activity
(Section 4.4).
Documenting.Themain activities performed in this phase are: (i) a thorough elaboration
of the data extracted in the previous phase, with the main goal of setting the obtained
results in their context, (ii) the discussion of possible threats to validity, specially to the
ones identified during the definition of the review protocol (in this activity new threats to
validity may emerge too), and (iii) the writing of a final report (i.e., this article) describing
the performed mapping study.
A complete replication package is publicly available to allow interested researchers

to independently replicate and verify our study5. It includes the review protocol, the list
of both searched and selected studies, a detailed data extraction form, the raw extracted
data, and the R scripts for data analysis.

4.1 Research questions

We formulate the goal of this study by using the Goal-Question-Metric perspectives (i.e.,
purpose, issue, object, viewpoint [30]). Table 1 shows the result of the above mentioned
formulation.
The results of this study are targeted to both (i) researchers willing to further contribute

to this research area, and (ii) practitioners willing to understand existing research on
static analysis approaches of mobile apps and thereby to be able to adopt those solutions
that better fit with their needs. We refined our abstract goal into the following research
questions:

RQ1: What are the research trends on static analysis of mobile apps?
Rationale: a multitude of researchers are investigating on static analysis for
mobile apps over time with different degrees of independence and different
methodologies. By answering this research question, we aim at characterizing the
scientific interest on static analysis approaches of mobile apps, the relevant
venues where academics are publishing their results on the topic, and their
contribution type.

RQ2: What are the characteristics of existing approaches for static analysis of mobile
apps?
Rationale: static analysis of mobile apps is a multi-faceted research topic, where
researchers can focus on very different aspects (e.g., energy consumption,
security), applying very different research methodologies (e.g., industrial case
studies, empirical evaluations), providing different

5https://github.com/sesygroup/mobile-static-analysis-replication-package

https://github.com/sesygroup/mobile-static-analysis-replication-package
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Fig. 1 The search and selection process of this study

types of contributions (e.g., tools for automating development activities,
techniques for analyzing a specific aspect of the mobile app). By answering this
research question, we aim at providing (i) a solid foundation for classifying
existing (and future) research on static analysis of mobile apps, and (ii) an
understanding of current research trends and gaps in the state of the art on static
analysis of mobile apps.

RQ3: What is the potential for industrial adoption of existing research on static
analysis of mobile apps?
Rationale: while it is well known that mobile apps have their roots in industry,
many research groups focus on them from an academic perspective.
Therefore, it is natural to ask ourselves how the produced research findings and
contributions can be actually transferred back to industry. By answering this
research question we aim at assessing how and if the current state of the art on
static analysis of mobile apps is ready to be adopted in industry.

4.2 Search and selection process

Our first choice for searching potentially relevant studies was to perform an auto-
matic search on known data sources (e.g., IEEE Xplore, the ACM Digital Library,
SCOPUS). However, from the results of a preliminary study [14], we understood that
the research topic of mobile static analysis resulted to be extremely heterogeneous;
for example, many keywords like “program analysis” resulted to be profoundly over-
loaded, leading to imprecise and inaccurate automatic search results. In order to prevent
biases associated to automatic searches, we adopted two complementary manual search
activities. This decision is supported by the evidence that automatic searches and back-
ward snowballing activities lead to similar results, and that the decision on which to
prefer is context-specific [116, 255]. Our search strategy was divided into two subse-
quent and complementary steps. The first step was carried out by manually inspecting
all the publications of the top-level software engineering venues. The papers identi-
fied through this first step were then subsequently utilized as input for a backward
and forward snowballing6 process [256]. In order to ensure the correctness of the
adopted manual approach, the backward snowballing activity was based exclusively on
the papers selected from the top-level software engineering venues. Furthermore, the

6Inspection of the studies referenced by a paper (backward snowballing) and of the studies referencing it (forward
snowballing)
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Table 2 Searched data sources with number of potentially relevant studies

Conferences #Studies Journals #Studies

International Conference on
Software Engineering (ICSE)

1,092 IEEE Transactions on
Software Engineering
(TSE)

798

European Software Engineering
Conference (ESEC)\ACM SIGSOFT
Symposium on the Foundations of
Software Engineering (FSE)

1,039 ACM Transactions on
Software Engineering and
Methodology (TOSEM)

267

International Conference on
Fundamental Approaches to
Software Engineering (FASE)

357 Information and Software
Technology (IST)

1,456

IEEE/ACM International Conference
on Automated Software
Engineering (ASE)

1,012 Automated Software
Engineering (ASE journal)

225

ACM SIGPLAN conference on
Systems, Programming, Languages
and Applications: Software for
Humanity (SPLASH)

668 Software Maintenance &
Evolution - Research &
Practice (JSEP)

568

European Conference on
Object-Oriented Programming
(ECOOP)

362 Software and Systems
Modeling (SoSyM)

637

International Symposium on
Software Testing and Analysis
(ISSTA)

466
Empirical Software
Engineering (ESEJ)

686

Journal of Systems and
Software (JSS)

2,495

Total 4,996 Total 7,132

backward snowballing results were further contemplated by adopting a forward snow-
balling process, that ensured soundness and relevance of the set of the selected primary
studies.
Figure 1 shows our search and selection process, whose main steps are detailed in the

following. Our search and selection process is designed as a multi-stage process in order
to have full control on the number and characteristics of the studies being either selected
or excluded during the various stages.
1. Perform initial manual search. We performed a manual search by considering exclu-
sively articles published in the top-level software engineering conferences and interna-
tional journals according to well-recognized sources in the field [55, 271]. It is important
to note that themain aim of this step was not to select all primary studies but, as suggested
in [255], we aimed at obtaining a good start set of papers for the subsequent snowballing
procedure (stage 3), i.e., high-quality relevant papers about static analysis techniques for
mobile apps in the field of software engineering. We used the quality of the publication
venues as proxy of the quality of the potentially relevant studies. Table 2 shows the con-
sidered conferences and journals. The time span of our search ranges from January 20077

to December 2019.
The search was performed by manually screening the DBLP entries of all conference

proceedings and journal issues within the considered time span and contextually applying
the selection criteria described in stage 2. DBLP is the Computer Science Bibliography
from the University of Trier [141] and contains all proceedings and issues of the publi-
cation venues listed in Table 2. This step resulted in a total of 12,128 potentially relevant
studies distributed across more than 9 years of research in software engineering.

7Given that the concept of mobile app exists only since 2007
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2. Apply selection criteria. Each study was filtered according to a set of well-defined
selection criteria. The adopted criteria are detailed in Section 4.2.1. An adaptive reading
depth was applied in order to carry out the selection process in a time-efficient and objec-
tive manner [202], because it was not necessary to read the full text of approaches that
clearly did not qualify. This step resulted in a total of 85 potentially relevant studies. This
significant reduction of the number of potentially relevant studies is due to the fact that
(i) we considered exclusively top-level venues in the field of software engineering, and (ii)
the considered venues are quite general, with static analysis of mobile apps being only one
of the many topics of interest of those venues. In order to reduce possible biases, three
researchers were involved in this stage of the study, with a fourth researcher playing the
role of arbiter in case of conflicts so to ‘avoid endless discussions’ [291]. The application
of the selection criteria lead to an initial set of 85 primary studies.
3. Backward and forward snowballing. In this step, we applied backward and forward
snowballing in order to take into account also studies that are published outside the con-
texts of the conferences and journal considered in the previous step. In particular, this
process was carried out by considering the studies selected in the initial search, and sub-
sequently selecting relevant papers among those cited by the initially selected ones. This
method is commonly referred to as a backward snowballing activity [255].
In addition to the backward snowballing, we also analyzed the researches citing the

studies selected through the initial search. This process is usually referred to as a forward
snowballing activity [255]. Specifically, we included this further literature search method
in order to consider also newer studies that, at that time, had not been included in official
journal volumes or conference proceedings yet. Regarding the forward snowballing pro-
cess, theGoogle Scholar8 bibliographic database was adopted to retrieve the studies citing
the ones selected through the initial search phase.
The final decision about the inclusion of the papers was based on the adherence of

the full text of the studies to the predefined selection criteria presented in Section 4.2.1.
This step resulted in a total of 296 potentially relevant studies. The total number of
potentially relevant studies increased significantly since in this step we considered papers
published in all research venues, which by definition are far more than the top-level
ones.
4. Exclude studies during data extraction activity. While reading in details each poten-
tially relevant study, we agreed that 35 studies were semantically out of the scope of this
research, so they were excluded. This final step led us to the final set of 261 primary
studies.

4.2.1 Selection criteria

Following the guidelines for systematic literature review for software engineering [132], in
order to reduce the likelihood of biases, we defined a set of inclusion and exclusion criteria
beforehand. In the following, we detail the set of inclusion and exclusion criteria that
guided the selection of the potentially relevant studies. A potentially relevant study was
included if it satisfied all the inclusion criterion stated below; whereas, it was discarded if
it satisfied at least one of the exclusion criteria reported below.

8https://scholar.google.it/

https://scholar.google.it/
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Table 3 Overview of the classification framework

Research trends (RQ1)
• Year of publication • Publication venue
• Publication venue type • Analysis goal
• Macro analysis goal • Paper goal

Characteristics (RQ2)
• Platform specificity • Implementation
• Static/hybrid approach • Usage of machine learning
• App artifact • Additional inputs
• Analysis pre-steps • Analysis technique

Potential for industrial adoption (RQ3)
• Target stakeholder • Tool availability
• Number of analysed apps • Applied research method
• Industry involvement

Inclusion criteria

I1) Studies proposing or using a static analysis method or technique for mobile apps.
I2) Studies in which the static analysis method or technique takes as input one or

more mobile applications in the form of binary files or source code.
I3) Studies providing some kind of evaluation of the proposed method or technique

(e.g., via formal analysis, controlled experiment, exploitation in industry,
application to a simple example).

Exclusion criteria

E1) Studies not describing any implementation of the proposed method or technique.
E2) Secondary or tertiary studies (e.g., systematic literature reviews, surveys).
E3) Studies in the form of editorials, tutorial, short, and poster papers, because they do

not provide enough information.
E4) Studies not published in English language.
E5) Studies not peer reviewed.
E6) Studies in which the static analysis method or technique takes as input only store

metadata (e.g., user reviews, ratings) or other app artifacts (e.g., manifest files).

4.3 Data extraction

This phase concerns (i) the creation of a classification framework for the primary studies,
and (ii) the collection of data from each primary study.
In order to carry out a rigorous data extraction process, as well as to ease the control

and the subsequent analysis of the extracted data, a predefined data extraction form was
designed prior the data extraction process. The data extraction form is composed of the
various categories of the classification framework. The classification framework is com-
posed of three distinct parts, one for each research question of our study9. The overview
of each part of the classification framework, and respective parameters, is reported in
Table 3, whereas the definition and values of each specific parameter is given in Sections 5,
6, and 7.

9For the sake of simplicity, we do not report standard publication information (e.g., study ID, title, search strategy), they
are available in the replication package.
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For each primary study, three researchers collaboratively collected a record with the
extracted information in the data extraction form for subsequent analysis. As suggested
in [257], in order to validate our data extraction strategy, we performed a sensitivity anal-
ysis to check whether the results were consistent, independently from the researcher
performing the analysis. More specifically, each of the three researchers considered a ran-
dom sample of 5 primary studies and analyzed them independently by filling the data
extraction form for each of them. Then, each disagreement was discussed and resolved
with the intervention of a fourth researcher. Specifically, this process was carried out by
jointly inspecting the disagreement items, and subsequently providing references avail-
able in the literature fitted to solve the item under discussion. For example, an early
disagreement item arose between two researchers on the internal or external nature of a
quality attribute. Such item was solved by escalating the item to a fourth researcher, who
provided a reference to the relative standard available in the literature [115] and additional
examples of both types of attributes.

4.4 Data synthesis

The data synthesis activity involves collating and summarizing the data extracted from
the primary studies [133] with the main goal of understanding, analysing, and classifying
current research on static analysis of mobile apps.
Our data synthesis was split into two main phases: vertical analysis and horizontal

analysis. When performing vertical analysis, we analyzed the extracted data to find
trends and collect information about each parameter of each category of our classifi-
cation framework. When performing horizontal analysis, we analysed the extracted
data to explore possible relations across different parameters of our classification
framework. We used contingency tables for evaluating the actual existence of those
relations10.
In both phases, we performed a combination of content analysis (mainly for catego-

rizing and coding the studies under broad thematic categories) and narrative synthesis
(mainly for explaining in details and interpreting the findings coming from the content
analysis). During the horizontal analysis, we used contingency tables for evaluating the
actual existence of inter-parameter relations.

5 Results - research trends (RQ1)
5.1 Year of publication

An overview of the year of publication of the primary studies is reported in Figure 2.
Overall, the publication rate results to be constantly increasing through time until
2016. In 2017 there were registered a significant decrease in the publication rate (-25
publications with respect to the previous year). The number of publications surges in
2018 (+20 publications) and remains almost constant in 2019. The lack of growth in
recent years could indicate that the initial push, tied to the novelty of the topic, has
now stopped. However, the coming years will be decisive in confirming or denying
this trend.
A steep increase of the publication rate can be noticed between the years 2011-2012 and

2015-2016, with a difference of 17 and 10 publications, respectively. We can conjecture

10For our horizontal analysis we applied the same process as the one in [80].
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Fig. 2 Bubble plot of primary studies by year and venue type

that the first steep increase (years 2011-2012) is due to the popularity gained in those
years by the Android operating system, with its version 4.0. The appearance of lightweight
static analysis approaches for mobile application, e.g., Flowdroid [12], could instead be
one of the root causes of the increase of publications between the years 2013 and 2014.
No publication was found before the year 2011. Considering that the concept of mobile
app originated in 2007, we conjecture that the lack of publications in the years 2007-
2011 is attributable to the time required by mobile apps to gain widespread diffusion and,
hence, for the topic considered (static analysis methods for mobile) to attract the interest
of researchers.

5.2 Publication venue

Studies on static analysis of mobile apps have been published to a certain extent in all the
most prominent top-level conferences and journals in software engineering. An overview
of the most targeted venues and the papers there published is reported in Figure 3. The
ICSE conference results to be the venue in which most studies on this topic were pub-
lished (31/261), followed by ASE (30/261). Overall, a high heterogeneity can be found in
the publication venues, which led to a total number of 112 different venues. Only a small
number of venues results to be focused on mobile related topics. The vast majority of tar-
geted venues is on general areas of computing, e.g., software engineering, security, testing
and program analysis.

Fig. 3 Most targeted publication venues
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Fig. 4 Primary studies by venue type

5.3 Publication venue type

As shown in Fig. 4, most of the papers were published in conferences (207/261), fol-
lowed by journals (40/261) and workshops (14/261). The higher number of conference
papers might be due to the high pace of technological advances in the topic. Specifically,
researchers may have focussedmore on timely publications in conference, rather than tar-
geting journals, which have a (usually) slower publication timeline. Interestingly, as shown
in Fig. 2, 31 out of 40 journal papers were published from 2016 onwards, which can be
considered as an indication of the maturing of static analysis techniques for mobile apps
as a scientific topic.

5.4 Analysis goal

The analysis goal represents the principal purposes for which the static analysis
approaches were conceived. By carefully analyzing the primary studies, sixteen main
analysis goal categories emerged from the keywording process. In Fig. 5, the compre-
hensive mapping of primary studies to analysis goals is reported. The most recurrent
goals are: privacy (96/261),malware (66/261), inter-component communication (33/261),
energy (25/261) and inter-app communication (24/261).

Fig. 5 Primary studies by analysis goal (Categories are not mutually exclusive)
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From an inspection of the more recurrent goals, we can observe that most of
the studies focus either on analysing crucial aspects of the mobile ecosystem (e.g.,
privacy and malware) or on improving existing analysis methods (e.g., inter/intra-
component communication). We can conjecture that this trend may be due to the
fast pace of development that usually characterizes mobile application, where new app
releases must be quickly developed and tested in order to be published in the app
stores. This may lead to a lack of interest in analysing less critical software aspects
of the app, such as refactoring the code of the app itself or identifying specific code
anti-patterns.
Example. The European Union data protection regulations impose restriction on the
locations of European users’ personal data transfer. In P2, Eskandari et al. investigate
whether these regulations are respected by mobile apps, thus safeguarding end users Pri-
vacy. For this purpose, they developed PDTLoc, a static analysis tool that analyzes an app
to identify the location of servers to which personal data is transferred.

5.5 Macro analysis goal

The macro analysis goal refers to the generic goal considered by the static analyses.
The values of this parameter are based on the definition of internal and external qual-
ity attribute provided in the ISO/IEC 25010 standard [115]. Specifically, external quality
attributes provide a “black box” view of the software under consideration and address
properties related to the execution of the software on hardware and an operating system,
e.g., reliability [115]. Internal quality attributes provide a “white box” view of software
under consideration and address static properties that typically manifest themselves
at development time, e.g., maintainability [115]. So, the macro analysis goal of a pri-
mary study can have the following values: (i) external quality, if the approach evaluates
one or more external quality attribute and (ii) internal quality, if the approach eval-
uates one or more internal quality attributes. In order to identify approaches which
explicitly aim to improve existing methods referenced in the literature, we have a
third possible value for this parameter called improving of methodology; we use such
value if the main goal of the primary study is to improve a static analysis method or
technique.
The macro analysis goals considered by the primary studies are reported in Fig. 6. The

majority of the primary studies focus on external quality (168/261). A smaller amount
of studies focuses on the improvement of static analysis methodologies (77/261) and on
internal quality (65/261)11. From this data, we conjecture that the high pace of the mobile
technological advances and the strong role of end users in the mobile ecosystem are lead-
ing researchers to give more importance to external qualities. Research aimed to refine
static analysis approaches results to be higher than the ones focusing on internal qual-
ity, making us conjecture that the ones considering internal quality are either at an early
stage of development or have been less explored than the ones improving the existing
methods.
In addition, the distribution of macro analysis goals throughout the years is depicted

in Figure 7. Here, we observe that, although studies focusing on external quality have
been the majority in each of the considered years, a steady increase in number can be

11It is important to note that these categories are not mutually exclusive, i.e., a paper could be mapped to more than one
category if it addresses more than one type of goal.
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Fig. 6 Primary studies by macro analysis goal (Categories are not mutually exclusive)

observed for studies that focus on either methodology improvement or internal qual-
ity, from 2013 to 2016. Due to the decrease in number of publications occured in
2017, studies that focus on either methodology improvement or internal quality also
decrease.
Example. A resource leak is a common bug caused by missing release of resources that
require programmers to explicitly release them (e.g., camera and sensors). Although not
directly observable by end users, a resource leak might lead to several problems such as
performance degradation and occurrences of crashes. Relda2 (P42), a light-weight static
analysis tool for the automatic detection of resource leaks in Android apps, is an example
of a primary study aimed at improving an internal quality attribute.

5.6 Paper goal

This parameter can be of two types, namely: (i) Quality attribute assessment, if
the research reported in the primary study focuses on assessing a quality attribute
of mobile apps (e.g., security); (ii) Improvement of methodology, if the research
reported in the primary study focuses on improving existing static analyses for mobile
apps.
The goals taken into account by the primary studies is documented in Fig. 8. Themajor-

ity of the primary studies (187/261) focuses on the assessment of some quality attribute(s)
of mobile apps. A lower number instead (83/261) considers the improvement of static
analysis techniques. We can conjecture that this trend can be associated to the more
“immediate impact”, e.g., ease of adoption and real-life utilization by practitioners. From
this, we can conjecture that a certain maturity with respect with assessment of apps
quality attributes has been achieved (and hence a high presence of such approaches is

Fig. 7 Macro analysis goal by year (Categories are not mutually exclusive)
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Fig. 8 Primary studies by analysis goal (Categories are not mutually exclusive)

observable), which is reflected in the reasonable amount of techniques aimed exclusively
at improving the existing methods.
Example. Ripple (P4) is an incomplete information environment aware static reflec-
tion analysis for Android apps. Ripple is an improvement of methodology, as it is
able to resolve reflective calls more soundly than conventional string inference. It
enables more precise taint analyses when used in combination with tools such as
FlowDroid (P86).

Main findings on research trends:

� The intensity of research on static analysis for mobile apps has been growing
year by year, until 2016, especially after app-specific techniques have been
devised (e.g., Flowdroid). Following a slight fluctuation in 2017, the number of
publications seems to have recovered and remains stable in most recent years.

� Researchers are targeting primarily conferences (e.g., ASE and ICSE), even if
journal publications have been much more targeted in recent years.

� Many of the approaches are focussing on security-related concerns, such as
privacy leaks identification and malware detection.

� Approaches for enhancing the modeling and analysis of both inter-component
communication (e.g., intent raising across Android activities) and inter-app
communication are receiving quite an intensive scientific attention.

� The vast majority of primary studies is targeting the assessment of external
quality attributes (e.g., security, energy consumption). Only a smaller portion
focussed on assessing internal quality attributes (e.g., maintainability, reusability).

� Reasonable research effort is being devoted to the improvement of the
methodology, such as devising more sound static analyses support for more
events in the mobile components lifecycles (e.g., Android intents sharing).

Fig. 9 Primary studies by platform specificity
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Fig. 10 Primary studies by platform implementation

6 Results - characteristics of approaches (RQ2)
6.1 Platform specificity

This parameter identifies whether the proposed approach is specifically designed for a
specific platform (e.g., Android or iOS) or if it is generic and can in principle be applied to
any platform. As shown in Fig. 9, the vast majority of the approaches (239/261) presents
an analysis approach specific for Android; only one study (1/261) presents an approach
specific for iOS. A smaller amount of studies (21/261) presents an approach that is generic.
Possible reasons for this imbalance may be due to the popularity and the open-source
nature of the Android platform, which eases the effort required by researchers during
the design of new analyses. Furthermore, Android app binaries can be straightforwardly
disassembled with off-the-shelf software libraries (e.g., apktool12, dex2jar13), and their
internal structure and contained static resources are easily analyzable in an automatic
way.
Example. As an example of platform specificity, P20 presents a technique to optimize
energy consumption of mobile apps minimizing the number of HTTP requests that they
perform. Proposed technique uses static analysis to detect Sequential HTTP Requests
Sessions, i.e., sequences of HTTP requests in which generation of the first request implies
that the following requests will also be made. Energy savings can be achieved by bundling
these requests. The technique is Generic and applicable to all major mobile platforms, as
mechanisms available to perform HTTP requests are similar across these platforms.

6.2 Implementation

Values for the implementation parameter, summarized in Fig. 10, were extracted from the
primary studies according to whether the implementation used for evaluation purposes
is implemented for a specific platform, e.g., Android or iOS, or it is Generic, applicable to
apps developed for any platform.
Almost all the studies (257/261) implement the proposed approach exclusively for the

Android platform. Two studies present approaches (2/261) having a generic implemen-
tation, applicable to any platform. Only one study (1/261) presents an approach that is
implemented specifically for the iOS platform. Other less popular platforms are almost
completely absent, with only one study (1/261) implementing the proposed analysis on
TouchDevelop scripts [233]. We speculate that the reason for this disproportion, in
addition to the ones already evidenced in the discussion of the platform specificity param-
eter, stem from the fact that some of the most popular static analysis frameworks (e.g.,
Soot [238] and WALA [208]) are adapted to support analysis of Android apps. The same

12http://ibotpeaches.github.io/Apktool
13http://github.com/pxb1988/dex2jar

http://ibotpeaches.github.io/Apktool
http://github.com/pxb1988/dex2jar
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cannot be said for the other platforms and, hence, researchers interested in performing
static analysis on apps designed for those platforms experience a higher barrier to entry
as they must develop their own tools, often from scratch.
Example. PiOS (P134) studies the privacy threats that applications written for Apple’s
iOS may pose to users. To this end, the authors leverage static analysis techniques to
extract data flows from iOS apps. PiOS is an iOS-specific implementation of the proposed
technique, that automates the data flow extraction process from binaries resulting from
the compilation of Objective-C code.

6.3 Static/Hybrid approach

The static/hybrid approach parameter describes whether an approach relies on static
analysis only (Static) or utilizes some form of dynamic analysis also (Hybrid).
Results for the extraction of this parameter are summarized in Fig. 11. The prepon-

derance of the studies (203/261) present an approach that relies on static analysis only.
Nonetheless, a considerable amount of them (58/261) present an approach that com-
plements static analysis with dynamic analysis. The presence of dynamic analysis in a
considerable portion of the studies can be explained by considering that, despite all
its drawbacks, dynamic analysis still provides an invaluable contribution for a variety
of purposes, such as privacy leaks detection, GUI-modeling, energy profiling. A fur-
ther discussion on the fields where dynamic analysis is most common can be found in
Section 8.
Example. SmartDroid (P113) is an hybrid analysis technique whose goal is identifying UI-
based trigger conditions required to expose the sensitive behavior of Android malwares.
As shown in Fig. 12, SmartDroid uses static analysis to extract Activity and Function call
graphs from the application binaries. Then, guided by the static analysis results, it uses
dynamic analysis to interact with the UI and identify UI-based conditions required to
trigger sensitive APIs.

6.4 Usage of machine learning techniques

Values for this parameter are summarized in Fig. 13. The possible values identify whether
the approach under evaluation complements its analysis with machine learning tech-
niques (Yes) or not (No). A vast majority of the studies (213/261) does not make use
of machine learning in the proposed approach. The remaining studies (48/261) perform
features extraction from the application source code or other intermediate representa-
tions (e.g., a method-level call graph), and applies machine learning techniques on the
extracted features. Machine learning techniques are widely used for some specific goals

Fig. 11 Primary studies by usage of dynamic analysis
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Fig. 12 Example of an hybrid analysis technique

(e.g., malware detection), but their application to others has not been explored yet by
researchers.
Example. An example of usage ofmachine learning coupled with static analysis is P28. In
this study, the authors adopts a machine learning approach that leverages the use of data
flow application program interfaces (APIs) as classification features to detect Android
malware. Static analysis is employed to extract data flow related API-level features, used
to train a k-nearest neighbor model for malware classification.

6.5 App artifact

The values of this parameter describe what formats are accepted as input by the selected
studies for the apps to be analyzed. As shown in Fig. 14, the majority of the stud-
ies (238/261) accepts as input apps in the form of binary packages (Binary), i.e., APK
(Android PacKage) files for the Android platform or IPA (iPhone Application Archive)
packages for the iOS platform.
This implies that the proposed analyses can be performed by a variety of subjects

(app store moderators, researchers, security experts), and not only by app developers.
Nonetheless, a considerable amount of primary studies (31/261) takes as input the app
source code (Source Code), hence targeting app developers and researchers. In those
cases, developers can potentially integrate them into their development workflow, e.g.,
as dedicated analyses integrated into the Android Studio IDE or as specific steps in their

Fig. 13 Primary studies by usage of machine learning
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Fig. 14 Primary studies by additional app artifacts (Categories not mutually exclusive)

continuous integration pipeline. Note that both APK and source code are valid inputs for
some of the studies.

6.6 Additional inputs

The possible values for the additional inputs parameter, listed in Fig. 15, identify what
other inputs, if any, are required by the primary studies to perform the proposed analysis
(in addition to the app itself ). Overall, the majority of primary studies (194/261) is able to
perform the analysis without any additional input, whereas 67/261 studies require some
additional inputs. We consider this to be a positive trend, as it simplifies the adoption of
the proposed techniques by industry and other researchers, additionally enabling batch
analysis of a large quantity of apps more easily. Nevertheless, as for P123, in some cases
relying on additional inputs is a necessity, e.g., when the app needs to be executed in a
controlled, non-random, and non-trivial manner.

Fig. 15 Primary studies by additional input (Categories are not mutually exclusive)
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When focusing on the studies requiring additional inputs, we can observe that addi-
tional inputs are mostly required by techniques that verify whether given policies, rules,
or constraints are violated (13/261). This is followed by mappings from the source code
of the app to other auxiliary information (11/261) and by techniques that focus on a list
of one or more methods leveraging the app source code (10/261). A number of stud-
ies (7/261) take as input app descriptions retrieved through app stores, and leverage this
information in order to perform ad-hoc analyses. For example, CHABADA [94] aims at
automatically identifying malicious apps by evaluating how their implementation differs
from their description in the app store. Some proposed techniques take as input the plat-
form (8/261) or system (1/261) profiles for application execution. Other studies (4/261)
take as input test cases. This is particularly noteworthy as test cases are artifacts com-
monly produced during the software development cycle, and how information can be
extracted from test artifacts has widely been investigated in the software engineering liter-
ature [3, 140]. Other studies (3/261) focus on problems pertaining to system permissions
and, consequently, take as input an identifier of the permissions of interest. Two stud-
ies (2/261) require as input the specification of a user-defined analysis. Similarly, requires
the user to write down some additional code snippets to perform the analysis (1/261).
Two studies focus on app evolution and extract change information from multiple APK
versions (1/261) or from the Git repository code history (1/261). One study requires a
description of the workload to be executed (1/261) and one study requires execution
traces (1/261). One study focuses on the behavior triggered by the interaction with user
interface (UI) elements and hence requires as input a list of the latter (1/261). Interest-
ingly, only one study (1/261) leverages information extracted from bug reports to perform
the analysis and only one study takes as input information provided by other analysis tools
(1/261). It is important to notice that the vast majority of these additional inputs require
the knowledge of a developer or a domain expert in order to be reproduced and only a
handful can be reproduced by end-users. This makes it harder to reproduce the results
and might hinder large-scale adoption.
Example. As an example, Fig. 16 presents eCalc (P123), a technique involving two main
steps that are performed by an Execution Traces Generator and an Analyzer, respec-
tively. The Execution Traces Generator uses test cases for generating execution traces.
Although this step requires to execute the software artifact under analysis, the actual anal-
ysis step is statically performed by the Analyzer on the execution traces by taking as input

Fig. 16 Example of an analysis technique requiring additional inputs
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a CPU profile, without requiring the execution of the software artifact. This additional
input is needed for automatically running and profiling the app under analysis multiple
times in order to take into account the well-known phenomenon of energy consumption
fluctuations at run-time.

6.7 Analysis pre-steps

The analysis pre-steps parameter identifies whether the studies under evaluation require
steps that must be executed manually before the analysis can be performed. Results are
listed in Fig. 17.
The majority of the approaches (192/261) does not require any analysis pre-step. A still

considerable amount (69/261) requires some analysis pre-step to be performed manually.
Examples of possible pre-steps include, but are not limited to, building models of the
platform APIs or libraries used by the application under analysis, collecting execution
traces, collecting runtime power consumption measures, creating rule sets or security
policies. Similarly to the previous parameter, having to perform manual steps before or
during the application of a static analysis approach may hinder its reproducibility and
large-scale adoption.
Example. UIPicker (P71) is a primary study that makes use of preprocesing steps.
UIPicker aims to reduce the risks to which users are exposed when using an application by
automatically identifying sensitive user inputs. To this end, in its preprocessing module,
it extracts the layouts texts and reorganizes them through natural language processing
techniques for further usage. This pre-step includes word splitting, redundant content
removal and stemming.

6.8 Analysis technique

This parameter identifies the family of static analysis techniques performed by the
approaches proposed in the primary studies. Results are summarized in Fig. 18.
A wide variety of static analysis techniques is used in the primary studies, themost com-

mon being Flow (171/261). A considerable amount of primary studies limit their analysis
to data mining (46/261) to extract relevant information from the application bytecode or
source code. Taint Analysis (33/261) follows as the third most adopted analysis technique.
Machine learning classification, slicing and model-based analysis are also other relevantly
used techniques, each being used in twenty-nine (29/261), thirteen (13/261), and thirteen
(13/261) studies, respectively. Other less frequently used techniques are symbolic execu-
tion (12/261), points-to analysis (9/261), abstract interpretation (6/261), similarity-based
analysis (6/261), constant propagation (5/261), string analysis (5/261), model checking

Fig. 17 Primary studies by need of analysis pre-steps
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Fig. 18 Primary studies by analysis technique (Categories are not mutually exclusive)

(5/261), type inference (4/261), code instrumentation (2/261), pattern-based analysis
(2/261), code-instrumentation (2/261), class analysis (1/261), formal analysis (1/261),
opcode analysis (1/261), nullness analysis (1/261), responsiveness analysis (1/261), sta-
tistical analysis (1/261), termination analysis (1/261), and typestate analysis (1/261). We
speculate that the popularity of Flow and Taint analysis is due to the fact that many of
the issues researchers want to detect in mobile apps can be modeled under those analy-
sis paradigms and, as further discussed in Section 8, it appears that researchers identify
the technique to be used in a goal-driven fashion. We also believe that, again, researchers
are limited by the available frameworks and tools, and choose to focus more on those
techniques for which mature tools exist (e.g., Soot).
Example. AppSealer (P79) aims to automatically detect and prevent component hijack-
ing attacks, a class of vulnerabilities commonly appearing in Android applications. When
triggered by attackers, the vulnerable apps can expose sensitive information and compro-
mise data integrity. For this purpose, AppSealer employs a combination of flow analysis
and backward slicing. First, flow- and context-sensitive inter-procedural dataflow analysis
is performed to track the propagation of sensitive information and detect if it propa-
gates into dangerous data sinks. Then, employing backward slicing, one or more program
slices that directly contribute to the dangerous information flow are computed. With the
guidance of the computed slices, AppSealer automatically creates patches to deal with
the discovered vulnerability, placing guarding statements at affected sinks to block the
propagation of dangerous information.



Autili et al. Journal of Internet Services and Applications            (2021) 12:3 Page 26 of 60

Main findings on characteristics of approaches:

� Being open source pays off from a scientific perspective. The vast majority of the
studied approaches is specific to the Android platform, both from a conceptual
and implementation perspective. Thanks to its open-source nature, Android
gives more control and flexibility, and fuels an ecosystem of accompanying tools
and libraries useful for static analysis (avoiding to reinvent the wheel). This is
also proved by the fact that Android has been chosen as implementation
platform also for generic static analysis approaches.

� Static analysis of mobile apps is widely performed in isolation and by
considering only the app to be analyzed (no additional input like test cases or
platform profiles). If on the one side this is a confirmation of the fact that static
analysis is a very versatile tool for analyzing non-trivial properties of mobile
apps, on the other side, researchers may be loosing an opportunity for pushing
further by complementing static analysis with other artifacts and/or additional
analysis techniques (e.g., like done in the eCalc approach in P123).

� Machine learning techniques seem to be promising and are applied in
conjunction with static analysis techniques. Machine learning techniques are
widely used for some goals (mainly for security), but they are not yet fully
explored in other areas, such as app store analysis [179] or software repository
mining.

� Many are the static analysis techniques used by researchers when considering
mobile apps, ranging from flow analysis to taint analysis, to type inference and
abstract interpretation. The clear winner is flow analysis. We conjecture that
this success is mainly due to a combination of factors: (i) as of today, the
programming model of mobile platforms is inherently based on a flow of (often
asynchronous) messages exchanged between a set of components (e.g., Android
activities, iOS views) reacting to events (e.g., a tap of the user, a callback from a
sensor request); (ii) flow analysis nicely lends itself to identify and predicate on
both intra- and inter-app interactions (a cornerstone capability for security and
reliability analyses); (iii) the availability of open-source tools like Soot that
developers can use as building blocks for their own approaches.

7 Results - potential for industrial adoption (RQ3)
7.1 Target stakeholder

As shown in Fig. 19, app developers are the most recurrent stakeholders of static analysis
approaches (150/261).
Platform vendors (126/261) like Apple and Google distribute apps via their own ded-

icated mobile application markets. They can benefit from the use of static analysis
approaches in their market places for systematically assessing the level of quality of their
distributed apps, possibly identifying those apps with an unacceptable level of quality
(e.g., apps with well-known security flaws, apps asking for suspicious permissions, apps
with strong energy inefficiencies). Interestingly, some approaches directly target app users
(20/261), who might use static analyses to better understand how their installed apps
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Fig. 19 Primary studies by target stakeholder (Categories are not mutually exclusive)

behave and for examining and granting explicit information flows within an application.
Also, users may be interested in implicit information flows across multiple applications,
such as permissions for reading the phone number and sending it over the network. As an
example, one of the 12 studies targeting users focuses on debugging energy efficiency of
apps in their real context of use. Specifically, in P39 the user can launch an automatically
instrumented app to precisely record and report observed energy-related failures in order
to assists the developer by automatically localizing the reported defects and suggesting
patch locations. Last but not least, 7 primary studies explicitly mention researchers as tar-
get stakeholders, who can extend and/or apply the proposed techniques (and their results)
to their own studies on mobile applications.
Example. FicFinder (P22) aims to ease the effort required by developers to deal with
compatibility issues that might be present in their apps due to the fragmented nature of
the Android platform. FicFinder automatically detects compatibility issues by performing
static code analysis based on a model that captures Android APIs behavior as well as their
associated context by which compatibility issues are triggered. Once detected, FicFinder
reports actionable debugging information to developers.

7.2 Tool availability

All the primary studies contribute with a tool implementing the proposed approach.
Nonetheless, our results also show that only 97 studies over 261 (see Fig. 20) released the
tool, making it publicly available for download and adoption. When possible, the avail-
ability of a tool supporting the proposed approach is desirable as it surely helps in making
the obtained results more credible, reproducible, and replicable by the community.

Fig. 20 Primary studies by tool availability
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Fig. 21 Primary studies by number of evaluated apps

7.3 Number of analysed apps

The authors of the analyzed primary studies evaluate and validate their findings by using
an input set of applications. The evaluation of this parameter builds on the assumption
that approaches evaluated on a larger set of apps are more adoptable in industry since
it is less likely that they exhibit unexpected behaviors (specially for corner cases). Here,
we categorized the primary studies according to the number of apps used for evaluating
them.
As shown in Fig. 21, in the majority of studies (125/261) the number of applications

used for evaluating the proposed approach is greater than 1,000, followed by those studies
which evaluated their approach by using less than 100 apps (83/261), and those stud-
ies (53/261) which took into account a medium set of apps (between 100 and 1,000).
This result is promising in that a relatively good number of approaches was evaluated
on a high number of applications, making the scientific community and practitioners
reasonably confident about their applicability in industrial contexts. Nevertheless, it is
important to note that evaluating an approach on a low number of apps should not be
seen as a strongly negative point because it may have been a necessity from an empirical
perspective. For example, the number of analyzed apps could depend on the execution
time of the analysis tool; if the analysis tool requires a large amount of time for each
app (e.g., because including user thinking time), then the input set of applications is
inevitably small in order to keep the experiment duration acceptable from a pragmatic
perspective.
Example. AutoPPG (P15) aims to facilitate the process of writing privacy policies for
mobile apps. A privacy policy is a statement informing users how their information will
be collected, used, and disclosed. Failing to adhere to privacy policies is can lead to severe
consequences, such as the issue of steep fines. AutoPPG conducts static code analysis
on mobile apps by extracting their behavior and subsequently relating such behavior to
the personal information stored by the end-users. Once the relation between the app
behavior and personal data is established, AutoPPG leverages natural language processing
techniques to generate a textual description of the fair privacy policy which characterizes
the analyzed app. Due to the time consuming nature of manually comparing the statically
generated privacy policy with the existing one, the evaluation of AutoPPG was limited to
the low number of 20 randomly selected apps.

7.4 Applied research method

This parameter represents the type of applied research method used to assess the
proposed technique. Possible values of this parameter are Validation and Evaluation.
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Fig. 22 Primary studies by applied research method (Categories are not mutually exclusive)

Validation is done in lab contexts using applications specifically created or customized
for the purpose of their approach evaluation. Evaluation takes place in real-world
(industrial) contexts, using exclusively unmodified applications. The latter generally
provides a higher level of evidence about the practical applicability of a proposed
technique.
From the analysis of the primary studies, it emerged that the majority, during the eval-

uation phase, use exclusively unmodified applications (see Fig. 22) mined from an app
market (234/261). In other cases, the applications to be analysed were created for the pur-
pose of the evaluation, or they were customized versions of real apps (46/261). In some
cases (e.g., P14, P17, P169, P259), a combination of real and custom applications is used;
in these cases, custom apps support the evaluation of the proposed approach to exercise
specific aspects of the proposed static analysis approach (e.g., corner cases when building
a control flow graph of the app under analysis), which are not fully covered by the mined
original apps.
Overall, the obtained results are promising since approaches evaluated on (a poten-

tially large number of) real apps, in principle, undergo a more realistic investigation
with respect to those evaluated on synthetically-built apps. This realism comes also
from the fact that apps mined from app stores are developed in real industrial con-
texts involving practitioners working under real business and organizational constraints
(e.g., release deadlines, specific development workflows). Moreover, apps mined from
app stores can be totally different from synthetic apps because the former are dis-
tributed to and downloaded by real users; it is well known that users play a cen-
tral role in the success (and indirectly in the development process) of the apps, e.g.,
by providing publicly accessible app ratings and reviews [179], deciding to uninstall
disappointing apps.
Example. In P14, the authors propose two automated static analysis techniques for auto-
matic detection of a privilege-escalation attack known as Android Wicked Delegation
(AWiDe). In order to manually verify the correctness of the two detection techniques,
apps for evaluation experiments were collected from F-Droid 14, an online repository of
free open source Android apps, in order to be able to inspect the app source code. As 70%
of collected apps were also published on the Google Play store the study performs both
Validation and Evaluation.

14https://f-droid.org/en/

https://f-droid.org/en/
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Fig. 23 Distribution of industry involvement

7.5 Industry involvement

Each primary study was classified as (i) Academia, if the authors are affiliated exclu-
sively to an academic organization, e.g., university or research center; (ii) Industry if the
authors are affiliated exclusively to an industrial organization, e.g., a company, startup,
or software house; (iii) Academia and Industry if some of the authors are affiliated to
an academic organization and some others to an industrial one. As depicted in Fig. 23,
the vast majority of the authors of our primary studies is academic (231/261), fol-
lowed by a combination of researchers and industrial practitioners (29/261), and finally
1 contribution involves industrial authors only. The emerged result is quite disappoint-
ing, as in almost all of the studies there is no involvement of industrial researchers or
practitioners.
In the single industry-only primary study (P91), the authors tackle the problem of

Android application collusion. Specifically, they state that existing analysis techniques
focused on identifying undesirable behaviors in single-apps neglecting multi-application
collusion danger. Therefore, the authors present a collection of tools that provide static
information flow analysis across sets of applications, showing a holistic view of all the
applications running on a particular device. The techniques proposed in P91 include: (i)
static binary single-app analysis, (ii) security lint tool to mitigate the limits of static binary
analysis, (iii) multi-app information flow analysis, and (iv) evaluation engine to detect
information flows that violate specified security policies. We believe that P91 is a good
example of a research study tackling an industrially-relevant problem and proposing an
industry-driven solution. Academic researchers could compare with or be inspired by the
work in P91 for designing and evaluating the approaches for static analysis of mobile apps
of the future.
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Main findings on potential for industrial adoption:

� It comes without a surprise that app developers and platform vendors are the
most targeted stakeholders. Still, a potentially unexplored venue is related to
static analysis targeting the end users of mobile apps, who may have different
requirements and needs with respect to the apps currently installed in their
devices.

� In the vast majority of primary studies, researchers are not providing any tool
implementing their proposed approaches. This result is strongly negative, as it
impacts studies replications and comparative evaluations, which are at the basis
of the scientific method. We suggest researchers to always provide publicly
available implementations of their approaches (when possible); this will help
researchers and practitioners in improving the overall quality of research in
static analysis of mobile apps.

� The evaluation of the proposed approaches is generally performed on
unmodified apps (i.e., experimentation in the wild). The number of apps
considered in the evaluation phase is either high (more than 1,000) or low (less
than 100).

� As a community, we should encourage new connections between academia and
industry in order to potentially improve the knowledge exchanged between
them, where (i) research is performed on industrially relevant problems and (ii)
new methods, technologies and tools are transferred from academia to industry.

8 Orthogonal findings
This section reports on the results of our horizontal analysis. It is worth recalling that,
in this phase of the study, we (i) built contingency tables for pairs of parameters coming
from our vertical analysis, (ii) analyzed each one of them, and (iii) identified perspectives
of interest.
Analysis goal - Platform specificity. Privacy is the most recurrent analysis goal for all
platforms, especially for the Android operating system. The only iOS approach found in
the literature is also focusing on privacy. Malware results to be the second most studied
subject in both Android and generic approaches. Overall, very few studies are platform-
independent, and none for the categories performance, inter-app communication, and
antipatterns.
We conjecture that the popularity of privacy and malware analysis goals can be asso-

ciated to the ubiquity and handling of sensitive data that nowadays characterizes mobile
apps. As a consequence, new methods and techniques to address the associated chal-
lenges is receiving a growing attention. Indeed, many of the researches focusing on pri-
vacy rely on a technique, namely, the inspection of the AndroidManifest.xml, which
is quite simple to implement. This consideration further explains the high occurrences
of such studies. Regarding the performance, inter-app communication and antipatterns
goals, we hypothesize that such goals can be studied exclusively from a platform-specific
point of view due to their tight relationship with the platform onwhich the app is running.
Analysis goal - Static\Hybrid approach. Except for frameworks and antipatterns, which
result to be supported exclusively by static analysis, the majority of the goal categories are



Autili et al. Journal of Internet Services and Applications            (2021) 12:3 Page 32 of 60

studied through hybrid approaches. Overall, privacy results to be themost studied subject
in both static and dynamic approaches (74 static approaches and 22 hybrid ones). Energy
consumption (13 static approaches and 12 hybrid ones) is the second most recurrent goal
of hybrid analyses.
We believe that the rationale behind the popularity of hybrid approaches resides in the

ability to circumvent weaknesses that arise when using only one kind of analysis, hence
making it possible to gather more comprehensive, yet precise, results. As presented in
the previous section, the popularity of the privacy goal can be justified by the interest
of final users, developers and app store vendors to protect sensitive data from unautho-
rised access. The high number of hybrid approach targeted at the energy goal evidences
the reliance of such approaches on dynamic methodologies, utilised to exercise the appli-
cations under analysis, and gather empirical energy consumption measurements. On the
other hand, we conjecture that the lack of usage of dynamic analysis by approaches aimed
at the frameworks and antipatterns goals is due to the nature of these goals, which are
more tightly related to source code metrics rather than runtime ones, thus making static
analysis techniques more suitable for them.
Analysis goal - App artifact. In general, the vast majority of the approaches require the
APK package of the mobile application. This has to be attributed to the skewed data gath-
ered for this research, from which most of the approaches result to focus on Android
applications. In contrast, the goals that require more often source code are the ones focus-
ing on refactoring and performance. Additionally, some goals that do not require access
to the source code of the application were identified, namely reflection, antipatterns,
similarity, obfuscation, and authorship.
Regarding the goals for which analyses are often performed on source code, we believe

that the reason underlying this trend is that these types of analysis require the exact source
code of the app under analysis to be carried out properly. Even though Android decompil-
ers and disassemblers do exist, at the time of writing, their precision is not high enough to
perform these kind of analysis on packaged applications [191]. On the other hand, when
focusing on the analysis goals requiring an APK as input, we can notice that for testing,
privacy and energy consumption researchers have been focusing on black-box approaches,
while neglecting white-box ones (at least partially). For these goals, approaches of the
latter kind could be of assistance during development of mobile apps, either notify-
ing developers when they unknowingly insert known antipatterns in their code (e.g., an
energy hotspot in the case of energy consumption or a privacy leak in the case of privacy)
or in helping them in performing more efficient testing (in the case of testing).
Analysis technique - Analysis pre-steps. Eight out of 24 analysis techniques do not
require pre-steps. In fact, nulness, points-to and termination analyses are carried out
by inspecting the source code repository of the application, and hence do not require
additional tooling or configuration. The remaining 16 analysis techniques require pre-
steps of different nature. As expected, most of the analysis techniques needing pre-steps
require the manipulation of source code, such as abstract interpretation (for which
two out of three papers required analysis pre-steps). In general, only three of the 24
identified analysis techniques resulted to require in the majority of the cases analy-
sis pre-steps. This indicates that the vast majority of analysis techniques is executable
“as is”, i.e., without requiring any additional process before the analysis can be actually
carried out.
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Target stakeholder - Analysis goal. Approaches targeting app stores vendors result to
be mostly interested in malware (57) and privacy (56 studies), followed by inter-app and
inter-component communication (15 and 14 studies respectively). Approaches targeting
developers also result to be mostly interested in privacy-related analyses (48 studies),
but also consider more low-level goals, such as energy consumption (25 studies), inter-
component communication (24 studies), and testing (23 studies). Approaches targeting
researchers result to be mostly related to the improvement of the state of the art analysis
techniques, hence often considering goals related to inter-component communication (4
studies), and frameworks (3 studies). As expected, approaches targeting end users result
to be mostly interested in privacy (14 studies), and approaches targeting app store ven-
dors are more interested in malware than developers (57 against 8 studies). In contrast,
approaches targeting developers result to be more interested than those targeting app
store vendors in analyses related to testing (21 against 2 study), resources (6 against 0),
refactoring (16 against 2), performance (16 against 0), and energy (25 against 0). Again,
this indicates that approaches targeting developers are more interested in the quality of
the applications than those targeting app store vendors; the latter are mainly focused on
ensuring the security of the end user by identifying potentialmalware and privacy leaks.
Usage of machine learning - Analysis goal. Usage of machine learning techniques is
not evenly distributed among all goals. In particular, machine learning techniques are
mostly employed for the goal of malware detection: out of 48 studies leveraging machine
learning techniques in their analyses, 32 fall into themalware goal, the remainder is split
among privacy (11), inter-component communication (4) and inter-app communication
(2), energy (1) and obfuscator identification (1) (remember that goals are not mutually
exclusive). This trend is traceable to the common techniques utilized to identify malware
applications, which mostly often rely on training a classifier on a collected dataset of both
benign and malicious applications. It is worth noting that the same machine learning
techniques can potentially be applied when targeting other goals, such as performance or
energy consumption; surprisingly, only one of the studies that fall into those goals make
use of machine learning. We believe that this is due to the greater effort required for the
collection of large datasets when considering these goals.
Industry involvement - Analysis goal. As expected, all analysis goals are considered by
academic researchers. energy (25/25), inter-component communication (26/33), malware
(59/66), and privacy (81/96) are themost targeted goals for academic researchers. In some
cases, when the analysis goal concerns privacy (15/96), malware (6/66), inter-component
communication (6/33), inter-app communication (2/24), framework (2/8), testing (1/23),
resource (1/6), and refactoring (1/18), academic researchers are supported by industrial
professionals.
By analyzing these results, we can conjecture that, although industrial organizations are

interested in addressing the issues related to these goals, there is still a lack of industrial
involvement when targeting other research goals, such as energy and performance, that
would improve the overall user experience of mobile apps. We argue that researchers
should more actively try to involve industry practitioners when working on such goals.
Target stakeholder - Analysis technique.
Approaches to be utilized by app stores vendors have a more prominent usage of tech-
niques such as data mining (33/46), taint analysis (18/33), and classification (21/29). This
is in line with the most prominent goal of such stakeholder, i.e., identifying malicious
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applications in order to remove them from their stores. On the contrary, approaches to
be utilized by developers, which are more interested in the inner workings of the appli-
cations, result to be characterized by a higher usage of techniques based on flow analysis
(108/171). An explanation for this trend is the difference in performances among differ-
ent static analysis techniques: approaches targeted at app stores must be highly scalable,
as they have to be executed daily on thousands of apps; approaches targeted at develop-
ers have less stringent requirements. This evidences that improving the performances of
some techniques is a relevant open problem, as they are currently a limiting factor for the
kind of analyses that can be performed on app stores.
Tool availability - Analysis goal. When dealing with static analysis, automation is a cru-
cial requirement for an approach to be effectively adopted in practice. Although for the
majority of the identified analysis goals many different approaches have been proposed,
most of them do not have a (released) tool ready for adoption by practitioners. On the
one hand, we can argue that addressing goals such as privacy and malware, may require
the realization of a mature supporting tool requiring a development effort that cannot be
always afforded. On the other hand, addressing some goals represent more a theoretical
interest, with potentially marginal practical impact, such as the study of an analysis frame-
work itself. Nonetheless, we encourage researchers to undergo the extra effort required
for making their analysis tool available to the research community: not only it makes
easier to replicate their results but also analysis types for which a mature tool has been
made available have been far more explored by the scientific community (as in the case of
Flowdroid [12] for flow analysis).

9 Discussion and future research challenges
The results presented in the previous sections give a data-driven, objective overview of
the current state of the art on static analysis for mobile apps. In this section, we provide
our own interpretation of the main points we deem as important challenges for future
researchers in this area.
Is there life after Android? When considering the targeted platforms, it is evident that
Android is the clear winner, with more than 90% of approaches targeting it. If on the one
hand, we could have expected this result (as of today, Android is the most popular mobile
operating system with more than 90% market share [2] and a relatively large number of
open-source tools for apps analysis), on the other hand, it makes us wonder what will be
the fate of this Android-specific large body of knowledge and tools we researchers are
producing in the future. If we look back in time, it is widely recognized that the mobile
ecosystem is extremely dynamic, with platforms unpredictably raising and failing in terms
of sells of devices, companies acquisitions, users flowing to/from other platforms. For
example, 10 years ago, Apple iOS and Symbian were having 38% and 16% of the market
share, whereas today they account for less than 14% together15.
It is encouraging to see that 2 approaches out of 261 are generic (even though the imple-

mentation of the majority of them is again Android-specific). We believe that in the future
researchers should reason at a higher level of abstraction, and focus more on approaches
which are technology-independent, generic, and applicable to different platforms with
reasonable effort. It is only in this way that our research results will pass the test of time

15https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems/

https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems/
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and will (hopefully) remain relevant also in the future, despite the inevitable technolog-
ical waves we will be facing. It is important to note that we are not suggesting to totally
neglect platform-specific aspects, rather we are proposing to design our own research
products to be platform-independent and robust with respect to (future) technologies;
among many, researchers might take advantage of the well-known principles of exten-
sibility and separation of concerns, of layered or plugin-based architectures for making
their research products applicable in the context of new technologies without disrupting
their general principles and base mechanisms. This will also speed up research by helping
researchers in avoiding to reinvent the wheel whenever a (potentially applicable) research
product will be applied to a new mobile platform.
Analysis goals shall be expanded substantially. The results of our study tell that privacy
and malware are the most targeted analysis goals, far more than the others (e.g., perfor-
mance, energy, resources usage). This is a clear gap that we, as researchers in the area of
mobile apps analysis, should be filling in the future.
Given its strong importance for mobile apps, it seems that performance is extremely

under-explored. Indeed, performance is a fundamental aspect of mobile apps develop-
ment and is one of the top concerns for both developers and users; indeed, frequent
complaints in app stores are about apps’ performance, impacting the ratings of the apps
and potentially undermining their chances of success [59, 162]. Moreover, anti-patterns
identification and refactoring are among the least explored analysis goals so far, despite
the fact that bug fixing and code re-organization are among the most recurrent activi-
ties of mobile apps developers [197]. In this context, P52 can be considered as a reference
study about how to propose, design, and evaluate a refactoring method for mobile apps.
Specifically, P52 presents a preliminary large-scale formative study about how develop-
ers approach asynchronous programming in Android apps. Then, based on the obtained
results (e.g., that developers are using the Android AsyncTask construct also for long run-
ning operations, potentially leading to memory leaks, lost results, and wasted energy), a
tool-based method is proposed for (i) statically identifying usages of the AsyncTask con-
struct which can be automatically improved, and (ii) refactoring those parts of the app via
a safe code rewriting algorithm. Finally, an empirical evaluation provides objective and
reproducible evidence about the applicability and saved effort of the proposed method.
Users are being left out of the equation. From the results of RQ3, it emerged that
only 20 studies consider end users as stakeholders, revealing that researchers are mostly
focusing on techniques aimed at assisting developers, store moderators and researchers
instead. Although this unbalance is not unexpected, when also considering that themajor-
ity of studies focused on privacy as their goal, we can notice a lack of users-first privacy
approaches. Indeed, privacy is a subjective property, as different users may have different
concerns when judging the trustability of an application. Current solutions fail to address
this subjective aspect of privacy, considering all users as equals. In light of these consid-
erations, we can identify one research area currently open and overlooked: the design of
more user-centric approaches to privacy, where users are provided with the necessary
tools to specify and validate the “personal” requirements to which an application must
comply [218, 219].
Developers are being left out of the equation too! Even though when answering RQ3
it emerged that practitioners were involved in 30 studies, it also emerged that almost
all approaches have not been evaluated or adopted in an industrial environment. We
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consider this finding as an indication that practitioners are involved in the technical
phases of the study (e.g., elicitation of the requirements for the approaches, analysis steps
definition, experiments results evaluation), but not as subjects of the evaluation of the
proposed approaches. This situation is in strong contrast with the fact that the most
recurrent stakeholders of the proposed approaches are the practitioners themselves. For
the future, we strongly advise to close the loop by including practitioners in all the phases
of the studies, specially while (i) defining the assumptions, requirements, and usage sce-
narios of the proposed static analysis approaches, as well as (ii) evaluating the proposed
approaches in terms of their usefulness, applicability, and usability. At best, the latter can
be performed by applying the case study methodology [257]. This is already happening
in other research areas within the software engineering domain, such as software energy
efficiency [239], technical debt [180] and software testing [214].
Tools and datasets shall be released and publicly available. An underlying problem
which hinders the effective uptake of static analysis of mobile apps research lies in tool
availability. In fact, from the results of our research, we evince that only a small portion
of tools utilized or developed in the primary studies are available online. This constitutes
a serious problem for researchers interested in extending or adapting tools which have
been already developed. Additionally, the data utilized in the primary studies (e.g., accu-
rate versioning history of apps used for experimentation) is only seldom available. This
potentially slows down investigations, as datasets still have to be created on an ad-hoc
basis for researches, as the number of already available ones is scarce. In recent times, this
trend has been opposed by the constitution of some conference tracks explicitly aimed
to make datasets publicly available. Among the most prominent ones are the “Artifact”
track of the International Conference on Software Maintenance and Evolution (ICSME),
and the “Data Showcase” track of the Mining Software Repositories (MSR) conference.
Researches belonging to this tracks range from general purpose datasets, e.g., large ver-
sioning datasets focusing on Android applications [89], to context-specific datasets, e.g.,
to support dynamic analyses of Android applications [41]. Finally, from the findings of our
study, we detect a shortcoming shared by many studies of static analysis of mobile apps,
namely the impossibility to replicate the reported results. In fact, the absence of struc-
tured replication packages, in form of tools and dataset utilized, precludes the possibility
to replicate the results reported in the primary studies. This constitutes a major problem
affecting not only researchers interested in the field of mobile static analysis, but also the
soundness of the studies itself.

10 Threats to validity
In order to ensure the high quality of the data gathered for this study, a well-defined
research protocol was established before carrying out the data collection. The research
activities were designed by following a set of well-accepted and revised guidelines for sys-
tematic mapping studies [133]. From the formalization of such guidelines, we established
the research protocol that was strictly followed all throughout the evolution of the study,
as documented in Section 4. In addition, in order to further ensure the adherence to the
established protocol and the envisioned quality standards, all the steps of the research
(e.g., study design, search and selection, data extraction, data analysis) were carried out
in team. This activity was deemed necessary also to lower potential sources of bias by
discussing crucial considerations in team. Even by adopting a methodic literature review
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approach, threats to validity are still unavoidable. The remaining of this section reports
on the main threats to validity to our study and how we mitigated them.
External validity refers to conditions that hinder the ability to generalize the results of
our research [257]. The major threat of this category is represented by the fact that our
primary studies are not representative of the state of the art research on static analysis of
mobile applications. In order to mitigate this threat, we adopted a search strategy consist-
ing of a manual search encompassing all the top-level software engineering conferences16

and international journals17 according to well known sources in the field. Such process
was further extended by executing a backward and forward snowballing process on the
selected literature. In order to ensure the quality of the selected researches, we exclu-
sively considered peer-reviewed papers and excluded the so-called grey literature, such as
white papers, editorials, etc. We disregard such decision as a significant source of bias, as
peer-review processes are a standard requirement for high-quality publications. Finally,
we adopted a set of well-defined inclusion and exclusion criteria, which rigorously guided
our selection of the literature.
Internal Validity refers to the influences that can affect the design of the study, without
the researcher’s knowledge [257]. In this regard, we defined a priori a rigorous research
protocol for the study. The classification framework adopted was established iteratively
by strictly following the keywording process and it has been piloted by three researchers
in an independent manner. Regarding the synthesis of the collected data, such process
was carried out by adopting simple and well-assessed descriptive statistics. Subsequently,
during the orthogonal analysis, we performed sanity tests on the extracted data by cross-
analyzing different parameters of the established classification framework.
Construct validity refers to the extent to which the primary studies selected are suited
to answer our research questions [257]. In order to mitigate such threat, we manu-
ally inspected thoroughly the literature published in the top-level software engineering
conferences and journals. This procedure was performed by adhering to a rigorous pre-
defined protocol. In addition, the results of such process were expanded by integrating
the results gathered through a backward and forward snowballing process. Subsequently,
we methodologically selected the identified studies by applying a set of well-documented
inclusion and exclusion criteria. This latter process was carried out by three researchers
independently. As recommended byWholin et al. [257], a random sample of eight studies
were selected and analyzed by all three researchers in order to ensure that the analyses
were aligned.
Conclusion validity refers to issues that might hinder the ability to draw the correct con-
clusion from the data gathered [257]. In order to minimize the presence such threat, we
carefully carried out the data extraction and analysis by strictly adhering to an a priori
defined protocol. Such protocol was specifically conceived to collect the data necessary
to answer our research questions. This enabled us to reduce potential sources of bias
resulting from the data extraction and analyses processes. In addition, such methodol-
ogy guaranteed us that the extracted data was fitted to answer our research questions.
In order to further mitigate potential threats to conclusion validity, we adhered to the
best practices reported in several well-known guidelines for systematic literature reviews
[132, 203, 257]. Such guidelines were strictly followed throughout each phase of our

16http://goo.gl/auU7su
17http://www.webofknowledge.com
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research, and were comprehensively documented in order to make our research approach
transparent and replicable.

11 Conclusions
The systematic mapping study reported in this paper permitted us to precisely charac-
terize the most relevant methods and techniques for statically analyzing mobile apps.
Starting from over 12,000 potentially relevant studies, we applied a rigorous selection pro-
cedure resulting in 261 primary studies along 122 scientific venues and a time span of 9
years.
We rigorously defined a classification framework with the target of identifying, eval-

uating and classifying the characteristics of existing approaches to the static analysis of
mobile apps, while understanding trends and potentials of industrial adoption.
The main findings of this study have been synthesized by performing (i) a combination

of content analysis and narrative synthesis (vertical analysis), and (ii) a correspondence
analysis via contingency tables (horizontal analysis).
Our study will help researchers and practitioners in identifying the purposes and the

limitations of existing research on static analysis of mobile apps. Also, we assessed the
potential of research on static analysis of mobile apps, discussing how to foster industrial
adoption and technological transfer. The knowledge of the potential of existing meth-
ods and techniques constitutes a reference framework in support of researchers and
practitioners, such as app developers, who are interested in selecting/choosing existing
static analysis approaches, and want to critically understand what they offer and how. In
this sense, we can argue that this work constitutes a valuable asset to the academic and
industrial world in the wide spectrum of static analysis.

Appendix
Research team

Four researchers were involved in this study, each of them with a specific role within the
research team.

- Principal researcher: Gian Luca Scoccia, and Roberto Verdecchia, postdocs. They
took part in all the activities, i.e., planning the study, conducting it, and reporting;

- Research methodologist : Ivano Malavolta, assistant professor with expertise in
empirical software engineering, software architecture, and systematic literature
reviews; he was mainly involved in (i) the planning phase of the study, and (ii)
supporting the principal researchers during the whole study, e.g., by reviewing the
data extraction form, selected primary studies, extracted data, produced reports, etc.;

- Advisor: Marco Autili, associate professor with many-years expertise in software
engineering methods applied to the modeling, verification, analysis and automatic
synthesis of complex distributed systems, and application of context-oriented
programming and analysis techniques to the development of (adaptable) mobile
applications. He took final decisions on conflicts and methodological options, and
supported the other researchers during data and findings synthesis activities.

Primary studies

Table 4 reports the full list of the 261 primary studies.
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Table 4 Primary studies

ID Title Authors Year

P1 NeSeDroid–Android Malware Detection
Based on Network Traffic and Sensitive
Resource Accessing [45]

N.T. Cam, N.C.H. Phuoc 2017

P2 Analyzing Remote Server Locations for
Personal Data Transfers in Mobile Apps [68]

M. Eskandari, B. Kessler, M. Ahmad, A.
Santana de Oliveira, B. Crispo

2017

P3 MaMaDroid: Detecting Android Malware by
Building Markov Chains of Behavioral
Models [178]

E. Mariconti, L. Onwuzurike, P. Andriotis, E.
De Cristofaro, G. Ross, G. Stringhini

2017

P4 Ripple: Reflection Analysis for Android Apps
in Incomplete Information
Environments [300]

Y Zhang, T Tan, Y Li, J Xue 2017

P5 AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection [75]

A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez,
S. Furnell

2017

P6 Profiling the responsiveness of Android
applications via automated resource
amplification [246]

Y. Wang, A. Rountev 2016

P7 Detecting Invalid Layer Combinations Using
Control-Flow Analysis for Android [232]

N. Suzuki, T. Kamina, K. Maruyama 2016

P8 Graph-aided directed testing of Android
applications for checking runtime privacy
behaviours [127]

J.C.J. Keng, L. Jiang, T.K. Wee, R.K. Balan 2016

P9 Dexteroid: Detecting malicious behaviors in
Android apps using reverse-engineered life
cycle models [124]

M. Junaid, D. Liu, D. Kung 2016

P10 IacDroid: Preventing Inter-App
Communication capability leaks in
Android [289]

D. Zhang, R. Wang, Z. Lin, D. Guo, X. Cao 2016

P11 Practical, formal synthesis and automatic
enforcement of security policies for
android [21]

H. Bagheri, A. Sadeghi, R. Jabbarvand, S.
Malek

2016

P12 CapaDroid: Detecting Capability Leak for
Android Applications [265]

T. Wu, Y. Yang 2016

P13 Asynchrony-aware static analysis of Android
applications [183]

A. Mishra, A. Kanade, Y.N. Srikant 2016

P14 Identifying Android inter app
communication vulnerabilities using static
and dynamic analysis [61]

B.F. Demissie, D. Ghio, M. Ceccato, A.
Avancini

2016

P15 Towards Automatically Generating Privacy
Policy for Android Apps [287]

L. Yu, T. Zhang, X. Luo, L. Xue, H. Chang 2016

P16 Revisiting the Description-to-Behavior
Fidelity in Android Applications [285]

L. Yu, X. Luo, C. Qian, S. Wang 2016

P17 Triggerscope: Towards detecting logic
bombs in android applications [82]

Y. Fratantonio, A. Bianchi, W. Robertson, E.
Kirda, C. Kruegel, G. Vigna

2016

P18 Automated test generation for detection of
leaks in Android applications [292]

H. Zhang, H. Wu, A. Rountev 2016

P19 Automatic Construction of Callback Model
for Android Application [99]

C. Guo, Q. Ye, N. Dong, G. Bai, J.S. Dong, J. Xu 2016

P20 Automated energy optimization of HTTP
requests for mobile applications [143]

D. Li, Y. Lyu, J. Gui, W.G.J. Halfond 2016

P21 Understanding and detecting wake lock
misuses for Android applications [168]

Y. Liu, C. Xu, S.C. Cheung, V. Terragni 2016

P22 Taming Android fragmentation:
characterizing and detecting compatibility
issues for Android apps [252]

L. Wei, Y. Liu, S.C. Cheung 2016

P23 Reflection-aware static analysis of Android
apps [149]

L. Li, T.F. Bissyandé, D. Octeau, J. Klein 2016
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Table 4 Primary studies (Continued)

ID Title Authors Year

P24 Automated testing and notification of
mobile app privacy leak-cause
behaviours [126]

J.C.J. Keng 2016

P25 Finding resume and restart errors in Android
applications [220]

Z. Shan, T. Azim, I. Neamtiu 2016

P26 DroidRA: Taming Reflection to Support
Whole-ProgramAnalysis of Android
Apps [148]

L. Li, T.F. Bissyandé, D. Octeau, J. Klein 2016

P27 Empirical assessment of machine
learning-based malware detectors for
Android [8]

K. Allix, T.F. Bissyandé, Q. Jérome, J. Klein, Y.
Le Traon

2016

P28 Effective detection of android malware
based on the usage of data flow APIs and
machine learning [264]

S. Wu, P. Wang, X. Li, Y. Zhang 2016

P29 On the Static Analysis of Hybrid Mobile
Apps [38]

A.D. Brucker, M. Herzberg 2016

P30 Towards a Generic Framework for
Automating Extensive Analysis of Android
Applications [150]

L. Li, D. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y.
Le Traon

2016

P31 Static Program Analysis for Identifying
Energy Bugs in Graphics-Intensive Mobile
Apps [129]

C.H.P. Kim, D. Kroening, M. Kwiatkowska 2016

P32 Combining static analysis with probabilistic
models to enable market-scale android
inter-component analysis [194]

D. Octeau, S. Jha, M. Dering, P. McDaniel, A.
Bartel, L. Li, Y. Le Traon

2016

P33 DroidNative: automating and optimizing
detection of android native code malware
variants [6]

S. Alam, Z. Qu, R. Riley, Y. Chen, V. Rastogi 2016

P34 Enabling Automatic Protocol Behavior
Analysis for Android Applications [131]

J. Kim, H. Choi, H. Namkung, W. Choi, B. Choi,
H. Hong, D. Han

2016

P35 PERUIM: Understanding Mobile Application
Privacy with permission-UI Mapping [156]

Y. Li, Y. Guo, X. Chen 2016

P36 HybriDroid: Static analysis framework for
Android hybrid applications [138]

S. Lee, J. Dolby, S. Ryu 2016

P37 StubDroid: automatic inference of precise
data-flow summaries for the android
framework [11]

S. Arzt, E. Bodden 2016

P38 FlowMine: Android app analysis via data
flow [225]

L. Sinha, S. Bhandari, P. Faruki, M.S. Gaur, V.
Laxmi, M. Conti

2016

P39 Debugging energy-efficiency related field
failures in mobile apps [25]

A. Banerjee, H.F. Guo, A. Roychoudhury 2016

P40 State-Taint Analysis for Detecting Resource
Bugs [272]

Z. Xu, D. Fan, S. Qin 2016

P41 Fixing Resource Leaks in Android Apps with
Light-Weight Static Analysis and
Low-Overhead Instrumentation [164]

J. Liu, T. Wu, J. Yan, J. Zhang 2016

P42 Relda2: an effective static analysis tool for
resource leak detection in Android apps[266]

T. Wu, J. Liu, X. Deng, J. Yan, J. Zhang 2016

P43 Detecting energy leaks in android app with
poem [79]

A. Ferrari, D. Gallucci, D. Puccinelli, S.
Giordano

2016

P44 Lightweight measurement and estimation
of mobile ad energy consumption [97]

J. Gui, D. Li, M. Wan, W.G.J. Halfond 2016

P45 AppContext: Differentiating Malicious and
Benign Mobile App Behaviors Using
Context [278]

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, W.
Enck

2015

P46 Mining Apps for Abnormal Usage of
Sensitive Data [15]

V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller,
S. Arzt, S. Rasthofer, E. Bodden

2015

P47 CLAPP: characterizing loops in Android
applications [81]

Y. Fratantonio, A. Machiry, A. Bianchi, C.
Kruegel, G. Vigna

2015
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Table 4 Primary studies (Continued)

ID Title Authors Year

P48 Study and Refactoring of Android
Asynchronous Programming [161]

Y. Lin, S. Okur, D. Dig 2015

P49 Tracking the Software Quality of Android
Applications Along Their Evolution [108]

G. Hecht, O. Benomar, R. Rouvoy, N. Moha, L.
Duchien

2015

P50 Covert Communication in Mobile
Applications [211]

J. Rubin, M.I. Gordon, N. Nguyen, M.C. Rinard 2015

P51 Static Window Transition Graphs for
Android [276]

S. Yang, H. Zhang, H. Wu, Y. Wang, A. Rountev 2015

P52 Static Analysis of Implicit Control Flow:
Resolving Java Reflection and Android
Intents [27]

P. Barros, R. Just, S. Millstein, P. Vines, W.
Dietl, M. D’Amorim, M.D. Ernst

2015

P53 String Analysis of Android Applications [60] J. Del Vecchio, F. Shen, K.M. Yee, B. Wang, S.Y.
Ko, L. Ziarek

2015

P54 Interactively verifying absence of explicit
information flows in Android apps [31]

O. Bastani, S. Anand, A. Aiken 2015

P55 ShamDroid: gracefully degrading
functionality in the presence of limited
resource access [40]

L. Brutschy, P. Ferrara, O. Tripp, M. Pistoia 2015

P56 WuKong: a scalable and accurate two-phase
approach to Android app clone
detection [241]

H. Wang, Y. Guo, Z. Ma, X. Chen 2015

P57 Reevaluating Android Permission Gaps with
Static and Dynamic Analysis [242]

H. Wang, Y. Guo, Z. Tang, G. Bai, X. Chen 2015

P58 Andro-autopsy: Anti-malware system based
on similarity matching of malware and
malware creator-centric information [117]

J. Jang, H. Kang, J. Woo, A. Mohaisen, H.K. Kim 2015

P59 EdgeMiner: Automatically Detecting Implicit
Control Flow Transitions through the
Android Framework [47]

Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C.
Kruegel, G. Vigna, Y. Chen

2015

P60 What the app is that? deception and
countermeasures in the android user
interface [36]

A. Bianchi, J. Corbetta, L. Invernizzi, Y.
Fratantonio, C. Kruegel, G. Vigna

2015

P61 Scalable and Precise Taint Analysis for
Android [113]

W. Huang, Y. Dong, A. Milanova, J. Dolby 2015

P62 AutoPPG: Towards Automatic Generation of
Privacy Policy for Android Applications [284]

L. Yu, T. Zhang, X. Luo, L. Xue 2015

P63 Information-Flow Analysis of Android
Applications in DroidSafe [92]

M.I. Gordon, D.Kim, J.H. Perkins, L.Gilham,
N.Nguyen, M.C. Rinard

2015

P64 StaDynA: Addressing the Problem of
Dynamic Code Updates in the Security
Analysis of Android Applications [305]

Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya,
B. Crispo, F. Massacci

2015

P65 Potential Component Leaks in Android
Apps: An Investigation into a New Feature
Set for Malware Detection [145]

L. Li, K. Allix, D. Li, A. Bartel, T.F. Bissyandé, J.
Klein

2015

P66 Static Control-Flow Analysis of User-Driven
Callbacks in Android Applications [275]

S.Yang, D.Yan, H.Wu, Y.Wang, A.Rountev 2015

P67 Composite Constant Propagation:
Application to Android Inter-Component
Communication Analysis [193]

D. Octeau, D. Luchaup, M. Dering, S. Jha, P.D.
McDaniel

2015

P68 IccTA: Detecting Inter-Component Privacy
Leaks in Android Apps [147]

L. Li, A. Bartel, T.F. Bissyandé, J.Klein, Y. Le
Traon, S. Arzt, S. Rasthofer, E. Bodden, D.
Octeau, P.D. McDaniel

2015

P69 EcoDroid: An Approach for Energy-based
Ranking of Android Apps [34]

R.J. Behrouz, A. Sadeghi, J. Garcia, S. Malek, P.
Ammann

2015

P70 Supor: Precise and scalable sensitive user
input detection for android apps [112]

J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang,
G. Jiang

2015

P71 Uipicker: User-input privacy identification in
mobile applications [186]

Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, X.
Wang

2015
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Table 4 Primary studies (Continued)

ID Title Authors Year

P72 Andro Lyze: A Distributed Framework for
Efficient Android App Analysis [33]

L. Baumgärtner, P. Graubner, N. Schmidt, B.
Freisleben

2015

P73 Using text mining to infer the purpose of
permission use in mobile apps [243]

H. Wang, J. Hong, Y. Guo 2015

P74 Static reference analysis for GUI objects in
Android software [210]

A. Rountev, D. Yan 2014

P75 Static analysis for independent app
developers [39]

L. Brutschy, P. Ferrara, P. Müller 2014

P76 Cochecker: Detecting capability and
sensitive data leaks from component chains
in android [57]

X. Cui, D. Yu, P.P.F. Chan, L.C.K. Hui, S.M. Yiu,
S. Qing

2014

P77 Android Taint Flow Analysis for App
Sets [135]

W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer 2014

P78 Amandroid: A precise and general inter-
component data flow analysis framework for
security vetting of android apps [251]

F. Wei, S. Roy, X. Ou, Robby 2014

P79 AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing
Component Hijacking Attacks in Android
Applications [295]

M. Zhang, H. Yin 2014

P80 Semantics-aware android malware
classification using weighted contextual api
dependency graphs [297]

M. Zhang, Y. Duan, H. Yin, Z. Zhao 2014

P81 DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket [10]

D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, K. Rieck

2014

P82 Retrofitting concurrency for android
applications through refactoring [160]

Y. Lin, C. Radoi, D. Dig 2014

P83 Checking app behavior against app
descriptions [93]

A. Gorla, I. Tavecchia, F. Gross, A. Zeller 2014

P84 Information Flows As a Permission
Mechanism [224]

F. Shen, N. Vishnubhotla, C. Todarka, M.
Arora, B. Dhandapani, E.J. Lehner, S.Y. Ko, L.
Ziarek

2014

P85 Greendroid: Automated diagnosis of energy
inefficiency for smartphone
applications [167]

Y. Liu, C. Xu, S.C. Cheung, J. Lu 2014

P86 FlowDroid: Precise context-,flow-,field-
,object-sensitive and lifecycle-aware taint
analysis for android apps [12]

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A.
Bartel, J. Klein, Y. Le Traon, D. Octeau, P.D.
McDaniel

2014

P87 Cassandra: Towards a Certifying App Store
for Android [169]

S. Lortz, H. Mantel, A. Starostin, T. Bähr, D.
Schneider, A. Weber

2014

P88 Code Injection Attacks on HTML5-based
Mobile Apps:Characterization, Detection
and Mitigation [121]

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, G. Nagesh
Peri

2014

P89 Efficient, context-aware privacy leakage
confinement for android applications
without firmware modding [296]

M. Zhang, H. Yin 2014

P90 Collaborative Verification of Information
Flow for a High-Assurance App Store [67]

M.D. Ernst, R. Just, S. Millstein, W. Dietl, S.
Pernsteiner, F. Roesner, K. Koscher, P. Barros,
R. Bhoraskar, S. Han, P. Vines, E.X. Wu

2014

P91 Multi-App Security Analysis with FUSE:
Statically Detecting Android App
Collusion [207]

T. Ravitch, E.R. Creswick, A. Tomb, A. Foltzer,
T. Elliott, L. Casburn

2014

P92 Characterizing and detecting performance
bugs for smartphone applications [166]

Y. Liu, C. Xu, S.C. Cheung 2014

P93 AsDroid: detecting stealthy behaviors in
Android applications by user interface and
program behavior contradiction [111]

J. Huang, X. Zhang, L. Tan, P. Wang, B. Liang 2014

P94 Apposcopy: semantics-based detection of
Android malware through static analysis [78]

Y. Feng, S. Anand, I. Dillig, A. Aiken 2014
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ID Title Authors Year

P95 Detecting energy bugs and hotspots in
mobile apps [24]

A. Banerjee, L.K. Chong, S. Chattopadhyay, A.
Roychoudhury

2014

P96 Static Analysis for Extracting Permission
Checks of a Large Scale Framework: The
Challenges and Solutions for Analyzing
Android [29]

A. Bartel, J. Klein, M. Monperrus, Y. Le Traon 2014

P97 Responsiveness analysis tool for android
application [195]

T. Ongkosit, S. Takada 2014

P98 Automatically exploiting potential
component leaks in android
applications [144]

L. Li, A. Bartel, J. Klein, Y. Le Traon 2014

P99 Effective inter-component communication
mapping in android: An essential step
towards holistic security analysis [192]

D. Octeau, P.D. McDaniel, S. Jha, A. Bartel, E.
Bodden, J. Klein, Y. Le Traon

2013

P100 DroidAPIMiner: Mining API-level features for
robust malware detection in android [1]

Y. Aafer, W. Du, H. Yin 2013

P101 An empirical study of cryptographic misuse
in android applications [64]

M. Egele, D. Brumley, Y. Fratantonio, C.
Kruegel

2013

P102 Targeted and depth-first exploration for
systematic testing of android apps [16]

T. Azim, I. Neamtiu 2013

P103 Sound and precise malware analysis for
android via pushdown reachability and
entry-point saturation [159]

S. Liang, A.W. Keep, M. Might, S. Lyde, T.
Gilray, Liang, S., Keep, A. W., Might, M., Lyde,
S., Gilray, T., P. Aldous, D. Van Horn

2013

P104 AppIntent: analyzing sensitive data
transmission in android for privacy leakage
detection [282]

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning,
X.S. Wang

2013

P105 AppProfiler: a flexible method of exposing
privacy-related behavior in android
applications to end users [209]

S. Rosen, Z. Qian, Z.M. Mao 2013

P106 Flow permissions for android [110] S. Holavanalli, D. Manuel, V. Nanjundaswamy,
B. Rosenberg, F. Shen, S.Y. Ko, L. Ziarek

2013

P107 Slicing Droids: Program Slicing for Smali
Code [109]

J. Hoffmann, M. Ussath, T. Holz, M.
Spreitzenbarth

2013

P108 A grey-box approach for automated
GUI-model generation of mobile
applications [277]

W. Yang, M.R. Prasad, T. Xie 2013

P109 Structural detection of android malware
using embedded call graphs [88]

H. Gascon, F. Yamaguchi, D. Arp, K. Rieck 2013

P110 Estimating mobile application energy
consumption using program analysis [104]

S. Hao, D. Li, W.G.J. Halfond, R. Govindan 2013

P111 Characterizing and detecting resource leaks
in Android applications [98]

C. Guo, J. Zhang, J. Yan, Z. Zhang, Y. Zhang 2013

P112 Calculating source line level energy
information for Android applications [142]

D. Li, S. Hao, W.G.J. Halfond, R. Govindan 2013

P113 Smartdroid: an automatic system for
revealing ui-based trigger conditions in
android applications [306]

C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X.
Han, W. Zou

2012

P114 Why Eve and Mallory love Android: An
analysis of Android SSL (in) security [69]

S. Fahl, M. Harbach, T. Muders, M. Smith, L.
Baumgärtner, B. Freisleben

2012

P115 User-aware privacy control via extended
static-information-flow analysis [269]

X. Xiao, N. Tillmann, M. Fähndrich, J. De
Halleux, M. Moskal

2012

P116 Dr. Android and Mr. Hide: fine-grained
permissions in android applications [118]

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, T. D. Millstein

2012

P117 LeakMiner: Detect Information Leakage on
Android with Static Taint Analysis [281]

Z. Yang, M. Yang 2012

P118 SCANDAL: Static Analyzer for Detecting
Privacy Leaks in Android Applications [130]

J. Kim, Y. Yoon, K. Yi, J. Shin, S. Center 2012

P119 A framework for static detection of privacy
leaks in android applications [176]

C. Mann, A. Starostin 2012
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ID Title Authors Year

P120 DroidChecker: analyzing android
applications for capability leak [48]

P.P.F. Chan, L. C. K. Hui, S. M. Yiu 2012

P121 DroidMat: Android Malware Detection
through Manifest and API Calls Tracing [260]

D.J. Wu, C.H. Mao, T.E. Wei, H.M. Lee, K.P. Wu 2012

P122 Static analysis of Android programs [200] E. Payet, F. Spoto 2012

P123 Estimating Android applications’ CPU
energy usage via bytecode profiling [103]

H. Hao, D. Li, W. G. J. Halfond, R. Govindan 2012

P124 What is keeping my phone awake?:
characterizing and detecting no-sleep
energy bugs in smartphone apps [198]

A. Pathak, A. Jindal, Y. Charlie Hu, S. P. Midkiff 2012

P125 User-centric dependence analysis for
identifying malicious mobile apps [66]

K.O. Elish, D. Yao, B.G. Ryder 2012

P126 AndroidLeaks: automatically detecting
potential privacy leaks in android
applications on a large scale [90]

C. Gibler, J. Crussell, J. Erickson, H. Chen 2012

P127 Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative
Android Markets. [308]

Y. Zhou, Z. Wang, W. Zhou, X. Jiang 2012

P128 RiskRanker: Scalable and Accurate Zero-day
Android Malware Detection [95]

M.C. Grace, Y.Zhou, Q. Zhang, S. Zou, X. Jiang 2012

P129 Chex: statically vetting android apps for
component hijacking vulnerabilities [170]

L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang 2012

P130 Automatically securing permission-based
software by reducing the attack surface: An
application to android [28]

A. Bartel, J. Klein, Y. Le Traon, M. Monperrus 2012

P131 Android permissions demystified [76] A. Porter Felt, E. Chin, S. Hanna, D. Song, D. A.
Wagner:

2011

P132 Using static analysis for automatic
assessment and mitigation of unwanted
and malicious activities within Android
applications [32]

L. Batyuk, M. Herpich, S. A. Çamtepe, K.
Raddatz, A. D. Schmidt, S. Albayrak

2011

P133 Analyzing Inter-application Communication
in Android [53]

E. Chin, A. Porter Felt, K. Greenwood, D. A.
Wagner

2011

P134 PiOS: Detecting Privacy Leaks in iOS
Applications [63]

M. Egele, C. Kruegel, E. Kirda, G. Vigna 2011

P135 Energypatch: Repairing resource leaks to
improve energy-efficiency of android
apps [26]

A. Banerjee , L. K. Chong, C. Ballabriga, A.
Roychoudhury

2018

P136 A multi-view context-aware approach to
Android malware detection and malicious
code localization [187]

A. Narayanan, M. Chandramohan, L. Chen, Y.
Liu

2018

P137 AndroidOff:Offloading android application
based on cost estimation [51]

X. Chen, J. Chen, B. Liu, Y. Ma, Y. Zhang, H.
Zhong

2019

P138 A SEALANT for Inter-App Security Holes in
Android [139]

Y.K. Lee, J.Y. Bang, G. Safi, A. Shahbazian, Y.
Zhao, N. Medvidovic

2017

P139 LibD: Scalable and Precise Third-party
Library Detection in Android Markets [154]

M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J.
Liu, R. Xue, W. Huo

2017

P140 Self-Hiding Behavior in Android Apps:
Detection and Characterization [221]

Z. Shan, I.G. Neamtiu, S. Raina 2018

P141 Iconintent: automatic identification of
sensitive ui widgets based on icon
classification for android apps [270]

X. Xiao, X. Wang, Z. Cao, H. Wang, P. Gao 2019

P142 Efficiently Manifesting Asynchronous
Programming Errors in Android Apps [70]

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G.
Pu

2018

P143 Semi-automated Discovery of Server-Based
Information Oversharing Vulnerabilities in
Android Applications [136]

W. Koch, A. Chaabane, M. Egele, W.
Robertson, E. Kirda

2017

P144 LibID: Reliable Identification of Obfuscated
Third-Party Android Libraries [294]

J. Zhang, A.R. Beresford, S.A. Kollmann 2019
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ID Title Authors Year

P145 ADS-SA: System for Automatically Detecting
Sensitive Path of Android Applications
Based on Static Analysis [228]

H. Song, D. Lin, S. Zhu, W. Wanga, S. Zhang 2019

P146 CDGDroid: Android malware detection
based on deep learning using CFG and
DFG [273]

Z Xu, K Ren, S Qin, F Craciun 2018

P147 Machine Learning for Android Malware
Detection Using Permission and API
Calls [201]

N. Peiravian, X. Zhu 2013

P148 IIFA: modular inter-app intent information
flow analysis of android applications [235]

A. Tiwari, S. GroSS, C. Hammer 2019

P149 Static Back-Stack Transition Analysis for
Android [163]

A. Liu, C. Guo, W. Wang, Y. Qiu, J. Xu 2019

P150 Android Malware Familial Classification and
Representative Sample Selection via
Frequent Subgraph Analysis [72]

M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q.
Zheng, T. Liu

2018

P151 StateDroid: Stateful Detection of Stealthy
Attacks in Android Apps via Horn-Clause
Verification [125]

M. Junaid, J. Ming, D. Kung 2018

P152 Apkcombiner: Combining multiple android
apps to support inter-app analysis [146]

L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le
Traon

2015

P153 Andarwin: Scalable detection of semantically
similar android applications [56]

J. Crussell, C. Gibler, H. Chen 2013

P154 Appx: an automated app acceleration
framework for low latency mobile app [54]

B. Choi, J. Kim, D. Cho, S. Kim, D. Han 2018

P155 Achieving Accuracy and Scalability
Simultaneously in Detecting Application
Clones on Android Markets [49]

K. Chen, P. Liu, Y. Zhang 2014

P156 Search-Based Energy Testing of Android [56] R. Jabbarvand, J.W. Lin, S. Malek 2019

P157 TeICC: Targeted Execution of
Inter-Component Communications in
Android [4]

M. Ahmad, V. Costamagna, B. Crispo, F.
Bergadano

2017

P158 API compatibility issues in Android: Causes
and effectiveness of data-driven detection
techniques [217]

S. Scalabrino, G. Bavota, M. Linares-Vásquez,
V. Piantadosi, M. Lanza, R. Oliveto

2018

P159 Androlic: an extensible flow, context, object,
field, and path-sensitive static analysis
framework for Android [196]

L. Pan, B. Cui, J. Yan, X. Ma, J. Yan, J. Zhang 2019

P160 EvoDroid: Segmented Evolutionary Testing
of Android Apps [175]

R. Mahmood, N. Mirzaei, S. Malek 2014

P161 LibRadar: Fast and Accurate Detection of
Third-party Libraries in Android Apps [174]

Z. Ma, H. Wang, Y. Guo, X. Chen 2016

P162 Open Doors for Bob and Mallory: Open Port
Usage in Android Apps and Security
Implications [119]

Y.J. Jia; Q.A. Chen; Y. Lin; C. Kong; Z. Morley
Mao

2017

P163 Finding flaws from password authentication
code in Android apps [173]

S. Ma, E. Bertino, S. Nepal, J. Li, D. Ostry, R.H.
Deng, S. Jha

2019

P164 Detecting Third-Party Libraries in Android
Applications with High Precision and
Recall [301]

Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang,
M. Yang, H. Chen

2018

P165 EARMO: An Energy-Aware Refactoring
Approach for Mobile Apps [184]

R. Morales, R. Saborido, F. Khomh, F. Chicano,
G. Antoniol

2018

P166 DelDroid : An automated approach for
determination and enforcement of
least-privilege architecture in android [101]

M. Hammad, H. Bagheri, S. Malek 2019

P167 Lifting inter-app data-flow analysis to large
app sets [215]

F. Sattler, A. von Rhein, T. Berger, N.S.
Johansson, M.M. Hardø, S. Apel

2018

P168 Leveraging Program Analysis to Reduce
User-Perceived Latency in Mobile
Applications [304]

Y. Zhao, M.S. Laser, Y. Lyu, N. Medvidovic 2018
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Table 4 Primary studies (Continued)

ID Title Authors Year

P169 Graph Embedding based Familial Analysis of
Android Malware using Unsupervised
Learning [73]

M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q.
Zheng, T. Liu

2019

P170 PATDroid: Permission-Aware GUI Testing of
Android [212]

A. Sadeghi, R. Jabbarvand, S. Malek 2017

P171 Together Strong: Cooperative Android App
Analysis [199]

F. Pauck, H. Wehrheim 2019

P172 Android testing via synthetic symbolic
execution [84]

X. Gao; S.H. Tan; Z. Dong, A. Roychoudhury 2018

P173 Self-Protection of Android Systems from
Inter-component Communication
Attacks [100]

M. Hammad, J. Garcia, S. Malek 2018

P174 MalScan: Fast Market-Wide Mobile Malware
Scanning by Social-Network Centrality
Analysis [267]

W. Yueming, L. XiaoDi, Z. Deqing, Y. Wei, Z.
Xin, J. Hai

2019

P175 Automated API-Usage Update for Android
Apps [74]

M. Fazzini, Q. Xin, A. Orso 2019

P176 Leila: formal tool for identifying mobile
malicious behaviour [46]

G. Canfora, F. Martinelli, F. Mercaldo, V.
Nardone, A. Santone, C.A. Visaggio

2018

P177 Re-checking App Behavior against App
Description in the Context of Third-party
Libraries [288]

C. Zhang, H. Wang, R. Wang, Y. Guo, G. Xu 2018

P178 VAnDroid: A framework for vulnerability
analysis of Android applications using a
model-driven reverse engineering
technique [190]

A. Nirumand, B. Zamani, B.T. Ladani 2019

P179 AnFlo: Detecting Anomalous Sensitive
Information Flows in Android Apps [62]

B. Fisseha Demissie, M. Ceccato, L. Khin Shar 2018

P180 PaddyFrog: systematically detecting
confused deputy vulnerability in Android
applications [263]

J. Wu, T. Cui, T. Ban, S. Guo, L. Cui 2015

P181 Dalvik Opcode Graph Based Android
Malware Variants Detection Using Global
Topology Features [293]

J. Zhang, Z. Qin, K. Zhang, H. Yin, J. Zou 2018

P182 Obfusifier: Obfuscation-resistant Android
malware detection system

2019

P183 On automatically detecting similar Android
apps [158]

Z. Li, J. Sun, Q. Yan, W. Srisa-an, Y. Tsutano 2016

P184 Contextual policy enforcement in android
applications with permission event
graphs [50]

K.Z. Chen, N.M. Johnson, V. D’Silva, S. Dai, K.
MacNamara, T. Magrino, E. Wu, M. Rinard, D.
Song

2013

P185 Toward a framework for detecting privacy
policy violations in android application
code [226]

R. Slavin, X. Wang, M.B. Hosseini, J. Hester, R.
Krishnan, J. Bhatia, T.D. Breaux, J. Niu

2016

P186 LUDroid: A large scale analysis of
Android–Web hybridization [236]

A. Tiwari, J. Prakash, S. GroSS, C. Hammer 2019

P187 COVERT: Compositional Analysis of Android
Inter-App Permission Leakage [20]

H. Bagheri, A. Sadeghi, J. Garcia, S. Malek 2015

P188 Data-Driven Solutions to Detect API
Compatibility Issues in Android: An
Empirical Study [216]

S. Scalabrino, G. Bavota, M. Linares-Vásquez,
M. Lanza, R. Oliveto

2019

P189 Harvesting Developer Credentials in
Android Apps [309]

Y. Zhou, L. Wu, Z. Wang, X. Jiang 2015

P190 Learning Performance Optimization from
Code Changes for Android Apps [77]

R. Feng, G. Meng, X. Xie, T. Su, Y. Liu, S. Lin 2019

P191 Guided, Stochastic Model-Based GUI Testing
of Android Apps [231]

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y.
Yao, G. Pu, Y. Liu, Z. Su

2017

P192 Understanding the purpose of permission
use in mobile apps [244]

H. Wang, Y. Li, Y. Guo, Y. Agarwal, J.I. Hong 2017
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Table 4 Primary studies (Continued)

ID Title Authors Year

P193 Smv-hunter: Large scale, automated
detection of ssl/tls man-in-the-middle
vulnerabilities in android apps [230]

D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin,
L. Khan

2014

P194 Android HIV: A Study of Repackaging
Malware for Evading Machine-Learning
Detection [52]

X.Chen, C. Li, D. Wang, S. Wen, J. Zhang, S.
Nepal, Y. Xiang, K. Ren

2019

P195 Lightweight, Obfuscation-Resilient
Detection and Family Identification of
Android Malware [86]

J. Garcia, M. Hammad, S. Malek 2018

P196 Who changed you? Obfuscator
identification for Android [247]

Y. Wang, A. Rountev 2017

P197 Enhancing the description-to-behavior
fidelity in android apps with privacy
policy [286]

L. Yu, X. Luo, C. Qian, S. Wang, H.K.N. Leung 2018

P198 Static window transition graphs for
Android [276]

S. Yang, H. Wu, H. Zhang, Y. Wang, C.
Swaminathan, D. Yan, A. Rountev

2018

P199 An Efficient, Robust, and Scalable Approach
for Analyzing Interacting Android Apps [237]

Y. Tsutano, S. Bachala, W. Srisa-An, G.
Rothermel, J. Dinh

2017

P200 A Temporal Permission Analysis and
Enforcement Framework for Android [213]

A. Sadeghi, R. Jabbarvand, N. Ghorbani, H.
Bagheri, S. Malek

2018

P201 GUILeak: Tracing Privacy Policy Claims on
User Input Data for Android
Applications [245]

X. Wang, X. Qin, M.B. Hosseini, R. Slavin, T.
Breaux, J. Niu

2018

P202 Towards understanding and reasoning
about android interoperations [18]

S. Bae, S. Lee, S. Ryu 2019

P203 OASIS: Prioritizing Static Analysis Warnings
for Android Apps Based on App User
Reviews [253]

L. Wei, Y. Liu, S.C. Cheung 2017

P204 ServDroid: Detecting Service Usage
Inefficiencies in Android Applications [229]

W. Song, J. Zhang, J. Huang 2019

P205 TDroid: Exposing App Switching Attacks in
Android with Control Flow
Specialization [165]

J. Liu, D. Wu, J. Xue 2018

P206 Characterizing and identifying misexposed
activities in android applications [274]

J. Yan, X. Deng, P. Wang, T. Wu, J. Yan, J.
Zhang

2018

P207 OAUTHLINT: An Empirical Study on OAuth
Bugs in Android Applications [5]

T. Al Rahat, Y. Feng, Y. Tian 2019

P208 Remove RATs from Your Code: Automated
Optimization of Resource Inefficient
Database Writes for Mobile
Applications [171]

Y. Lyu, D. Li, W.G.J. Halfond 2018

P209 Systematic detection of capability leaks in
stock Android smartphones [96]

M.C. Grace, Y. Zhou, Z. Wang, X. Jiang 2012

P210 Understanding the inconsistencies between
text descriptions and the use of
privacy-sensitive resources of mobile
apps [250]

T. Watanabe, M. Akiyama, T. Sakai, T. Mori 2015

P211 Refactoring Android Java Code for
On-Demand Computation Offloading [299]

Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei,
S. Yang

2012

P212 Jitana: A modern hybrid program analysis
framework for android platforms [165]

Y. Tsutano, S. Bachala, W. Srisa-an, G.
Rothermel, J. Dihn

2019

P213 DroidAlarm: an all-sided static analysis tool
for Android privilege-escalation
malware [307]

Y. Zhongyang, Z. Xin, B. Mao, L. Xie 2013

P214 Tackling runtime-based obfuscation in
Android with TIRO [259]

M.Y. Wong, D. Lie 2018

P215 Grandroid: Graph-based detection of
malicious network behaviors in android
applications [157]

Z. Li, J. Sun, Q. Yan, W. Srisa-an, S. Bachala 2018
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ID Title Authors Year

P216 ViewDroid: Towards obfuscation-resilient
mobile application repackaging
detection [290]

F. Zhang, H. Huang, S. Zhu, D. Wu, P. Liu 2014

P217 Towards automatic generation of
security-centric descriptions for android
apps [298]

M. Zhang, Y. Duan, Q. Feng, H. Yin 2015

P218 DeepIntent: Deep icon-behavior learning for
detecting intention-behavior discrepancy in
mobile apps [268]

S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu,
H. Wang, P. Gao, Z. Liu, F. Xu, J. Lu

2019

P219 SENTINEL: generating GUI tests for sensor
leaks in Android and Android wear
apps [262]

H. Wu, H. Zhang, Y. Wang, A. Rountev 2019

P220 LESDroid - A Tool for Detecting Exported
Service Leaks of Android Applications [172]

J. Ma, S. Liu, Y. Jiang, X. Tao, C .Xu, J. Lu 2018

P221 Static detection of energy defect patterns in
Android applications [261]

H.Wu, S. Yang, A. Rountev 2016

P222 Wechecker: efficient and precise detection
of privilege escalation vulnerabilities in
android apps [58]

X. Cui, J. Wang, L.C.K. Hui, Z. Xie, T. Zeng, S.
Yiu

2015

P223 Launch-Mode-Aware Context-Sensitive
Activity Transition Analysis [302]

Y. Zhang, Y. Sui, J. Xue 2018

P224 SIG-Droid: Automated System Input
Generation for Android Applications [181]

N. Mirzaei, H. Bagheri, R. Mahmood, S. Malek 2015

P225 Reducing Combinatorics in GUI Testing of
Android Applications [182]

N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, S.
Malek

2016

P226 Detection of Design Flaws in the Android
Permission Protocol Through Bounded
Verification [19]

H. Bagheri, E. Kang, S. Malek, D. Jackson 2015

P227 Reliable third-party library detection in
android and its security applications [17]

M. Backes, S. Bugiel, E. Derr 2016

P228 IntelliDroid: A Targeted Input Generator for
the Dynamic Analysis of Android
Malware [258]

M.Y. Wong, D. Lie 2016

P229 EnMobile: Entity-based Characterization and
Analysis of Mobile Malware [279]

W. Yang, M.R. Prasad, T. Xie 2018

P230 Ordol: Obfuscation-Resilient Detection of
Libraries in Android Applications [234]

D. Titze, M. Lux, J. Schuette 2017

P231 Towards model checking android
applications [23]

G. Bai, Q. Ye, Y. Wu, H. Botha, J. Sun, Y. Liu, J.
Dong, W. Visser

2018

P232 Security code smells in Android ICC [83] P. Gadient, M. Ghafari, P. Frischknecht, O.
Nierstrasz

2019

P233 Characterizing malicious Android apps by
mining topic-specific data flow
signatures [280]

X. Yang, D. Lo, L. Li, X. Xia, T.F. Bissyandé, J.
Klein

2017

P234 Making Malory Behave Maliciously: Targeted
Fuzzing of Android Execution
Environments [206]

S. Rasthofer, S. Arzt, S. Triller, M. Pradel 2017

P235 DroidStar: Callback Typestates for Android
Classes [205]

A. Radhakrishna, N.V. Lewchenko, S. Meier, S.
Mover, K.C. Sripada, D. Zufferey, B.E. Chang,
P. Cherny

2018

P236 PIVOT: Learning API-Device Correlations to
Facilitate Android Compatibility Issue
Detection [254]

L. Wei, Y. Liu, S.C. Cheung 2019

P237 Automatic Generation of Inter-Component
Communication Exploits for Android
Applications [85]

J. Garcia, M. Hammad, N. Ghorbani, S. Malek 2017

P238 Neural-augmented static analysis of Android
communication [303]

J. Zhao, A. Albarghouthi, V. Rastogi, S. Jha, D.
Octeau

2018
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Table 4 Primary studies (Continued)

ID Title Authors Year

P239 Understanding and Detecting
Evolution-Induced Compatibility Issues in
Android Apps [106]

D. He, L. Li, L. Wang, H. Zheng, G. Li, J. Xue 2018

P240 Goal-Driven Exploration for Android
Applications [137]

D. Lai, J. Rubin 2019

P241 CiD: Automating the Detection of
API-related Compatibility Issues in Android
Apps [152]

L. Li, T.F. Bissyandé́, H. Wang, J. Klein 2018

P242 QADroid: Regression Event Selection for
Android Applications [223]

A. Sharma, R. Nasre 2019

P243 Automated analysis of privacy requirements
for mobile app [310]

S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B.
Liu, F. Schaub, W. Shomir, N.M. Sadeh, S.M.
Bellovin, J.R. Reidenberg

2017

P244 apk2vec: Semi-supervised multi-view
representation learning for profiling Android
applications [188]

A. Narayanan, C. Soh, L. Chen, Y. Liu, L. Wang 2018

P245 Collusive Data Leak and More: Large-scale
Threat Analysis of Inter-app
Communications [37]

A. Bosu, F. Liu, D. Yao, G. Wang 2017

P246 Efficient, Evolutionary Security Analysis of
Interacting Android Apps [22]

H. Bagheri, J. Wang, J. Aerts, S. Malek 2018

P247 Detecting Passive Content Leaks and
Pollution in Android Applications [120]

Y.Z.X. Jiang, Z. Xuxian 2013

P248 Dapasa: detecting android piggybacked
apps through sensitive subgraph
analysis [71]

M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu 2017

P249 Orlis: Obfuscation-resilient library detection
for Android [248]

Y. Wang, H. Wu, H. Zhang, A. Rountev 2018

P250 Juxtapp: A scalable system for detecting
code reuse among android
applications [102]

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, D.
Song

2012

P251 A new android malware detection approach
using bayesian classification [283]

S.Y. Yerima, S. Sezer, G. McWilliams, I. Muttik 2013

P252 Towards a Scalable Resource-driven
Approach for Detecting Repackaged
Android Applications [222]

Y. Shao, X. Luo, C. Qian, P. Zhu, L. Zhang 2014

P253 Efficiently Manifesting Asynchronous
Programming Errors in Android Apps [70]

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G.
Pu

2018

P254 Automatically Discovering, Reporting and
Reproducing Android Application
Crashes [185]

K. Moran, M. Linares-Vásquez, C.
Bernal-Cárdenas; C. Vendome; D.
Poshyvanyk

2016

P255 HornDroid: Practical and Sound Static
Analysis of Android Applications by SMT
Solving [44]

S. Calzavara, I. Grishchenko, M. Maffei 2016

P256 Android Multitasking Mechanism: Formal
Semantics and Static Analysis of Apps [107]

J. He, T. Chen, P. Wang, Z. Wu, J. Yan 2019

P257 Privacy Leakage through Exploitation of
Vulnerable Inter-App Communication on
Android [177]

H.M.A. Maqsood, K.N. Qureshi, F. Bashir, N.U.
Islam

2019

P258 Revisiting the impact of common libraries
for android-related investigations [153]

L. Li, T. Riom, T.F. Bissyandé, H. Wang, J. Klein 2019

P259 Authorship attribution of Android apps [91] H. Gonzalez, N. Stakhanova, A.A. Ghorbani 2018

P260 Improving accuracy of Android malware
detection with lightweight contextual
awareness [7]

J. Allen, M. Landen, S. Chaba, Y. Ji, S.P.H.
Chung, W. Lee

2018

P261 Characterizing and Detecting Inefficient
Image Displaying Issues in Android
Apps [155]

W. Li, Y. Jiang, C. Xu, Y. Liu, X. Ma, J. Lù 2019
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