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Scalar conservation law in a bounded
domain with strong source at boundary

Lu Xu

Abstract. We consider a scalar conservation law with source in a bounded
open interval 2 C R. The equation arises from the macroscopic evolution
of an interacting particle system. The source term models an external
effort driving the solution to a given function p with an intensity function
V . Q — R4 that grows to infinity at 0€2. We define the entropy solution
u € L and prove the uniqueness. When V is integrable, u satisfies
the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris,
322(1):729-734, 1996), which allows the solution to attain values at OS2
different from the given boundary data. When the integral of V' blows up,
u satisfies an energy estimate and presents essential continuity at 02 in
a weak sense.

Keywords. Scalar balance law, Initial-boundary value problem, Energy
estimate, Doubling variable method.

1. Introduction

In this paper, we study the following initial-boundary value problem for a
quasilinear scalar balance law in the bounded interval (0,1) C R given by

u+ 0x[J(w)]+G=0, t>0, z€(0,1),
uw(0,-) =ug, u(-,0)=c«, u(-,1)=4.
where the source term G = G(t, z,u) reads
G(t,z,u) = V(z)(u— o(t,x)), (1.2)

(1.1)

and J, V, p are nice functions defined respectively on R, (0,1) and Ry x (0, 1).
Since the weak solution to (1.1) is not unique, we need to consider the entropy
solution obtained through the wvanishing viscosity limit. The entropy solution
presents discontinuities both inside (0,1) and at the boundaries. In particular,
the values of u at {0,1} can be different from the prescribed boundary data
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(a, B), so the boundary conditions are a priori formal. The first definition of
the entropy solution is given in [2] for smooth uy and homogeneous boundary
(o, ) = (0,0). It is then generalized in [14,15] to the case with ugp, o and
[ being L functions, see also [13, Section 2.6]. These definitions provide a
set of possible boundary values, reflecting the formulation of boundary layer
during the vanishing viscosity limit. We refer to [4,5,7,16] and [6, Section 6.9]
and references therein for more details and recent development.

Suppose that V(z) > 0, then G = G(t,x,u) satisfies that 9,G > 0 and
G(-,-,0) =0, ie., G acts as a source (resp. sink) when w is less (resp. greater)
than g. When p is a constant, (1.1)—(1.2) can be viewed as a conservation sys-
tem with relaxzation introduced in [11], with the first component degenerated
to a stationary solution. In this paper, we aim at understanding the effect on
the boundary discontinuities caused by extremely strong perturbation. Roughly
speaking, suppose that V' — 0o as x — 0, 1 and choose ¢ that is compatible
to the boundary data: o|.—¢ = a, 0|»=1 = 3. We define the L* entropy solu-
tion and prove the well-posedness. We then investigate its behavior near the
boundaries and show that the appearance of discontinuity is dependent on the
integrability of V. Generally speaking,

e If V is integrable, the boundary condition provides a set of possible values
for uw at x = 0 (resp. = 1) which can be different from « (resp. 5). The
compatibility conditions are not necessary here.

e If the integral of V is divergent at « € {0, 1}, u satisfies an energy estimate
which prescribes the boundary values in a weak sense, and one always
observes continuous flux at the boundaries.

1.1. Physical motivation

The equation studied in this paper arises naturally from the hydrodynamic
limit for asymmetric exclusion process with open boundaries [1,18-20]. It is
an open interacting particle system that describes the dynamics of stochastic
lattice gas with hard core repulsion. Observed at properly chosen macroscopic
space-time scale, the particle density evolves with a balance law with boundary
conditions.

Consider the one-dimensional finite lattice Ay = {1,..., N —1}. A vari-
able 7; is assigned to each site i € Ay, with n; = 0 if the site is empty and
n; = 1 if it is occupied by a particle. The configuration is denoted by

n=m,...,MN_1) € {O,l}AN. (1.3)

The dynamics is described as following. If there is a particle at site 7, it waits
for a random time 7 distributed as P(7 > t) = e~! and jumps to another
vacant site i’ > i on its right with probability p. (i — @), where

B N PR |
py (k) == PR Cy _ZI&TV’ (1.4)
k=1

and v > 1 is a constant. We assume that the waiting times for all particles
and all jumps are independent.
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To model the boundary effects, we attach the system with two infinitely
extended reservoirs. Suppose that one box containing infinitely many particles
is placed at each site j € Z, j < 0. The particles can enter and exit A obeying
the following rules. Particles in the box j < 0 can jump to any empty site
i € Ay with rate ap,(]i —j|), and particle at site ¢ € Ay can jump back to the
box j < 0 with rate (1 —a)py(]i — j|). Here, @ € (0,1) is a given deterministic
number that stands for the density of the reservoirs. Similar reservoirs with
density 8 € (0,1) are placed at sites j € Z, j > N.

Let Loxe,n, L— n and L4 n be the infinitesimal generators of the exclu-
sion dynamics, left and right reservoirs, respectively. For f : {0,1}*~ — R,
they are precisely given by

Lesenf(m) = Y clii’, ) [f(n"") = f(n)],

i, EAN

Lonfm)=>_ Y c(i.gn[fn) = fm)], (1.5)
j<0i€An

Linfm) =Y erlidom)[fm') = fm)],
J>Ni€An

where ni’i/ is the configuration obtained by exchanging 7; and n; in 71, 0 is
the one obtained by flipping 7; to 1 —n; in 7, and
c(i,i',m) = py(i" = D)mi(L — ),
(i, 5,m) = apy (i = 31 = i) + (1 = )py(Ji = 3 )mi, (1.6)
(1, 5,m) = Bpy ([t = 3N = mi) + (1 = B)py(Ji = j)mi-
Consider the Markov process {n(t) = n™V(t);t > 0} generated by
Ly =NLexen + N (L- N + Ly n). (1.7)

The factor N means that the dynamics of exclusion on Ay is accelerated to
the hyperbolic scale Nt. Meanwhile, N7 corresponds to a different scale for
the reservoirs, for which the reason will be clarified later.

Assume some ug € L*°((0,1)), such that

N—1
N—o00
up (@) = > nN O s — o ihay (@) = uo(a) (1.8)
=1

in probability, which precisely means that

légnwp{ /01 ud (v)g(x)dx — /01 uo(z)g(z)dz| > (5} =0 (1.9)

for any § > 0 and continuous function g. The hydrodynamic limit corresponds
to the convergence that for almost every ¢ > 0,

uN () = 3 N X ey (@) 5wt ) (1.10)
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in probability. Since v > 1, p, possesses finite first moment: p., := >, kp,
(k) < oo. Hence, without considering the effects of reservoirs, u is the entropy
solution to (see [17]):

Ou+p,0zu(l —u)] =0, t>0, ze(0,1). (1.11)

To investigate the effect of the left reservoirs, observe that

Loy = cali,j,n) (1 —2n;)

J=<0

c, (1.12)
= (O‘ - 771') Zp’y(k) ~ (a - ﬂz)ﬂ
k>i
The factor N7 is chosen to get the non-trivial limit
L Nl ;
N'L_~ | = , =
x| 2 oo (N)]
N-1 . ) L
~ 5 Xle-mie(y) -2 [ O
N pt 1y N v Jo x
(1.13)

Similar argument works for the right reservoir. Putting them together, we
obtain formally the following hydrodynamic equation

ey [u—a u—
1— el = 1.
O+ pyO0z[u(l —u)] + 5 [ — 1 = x)'Y] 0, (1.14)
for € (0,1), with the natural initial and boundary conditions
u(0,7) = uo(z), wu(t,0)=a, wu(t1)=24. (1.15)

The source term can be written as V(z)(u — o(x)), where

{1 1 } _a(l—a) + B2

v=S9 |,
v (1—uz) x4+ (1 —x)Y

Y

Conservation law with general V' and ¢ can be modelled by exclusion process
with Glauber dynamics, see [20] for details.

Note that in (1.8), the total variation of the initial empirical density ul’

can grow in order O(N). For this reason, we focus on constructing the entropy

solution in L space, rather than in the space of bounded-variation functions.

(1.16)

Remark 1.1. Assume some ¢, > 0 such that (1.14) has a classical solution
for ¢ < ty. Using the method of characteristics, one obtains the characteristic
equation associated to (1.14):

z(0) = zo € (0,1),  a'(t) = p,[1 — 2u(t, z(t))]. (1.17)
Let v(t) := u(t,x(t)) for t € [0,tp), then

v(0) = uo(wo), v'(t) =V (x(t)[e(=(t)) — v(t)], (1.18)
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where V(z) and o(z) are functions given by (1.16). Hence, we formally obtain
the second-order ordinary differential equation for the characteristic:

() + V(x(t)x'(t) = pyV(x(t)) [1 — QQ(zr(t))]7 (1.19)
2(0) = 0, #'(0) = po (1 — uo(0)). '

The classical solution is then determined by (1.18) along these lines.

2. Model and main results

Denote ¥ = Ry x (0,1). Through this paper, we consider the equation (1.1)-
(1.2) on X. The following conditions are always assumed.
(h1) J € CHR;R).
(h2) V € C((0,1);R,)) satisfies that
lim V(z)= lim V(x) = occ. (2.1)

r—0+ r—1—

(h3) The initial data ug, the boundary data «, 3 and g are measurable, essen-
tially bounded functions on (0,1), Ry and X, respectively.

Our first aim is to define the unique entropy solution to (1.1)-(1.2) in
L*>°(X). The concept of Laz entropy—fluz pair plays a central role.

Definition 2.1. A function f € C%(R) is called a Lax entropy associated to
(1.1) and g € C*(R) is called the corresponding flux, if

f'u) 20, q'(u)=f'(w)J'(u), YueR. (2.2)

As mentioned before, the properties of the entropy solution rely heavily
on the integrability of V. Hereafter, we distinguish two cases.

2.1. Integrable case

The source G is called integrable when V belongs to L'((0,1)). In this case,
we begin with Otto’s definition of boundary entropy and the corresponding
flux [15].

Definition 2.2. (F,Q) € C*(R?;R?) is called a boundary entropy—fluz pair, if
the next two conditions are satisfied.

1. (f,q) := (F,Q)(-, k) is a Lax entropy—flux pair for all £ € R,
2. F(k,k) = 0,F(u,k)|u=r = Q(k, k) = 0 for all k € R.

The definition of entropy solution to (1.1) for the integrable case is similar
to the case without V' (see, e.g., [13, Definition 2.7.2, Theorem 2.7.31]) or with
bounded V (see, e.g., [5, Definition 2.1]).
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Definition 2.3. Assume V € L*((0,1)). The entropy solution to (1.1) is a func-
tion u € L*°(X) that satisfies the generalized entropy inequality

/ F(uo, k)p(0,-)dz + // [F(u, k)Orp + Q(u, k)dpp| dudt
0 b
> //2 OuF (u, K)V (z)(u — 0)p dadt (2.3)

T
=1 [ [Fa kgt 0) + (B gl 1)t

for all boundary entropy—flux pairs (F,Q), k € R, and ¢ € C?(R?) such that
© > 0. In (2.3), the constant M is given by

M i=sup {|.J'(w)]; u] < esssup {|el,lal, 8], [uol} }. (2.4)

As a standard result, the smooth entropy—flux pairs in Definition 2.3 can
be replaced by non-smooth ones, and the initial condition holds in L.

Definition 2.4. For (u, k) € R?, define
n(u, k) == [u—kl,  &(u, k) :=sgn(u—k)[J(u) — J(k)]. (2.5)
The pair (1, §) is called the Kruzhkov entropy—fluz pair.

Proposition 2.5. Assume V € L'((0,1)). The entropy solution is equivalently
defined as u € L>®(X) such that

/o |ug — K|e(0, -)dx + //Z [|u— k|Oyp + &(u, k)Dpp] dudt
> //2 sgn(u — k)V(z)(u — o)p dadt (2.6)

T
=1 [ [la = Hlp(0) +18 — klg(-, D],
for all k € R and ¢ € C2(R?) such that ¢ > 0. Moreover,

1
%Sj‘léer/O |u(t, x) — ug(z)|dz = 0. (2.7)

Using the methods in [13, Section 2.7 & 2.8], we obtain the well-posedness
of v and an explicit expression for the boundary conditions.

Proposition 2.6. Assume that V € L'((0,1)), then (1.1) admits a unique en-
tropy solution uw € L>(X).

Proposition 2.7. Let u be as in Definition 2.3. For all 0 < s < t and boundary

entropy—fluz pairs (F,Q),
¢
%Siltl)rf i Q(u(r,z),a(r))dr <0,
¢
esslim | Q(u(r,z),B(r))dr > 0.

r—1— s

(2.8)
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2.2. Non-integrable case

The source G is called non-integrable when the integral of V' is infinite. In this
case, the singular points of the integral of V' can only be {0,1}. We will see
later in Remark 2.10 that, when the integral of V is divergent at only one of
them, the equation can be treated as a mixed boundary problem with one side
integrable and the other side non-integrable. Hence, we assume without loss
of generality that

/y V(z)dz = /1 V(z)de =00, Vye(0,1). (2.9)
0 1—y

Also assume the compatibility conditions: for all " > 0

T Y 9
ylir&/o /0 V(z)[o(t, ) — a(t)] "dzdt = 0,

Jim | l_yV(x) [o(t, ) — B(1)]*dadt = 0.

(2.10)

Notice that (2.10) is generally true in the integrable case, since o, o and 3 are
essentially bounded.

Definition 2.8. Assume (2.9) and (2.10). The entropy solution to (1.1) is a
function w € L*°(X) that satisfies the following conditions.

(EB) The energy bound: for all T' > 0,

/ / V(z)|u(t,x) — oft, x)}zdxdt < 00. (2.11)

(EI) The generalized entropy inequality

/01 f(uo)g(0,)dx + // u)Orp + q(u) 0y 0| dadt

// F(w)V(x)(u— o)pdrdt,

for all Lax entropy—flux pairs (f,q) and all ¢ € C2(R x (0,1)) such that
¢ =0,

(2.12)

Remark 2.9. Despite that (2.12) contains no boundary condition, it turns out
that the entropy solution is unique, see Theorem 2.12 and 2.13 below. Indeed,
from (2.10) and (2.11),

T ry 9
yl_i)r(r)1+/0 /0 V() [u(t,z) — a(t)] “dadt = 0,

T
yl—i>%1+/0 /1_y V(z)[u(t,z) — B(t)] dzdt = 0.

Given (2.9), the necessary boundary information is contained here. More de-
tails can be found in (2.17) and Lemma 3.2.

(2.13)
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Remark 2.10. Indeed, the boundary conditions at x = 0 and = 1 are treated
separately. Hence, if V' is integrable at = 0 (resp. £ = 1) but not at x = 1
(resp. = 0), the entropy solution is defined by (2.11) and (2.3) for all ¢ €
C%(R x (—o0,1)) (resp. C2(R x (0,00))) such that ¢ > 0.

Similarly to the integrable case, we can define the entropy solution using
the Kruzhkov entropy instead.

Proposition 2.11. Assume (2.9) and (2.10). The entropy solution is equiva-
lently defined as u € L>=(X) satisfying (EB) and

1
| o = g0, o+ [ [lu ko + ¢(u bas dude
0 b

> / / sen(u — k)V (2)(u — o) dadt,

for all k € R and p € C2(R x (0,1)) such that ¢ > 0. Furthermore, the initial
data is attained in the sense of (2.7).

(2.14)

We are now ready to state our main results.

Theorem 2.12. (Uniqueness) Assume (2.10). Instead of (2.9), assume that V
satisfies a stronger condition at the boundaries:

1 (Y 1 1
lim sup —/ [ + dr < oo. 2.15
ez, v v (215)
Then, there is at most one u € L*(X) that satisfies Definition 2.8.

Observe that for any § > 0 and y € (0,1),

/TI/y lu(t, 2) — a(t)| dadt
< 46/ / (u— «) dxdt—i——/

Taking y — 0 and choosing § arbitrarily small, (2.15) suggests that the bound-
ary conditions in (1.1) hold in the sense of space-time average:

hr%/ / |u(t, ) — a(t)| dzdt = 0, (2.17)
y—?

and similarly for 8(t). The convergence in (2.17) can be significantly improved
under extra conditions.

da. (2.16)

Theorem 2.13. Let a(t) = a, 8(t) = B be almost everywhere constants and u
satisfy (EB) and (EI). Assume (2.15) and for all T > 0 that

T ry
lim / / V(2)|olt ) — o] dzdt = 0,
y—0+ 0 0

T 1
lim V(z)|o(t,x) — B| dzdt = 0.
y—0+ 0 1—y

(2.18)
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Then, for all 0 < s <t and Laz entropy—flux pairs (f,q),

t

esslim i q(u(r,z))dr = (t — s)q(a),

t

esslim [ q(u(r,x))dr = (t — s)q(B).

N
r—1 s

(2.19)

Corollary 2.14. Assume the same conditions as in Theorem 2.13 and that J
is convex (or concave), then for all 0 < s < t,
t
esslim | wu(r,z)dr = (t — s)a,

z—0+ /g
. (2.20)

essl%rzl u(r,x)dr = (t — s)0.

Finally, the existence of the entropy solution for non-integrable source
with smooth coefficients and boundary data is established below.

Theorem 2.15. (Ezistence) Assume that J € C*(R), V € C?((0,1)), o, B €
CZ(Ry) satisfy (2.9) and (2.10). Moreover, suppose that for each T > 0, there

is a family of functions {0%;e > 0} such that the following conditions are
fulfilled.

(i) For each e >0, o° € C3(X7) and o° — o in L*(X7).
(ii) 1|0°l| o (sr) < ol (sr): SuPeso 67 llH1(sr) < 00 and

sup //ZT V(z)[o®(t,z) — oft, x)]zdxdt < 00. (2.21)

e>0

Then, (1.1) admits an entropy solution in Definition 2.8.

Ezample 2.16. Recall (1.14) with boundary conditions (1.15). When v € (0, 1),
the source is integrable. When v > 1, the source is non-integrable and the
conditions in Theorem 2.12 and 2.15 are satisfied. Hence, the particle density
evolves macroscopically with the unique entropy solution.

Remark 2.17. The method presented for integrable V can be extended to
scalar balance laws in spatial dimensions d > 2, see, e.g., [14,15]. For the
multi-dimensional non-integrable case, one can construct an entropy solution
satisfying an energy estimate similar to (2.11) via the standard vanishing vis-
cosity limit. However, the corresponding uniqueness remains open.

2.3. Organization of the paper

The arguments for the integrable case are largely the same as those used in [13,
Section 2.7, 2.8], see also [5]. Hence, we only summarize the ideas briefly. The
focus is the non-integrable case. In Sect. 4, we prove Theorem 2.12 exploiting
Kruzhkov’s doubling of variables technique. In Sect. 5, we prove Theorem
2.13 via an L'-refinement of the energy bound. In Sect. 6, we prove Theorem
2.15 with vanishing viscosity method. Proposition 2.11 and some preliminary
results are proved in Sect. 3.
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4. Notations

For a measure space (X;u) and p > 1, let

D) = {55l <ob Wiy = [ 1P A0 (222)

For p = 0o, L>°(X; u) stands for the space of essentially bounded measurable
functions and || -|| = (x,,) is the essential supremum norm. When X C R and
p is the Lebesgue measure, we use the abbreviations LP(X) and || - ||r(x)-

Recall that ¥ = R4 x (0,1) and denote by v the o-finite measure on ¥
given by v(dzdt) = V(z)dxdt. For T > 0, let 37 = (0,7) x (0,1). With some
abuse of notations, the restriction of v on X is still denoted by v.

Let (f, q) be either a Lax entropy—flux pair or the Kruzhkov entropy—flux
pair (n,€)(-, k). For ¢ € C?(R?), the entropy product of (f,q) is defined as

B (y / / W)rip + q(u) D p) dardt

// F )V (z)(u— o)y dxdt.

We identify 0,n(u, k) = sgn(u— k) for n = |u—k|. Notice that the last integral
in (2.23) is well-defined if and only if f'(u)(u — 0)p € L'(Z;v).

(2.23)

3. Preliminary results

First, we verify the alternative definitions of the entropy solution with (2.6)
and (2.14). The integrability of V' is irrelevant here.

Lemma 3.1. For u € L*™(X), (2.8) holds for all Lax entropy—fluz pairs if and
only it holds for the Kruzhkov entropy—fluz pair and all k € R.

Proof. Choose g € C%(R) such that g(0) = ¢'(0) = 0, g(2) = ¢'(2) = 1,
¢"(u) > 0 and g(u) = g(—u). For ¢ > 0, define

— k| — —k|>2
FE(%,C)::{W K=o Ju—k>2e,

eg(e W u—k)), |u—Fk| <2, (3.1)

Qe(u, k) :== /ku Oy Fe(w, k) J (w)dw

Observe that (F., Q.)(, k) is a Lax entropy—flux pair for each ¢, (F., Q.)(-, k) =
(7,8)(- k) as e — 0, and

O (u, k) = sgn(u — k), lu — k| > 2e, (3.2)
e g u—k)), |u—Fkl <2e. '

Suppose that (2.3) holds for all Lax entropy—flux pairs (f, ¢). To get (2.6),
it suffices to take (F.,Q:)(-, k) in (2.3) and let ¢ — 0. On the other hand,
assume (2.6) for all £ € R. Since £ can be chosen smaller than —||u| (%),
(2.3) is true for the linear entropy f = uw and the corresponding flux ¢ = J.
Then, one only needs to use the fact that any Lax entropy—flux pair (f,q) is
contained in the convex hull of (n,&)(-, k) and (u, J). O
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The proofs of Proposition 2.5 and 2.11 are standard. Below we assume
the non-integrable case and prove Proposition 2.11 as an example.

Proof. The first argument follows directly from the previous lemma. To verify
the L'-continuity at t = 0, we use the idea in [13, Lemma 2.7.34, 2.7.41]. For
any ¢ € C3(R) and v € C2((0,1)) such that ¢, ¥ > 0, let ¢ = ¢(¢)i(z). The
entropy product in (2.23) reads

EOCR (y) = / lu — k| ¢y dzdt
> (3.3)
+ //E [€(u, k)Y — sgn(u — k)V (z)(u — 0)1b] ¢ dadt.

Recall that ug € L>((0,1)) and u € L*>°(X). Let M = |lup||r~ + ||ul|L=~ and
for k € [-M, M], [§(u, k)| < 2supi_p; pq|J|- Hence, the second line above is
bounded by

[cMsupW+(u||Loo+||g||Lx) / v<w>w<x>dx} / Tomar. (3.4)

Since 1 is compactly supported within (0, 1),

E(n DGR (y, // |u—kz\gbz/}dmdt+0/ o(t) (3.5)

The generalized entropy inequality (2.14) then yields that

O)/O luo(x) — k| (z)dz Jr/o Fi(6)' (t)dt > 0, (3.6)

where the function Fy, , : (0,00) — R is defined as

Fou(®) / lult, ) — ko (z)dz — Ct. (3.7)

From (3.6), after a possible modification on a set of zero measure, Fj , is
non-increasing on (0, 00), and

1
esslim Fiy (1) < /0 luo () — k|4 () da. (3.9)

In other words, for all 1 € C2((0,1)) such that ¥ > 0,

1
esshm/ |u(t, k|¢dw§/ lug — k| da. (3.9)
0

By a standard density argument, (3.9) holds for v € L'((0, 1)) such that 1) > 0.
One can approximate v € L>((0, 1)) by simple functions taking only rational
values to get

ebbhm/ |u(t, ) — vl dx </ |ug — | dex. (3.10)

t—0

The result then follows by simply taking v = ug and ¥ = 1. O
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Next, we focus on the boundaries in the non-integrable case. Pick a func-
tion ¢ € C*°(R) such that
supp ¥ € (0,00), P|z>1 = 1. (3.11)
For ¢ > 0 and z € [0, 1], define
V(@) == V(L) Lipeey + Lic<ocioey + V(25 Ln1—ay (3.12)
Then, ¢. € C2°((0,1)) and . — 11y in L'((0,1)) as e — 0.

Lemma 3.2. Suppose that (2.15) holds and v € L>*(X) satisfies (2.13). Fix
some T > 0 and recall that X = (0,T) x (0,1). Let g be a measurable function
on R? such that

lg(t, z,w) — g(t, 2", w")| < C(|lz — 2’| + |w — w'|) (3.13)

for all (t,x), (t,2") € Xr and |w|, |0'| < ||ul|p~(sy). Then,

hm //ET (t, x, u)YL dedt = / [9(-,0,a(:)) — g(-,1,8(-))]dt. (3.14)

Proof. From the definition of .,

//ZT g(s )Pl dwdt = /OT (/05_'_/:) g, w) dadt. (3.15)

Noting that the integral of ¢/ (z) from 0 to € is 1,

£ T
ot @, ult, )0 (z)dadt — /0 o(t,0, (b)) dt

T re
< /0 /0 |g(t,x,u(t,x)) g(t, 0, at |1/) )dxdt (3.16)

The condition of g together with the fact that [1.| < Ce™! yields that the last
line is bounded from above by

C T 5
€ /0 /0 (z + |u(t, z) — a(t)|)dzdt. (3.17)

Applying Cauchy—Schwarz inequality, we obtain the upper bound

cTe 1 (T [f ) C?T6 (¢ 1
b 1% - il . 1
5 + 5/0 /0 (2)(u — @)*dxdt + 1 /0 V(x)dx’ (3.18)

for any § > 0. Taking first ¢ — 0 and then § sufficiently small, we have

T re T
hm/ /Og(t,x,u(t,m))wsdxdt:/o g(t, 0, «(t))dt. (3.19)

e—0 Jo

The integral over (1 — ¢, 1) can be treated similarly. O
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4. Uniqueness of the entropy solution

In this section, we first prove the uniqueness of the entropy solution in the non-
integrable case, then briefly summarize the difference when V is integrable. In
the non-integrable case, the uniqueness is a direct consequence of the stability
below.

Theorem 4.1. Assume (2.10), (2.15) and let u, v satisfy Definition 2.8 with
the same (a, B) and different (ug,0), (vo, 0+), Tespectively. Then, for almost
all t >0,

1 1
/ lu(t, ) —v(t,)|dz < / [ug — voldz + / V(z)|lo — o0« dzds.  (4.1)
0 0 N

The next Kruzhkov-type lemma plays a key role in the proof. Since we
choose the test function ¢ to be compactly supported in ¥, the integrability
of V is indeed irrelevant to either the statement or the proof.

Lemma 4.2. For all ¢ € C2(X) such that ¢ > 0,

// [lu—v|0yp + &(u, )0 + |0 — 04 |Vp|dzdt > 0. (4.2)
>

Proof. Let T > 0 be fixed and we verify (4.2) for ¢ € C2(37). Let ¢ € C°(R)
be a mollifier such that

suppo € (LD, o= =o(r), [elar=1 (@3
For € > 0, let ¢.(7,() = e 2¢p(e "1 7)¢p(71() and define
. (t,,5,y) :—w(t;S Iﬂ/)cﬁs <t5’12y>' (4.4)

Without loss of generality, fix T = 1. Since ¢ € C2(X;), choose § > 0 such
that supp ¢ C [6,1 — §]2. The support of ®. is then contained in

t+s€[20,2—20], t—se(—2¢2e),
r+y€[20,2—-20], x—yé€E (-2, 2).

Direct computation shows that ®. € C2(X?) for all € € (0, 6).
Hereafter, we assume ¢ € (0,6). Fixing (s,y) € ¥; and applying (2.14)
with k = v(s, y) and ¢ = ®.(+,-,s,y) € C2(1),

E((I:h(g)(v 7y)) // ’LL*U S, Y |8t (a » 5, Y )dﬂ?dt

—|—/ E(u,v(s,y))0: P (-, -, 8, y)dadt (4.6)
31

(4.5)

— //2 sgn(u —v(s,y))V(x)(u — 0)P:(+, -, s,y)dxdt > 0.

Similar inequality holds for v = wv(s,y), k = u(t,z) and ¢ = D (¢, x,,").
Denote u; = u(t, z), v1 = v(s,y), then

( &) (v(s,y)) (m,8) (- u(t,x))
//2 Blrny) (“)deer/zl Byllewry (©)dudt
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<—/XXé%“u1mK&%5M¢s+§Whvﬂ@%+aﬂ®s

—sgn(u1 —v1) [G(t, 2, u1) — Gi(s,y,v1)] @E}dydsdxdt
>0,

where G(t, ,u) = V(z)(u — o(t,x)) and G.(s,y,v) = V(y)(v — 0:(s,9)).
Introduce the coordinates A = (A1, A2), 8 = (01, 02) given by

t+s z+y t—s x—y
= = . 4
A= () e (501 (1.9

Recall that ®. = ¢(A)1.(0). Direct computation shows that
(816 + 85)(1)5 = ¢5(0)8A1<P(>\)a

(0, +0,)8. = 6.(8)Dr,0(N). (4.9)
Define Q := {(X,0); A+ 0 € [0,1]2,X — 0 € [0,1]?} and
= |u1 — v1]Ox, (A) + &(u1,v1) O, 0(N), (4.10)

G =sgn(u; —v1) [G()\ +0,u1) — Go(X\— 0,1}1)]90()\).
Then, (4.7) is rewritten as 7. — R. > 0 for € € (0,6), where

T. = / (X 0)6:(0)d(X0). Re = | GA.0)0-(0)dX0).  (411)

Using the argument in [10, Theorem 1], one can show that

lim 7, = // (A, 0)d (4.12)
e—0 ol

see also [13, Lemma 2.5.21]. Decompose G as G + Ga + G5, where

Gy =sgn(uj — vl)[G()\ ur) — G (X, v1)]p(N),

Gz = sgn(ur — o) [GOA+ 8,u1) — GO u)] (V). (413)

Gz =sgn(uj — vl)[ A1) — Ge( X — 0,111)]@()\).
Recall that G(A,u1) = V(A2)(u1 — 9(A)). Then,

1Go| <V (A2)|o(A+6) — o(N)|p(N)

+ V(A2 4 62) = V(X2)|Jur — o(A + 0)|o(N)

Since supp C [6,1 — 6]? and u, o € L®(%;),

/ 92()\79)¢e(9)d()\a0)’§ [ e [ o.(0i0
e = R (4.15)

{Calox+8) = oV + OV (ra + 02) ~ VM) [},

with Cs := sup{V(x);d <z < 1 — §}. For sufficiently small e, both ¢ and V
are bounded on [§ — ¢, 1 — & + €]?. Then, the definition of ¢. and the Lebesgue

(4.14)
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differentiation theorem show that this term vanishes as € — 0. The integral of
G is treated similarly. Finally,

G1 = lur = 01[V(A2)o(A) — Sgn(ul —v)V(A2)[0(X) = 2s(N)]o(A),  (4.16)
so that G; > =V (A2)|o(X) — 0.(0)|p(A). Therefore,

liminf Re > — / V(A2)[o(A) = 0+(A)]e(N) (4.17)

Recall that from (4.7), we have TE —R. > 0. By (4.12) and (4.17),
/ /E Z(A,0)dA > — / IRCOIFENEFNEVEEVEN (4.18)
The desired ilnequality follows dirlectly. O

Proof of Theorem 4.1. First, observe that the estimate is trivial if the integral
of V|o — o«| is infinite. Hereafter, we assume that o — o, € L'(37;v), where
v(dxdt) = V(x)dxdt.

Fix an arbitrary ¢ € C2((0,7)) such that ¢ > 0 and recall the function
e given by (3.12). Using Lemma 4.2 with ¢ = ¢(¢)¢(z),

[ = vl ewvto+ o= evodstt 0. o)
Taking € — 0, we have

tim [ (juol¢' + o - 0.V} . dod

e—0

= //E (|u—v|¢’ + |0 — 04|V ¢)dadt.

Notice that the convergence of the second term follows from p— g, € LY(Sr;v).
We are left with the integral of (u, v)i.¢. From the construction of ., this
term is identically 0 for € [e,1 — ¢]. Using the same argument as in Lemma
3.2, for any § > 0,

CTé? [°d
/ / E(u,v)Ylpdrdt < = / / E (u,v)V dodt + ——— 102 Vx’ (4.21)
0
with a constant C' depending on ¢. From (2.15), the second term vanishes as
6 — 0, uniformly in . Also observe that

€ (u, 0)| = |J(u) = J(v)] < Clu —v]. (4.22)
Since u and v satisfy (2.13) with common boundary data «, the first term

vanishes as ¢ — 0 for any fixed § > 0. By repeating the argument for the
integral on (1 —¢,1),

(4.20)

lim //ET €(u, )¢ dzdt = 0. (4.23)

e—0

Putting these estimates together,

/OT [d(t) /01 |U—v|dz+¢(t)/01V(z)|g—g*|dx dt > 0, (4.24)
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for all ¢ € C2((0,T)) such that ¢ > 0. From this,

t»—>/ lu(t, ) —v(t |dx—// V(z)|o — o«|dxds (4.25)

is an essentially decreasing function of t. It suffices to apply the L'-continuity
of the entropy solution at ¢t = 0. (

When V € L'((0,1)), let u, v be as in Definition 2.3 with (a, 3, 0, uo)
and (au, By, 0+, Vo), respectively. Instead of Lemma 4.2, the uniqueness follows
from the next lemma.

Lemma 4.3. For all ¢ € C32(R, x R) such that ¢ > 0,

} (4.26)

> M / o — oo, 0) + 18— Bl 1)) dt

where the constant M is the supreme of |J'| between the essential infimum and
supremum of (o, &/, 3, 5").

The proof goes in the same line as that of Lemma 4.2, with the boundary
terms treated with the argument used in [13, Theorem 2.7.28]. The only differ-
ence is that, when estimating G, the support of ¢ contains boundary points.
Observe that |Gs| is bounded from above by

Co[VA2)loA +8) — o(N)| + [V (X2 + 62) = V(o). (4.27)

As V is integrable, almost every point in (0, 1) is a Lebesgue point of V. This
assures that the integral in (4.15) vanishes when ¢ — 0.

5. Flux at boundary

This section is devoted to the identification of the behavior of the entropy
solution at the boundaries. For the integrable case, (2.8) follows from (2.6)
and exactly the same argument as used in [13, Theorem 2.7.31], so we focus
on the non-integrable case and prove Theorem 2.13. Hereafter, always assume
(2.15) and that « and [ are almost everywhere constant functions.

Lemma 5.1. Assume (2.10). Let u be as in Definition 2.8 and (F,Q) be any
boundary entropy—fluz pair. Then, for ¢ € C3(R x (—o00,1)) such that ¢ > 0,
we have 0, F(u,a)(u — 0)p € L*(Z;v) and

1
EFQC) (4) 1 /O F(ug, 0)(0, )dz > 0. (5.1)

Similar result holds at the right boundary: for ¢ € C2(R x (0,00)) such that
© >0, we have 8, F(u, B)(u — 0)p € L*(Z;v) and

1
EFRQC0 () +/0 Fl(uo, 8)¢(0,-)dz > 0. (5.2)
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Proof. Let K = (—00,T] X (—00,y] for some T' > 0 and y < 1. Denote (f,q) =
(F,Q)(-, ). By its definition, |f'(u)| < Cp|u — «|. Then,

| (w)(u — 0)1x| < Cr|(u— a)(u— o)1k
< Cp(|(u—0)*1k| + (0 — a)(u — 0)1k]).

By (2.11) and (2.10), both terms belong to L' (3; v). Hence, for all ¢ € C2(R x
(u

(
(=00,1)), f'(u)(u = o) € L'(%;v).
Fix ¢ € C2(R x (—o0,1)) such that ¢ > 0. Let . = 1., where 9. =

C

e (z) is given by (3.12). Since « is constant, from (2.12),

(5.3)

E(f’q) / f(uo)es(0,-)dz > 0. (5.4)

Taking € — 0, it is straightforward to see that

hm f(uo e (0, )dz —|—/ f(u)0pe dadt

:/ f(u0)<p(o,-)dx+// F(u)Oyp dadt.

Using Lemma 3.2, since ¢(a) = Q(a,a) =0 and ¢(t,1) =0,

lir% // Oppe dxdt = // q(uw)Oypp dxdt. (5.6)
E— >

Recall that G (-, -,u) = V(z)(u—p) and f'(u)(u—p)p € L*(3;v), the dominated
convergence theorem yields that

glir(l)//z I (W)G(, -, u)pe dedt = // ' (u u)p dxdt. (5.7)

Putting them together, we obtain the first assertion in the lemma. The second
one follows similarly. O

To continue, we make use of the condition (2.18) to refine the energy
bound (2.11) to the following L!-integrability.

Proposition 5.2. Assume (2.18), then u — o € L'(31;v), i.e.,
// x)|u(t, z) — o(t, z)| dedt < 00, YT >0. (5.8)
T

Proof. Thanks to (2.18), it suffices to prove for y € (0,1) that

/ / x)|u(t, z) — o dedt < oo, (5.9)

and the similar bound for 8. Recall the functions (F;, Q:)(-, k) defined in (3.1)
and observe that (F., Q.) forms a boundary entropy—flux pair for fixed €. Pick
some T, > T and y, € (y,1), the previous lemma yields that

1
B0 0+ [ o, 0)p(0. ) > 0 (5.10)
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for all ¢ € C2((—o0,Ty) x (—00,y.)) such that ¢ > 0. Hence,

sup // G-y, u) 0y Fe(u, @) p dadt < oo. (5.11)
b

e>0
Fix such a ¢ and decompose G(-, -, u)0y F=(u, &) to
VouFe(u,a)(u—a)p — VO, Fe(u,a)(o — a)p. (5.12)
Since |0y, F¢| is bounded by 1 uniformly in e, by (2.18),

‘/ V@uFE(u,a)(g—aypdxdt‘

. (5.13)
IIsDIILoo(z)/ / 2)|o(t, z) — o dadt
is bounded from above uniformly in e. Therefore,
sup/ VOuF:(u,a)(u — a)pdedt < oo. (5.14)
e>0 =

From the construction of F., 9, F(u,a)(u—«) > 0 for u € R and 9, F(u, ) =
sgn(u — ) if |u — | > 2e. Then, for each fixed e,

Liju—al>2e} Vi — alp < VO, FL(u,a)(u — a)p, (5.15)
and in consequence,
sup // Lfju—al>2e} Vv — alpdzdt < oo. (5.16)
e>0 b
Monotonic convergence theorem then yields that
/ / V(@)|ult, ) — alo(t, 2)dedt < . (5.17)
b
The proof is concluded by choosing ¢ such that o, 7)x(0,y) = 1. 0

Remark 5.3. Assume the conditions in Theorem 2.13. Due to Proposition 5.2,
(2.12) in Definition 2.3 can be generalized to

fQ) / fuo)e

for all Lax entropy—flux pairs (f,q) and ¢ € C2(R?) such that ¢ > 0. The same
generalization works for (2.14).

(5.18)

Now we can state the proof of Theorem 2.13.

Proof. Pick nonnegative functions ¢ € C2((0,7)), ¥ € C3(R) and define ¢ =
@(t)y(x). From the previous remark,

B )+ [00)ate) —0(a(@)] [ ez, (19)
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There is a constant C' = C(f, ¢), such that

EY) / / WY'é+C(VIu— o + 1)¢]dzdt.  (5.20)
X7

Due to the integrability proved in Proposition 5.2,

Fy o) = / " glult, )0t
—0/ / y)lult,y) — oft, y)| +1)dy,

is well-defined as a measurable function on (0,1). If ¢)(1) =0

/ o(t dtJr/ Fy4(x)¢ (x)dz > 0. (5.22)

This holds for all nonnegative 1 € C2((—o0,1)), so F, 4 is non-increasing after
possible modification on a Lebesgue null subset of (0,1). Hence,

e}
esslim Fy () = exsilégl q(u(t,))o(t)dt (5.23)
exists for all ¢ € C2°((0,7")) such that ¢ > 0. For all (s,t) C (0,T), the result
extends to ¢ = 1(,4) with standard argument. The first equation in (2.19)
then follows from (5.9) and the fact that V is not integrable on any neighbor
of 0. The second one is proved similarly. O

(5.21)

When J is convex or concave, more information can be extracted from
(2.19) by exploiting the idea in [8,12].

Proof of Corollary 2.14. Let Q be a countable set of functions such that (2.19)
holds. The choice of Q will be specified later. Fix an interval (s, t), there exists
a subset £ C (0, 1) with Lebesgue measure 0, such that

(1) Juls2) Lo ((s,0) < Nullzoe(s,0)x(0,1)) for all € (0, 1)\E;

(ii) (t = s)g(a) = limge(0,1)\&,2—0+ f(s,t) q(u(r,z))dr for all ¢ € Q.
Denote m = |[Jul| oo ((s,6)x (0,1))- For any sequence z,, € (0,1)\& such that
r, — 0, we can find a subsequence z;, and a family {z,},¢(s,¢) of probability
measures, such that . ([—m,m]) = 1 and for each q € Q,

(t—s) / / z) e (dz)d (5.24)

/

In other words, u(-,z!) converges to {u,} as n — oo in the weak-x topology

of L>((s,t)). To show (2.20), we need to show that
ur({a}) =1 for almost all r € (s,t). (5.25)

For each rational number §, define
fos(u) = Lusslu =], q-5(u) = Lucs(J(8) = J (u),
frs(u) = Luzslu = 9], q4.5(u) = Luzs(J(u) = J(9)).

It is easy to show that we can choose Q to contain all g4 5, so (5.24) holds for
them. Observe that (5.25) is straightforward if J is monotonically increasing

(5.26)
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(or decreasing) on [—m,m]. Indeed, suppose that J' > 0 on [—m,m]. For
0 < a,q_s(u) >q_s(a) foru < dand ¢_ 5(u) = ¢ 5(a) for u > 9. Therefore,
wr([=m,8)) = 0. Similarly, p,.((§,m]) =0 for 6 > «. As § can be any rational
number, (5.25) holds. The case J is decreasing is similar.

Hereafter, we assume that J is concave and attaches its maximum at
m, € [—m, m]. Suppose that o < m., by the argument above

pr ([, a]) =1 for almost all r € (s, 1), (5.27)

where . > « is the only point that J(a) = J(&). For § > au, q_s(u) <
g—s(a) on [a, ] with equality holds only for v = «, ay. Therefore, (5.27)
holds with [« @] is replaced by {«, . }. Finally, let Q also contain some Lax

flux ¢ such that g(a.) > ¢(«) strictly, so (5.25) holds. O

6. Existence of the entropy solution

In this section, we fix some 7" > 0 and construct an entropy solution on X
via the vanishing viscosity limit. With the uniqueness proved in Theorem 2.12,
we obtain an entropy solution on Y. As before, we focus on the non-integrable
case and then summarize the argument for the integrable case.

For the non-integrable case, assume that the conditions in Theorem 2.15
hold. For each £ > 0, the viscosity problem is constructed as

{ Ouf + 8, [J(u)] + GZ(t, x,u) = ed?u®, (t,z) € Op, 61)

uE(va) = ’U,S((L’), us(t,O) = a(t)a ue(tv 1) = ﬂ(t)7

where G¢(t, z,u) := V(z)(u— 0°(t, z)) with ¢f in Theorem 2.15, u§ € C2([0, 1])
approximates ug in L?((0,1)) and

up(0) = a(0),  ug(1) = 5(0). (6.2)

It admits a classical solution u® = u®(t, z) that satisfies

(vl) u® — ¢° € L*(Z7;v), and
(v2) for all ¢ € C%((—o0,T) x (0,1)),

1
/ uge(0,-)dx + // [ufByp + eutd2p + J(uf)Dpip) dadt
0 T (6.3)

= / G(-, - u)pdadt.
T

Some useful properties of u® are collected in Appendix A.

Theorem 6.1. Along proper subsequence of € — 0, u® converges to some u €
L () with respect to the weak-x topology of L (Xr). Furthermore, the limit
point satisfies (EB) for the given T and (EI) for all Lax entropy—fluz pairs
(f,q) and p € C?((—00,T) x R) such that ¢ > 0.
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Recall that a Young measure p = {5 (t,2) € L} is a family of proba-
bility measures on R such that (t,z) — p; ,(A) is a measurable map from Xp
to [0, 1] for any Borel subset A of R. For continuous function h, define

h:¥7 > (t,z) n—>/ (2)pe,»(dz). (6.4)

In view of Lemma A.1, |[u®| 1 (x,) is uniformly bounded. According to the
fundamental theorem of Young measure, we obtain a u = {u¢4; (¢, ) € T}
as a subsequential limit point of u€ in the following sense: for all h € C(R) and
p € L'(27),

fim [ [ bt 2)dedt = / [ et aydod. (6.5)

e—0 S
We also have pis . ([=m,m]) = 1, where m = sup.- [[u®|| o (1)

Proof of Theorem 6.1. First, from Lemma A.2 and [3, Proposition 4.1],

[ v [[ ool an <. 6o

For all Lax entropy—flux pairs (f,¢), from (6.1) we have
Or[f ()] + zlq(u)] = f'(u¥) {0 + [T (u7)] }
= ef (u)u® — f'(u")GE(:, - u).
Since f” >0, f/(uf)02u® < cd2[f(u®)]. Therefore,
e [f ()] + Dula(u)] + f'(u)GE (-, uf) < 20Z[f (). (6.8)

Recall the entropy product defined in (2.23). For ¢ € C2((—o0,T) x (0,1))
such that ¢ > 0, we have

fQ) / flug)e

>e / [ oulpuonp st - / [ rvie - opdadt

(6.7)

(6.9)

In view of the condition (i) in Theorem 2.15 and Lemma A.2, the two terms
in the right-hand side vanish as ¢ — 0. We then obtain from (6.5) that

/ [fore + G0 — (5 — o) Vip] dadt
SR (6.10)
>~ [ fuo)pl0,)dz,  where g(u) = uf (u).
0
Observe that (6.6) and (6.10) can be viewed as the measure-valued version

of (2.11) and (2.12), respectively. Hence, the main task is to show that, the
Young measure p is concentrated on some u € L (Xr):

pt,z(dz) = Oyt z)(dz)  for almost all (¢,z) € Xr. (6.11)
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To do this, we exploit the compensated compactness argument, see, e.g., [9,
Section 5.D]. Define two sequences ®., ¥, : $7 — R? by

O, = (f(ue)’q(ue)), U, = (_J(UE)»UE)- (6.12)

Since {®.;e > 0} and {¥.; ¢ > 0} are bounded, {div®.;e > 0} and {curl¥,; e >
0} are bounded in W~1?(3r) for any p > 2. Notice that

div®, = 9,[f (u®)] + 9. [q(u®)]
= e0;[f(uf)] — ef" (u)(O,u%)? = V[ (u)(u® = 0%);  (6.13)
curlV, = dpuf + 0,[J(u°)] = ed?u® — V(uf — o°).

Fix any 6 > 0 and define X3, = (5,7 — §) x (6,1 —6). We claim that both
{div®.;e > 0} and {curl¥ ;e > 0} are precompact in H~1(X3). Indeed, we
have seen from Lemma A.2 that £02[f(u®)] vanishes as e — 0 in H~(X%) and
{ef" (u¥)(0,u%)% e > 0} is a bounded sequence in L*(3%). On the other hand,
as V < Cs on [6,1 =], {Vf'(u)(u® — ¢°);e > 0} is also a bounded sequence
in L'(24.). Thanks to [9, Corollary 1.C.1], the claim holds for {div®_;e > 0}.
For {curl¥. ;e > 0}, the argument is similar.

Now, the Div-Curl lemma [9, Theorem 5.B.4] yields that

;%(@E\Ps):(qu_)(f 76):6’@7‘]]:7 (614)
weakly as distributions on X3.. Meanwhile, (6.5) with h = 2q(z) — J(2)f(2)
gives us that for all ¢ € L*(X3.),

lim // (P - V. )pdadt = // he dxdt. (6.15)
=0 /58 =%

Hence, the Tartar’s factorization holds almost everywhere in E‘ST:

[ 0= = Dawe = [ = 0)(a - Dy (6.16)
0 0

As § > 0 is arbitrary, we obtain (6.16) for all Lax entropy—flux pairs (f, q) and
almost all (¢,z) € . Standard argument then proves (6.11). O

For the integrable case, the approach is slightly different. Assume that
V € L*((0,1)) and (o, o, 3,ug) are essentially bounded functions. For & > 0,
pick ¢° € C3(27), af, 3 € C*([0,7T)) and u§ € C3([0,1]) as a mollification of
0, o, 3 and ug:

1
lim { / (u§ — uo)?dx —i—/ V(o° — 0)*dxdt
e—0 0 S

(6.17)

o [ e - ) =,
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and for each ¢ > 0,

o°(£,0) = a*(t), o°(t,1) = B°(t), Vte[0,T],

uj(0) = 0%(0).  up(1) = 5(0). (015
The viscosity problem for integrable case reads
{&M+&UWW+G%@mﬂ—ﬁ@i (619)
u®(0,2) = ug(z), u(t,0)=a(t), u(t,1)=p°(t). )

where G¢(t, z,u) := V(z)(u — ¢°(¢, x)).

Let u® be the classical solution and consider the limit € — 0 as in the non-
integrable case. To deal with the discontinuities formulated at the boundaries
in this limit procedure, define for each € > 0 that

e 620

For boundary entropy—flux (F, Q) and k € R, denote (f,q) = (F,Q)(-, k). For
© € C3((—00,T) x R), let . = @g. and observe that

E(e) : E(f D (u // gl dxdt
T

(6.21)
// u®)Opp + q(u®)0pp — f'(u)G(:, -, u”)] g dudt.
7
Following the manipulation in [13, Theorem 2.8.4], we show that
hmmf{/ Fuo)p(0,)dx + E(e )}
(6.22)

> - M/' 0) + f(B)e(-, 1)]dt,

when ¢ > 0. From this, we obtain the measure-valued version of (2.3) for the
subsequential weak-* limit of u¢. The application of compensated compactness
argument is exactly the same as in the non-integrable case.
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Appendix A: The parabolic problem with non-integrable V'

Assume the conditions in Theorem 2.15. Without loss of generality, assume
that 0 < ¢, u§ < 1 on [0,T] x [0,1]. Let u® be the solution to the parabolic
equation (6.1). We collect and prove some useful estimates for u®.

Lemma A.1. For alle >0 and (t,x) € Xr, 0 <wu® < 1.

Proof. Use the short notation (-,-) to denote the inner product in L?(Xr).
First assume that J is globally Lipschitz continuous:

[J(u) — J(u)] < M|u— /.

Let v = (u® — 1)" and note that v|;—g = v|,—0,1 = 0. Hence,

1/
(Opu®,v) = (Dpv,v) = 5/ v3(T, x)d,
0

(0:[J(u)], 0) = =(J(u) = J(1),02v) = =M (Ju — 1], |0, ])

M
= =M (v,|0:0]) 2 =€l 0072 (np) = N01T2m0),

e(02uf ) = e(0%v,v) = —¢||0,v]|32.


http://creativecommons.org/licenses/by/4.0/
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Testing (6.1) with v, as (G(-,-,u),v) >0,

1
M M
2 2 _ 2
/0 v (T, z)dx < 5 [Vl Z2(5p) = 5 //ETU (t, z)dxdt.

Gronwall’s inequality shows that v(T,-) = 0, i.e., u*(T,")
where. Similar argument with v = (u®)~ shows that u®(
appeared above can be replaced with any ¢ € (0,7), 0 <
(t, $) € Y.

If J is not globally Lipschitz continuous, construct J,, such that J, = J
on [0,1] and J, is globally Lipschitz continuous. The above proof shows that
we can replace J with J, and the solution would not be affected. O

1 almost every-
) > 0. Since T
(t,z) < 1 for all

S, HA

Lemma A.2. Recall that ||-||p2(s,) is the L? norm with respect to the Lebesgue
measure, while || - || L2(sp.) is the L? norm with respect to dv =V (z)dxdt.

sup {00 (s + 10 = elffacsyny | < 00 (A1)
S

Proof. First, from condition (ii) in Theorem 2.15, the continuous function o°
satisfies (2.10), so that ¢°(¢,0) = a(t), ¢°(¢,1) = B(¢) for all t € [0,T]. Also,
thanks to (ii), it suffices to verify (A.1) with p replaced by o°.

Let w® = u® — ¢°. As both u® and ¢° are uniformly bounded,

1
<8tu€,w6> = ’/ (u® = ‘t 0 dz + <8tg u e >
0
> — C(1+ 10:0% || L2(20));

(01 (1)), ) = / T (o724 (9,0, ()
O+ 1106 2 o)

Y

where J = J(t,z,u) is given by

J(t,z,u) = /Ou wJ' (w)dw — o°(t,z)J (u).
Noting that w®|;=01 =0,
(020, wF) = (0pu®, —0,w®) = (0pu®, Dp0%) — ||afcu€||2L2(ET)
< 100 e — 510 gy

Testing the equation with w®, we get
10 sy + [ V@@ Pdadt < €O e i)

The estimate holds since ¢° is uniformly bounded in H'(37). a
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