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Abstract

We study the evolution in equilibrium of the fluctuations for the conserved quantities of
a chain of anharmonic oscillators in the hyperbolic space-time scaling. Boundary conditions
are determined by applying a constant tension at one side, while the position of the other
side is kept fixed. The Hamiltonian dynamics is perturbed by random terms conservative
of such quantities. We prove that these fluctuations evolve macroscopically following the
linearized Euler equations with the corresponding boundary conditions, even in some time
scales larger than the hyperbolic one.

1. Introduction

The deduction of Euler equations for a compressible gas from the microscopic dynamics under
a space-time scaling limit is one of the main problems in statistical mechanics [16]. With a
generic assumption of local equilibrium, Euler equations can be formally obtained in the limit,
but a mathematical proof starting from deterministic Hamiltonian dynamics is still an open
problem. The eventual appearance of shock waves complicates further the task, and in this
case, it is expected the convergence to weak entropic solutions of Euler equations.

Some mathematical results have been obtained by perturbing the Hamiltonian dynamics
by random terms that conserve only energy and momentum, in such a way that the dynamics
has enough ergodicity to generate some form of local equilibrium (cf. [18, 6]). These results
are obtained by relative entropy techniques and restricted to the smooth regime of the Euler
equations. The noise introduced in these works are essentially random collisions between close
particles and acts only on the velocities. Under such random perturbations, the only conserved
quantities are those that evolve macroscopically with the Euler equations [11]. Actually, ran-
dom dynamics and local equilibrium are only tools to obtain the separation of scales between
microscopic and macroscopic modes necessary in order to close the Euler equations. In the
deterministic dynamics of harmonic oscillators with random masses (not ergodic), Anderson
localization provides such separation of scales [5].

In this article we study the evolution of the fluctuations of the conserved quantities. When
the system is in equilibrium at certain averaged values of the conserved quantities, these have
Gaussian macroscopic fluctuations. The aim is to prove that these fluctuations, in the macro-
scopic space-time scaling limit, evolve deterministically following the linearized Euler equations.
It turns out that this is more difficult than proving the hydrodynamic limit, as it requires the
control of the space-time variance of the currents of the conserved quantities. More precisely it
demands to prove that the currents are equivalent (in the norm introduced by the space-time
variance) to linear functions of the conserved quantities. This step is usually called Boltzmann-
Gibbs principle (cf. [7, 13]). This is the main part of the proof, and it forces us to consider
elliptic type of stochastic perturbations, i.e., noise terms that act also on the positions, not
only on the velocities, still maintaining the same conserved quantities.
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The system we consider is N+1 coupled anharmonic oscillators, similar to the one considered
in [6]. For i = 0, . . . , N , the momentum (or velocity, since we set the masses equal to 1) of the
particle i is denoted by pi ∈ R, while qi ∈ R denotes its position. Particle 0 is attached to some
fixed point, thus p0 = 0, q0 = 0. Meanwhile, particle N is pulled (or pushed) by a force τ ∈ R,
which is constant in time.

Each pair of consecutive particles (i−1, i) is connected by a (nonlinear) spring with potential
V (qi− qi−1). We need to assume certain assumptions for the potential energy V : R→ R. The
energy of the system is then given by

HN (p,q) =

N∑
i=1

[
p2
i

2
+ V

(
qi − qi−1

)]
.

Therefore, the inter-particle distances {ri = qi − qi−1; 1 ≤ i ≤ N} are the essentially relevant
variables. Notice that here ri can also assume negative values. Let ei = p2

i /2 + V (ri) be the
energy assigned to i-th particle, then HN =

∑
ei. The corresponding Hamiltonian dynamics

locally conserves the sums of pi, ri and ei. By adding proper stochastic perturbations on the
deterministic dynamics, we can make them the only conserved quantities.

Let wi = (pi, ri, ei) be the vector of conserved quantities. The hydrodynamic limit is given
by the convergence, for any continuous G on [0, 1],

1

N

N∑
i=1

wi(Nt)G

(
i

N

)
−→
N→∞

∫ 1

0

w(t, x)G(x)dx,

where w = (p, r, e) solves the compressible Euler equations

∂tw = ∂xF (w), F (w) =
(
τ (r, u), p, τ (r, u)p

)
, u = e− p2/2, (1.1)

with boundary conditions given by

p(0, t) = 0, τ (r(1, t), u(1, t)) = τ,

where τ (r, e) is the tension function defined in (2.7) later. In the smooth regime of (1.1), this
is proven by relative entropy techniques in [6].

We consider here the system in equilibrium, starting with the Gibbs measure

N∏
i=1

exp {λ · (ri, ei)− G (λ)} dpi dri, (1.2)

for given λ = (βτ,−β) ∈ R× R−, where G is the Gibbs potential given by

G (λ) = ln

(∫
R

exp{−βV (r) + βτr}dr
)

+
1

2
ln

(
2π

β

)
. (1.3)
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Denote by Eλ,N the expectation with respect to the measure in (1.2). Correspondingly, there
are equilibrium values 0 = Eλ,N [pi], r̄ = Eλ,N [ri], ē = Eλ,N [ei] for the conserved quantities.
The empirical distribution of the fluctuations of the conserved quantities is defined by

1√
N

N∑
i=1

 pi(Nt)
ri(Nt)− r̄
ei(Nt)− ē

 δ

(
x− i

N

)
.

Formally, it is expected to converge to the solution w̃ = (p̃, r̃, ẽ) of

∂tw̃ = F ′(0, r̄, ē)∂xw̃, (1.4)

where F ′(w̄) is the Jacobian matrix of F , with boundary conditions

p̃(t, 0) = 0,
∂τ

∂r

∣∣∣
(r̄,ē)

r̃(t, 1) +
∂τ

∂e

∣∣∣
(r̄,ē)

ẽ(t, 1) = 0, (1.5)

and a proper Gaussian stationary initial distribution. Notice that w̃(t) takes values as distri-
butions on [0, 1], so (1.4) with the boundary conditions (1.5) should be intended in the weak
sense, as rigorously defined in Section 3.

While the non-equilibrium hydrodynamic limit can be proven by adding a simple exchange
of pi with pi+1 at random independent times (cf. [6]), in order to prove (1.4) we need to add, for
each bond (i, i+1), a stochastic perturbation that exchanges (pi, pi+1, ri, ri+1) in such way that
ri+ ri+1, pi+pi+1, ei+ ei+1 are conserved. The corresponding microcanonical surface is a one-
dimensional circle, where we add a Wiener process. This stochastic perturbation corresponds
to adding a symmetric second order differential operator SN defined by (2.2) that is elliptic on
the corresponding microcanonical surfaces. The main part of the article is the proof of a lower
bound of order N−2 on the spectral gap of SN that is independent of the values of the conserved
quantities. This is an important ingredient for proving the Boltzmann-Gibbs linearization for
the dynamics.

The present article contains the first result on equilibrium fluctuations for anharmonic chain
of oscillators with multiple conserved quantities. Previous results concerned only linear dynam-
ics or vanishing anharmonicity (eg. [4] for a system with two conserved quantities). Another
novelty of the present article is the presence of non-linear boundary conditions (tension at
the border), as previous results on equilibrium fluctuations concern systems with no boundary
conditions, or linear in the conserved quantities.

The hyperbolic scale describes the time for the system to reach its mechanical equilibrium.
Beyond that, it takes more time to reach the thermal equilibrium. It is a natural question to
investigate the behaviour of the equilibrium fluctuations in larger time scales. In Theorem 3.3
we prove for our anharmonic system that the equilibrium fluctuations on the three conserved
quantities continue to evolve deterministically according to the linearized Euler equations up
to a time scale Nat with a ∈ [1, 6/5). For harmonic chain with two conserved quantities
and no boundary conditions an analogous result can be found in [3]. Superdiffusion of energy
fluctuations is conjectured in [21], and should appear for some a ≥ 3/2. This has been proven
rigorously for harmonic chains with conservative noise (cf. [12] for dynamics with 3 conserved
quantities and [2] with two conserved quantities). Results in [12] extends also to the non-
stationary superdiffusive evolution of the energy density, while the other two quantities evolve
diffusively [15]. See also the review [1] and the other articles in the same volume about the
numerical evidence in non-linear dynamics. The extension of such superdiffusive results to
the non-linear dynamics is one of the most challenging problem. Some results for vanishing
anharmonicity can be found in [4].

We believe that such macroscopic behavior of the equilibrium fluctuations should be valid
also for the deterministic (non-linear) dynamics, but even the case with a stochastic perturba-
tion acting only on the velocities remains an open problem.
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Another important open problem concerns the evolution of fluctuations out of equilibrium.
For system with one conserved quantity, like the asymmetric simple exclusion, in the context
of the hyperbolic scaling this has been proven in [20].

2. The microscopic model

In this section we state the rigorous definition of the microscopic dynamics. Let V be a convex,
C4-smooth function on R with quadratic growth:

inf
r∈R

V ′′(r) > 0, sup
r∈R

V ′′(r) <∞. (2.1)

Observe that (2.1) assures that V (r) acquires its minimum at some unique point r0 ∈ R. By
replacing V with V∗ = V (·+ r0)− V (r0), we can assume without loss of generality that V ≥ 0,
V (0) = 0 and V ′(0) = 0.

For N ≥ 1, let ΩN = R2N be the configuration space. Its elements are denoted by

η = (p, r); p = (p1, . . . , pN ), r = (r1, . . . , rN ).

Fix τ ∈ R, p0 = 0, and define first-order differential operators Xi acting on smooth functions
on ΩN by

Xi = (pi − pi−1)
∂

∂ri
+
(
V ′(ri+1)− V ′(ri)

) ∂
∂pi

, for 1 ≤ i ≤ N − 1,

XN = (pN − pN−1)
∂

∂rN
+
(
τ − V ′(rN )

) ∂

∂pN
.

In addition, define Yi,i+1 for 1 ≤ i ≤ N − 1 as

Yi,i+1 = (pi+1 − pi)
(

∂

∂ri+1
− ∂

∂ri

)
−
(
V ′(ri+1)− V ′(ri)

)( ∂

∂pi+1
− ∂

∂pi

)
.

For any γ > 0, the generator LN is given by

LN = AN + γSN , AN =

N∑
i=1

Xi, SN =
1

2

N−1∑
i=1

Y2
i,i+1. (2.2)

The Liouville operator AN generates the Hamiltonian system introduced in Section 1, while
each Yi,i+1 generates a continuous stochastic perturbation on (pi, pi+1, ri, ri+1), preserving the
amounts of pi + pi+1, ri + ri+1 and ei + ei+1. This choice of noises assures that pi, ri and ei
are the only locally conserved quantities.

Denote by πλ,N the Gibbs measure in (1.2). The class of bounded, smooth functions on ΩN
forms a core of AN and SN in L2(πλ,N ), and for such f and g,

Eλ,N
[
(ANf)g

]
= −Eλ,N

[
f(ANg)

]
, Eλ,N

[
(SNf)g

]
= Eλ,N

[
f(SNg)

]
.

In particular, πλ,N is stationary with respect to LN . Moreover,

Eλ,N
[
f(−LNf)

]
= γEλ,N

[
f(−SNf)

]
=
γ

2

N∑
i=1

Eλ,N
[
(Yi,i+1f)2

]
.

Denote by w̄ = Eλ,N [wi], then w̄ = (0, r̄(λ), ē(λ)), where

(r̄(λ), ē(λ)) = ∇λG (λ) =

(
1

β

∂

∂τ
,
τ

β

∂

∂τ
− ∂

∂β

)
G . (2.3)

4



where G (λ) is defined in (1.3). It is also worth noticing that the tension in equilibrium is
Eλ,N [V ′(ri)] = τ . Furthermore, the covariance matrix Σ = Σ(λ) of wi under πλ,N is given by

Σ = Eλ,N
[
(wi − w̄)⊗ (wi − w̄)

]
=

 β−1 0 0

0
0

G ′′(λ)

 , (2.4)

where G ′′(λ) stands for the Hessian matrix of G calculated in λ.
Define the thermodynamic entropy S for r ∈ R and e > 0 by

S (r, e) = −G ∗(r, e), G ∗ = sup
λ∈R×R−

{
λ · (r, e)− G (λ)

}
.

Under our assumptions, G is strictly convex and so is its Legendre transform G ∗. Hence, S is
strictly concave. By the general theories in Legendre transform,

λ(r, e) = ∇r,eG ∗(r, e) = −∇r,eS (r, e) ∈ R× R− (2.5)

gives the inverse of λ→ ∇λG (λ). In view of (2.3),

G ′′(λ)S ′′(r̄(λ), ē(λ)) = G ′′(λ(r, e))S ′′(r, e) = −I2×2. (2.6)

For convenience, we denote λ = (βτ ,−β), where

β(r, e) = ∂eS (r, e), τ (r, e) = −∂rS (r, e)

∂eS (r, e)
. (2.7)

By (2.5), β(r, e) is always positive, and

∂τ

∂r
+ τ

∂τ

∂e
=

1

β

(
− ∂

2S

(∂r)2
+

1

β

∂β

∂r

∂S

∂r

)
− 1

β2

∂S

∂r

(
−∂

2S

∂r∂e
+

1

β

∂β

∂e

∂S

∂r

)
= − 1

β3

(
β2 ∂

2S

(∂r)2
− β

∂2S

∂r∂e

∂S

∂r
− β

∂2S

∂r∂e

∂S

∂r
+
∂2S

∂e2

[
∂S

∂r

]2
)

=
1

β3

(
∂S

∂e
,−∂S

∂r

)
· (−S )′′

(
∂S

∂e
,−∂S

∂r

)
.

Since S is strictly concave, one can conclude that

∂τ

∂r
+ τ

∂τ

∂e
> 0. (2.8)

For each N ≥ 1, denote by {ηt ∈ ΩN ; t ≥ 0} the Markov process generated by NLN .
Observe that ηt = (p(t), r(t)) can be equivalently expressed by the solution to the following
system of stochastic differential equations:

dp1(t) = N∇NV ′(r1)dt+ dJp1 ,

dpi(t) = N∇NV ′(ri)dt−∇∗NdJ
p
i , for 2 ≤ i ≤ N − 1,

dpN (t) = N
[
τ − V ′(rN )

]
dt− dJpN−1,

dr1(t) = Np1dt+ dJr1 ,

dri(t) = N∇Npi−1dt−∇∗NdJri , for 2 ≤ i ≤ N − 1,

drN (t) = N∇NpN−1dt− dJrN−1,

(2.9)

where for any sequence {fi}, ∇Nfi = fi+1 − fi, ∇∗Nfi = fi−1 − fi,

dJpi =
γN

2

[
V ′′(ri+1) + V ′′(ri)

]
∇Npidt+

√
γN
(
∇NV ′(ri)

)
dBit,

dJri = γN∇NV ′(ri)dt−
√
γN(∇Npi)dBit,
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and {Bi; i ≥ 1} is an infinite system of independent, standard Brownian motions. Let Pλ,N be
the probability measure on the path space C([0,∞),ΩN ) induced by (2.9) and initial condition
πλ,N . The corresponding expectation is denoted by Eλ,N .

We are interested in the evolution of the fluctuations of the balanced quantities of {ηt} in
macroscopic time. For a smooth function H : [0, 1] → R3, define the empirical distribution of
conserved quantities fluctuation field on H as

YN (t,H) =
1√
N

N∑
i=1

H

(
i

N

)
·
(
wi(ηt)− w̄

)
, ∀t ≥ 0, (2.10)

Notice that we consider in (2.10) the hyperbolic scaling, where the space and time variables are
rescaled by the same order of N .

We close this section with some useful notations. Throughout this article, | · | and · always
refer to the standard Euclidean norm and inner product in Rd. Let H be the space of three-
dimensional functions f = (f1, f2, f3) on [0, 1], where each fi is square integrable. The scalar
product and norm on H are given by

〈f, g〉 =

∫ 1

0

f(x) · g(x)dx, ‖f‖2 =

∫ 1

0

|f(x)|2dx.

Then H is a Hilbert space, and denote by H ′ its dual space, consisting of all bounded linear
functionals on H . Note that the definition in (2.10) satisfies that:

Eλ,N
[
Y 2
N (t,H)

]
≤ |Tr Σ(λ)| · 1

N

N∑
i=1

∣∣∣∣H ( i

N

)∣∣∣∣2 .
Thus, one can easily extend the definition of YN (t,H) to all H ∈H . For all N ≥ 1, t ≥ 0 and
H ∈H , YN (t,H) ∈ L2(ΩN ;πλ,N ).

3. Euler system with boundary conditions

In this section we state the precise definition of the solution to (1.4), (1.5) with proper random
distribution-valued initial condition. The equation (1.4) can be written explicitly as

∂tp̃ = τr∂xr̃ + τe∂xẽ, ∂tr̃ = ∂xp̃, ∂tẽ = τ∂xp̃,

where (τr, τe) are constants given by

τr(λ) =
∂

∂r
τ
(
r̄(λ), ē(λ)

)
, τe(λ) =

∂

∂e
τ
(
r̄(λ), ē(λ)

)
. (3.1)

Recall that (β, τ )(r̄(λ), ē(λ)) = (β, τ) are constants, and by (2.7), ∂rS = −βτ , ∂eS = β.
Formally define the linear transformation

τ̃ = τr r̃ + τeẽ, S̃ = −βτ r̃ + βẽ.

The new coordinates τ̃ , S̃ can be viewed as the fluctuation field of tension and thermodynamic
entropy, respectively. From (1.4), (p̃, τ̃ , S̃) evolves with the equation

∂tp̃ = ∂xτ̃ , ∂tτ̃ = c2∂xp̃, ∂tS̃ = 0, (3.2)

where the constant c > 0 is the speed of sound given by

c2 = τr + ττe > 0,
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cf. (2.8) and [21, (3.10)]. This transformation also decouples the boundary conditions:

p̃(t, 0) = 0, τ̃(t, 1) = 0. (3.3)

It turns to be clear that (p̃, τ̃) are two coupled sound modes with mixed boundaries, while S̃
is independent of (p̃, τ̃) and does not evolve in time. Suppose that the initial data is smooth
and satisfies the boundary conditions, one can easily obtain the smooth solution w̃ = w̃(t, x)
to (1.4), (1.5) by applying the inverse transformation.

Since w̃(0) is a Gaussian random filed, to present the idea above rigorously, we have to
consider the weak solution. Define a subspace C (λ) of H by

C (λ) =
{
g = (g1, g2, g3)

∣∣ gi ∈ C1([0, 1]), g1(0) = 0, τrg2(1) + τeg3(1) = 0
}
.

Define the first-order differential operator L on C (λ) by

L = B

(
d

dx

)
, where B = F ′(w̄) =

0 τr τe
1 0 0
τ 0 0

 .
Observe that B has three real eigenvalues {0,±c}, thus generates a hyperbolic system. With
some abuse of notations, denote the closure of L on H still by L. For i = 1, 2, let {µi,n;n ≥ 0}
be two Fourier bases of L2([0, 1]) given by

µ1,n(x) =
√

2 sin(θnx), µ2,n(x) =
√

2 cos(θnx), θn =
(2n+ 1)π

2
. (3.4)

Notice that µ1,n(0) = µ2,n(1) = 0, in accordance with the boundary conditions in (3.3). For
k ≥ 1, define the Sobolev spaces

Hk =

{
f = (f1, f2)

∣∣∣∣ 2∑
i=1

∞∑
n=0

θ2k
n

(∫ 1

0

fi(x)µi,n(x)dx

)2

<∞

}
.

Then dom(L) = {(g1, τrg2 + τeg3) ∈ H1}. To identify the adjoint L∗ of L, observe that for any
g ∈ C (λ) and h ∈H ,

〈Lg, h〉 =

∫ 1

0

g′1(h2 + τh3) + (τrg
′
2 + τeg

′
3)h1dx.

Therefore, dom(L∗) = {(h1, h2 + τh3) ∈ H1}. In particular,

C∗(τ) =
{
h = (h1, h2, h3)

∣∣ hi ∈ C1([0, 1]), h1(0) = 0, h2(1) + τh3(1) = 0
}

is a core of L∗ and L∗h = −BTh′ for h ∈ C∗(τ). Notice that C∗(τ) depends only on τ , while
C (λ) depends on both β and τ .

Now we can state the definition of (1.4) and (1.5) precisely. Let {w̃(t) = w̃(t, ·); t ≥ 0} be
a stochastic process taking values in H ′, such that for all h ∈ C∗(τ),

w̃(t, h)− w̃(0, h) =

∫ t

0

w̃(s, L∗h)ds, ∀t > 0, (3.5)

and w̃(0) is a Gaussian variable such that for h, g ∈H ,

E[w̃(0, h)] = 0, E[w̃(0, h)w̃(0, g)] = 〈h,Σg〉, (3.6)

where Σ is the covariance matrix defined in (2.4).
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To see the existence and uniqueness of w̃(t), consider the weak form of equation (3.2): for
f = (f1, f2, f3), fi ∈ C1([0, 1]), f1(0) = f2(1) = 0,

ũ(t, f)− ũ(0, f) +

∫ t

0

ũ
(
s,AT f ′

)
ds = 0, A =

 0 1 0
c2 0 0
0 0 0

 , (3.7)

and ũ(0) is a centered Gaussian variable with covariance

E
[
(ũ(0, f))2

]
= 〈f,Qf〉, Q = diag

(
β−1, β−1c2, β2∂2

βG
)
.

Suppose that {µi,n,νi,n;n ≥ 0, i = 1, 2} is the three-dimensional Fourier bases given by µ1,n =
(µ1,n, 0, 0), µ2,n = (0, µ2,n, 0), and1

ν1,n(x) =
√

2
(
0, 0, sin(κnx)

)
, ν2,n(x) =

√
2
(
0, 0, cos(κnx)

)
, κn = 2nπ. (3.8)

The solution ũ(t) is a stationary Gaussian process, satisfying that

ũ(t,µ1,n) =
1√
β

(
X1,n cos(cθnt) +X2,n sin(cθnt)

)
,

ũ(t,µ2,n) =
c√
β

(
X1,n sin(cθnt)−X2,n cos(cθnt)

)
,

ũ(t,νi,n) = β
√
∂2
βG (β, τ)Yi,n,

where {Xi,n, Yi,n;n ≥ 0, i = 1, 2} is an independent system of standard Gaussian random
variables. The sample paths ũ(·) ∈ C([0, T ]; H−1) a.s., where

H−k =

{
ũ

∣∣∣∣ 2∑
i=1

∞∑
n=0

{
θ−2k
n ũ2(µi,n) + κ−2k

n ũ2(νi,n)
}
<∞

}
.

For each h ∈ C∗(τ), define w̃(t, h) by

w̃(t, h) = ũ(t, R−1h), R = R(λ) =

1 0 0
0 τr −βτ
0 τe β

 . (3.9)

Observing that ATR−1 = R−1BT , and f1(0) = f2(1) = 0 for f ∈ R−1[C∗(τ)],

w̃(t, h)− w̃(0, h) = −
∫ t

0

ũ(s,ATR−1h′)ds = −
∫ t

0

w̃(s,BTh′)ds,

and (3.5) is fulfilled. On the other hand, from (2.7) and (3.1),(
τr
τe

)
= − 1

β

(
∂2
rS

∂r∂eS

) ∣∣∣∣
(r̄,ē)

− τ

β

(
∂r∂eS
∂2
eS

) ∣∣∣∣
(r̄,ē)

.

Combining this with (2.6), one obtains that

G ′′(λ)

(
τr
τe

)
=

(
β−1

β−1τ

)
.

By this and some direct calculations,

RTΣR = diag
(
β−1, β−1c2, β2∂2

βG
)

= Q,

1νi,n are chosen arbitrarily, since this coordinate is a constant Gaussian random filed.
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therefore (3.6) also holds. In consequence, {w̃(t); t ∈ [0, T ]} uniquely exists in the path space
C([0, T ]; H−k(λ)) for k ≥ 1, where

H−k(λ) =

{
w̃

∣∣∣∣ ‖w̃‖2−k =

2∑
i=1

∞∑
n=0

{
θ−2k
n w̃2

(
Rµi,n

)
+ κ−2k

n w̃2
(
Rνi,n

)}
<∞

}
,

with three-dimensional Fourier bases µi,n and νi,n given in (3.4) and (3.8), and the Gaussian
distribution determined by (3.6) is stationary for w̃(t).

For T > 0 and k > 5/2, denote by QN the distribution of {YN (t); t ∈ [0, T ] on the path
space C([0, T ],H−k(λ)) induced by Pλ,N . Denote by Q the distribution of {w̃(t); t ∈ [0, T ]}
defined above. Our first result is stated as below.

Theorem 3.1. Assume (2.1), then the sequence of probability measures {QN} converges weakly,
as N →∞, to the probability measure Q.

Remark 3.2. The condition k > 5/2 is necessary only for the tightness in Section 7.

Indeed, by the tightness of {QN} in Section 7, we can pick an arbitrary limit point of QN .
Denote it by Q and let {Y (t)} be a process subject to Q. From classical central limit theorem,
the distribution of Y (0) satisfies (3.6). By virtue of the uniqueness of the solution, to prove
Theorem 3.1 it suffices to verify (3.5), or equivalently,∣∣YN (t,H(t, ·))− YN (0, h)

∣∣→ 0 in probability,

where H(t, x) solves the backward Euler system:

∂tH(t, x) + L∗H(t, x) = 0, H(0, ·) = h, (3.10)

for smooth initial data h ∈ C∗(τ), with the following additional compatibility conditions also
assumed at the space-time edges:

lim
x→0+

∂xH1(0, x) = 0, lim
x→1−

∂x
(
H2(0, x) + τH3(0, x)

)
= 0,

lim
t→0+

∂2
tH1(t, 0) = 0, lim

t→0+
∂2
t

(
H2(t, 1) + τH3(t, 1)

)
= 0.

(3.11)

Note that (3.11) assures that H(t, ·) ∈ C∗(τ) is differentiable in x up to the second order, and
there exists a finite constant C such that∣∣H(t, x)

∣∣ ≤ C, ∣∣∂xH(t, x)
∣∣ ≤ C, ∣∣∂2

xH(t, x)
∣∣ ≤ C (3.12)

for any t ≥ 0 and x ∈ [0, 1]. As a further result of Theorem 3.1, we are able to prove that the
fluctuation field keeps evolving with the linearized system for time scales beyond hyperbolic,
under some additional assumptions.

Theorem 3.3. Assume (2.1). There exists some universal δ > 0, such that if

sup
r∈R

V ′′(r) < (1 + δ) inf
r∈R

V ′′(r), (3.13)

then for any α < 1/5, T > 0 and ε > 0,

lim
N→∞

Pλ,N
{
∃ t ∈ [0, T ],

∣∣YN(Nαt,H(Nαt)
)
− YN (0, H(0))

∣∣ > ε
}

= 0, (3.14)

where H(t) = H(t, x) solves the backward equation (3.10) and (3.11).

Remark 3.4. Theorem 3.3 shows that the fluctuation of thermodynamic entropy S̃ keeps sta-
tionary for any time scales Nat with a < 6/5. It is expected that S̃ would evolve under some
superdiffusive scaling a < 2 following a fractional heat equation.
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Remark 3.5. Let TN = Z/(NZ) be the lattice torus with length N . One can also put the chain
on TN by applying the periodic boundary condition (p0, r0) = (pN , rN ) instead of the ones
introduced in Section 1. Then, the equilibrium Gibbs measures become

πNβ,p̄,τ =
∏
i∈TN

exp
{
λ̃ · wi − G̃ (λ̃)

}
dpi dri,

for given λ̃ = (βp̄, βτ,−β) ∈ R2 × R−, where p̄ ∈ R denotes the momenta in equilibrium. For
(p, r) ∈ R2 and e ≥ p2/2 + V (r), we can define the internal energy U = e − p2/2, then the
thermodynamic entropy and tension function are given by S (r, U) and τ (r, U).

Start the dynamics from some equilibrium state πNβ,p̄,τ . Let T = [0, 1) stand for the one–
dimensional torus. For a bounded smooth function H : T → R, the equilibrium fluctuation
field is given by

YN (t,H) =
1√
N

N∑
i=1

H

(
i

N

)
·

pi(Nt)− p̄ri(Nt)− r̄
ei(Nt)− ē

 .

With similar argument used to prove Theorem 3.1, we can show that YN (t,H)→ w̃(t,H). Here
w̃(t, ·) solves the following linearized Euler system on torus:

∂tw̃(t, x) =

 −p̄τu τr τu
1 0 0

τ − p̄2τu p̄τr p̄τu

 ∂xw̃(t, x),

where the linear coefficients are given by

(τr, τu) = (∂r, ∂u) τ

(
r̄, ē− p̄2

2

)
.

Similar to (3.2), we have p̃ and τ̃ = −p̄τup̃ + τr r̃ + τuẽ form a system of two coupled wave
equations with common sound speed c = τr + ττu, while S̃ = β(ẽ− p̄p̃− τ τ̃) does not evolve in
time.

4. Equilibrium fluctuation

In this section, let H(t, x) be a bounded and smooth function on [0,∞)× [0, 1]. For any T > 0,
we define two norms |H|T and ‖H‖T of H as below:

|H|T = sup
[0,T ]×[0,1]

|H(t, x)|,

‖H‖2T = sup
t∈[0,T ]

‖H(t)‖2 = sup
t∈[0,T ]

∫ 1

0

|H(t, x)|2dx.

For YN (t,H(t, ·)), the following decomposition holds Pλ,N almost surely:

YN (t,H(t))− YN (0, H(0))−
∫ t

0

YN (s, ∂sH(s))ds

= IN,1(t,H) + γIN,2(t,H) +
√
γMN (t,H), ∀t > 0,

(4.1)

where IN,1 and IN,2 are integrals given by

IN,1(t,H) = N

∫ t

0

AN [YN (s,H(s))]ds, IN,2(t,H) = N

∫ t

0

SN [YN (s,H(s))]ds,

10



and MN is a martingale with quadratic variation given by

〈MN 〉(t,H) = N

∫ t

0

{
SN [Y 2

N (s,H(s))]− 2YN (s,H(s))SN [YN (s,H(s))]
}
ds.

As the first step to prove Theorem 3.3, the next lemma guarantees that the last two terms in
(4.1) vanish uniformly in macroscopic time for equilibrium dynamics.

Lemma 4.1. There exists a constant C = C(λ, V ), such that

Eλ,N

[
sup
t∈[0,T ]

γ
∣∣IN,2(t,H)

∣∣2 + sup
t∈[0,T ]

∣∣MN (t,H)
∣∣2] ≤ CT

N
‖∂xH‖2T .

The proof of Lemma 4.1 is standard and we postpone it to the end of this section. To
identify the boundary conditions of H, noting that p0 = 0, and

NAN [YN (t,H(t))]

=
√
N

N−1∑
i=1

H

(
t,
i

N

)
· (JA,i − JA,i−1) +

√
NH(t, 1) ·

 τ − V (rN )
pN − pN−1

pNτ − pN−1V
′(rN )


=

1√
N

N−1∑
i=1

∇N,iH(t) · (−JA,i(ηt))

−
√
N

[
H1

(
t,

1

N

)(
V ′(r1(t))− τ

)
−
(
H2(t, 1) + τH3(t, 1)

)
pN (t)

]
,

where JA,i is the centered instantaneous currents of AN :

JA,i =
(
V ′(ri+1)− τ, pi, piV ′(ri+1)

)T
,

and ∇N,i is the discrete derivative operator:

∇N,iH = N

[
H

(
i+ 1

N

)
−H

(
i

N

)]
.

Thus, we can drop the right boundary if H(t) ∈ C∗(τ) for all t:

IN,1(t,H) = − 1√
N

∫ t

0

N−1∑
i=0

∇N,iH(s) · JA,i(ηs)ds. (4.2)

The next lemma shows that IN,1 can be linearized as N →∞.

Lemma 4.2. Assume (2.1), (3.13), and H(t) ∈ C∗(τ) for t ∈ [0, T ], then

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)−
∫ t

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
≤ C

(
T

N
1
5

+
T 2

N
2
5

)
(4.3)

holds with some constant C. Furthermore,

C ≤ C(λ, γ, V )|||H|||2T , where |||H|||2T = |∂xH|2T + |∂2
xH|2T + ‖∂xH‖2T .

Remark 4.3. The bound (4.3) in Lemma 4.2 is proven under the assumption (3.13). Without
assuming (3.13) we have only that, for every fixed T > 0,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)−
∫ t

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
≤ oN (1)|||H|||2T . (4.4)

This is clear from Remark 5.3 below. The bound (4.4) is enough for proving Theorem 3.1, while
(4.3) is necessary in order to prove (3.14).
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Lemma 4.2 follows from the Boltzmann-Gibbs principle, proven in Section 5. Here we first
give the proof of Theorem 3.3.

Proof of Theorem 3.3. Let H(t, x) be the solution of (3.10). From (4.1) and Lemma 4.1,

Pλ,N
{
∃ t ∈ [0, T ],

∣∣∣∣YN (Nαt,H(Nαt))− YN (0, H(0))

−
∫ Nαt

0

YN (s, ∂sH(s))ds− IN,1(Nαt,H)

∣∣∣∣ > ε

}
→ 0

for any ε > 0. Lemma 4.2 and (3.12) then yield that for any α < 1/5,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(Nαt,H)−
∫ Nαt

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
→ 0.

Theorem 3.3 then follows from (3.10).

For Theorem 3.1, since tightness is shown in Section 7, we only need to take α = 0 in the
proof above, and apply Remark 4.3 instead of Lemma 4.2 in the last step.

We now proceed to the proof of Lemma 4.1. Denote by 〈·, ·〉λ,N the scalar product of two
functions f , g ∈ L2(πλ,N ). We make use of a well-known estimate on the space-time variance
of a stationary Markov process. For f(s, ·) ∈ L2(πλ,N ),

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

f(s, ηs)ds

∣∣∣∣2
]
≤ 14

∫ T

0

‖f(t)‖2−1,Ndt, (4.5)

where ‖f‖−1,N is defined for all f on ΩN by

‖f‖2−1,N = sup
h

{
2〈f, h〉λ,N − γN〈h,−SNh〉λ,N

}
,

with the superior taken over all bounded smooth functions h on ΩN . A proof of (4.5) can be
found in [14, Sec. 2.5].

Proof of Lemma 4.1. To begin with, note that

NSN [YN (t,H(t))] =

√
N

2

N−1∑
i=1

[
H

(
t,
i

N

)
· Y2

i,i+1[wi] +H

(
t,
i+ 1

N

)
· Y2

i,i+1[wi+1]

]

= − 1√
N

N−1∑
i=1

∇N,iH(t) · JS,i(ηt),

where JS,i is the instantaneous current corresponding to SN :

JS,i =
1

2
Y2
i,i+1[wi] = −1

2
Y2
i,i+1[wi+1].

By applying (4.5) on IN,2(t,H), one obtains that

Eλ,N

[
sup
t∈[0,T ]

∣∣IN,2(t,H)
∣∣2]

≤ 14

N

∫ T

0

sup
h

{
2

N−1∑
i=1

〈
∇N,iH(t) · JS,i, h

〉
λ,N
− γN

〈
h,−SNh

〉
λ,N

}
dt.
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By Cauchy-Schwarz inequality, with mi = Yi,i+1[wi] for i = 1 to N − 1,∣∣∣∣∣
N−1∑
i=1

〈
∇N,iH(t) · JS,i, h

〉
λ,N

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣
N−1∑
i=1

〈
∇N,iH(t) ·mi,Yi,i+1h

〉
λ,N

∣∣∣∣∣
2

≤ 1

4

N−1∑
i=1

|∇N,iH(t)|2Eλ,N
[
|mi|2

]N−1∑
i=1

Eλ,N
[
|Yi,i+1h|2

]
≤ C1N‖∂xH(t)‖2〈h,−SNh〉λ,N .

Substituting this and optimizing h, we obtain that

Eλ,N

[
sup
t∈[0,T ]

∣∣IN,2(t,H)
∣∣2] ≤ 14C1

γN

∫ T

0

‖∂xH‖2dt ≤
C2T

γN
‖∂xH‖2T .

On the other hand, recall that mi = Yi,i+1[wi] and

SN
[
Y 2
N (s,H(s))

]
− 2YN (s,H(s))SN

[
YN (s,H(s))

]
=

1

N3

N−1∑
i=1

[
∇N,iH(s) ·mi(ηs)

]2
.

Therefore, by Doob’s maximal inequality,

Eλ,N

[
sup
t∈[0,T ]

∣∣MN (t,H)
∣∣2] ≤ 4Eλ,N

[
〈MN 〉(T,H)

]
≤ 4

N2

∫ T

0

N−1∑
i=1

Eλ,N
[
(∇N,iH(t) ·mi)

2
]
dt

≤ C3

N

∫ T

0

‖∂xH‖2dt ≤
C4T

N
‖∂xH‖2T .

Since the constants depend only on λ and V , Lemma 4.1 follows.

5. Boltzmann-Gibbs principle

This section devotes to the proof of Lemma 4.2. In this section, we denote by {ιi; 0 ≤ i ≤ N}
the shift operator semigroup on ΩN , which is given by

(ιiη)j =

{
(pi+j , ri+j), 1 ≤ j ≤ N − i,
(0, 0), N − i < j ≤ N,

for all η ∈ ΩN and 0 ≤ i ≤ N . For function F on ΩN , define ιiF = F ◦ ιi. If F is supported by
{ηj , 1 ≤ j ≤ m} for some m ≤ N , then

Eλ,N [ιiF ] = Eλ,N [F ], ∀0 ≤ i ≤ N −m.

First notice that ∇N,iH in (4.2) can be replaced by ∂xH. The difference is

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)− 1√
N

∫ t

0

N−1∑
i=1

∂xH

(
s,

i

N

)
· JA,i(ηs)ds

∣∣∣∣2
]

≤ T

N

∫ T

0

Eλ,N

(N−1∑
i=1

[
∇N,iH(t)− ∂xH

(
t,
i

N

)]
· JA,i

)2
 dt.
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Since Eλ,N [JA,i⊗JA,j ] = 0 if |i− j| > 1, where ⊗ is the tensor product of vectors, the last line
in the inequality above has an upper bound

T

N
Eλ,N

[
|JA,i|2

] ∫ T

0

N−1∑
i=1

∣∣∣∣∇N,iH(t)−H ′
(
t,
i

N

)∣∣∣∣2 dt ≤ CT 2|∂2
xH|2T

N2
.

Clearly the order is better than what is needed for Lemma 4.2.
Now we want to replace the local random field JA,i with its linear approximation. The

corresponding error can be expressed by

ιiΦ = JA,i −B(λ)
(
wi − w̄(λ)

)
=

V ′(ri+1)− τrri − τeei
0

piV
′(ri+1)− piτ

 .

Lemma 4.2 follows from the following Boltzmann-Gibbs principle.

Proposition 5.1. Assume (2.1) and (3.13), then

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−1∑
i=1

∂xH

(
s,

i

N

)
· ιiΦ(ηs)ds

∣∣∣∣2
]
≤ C

(
T

N
1
5

+
T 2

N
2
5

)
for bounded smooth H = H(t, x) on [0, T ]× [0, 1], where C = C(λ, γ, V )|||H|||2T .

Boltzmann-Gibbs principle, firstly established for zero range jump process (see [7]), aims at
determining the space-time fluctuation of a local function by its linear approximation on the
conserved fields. To show this proposition, we need a spectral gap bound of SN , which is the
main difficulty here. This is established later in Section 6.

Remark 5.2. Notice that the upper bound in Proposition 5.1 is not optimal. Indeed, with the
proof below, one can actually obtain an upper bound of

C

(
T

N1−2b
+
T 2

N b

)
, ∀b < 1

2
.

However, this does not improve the time scale in Theorem 3.3.

Proof. The first step is to take some 1 ≤ K � N , and define

ΦK =
1

K

K∑
i=1

ιiΦ.

We want to replace ιiΦ by ιi−1ΦK . The error is

N−1∑
i=1

ai(t) · ιiΦ−
N−K∑
i=1

ai(t) · ιi−1ΦK = F1(t) + F2(t),

where we write ai(t) = ∂xH(t, i/N) for short, and F1, F2 are given by

F1(t) =
1

K

(
K−1∑
i=1

+

N−1∑
i=N−K+1

)
(K − i)ai(t) · ιiΦ,

F2(t) =
1

K

 K∑
i=1

i∑
j=1

+

N−K−1∑
i=K+1

i∑
j=i+1−K

+

N−1∑
i=N−K

N−K∑
j=i+1−K

 (ai(t)− aj(t)) · ιiΦ.
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Since Eλ,N [ιiΦ⊗ ιjΦ] = 0 for every pair of (i, j) such that |i− j| ≥ 2,

Eλ,N
[
F 2

1 (t) + F 2
2 (t)

]
≤
(
C1 +

C2

N

)
K
(
|∂xH|2T + |∂2

xH|2T
)
,

with constants C1 and C2 depending on λ and V . Hence,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

F1(s, ηs) + F2(s, ηs)ds

∣∣∣∣2
]
≤ C3T

2K

N

(
|∂xH|2T + |∂2

xH|2T
)
. (5.1)

The second step is to replace ΦK by its microcanonical center. To do so, observe that ΦK
is supported by {ηj ; 1 ≤ j ≤ K + 1}, and define

〈ΦK〉 = Eλ,N

[
Φ

∣∣∣∣ w1 + w2 + . . .+ wK+1

K + 1

]
,

where wi = (pi, ri, ei) is the vector if conserved quantities. Due to the equivalence of ensembles
(see Section 8), the second moment of 〈ΦK〉 with respect to πλ,N is of order K−2. On the other
hand, the second moment of ΦK is O(K−1):

Eλ,N
[
|ΦK |2

]
≤ 1

K

(
Eλ,N

[
|ι1Φ|2

]
+ 2Eλ,N

[
ι1Φ · ι2Φ

])
,

Define ϕK = ΦK − 〈ΦK〉. Since ϕK and 〈ΦK〉 are orthogonal,

Eλ,N
[
|ϕK |2

]
= Eλ,N

[
|ΦK |2

]
− Eλ,N [|〈ΦK〉|2

]
≤ C4

K
. (5.2)

By applying the estimate (4.5), we obtain that

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1ϕK(ηs)ds

∣∣∣∣2
]

≤ 14

N

∫ T

0

sup
h

{
2
N−K∑
i=1

〈
ai(t) · ιi−1ϕK , h

〉
λ,N
− γN〈h,−SNh〉λ,N

}
dt,

(5.3)

where the superior is taken over all bounded smooth functions on ΩN . As ϕK is supported by
{ηi; 1 ≤ i ≤ K + 1}, by the spectral gap in Proposition 6.1,

−SK+1Ga,K = a · ϕK , a ∈ R3

can be solved by some function Ga,K satisfying that〈
Ga,K ,−SK+1Ga,K

〉
λ,N
≤ C(K + 1)2Eλ,N

[
(a · ϕK)2

]
≤ C5K|a|2,

where the last step follows from (5.2). For 1 ≤ i ≤ N −K and a ∈ R3,

〈
a · ιi−1ϕK , h

〉
λ,N

=
1

2

K∑
j=1

〈
Yi+j−1,i+j

[
ιi−1Ga,K

]
,Yi+j−1,i+jh

〉
λ,N

.
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Hence, by Cauchy-Schwarz inequality,∣∣∣∣∣
N−K∑
i=1

〈
ai(t) · ιi−1ϕK , h

〉
λ,N

∣∣∣∣∣
2

≤

1

2

N−K∑
i=1

K∑
j=1

Eλ,N
[
(Yi+j−1,i+jh)2

]1

2

N−K∑
i=1

K∑
j=1

Eλ,N
[
(Yj,j+1Gai(t),K)2

]
≤ K〈h,−SNh〉λ,N

N−K∑
i=1

〈
Gai(t),K ,−SK+1Gai(t),K

〉
λ,N

≤ C5K
2〈h,−SNh〉λ,N

N−K∑
i=1

|ai(t)|2 ≤ C6K
2N‖∂xH(t)‖2〈h,−SNh〉λ,N .

Substituting this into (5.3) and optimizing in h,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1ϕK(ηs)ds

∣∣∣∣2
]
≤ C7TK

2

γN
‖∂xH‖2T . (5.4)

Finally, 〈ΦK〉 is supported by {ηi; 1 ≤ i ≤ K + 1}, so that Eλ,N [ιi〈ΦK〉 ⊗ ιj〈ΦK〉] = 0 for
|i− j| ≥ K + 2, and therefore,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1〈ΦK〉(ηs)ds
∣∣∣∣2
]

≤ T

N

∫ T

0

∑
|i−j|≤K+1

Eλ,N
[(
ai(t) · ιi−1〈ΦK〉

)(
aj(t) · ιj−1〈ΦK〉

)]
dt

≤ T 2‖∂xH‖2T
N

N−K∑
i=1

K+1∑
j=−K−1

Eλ,N
[
|〈ΦK〉||ιj〈ΦK〉|

]
≤ C8T

2

K
‖∂xH‖2T ,

(5.5)

where the last line is due to that Eλ,N [〈ΦK〉2] = O(K−2).
In conclusion, by summing up (5.1), (5.4), (5.5), and taking K = N2/5, we get the estimate

in Proposition 5.1, with the constant satisfying that

C ≤ C(λ, γ, V )
(
‖∂xH‖2T + |∂xH|2T + |∂2

xH|2T
)
.

This completes the proof of the proposition.

Remark 5.3. If only (2.1) is assumed, we can apply Remark 6.6 instead of Proposition 6.1 in
the proof of (5.4). By doing this, we can prove Proposition 5.1 for any fixed T > 0, with a
weaker upper bound oN (1)|||H|||2T .

6. Spectral gap

In this section, we state and prove the spectral gap estimate for the dynamics. The main result,
Proposition 6.1, plays a central role in the proof of Proposition 5.1.

Since we want to consider dynamics without boundary conditions in this section, the nota-
tions would be slightly different. Recall (2.1) and denote

δ− = inf
r∈R

V ′′(r), δ+ = sup
r∈R

V ′′(r).
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For β > 0, (p̄, τ) ∈ R2, let πKβ,p̄,τ be the product measure on ΩK given by

πKβ,p̄,τ (dp dr) =

K∏
i=1

1

Zβ,τ
exp

{
−β(pi − p̄)2

2
− βV (ri) + βτri

}
dpi dri,

where Zβ,τ is the normalization constant. Note that the additional coefficient p̄ refers to a
nonzero average speed. For K ≥ 2 and w = (p, r, e) such that e > p2/2+V (r), the microcanon-
ical manifold Ωw,K is defined as

Ωw,K =

{
(pk, rk), 1 ≤ k ≤ K

∣∣∣∣∣ 1

K

K∑
k=1

wk = w

}
.

In view of (2.1), Ωw,K is a compact and connected manifold. The microcanonical expectation
on Ωw,K is defined as the conditional expectation

Ew,K = EπKβ,p̄,τ [ · |Ωw,K ]

Notice that the definition of Ew,K is independent of the choice of β, p̄ or τ . For two functions
f1, f2 such that Ew,K [f2

i ] < ∞, we write 〈f1, f2〉w,K = Ew,K [f1f2]. For each pair (i, j) such
that 1 ≤ i < j ≤ K, let Fi,j be the σ-algebra over Ωw,K given by

Fi,j = σ({(pk, rk); 1 ≤ k ≤ K, k 6= i, j}).

Proposition 6.1. Suppose that the potential V satisfies (2.1). There exists a universal constant
δ > 0, such that if V fulfills furthermore (3.13), then

Ew,K
[
(f − Ew,K [f ])2

]
≤ CK

K−1∑
k=1

Ew,K
[
(Yk,k+1f)2

]
(6.1)

for all (w,K) and bounded smooth function f , and CK ≤ CK2.

The proof of Proposition 6.1 is divided into Lemma 6.2, 6.3 and 6.4 below.

Lemma 6.2. Assume (2.1), then there exists constant C, such that

Ew,2
[
(f − Ew,2[f ])2

]
≤ CEw,2

[
(Y1,2f)2

]
for all w and bounded smooth function f on (p1, r1, p2, r2).

Lemma 6.3. Assume (2.1), then there exists constant C, such that

∑
1≤i<j≤K

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
≤ CK3

K−1∑
k=1

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
for all K ≥ 3, w and bounded smooth function f .

Lemma 6.4. Assume (2.1) and (3.13), then

Ew,K
[
(f − Ew,K [f ])2

]
≤ C ′K

∑
1≤i<j≤K

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]

(6.2)

for all K ≥ 3, w and bounded smooth function f , and C ′K ≤ C ′K−1.
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Indeed, for each k = 1, . . . ,K − 1, by applying Lemma 6.2 to the space (pk, rk, pk+1, rk+1)
and the operator Yk,k+1, one obtains that that

Ew,K
[
(f − Ew,K [f |Fk,k+1])2|Fk,k+1

]
≤ CEw,K

[
(Yk,k+1f)2|Fk,k+1

]
.

Then, Proposition 6.1 turns to be the direct consequence of this, Lemma 6.3 and Lemma 6.4.
We now prove these lemmas in turn.

Proof of Lemma 6.2. For (p1, r1, p2, r2) ∈ R4, define

p = p(p1, p2) =
p1 + p2

2
, r = r(r1, r2) =

r1 + r2

2
,

and the internal energy E = E(p1, r1, p2, r2) ≥ 0 given by

E =
e1 + e2

2
− p2

2
− V (r) =

(p1 − p2)2

8
+
V (r1) + V (r2)

2
− V

(
r1 + r2

2

)
.

Furthermore, let θ ∈ [0, 2π) satisfy that
√
E cos θ =

√
2(p1 − p2)/4 and

√
E sin θ = sgn(r1 − r2)

√
V (r1) + V (r2)

2
− V

(
r1 + r2

2

)
.

The Jacobian determinant of the bijection (p1, r1, p2, r2)→ (p, r, E, θ) is

J(p, r, E, θ) =
√

2 ·
√
V (r1) + V (r2)− 2V (r)

|V ′(r1)− V ′(r2)|
.

Recall that 0 < δ− ≤ V ′′(r) ≤ δ+ <∞, we have

0 <

√
δ−√

2δ+
≤ J(p, r, E, θ) ≤

√
δ+√

2δ−
. (6.3)

For a bounded smooth function f = f(p1, r1, p2, r2), define f∗(p, r, E, θ) = f(p1, r1, p2, r2), and

let 〈f∗〉 =
∫ 2π

0
f∗(p, r, E, θ)dθ. By simple calculations,

Ew,2
[
(f − 〈f∗〉)2

]
=

∫ 2π

0
[f∗(p, r, E, θ)− 〈f∗〉]2J(p, r, E, θ)dθ∫ 2π

0
J(p, r, E, θ)dθ

.

On the other hand, since Y1,2f = J−1∂θf∗, we have

Ew,2
[
(Y1,2f)2

]
=

∫ 2π

0
[∂θf∗(p, r, E, θ)]

2J−1(p, r, E, θ)dθ∫ 2π

0
J(p, r, E, θ)dθ

.

By virtue of the Poincaré inequality on one-dimensional torus:∫ 2π

0

(f∗ − 〈f∗〉)2dθ ≤ C
∫ 2π

0

(∂θf∗)
2dθ,

and the uniform bound of J in (6.3), we obtain that

Ew,2
[
(f − Ew,2[f ])2

]
≤ Ew,2

[
(f − 〈f∗〉)2

]
≤ Cδ+

2δ2
−
Ew,2

[
(X1,2f)2

]
holds with some universal constant C <∞.
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Proof of Lemma 6.3. This lemma is proved along the idea in [17, Lemma 12.4]. Below are
some notations only used in this proof. All of the subscripts i, j, k are taken form {1, . . . ,K}.
We write xk = (pk, rk) and x = (x1, . . . , xK). Recall the bijection defined in the proof of the
Lemma 6.2. For simplicity we write

(pi,j , ri,j , E(i, j), θi,j) = (p, r, E, θ)(xi, xj), ∀i < j.

For θ ∈ [0, 2π), denote the Jacobian determinant by

Jx,i,j(θ) = J
(
pi,j , ri,j , E(i, j), θ

)
.

For i < j, θ ∈ [0, 2π] and x = (x1, . . . , xK), define a vector ρθi,jx by

(ρθi,jx)k =


g1(pi,j , ri,j , E(i, j), θ), k = i;

g2(pi,j , ri,j , E(i, j), θ), k = j;

xk, k 6= i, j,

where (g1, g2) denotes the inverse map of (x1, x2) → (p, r, E, θ). Observe that ρθi,jx = x when
θ = θi,j , and for every smooth function f ,

Ew,K [f |Fi,j ] =
1

Jxi+xj

∫ 2π

0

f(ρθi,jx)Jx,i,j(θ)dθ,

where Jxi+xj =
∫ 2π

0
Jx,i,j(θ)dθ. On the other hand, let τi,jx be the vector given by

(τi,jx)i = xj , (τi,jx)j = xi, (τi,jx)k = xk, ∀k 6= i, j.

Moreover for 1 ≤ i < j ≤ K, we inductively define that

σi,i = σ̃i,i = id, σi,j = τj−1,j ◦ σi,j−1, σ̃i,j = σ̃i,j−1 ◦ τj−1,j .

Observe that for any i < j and θ ∈ [0, 2π), ρθi,j ≡ σ̃i,j−1 ◦ ρθj−1,j ◦ σi,j−1.
For a smooth function f , by Cauchy-Schwarz inequality,

(f − Ew,K [f |Fi,j ])
2 ≤ 1

Jxi+xj

∫ 2π

0

[
f(ρθi,jx)− f(x)

]2
Jx,i,j(θ)dθ.

The right-hand side is bounded from above by 3(f1 + f2 + f3), where

f1 =
1

Jxi+xj

∫ 2π

0

[f(σi,j−1x)− f(x)]
2
Jx,i,j(θ)dθ,

f2 =
1

Jxi+xj

∫ 2π

0

[
f(ρθj−1,j ◦ σi,j−1x)− f(σi,j−1x)

]2
Jx,i,j(θ)dθ,

f3 =
1

Jxi+xj

∫ 2π

0

[
f(σ̃i,j−1 ◦ ρθj−1,j ◦ σi,j−1x)− f(ρθj−1,j ◦ σi,j−1x)

]2
Jx,i,j(θ)dθ.

For f1, noticing that f1 = (f(σi,j−1x)− f(x))2, hence

Ew,K [f1] ≤ K
j−2∑
k=i

Ew,K
[
(f ◦ σi,k+1 − f ◦ σi,k)2

]
= K

j−2∑
k=i

Ew,K
[
(f ◦ τk,k+1 − f)2

]
.
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Notice that Ew,K [f ◦ τk,k+1|Fk,k+1] = Ew,K [f |Fk,k+1], so that

Ew,K
[
(f ◦ τk,k+1 − Ew,K [f |Fk,k+1])2

]
= Ew,K

[
(f − Ew,K [f |Fk,k+1])2

]
.

This together with the convex inequality (a+ b)2 ≤ 2(a2 + b2) yields that

Ew,K [f1] ≤ 4K

j−2∑
k=i

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
.

For f2, by applying the change of variable y = σi,j−1x, we obtain that

Ew,K [f2] = Ew,K

[
1

Jyj−1+yj

∫ 2π

0

[
f(ρθj−1,jy)− f(y)

]2
Jy,i,j(θ)dθ

]
.

Therefore, we can calculate this term as

Ew,K [f2] = 2Ew,K [f2]− 2Ew,K [fEw,K [f |Fj−1,j ]]

= Ew,K
[
(f − Ew,K [f |Fj−1,j ])

2
]
.

For f3, the same change of variable yields that

Ew,K [f3] = Ew,K
[
Ew,K [(f ◦ σ̃i,j−1 − f)2 | Fj−1,j ]

]
= Ew,K

[
(f ◦ σ̃i,j−1 − f)2

]
.

Since σ̃k,j−1 = τk,k+1 ◦ σ̃k+1,j−1, by repeating the calculation in f1,

Ew,K [f3] ≤ 4K

j−2∑
k=i

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
.

Hence, with some universal constant C <∞ we have

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
≤ CK

j−1∑
k=i

Ew,K
[
(f ◦ τk,k+1 − f)2

]
.

Lemma 6.3 follows by summing up this estimate with i and j.

To show Lemma 6.4, we need the following pre-estimate.

Lemma 6.5. Assume (2.1), then (6.2) holds with constants C ′K satisfying

C ′K ≤
C ′

K

(
δ+
δ−

)3(K−1)

.

Remark 6.6. In view of Lemma 6.5, the spectral gap in (6.1) also holds without the assumption
(3.13). In this case, the constants CK satisfies that

CK ≤ CK2

(
δ+
δ−

)3(K−1)

.

We first prove Lemma 6.4 from Lemma 6.5. The proof of Lemma 6.5 is put in the end of
this section. Consider the bounded operator

LKf =
1

K

∑
1≤i<j≤K

(Ew,K [f |Fi,j ]− f) , ∀f s.t. Ew,K [f2] <∞.
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Let λw,K be the spectral gap of LK on with respect to Ew,K :

λw,K , inf
{
〈f,−LKf〉w,K | Ew,K [f ] = 0, Ew,K [f2] = 1

}
,

and let λK = inf{λw,K ;w ∈ R2 × R+}. Then (6.2) is equivalent to

inf{λK ;K ≥ 3} > 0.

We prove it through an induction argument, firstly established for k = 3, 4 in [8].

Lemma 6.7. If kλk ≥ 1 holds for some k ≥ 3, then for all K ≥ k,

λK ≥ (kλk − 1)

(
1

k − 2
− 2

K(k − 2)

)
+

1

K
.

In view of (3.13) and Lemma 6.5, for some fixed k which is large enough,

kλk >
k

C ′

(
δ−
δ+

)3k−3

≥ k

C ′
1

(1 + δ)3k−3
≥ 1,

provided that δ > 0 is small enough. Then, with Lemma 6.7 we can show that the sequence
{λK ;K ≥ 3} is uniformly bounded from below.

Proof of Lemma 6.7. We make use of the equivalent characterization of λw,K that

λw,K = inf

{
〈LKf,LKf〉w,K
〈f,−LKf〉w,K

∣∣∣ 〈f,−LKf〉w,K 6= 0

}
.

In this proof we denote by B the set of all pairs b = (i, j) such that 1 ≤ i < j ≤ K, and write
Dbf = Ew,K [f |Fb]− f for all b ∈ B, then

〈LKf,LKf〉w,K =
1

K2

∑
b,b′∈B

〈Dbf,Db′f〉w,K ,

〈f,−LKf〉w,K =
1

K

∑
b∈B

〈Dbf,Dbf〉w,K .

We write b ∼ b′ if two pairs b and b′ have at least one common point. We also consider all the
k-particle subsets Tk ⊆ {1, . . . ,K}. Notice that if b ∼ b′ but b 6= b′, there are

(
K−3
k−3

)
different

Tk’s containing both b and b′. Hence,(
n− 3

k − 3

) ∑
b,b′∈B
b 6=b′,b∼b′

〈Dbf,Db′f〉w,K =
∑
Tk

∑
b,b′⊆Tk
b6=b′,b∼b′

〈Dbf,Db′f〉w,K .

If b 6∼ b′, there are
(
K−4
k−4

)
different Tk’s contain both b and b′, while for the case b = b′ it is(

K−2
k−2

)
. Therefore, the right-hand side of the equation above equals to

∑
Tk

∑
b,b′⊆Tk

〈Dbf,Db′f〉w,K −
(
K − 4

k − 4

)∑
b 6∼b′
〈Dbf,Db′f〉w,K −

(
K − 2

k − 2

)∑
b∈B

〈Dbf,Dbf〉w,K .

The definition of λk yields that

1

k

∑
b,b′⊆Tk

〈Dbf,Db′f〉w,K ≥ λk
∑
b⊆Tk

〈Dbf,Dbf〉w,K .
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And for b 6∼ b′, 〈Dbf,Db′f〉w,K = Ew,K
[
(Db′Dbf)2

]
≥ 0. Therefore,

∑
b,b′∈B
b 6=b′,b∼b′

〈Dbf,Db′f〉w,K ≥
(kλk − 1)(K − 2)

k − 2

∑
b∈B

〈Dbf,Dbf〉w,K .

By the condition kλk > 1, the right-hand side is positive. In conclusion,

〈LKf,LKf〉w,K ≥
1

K2

∑
b∈B

〈Dbf,Dbf〉w,K +
1

K2

∑
b 6=b′,b∼b′

〈Dbf,Dbf〉w,K

≥ 1

K2

[
(kλk − 1)(K − 2)

k − 2
+ 1

]∑
b∈B

〈Dbf,Dbf〉w,K

=

[
(kλk − 1)

(
1

k − 2
− 2

K(k − 2)

)
+

1

K

]
〈f,−LKf〉w,K .

Notice that this estimate is independent of the choice of w.

Finally, to complete the proof of Proposition 6.1, we are left to show Lemma 6.5. To do
this, we make use of the spectral gap bound of Kac walk. For a ∈ R2 and R ≥ |a|2, consider
the (2K − 3)-dimensional sphere

SK(a,R) =

{
x1, . . . , xK ∈ R2

∣∣∣∣ 1

K

K∑
k=1

xk = a,
1

K

K∑
k=1

|xk|2 = R

}
.

Denote by µK(a,R) the uniform measure on SK(a,R). With a little abuse of notations, let
Fi,j = σ{xk; k 6= i, j} for 1 ≤ i < j ≤ K.

Lemma 6.8. There exists a constant C such that

EµK(a,R)

[
(f − EµK(a,R)[f ])2

]
≤ C

K

∑
1≤i<j≤n

EµK(a,R)

[
(f − EµK(a,R)[f |Fi,j ])

2
]

for all (a,R,K) and bounded smooth function f .

Lemma 6.8 can be proved by the arguments in [9] and [10]. We here prove Lemma 6.5 by
applying a perturbation on the spectral gap in Lemma 6.8.

Proof. To begin with, from (2.1) we know that for r 6= r′ and K ≥ 1,√
2(K + 1)√

K
c− ≤

|V ′(r)− V ′(r′)|√
V (r) +KV (r′)− (K + 1)V

(
r+Kr′

K+1

) ≤ √2(K + 1)√
K

c+, (6.4)

where c− = δ−/
√
δ+ and c+ = δ+/

√
δ−. For each K ≥ 3, we construct a bijection τK : ΩK →

ΩK , satisfying the following two conditions.

(i) For w = (p, r, e), τK(Ωw,K) = SK(a,R), where a = (p, r), R = 2e− 2V (r) + r2;

(ii) The Jacobian matrix τ ′K of τK satisfies that cK−1
− ≤ |det(τ ′K)| ≤ cK−1

+ .

Indeed, given a bounded, measurable, positive function g on Ωw,K , by (i) we know that τ−1
K g :=

g ◦ τ−1
K defines a function on SK(a,R), and (ii) yields that

c
−(K−1)
0 EµK(a,R)

[
τ−1
K g

]
≤ Ew,K [g] ≤ cK−1

0 EµK(a,R)

[
τ−1
K g

]
,
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where c0 = c+/c−. For bounded and smooth function f , we can apply the estimate above to
g = (f − EµK(a,R)[τ

−1
K f ])2 to obtain

Ew,K
[
(f − Ew,K [f ])2

]
≤ Ew,K [g] ≤ cK−1

0 EµK(a,R)[τ
−1
K g].

On the other hand, take hi,j = (f − Ew,K [f |Fi,j ])
2 and similarly,

EµK(a,R)

[
(τ−1
K f − EµK(a,R)[τ

−1
K f |Fi,j ])

2
]
≤ EµK(a,R)

[
τ−1
K hi,j

]
≤ cK−1

0 Ew,K [hi,j ].

Substituting τ−1
K f for f in Lemma 6.8, we get

Ew,K
[
(f − Ew,K [f ])2

]
≤ cK−1

0 EµK(a,R)

[
(τ−1
K f − EµK(a,R)[τ

−1
K f ])2

]
≤ CcK−1

0

K

∑
i<j

EµK(a,R)

[
(τ−1
K f − EµK(a,R)[τ

−1
K f |Fi,j ])

2
]

≤ Cc
2(K−1)
0

K

∑
i<j

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
.

Since c0 = (δ+/δ−)3/2, Lemma 6.5 then follows.
Now fix K ≥ 3 and we construct the map τK . Write xk = (pk, rk) and define

αk =
1

k

k∑
i=1

ri, ∀1 ≤ k ≤ K.

Consider two maps ζ, ζ∗ : RK → RK . The first map ζ is given by

ζ(r1, . . . , rK) = (r′1, . . . , r
′
K),

such that r′K = αK , and for 1 ≤ k ≤ K − 1,

(r′k)2 =
2k

k + 1

(
V (rk+1) + kV (αk)− (k + 1)V (αk+1)

)
,

where the sign of r′k is chosen in accordance with rk − αK . Meanwhile, ζ∗ is given by

ζ∗(r
′
1, . . . , r

′
K) = (r′′1 , . . . , r

′′
K),

such that

r′′k =


r′K −

∑K−1
i=1

r′i
i , for k = 1,

r′K + r′k−1 −
∑K−1
i=k

r′i
i , for 2 ≤ k ≤ K − 1,

r′K + r′K−1, for k = K.

Denote by J and J∗ the Jacobian matrices of ζ and ζ∗, respectively. To compute J , noticing
that ∂rir

′
k = ∂rkr

′
k for all i ≤ k, and ∂rir

′
k = 0 for all i > k + 1, we have

J =



∂r′1
∂r1

∂r′1
∂r2

0 . . . 0
∂r′2
∂r2

∂r′2
∂r2

∂r′2
∂r3

. . . 0
...

...
...

...
∂r′K−1

∂rK−1

∂r′K−1

∂rK−1

∂r′K−1

∂rK−1
. . .

∂r′K−1

∂rK
∂r′K
∂rK

∂r′K
∂rK

∂r′K
∂rK

. . .
∂r′K
∂rK


.
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Hence, its determinant reads

|det(J)| =
∣∣∣∣∂r′K∂rK

∣∣∣∣ · K−1∏
k=1

∣∣∣∣∂r′k∂rk
− ∂r′k
∂rk+1

∣∣∣∣ .
Since ∂rKr

′
K = 1/K and for k = 1, . . . ,K − 1 we have

∂r′k
∂ri

=

{
k

(k+1)r′k
[V ′(αk)− V ′(αk+1)], if 1 ≤ i ≤ k,

k
(k+1)r′k

[V ′(rk+1)− V ′(αk+1)], if i = k + 1.

In consequence, |det(J)| equals to

1

K

K−1∏
k=1

√
k√

2(k + 1)

|V ′(rk+1)− V ′(αk)|√
V (rk+1) + kV (αk)− (k + 1)V (αk+1)

.

Applying the estimate in (6.4) to obtain that

cK−1
−
K
≤ |det(J)| ≤

cK−1
+

K
.

Meanwhile it is easy to calculate that |det(J∗)| = K. Therefore, define

τK : (p1, . . . , pK , r1, . . . , rK) 7→ (p1, . . . , pK , r
′′
1 , . . . , r

′′
K),

then |det(τ ′K)| satisfies (ii). On the other hand, suppose that {xk = (pk, rk)}1≤k≤K belongs to
the microcanonical manifold Ωw,K , then r′K = r and

1

K

K−1∑
k=1

k + 1

k

(r′k)2

2
=

1

K

K∑
k=1

V (rk)− V (r′K) = e− 1

K

K∑
k=1

p2
k

2
− V (r).

Then, it follows from the definition of r′′k that

1

K

K∑
k=1

(r′′k)2 = (r′K)2 +
1

K

K−1∑
k=1

k + 1

k
(r′k)2 = 2e− 2V (r) + r2 − 1

K

K∑
k=1

p2
k.

Hence, τK(x1, . . . , xK) ∈ SK(a,R) with R = 2e− V (r) + r2, and (i) is also verified. The proof
of Lemma 6.5 is then completed.

7. Tightness

In Section 4 we have proved the convergence of the finite-dimensional distribution of {QN}. In
order to complete the proof of Theorem 3.1, we need its tightness in C([0, T ],H−k(λ)). The
proof is standard, and we summarize it here.

It suffices to show the two statements below:

lim
M→∞

lim sup
N→∞

Pλ,N

{
sup
t∈[0,T ]

‖YN (t)‖−k ≥M

}
= 0, (7.1)

lim
δ↓0

lim sup
N→∞

Pλ,N
{
w−k(YN , δ) ≥ ε

}
= 0, ∀ε > 0, (7.2)

where w−k(YN , δ) is the modulus of continuity in C([0, T ],H−k(λ)). Recall that

‖YN‖2−k =

2∑
i=1

∞∑
n=0

{
θ−2k
n Y 2

N

(
Rµi,n

)
+ κ−2k

n Y 2
N

(
Rνi,n

)}
,
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where R is the rotation matrix in (3.9), and µi,n, νi,n are the three-dimensional Fourier bases
defined in (3.4) and (3.8).

Take f = µi,n or νi,n for some (i, n). Applying (4.1) with H(t) ≡ Rf ,

YN (t, Rf) = Y0(0, Rf) +

∫ t

0

YN (s, L∗[Rf ])ds+ εN (t, f),

and by Lemma 4.1 and Remark 4.3, εN satisfies that

Eλ,N

[
sup
t∈[0,T ]

ε2N (t, f)

]
= oN (1)

(
|f ′|2∞ + |f ′′|2∞ + ‖f ′‖2

)
.

On the other hand, it is easy to see that

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Y (s, L∗[Rf ])ds

∣∣∣∣2
]
≤ CT 2‖f ′‖2.

Observe that |f ′′i,n(x)| ≤
√

2 max{θ2
n, κ

2
n}. Then, for k > 5/2, (7.1) and (7.2) can be proved by

standard arguments (cf. [13, 11.3]).

8. Equivalence of ensembles

In this section we prove the equivalence of ensembles for the dynamics with multi-dimensional
conserved quantities. By applying Proposition 8.3 to the the model in this paper, we obtain
Corollary 8.4, which is necessary in the proof of Lemma 4.2.

The notations in this section are different from the former part. Let π be a Borel measure
on Ω = Rm with smooth density function with respect to the Lebesgue measure, and f =
(f1, . . . , fd) be a d-dimensional function on Ω with compact level sets. Suppose that there is
some domain D ⊆ Rd, such that

Z(λ) , log

[∫
Ω

exp
{
λ · f(ω)

}
π(dω)

]
<∞, ∀λ ∈ D.

To avoid the problem of regularity, we assume that Z is four times continuously differentiable
on D, and its Hessian matrix Σλ = Z ′′(λ) is always positive-definite. To simplify the notations
we denote uλ = ∇λZ(λ).

For λ ∈ D we can define the tilted probability measure by

πλ(dω) , exp{λ · f(ω)− Z(λ)}π(dω).

Observe that Eπλ [f ] = uλ, and Eπλ [(f −uλ)(f −uλ)′] = Σλ. Let Φλ be the centered character-
istic function of f with respect to πλ, given by

Φλ(h) =

∫
Ω

exp
{
ih · (f(ω)− uλ)

}
πλ(dω), ∀h ∈ Rd.

We also assume that there exists some ε0 > 0, such that

sup
h∈Rd

|h|ε0 |Φλ(h)| <∞.

The main methods we use here is a multi–dimensional local central limit theorem with an
edge expansion and a large deviation property for f . We state them in Lemma 8.1 and Lemma
8.2 respectively. Let φλ = φλ(x) be the Gaussian density function on Rd, whose mean is 0 and
variance matrix is Σλ:

φλ(x) =
1

(2π)d/2
1√

det Σλ
exp

{
−
x′Σ−1

λ x

2

}
, ∀x ∈ Rd.
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For k ∈ N+, define the d-varibale polynomials Pλ,k by

Pλ,k(h) =
∑
|α|=k

∂αZ(λ)

α!
hα,

where α = (α1, . . . , αd) is multiple index, αj ≥ 0, and

|α| =
d∑
j=1

αj , α! =

d∏
j=1

αj !, ∂α =

d∏
j=1

∂αj

∂λ
αj
j

, hα =

d∏
j=1

h
αj
j .

Also define the polynomials Qλ,3 and Qλ,4 by

Qλ,3 =
1

(2π)dφλ

∫
Rd

exp

{
−ix · h− h′Σλh

2

}
Pλ,3(ih)dh;

Qλ,4 =
1

(2π)dφλ

∫
Rd

exp

{
−ix · h− h′Σλh

2

}(
Pλ,4 +

P 2
λ,3

2

)
(ih)dh.

Let Ωn be the n-product space of Ω. Define

f(n)(~ω) =
1

n

n∑
j=1

f(ωj), ∀~ω = (ω1, . . . , ωn) ∈ Ωn.

Equip Ωn with the product measure πλ,n = ⊗jπλ(dωj). We have the following local central
limit theorem. The proof is standard [19, Theorem VII.15].

Lemma 8.1. Let fλ,n be the density function of the random vector

√
n
(
f(n) − uλ

)
=

1√
n

n∑
j=1

(
f(ωj)− uλ

)
with respect to the product measure πλ,n for n large enough. Then,∣∣∣∣fλ,n(x)− φλ(x)

(
1 +

Qλ,3(x)√
n

+
Qλ,4(x)

n

)∣∣∣∣ ≤ Kλ,n

n
, ∀x ∈ Rd, (8.1)

where limn→∞Kλ,n = 0, uniformly in any compact subset of D.

As Z is strictly convex, consider its Fenchel-Legendre transform:

Z∗(u) = sup
λ∈D
{λ · u− Z(λ)}.

Let D∗ = {u ∈ Rd : Z∗(u) <∞}. The superior is reached at a unique λ(u) ∈ D, given by the
convex conjugate

λ(u) = ∇uZ
∗(u), uλ = ∇λZ(λ).

Notice that u 7→ λ(u) and λ 7→ uλ are a pair of inverse maps between D and D∗. For λ ∈ D
and u ∈ D∗, define the rate function Iλ(u) by

Iλ(u) = Z∗(u)− Z∗(uλ)−∇uZ
∗(uλ) · (u− uλ). (8.2)

Denote by Mλ the largest eigenvalue of Σλ. By the arguments above it is not hard to conclude
that for any constant M > Mλ, we have

Iλ(u) ≥ (2M)−1|u− uλ|2 (8.3)

holds if |u − uλ| is small enough. By virtue of (8.3), we can also obtain the following large
deviation property for f(n).
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Lemma 8.2. For any M > Mλ, there exists some δM such that

πλ,n
{
|f(n) − uλ| ≥ δ

}
≤ 2d exp

(
−nMδ2

d

)
,

holds for all n ≥ 1 when |δ| < δM .

Proof. Let Γ ⊆ Rd be the collection of vectors whose coordinates are all ±1. Notice that the
following inequality holds for all x ∈ Rd:

e|x| ≤
d∏
j=1

e|xj | ≤
d∏
j=1

(e−xj + exj ) =
∑
γ∈Γ

eγ·x.

By exponential Chebyshev’s inequality and the above estimate, for θ > 0,

πλ,n
{
|f(n) − uλ| ≥ δ

}
≤
∑
γ∈Γ

e−nθδ
∫
|f(n)−uλ|≥δ

exp
{
nθγ · (f(n) − uλ)

}
πλ,n(d~ω)

≤
∑
γ∈Γ

exp
{
− nθu′ + nZ(λ+ θγ)− nZ(λ)

}
,

where u′ = γ · uλ + δ. To optimize this estimate, define

Iλ,γ(u′) = sup
θ>0
{θu′ − Z(λ+ θγ) + Z(λ)} = sup

θ∈R
{θu′ − Z(λ+ θγ) + Z(λ)}.

The last equality is due to the fact that u′ − ∂θZ(λ+ θγ)|θ=0 = δ > 0. Notice that Iλ,γ is the
rate function defined in (8.2) corresponding to the measure πλ and the function γ · f . By the
arguments which has been used to derive (8.3), one obtains that Iλ,γ(u′) ≥ Mλ|γ|−2δ2. The
estimate in Lemma 8.2 then follows directly.

Now fix some k ∈ N+. For an integrable function G on Ωk, any n ≥ k and u ∈ D∗, define
the microcanonical expectation 〈G|u〉n by

〈G|u〉n = Eπλ,n [G | f(n) = u].

It is easy to see that the definition of 〈G|u〉n does not depend on λ. Notice that though the
conditional expectation can usually be defined only in a almost sure sense, under the regularity
of f , the microcanonical surface

Ωu,n = {~ω ∈ Ωn; f(n)(~ω) = u},

is smooth enough to define the regular conditional expectation for everywhere in D∗. Recall
that uλ = Eπλ [f ]. The following estimate (cf. [13, p.353, Corollary A2.1.4]) holds.

Proposition 8.3. Suppose that for some compact subset D0 of D,

Cj , sup
λ∈D0

Eπλ
[
|f − uλ|j

]
<∞, j = 1, 2, 3, 4,

and G : Ωk → R satisfies that Eπλ,k [G2] <∞ for all λ ∈ D0. Then,

lim sup
n→∞

n
∣∣〈G|uλ〉n − Eπλ,k [G]

∣∣ ≤ Ck√Eπλ,k[(G− Eπλ,k [G])2
]
, (8.4)

with a uniform constant C for every λ ∈ D0.
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Proof. The proof is exactly parallel to [13, Corollary A2.1.4]. We sketch it for completeness.
Without loss of generality we can assume that Eπλ,k [G] = 0 for some fixed λ ∈ D0. Denote by
Fλ,n the density function of f(n) under πλ,n:∫

Ωn

g(f(n))dπλ,n =

∫
Rd
g(u)Fλ,n(u)du

for all integrable function g on Rd. We can write 〈G|u〉n as∫
Rk
G(ω1, . . . , ωk)

(
Fλ,n−k(uk,n)

Fλ,n(u)
− 1

)
πλ,k(dω1 . . . dωk),

where uk,n = (n− k)−1(nu− kf(k)). Schwarz inequality then yields that

〈G|u〉2n ≤ Eπλ,k
[
G2
]
Eπλ,k

[∣∣∣∣Fλ,n−k(uk,n)

Fλ,n(u)
− 1

∣∣∣∣2
]
.

Take u = uλ in the above expression. By Lemma 8.1,∣∣∣∣Fλ,n−k(uk,n)

Fλ,n(uλ)
− 1

∣∣∣∣ ≤ Ck

n

(
1 + |f(k) − uλ|+ k|f(k) − uλ|2

)
.

where C is a constant depending on {Cj ; j = 1, 2, 3, 4}, the polynomials Qλ,3, Qλ,4 and the
sequence Kλ,n appeared in (8.1). Hence, (8.4) holds for the fixed λ we chosen. Since the
polynomials Qλ,3 and Qλ,4 are continuously dependent on λ, and Kλ,n vanishes uniformly in
D0, we can extend the result to every λ ∈ D0.

Now we apply Proposition 8.3 to the model established in Section 1. Let Ω = R2, π be the
Lebesgue measure, and f be the three-dimensional function on Ω given by

f(ω) = (p, r,−p2/2− V (r)), for ω = (p, r) ∈ Ω,

where V is a C4-smooth function with quadratic growth (2.1). It is not hard to obtain that
D = R2 × R+ and D∗ = R2 × R−. For λ ∈ D,

Z(λ) = ln

(∫
R
e−λ3V (r)+λ2rdr

)
+

λ2
1

2λ3
+

1

2
ln

(
2π

λ3

)
, λ = (λ1, λ2, λ3).

So Z is four times differentiable and all of its partial derivatives are uniformly bounded in
[−K,K]2 × [ε,∞) for K, ε > 0. Furthermore, the assumptions in Proposition 8.3 holds in the
same set. Recall the continuous map u → λ(u) form D∗ and D, which gives the inverse of
λ→ uλ. With Proposition 8.3, we have the following estimate.

Corollary 8.4. Suppose that F is a function on Ωk, such that Eπλ,k [F ] is twice continuously
differentiable in λ, and Eπλ′,k [F 4] <∞ for some fixed λ′ ∈ D. Define

G = F − Eπλ′,k [F ]−∇uEπλ(u),k
|u=u′ · (f(ωj)− u′),

where u′ = uλ′ ∈ D∗. Then for n large enough, we have

Eλ′,n
[
〈G|u〉2n

]
≤ Cn−2,

where C is a finite constant depending only on F and λ′.
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Proof. Fix some δ ∈ (0, δM ), where δM is the constant appeared in Lemma 8.2. By Schwarz
inequality and Lemma 8.2,

Eλ′,n
[
〈G|u〉2n1{|u−u′|>δ}

]
≤ 2

d
2 exp

{
−nMδ2

2d

}√
Eλ′,n[〈G|u〉4n],

so it suffices only consider the compact set {|u− u′| ≤ δ}. Observe that

〈G|u〉n = 〈F |u〉n − Eπλ′,k [F ]−∇uEπλ(u),k
|u=u′ · (u− u′), ∀u ∈ D∗.

Recall that λ(u) continuous in D∗, so {λ(u); |u − u′| ≤ δ} is a compact subset of D. Apply
Proposition 8.3 with λ = λ(u) to obtain that∣∣〈F |u〉n − Eπλ(u),k

[F ]
∣∣ ≤ Cn−1, ∀u ∈ {|u− u′| ≤ δ},

where the constant C = C(F, δ), so its square integral is bounded by C ′n−2. We are left with
the second moment in {|u− u′| ≤ δ} of

Eπλ(u),k
[F ]− Eπλ′,k [F ]−∇uEπλ(u),k

|u=u′ · (u− u′).

Since Eπλ,n [F ] is smooth in λ and λ(u) is smooth in u, we know that this function is bounded
by C|u − uλ|, with some constant C = C(F, λ′). The desired estimate then follows from the
fact that Eλ′,n[|f(n) − u′|4] ≤ C ′n−2.
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CEREMADE, UMR-CNRS, Université de Paris Dauphine, PSL Research University
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