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The best scientists and explorers have the attributes of kids.
They ask questions and have a sense of wonder.
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Abstract
The human heart has always been a challenge for doctors and scientists with

its amazing complexity and individual variability. Owing to recent decades in-
crease in computational power, it has been possible to develop in-silico duplicates
of reality that greatly extend the possible analyses. However, such models have
a main limitation: their results do not directly account for individual variability.
Uncertainty Quantification (UQ) methodologies integrate elements of probability
theory and statistics with machine learning techniques to investigate how uncer-
tainties and variability impact model dynamics. In this manuscript, starting with
a simplified cardiac duplicate comprising only the left chambers, UQ method-
ologies were applied to investigate the most relevant uncertain quantities and
guide the subsequent optimisation of the model. According to the analyses per-
formed, the activation of a healthy heart is totally dominated by fast conduction
pathways (Purkinje network, internodal bundles, etc.) and fibers orientation.
The model was therefore updated to account for these structures, in particular
the Purkinje Network extending into the ventricles and the double orientation of
ventricular fibers. In addition, fundamental elements of cardiac dynamics were
included, such as the orientation of muscle fibres for both atria and ventricles,
four realistic chambers, and differentiated cell models to characterise the action
potentials of different parts of the heart. Importantly, this advanced cardiac
model has been designed to account for a parametric variation of geometrical
and physical quantities, which is essential for running UQ analyses.

The flexibility of UQ techniques also allowed several partnerships with medical
groups. The methodologies of classical statistics, integrated with metamodelling
techniques, allowed the analysis of gastroenterological diseases. Furthermore,
global sensitivity analyses coupled with Monte Carlo methods enabled studies
on teaching neonatal resuscitation procedures to medical residents. These works
highlighted the main challenge of UQ analyses: in applicative contexts, par-
ticularly medical ones, the information available to the investigator is limited,
therefore the results are potentially biased or even incorrect. To address the
necessity to perform UQ analyses even with incomplete/wrong information, we
developed techniques to perform correlation analyses for error-affected databases
and defined a robustness index for global sensitivity analyses (Nested UQ).
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Chapter 1

Introduction

The complexity of natural phenomena has always fascinated scientists who,
with the tools of their times, have attempted to investigate them. Despite for
centuries they have been mainly investigated experimentally, in modern times we
increasingly rely on digital simulacra of reality. The latter, also called in-silico
models, are tools that integrate two different components: a mathematical de-
scription of the phenomenon and, when necessary, a numerical method to solve
it. The model consists of a system of equations that describes the problem in a
simplified way, focusing only on those components that the experimenter believes
may play a fundamental role. These equations can admit an analytical solution
but, in most of the cases, the latter must be solved approximately using a proper
numerical method implemented in a computing machine.

Making a digital duplicate of the problem at study is therefore a complex task
that requires in-depth knowledge of very different areas, raging from Numeri-
cal Analysis, to Physics and Computer Science. Often only a multidisciplinary
team can efficiently manage the various stages of model development. Regardless
of these difficulties, this is the decade of the digital revolution: the flourishing
research into efficient numerical methods [1, 2, 3] and the staggering increase
in available computing power [4, 5] have opened the way to applications that
could not be tackled just a few years ago. Virtual models allow several applica-
tions, encompassing cultural heritage preservation through image reconstruction
to fluid dynamics investigation of sea waves and biological phenomena. Although
different in their objectives and methodologies, all these applications are charac-
terised by a modelling process and a numerical resolution phase using an efficient
software. In addition, they aim to create a digital twin of reality to be used as
a predictive tool other than an experiment. As an example, a reconstruction
procedures of the three-dimensional (3D) model of buildings, can be applied
to the study of cultural heritage. A detailed 3D reconstruction of churches or
monuments can be useful for educational purposes and even as a reference for
subsequent restoration work. While classical methodologies are based on mea-
surements and CAD reconstruction, or requires a complete scan of the object
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Introduction

Figure 1.1: Examples of numerical model and applications: Panel a): reconstruc-
tion from photos of Ottoman church. Panel b): flow around a flapping rhinoceros
beetle. Panel c): thermal structures rising from the heated plate.

with ad hoc equipment, a modern approach is the reconstruction of quality 3D
models using collections of unordered photos representing a scene from different
viewpoints. Despite the limitations of these new approaches (which require very
good lighting conditions and are computationally burdensome), very promis-
ing results include the reconstruction of entire complex buildings from standard
photos (in this case an Ottoman church located in the region of Xanthi, Greece,
Figure 1.1a) without the need of labelling or mapping the relative position of
each image [6]. The reconstructed 3D model can be used in various applications
that are not limited to buildings. In a much different context, a numerical study
of a flapping rhinoceros beetle in hovering flight (Figure 1.1b) [7] made it possi-
ble to investigate the flow around the wings, differentiating the hovering phase
from the initial thrust phase, and to propose a simplified model with an excellent
match with the more complex one. Furthermore, the study of animal flight can
be an inspiration for the next generation of flying robots. Also the details of
the thermal convection of a heat-hedged wall can be analysed from a numerical
point of view [8] (Figure 1.1c). This investigation of the different states (buoy-
ancy dominated, transitional, and shear dominated regime) with their respective
flows allows to deeply understand the heat transfer dynamic.

Figure 1.2: Examples of numerical model and applications: Panel a): solitary
wave breaking against a reef. Panel b): hub vortex at the leading edge of a
hydrofoil. Panel c): study of aortic dissection.

In the field of numerical simulations, fluid dynamics ones are relatively recent
due to the high computational cost required to solve them. One of the most
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interesting numerical experiment it is certainly the study of sea waves [9], for
which the shape and evolution of the wave is dependent on the characteristics
of the seabed and the coastline (shown in Figure 1.2a). Certain reef conforma-
tions may reduce the risk of destructive waves while others, on the contrary, may
amplify their effects, making preliminary simulations a powerful tool for prevent-
ing serious long-term effects. Numerical trials can also allow a detailed view of
the properties of a physical/engineering system. Indeed, simulations allow the
vortex dynamics generated by the propeller to be resolved and can be used to
increase the efficiency of the propeller itself (reducing resistance and noise) [10]
(Figure 1.1b).

Among the various applications, one of the most fascinating is the modelling
of biological phenomena. As an example, by reconstructing the aorta on the
basis of medical images, it is possible to investigate problems of aortic dissection
(AoD) [11], in which a tear occurs in the inner layer of the artery. The pressure
exerted by the blood on the tear causes the inner and middle layers to dissect
(split). The study of hemodynamics and the stress exerted on the aortic wall
is therefore an important step towards in-silico duplicates that can be used for
early and correct diagnosis. Undeniably, the human body fascinates precisely
because of its complexity and several models have been proposed over the years
to investigate both physiological and pathological functioning of brain [12], bones
[13], or even the growth of tumours [14]. Models have made it possible to in-
vestigate both physiological and pathological functions, allowing a more detailed
understanding of the phenomena.

Figure 1.3: Panel a) shows the cardiac cycle: starting from the atrial systole
(the blood is pumped from the atria to the ventricles) is followed by the atrial
diastole (the ventricles contract expelling the blood into the circulatory system).
The muscles of the four chambers relax (Atrial and Ventricular diastole) to allow
a new contraction cycle. Panel b) illustrates the complex orientation of the
ventricle fibers, slightly different from the inner (counterclockwise) to the outer
part (clockwise) [15]. A sketch of the fast electrical conduction network of the
heart is shown in panel c) [16]. These include the sinoatrial node in the right
atrium, the internodal pathways that carry the signal up to the AV node and,
finally, the Purkinje network that uniformly activates the ventricles.
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One of the organs that has most captivated scientists’ interest is undoubt-
edly the heart. Since the fourth century BC, Aristotélēs defined it as the most
important organ of the body because, together with the brain, ”are the main gov-
erning powers of life” [17] and in the second century A.D., Galenus investigated
the complex fibrous structures that composed it [18]. Until the Renaissance,
however, the details of cardiac rhythm and function remained largely unknown.
It was the studies of Andrés de Laguna and Leonardo da Vinci that investigated
the valves, introducing the idea of alternating rhythms between the atria and
ventricles and, above all, took the first steps towards correctly identifying the
chambers [19]. A comprehensive insight on the heart functioning (with the divi-
sion of the ventricular chambers and the correct interpretation of the phases of
systole and diastole) was only achieved in the 17th century, by William Harvey
[20]. Since then, new methods of studying the organ’s behaviour in-vivo (using
electrocardiography, ultrasound or magnetic resonance imaging) have allowed a
real revolution in the progress of medical research and modelling.

The heart is the organ responsible for pumping blood in the systemic and
pulmonary circulation. Mainly consisting of a particular type of muscle tissue,
the myocardium. This muscle contracts at a variable rate (60-70 acts/minute)
so as to ensure proper oxygenation of the entire body both at rest and under
fatigue. Anatomically, the heart is composed of four chambers, two atria and
two ventricles, capable in their contraction of pumping the blood to the far-
thest points of the organism (see Figure 1.3c). These chambers are connected
in pairs: the left atrium to the left ventricle and the right atrium to the right
ventricle. The atrioventricular connection is controlled by two valves (mitral and
tricuspid valves) whose closure prevents blood from re-entering the atrium. The
blood flow then exits the ventricles (through the aorta and pulmonary artery)
where two more valves (aortic and pulmonary valves) prevent reflux back into
the ventricles (see Figure 1.3). The ventricular blood pressure exerted by the
blood is so intense that, in order to prevent the valves from subverting, they are
attached to muscles at the base of the ventricle (known as the papillary mus-
cles) by strong cords of tendon (chordae tendinae). The muscle that forms the
walls of the atrium and ventricles consists of specialised cells (fibers) capable of
contracting in only one direction. The orientation of these fibers plays a cru-
cial role in how the contraction occurs, in particular the ventricle is formed by
two different bands of overlapping fibers oriented at an angle of 60 degrees (outer
counterclockwise, inner clockwise and a circumferential median layer) so that the
combined force produces an effective bottom-up ventricular contraction [21], see
Figure 1.3b. The orientation of the fibers is not only influenced by individual’s
characteristics, but is also dependent on the state of health, the level of physical
training and, finally, trauma (e.g. heart attacks) suffered that leave the tissue
with a reduced capacity to contract.

Importantly, the periodic contraction and relaxation of the cardiac muscle is
governed by the cardiac electrophysiology system (Figure 1.3c. The heart ac-
tivation signal initiates in a specialised structure in the right atrium called the
sinoatrial node (SA-node). The latter, appropriately controlled by the sympa-
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thetic and parasympathetic systems, induces electrical signals in the surrounding
tissue at a fixed rate (typically in the order of 60 Hz at rest, with marked differ-
ences depending on training status, age, size, and gender). These signals travel
through the muscle fibers at speeds of the order of 0.5 - 1 m/s [16, 22], occurring
along the fibers direction in order to ensure fast and uniform activation of the
atrium, the signal travels through specialised fibers bundles (internodal bundles:
Anterior, Thorel and Wenckebach bundles) which carry the signal at higher speed
(1.54 m/s [23, 24, 22]) to both the right atrium and, via Bachmann’s bundle, to
the left atrium. These internodal pathways join at the base of the right atrium
a second specialised structure called the atrioventricular node (AV-node), see
Figure 1.3c. The latter slows down the signal by more than 100 ms. The reason
for this slowdown is that the propagation of the signal in the atrium triggers the
contraction of the underlying muscle, which takes longer to actually push blood
from the atria to the ventricles. The AV-node therefore serves to ensure a mini-
mum physiological delay for blood to be pumped from the atria to the ventricles.
At the end of this phase the atria are contracted and the ventricles are ready to
be activated. Similar to the atria, the ventricles are endowed with a fast conduc-
tion system, the signal descends from the AV node through a structure called
the His bundle which splits the signal into a plethora of fine, very high speed
(4 m/s [16]) fibers called the Purkinje network which activates the entire base
of the ventricle, the papillary muscles (contracting the chordae tendinae to hold
the valves) and finally the wall of the ventricular myocardium, allowing blood
to be pumped in pulmonary and systemic circulation. The muscle tissues then
begin to decontract in preparation for the next cycle (which occurs at about 70
beats per minute for more than 3 billion heart beats/lifetime [25]).

Importantly, each of the cardiac components described above is characterised
by marked individual variety. As an example, the mean atrial volume of a healthy
man may be up to 15% higher than that of a woman of the same age, and also
the variability between individuals of the same sex is such that it is not difficult
to find individuals with volumetric differences of more than 65% [26, 27]. Even
the heart rate, which at rest is between 60 and 70 beats per minute, can vary be-
tween two healthy individuals by more than 20% [25], not to mention differences
in cardiac geometry, or the positioning and even the number of papillary muscles
with corresponding chordae tendineae [28]. This uncertainty is compounded by
local variability in fibers orientation and electrical conductivity which, despite
minor differences, can have a major impact on cardiac dynamics [29].

All these examples are sources of uncertainties for the numerical model, and
such intrinsic variability of the input parameters can only be described by an
appropriate probability distribution. Choosing a particular set of parameters
corresponds to a choice of the experimenter (e.g. setting ventricle size to a cer-
tain volume or conductivity to a fixed value). The limit of making a choice is
that the model is no longer representative of the entire population but, con-
versely, only describes a specific individual, leading to biased or even unrealistic
results. This bottleneck makes the work of refining a mathematical model seem
pointless: it is counterproductive to develop more efficient model or a more pre-
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cise numerical method when the impact of the variability of the parameters is
so great that it cancels out any possible gain. Consequently, a growing body of
literature deals with measuring/calibrating uncertainties in physical and engi-
neering models. Once detailed information on the variability of the inputs has
been obtained, this can be supplemented with a suitable methodology to ex-
tend a classical deterministic analysis (i.e. with fixed parameters and no model
uncertainties).

Figure 1.4: Outline of an uncertainty quantification (UQ) analysis. Uncertainties
(epistemic and aleatoric) affect both the inputs of a model (e.g. the initial con-
ditions of a system of differential equations) and the parameters that influence
the dynamics. From the output of the model, quantities of interest (QoI) are
extracted. The description of QoI as a function of input uncertainties is called
forward analysis. Conversely, calibrating variability on the basis of known infor-
mation on QoI is known as an inverse problem. The impact that the variability of
each uncertainty has on the QoI is called sensitivity analysis and can be decisive
for parameter prioritisation, trend identification and interaction quantification.

Uncertainty quantification (UQ) is a branch of mathematics that deals in a
structured way with analysing the effect of uncertainties on a computational
model. Working with variability and unknown data, UQ is part of the broader
field of statistics. However, where normal statistical analyses are forced to deal
with data coming from the complexity of the real world, UQ operates mainly
with in-silico models. Consequently, the parameters of the study are fully defined
by the experimenter, who may use ad-hoc techniques not possible in canonical
statistical analysis (e.g. use an efficient sampling strategy to produce an opti-
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mal study population). With reference to Figure 1.4, each UQ analysis can be
schematised as follows: the model, typically an in-silico duplicate of reality, links
like a black box the inputs to the outputs of the problem. The inputs are any
parameters influencing the model solutions such as initial or boundary condi-
tions, while the outputs are the response of the model for the given combination
of inputs. However, to handle the complexity of the outputs, relevant scalar
values called quantities of interest (QoI) are extracted from them. Referring to
the cardiac model, the output of the model is the entire dynamics of the heart
(the vector field of fluid velocity, the activation map of the electrophysiology,
etc.). Examples of the corresponding quantities of interest, selected on the ba-
sis of medical interest, are the activation time of the atria and ventricles or the
percentage of blood leaving the ventricles each time they fully contract (i.e. the
ejection fraction).

Given the model and the QoIs, the key component of an UQ analysis to add are
the uncertainties. These can be summarised in two macro-categories: epistemic
uncertainties and random/aleatoric uncertainties. The former are given by indi-
vidual variability, unknown information and incorrect measurements. These are
uncertainties that could be avoided if the experimenter had complete knowledge
of the data. Conversely, aleatoric ones are those that are intrinsically random.
For instance, a simulation involving the roll of a die will always have a completely
random component. Both these uncertainties are described by means of appro-
priate probability distribution (e.g, Normal, LogNormal, Uniform, etc.). These
distributions are not known a priori and a detailed data collection campaign is
necessary to obtain information about them. The raw data thus collected must
then be processed to see which of the different distributions best approximates
the dataset. The numerous ad-hoc techniques for calibration, such as Bayesian
calibration or maximum likelihood estimation methods, then lead to the selec-
tion of an optimal approximating one. The fitting between this distribution and
the data finally requires the use of special goodness of fit tests (e.g. Shapiro-
Wilk, Kolmogorov-Smirnov, etc.) to further assess the goodness of the choice as
the calibration of the appropriate distribution is a fundamental step in any UQ
analysis. An incorrect choice of input distributions can affect the entire analysis,
leading to inaccurate or even false results.

Once the three blocks of an UQ analysis have been defined (model, QoI, and
uncertainties), the methodology to be applied depends on the following research
questions, see Figure 1.4.
How does the uncertainty of the inputs propagate on the QoI?

This is called the direct/forward problem and can be solved using a direct
approach. In order to understand how the inputs (described by an opportune
probability distribution) propagate to the QoI it is sufficient to sample their
values from the corresponding distributions (Monte Carlo method). For each
sampled set of values (one for each input), the model it is evaluated to obtain
the corresponding QoI. By repeating this procedure several (thousands) times,
the QoI distribution can be recovered, answering the research question. This
brute force approach can be modified to be more efficient in terms of model

15



Introduction

evaluations and, thus, simulation time required. Proper sampling strategies (like
Latin Hypercube sampling, quasi-Monte Carlo or Markov chain Monte Carlo
[30]) can greatly reduce the number of simulations needed to obtain the result.
These techniques must be used wisely, as improper use can be counterproduc-
tive (e.g. quasi-Monte Carlo approaches are much slower in the case of a large
number of parameters).

If the research question is more specific convergence can be further increased.
As an example, the interest is often only in determining the probability that the
QoI exceeds a certain threshold. This happens in all those cases where the value
of the QoI, as long as it remains within ranges, is not relevant while exceeding a
limit value can lead to catastrophic consequences. Examples are the temperature
inside a nuclear power plant reactor or the cornering speed of a train. There are
several methodologies that can answer this question using only a few simula-
tions, like Subset simulations [31, 32], Asymptotic Sampling [33] or importance
sampling. All these techniques attempt to explore the input space not randomly
but by targeting sampling on those combinations that cause the QoI to exceed
the threshold.
Which input distributions may have generated a certain QoI distribution?

In the so-called inverse calibration the investigator has data on QoI and wants
to find the most likely input distributions that could have generated them. Us-
ing a Bayesian approach, inverse calibration methods are based on reconstructing
the input distribution from an a-priori hypothesis (e.g. assuming that the input
follows a normal distribution with a fixed mean and variance). After each sim-
ulation performed for a given input combination, this hypothesis is updated to
better match the new information [34]. By repeating this procedure a sufficient
number of times, the input distribution becomes stable, so each new simulation
makes a minor change and the method is said to have reached convergence. The
distribution of inputs thus obtained is the most likely to have generated that par-
ticular output, these values can be used for future analysis or to check whether
the model is realistic in describing the input-output relationship. Despite their
importance, applications of inverse calibration are less frequent than for forward
analysis as these techniques are very onerous in terms of the simulations to be
performed.
Which inputs are the most relevant for the model dynamics?

Determining which of the inputs is most influential is often a crucial issue
in UQ analyses. In fact, distinguishing between relevant and unimportant pa-
rameters allows not only for better understanding of how the model works, but
also to identify the inputs that can be neglected in subsequent analyses. Reduce
the input space dimension (i.e. model reduction) it is relevant because most
of the UQ techniques are more efficient when the dimensionality of the inputs
is reduced. Furthermore, a large number of inputs implies the use of models
with more degrees of freedom and, consequently, more prone to overfitting risks.
This question is the most complex in terms of the choices to be made by the
experimenter as the results are strongly dependent on the assumptions on the
input space. Moreover, the methodologies used to address is are computation-
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ally expensive in terms of the number of simulations to be performed. Several
techniques have been developed to handle these difficulties. The latter can be
subdivided in two broad families: screening techniques (as Morris method [35] or
One-At-Time analysis) which allow with a low computational cost to obtain an
initial insight into input-output relevance, and sensitivity analysis (as Saltelli’s
algorithm [36] or Glen and Isaacs method [37]) which also consider the combined
effect of the inputs and allow a more complete understanding of the phenomenon.
However, the proper design of the study and the correct interpretation of the re-
sults remains a frequent problem. Indeed, a survey by Saltelli showed that most
of the sensitivity analyses carried out even on highly-cited papers are of poor
methodological quality [38].

Although the techniques developed in last decades greatly reduce the number
of simulations needed to tackle the proposed problems, in many applications this
is not sufficient. In fact, the computational cost of solving the model is often so
high that even a simple forward problem is almost impossible to be solved ac-
curately. A modern idea to solve this bottleneck is the use of surrogate models,
also called metamodels. The latter are an integration of the flourishing machine
learning research into uncertainty quantification problems. The idea is to reduce
the computational burden of the simulations to be performed by training a sim-
pler model, a surrogate to be used instead of the original one. The most basic
example of a metamodel is the linear regression of a complex phenomenon. For
example, if we realise that when the input varies, the QoI returned by the model
is approximately double the value supplied, we can emulate the behaviour of the
model with a simple linear relationship y = 2 ·x. This regression line is obviously
an extreme simplification of the underlying model as it does not attempt to mimic
its complexity but only to return the input/QoI relationship which is very often
simple. The choice of the appropriate metamodel is strongly dependent on the
problem, whether it is a classical machine learning model (multi-linear models,
polynomial regression, General Linear model), based on artificial neural networks
(ANN) or defined ad-hoc for UQ analysis (Gaussian process regression/Kriging
[39], Polynomial Chaos Expansion [40]). The advantage of using metamodels is
their ability to model the problem even with small input dataset and the neg-
ligible computational cost with respect to the aforementioned standard direct
approach. Consequently, when the original problem is too expensive, a reduced
sampling of the input spaces can be generated and an appropriate metamodel
trained on that data. The metamodel is then used instead of the original model,
whether it is a forward, inverse or sensitivity analysis problem. Simulations using
the surrogate model can be performed almost in real time. Consequently, all the
techniques described above can be applied at low computational cost obtaining
the same UQ if the metamodel is well trained (as discussed in Chapter 1). Owing
to increased computational power, efficient techniques and, above all, the use of
metamodels, UQ analyses can be applied to problems that were almost impossi-
ble to be solved until a few years ago.

In particular, the availability of these new UQ methodologies opens the way to
unexplored possibilities in cardiac modelling. The in-silico heart models available
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are indeed highly detailed, often with data extrapolated from medical analyses
and the number of parameters controlling them is so large that a systematic
study of the effect and variability of cardiac inputs is almost impossible with
standard methods. Therefore, the aim of this thesis is to develop cardiac models
that take into account the variability between individuals through UQ analysis
and to derive a complete digital twin of the human heart to be used for medi-
cal application. In order to achieve such an ambitious goal, choices have to be
made: which components of the heart can be simplified and which ones need to
be described in detail? The UQ techniques described above, in particular sensi-
tivity analyses, can provide the necessary answers. The fil rouge of this thesis is
thus an iteration between two different research step: a modelling part, in which
the model is updated by adding new components, and a model reduction one in
which a sensitivity analysis defines the roadmap for the next modelling step. The
result of this work was the development, from a simplified model with a single
atrial and ventricular chamber, of an advanced in-silico duplicate of a whole hu-
man heart. The latter, not only includes the four chambers, the fast conduction
system, a realistic orientation of the muscle fibres and the fluid-structure interac-
tion between the heart wall and the blood but, above all, it is highly parametric,
adaptable to the individual patient, and suitable for subsequent UQ analyses.

A brief outline of the uncertainty quantification techniques used within this
thesis are presented in Chapter 2. In particular, the choice of input distributions
based on appropriate calibration techniques and Shannon’s entropy theory is dis-
cussed. The methodologies for performing forward analyses are then given, both
in the case of error propagation and for determining the probability of exceeding
a fixed threshold. The different sampling techniques (Monte Carlo, Latin Hy-
percube, quasi-Monte Carlo, etc.) are discussed with respect to their different
convergence speed and usage hypothesis. The most common indices and optimal
sampling methods for screening techniques, local and global sensitivity analyses
are then presented, with particular reference to variance based sensitivity anal-
ysis. In particular, the different cross-validation methodologies for the detection
of under/overfitting problems are presented.

In Chapter 3, a first UQ analysis of the human heart is presented. Starting
from the original cardiac model, developed by [41], comprising of a single (left)
ventricular chamber, we described an adaptive methodology to apply a metamod-
elling technique to the problem. The chosen metamodel, specifically an adaptive
sparse Polynomial Chaos Expansion, allows to investigate which of the source of
uncertainties play a major role on the electrical activation of the ventricle. This
simplified model also allows direct control simulations to be carried out to verify
the effectiveness of the metamodel for cardiac electrophysiology before applying
it to more complete ones. This analysis confirmed the goodness of the use of
polynomial chaos expansions as metamodels for the electrophysiology problems
under consideration, in particular the proposed adaptive methodology for the
choice of the hyper-parameters proved useful and effective. Furthermore, of all
the parameters under examination, those of geometry and electrical conductivity
have the greatest impact on the dynamics. This analysis, therefore, highlights
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the need to focus subsequent modelling efforts on the geometric components of
the model and on those structures capable of rapidly conveying the electrical
signal through the tissue.

The electrophysiology model is therefore extended to the whole heart, includ-
ing the fast conduction networks, as described in Chapter 3. In particular, the
atrial (internodal bundles, Bachmann bundle) and ventricular (AV node, His
bundle, bundle branches, and Purkinje network) fast conduction structures are
also modelled in order to replicate proper physiological activation. Even the
differences between the action potential response of the atria and ventricles are
modelled, using different mathematical descriptions of cell properties (Courte-
manche, Stewart and ten Tusscher-Panfilov cellular models). Furthermore, all
the structures (the positions of fast conduction bundles, cell model parameters,
etc.), are defined as a parametric variations of a reference model and the car-
diac electrophysiology model is thus designed for UQ analyses. This realistic
and highly parametric model of cardiac electrophysiology is GPU accelerated,
allowing fast simulations of the entire cardiac electrophysiology.

The new electrical model allows unprecedented UQ analysis of cardiac elec-
trophysiology. However, the number of uncertain parameters, greatly increased
and multiple sensitivity analyses are needed to determine the relevant input
quantities. Chapter 5, therefore, studies in detail the atrial uncertainty and its
effect on ventricular quantities of interest. A sensitivity analysis based on the
previously introduced adaptive technique it is used to determine which among
internodal pathways positioning, conductivity and some parameters of the atrial
cell model impacts most some relevant QoI (Bachmann bundle and AV node
activation times). The results confirm that almost all atrial parameters do not
influence the healthy activation of the ventricle. Electrical conductivity and AV-
node delay are dominant over the entire dynamics. As a consequence, subsequent
cardiac electrophysiology analyses can separate the two components (atrial and
ventricular), drastically reducing the number of simulations needed to carry out
the studies.

However, the complete electrophysiology model alone can not tackle research
question related to the hemodynamics and the tissue dynamics. In Chapter 6
is presented a complete heart model that integrates the electrophysiology model
with a fluid-structure solver capable of describing blood flow in detail. The high
parameterization combined with an efficient GPU implementation provides an
ideal model for future uncertainty quantification analyses.

The application of these UQ techniques has shown that the main difficulty
in the study of complex models lies in a proper calibration of the uncertainties
under investigation. Indeed, the available literature provides disagreeing data,
the variation of which can lead to radically different results of the analyses. In
Chapter 7, therefore, a technique that combines a Forward analysis with a Monte
Carlo method to define a stability index for correlation tests is presented . In
fact, in medical practice, measurement errors are often neglected in correlation
analyses with the consequent risk, for small datasets, of having false results. We
therefore propose an index that assesses the stability to perturbations (given by
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measurement errors) of the dataset to strengthen classical correlation tests. In-
stead, in Chapter 8, a method based on metamodelling is proposed, in order to
carry out nested sensitivity analyses. An uncertainty on the uncertainty itself
is considered and an algorithmic procedure is introduced to determine whether
this variability may affect the analysis performed.

UQ methodologies arise from an integration of numerical analysis, computer
science, and classical statistics. In the course of the research work carried out on
cardiac problems, we encountered several medical institutions willing to collab-
orate. Although many of the problems were solvable using classical statistical
techniques, the results of these collaborations are briefly reported in Chapter 9
and 10. In particular, the DIANA-Game project was developed from a collabora-
tion with the Unità professionale Centro di Formazione e Simulazione Neonatale
( Centro NINA)- Azienda Ospedaliero Universitaria Pisana (AOUP). DIANA is
software for teaching neonatal resuscitation procedures that exploits the ability
of computer games to instruct in an effective and entertaining way. This software
was subjected to a rigorous evaluation of its effectiveness, which included writ-
ten tests and a group of students undergoing intensive traditional teaching. The
validation of this approach, using stratified sampling validated by Monte Carlo
methods, laid the foundation for further developments in on-web and augmented
reality forms. Similarly, a collaboration with the Unità di Gastroenterologia
Universitaria Pisana resulted in a project for the early diagnosis of esophagi-
tis. The result of the study is that, thanks to certain non-invasive analyses, it
is possible to discriminate more serious pathologies from less serious ones with
very high precision, providing precise and rapid diagnoses before proceeding to
further investigations. The ROC (Receiver Operating Characteristic) curve anal-
yses performed provided the basis for further studies based on the search for the
optimal predictive metamodel, determined by means of a Monte Carlo strategy
on the hyperparameters that characterise it.
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Figure 1.5: Graphical abstract of school/workshops (in orange), articles (in pur-
ple), and conferences (in pink) leading to the development of this thesis.
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Chapter 2

Uncertainty Quantification

What is the UQ?

Uncertainty quantification (UQ) is a field of applied mathematics that inves-
tigates the relationships between inputs and outputs of a model affected by uncer-
tainties.

UQ is a recent science emerged from the integration of statistical techniques
and probability theory with numerical analysis and computer science. Indeed,
it was only after the mid-90s that risk analyses were no longer conducted exclu-
sively with statistical methodologies but rather integrating underlying physical
models. [42]. Similarly, it is within the last few decades that engineering sciences
have begun to add random variability to models to improve their predictive ca-
pabilities. By replacing deterministic models with their stochastic counterparts,
it is feasible to integrate the uncertainties of the variables into the model, en-
riching the predictions made with confidence intervals on the actual goodness
of the result. A consequence of the relative youth of this science, unlike other
established mathematical fields (e.g. Algebra, Geometry, and even Numerical
Analysis) is that there is still not a unified theory of UQ, just as there are no
theoretical results on many UQ techniques that unequivocally determine which
one is preferable.

As a science that is still not mature and originates from the well-established
field of mathematical statistics, UQ is often referred to as a sub-sector of prob-
ability theory or as a complex form of error analysis. However, within the last
year UQ developed as a novel branch of applied mathematics that is rooted in
a solid mathematical foundation and developed by means of numerical analysis
techniques, relying on tools proper to computer science (efficient software im-
plementation, machine learning). Despite an important advanced mathematics
base that makes it less accessible to practitioners, UQ has the characteristics of
an applied science. The UQ methods are always aimed at solving applicative
problems (risk analysis, probability estimation, variability calibration, Bayesian
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optimisation) and cannot disregard efficient implementation.
With reference to Figure 1.4, a canonical mathematical model is made of a

d-dimensional vector X which given as input to a model M , returns a family
of outputs M(X). These d outputs are often too complex (in terms of quantity
of data and difficulty of interpretation), so scalar quantities of interest (QoI)
g(X) := QoI (M(X)) are extracted from them. Evaluate a model means fix all
the values of the vector X, apply the model M and then analyse the quantity of
interest f(X) obtained. However, by performing this single simulation, the result
thus obtained is hardly generalizable. In fact, some of the input variables may
have a high variation due to a lack of knowledge (e.g. the parameters of cardiac
cell models are often selected by calibration on other observable quantities to ob-
tain a realistic result) or an intrinsic variability of a characteristic (no two human
hearts have the same atrioventricular volumes). From a methodological point of
view, the problem can be extended straightforwardly: the input variables and
quantities of interest determined are replaced by their probabilistic counterparts,
a proper multivariate random variable.

Remark 1. Considering the cardiac model as an example, the vector X has a di-
mension of hundreds of values, ranging from macroscopic characteristics (volume
of the chambers, electrical conductivity, extension of the fast conduction fibres)
to microscopic ones (parameters of the cellular patterns, local orientation of the
muscle fibers). The M model is the mathematical description of the heart asso-
ciated with the corresponding numerical solver. The output is the time-varying
description of the electrical, muscular, and blood flow activation profile. From
the latter, simple scalar quantities of high medical interest are extracted, such as
ejection fraction, chamber activation time and signal propagation uniformity.

The variability that is incorporated in the input vector X may have different
sources. The first type encountered in UQ problems is epistemic uncertainty.
This is the uncertainty given by the experimenter’s lack of knowledge of a given
quantity, which is then described by a probabilistic distribution whose estimate
is based on real data. This randomness can be measurement error (the precision
of an instrument), individual variability or even the unreliability of the model
itself. It is common to find a further subdivision of the epistemic uncertainty into
parametric uncertainty (the uncertainty on the inputs /parameters of the study)
and model uncertainty (the uncertainty given by the lack of trust in the math-
ematical model itself). A different type of variability is aleatoric uncertainty,
which does not depend on differences between individuals or measurement er-
rors, but is instead a random element that can vary with each model evaluation.
As an example, if the the result depends on a random step (e.g. the roll of a die,
a random market fluctuation) this is an aleatoric uncertainty.

It exists several kinds of UQ analysis. The first family of problems is called
forward analysis and investigates how variability of inputs propagates to outputs.
This can be further subdivided in forward propagation (given the inputs distri-
bution, find the QoI distribution), the reliability/certification problem (find the
probability that a given event occurs, typically used to assess the risk of failure
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of an engineering system) and the prediction problem (find the maximum subsets
of the QoI values for a prescribed probability). Other techniques are devoted to
solve inverse problem, i.e. to identify the distribution of inputs that might have
generated a family of available outputs. Finally, the sensitivity analysis consists
in identifying the parameters that mostly influence the model. A natural conse-
quence of sensitivity analysis is a model reduction of the problem, that is limiting
further studies to only relevant variables to reduce the computational burden of
the analysis [42].

Therefore, this chapter offers a guide through the different UQ techniques.
With no pretence of completeness, this is a handbook of techniques with an-
notated bibliographical references useful for applications. In particular, it was
decided to neglect intrusive UQ techniques (e.g. stochastic Galerkin, theory
of stochastic PDEs) that require substantial modifications of the problem under
investigation to be applied. Instead, the focus of the chapter is on efficient black-
box methodologies (based on metamodelling and machine learning techniques) as
they are of immediate utility for even the most disparate problems. First, input
spaces are presented, discussing the copula formalism for modelling non-complex
relations between variables, Shannon’s information theory, and techniques for
sampling arbitrary distributions. Afterwards, different space sampling method-
ologies (Monte Carlo, Latin Hypercube, low discrepancy sequences etc.) are
discussed. Indeed, proper sampling allows UQ analysis with a small number of
simulations and can provide a good dataset for training metamodels. Sensitiv-
ity analysis techniques for model reduction are then presented, distinguishing
between local techniques (limited input information) and global techniques (de-
tailed information). Metamodelling techniques are then treated in the last part
of the chapter, such as Polynomial Chaos Expansion and Gaussian process re-
gression (Kriging). An outline of the symbols used in this chapter is given in
Table 2.1.
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Symbol Name Description

X = (X1, · · · , Xd) Input
vector

Is a d-dimensional random variable
that has real values in most UQ
applications. φX is the
probability density function of X.

Y = g(X) QoI
vector

Is a one-dimensional (real-valued)
random variable. It is obtained as the
propagation of input X through g.
The function g is the composition
of the model M and the QoI extraction.

Fi(x) = P (Xi ≤ x)
C

Marginals
Copula

Fi is the marginal distribution of
the input Xi. C is the
copula describing the multivariate
relationship.

H
Shannon
entropy

Is the Shannon entropy of a
discrete/continuous random variable.

(X,Y)
{(x(i), y(i))}n

i=1
Dataset

X = {x(i)}n
i=1

is a sample of the input space.
Each value is a d-dimensional vector:
x(i) = (x(i)

1 , · · · , x
(i)
d ).

Y = g(X) = {y(i)}n
i=1

is the corresponding model QoI.

Table 2.1: Outline of the symbols used in the chapter.
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2.1 Input vector
Underlying all uncertainty quantification analyses is the distribution of input

spaces. Formally, an input is a random vector X = (X1, · · · , Xd) for which each
element Xi corresponds to a certain uncertain quantity (e.g. a model parameter,
an initial condition). This vector in most of the application it is real valued and
the distribution of X is often considered a distribution with density:

P(X ∈ A) =
∫

A
φ(X1,··· ,Xd)(x1, · · · , xd)dx1 · · · dxd =

∫
A

φX(x)dx (2.1)

with φX(x) its probability density function and x a value of Rd.
On the other hand discrete distributions are described by their probability

mass function. In case the input space includes both continuous and discrete vari-
ables, it is possible to define models that take both components into account. The
variable X is therefore characterised by a multidimensional distribution. Except
in some specific cases (e.g. Multivariate Normal distribution), multidimensional
distributions are difficult to describe as there are complex relationships between
the variables that do not always follow parametric rules. Therefore, one relies on
the copula theorem to break down the description of X into that of its marginal
distributions (1-dimensional) and an appropriate function, called a copula, that
describes their relationship. These marginals are often approximated by families
of known distributions (Gaussian, Uniform, LogNormal, Exponential) in order
to guarantee useful theoretical properties and to simplify subsequent analyses.

Remark 2 (Correct input distribution). The choice of a correct input distri-
bution is crucial: an erroneous decision propagates through the study leading to
totally unreliable results in both forward analysis (wrong estimates of probability
of events) and sensitivity analysis (model reduction on quantities incorrectly as-
sumed to be more important). The steps of choosing, calibrating, and verifying
distributions are therefore necessary in any uncertainty quantification analysis.
In the event of insufficient information, the study should be discontinued and
reduced to those techniques that do not require input space distributions (local
sensitivity analysis).

2.1.1 Copula formalism
The copula formalism is based on Sklar’s theorem, which states that any

multivariate joint distribution (with continuous marginal CDFs) can be written
in terms of univariate marginal distribution functions and a copula (which is a
proper multivariate cumulative distribution function) describing the dependency
structure between the variables [43, 44].

Given a d-dimensional random vector X = (X1, · · · , Xd) with continuous
marginals (Fi(x) = P (Xi ≤ x)), by applying the universality of the uniform
theorem (see § 2.1.3) to each component, the random vector

(U1, · · · ,Ud) = (F1(X1), · · · , Fd(Xd))
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has marginals that are uniformly distributed on the interval [0, 1]. The copula
of X = (X1, · · · , Xd) is the joint cumulative distribution function (CDF) of
(U1, · · · ,Ud):

C(u1, · · · , ud) :=P (U1 ≤ u1, · · · , Ud ≤ ud)
=P

(
X1 ≤ F −1

1 (u1), · · · , Xd ≤ F −1
d (ud)

)
Definition 1. C : [0, 1]d → [0, 1] is a d-dimensional copula, if C is a joint
cumulative distribution of a d-dimensional random vector on the unit cube [0, 1]d
with uniform marginals.

Theorem 1 (Sklar). Every multivariate cumulative distribution function

CDF(x1, · · · , xd) = P (X1 ≤ x1, · · · , Xd ≤ xd)

of a random vector (X1, · · · , Xd) can be expressed in terms of its marginals
Fi(xi) = P (Xi ≤ xi) and a copula C:

CDF(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd))

and the copula is unique if the marginals Fi are continuous.

This formalism makes it possible to work with arbitrary multivariate joint dis-
tributions. However, calibrating the copula appropriately can be a challenging
task because as the size of the input space grows, an increasing amount of data
is required to identify it correctly. Thus, simplifying assumptions are often made
about the copula (i.e. it is assumed to have a known, parametric distribution)
and only its parameters are calibrated. In addition, appropriate choices of copula
(e.g. Gaussian copula or Elliptical copula) allows easy sampling strategies from
the multidimensional distribution [45, 46].

There are several strategies for calibrating the marginals and the copula. A
canonical approach is the two-steps calibration: the marginals are approximated
by empirical distributions, the copula parameters are then estimated by maxi-
mum likelihood [47]. More complex alternative approaches instead exploit the
joint estimation of copula and marginals [48, 49].

In UQ applications, the copula itself can be effected by uncertainties that can
be included in the study. In addition, it may be interesting to investigate how a
higher/lower correlation between variables (described by the copula parameters)
may influence the analysis. In such cases, one exploits the corollary of Sklar’s
theorem that guarantees the existence of a d-dimensional distribution once the
copula and marginals are fixed. The parameters of the copula then become
additional uncertain quantities of the study.

Corollary 1 (Converse). Given a copula C : [0, 1]d → [0, 1] and marginals Fi(x),
then C(F1(x1), · · · , Fd(xd)) defines a d-dimensional cumulative distribution func-
tion with marginal distributions Fi(x).
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The main advantage of writing a multivariate distribution using a copula
and marginals is the possibility of using the Nataf transformation [45]. This
transformation, in its standard version, only works for Gaussian copula [46]. Its
generalised version works instead for arbitrary elliptical copulas [50]. Referring
to Lebrun et al [50] for details, the Nataf transformation is an isoprobabilistic
transformation that maps the random vector X with a complex distribution into
the random vector U which follows the standard representative distribution of
the copula of X. In the case of Gaussian copula, in particular, the generalized
Nataf isoprobabilistc transformation maps the physical space of the probabilistic
input data into the standard space, where all the variables are independent and
follow the same normal distribution with zero mean and unit variance

An appropriate choice of a copula (Gaussian or more generally elliptic) thus
allows to define a space that, by means of the Nataf transformation, is always
reducible to a random vector with independent components. UQ techniques
requiring the independence of vectors are therefore always applicable.

Remark 3 (QoI). The quantity of interest also has a probabilistic interpretation.
In application contexts, however, the QoI is typically a one-dimensional Y ran-
dom variable, so its description can do without the multidimensional formalism
and copula.

2.1.2 Shannon entropy
In several practical applications, especially in the medical field, the UQ sci-

entist does not have databases on which to calibrate the distribution of inputs.
In these cases, an alternative strategy for choosing distributions must be defined
on the basis of information available from the literature.

Shannon’s theory provides a method for choosing the optimal distribution
given prior information. The basis of this theory is the definition of the entropy
of a random variable.

Definition 2. Given a discrete random variable X, with possible outcomes
e1, · · · , ek, the Shannon entropy [51] of X is defined as:

H(X) = E [− logb P(X)] = −
k∑

i=1
P(ei) logb P(ei) (2.2)

Given a random variable X with probability density function φX whose support
is S, the differential entropy (or continuous entropy) [52] is defined as:

H(X) := −
∫∫

S
φX(x) logb φX(x)dx (2.3)

where the base of the logarithm b can be chosen freely. Common choices include
b = 2 or b = e.

Based on this definition of entropy, one can state the principle of maximum
entropy: the probability distribution which best represents the current state of
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knowledge is the one with largest entropy. According to this principle, the distri-
bution with the largest entropy should be chosen as the least informative default.
Definition 3. A maximum entropy probability distribution has entropy
that is at least as great as that of all other members of a specified class of proba-
bility distributions.

Given testable information (a statement about the probability distribution
whose truth or falsity is well-defined), the maximum entropy procedure consists
of seeking the probability distribution which maximizes information entropy,
subject to the constraints of the information. In particular, if only the mean
and variance of a distribution are known to the experimenter, the corresponding
maximum entropy function is precisely the Gaussian distribution.
Remark 4 (Gaussian is the right choice). Shannon’s entropy theory is one of
the reasons why Gaussian distributions are so common in applications, especially
in medicine. With the sample sizes typical of medical studies, it is only possible
to accurately estimate the mean and variance and not the higher order moments.
With these two values fixed, the distribution that maximises entropy is precisely
the Gaussian. The other two reasons for the choice of this distribution in medical
analyses are: its good theoretical properties and the fact that many quantities are
defined as the average of analyses performed.

The maximum entropy distributions for multiple application cases are shown
in Table 2.2. For many of the reported distributions, once the constraints and
support are fixed, there is an analytical formula for the parameters of the dis-
tribution (Uniform, Bernoulli, Normal). In general, however, especially when
working with truncated distributions, an analytical formula does not necessarily
exist. To determine the parameters of the maximum entropy distribution, one
possibility is to solve the associated differential system [53]. However, in the
case of one-dimensional distributions, a brute-force approach is always possible,
where one searches in the parameter space for the set of values that minimises
the distance of the constraints with the imposed constraints.

2.1.3 Generating the pseudo-random sample
The input sampling procedure needed for the UQ analysis, is based on a

pseudo-random number generator for arbitrary distributions. However, sampling
software typically generates pseudo-random sequences from some commonly used
distributions (e.g. Gaussian, Uniform, LogNormal, Exponential), rather than
arbitrary distribution resulting from the problem at study. In this case, different
sampling strategies should be used, such as the Inverse Transform Sampling (ITS)
and the Acceptance Rejection method (AR) which are briefly presented here.
Modern alternatives exist to generate these numbers in shorter time compared to
ITS or AR (e.g. slice sampling [54], rejection sampling [55]) or from larger input
sizes (to handle the curse of dimensionality, e.g. Metropolis-Hastings sampling
[56]). However, in UQ analyses, the evaluation of the model is typically much
more time-consuming than the time required to generate the sampling.
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Constraints Support Distribution
[a, b] Uniform

E[X] = p {0, 1} Bernoulli
E[X] = 1

p
N \ {0} Geometric

E[X] = 1
λ

[0, ∞) Exponential
E[|X − b|] = µ (−∞, ∞) Laplace

E[X] = µ
E[(X − µ)2] = σ2 (−∞, ∞) Normal

E[X] = µT

E[(X − µT )2] = σ2
T

[a, b] Truncated Normal

E[log(X)] = µ
E[(log(X) − µ)2] = σ2 (0, ∞) LogNormal

Table 2.2: Maximum entropy distributions for different constraints on both
statistical moments and support. The parameters of the distributions can
be obtained by means of an analytical formula in some cases and as solu-
tions to minimisation problems otherwise. Where p is the parameter of the
Bernoulli/Geometric distribution, λ the rate parameter of the Exponential dis-
tribution, µ and µT are the mean/truncated mean of the Laplace, Normal, Log-
Normal and Trucated normal distributions while σ, σT their standard deviation.

Inverse Transform Sampling

Inverse transform sampling/inversion sampling is a method for generating a
sample from any one-dimensional probability distribution. Given a real-valued
one-dimensional random variable X admitting a density φX(x), its cumulative
distribution function satisfies:

FX(x) := P(X ≤ x) =
∫ x

−∞
φX(t)dt (2.4)

The Inverse Transform Sampling method samples from the distribution of X
relying on the universality of the uniform theorem.
Theorem 2 (Universality of the uniform). Given a continuous one-dimensional
random variable X and its cumulative distribution function FX(x). Then the
variable Y = FX(X) has a standard uniform distribution.

As a consequence, if Y is a variable with a standard uniform distribution,
F −1

X (Y ) has the same distribution as X. Formally, the Inverse Transform Sam-
pling algorithm is the following:

1. Generate n samples {y(i)}n
i=1 from the uniform distribution U([0, 1]) with

a standard pseudo-random generator.

2. Invert the CDF analytically or numerically: FX → F −1
X

3. Apply the inverse CDF to the sample:

{x(i)}n
i=1 := {F −1

X (y(i))}n
i=1
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4. {x(i)}n
i=1 is a sample of the original distribution.

Remark 5. If the input vector is considered to consist of d mutually indepen-
dent one-dimensional variables, this method allows the d-multidimensional input
vector X to be sampled by generating each one-dimensional component indepen-
dently.

The main drawback of this method is that FX(x) must be obtained for the dis-
tribution being sampled. Not all distributions admit an explicit formulation for
the CDF which, once calculated, must be inverted (analytically or numerically)
to apply the algorithm. An error in the approximation of the inverse propagates
to the sample and gives potentially erroneous results. Despite its simplicity, this
method requires more computing time than other approaches to obtain a sample
and does not generalize to multiple dimensions [55, 57, 58].

One technique to improve the standard inverse transform sampling method is
to use a polynomial approximation based on Chebyshev polynomials [59]. As-
suming a bounded support [a, b] of the density φX(x) (if the interval or the
support is not limited, is sufficient to take [a, b] such that

∫ b
a φX(x)dx ∼ 1), the

density can be written as φX(x) = f(x)∫ b

a
f(x)dx

. The idea is to replace f with its
polynomial approximation:

f̃(x) =
m∑

k=0
αkTk

(
2(x − a)

b − a
− 1

)
(2.5)

where Tk(x) := cos k cos−1 x is the kth Chebyshev polynomial, and αk ∈ R are
the expansion coefficients, which can be calculated with O (m log m) operations
by a fast cosine transform [60]. Using the polynomial approximation, the ap-
proximated CDF is:

F̃ (x) ≈ F (x) :=
∫ x

a
f(t)dt

F̃ (x) =
m∑

k=0
αk

∫ x

a
Tk

(
2(t − a)

b − a
− 1

)
dt =

m∑
k=0

βkTk

(
2x − a

b − a
− 1

)

F̃X(x) := F̃ (x)
F̃ (b)

(2.6)

where βk can be derived with O(m) operations and F̃X(x) is normalized to obtain
the approximated CDF of the density φX(x). The normalization also guarantees
that F̃X(x) is a CDF.

Instead of inverting the CDF, the values {x(i)}n
i=1 are obtained throughout

bisection from the root-finding problem:

{F̃X(x(i))}n
i=1 = {y(i)}n

i=1 (2.7)

This approach is faster and less prone to inversion error than canonical inverse
sampling transformation for each class of probability distribution that can be
numerically approximated and evaluated [59].
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Acceptance-Rejection method

Acceptance-rejection method [61, 62] allows to sample from a distribution
without inverting the CDF. This method is therefore more robust compared
to inverse transform sampling (if there is no analytical formula for F −1

X (x)).
Furthermore, it can be applied to multidimensional distributions.

Given the continuous random variable X with density φX(x), x ∈ R and
suppose that exists another auxiliary density δ(x) and a constant c ≥ 1 such
that:

φX(x) ≤ c · δ(x) ∀x ∈ Rd (2.8)

Moreover, assume that the auxiliary density δ(x) is easier to sample (e.g. a
uniform distribution on the support of φX(x)). As a remark, the minimum value
of the constant is c = supx

(
φX(x)
δ(x)

)

Figure 2.1: Example of one-dimensional acceptance-rejection method for target
density φX(x) with an auxiliary density δ(x) ∼ U([a, b]). A value x(1) is sampled
accordingly to δ(x), the corresponding uniform distribution U

(
[0, c · δ(x(1))

)
is

sampled obtaining the value u(1). The latter is compared with φX(x(1)) and
since u(1) > φX(x(1)) is rejected. Similarly, the second sampled point x(2) is
rejected. However, the third point x(3) satisfies u(3) < φX(x(3)), and therefore
x(3) is accepted as a value sampled from φX(x).

With reference to Figure 2.1, the algorithm is the following:

1. Generate a sample x∗ from the auxiliary density δ(x).

2. Generate a sample u∗ from the uniform distribution U([0, c · δ(x∗)]).

3. Check if u(∗) ≤ φ(x∗):

True: x∗ can be considered a sample from the density φ(x∗). End the algo-
rithm

False: Return to step 1.

The convergence of the algorithm is guaranteed by the fact that the condi-
tional distribution of the variable X with density δ(x), given that the event
{U([0, c · δ(X)]) ≤ φ(X)} is the CDF FX(x) of the target distribution [63, 61].
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However, this algorithm can be costly. Indeed, first the distribution δ(x) has to
be sampled, then U([0, c · δ(x)]) must be sampled as well, and finally the value
obtained is compared against φX(x). If the value u∗ is higher than φX(x∗) the
point is rejected and the method has to restart. Therefore, it is straightforward
that the smaller the distance between the original density φX(x) and δ(x), the
less evaluation has to be carried out before a positive result is obtained. Uni-
form auxiliary distributions are easy to implement but do not always give the
best result because their shape is different from several empirical distributions.
However, any distribution from which one already knows how to sample can be
chosen as an auxiliary function.

Remark 6 (How many iterations?). The algorithm presented at every iteration
determines whether to return the value obtained or to restart the procedure. The
aim is to determine on average how many times it rejects the result before re-
turning the correct value. Consider the random variable N which counts how
many iterations of the algorithm are required. This random variable has a ge-
ometric distribution (e.g. P(N = n) = (1 − p)n−1p) with success probability
p = P (U([0, c · δ(x)]) ≤ φX(x)). It holds that p = 1

c
and therefore the average

number of iterations is [63]:
E[N ] = 1

p
= c
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2.2 Forward analysis
Forward analysis investigates how uncertainty in the inputs propagates through

the model to the outputs and, consequently, to the quantities of interest. Among
the various UQ problems (input calibration, sensitivity analysis, inverse UQ),
this problem is the less complex to solve since the resolution is based on the
well-known integration methodologies. Indeed, with reference to Figure 2.2, of
the quantities of interest, mainly the statistical moments (mean, variance, skew-
ness) or the probability of an event (e.g. that the QoI exceeds a certain threshold)
are studied. Respectively, these can be written using the law of the unconscious
statistician [64] as the following integrals:

µ(g) =
∫

Ω
g(x)φX(x)dx

σ2(g) =
∫

Ω

(
g2(x) − µ(g)2

)
φX(x)dx

P(g(x) ∈ S) =
∫

Ω
1{g(x)∈S}φX(x)dx

P(g(x) ≥ t) =
∫

Ω
1{g(x)≥t}φX(x)dx

(2.9)

where φX(x) is the density function of the input, Ω ⊆ Rd is its support, g(x) :
D ⊆ Rd → y ∈ R is the model, S ⊆ R is a possible set of outcomes, t is a
threshold, and 1 is the indicator function.

Figure 2.2: Sketch of the forward analysis. The input distribution with joint
density φX(x) is sampled. The values are evaluated by the model and a QoI is
extracted from the outputs, obtaining for each sample x the corresponding g(x).
The latter is studied using integral approximation of QoI statistical moments
(mean, variance, skewness), percentiles, event probability and probability of fail-
ure.

These integrals can be calculated using a Monte Carlo approach [65], which
consists of the following procedure:

• The input space X is sampled n times according to its probability distri-
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bution φX(x) obtaining n d-dimensional inputs:

{x(i)}n
i=1 := {(x(i)

1 , · · · , x
(i)
d )}n

i=1

• The model g(x) it is evaluated for each {x(i)}n
i=1, obtaining {g(x(i))}n

i=1.
This step, in UQ applications, is the computational bottleneck.

• The integrals to be calculated are replaced by their estimators.

Remark 7 (standard MC integration). The standard MC integration aims to
solve an integral

∫
Ω f(x)dx. This is the same as using an uniform distribution

φX(x). In this elementary case, therefore, we can sample directly from Ω uni-
formly and apply straightforward the estimator. In the general case in which we
want to approximate

∫
Ω f(x)φX(x)dx and, therefore, the input must be sampled

from the more complex input space with density φX(x). This can be done with
several techniques, including the acceptance-rejection method [62, 61].

2.2.1 Efficient sampling strategies
The sampling strategy of the input space can greatly influence the speed of

convergence. Classical quadrature formulae (like the Gaussian quadrature rule)
are capable of approximating an integral with a few points but suffer from the
curse of dimensionality. Indeed, as the size of the input space increases they
become less and less efficient. Furthermore, many of the integration methods are
not extensible, meaning that if one wants to increase the accuracy, it is necessary
to redefine the sampling to be calculated from scratches.

Figure 2.3: Examples of three different sampling strategies applied to a d = 2
input space of uniform random variables. Standard MC (Panel a) does not
prevent clustering, while both Latin HyperCube Sampling (Panel b) and Sobol’
low discrepancy sequence (Panel c), produce a more homogeneous distribution
that better fills the input space.

An alternative to grid-based methods are the aforementioned Monte Carlo
(MC) integration rules. With reference to Figure 2.3, MC methods are highly
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dependent on the clustering of the input data. If the sampling points are too
close together, they do not add enough new information and integration requires
additional values.

Standard Monte-Carlo

The methodologies for calculating integrals based on random sampling are all
variants of the Monte Carlo (MC) method.

Suppose we want to approximate a multidimensional integral:

I(f) :=
∫

Ω
f(x)φX(x)dx (2.10)

This can be interpreted as the expectation of a function f(x), where X is the
random variable with density φX(x) and Ω its support. For UQ applications,
f(x) is some function of the model QoI g(x). When calculating the mean of
the QoI, it holds f(x) = g(x). Otherwise, when calculating the probability of
exceeding a threshold t: f(x) = 1{g(x)≥t}

In order to simplify the notation and conform to the typical terminology of
MC techniques, an isoprobabilistic transformation can be used to reduce the
integral calculation to:

I(f) :=
∫
Id

f(x)dx (2.11)

where the domain is the unit cube Id = [0, 1]d and the variables are uniformly
distributed.
Definition 4. The Monte Carlo quadrature formula is based on the proba-
bilistic interpretation of the integral. Given a sequence {xi}n

i=1 sampled from the
input space X, the empirical approximation is:

In(f) = 1
n

n∑
i=1

f(x(i)) ≈ I(f)

which is unbiased (i.e. E[In(f)] = I(f)) and convergent according to the strong
law of large numbers:

lim
n→∞

In(f) → I(f) (2.12)

The corresponding MC integration error is defined as:
εn(f) = I(f) − In(f) (2.13)

The Central Limit Theorem (CLT) describes the behaviour of this error.
Theorem 3 (Convergence). For n large:

lim
n→∞

P
(

a <

√
n

σ
εn < b

)
= P(a < N(0, 1) < b) =⇒ εn(f) ≈ σ√

n
N(0, 1)

where N(0, 1) is a standard normal distribution and σ∗ is the (unknown) standard
deviation of f . As a consequence, the MC integration error is:

εn(f) = O

(
σ

1√
n

)
≈ O

(
1√
n

)
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The reported theorem is an asymptotic estimate for the calculation of any
integral quantity. When working with a small sample size, this estimate is there-
fore no longer reliable. In addition, in the case of specific problems (e.g. when
one wants to estimate the average QoI or calculate the probability of an event)
a much more precise estimates can be obtained without asymptotic Gaussian
approximation [66].

Remark 8 (Sample size). Using the CLT, the number of points n to ensure an
error of size at most ε with confidence level c is:

n = σ2s(c)
ε2

with s(c) the confidence function for a normal variable: c =
∫ s(c)

−s(c)
1√
2π

e−x2/2dx.
In practice the variance σ2 is unknown and difficult to estimate. A few points
can be used to get an estimate of the variance and use it to produce the right
sampling dimension.

The Monte Carlo method is therefore capable of approximating any integral
(at arbitrary dimensions) and the speed of convergence does not depend directly
on the size of the input space. The drawback of this methodology is that the
speed of convergence is very slow. Structured grid exhibits stronger convergence
properties (but dependent on dimension), for example a kth-order quadrature
rule has a convergence rate of O

(
n−k/d

)
on a d-dimensional space, and thus MC

is better if k
d

< 1
2 =⇒ d > 2k.

Variance reduction methods

The MC method converges with a speed dependent on the sample size and
the standard deviation σ of the function f(x) to be integrated. Therefore, vari-
ance reduction methods modify the integral to reduce the σ and thus speed up
convergence (e.g. an elementary approach may be to divide the integral into a
sum of several sub-integrals, whose σ is much smaller).

Among the variance reduction methods, stratification is an efficient ap-
proach that combines the benefits of a grid based rule with those fully random
[30]. The idea is to divide the input domain into regions of equal size and calcu-
late the integral over each part. In this way, the total variance is the sum of the
contributions and is therefore less than/equal to the original one σ2. Further-
more, this technique avoids the clustering of points.

Formally, to approximate
∫

Ω f(x)φX(x)dx:

1. Split the integration region Ω into m pieces {Ωk}m
k=1 such that:

Ω =
m⋃

k=1
Ωk
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2. In each sub-region {Ωk}m
k=1, sample nk points {x(i,k)}nk

i=1 using the sub-
region density:

φX,k(x) = φX(x)∫
Ωk

φX(x)dx

where φX(x) is the original density.

3. The stratified quadrature formula is:

In(f) =
m∑

k=1

∫
Ωk

φX(x)dx ·
(

1
nk

nk∑
i=1

f
(
x(i,k)

))

with n = ∑m
k=1 nk.

The corresponding integration error is:

εn(f) := I(f) − In(f) =
m∑

k=1
εk(f)

εk(f) ≈
φX,k√

nk

(∫
Ωk

(f(x) − fk)2φX,k(x)dx
)1/2

=
√

φX,k

nk

σk

φX,k :=
∫

Ωk

φ(x)dx

σk :=
(∫

Ωk

(f(x) − fk)2φX(x)dx
)1/2

fk :=
∫

Ωk

f(x)φX(x)
φX,k

dx

If the number of points nk is proportional to the weight Ωk, the set is called
balanced. Formally: {nk}m

k=1is balanced ⇐⇒ φX,k

nk
= 1

m
∀k ∈ {1, · · · , m}

Theorem 4. Stratification always lower the integration error if the distribution
of points is balanced.

The error for balanced stratified quadrature is:

εn ≈ σs√
n

σ2
s :=

m∑
k=1

σ2
k

According to Theorem 4, stratification is always a better choice than stan-
dard MC. Furthermore, stratification can be combined with other variance re-
duction methods or even quasi-random approaches to additionally accelerate
convergence. However, domain splitting and sub-sampling can be computation-
ally burdensome and, in some cases, reduce the number of simulations to con-
vergence but increase the time required for calculation (e.g. when using MC
methods to calculate almost real time multi-dimensional integrals). However,
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the cost of sampling in UQ problems is negligible compared to that of simula-
tions. Therefore, stratification is always a better choice compared to pure MC
for UQ applications.

The selection of the number of nk points and choosing the subdivision into
regions originates several different stratification methodologies. The most ba-
sic approach is the Latin HyperCube (LHC) sampling [67], where the input
space is subdivided in m regions of the same weight and sample an equal num-
ber of points from each of them (balance condition). This approach outperforms
standard MC and substantially reduces clustering phenomena [68].

Remark 9 (LHC drawback). A limitation of the LHC approach is that it cannot
be extended once sampling has been carried out. More advanced methods, such as
the replicated LHC, retain the advantages of the LHC and allow it to be extended
a posteriori [69].

Halting criterion for MC and LHC

We recall that in a UQ analysis each sampling point corresponds to a model
evaluation and, thus, solving a numerical simulation. In applications, only a
certain number of simulations can be run, depending on the available computing
capacity. The convergence rates of the sampling method hence determines which
problems are affordable and which are not. Once the simulations have been car-
ried out, the accuracy of the result obtained is analysed. If this is not sufficient,
it is necessary to extend the sample size efficiently (i.e. without repeating the
simulations already carried out).

The standard MC method allows an elementary extension of the sample size,
as it is sufficient to add new points sampled from the input distribution. Among
the variance reduction methods, some allows easy extension of the sample size to
improve precision (such as the use of antithetic variables), while others requires
careful modifications (such as the LHC, which can be extended in the form of
replicated Latin HyperCubes [70]). Quasi-random methods, on the other hand,
are much more complex to extend (and evaluate).

Convergence indicators are necessary in order to assess whether sampling
should be extended.

Remark 10 (standard sampling convergence for mean/variance). When only
the mean/variance of the targeted outcome is relevant, thanks to the CLT the
mean/variance on the targeted outcome divided by the current number of runs—can
be used as a convergence criterion [71] (i.e.

(
µ
n

)
,
(

σ
n

)
):

A general-purpose strategy to assess sampling convergence and eventually halt
the simulation is based on a ’sample-splitting’ bootstrap method [72] to compute
the internal standard deviation. Given the integral I(f) :=

∫
D f(x)φX(x)dx [73]:

1. A sample {x(i)}n
i=1 is obtained from the input space based on the joint

distribution φX(x) of X.
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2. The n outcomes are randomly split into m subgroups. For each subgroup
the estimate for the integral is obtained: {I(j)(f)}m

j=1.

3. The internal single-n-run-set based accuracy indicators are [69]:

std (I(f)) =
σm({I(j)(f)}m

j=1)√
m

where std (I(f)) is the internal deviation estimator and σm({I(j)(f)}m
j=1) is

the internal standard deviation of the m values.

4. If the internal deviation estimator is not small enough, add further points
to the sample and iterate.

If the internal deviation between subgroups is high, it means that there are
marked subdivision-dependent differences. Consequently, it means that the sam-
ple size n is not yet large enough for a homogeneous description of the space. As
a remark, the internal standard deviations no longer indicate the actual devia-
tions from the reference solutions (sampling convergence). Instead they should
be considered as an indicator of the order of magnitude for the accuracy of Monte
Carlo results.

Remark 11 (standard internal standard deviation). For a single n-run set,
internal standard deviations for the mean and variance can be derived directly
from statistical theory:

std(µ) = σ

√
1
n

std(σ) = σ

2

√
2

n − 1 + k

n

(2.14)

where n is the number of runs, k the excess kurtosis of the n-run analysis, and std
are the expected internal standard deviations on µ and σ. σ and k are computed
on the n-dimensional sample. These formulae are used in several commercial
software [73].

Quasi-random low discrepancy sequences

Quasi-random sequences are a deterministic alternative to random or pseudo-
random ones. These sequences are designed to provide better uniformity and
hence faster convergence for quadrature formulas [30]. The drawbacks of these
high-speed techniques include: implementation difficulty, a high time to gener-
ate the sample, and a convergence speed dependent on the dimensionality of
the integral (curse of dimensionality). Low discrepancy sequences are based on
the definition of discrepancy, Hardy-Krause variation and the Koksma-Hlawka
theorem.
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Definition 5. For a sequence of n points {x(i)}n
i=1 in the unit cube Id, define:

Rn(J) = 1
n

#{x(i) ∈ J} − m(J)

for any subset J of Id (i.e. is the MC quadrature error in measuring the volume
of J). Restrict J to the rectangular set (and thus can be written as J(x, y) using
x, y antipodal vertices), call E the subset of all these rectangular sets. Now can
be defined the L∞ discrepancy as:

Dn = sup
J∈E

|Rn(J)|

The counterpart with one vertex fixed at 0 (subset E∗) is:

D∗
n = sup

J∈E∗
|Rn(J)|

Remark 12 (MC discrepancy). The MC has an expected discrepancy of [74]:

D∗
n = O

(
log log n√

n

)

Definition 6. The Hardy-Krause variation of a single variable function is
defined as:

V [f ] =
∫ 1

0

∣∣∣∣∣dfdt

∣∣∣∣∣ dt

In d dimensions, the variation is defined (recursively) as:

V [f ] =
∫

Id

∣∣∣∣∣ ∂df

∂t1 · · · ∂td

∣∣∣∣∣ dt1 · · · dtd +
d∑

i=1
V [f (i)

1 ]

in which f
(i)
1 is the restriction of the function f to the boundary xi = 1.

Theorem 5 (Koksma-Hlawka inequality). For any sequence {xi}n
i=1 and any

function f with bounded variation, the integration error εn is bounded as:

εn(f) ≤ V [f ] · D∗
n

This bound is a worst-case upper bound (instead of the probabilistic bound
given by the root mean square error of standard MC) and it depends not only
on the function f we are integrating, but also on the choice of sequence. Indeed,
exist many type of quasi-random low-discrepancy sequence with different D∗

n

values.

Definition 7. An infinite sequence {x(i)}n
i=1 is uniformly distributed if

lim
n→∞

D∗
n = 0
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Definition 8. An uniformly distributed sequence is a low discrepancy se-
quence if

D∗
n ≤ c(d)(log n)k(d)

n

in which c(d) and k(d) are constants that are independent of n but may be de-
pendent on the dimension d.

Remark 13 (MC discrepancy). The MC has an expected discrepancy of [74]:

D∗
n = O

(
log log n√

n

)

Examples of quasi-random sequences are: Van der Corput, Halton, Inverse
Halton, Haselgrove, Faure, Sobol’, Niederreiter and Owen [30]. For Halton, In-
verse Halton, and Sobol’ sequence, it holds:

D∗
n = O

(
(log n)d

n

)
(2.15)

where d is the input space size. The Koksma-Hlawka inequality and discrep-
ancy bounds for a quasi-random sequence together imply that quasi-Monte Carlo
quadrature converges much faster than standard Monte Carlo quadrature:

εn(f) ≤ O

(
(log n)d

n

)
(2.16)

For very large n the dominant term is the denominator and therefore QMC
converge speed is approximately O

(
1
n

)
. However, the dominant term is the

denominator only if n > 2d. Therefore, the speed is much greater for spaces with
low dimensionality but deteriorates for higher d. The dependence on V [f ] also
means that for discontinuous functions the behaviour is even worse.

It should be emphasized that the Koksma-Hlawka inequality is a worst-case
upper bound. Therefore, in several applications the convergence speed is much
faster (e.g. approximately O

(
1

nα

)
with α ∈ [1/2, 1] [74]) even for n < 2d.

Comparison between strategies

In summary, the convergence rate for order k grid-based quadrature method is
O
(

1
nk/d

)
while standard MC convergence rate is O

(
1√
n

)
. Whereas for low dimen-

sionality (e.g. d ≤ 5) grid-based quadrature totally outperforms MC methods,
for higher d the MC approach is the only viable.

The low MC convergence speed depends on a multiplier σ(f), which is func-
tion of the variance of the integrand function. This multiplier can be reduced
using a variance reduction method (e.g. antithetic variables, stratification, LHC
sampling). Variance reduction methods can be even combined. The convergence
speed is always faster than standard MC.
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Alternatively, it is possible to use quasi-random/quasi-Monte Carlo methods
(Halton, Sobol’ low discrepancy sequences), which change the convergence speed
to O

(
(log n)k(d)

n

)
where k(d) is function of the input dimension. Despite again in-

cluding a dimensionality dependency, in applications QMC methods outperform
the standard MC even for high dimensionality (d ∈ [10, 20]). QMC methods
can be combined with variance reduction methodologies to further accelerate
convergence.

Remark 14 (MC or variance reduction + QMC?). QMC methodologies almost
always perform better than the standard MC [74]. The drawbacks to their use
are mainly the difficulty of calculating the sampling elements and, above all, the
time required to generate the sample. However, in UQ applications, the latter
is negligible compared to the resolution time of the model. Therefore, variance
reduction + QMC methods are always preferable to standard MC.

In several applications, the integrand function f only depends on a few im-
portant input variables (in the sense of an ANOVA decomposition, see [74]).
For functions f that depend on only a few relevant inputs, QMC outperforms
standard MC, whereas there is no relevant gain when using LHC. If all inputs
are relevant but there are only low-order interactions, both QMC and LHC per-
form better than standard MC. However, if there are no relevant subsets of input
variables and there are high-order interactions between the variables, QMC, LH
and MC perform similarly [74].

2.2.2 Rare event estimation

One of the applications of forward UQ analysis is to estimate a probability of
an event (e.g. determine the probability that the UQ exceeds a certain threshold
or has values in specified ranges). As an example, in the study of a hydraulic
system, the quantity of interest could be the pressure on the pipe wall at desig-
nated points. An event to be studied is whether the pressure exceeds a breaking
threshold value leading to damage to the system.

The sampling techniques described allow the calculation of these probabilities,
but lose efficiency when events become rare. An event is said to be rare if it has
a probability ≤ 10−3. For several industrial safety analysis, a rare event has a
probability even ≤ 10−8.

The study of rare events is difficult to approach with the MC methodolo-
gies discussed above. Indeed, consider the problem of calculating the following
integral:

P(S) :=
∫

Ω
1{f(x)∈S}φX(x)dx (2.17)

where Ω ⊆ Rd is the support of the density φX(x), and 1{f(x)∈S} is the indicator
function of S.
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The integration error for an MC estimate of a probability (i.e. P(S) = p0) is:

εn = O

(√
1 − p0

p0n

)
∼ O

(
1

√
p0n

)
(2.18)

for p0 ≪ 1 [66].
As a rule of thumb, to estimate an event of probability p0 with a fixed level of

accuracy δ, the total number of samples needed is n = 1
p0δ2 . This estimation is

very expensive, indeed, for an accuracy of 1% and an event of probability 10−4,
n = 108 simulations are needed. There are numerous techniques (e.g. importance
sampling [75], subset simulation [31, 32], directional simulation [76], line sam-
pling [77], Asymptotic Sampling [33]) for the study of rare events, whose choice
depends on the problem under investigation. In this section, Subset Simulation
is briefly discussed for its high flexibility and applicability to UQ problems.

Remark 15 (Independence and Gaussian hypothesis). Most techniques assume
that the input variables are i.i.d. (independent and identically distributed) Gauss-
sian variables. It is always possible to reduce to these assumptions through an
appropriate isoprobabilistic transformation [78].

Subset Simulation

Subset Simulation, which has been studied in the mathematical literature
under the terms Sequential Monte Carlo and Generalized Splitting, expresses
P(S) as a product of conditional probabilities that are significantly larger than
P(S). Formally, the event S is written as an intersection of nested intermediate
events:

S = ∩m
j=1Fj

S = Sm ⊂ · · · ⊂ S1
=⇒ P(S) = P(∩m

j=1Fj) = P(S1)
m∏

j=2
P(Sj|Sj−1) (2.19)

If the event S an be described as S := {g(x) ≤ y∗}, the intermediates become
Sj := {g(x) ≤ yj} such that y1 > · · · > ym = y∗.

The intermediate failure events are selected such that the conditional prob-
abilities P(Sj|Sj−1) are large (e.g. ≫ P(S)), thus requiring a reduced number
of simulation to be calculated. Each element of the product is calculated for a
certain number of samples before starting to evaluate the next one.

The probability P(S1) is computed by application of crude MC. For estimat-
ing the conditional probabilities P(Sj|Sj−1) one needs to generate samples from
conditional PDFs φ(x|Sj−1). Generation of i.i.d. samples from φ (x|Sj−1) can be
achieved by application of acceptance-rejection method [62, 61]. However, this
approach is inefficient for events Sj close to actual failure event since the accep-
tance probability is proportional to P(Sj). A more efficient method is a modified
Metropolis algorithm (MMA) [31] which belongs to Markov Chain Monte Carlo
methods [79]. Once the estimates of the probabilities of the intermediate events
have been obtained, the overall estimator is simply their product.
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Remark 16 (Drawbacks). Similar to all techniques for estimating rare events,
Subset Simulation has several drawbacks. Mainly, the estimation obtained is
affected by bias even when conditional probabilities are estimated with i.i.d. sam-
ples, due to the adaptive estimation of intermediate failure events. Furthermore,
it is possible to construct counterexamples demonstrating the convergence of the
subset simulation to an incorrect probability [80, 81]. However, it should be
emphasized that the bias of O(n−1) is negligible compared to the coefficient of
variation of the probability estimate [32] and that in most of the applications the
Subset simulation converges to the true probability.

Despite the limitations, Subset Simulation is incomparably faster than the
standard MC for estimating rare events. Defined the relative efficiency as the
ratio between the number of samples for a standard MC (nMC) and a Subset
Simulation (nSS) with the same estimator covariance, it holds [78, 82]:

nMC

nSS

=
p0
(
ln p−1

0

)r

(1 + γ)(1 − p0)P (F)
(
lnP (F)−1

)r ≈ 0.03 · P (F)−1(
log10 P (F)−1

)2 (2.20)

where a numerical good approximation is r ∼ 2, γ ∼ 3, p0 ∼ 0.1 [31, 80]. As an
example, for P (F) = 10−6, subset simulation requires only 1/800 of the simula-
tion of a standard MC approach.
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2.3 Sensitivity analysis

Introduction
Sensitivity analysis (SA) investigates which uncertain parameters have the

greatest impact on the problem dynamics. Formally, is ”the study of how the
uncertainty in the output of a model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input” [83]. SAs provide detailed
information on the model under examination with regard to:

• Understand the dynamics: SA makes it possible to understand which
variables are the most relevant in the dynamics. Combining what has been
discovered numerically with an expert commentary on the significance of
the relationships identified can lead to fundamental discoveries about the
phenomenon investigated.

• Model Reduction: The most frequent application of sensitivity analyses
is the resulting model reduction. Having determined that only a subset k
of the d input variables has an effect on the quantity of interest, it allows
all those d − k secondary variables to be set to their nominal values in
subsequent analyses. This reduction in input space mitigates the effect of
curse of dimensionality and therefore decreases the number of simulations
required for the follow-up studies.

• Future developments: To improve the model, it will be necessary to
develop and refine only those aspects related to the most relevant variables
first.

Sensitivity analysis pivotal importance is widely acknowledged, and they are
required in national and international guidelines in the context of impact as-
sessment (e.g. European Commission, 2009; Office of Management and Budget,
2006; U.S. Environmental Protection Agency (EPA), 2009).

It should be emphasized that in an ideal context (comprehensive information
on input distributions and a low computational cost of simulations) a model re-
duction is superfluous. However, working with limited computational resources
or computationally expensive numerical models, it was seen in the previous sec-
tions how almost all the techniques discussed suffer from the curse of dimen-
sionality. Therefore, reducing the analysis to only the most important input
variables allows more accurate results to be obtained with a reduced number
of simulations. However, sensitivity analyses suffer from an additional difficulty
compared to Forward UQ: there is no unambiguous way to define the impact
of a variable on the model. Consequently, there is no one sensitivity index but,
rather, families of different indices investigating different aspects of the input-
output interaction.

In a recent systematic review [38] by one of the founders of the modern UQ,
Saltelli found that more than 40% of the sensitivity analyses performed start from
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wrong assumptions or are methodologically poor. Sensitivity analyses require a
careful set of choices and tests of assumptions on the input-output relationship
in order to be correctly applied. With reference to Figure 2.4, first it must be
determined whether detailed information on the input distributions is available
or not. In the first case, a global sensitivity analysis can be carried out. Other-
wise, it is necessary to limit the analysis to a local one. A preliminary graphical
analysis (by means of scatter-plots and cobweb-plots) on the available data can
identify useful relationships to investigate.

Figure 2.4: Algorithmic chart for selecting the appropriate technique/index to
perform a sensitivity analysis, partially based on [84, 85]. In particular, in the
case of reduced information on the input, it is necessary to perform a simple
local SA that can only be generalised to the global case under assumptions of
linearity. Global SA are distinguished according to the assumptions (less or
more restrictive) on the input-output relationship.* indicates variance-based SA.
In brackets is the expected number of simulations with respect to the d dimension
of the input space. d′ is the number of groups of input variables.

Local sensitivity analyses assume that there is no reliable information on
the distributions of the input space. The indices and associated techniques are
therefore limited to exploring a neighbourhood of the nominal values of the model
in order to gain insight into the most relevant quantities. These techniques re-
quire an extremely limited number of simulations and are hence used in a compu-
tationally onerous context with limited information. The most commonly used
local SA is the OAT (one-at-a-time) analysis, which alters parameters around
mean values, and differential SA, based on analytical or numerical estimation
of partial derivatives. Local SA requires few assumptions and a low number of
simulations, but the results can only be generalised to the entire space in the
case of a linear input-output relationship.

When detailed information on the input space, described by a proper multi-
dimensional distribution, is available, then a global sensitivity analyses can
be applied. By exploring not only the neighbourhood of the nominal value but
the entire input space (appropriately weighted for its probability measures), the
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global sensitivity analysis addresses the following question: which of the inputs,
considered across the entire spectrum of their possible variations, impacts the
dynamics the most? Answering this question is definitively more valuable than
running a simple local SA. These analyses are much more computationally expen-
sive. However, less costly indices and strategies can be exploited when additional
assumption on the input-output relationship can be mad (see Figure 2.4 for de-
tails). Importantly, it should be remarked that an incorrect assumption on the
input distributions propagates through the analysis contaminating the results of
the analysis.

In the case of very expensive models, it is possible to apply screening strate-
gies (such as OAT analyses or Morris method) to obtain a preliminary SA. These
techniques, either in their local version (i.e. OAT screening) or global version
(i.e. OAT or Morris method) allow with a very small number of simulations to
obtain a first insight into the dynamics of the model. This is especially useful
when there are too many input parameters d compared to the simulations that
can be performed. Using this screening analysis, a model reduction is performed
to reduce the dimensionality d of the problem so that more advanced techniques
can be used. Alternatively, it is possible to exploit metamodels trained on re-
duced datasets in order to still be able to study complex indices such as Sobol’
sensitivity indices, as detailed in Section 2.4.

2.3.1 Graphical SA
A powerful SA screening tool for both local and global analyses is the graphical

investigation of the properties of the input-output relationships. In particular,
two of the most widely used ones are scatter-plots and the cobweb-plot.

With reference to Figure 2.4a,b,c, the scatter-plots show pairs of values for two
variables on a plane. From the relationship described by the points, it is possible
to identify variables with a reduced effect (cloud of points, as in panel c), to
detect a linear relationship (panel a), or to determine the presence of non-linear
ones that necessitate the use of appropriate non local methodologies (panel b).

Scatter-plots, however, do not capture some interaction effects between inputs.
In fact, they are the two-variable projection of a d-dimensional problem that
cannot be represented graphically in its entirety. Another useful tool is the
cobweb plot [86]. This graph connects the values of each variable (shown on
vertical axes) by straight lines. Highlighting a subset of the QoI with a different
colour allows complex relationships between the variables to be identified. With
reference to Figure 2.4d, for instance, it can be seen that the high values of the
Y -QoI correspond to large values of the variable X1 and low ones for the variable
X2.

2.3.2 Local SA
If there is no information on the input distributions available to the experi-

menter, the only methodologically correct approach is to carry out local sensi-
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Figure 2.5: Examples of scatter-plots determining a linear (a) and a non linear
(b) relationship. Panel b shows a cloud of points that can predict a reduced effect
of the variable on the output. Panel d presents a cobweb plot that highlights
higher values of Y and proves that they corresponds to larger X1 values coupled
with lower X2 ones.

tivity analyses [87]. The latter derive their name from the fact that the variables
under investigation are only locally perturbed around their nominal values. Lo-
cal sensitivity analyses will be treated very briefly, as they provide less precise
results than the corresponding global analyses. In addition, cardiac problems,
and more generally biomedical problems, have a vast literature at their disposal
for correctly estimating input distributions.

Differential approach

The gold standard for local sensitivity analyses is the direct method (also
called Differential Sensitivity Analysis, or Differential Approach). The inputs
are fixed at their nominal values and the partial derivatives of the QoI Y = g(X)
are calculated for each input parameter. The corresponding slope, eventually
normalised by the ratio of the parameter to remove the effects of units, is called
the ranking index and is used as an estimate of importance of the variables.
These derivatives can be calculated analytically for many application problems
(either by direct derivation or by the adjoint method [88]). Alternatively, it
is also possible to obtain the derivatives numerically and apply this method
for (smooth) black-box input-output relations. The main drawback of the direct
method, like most local techniques, concerns the non-generalizability of the result
in the absence of a linear input-output relationship.
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One-At-Time SA

An alternative to direct methods for SA are one-at-a-time (OAT) methods,
which exploit the input space varying one parameter at time while fixing the
others to their nominal value. This kind of exploration neglects any kind of
interaction among variables and, therefore, the results obtained are valid for
small perturbations and generalizable only in the case of linear models. For the
sake of completeness, two of the most commonly used OAT indices are listed
here [87].

The OAT Sensitivity Measure can be calculate with just two model f
evaluations for each input (i.e. a total of 2d). For each input Xi with nominal
value µi, is chosen a value pi equal to a percentage of the mean (±5%µi, ±10%µi)
or, if more detailed information on the input distribution is is available, as ±σi.
The index is calculated as the ratio of the highest to the lowest variation:

SMi = g ((µ1, · · · , µi, · · · , µd) + (0, · · · , pi, · · · , 0))
g ((µ1, · · · , µi, · · · , µd) − (0, · · · , pi, · · · , 0)) (2.21)

An alternative index is the OAT Sensitivity Index, similarly defined as the
percentage difference in output from its minimum to its maximum perturbation:

SIi = Mi − mi

mi

· 100

Mi = f ((µ1, · · · , µi, · · · , µd) + (0, · · · , pi, · · · , 0))
mi = f ((µ1, · · · , µi, · · · , µd) − (0, · · · , pi, · · · , 0))

The OAT techniques can be substituted in most of the application with better
ones (e.g. Morris method) and should be avoided where possible [89, 90]. Indeed,
the results of the OAT neglect interactions and cannot be generalised to the whole
space without strong assumptions of model linearity.
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2.3.3 Global Sensitivity Analysis
Local SA methods are extremely limited in their applications as they can not

span. Furthermore, many of the local methods are based on very strong assump-
tions about the input-output relationship (e.g. linearity/monotonicity) that are
not found in practice. An extension of local methods are the global sensitivity
analyses, so called because they consider the entire range of variation of the
input [91]. As shown in Figure 2.4, there are numerous global SA techniques
with more or less strong assumptions on the input-output relationship.

It should be recalled that in the absence of information on input distributions,
it is not methodologically correct to define arbitrary ranges of variation and label
the sensitivity analysis performed as global. In such cases it is better to run a
local SA.

Linear regression

If an approximately linear relationship between input and output is present,
elementary sensitivity indices can be defined. Given an n-dimensional sampling
of space and the corresponding model evaluations

(X,Y) := {x(i), y(i)}n
i=1 = {(x(i)

1 , · · · , x
(i)
d ), y(i)}n

i=1

it is first necessary to check linear assumptions. This can be done with the
coefficient of determination R2 and the predictivity coefficient Q2. First
it is defined a m−size test set:

(Xp,Yp) := {(x(i),p
1 , · · · , x

(i),p
d ), y(i),p}m

i=1

which is an arbitrary subset extracted from the original set (X,Y). Then, ŷ
is the linear model approximation that associate each input (x1, · · · , xd) to a
corresponding output. This linear approximation is trained on the remaining set
once that the test set is extracted.
Definition 9. The predictivity coefficient is is defined as:

Q2 = 1 −
∑m

i=1

(
y(i),p − ŷ

(
x

(i),p
1 , · · · , x

(i),p
d

))2

∑m
i=1 (y(i),p − E [yp])2

The value of Q2 corresponds to the percentage of output variability explained
by the linear regression model. If Q2 ∼ 1 the linear hypothesis can be assumed.
Otherwise, if Q2 < 1, other SA methodologies should be used.

Once the linear relationship has been verified, it is possible to define several
sensitivity measures.

The first possible measure is based on the strength of the linear relationship
among an input variable Xj and the output, which can be quantified by the
Pearson correlation coefficient:

ρj := ρ (Xj, Y ) =
∑n

i=1

(
x

(i)
j − E [Xj]

) (
y(i) − E [Y ]

)
√∑n

i=1

(
x

(i)
j − E [Xj]

)2√∑n
i=1 (y(i) − E [Y ])2
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where values close to 1 or −1 describe a strong linear correlation, while ρj ≈ 0
means an essentially null (linear) effect of Xj on Y . Consequently, the variables
are ordered with respect to the absolute value of Pearson’s coefficient. It should
be emphasised that if linearity assumptions are improperly accepted, this index
may return a value of 0 even in the presence of a strong non-linear relationship
between Xj and Y , leading to a misclassification of the importance of the vari-
ables.

Sometimes it is relevant to consider not only the strength of the linear re-
lationship but the regression coefficients among the variables Xj and Y . The
Standard Regression Coefficient is therefore defined as:

SRCj = αj

√√√√var [Xj]
var [Y ]

where αj is the linear regression coefficient associated to Xj. As a remark, un-
der the linear assumption, if the input variables are independent, each SRC2

j

expresses the part of output variance explained by the input Xj. Higher val-
ues correspond to a greater amount of explained variance and, therefore, more
important input variables.

Remark 17 (Efficient sampling). An efficient sampling strategy as the one de-
scribed in the previous section can greatly reduce the amount of model evaluation
required to correctly estimate these coefficients [67].

Rank regression

If the linear assumptions are not fulfilled but a monotonic input/output re-
lationship still exists, both the Pearson correlation coefficient and the Standard
regression coefficient can be used by applying a rank transformation [92]. The
latter substitutes each value of the sample {(x(i)

1 , · · · , x
(i)
d ), y(i)}n

i=1 with the cor-
responding rank (the relative position of the variable: 1 for the first, 2 for the
second).

The monotonic hypothesis is tested by computing the predictivity coefficient
Q2 on the rank transformed sample. Similarly, the Spearman correlation co-
efficient and the Standardized Rank Regression Coefficient are defined as
the Pearson correlation coefficient and the Standard regression coefficient of the
rank transformed sample.

As a remark, these indices implicitly assume that there are no interactions
between the input variables. This can be verified using a preliminary screening
analysis such as the Morris method, see § 2.3.3. In case of interactions, more
complex global SA methods should be preferred.

Statistical tests

If linear or monotonic relationships between input and output have not been
confirmed, it is possible to use the results of certain statistical tests as sensitivity
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measures. These indices, although requiring less restrictive assumptions, often
lack quantitative interpretation [85].

Statistical testing based SA [93] starts from a n-dimensional sampling of
the input space and the corresponding model evaluations

(X,Y) := {(x(i)
1 , · · · , x

(i)
d ), y(i) = g(x(i))}n

i=1

To obtain a sensitivity measure for a given input variable Xj, the sample is
subdivided into m sub-samples (for small dataset: m = 2):

SS
j
1 := {(x(i1)

1 , · · · , x
(i1)
j , · · · , x

(i1)
d ), y(i1)}n1

i=1
...

SSj
m := {(x(im)

1 , · · · , x
(im)
j , · · · , x

(im)
d ), y(im)}nm

i=1

(2.22)

such that each sub-sample corresponds to an equiprobable stratum to the respect
of the variable Xj:

PXj
(SSj

1) = · · · = PXj
(SSj

m) (2.23)

A statistical test of homogeneity of population is therefore applied to the sub-
samples and a value T derived from the statistic of the population is used as a
measure of sensitivity:

Ij = T
(
SS

j
1, · · · , SSj

m

)
(2.24)

The variables are ordered with respect to the measures Ij. Several statistical tests
of homogeneity of population (including χ2-test, Fisher test, Kruskal-Wallis test
[94]) can be applied to calculate Ij, whereas parametric tests such as the t-test
can also be applied to compare sub-samples. However, these tests are based on
strong assumptions about the distribution of the variable which are often not
fulfilled. In such cases, non-parametric alternatives should be preferred [93] as
they are based on the ranks of both input and output vectors, thus providing
an appropriate and strong tool for tackling sensitivity analysis problems [95].
A detailed description of the tests is reported in the textbook of Conover [96],
while Saltelli and Marivoet [93] make a comparison of several alternatives on a
common test function.

Remark 18 (Same ranking?). Having introduced numerous sensitivity indices,
it is natural to ask whether these provide similar results when classifying impor-
tant variables. While variance-based indices return similar results as the number
of simulations increases, different indices focus on distinct aspects of the input-
output relationship and thus, in general, do not necessarily return the same im-
portant variables [93].

ANOVA decomposition and Sobol’ indices

The measures of importance discussed so far do not investigate the relation-
ship between variables (e.g. is there a combination of variable 1 and 2 that
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impacts dynamics the most?). This analysis of interaction can be achieved with
the most general of the sensitivity indices described in this section, the Sobol’
index. The latter not only provides precise insight into the relationships between
variables, but can also be calculated under the least restrictive of the proposed
assumptions: the input-output relationship can admit interactions and does not
even have to be continuous. The drawback of this index is its high computational
cost compared to the other methodologies discussed.

Let us consider the model Y = g(X), X = (X1, · · · , Xd) and Y an univari-
ate response. Assuming that Xi are independently and uniformly distributed
within the unit hypercube [0, 1]d, g(X) may be decomposed (ANOVA-HDMR
decomposition of the QoI f [97]) as:

Y = g0 +
d∑

i=1
gi(Xi) +

d∑
i<j

gij(Xi, Xj) + · · · + g12··· ,d(X1, · · · , Xd) (2.25)

The assumption of independence and the choice of the domain [0, 1]d is not
restrictive, as each model can be appropriately transformed to satisfy these hy-
potheses by using an isoprobabilistic transformation [46]. This representation, is
unique under the assumption [98]:∫ 1

0
gi1,...in (Xi1 , . . . , Xin) dXik

= 0

1 ≤ k ≤ s, {i1, . . . , is} ⊆ {1, . . . , d}

As a consequence, summands are orthogonal with each other:

E [gA(XA)gB(XB)] = 0 ∀A,B ⊆ {1, · · · , d} A ̸= B (2.26)

and therefore it is possible to define a recurrent formula to calculate the terms
of the decomposition:

g0 = E[f(X)]
gi(Xi) = E[f(X)|Xi] − g0

gij(Xi, Xj) = E[f(X)|Xi, Xj] − gi − gj − g0
...

From this formula follows the names of these coefficients: gi are the main ef-
fect of Xi, gij are the second order interaction of Xi, Xj, and so on. The given
decomposition combined with the orthogonality property leads to the functional
ANOVA decomposition [99] of the model:

Var[Y ] = Var
g0 +

d∑
i=1

gi (Xi) +
d∑

i<j

gij (Xi, Xj) + · · · + g12..d(X)


=
d∑

i=1
Vi +

d∑
i<j

Vij + · · · + V12···d

(2.27)
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where:

Vi := Var [E [Y |Xi]]
Vij := Var [E [Y |Xi, Xj]] − Vi − Vj

Vijk := Var [E [Y |Xi, Xj, Xk]] − Vij − Vik − Vjk − Vi − Vj − Vk

...

(2.28)

Definition 10. The Sobol’ indices [100] are defined as :

Si := Vi

Var [Y ]

Sij := Vij

Var [Y ]
...

SD := VD

Var [Y ]

(2.29)

where D ⊆ {1, · · · , d} is an arbitrary subset of the inputs. The first order indices
are also called importance measures or main effect indices.

These indices have a strong intuitive meaning, representing the amount of
variance of Y that is due to the given input or input combination. As a remark,
Vi is the contribution of varying Xi but averaged over other variations in input
space. The Var [Y ] standardization is provided to give a fractional response and
implies that:

d∑
i=1

Si +
d∑

i<j

Sij + · · · + S12···d = 1 (2.30)

The main advantages of Sobol’ indices include: high interpretability, the capa-
bility to deal with non-linear/non-monotonic and even discontinuous responses,
and the possibility of describing the effect of interactions in non-additive system.

Remark 19 (Linear regression model). If the model is linear, it holds:

Si = SRC2
i := αi

√√√√Var [Xi]
Var [Y ]

where SRC is the standard regression coefficient. Therefore the Sobol’ SA leads
to the same analysis of standard linear SA.

These indices can also be used to quantify the degree of interactions. Indeed,
the amount of perturbation of the output caused by interactions is given by:

Interaction(f) := 1 −
d∑

i=1
Si (2.31)
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Sobol’ indices defined in this way, however, do not provide information on
the contribution of a variable Xi taking into account all interactions with other
variables. An extension of classical Sobol’ indices, are the total order Sobol’
indices [101].

Definition 11. The total order Sobol’ indices (also called total indices or
total effects are defined as:

ST
i :=

∑
D s.t i∈D

SD (2.32)

This is the measure of the contribution to the output variance of Xi including
all variance alterations caused by its interactions of any order with any other
input variables. Total order indices can be calculated directly without first hav-
ing to evaluate all terms in the sum. In practice, when d is large, only the main
effects and the total effects are computed, to provide both a description of the
behaviour of each variable alone and its combined effect with the others.

There are different strategies for calculating Sobol’ indices. The classical ap-
proach involves calculating each index SD by a direct Monte Carlo method. In
particular, an efficient technique for calculating first-order indices is the Sobol’
algorithm [100]. More efficient sampling strategies can be used to speed up con-
vergence even by a factor of 10 (such as the LHC or quasi-Monte Carlo) [102].
However, it should be noted that the number of indices 2d−1 grows exponentially
with the number d of dimensions. Consequently, in most applications, indices of
order greater than two should not be estimated. A particularly efficient al-
gorithm for calculating first order indices and simultaneously total order ones is
Saltelli’s algorithm [103]. The direct procedure of Saltelli to calculate the indices
is the following:

1. Generate two independent sample matrices of n rows and d columns A, B.
Each row is a random sample of the input space.

2. Define further d matrices {Ai
B}d

i=1 matrices with d columns and n rows.
These matrices are the original A one with the ith column of Ai

B equal to
the ith column of B.

3. Evaluate the model f for A, B, and all the {Ai
B}d

i=1. This leads to a total
of n + n + n · d = n · (2 + d) model evaluations.

4. The estimator for first and total indices are:

Si ≈ 1
n

n∑
j=1

f(B)j

(
f(Ai

B)j − f(A)j

)

ST
i ≈ 1

2n

n∑
j=1

(
f(A)j − f(Ai

B)j

)2

This method is particularly efficient as it requires only N · (d + 2) simulations
to obtain both first order indices and total ones. However, as it is defined, it is
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not trivial to extend the sampling in case the required precision on the indices
is not attained. Furthermore, the algorithm can be modified to calculate second
order indices as well, but is much less efficient.

Remark 20 (Why is my index negative?). In practical applications, it may hap-
pen that the calculated indices do not respect the theoretical properties expected.
It is indeed crucial to be aware that approximation error may produce incorrect
results or even lead to errors in the ordering of variables with respect to their
importance. Indices should therefore always be presented with their confidence
intervals to assess the reliability of the results.

For pure Monte Carlo approach (including Saltelli’s algorithm) the confidence
intervals relies on the asymptotic behaviours of the estimators [104]. Alternatives
include random repetition confidence intervals [105] and bootstrap methods [106].

There are other strategies for calculating Sobol’ indices: Mauntz formula is
useful for estimating small indices [107], while the Janon-Monod one [104] can
efficiently approximate large first-order indices. Jansen’s method [108] is an
alternative to Saltelli’s algorithm for calculating total order indices. A strategy
widely used in the literature is the FAST method [109]. Although this method is
efficient for calculating first-order indices and total order indices [110], it is known
that this method is slow, unstable and, above all, biased when the number of
inputs is larger than 10 [111, 85].

Remark 21 (Surrogate models). A very efficient family of methods to overcome
the computational bottleneck and calculate all Sobol’ indices (not only first and
total order) is the use of a surrogate model. With a reduced dataset, the model
f is approximated with a surrogate one f̃ of low computational cost. Indices
are then derived from analytical formulas (e.g. in the case of PCE or Kriging)
or by directly evaluating f̃ . These methods, however, suffer from the curse of
dimensionality. High dimensional input spaces therefore require the use of direct
methods such as Saltelli’s algorithm.

Screening global SA: OAT

Despite the discussed limitations of OAT techniques, in some practical con-
texts (d-dimensionality of hundreds/thousands) it is still useful to have this
screening tool available. In addition to the SM and SI indices already presented,
two other OAT variants applicable when the input distribution is known are the
OAT Importance Index and the Relative Deviation method [87].

The most elementary between the variance-based sensitivity analysis is based
on the OAT Importance Index. To calculate this index, each input variable
Xi is sampled keeping all the other variables fixed at their nominal value (e.g.
the mean). The sample thus obtained

{x̃
(j)
i }n

j=1 := {(µ1, · · · , x
(j)
i , · · · , µd)}n

j=1
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is evaluated using the model f . The index it is defined as the ratio between the
input variance and the output variance:

IIi := Var[g(Xi)]
Var[Xi]

≈
Var

[
{g
(
x̃

(j)
i

)
}n

j=1

]
Var

[
{x̃

(j)
i }n

j=1

] (2.33)

Exploiting a similar approach to that of the Importance Index, it is possible
to define the Relative Deviation index. The latter is defined as the ratio of
the standard deviation of the output to its mean (similar to the coefficient of
variation):

RDi := σ [g(Xi)]
µ [g(Xi)]

≈
σ
[
{g
(
x̃

(j)
i

)
}n

j=1

]
µ
[
{g
(
x̃

(j)
i

)
}n

j=1

]
This index is the gold standard for OAT sensitivity analysis if many evaluations
may be afforded for each variable.

Screening: Morris method

OAT analyses are a screening technique with severe limitations because the
results completely neglect interactions between variables. However, there is a
family of techniques (global screening techniques) that investigate the entire in-
put space (global analysis) at a low computational cost to provide preliminary
insight into the most relevant variables.

Among these techniques, one of the best in terms of detailed information
retrieved is the Morris method [35], presented here using Campolongo’s exten-
sion [112].

The algorithm of Morris method is the following:

1. It is defined a set of starting values {x(j)}r
j=1 accordingly to the d dimen-

sional input distribution. It is prescribed a step-size ∆s.

2. Define the starting value x(j,0) := x(j). For i = 1 to d:

(a) The value x(j, i − 1) is modified by adding a perturbation ∆s in the
ith direction of the input space (OAT respect to the ith input variable):

x(j,i) = x(j,i−1) + ∆s · eî (2.34)

(b) The Elementary effect is computed as:

E
(i)
j :=

g
(
x(j,i)

)
− g

(
x(j,i−1)

)
∆s

(2.35)

Therefore, each initial element is perturbed d times, one in each direction, ran-
domly exploring the space around that initial value. This leads to a total of
r(d + 1) runs of the model.
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Remark 22. A good parameter value is r between 4 and 10 [113].

Since the order of the displacements is random as are the choices of initial
points, this method investigates the entire space in a very complete manner. For
each input space direction i ∈ [1, d], the obtained set of {E

(i)
j }r

j=1 follows an
unknown distribution E(i), which is used to define the corresponding sensitivity
indices: the mean of the elementary effects:

µ(i) = E[E(i)] ≈ 1
r

r∑
j=1

E
(i)
j (2.36)

the mean of the absolute value of the elementary effects:

µ(i)
∗ = E[|E(i)|] ≈ 1

r

r∑
j=1

|E(i)
j | (2.37)

and the standard deviation of the elementary effects:

σ(i) = σ[E(i)] ≈
√√√√1

r

r∑
j=1

(
E

(i)
j − µ(i)

)2
(2.38)

The value µ
(i)
∗ is a measure of influence of the ith input on the output. Larger

values correspond to a more important input variable. The standard deviation
σ(i) is a measure of non-linear and/or interaction effects of the ith input. If σ(i)

is small, means that every starting value {Xj}r
j=1, once perturbed in the ith di-

rections, leads to a similar modification. Consequently, a small difference among
these values leads to a lower σ(i) and therefore suggests a linear relationship be-
tween input and output. Viceversa, a large σ(i) implies a non-linear relationship
or an interaction with at least one other variable.

Remark 23 (Classical Morris). The Classical Morris method uses µ(i) instead of
µ

(i)
∗ . Campolongo proves that the absolute mean value can improve the classical

results [112].

The method of Morris allows to classify the inputs in three groups:

• Inputs i having negligible effects: low value of µ
(i)
∗ .

• Inputs i having large linear effects without interactions: high value of µ
(i)
∗

and low value of σ(i).

• Inputs i having large non-linear and/or interaction effects: high values of
µ

(i)
∗ and σ(i).
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Other screening techniques

The Morris method is one of the most costly among the screening techniques.
When the number of evaluations has to be smaller or equal than the input space
(e.g. n ≤ d) this technique can not be applied. Such extreme cases must be ad-
dressed by appropriate methodologies, not discussed in detail here for the sake
of brevity. If n ∼ d, a classical Factorial Fractional Design can be used
[114], whereas if n < d two possibilities are the Supersaturated design [115]
or Sequential Bifurcation Method [116]. However, in some applications can
happen that n ≪ d (e.g. having an input space of dimensionality 100 with a
maximum of 10 simulation to run). One of the few techniques to address this
problem is based on partitioning the input space (with the number of partitions
d′ ≪ d, such that d′ ∼ n) and then applying Screening by groups methodolo-
gies [117].

Remark 24 (The efficiency of surrogate models). The use of a properly vali-
dated surrogate model avoids the computational bottleneck of an onerous model.
For particularly expensive model evaluation cases, a surrogate model can suc-
ceed in returning very precise estimates of complex indices (Sobol’) using few
tens of simulations. Nevertheless, surrogate models still suffer from the curse of
dimensionality and thus cannot be used for spaces with large d dimension.
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2.4 Surrogate models
The number of evaluations of the original model y = g(x) required to apply the

UQ methodologies is the main bottleneck of computational resources and time.
Each evaluation corresponds to an experiment or a resolution of the numerical
model, that may even take several days (e.g. the heart model developed in this
thesis requires over 15 hours on a GPU unit V100).

An elegant solution to overcome this limitation is to use a surrogate model
(also called metamodel). The latter is an approximation of the real problem based
on the data available to the experimenter. Formally, given the original model
y = g(x) and a set of pairs (X,Y) := {(x(i), y(i) = g(x(i)))}N

i=1 called the training
set, the surrogate model y = g(x) is defined on the basis of assumptions made by
the experimenter (e.g. the presence of a polynomial relationship between input
and output) to minimise an appropriate distance between the surrogate model
predictions and the known information, ∥g(x) − g(x)∥.

The idea behind the use of the surrogate model is that instead of querying the
original model g(x) for a given input x∗ not belonging to the training set, the
approximation provided by g(x∗) is exploited. If this surrogate is well trained and
the underlying assumptions are valid, the calculated prediction will be similar to
that obtained using the original model (i.e. g(x∗) ≈ g(x∗)).
Remark 25 (Linear regression model). The most basic example of a surrogate
model is the linear model y = g(x) = α·x. The assumptions underlying the choice
of this metamodel are that there is only one input variable x, one output variable y
and that the relationship between the two is approximately linear. Once a training
dataset (e.g. {(1, 1), (2, 4.3), (3, 5.6)}) is fixed, the line that best approximates
these three points is chosen, in this case y = 1.95 · x . If we want to make a
prediction on a new x∗ = 4 value, we can use the chosen straight line as an
approximation of the real problem: y = 7.8 = 1.95 · 4.

The assumptions underlying the choice of the model are crucial, one must
therefore choose the appropriate surrogate for the problem under investigation.
Simple surrogates include the linear model [118],its extension to account for mul-
tivariate input variables (general linear model, GLM) [119] and the multivariate
logistic regression model [120] which estimates the probability of an event (out-
put) occurrence given the inputs. These surrogates are easy to interpret, but
are often too basic to describe more complex UQ questions. Conversely, in re-
cent times, much more sophisticated models have emerged that are capable of
describing a wider family of problems. Examples of these metamodels are ar-
tificial neural networks (ANN) [121] and in particular their variants explicitly
developed for probabilistic interpretation such as Bayesian neural networks [122]
and variational autoencoders [123].

The use of a surrogate model for UQ analysis thus involves the choice of a
model, a training phase on a suitably generated sample (e.g. using the qMC
techniques discussed) and a validation phase to check whether it is predictive.
The surrogate model can be then applied in place of the original model to run
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forward and sensitivity analysis, performing hundreds of thousands of evalua-
tions of G(x) almost in real time.

Although any suitably validated metamodel can be used to fit the dynamics
of the original model, there are a number of surrogate families which have been
properly designed for UQ. Such approaches often provide analytical formulas
for calculating sensitivity indices and allow the necessary information to be ex-
tracted efficiently already with a very small number of samples. The two most
used surrogate models for UQ are Polynomial Chaos Expansion (PCE) [124, 125]
and Gaussian process regression (also known as Kriging) [126, 127]. The first
provides an analytical formula for Sobol’ indices. The surrogate is a multivari-
ate probabilistic polynomial expansion and therefore it is easy to interpret the
model’s choices by analysing the polynomial coefficients. The second provides a
method for estimating the error of the metamodel itself, which can be used to
implement an adaptive methodology for extending the training dataset.

Remark 26 (Surrogate models or direct approach?). The use of a surrogate
model adds a further source of error to the UQ procedure. Therefore, where
possible, direct methodologies are preferred, as they are more stable and less prone
to error. However, in applications where only a few hundred (or even tens) of
simulations are possible, surrogate models remain the only viable strategy.

2.4.1 Training
After choosing a metamodel, it is necessary to train it on the available data

(the training set). In fact, each surrogate is dependent on several parameters
that must be calibrated to fit the problem. Good calibration means that the
metamodel can be used as a low-cost substitute for the original model. In the
case of a linear metamodel y = m · x + q, for instance, the two parameters to be
calibrated are m and q.

Identifying the optimal parameters is a complex problem and is highly de-
pendent on the chosen metamodel. For linear models there are closed formulas
while for more complex polynomial models there are iterative methods, and in
the case of feedforward Neural Networks, backpropagation algorithms are used.
However, underlying all these methodologies, there is the idea of minimising a
distance between the predictions of the model g(x) and the chosen metamodel
g(x). This distance, discussed in the next section, is often a mean square error
calculated over the entire training set.

2.4.2 Validation
Given a trained surrogate model, is fundamental to set up a control phase to

validate the results, see Figure 2.6.

Remark 27 (Training). In many applications, the experimenter is forced to
work with a pre-existing training dataset. However, in the design phase of the
experiment, the training dataset can be defined wisely in order to maximise the
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Figure 2.6: Training and validation sketch of a metamodel. After the training
phase, the model is evaluated using the mean-squared error R2 and the general-
isation error Q2. High values of both parameters ensure good predictive ability.
Low values of both, on the other hand, mean that the experimental design is not
adequate.

information obtained from a small number of simulations. The techniques pre-
sented in Section 2.2 are therefore applicable not only for direct methods but also
for the definition of an efficient training set.

Testing error - R2 accuracy estimator

The first validation to be performed when using the metamodel is to determine
its ability to replicate results of the original model on the training dataset. A
metamodel has, indeed, to provide the correct inputs/outputs relationship for
the cases used for its training to be a good surrogate.

Definition 12. An estimator of the error committed by using a metamodel in-
stead of the original model is the mean-square error (MSE) or generalisation
error:

MSE = E
[
(g − g)2

]
Definition 13. MSE can be approximated using the training dataset {x(i), G(x(i))}n

i=1

MSE ≈ Errtraining = 1
n

n∑
i=1

(
g(x(i)) − g(x(i))

)2

Definition 14. The R2 estimator (also called coefficient of determination in
regression analysis), it is defined as:

R2 = 1 − MSE
Var[g] ≈ 1 −

∑n
i=1

(
g(x(i)) − g(x(i))

)2

∑n
i=1

(
g(x(i)) − 1

n

∑n
j=1 g(x(j))

)2

where {x(i), g(x(i))}n
i=1 is the training set.
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The index thus defined ranges from zero (no predictive ability on the training
dataset) to 1 (perfect match on the training dataset). However, the risk of
overfitting should also be assessed in order to validate the metamodel.

Remark 28 (Polynomial example and Runge’s phenomenon). As an example,
consider a training dataset of dimension n and an interpolating polynomial on
the given points. As the degree of the polynomial increases, the approximation
on those points will become progressively better (until a polynomial of degree n
perfectly approximates all n points). In that case, the index R2 will be equal to
1 but the model will be poorly able to generalise the results as it will fluctuate
between the points in the training dataset.

Q2 accuracy estimator

To determine the capability of a predictive model outside the training set,
evaluation is performed on a new independent dataset called the validation set
{x(i), g(x(i))}m

i=1 [128].

Definition 15. The MSE estimator of the error committed by using a metamodel
can be computed on the validation set {x(i), g(x(i))}m

i=1

MSE ≈ Errtest = 1
m

m∑
i=1

(
g(x(i)) − g(x(i))

)2

Definition 16. The Q2 estimator it is defined as:

Q2 = 1 − MSE
Var[g] ≈ 1 −

∑m
i=1

(
g(x(i)) − g(x(i))

)2

∑m
i=1

(
g(x(i)) − 1

m

∑m
j=1 g(x(j))

)2

where {x(i), g(x(i))}m
i=1 is the validation set.

An increase in the complexity of the metamodel leads to a monotonic increase
in the R2 index. However, the index Q2 is initially increasing and then begins
to decrease when the metamodel starts to over-fit the original model. When
training a metamodel, the quantity to be controlled is therefore the difference
between R2 and Q2 (generalisation gap, [129]). In conclusion, a low R2 index
and a low Q2 means insufficient input to perform a regression. A large difference
between R2 ≈ 1 and Q2 ≪ 1 implying that the metamodel has been over-adapted
to the training dataset (overfitting) [128], while a high R2 and a high Q2 means
a good metamodel [129].

Remark 29 (R2 = Q2 < 1 is a good metamodel?). Regardless of the computa-
tional complexity of the metamodel, there is the possibility that the indices do not
exceed a certain threshold (e.g. Q2 ≈ R2 ≈ 70%). In these cases, it means that
the input variables are not sufficient, regardless of its complexity, to predict the
quantity of interest or that the size of the training set needs to be increased. In
these cases, the best metamodel will be the one for which the R2 index is maximal
and the Q2 index is coincident (same prediction on training and test set).
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Cross-validation

In some situations, the training set must also be used as a test set. This is nec-
essary when the evaluation of the original model is very expensive and therefore
the number of available simulations is low and it is not possible to build two in-
dependent sets. Such approach is also used for optimizing the hyper-parameters
of the metamodel itself (e.g. LAR-methods to produce the coefficient of the PCE
metamodel [130]).

The main idea of cross-validation is to split the original training set in a
new training set and a test set, compute the error (Equation 15) and repeat for
different combination of training and test sets. Average these obtained errors
and use the value to investigate the goodness of the metamodel.

K-fold cross-validation error estimate is obtained applying the following
procedure [131]:

• Split the original set (X,Y = g(X)) into K mutually exclusive sub-samples
(X1,Y1 = g(X1)), · · · , (XK ,YK = g(Xk)) with similar size.

• One of the sub-sample (Xi,Yi) is selected and the corresponding error is
computed:

Err(i) = 1
|Xi|

∑
x(j)∈Xi

(
g(x(j)) − g(x(j))

)2

• Repeat on each subset i ∈ {1, · · · , K}.

• The K-fold cross-validation error estimate is the average:

ErrK-fold = 1
K

K∑
i=1

Err(i)

Definition 17. The Q2
K-fold index it is defined as:

Q2
K-fold ≈ 1 − ErrK-fold

Var[g]

The Jack-knife cross-validation error estimate (or Leave-One-Out, LOO)
is a powerful K-fold strategy with K = n. This method requires a large num-
ber of training sessions of the metamodel but provides precise validation of the
ability to generalise [132]. The ErrLOO and Q2

LOO are defined as in the standard
K-fold cross validation.

Remark 30. Some metamodelling strategies (like the PCE expansion) admit a
closed formula for calculating Q2

LOO [130].

Remark 31 (Hyperparameters optimization). Two data sets are sufficient to
train and evaluate a metamodel: the training set and the test set. The training
set, obtained with an efficient sampling strategy (e.g. LHC, quasi-MC), provides
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the metamodel with the information to be trained correctly. Conversely, the test
set is a completely independent dataset that is used to ensure the goodness of
the metamodel on data that was not used for training. However, if a hyper-
parameter optimisation procedure is to be performed, it is necessary to have a
dataset other than the test set. This dataset is called the validation set. In the
optimal case, therefore, the metamodel is trained on the training set, providing
an index R2. A first value Q2

validation is then computed on the validation set. The
hyper-parameters of the metamodel are chosen to maximise these two indices.
The metamodel is finally evaluated on the test set (Q2) to determine its reliability.
In the case of small datasets, cross validation procedures can be used to extract
test/validation sets from the original pool.

2.4.3 Polynomial Chaos Expansion
Among the surrogate models developed specifically for UQ, Polynomial Chaos

Expansions (PCE) are among the most widely used. Based on a mathematical
theory well developed since the 1800s, this method is based on the decomposition
of the chosen quantity of interest by an appropriate polynomial basis. Given the
multidimensional space of the inputs, the joint distribution of the variables is
estimated. The latter describes the probability of having a given input vector.
The polynomial basis is then chosen such that the elements are mutually or-
thonormal with respect to the input distributions [133]. The surrogate model is
therefore a standard polynomial approximation of the output variable but, being
defined on the basis of a probabilistic space, allows an analytical derivations of
the sensitivity indices.

PCEs are an effective metamodel for performing sensitivity analyses, in par-
ticular for moderate dimensionality (d < 10) of the input space and for small
datasets, they outperform direct methods [125].

Remark 32. The charming name Polynomial Chaos Expansion dates back to
Wiener (1838), who used it in the context of Hermite expansion for constructing
a physical theory of chaos [124]. Ghanem and Spanos (1991) used the PCE
representation to develop the Stochastic Finite Element Method [134]. Xiu and
Karniadakis (2002) have greatly expanded the applications by employing different
polynomial basis [135]. More recently, Sudret and Blatman (2008) described the
currently most widely used form of PCE, providing an adaptive method to reduce
the risk of overfitting [40, 130]. Given the historical motivation for the name,
the term ”spectral expansion” is often preferred in UQ contexts.

Mathematical setup

Given the computational model g : DX ⊂ Rd → R, the uncertainty of the
input parameters is modeled by a random vector X = (X1, · · · , Xd) prescribed
by joint probability density function φX(x), and the QoI Y = g(X) which is
obtained by propagating the uncertainty on X through g [136].
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Remark 33. Assuming that Y has finite variance (i.e. it belongs to Hilbert space
of second order random variable), it admits the following spectral representation:

Y =
∞∑

j=0
cjBj (2.39)

where {Bj}∞
j=1 is a basis of the Hilbert space and {cj}∞

j=1 are the coefficients of
the expansion [136].

The assumption on the variance of Y is physically meaningful in UQ applica-
tions. However, the theorem is not constructive and we have to make a choice
on the basis Bj and define an algorithmic approach to find the coefficients cj.
Polynomial Chaos Expansions define an appropriate Bj base of multivariate or-
thonormal polynomials in the input vector X.

PCE basis

We want to define a basis of the Hilbert space which is orthonormal to the
respect of the input X distribution [133] . Under the assumption that the in-
put variables (X1, · · · , Xd) are statistically independent (which can be obtained
through the use of a Nataf transformation [46]), the joint input PDF φX(x) is
the product of d marginal distributions:

φX(x) =
d∏

i=1
φXi

(xi) (2.40)

where φXi
is the distribution of the ith input variable.

The first step is to define the inner product for each variable Xi and for any
ϕ1, ϕ2 : DXi

→ R as:

⟨ϕ1, ϕ2⟩i := E[ϕ1(Xi)ϕ2(Xi)] =
∫
DXi

ϕ1(x)ϕ2(x)φXi
(x)dx (2.41)

where DXi
is the support of Xi. Having defined an inner product, we can con-

struct a corresponding family of orthogonal polynomial {P
(i)
k , k ∈ N} through

the use Gram-Schmidt orthogonalization procedure [137]. There is one family of
polynomials for each input variable Xi. These univariate orthonormal polyno-
mials provide the elements to define with a tensor product construction a family
of multivariate orthonormal polynomials.

Definition 18. Given a multi-index α = (α1, · · · , αd), αi ∈ N and the family
of the univariate orthonormal polynomial {P

(i)
k , k ∈ N}d

i=1, the associated multi-
variate polynomial can be defined as

Ψα(x) :=
d∏

i=1
P (i)

αi
(xi) (2.42)

68



Chapter 2: Surrogate models

As a remark, the choice of a multi-index with all but one null entry identifies
the polynomials of that specific entry. This family is also orthonormal, as it
follows from the definition of the inner product:

E[Ψα(X), Ψβ(X)] :=
∫
DX

Ψα(x)Ψβ(x)φX(x)dx = δαβ (2.43)

with α and β two multi-indices and δαβ the Kronecker delta.
Theorem 6. The set of all multivariate polynomials Ψα in the input random
vector X forms a basis of the Hilbert space [136].

Consequently, Y = G(X) admits the following spectral representation:

Y =
∑

α∈Nd

cαΨα(X) (2.44)

that is the so called Polynomial Chaos Expansion (PCE).

Orthonormal polynomials

Given a random variable Xi, the univariate orthonormal polynomials {P
(i)
k (x)}∞

k=0
can always be constructed through the use Gram-Schmidt orthogonalization pro-
cedure [137]. The latter can be applied to arbitrary input distribution but for
most standard distributions, there is an analytical formula for the corresponding
univariate orthonormal polynomials, as summarised in the Table 2.3

Type of variable Distribution Orthonormal polynomials
Uniform
U[(−1, 1)] 1[−1,1](x)/2 Legendre Pk(x)/

√
1

2k+1

Gaussian
N(0, 1)

1√
2e−x2/2 Hermite Hek(x)/

√
k!

Gamma
Γ(α, λ = 1) xαe−x1R+(x) Laguerre Lα

k (x)/
√

Γ(k+α+1)
k!

Table 2.3: Standard distribution and related orthonormal polynomials, as re-
ported in [138]. Further details on orthonormal polynomial families can be found
in Bini [137]. Orthonormal polynomials for arbitrary distributions can be calcu-
lated using the Gram-Schmidt orthogonalization.

In practice, most of the random variable are not in the normalized forms re-
ported in Table 2.3 (e.g. an input random variable Xi with uniform distribution
U[(3, 7)]). In these cases, an isoprobabilistic transformation can turn the variable
into a standard distribution.

The construction of the multivariate orthonormal families requires the inde-
pendence of the random variables Xi. This assumption is often unrealistic as the
input distribution has to be described by a proper copula which models the re-
lationship within the single marginals. However, if the input vector X is defined
by a set of marginals and a Gaussian copula, it can be transformed into a set of
independent standard normal variables using the Nataf transform [46].
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Remark 34 (Unknown random variables: PCE yes or not?). The input dis-
tribution must always be calibrated on real data. If the calibration is performed
incorrectly, the results of the PCE are unpredictable. Indeed, although it is al-
ways possible to calibrate the coefficients of the PCE on the basis of the training
set, the analytical formulae for calculating sensitivity indices are based on the
assumption that the polynomials are orthonormal with respect to the real input
distribution. Therefore, when input information is partial, it is better to use other
methodologies (e.g. local sensitivity analysis, direct methods, other metamodels).

Enumeration rule

The PCE is an infinite series which describes the output distribution Y =
G(X). The latter has to be truncated in order to get a finite approximation
which can be used in practical applications. The truncation strategy it is based
(i) on how to enumerate the element of the multivariate basis and (ii) on how
many terms of the basis have to be retained [130].

Definition 19. An enumeration strategy is an enumeration functions τ : N →
Nd, which creates a one-to-one mapping between an integer j and a multi-index
α of the d-multivariate polynomials.

Most of the enumeration strategies for the multivariate polynomials are based
on the definition of the total degree of a multivariate polynomial.

Definition 20. The total degree of a multivariate polynomial Ψα is:

∥Ψα∥ :=
d∑

i=1
αi

Figure 2.7: Example of linear (a) and hyperbolic (b) enumeration strategy in
the case of two variables. Note how the hyperbolic enumeration in the case
q = 1 is coincident with the linear enumeration (in each of the strata the normal
linear enumeration is applied). As q decreases, the shape of the strata becomes
increasingly hyperbolic, i.e. elements with a low number of interactions are
numbered first.

With reference to Figure 2.7a), the standard (linear) enumeration strat-
egy is defined as the lexicographical order with a constraint of increasing total
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degree (e.g. for a two dimensional multi-index (0, 0) < (0, 1) < (1, 0) < (2, 0) <
(1, 1, ) < · · · ).

The sparsity-of-effects principle states that most models are governed by their
main effects (i.e. the effect of one single input variable on the QoI) and lower
order interactions. The enumeration strategy defines the order in which the
coefficients of the multivariate polynomial are considered. Therefore, a linear
enumeration strategy investigates many high-level interactions between the vari-
ables and is in contrast with the sparsity-of-effects principle.

Definition 21. For any q ∈ (0, 1], the q-hyperbolic quasi-norm of a multi-index
α it is defined as:

∥α∥q :=
(

d∑
i=1

αq
i

) 1
q

(2.45)

With reference to Figure 2.7b), the hyperbolic enumeration strategy it is based
on the partition of Nd into strata (∆n)n∈N. The enumeration it is obtained by
sorting the elements of the stratum ∆n in ascending order of the q-norm.

Definition 22. The partition based on the total degree defines the strata
as ∆0 = {0}

∆n = {α ∈ Nd : n − 1 < ∥α∥q ≤ n}
(2.46)

The hyperbolic norms penalize the indices associated with high-order interac-
tions. Setting q = 1 leads to the standard linear enumeration strategy. When q ¡
1, the retained basis are located under an hyperbola, hence the name hyperbolic
enumeration strategy.

In some applications, we want to prioritise one variable over another. As
an example, using an approximating polynomial of high degree with respect to
input x1 and a simple interpolating line for input x2. In such cases, a rule can
be defined that weights the different input spaces differently.

Definition 23. For any q ∈ (0, 1] and ω ∈ Rd
+, the ω, q-anisotropic hyperbolic

quasi-norm of a multi-index α it is defined as:

∥α∥ω,q :=
(

d∑
i=1

ωiα
q
i

) 1
q

(2.47)

As a remark, highest weights correspond to input variables with lower order
interactions.
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Truncation strategy

Having defined an enumeration strategy, we want to choose where to truncate
the polynomial expansion (i.e. define the set of multi-indices A ⊆ Nd that
describe the chosen coefficients of the PCE). Several truncation methods exist,
but the most common is the standard truncation scheme.

Once a maximum value p has been fixed, all the coefficients of the expansions
such that ∥α∥ ≤ p are maintained:

A = Ad,p := {α ∈ Nd : ∥α∥ ≤ p} (2.48)

The chosen norm can be either the standard one or alternatives (e.g. hyperbolic,
anisotropic hyperbolic) and thus can be applied to each of the enumeration rules
discussed. This choice, although intuitive, leads to maintaining in the case of lin-
ear enumeration a number of coefficients that grows approximately exponentially
in the size of the input space:

card(Ap,d) =
(

d + p

p

)
= (d + p)!

d!p!

An increase in the number of coefficients leads to an increase in the sample size
of the training set. Indeed, the latter must be larger than the number of un-
knowns cardA for the problem to be well-posed. As a rule of thumb, a sufficient
size of the training set is ≈ 2-3 × card (A) [130]. This problem is called the
curse of dimensionality and is the main limitation to using PCE (and other
metamodelling strategies) for input spaces with high dimensionality. The use of
a hyperbolic norm not only reduces the number of coefficients but also focuses
the metamodel on low interactions between variables.

Alternatives to the standard truncation scheme are sequential strategies. These
strategies circumvent the curse of dimensionality starting with a small number
of coefficients and increasing this set according to a certain rule, thus extending
the base progressively up to a maximum number of coefficients.

The standard sequential strategy starts from the term Ψ0 of the PCE.
Once a maximum base size has been set, the elements of the base are progres-
sively added according to the chosen enumeration strategy. Base extension is
interrupted when a number of points equal to the chosen maximum base size
have been added or a certain convergence criterion has been reached (e.g. MSE
error below a fixed threshold).

Another sequential method is the cleansing strategy. In this case we start
with a number of coefficients (chosen in accordance with the enumeration strat-
egy) equal to the maximum base size. The metamodel is trained on the train-
ing set and all the unimportant coefficients are identified, i.e. c∗ such that
c∗ ≤ ε · maxi ∥ci∥ where ε ≈ 10−4. The identified coefficients are removed from
the base and an equal number is added following the chosen enumeration strat-
egy. This process iterates until convergence. More complex sequential strategies
can add the next basic element using efficient methodologies. Examples are the
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adaptive sparse PCE based on Least Angle Regression [139] or the sparse high
order FEM [140].

Once the set of coefficients has been defined α ⊂ Nd, the truncated PCE is
defined as:

Ŷ =
∑
α∈A

ĉαΨα(X) (2.49)

Training strategy

To find the optimal values of ĉα, the metamodel must be trained. There are
many methods for training the PCE that fall into two families: methods that
impose limitations on the choice of training dataset (i.e., the sample must be
chosen accordingly to the chosen methodologies) and methodologies that can ex-
ploit arbitrary sampling sets (and thus can be expanded if the training set has
to be redefined). To the first type of methods belong intrusive methods such as
stochastic finite element [141] or those based on the orthonormal properties of
the basis and exploiting efficient sampling (collocation methods). These strate-
gies, although capable of obtaining accurate results with a limited sample size,
often do not allow the extension of a pre-existing dataset. New analyses thus re-
quire redefining the sample from scratches and re-performing all simulations. In
practical applications, the possibility of extending the dataset is crucial. There-
fore, one of the most widely used non-intrusive methods for PCE training is the
choice of the coefficients of the expansion as those values that minimise the MSE
(least-square minimization problem).

Formally, as detailed in [142, 143], the real model can be described using the
truncated series and a residual:

Y = g(X) = g(X) + ε =
∑
α∈A

ĉαΨα(X) + ε (2.50)

The least-square minimization method consists in finding the set of coefficients
C = {ĉα, α ∈ A} which minimizes the mean square error:

C = arg min
ĉα

E[ε2]

E[ε2] := E
[
(g(X) − g(X))2

]
≈ 1

n

n∑
i=1

g(x(i)) −
∑
α∈A

ĉαΨα(x(i))
2 (2.51)

where (X,Y) = {x(i), y(i) = g(x(i))}n
i=1 is the dataset (e.g. the training/validation

set).

Definition 24. The information matrix is defined as:

M = {Mij := Ψj(x(i)), i = 1, · · · , n, j = 1, · · · , card(A)} (2.52)

The solution of the least squares problem is analytical:

C =
(
MT M

)−1
MTY (2.53)
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Remark 35 (Sample and coefficients). The advantage of a method such as the
one presented is that the sampling can also be extended without re-running the
previous simulations. In addition, the points of the training set can be chosen
arbitrarily. Therefore, sampling strategies such as Latin Hypercube sampling or
quasi-random sequences can be exploited for an efficient investigation of the input
space.

UQ applications

The truncated expansion Ŷ = ∑
α∈A ĉαΨα(X), with A the set of multi-indices

and ĉα the approximated coefficient, contains the information about the random
output Y = g(X). Therefore, analytical formulas can be derived for calculating
the mean, variance and Sobol’ indices of Y .

The formula for the mean and variance is derived from the orthonormality of
the polynomial basis:

E[Ŷ ] = E

∑
α∈A

ĉαΨα(X)
 = ĉ0

Var[Ŷ ] = E
[(

Ŷ − ĉ0
)2
]

=
∑

α ̸=0,α∈A

ĉ2
α

(2.54)

The Sobol’ index attached to each subset of variables A := {i1, · · · , is} ⊆
{1, · · · , d} is defined as SA = VA/V where V = Var[Y ] is the variance of the
output and VA = Var[gA(XA)] is the variance of the output given by the variables
Xi s.t. i ∈ A. For more details on Sobol’ indices, see Section 2.3. Let consider the
set of multivariate polynomials Ψα which depend only on the subset of variables
A:

AA := {α ∈ A : αk ̸= 0 ⇐⇒ k ∈ A}
due to the orthogonality of the PC basis [40]:

VA =
∑

α∈AA

ĉ2
α

and therefore
SA =

∑
α∈AA

ĉ2
α∑

α ̸=0,α∈A ĉ2
α

The confidence intervals for Sobol’ indices can not be derived from the asymp-
totic distribution of the estimators of the indices, but they can still be assessed
without performing further simulations through a resampling method, the boot-
strap [144, 144].
The main idea is to create a few artificial datasets of different sizes by sampling
with replacements the individual elements of the original training one. These
artificial datasets are then used to calculate the Sobol’ indices (using the PCE
method introduced above), thus obtaining an empirical distribution of the in-
dices quantifying the stability of the results with respect to a variation of the
input dataset.
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Definition 25. The α-percentile bootstrap interval is defined as:

[Si[α/2], Si[1−α/2]]

where Si[α/2] and Si[1−α/2] are the α/2 and the 1 − α/2 empirical quantiles of the
i-th Sobol’ index distribution [145].

This interval does not require hypotheses about the Si distributions (com-
pared to standard intervals which assume normality [145]) but it needs many
resamplings to estimate them accurately.
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2.4.4 Gaussian Process Regression - Kriging
Gaussian Process (GP) Regression, also known as Kriging or Wiener Kol-

mogorov prediction, it is a powerful metamodel techniques which interpolates the
data using a Gaussian Process instead of a polynomial expansion. The theory
behind GPs dates back to 1940, with the works of Wiener [146] and Kolmogorov
[126], while it was introduced in the context of global SA in the early 90s by
Welch et al. [127], and further explored by Oakley and O’Hagan [147], and Mar-
rel et al. [148].

GP main advantages include a closed form to compute Sobol’ indices with the
corresponding confidence intervals, making possible to perform global SA using
a limited number of evaluations. Furthermore, GP admits a sequential sampling
strategy that can be used to extend efficiently the training set with a reduced
number of elements. Compared to other metamodelling techniques, GP perform
particularly well for extremely small designs and it is comparable with PCE in
a broad range of applications [125].

Gaussian Process

The theoretical background for introducing Kriging starts with the definition
of a Gaussian process.

Definition 26. Given a probability space (ΩZ ,FZ ,PZ), a measurable space (S,B(S))
and a set X, a stochastic process {Z(x), x ∈ X} is Gaussian if and only if for
every finite set {x(1), · · · , x(k)} ⊂ X, Zx(1),··· ,x(k) := (Zx(1) , · · · , Zx(k)) is a multi-
variate Gaussian random variable.

In the UQ framework, the input space is X = Rd and the QoI space is S = R.
A Gaussian Process (GP) Z(x) is uniquely identified by its mean and covari-

ance functions, defined as:

m(x) = E[Z(x)]
k(x, x′) = cov(Z(x), Z(x′)) = E[(Z(x) − m(x))(Z(x′) − m(x′))]

(2.55)

and therefore can be denoted as:

Z(x) ∼ GP(m(x), k(x, x′))

The mean and covariance functions are not uniquely determined. Each family
of functions has its own properties that strongly alter the underlying GP.A cor-
rect choice of these functions can greatly affect the ability of the metamodel to
approximate the original model.

Mean function

The mean function m(x) of the GP Z(x) can leads to different predictions of
the model. It is common but by no means necessary to consider GPs with a zero
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mean function. As a remark, the posterior distribution obtained by conditioning
Z(x) to the training dataset can have a non-zero mean even with the zero mean
assumption on the prior distribution. Therefore, the obtained posterior mean is
not confined to be zero independently on the choice of m(x) [149].

Common choices for m(x) include: stationarity of the first moment over the
domain (i.e. E[Z(x)] = constant, simple Kriging), assuming constant unknown
over the search neighborhood of x (ordinary Kriging), or assume a general poly-
nomial trend model (universal Kriging).

Covariance function

Definition 27. The covariance function is a positive definite kernel, i.e. a
general function k : X × X → R such that

m∑
i=1

m∑
j=1

cicj k(x(i), x(j)) > 0

holds for any x(1), · · · , x(m) ∈ X, given m ∈ N and c1, · · · , cm ∈ R.
For a stochastic process Z(x), a covariance function k(x, x′) gives the co-

variance of the values of the random field at the two locations x and x′. The
covariance function used in several practical application are stationary.
Definition 28. A kernel it is called stationary if it is a function of the distance
x − x′, i.e. k(x, x′) = f(x − x′), is thus invariant with respect to translation in
the input space.

Describing a GP means making a choice, based on the available information,
of the mean and covariance function and identifying their optimal parameters.
Indeed, different choices of the kernel can potentially lead to totally different
metamodel solutions. Commonly used covariance functions for input domain
subset of the vector space RD include:

• Constant covariance:
k(x, x′) = constant

• Linear covariance:
k(x, x′) = xT x′

• Squared exponential (SE) covariance:

k(x, x′) = σ2 exp
(

− 1
2θ2 ∥x − x′∥2

)
parametrized by θ (correlation length) and the variance parameter σ2. The
latter is a common stationary choice in Kriging, with m(x) that is intu-
itively the trend around which the realizations vary, θ the oscillation fre-
quencies, and σ2 the range of variations.

The SE covariance function is the most frequently used in practical applica-
tions. However, it is known that its strong assumptions of regularity can lead to
unrealistic results [150].
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GP regression

Once the prior GP Z(x) with its own mean function m(x) and covariance
function k(x, x′) and given a training dataset (X,Y) = {x(i), y(i))}n

i=1 have been
defined, regression consists of describing the posterior probability of an unknown
output y∗ for an input x∗. For the properties of the GP, it holds:[

Y

y∗

]
∼ N

([
m(X)
m(x∗)

]
,

[
k(X,X) k(X, x∗)
k(x∗,X) k(x∗, x∗)

])
(2.56)

The distribution of the predicted output y∗ conditioned to the known data
(intuitively, generate functions from the prior, and reject the ones that disagree
with the observations, see Figure 2.8) can be calculated as follows:

(y∗|x∗,X,Y) ∼ N(m̃(x∗), k̃(x∗, x∗))
m̃(x∗) := m(x∗) + k(x∗,X)k(X,X)−1(Y − m(X)
kn(x∗, x∗) := k(x∗, x∗) − k(x∗,X)k(X,X)−1k(X, x∗)

(2.57)

Therefore, given a new input value x∗, an estimate of the output can be obtained
from the prior Z(x) in terms of: predicted mean m̃(x∗) and predicted variance
k̃(x∗, x∗).

The predicted mean is the main result of the regression through GP. It is a
linear weighted combinations of the training data, where the output-independent
weights are based on the covariance distance between the x∗ and X. As a re-
mark, the choice of a prior m(x) = 0 still allows to obtain a posterior mean
m̃(x) ̸= 0. The predicted variance represents the posterior variability in the pre-
diction. k̃(x∗, x∗) is in fact the model mean-square error. This value can be used
as an accuracy estimate and exploited to decide where to enrich the training
dataset (sequential design), see Figure 2.8.

In most applications, the result must be a point estimate (e.g. the result of a
regression). For this purpose, it is necessary to define a loss function L(ytrue, y∗).
Not having ytrue, the point estimate is obtained by minimising the average ex-
pected loss:

y∗
optimal|x∗ = argminy∗

∫
L(y′, y∗)p(y′|x∗,X,Y)dy′ (2.58)

In general the value that minimizes the risk is the median. However, when
the predictive distribution is Gaussian, the mean and the median coincide, and
indeed for any symmetric loss function and symmetric predictive distribution we
always get y∗ as the mean of the predictive distribution [149]. As a remark, the
posterior distribution is computed without the use of the loss function which is
used to captures the consequences of making a specific choice, given an actual
true state.

Remark 36 (Noisy data). In case of noisy data the previous formulation can be
modified to take into account noise properties. More details are reported both by
Rasmussen [149] and Sudret [125].
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Figure 2.8: Panel a) shows the prior GP Z(x) and three functions drawn at
random from it. Panel b) instead describes the posterior GP GP(m̃(x), k̃(x, x′)),
with three random functions drawn from it. The posterior is obtained by condi-
tioning the prior GP on the five observations indicated. In both plots the shaded
area represents the pointwise mean plus and minus two times the standard de-
viation for each input value (corresponding to the 95% confidence region). The
grey area is dependent on the estimated posterior variance at that point, and
therefore it is linked with the approximation error of the model itself. Sequen-
tial strategy can sample new points to reduce this amount of error (intuitively,
choose x as the one with the widest gray region). Panel c) shows the covariance
k̃(x, x′) for three different choices of x′. Note, that the covariance is zero at the
training points (where there is no variance, since it is a noise-free process) [149]

Sequential design

A crucial feature of GP regression is that the model itself provide an estimate
of its performance through the predicted variance k̃(x∗, x∗), which is the model
mean-square error. Therefore, if the model predictions are not sufficiently accu-
rate, new points can be added to the training set. The most common strategy
is to select the new points as the ones with the highest predicted k̃(x∗, x∗), see
Figure 2.8c). However, exist several more efficient criteria which can be found
in Bates et al. [151]; van Beers and Kleijnen [152]; Le Gratiet and Cannamela
[153].

One of the modern applications of Kriging with sequential design is Bayesian
optimisation [154, 155]. Consider a complex machine learning problem with
hundreds of inputs that has to be solved using an artificial neural network (e.g.
image classification). This problem cannot be addressed with UQ methodologies
due to the dimensionality of the space being too high. However, the optimal net-
work to be trained depends on certain hyper-parameters (such as the number of
nodes, convolutional layers, activation function characteristics). Kriging there-
fore applies to the relationship between hyperparameters and model accuracy.
This technique therefore not only selects the optimal hyperparameters but, in
addition, guides subsequent evaluations so as to minimise the number of model
trainings required for optimisation.
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GP as surrogate model

The GP inference described allows to obtain a prediction of the output starting
from a prior GP Z(x) and a training dataset. However, to apply the method
to SA problem, it is useful to give a different interpretation based on surrogate
models [125].

In this fashion we can see the problem as follow. We have a prior GP Z(x)
with a proper choice of mean m(x) and covariance k(x, x′) functions. We want
to integrate this prior with the known information (e.g. the training dataset
(X,Y) = {x(i), y(i)}n

i=1) to derive a new Gaussian process GP(m̃(x), k̃(x, x′) which
approximates the original problem. This GP is the surrogate model.

To compute the parameters of the surrogate mode (e.g. m̃(x) and k̃(x, x′))
we can describe the original mean and covariance functions with the following
parameterization:

m(x) = fT (x)β
k(x, x′) = σ2r(x, x′, θ)

(2.59)

where fT (x) is a vector of prescribed functions and θ are the covariance param-
eters. The hyperparameters σ2, θ and β all requires a proper calibration.

Given a training dataset (X,Y) = {x(i), y(i)}n
i=1, x(i) ∈ Rd, the metamodel

parameters can be calculated as:

m̃(x) = fT (x)β + rT (x)R−1(Y − Fβ)

k̃(x, x′) = σ2

1 −
(

f(x)
r(x)

)T (0 F T

F R

)(
f(x′)
r(x′)

) (2.60)

where

β = (F T R−1F )−1F T R−1Y

R = (r(x(i), x(j), θ))n
i,j=1

r(x) = (r(x, x(i), θ))n
i=1

F = (fT (x(i)))n
i=1

(2.61)

This estimation for the mean is the same as in equation (2.57). However, in-
stead of directly providing a predicted variance for the distribution, the entire
covariance function is given, uniquely characterising the surrogate model. This
characterization, while less intuitive in term of posterior distribution, leads to
useful properties for SA.

Remark 37 (Hyperparameters calibration). While the hyperparameter β admits
an analytical formula for its approximation, σ2 and θ parameters require ad-
hoc numerical strategy to find them. Similarly, the choice of the best fT (x) and
r(x, x′θ) must be based on the training dataset properties. These hyperparameters
can be estimated with the maximum likelihood method [156, 157], using gradient
methods [158], or with a cross-validation strategy [159]
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GP main effects

A quantity often computed during UQ analysis is the main effect (the effect
of one independent variable on the dependent variable) [147] of the model g.
The main effect of the group of input variables xA, A ⊆ {1, · · · , d} is defined by
E[g(x)|xA].

To compute the main effect we substitute G(X) with its surrogate GP(x) :=
GP(m̃(x), k̃(x, x′)). Since E[GP(x)|xA] it is a linear transformation of the Gaus-
sian process GP, it is also a Gaussian process, therefore it holds the following
formula:

E[GP(m̃(x), k̃(x, x′))|xA] ∼ GP(E[m̃(x)|xA],E[E[k̃(x, x′)|xA]|x′
A]) (2.62)

Where the mean E[m̃(x)|xA] represents the approximation of the main effect and
the covariance E[E[k̃(x, x′)|xA]|x′

A] is the mean-square error on the main effects
due to the metamodel approximation.

GP Sobol’ indices

The Sobol’ indices are one of the most popular measure in SA because can be
interpreted as the part of the total variance due to a group of variables. They
are defined as the normalized variance of the main effect:

SA :=
Var

(
E[GP(m̃(x), k̃(x, x′))|xA]

)
Var

(
E[GP(m̃(x), k̃(x, x′))]

) (2.63)

Remark 38. This transformation is not linear and therefore does not exist a
closed formula as the one for the main effect.

To obtain an estimate for the Sobol’ indices we can use the methodologies
presented for the general case (e.g. Saltelli’s algorithm) substituting the original
model with its surrogate.

However, the GP regression allows to get a sample {SA,i}m
i=1 from SA which,

being obtained by substitution of the original model g(x) with its GP surrogate,
it is a random variable. The realizations of SA can be obtained generating a
sample on (x(i), x(i),A)m

i=1 (is a sample from the random variable (x, xÃ)) of the
GP GP(m̃(x), k̃(x, x′)) and using Sobol’ pick-freeze [100] formula:

SA ≈
1
n

∑n
i=1 GP(x(i))GP(x(i),A) −

(
1
22
∑2

i=1

(
GP(x(i)) + GP(x(i),A)

))2

1
n

∑n
i=1 GP(x(i))2 −

(
1

2n

∑n
i=1 (GP(x(i)) + GP(x(i),A))

)2 (2.64)

Remark 39 (Sample from GP). GP can be sampled using several other tech-
niques including: Cholesky decomposition [149] and Fourier spectral decomposi-
tion [150].
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Once obtained the sample, the following unbiased estimate of SA can be de-
duced:

ŜA = 1
m

m∑
i=1

SA,i ; σ̂2
ŜA

= 1
m − 1

m∑
i=1

(
SA,i − ŜA

)2
(2.65)

The term σ̂ŜA
represents the uncertainty on the estimate due to the metamodel

approximation [160].
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physiology model for the left ven-
tricle
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Abstract

Modeling the cardiac electrophysiology entails dealing with the uncertainties
related to the input parameters such as the heart geometry and the electrical
conductivities of the tissues, thus calling for an uncertainty quantification (UQ)
of the results.

Since the chambers of the heart have different shapes and tissues, in order to
make the problem affordable, here we focus on the left ventricle with the aim
of identifying which of the uncertain inputs mostly affect its electrophysiology.
In a first phase, the uncertainty of the input parameters is evaluated using data
available from the literature and the output quantities of interest (QoIs) of the
problem are defined. According to the polynomial chaos expansion, a training
data–set is then created by sampling the parameter space using a quasi Monte
Carlo method whereas a smaller independent data–set is used for the validation
of the resulting metamodel. The latter is exploited to run a global sensitivity
analysis with non–linear variance–based indices and thus reduce the input pa-
rameter space accordingly.

Thereafter, the uncertainty probability distribution of the QoIs are evaluated
using a direct UQ strategy on a larger data–set and the results discussed in the
light of the medical knowledge.
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3.1 Introduction

Advances in computational science have enabled the development of digital
twins of biological systems of which a popular application is in cardiology and,
more in general, in cardiovascular medicine. This approach not only allows to im-
prove the predicting capabilities of diagnostic tools and to get more insight into
patients pathologies, but also provides a numerical framework to test innovative
medical devices and to refine them before running further in vivo experiments on
animals or humans. Predictive mathematical models imply a physical basis and
the quantities of interest (QoIs) have to be obtained by solving the governing
equations for the system under investigation.

In particular, modeling the human heart functioning entails reproducing the
complex electrical activation triggering the muscular contraction, which includes
a conductive network that propagates the local transmembrane potential of the
myocytes from the sinoatrial node (SA-node) to the atrial and the ventricular
muscles. As visible in figure 3.1(a), the local myocytes depolarization origi-
nates in the SA-node that is located in the right atrium close to the entrance
of the superior vena cava [161], and then propagates across the right atrium
and reaches the atrioventricular node (AV-node). After the transmembrane de-
polarization front leaves the AV-node, it spreads towards the ventricles passing
through the His bundle that bifurcates into a set of bundles that conducts the
signal to a fast conduction system (the Purkinje network), thus allowing for a
more uniform signal propagation in the ventricular myocardium and for a subse-
quent simultaneous muscular activation and an efficient blood pumping towards
the circulatory system. As the transmembrane depolarization front reaches a
certain location in the myocardium the local transmembrane potential of the
myocytes rapidly changes from the negative potential (of about −85mV) to a
positive value (of about 20mV) before returning to the resting negative potential
after about 300ms, as indicated in figure 3.1(b). This transient depolarization
of the cardiomyocytes (action potential) yields the release of cytosolic calcium
from the sarcoplasmic reticulum that originate a contractile force within the car-
diac muscle cells (the sarcomers), thus causing the myocardium to contract. The
contraction of the muscular fibers can be detected placing electrodes on the pa-
tient’s limbs and chest as done in electrocardiography (ECG), where the P wave
represents the depolarization of the atria, the QRS complex corresponds to the
depolarization of the ventricles and the T wave indicates the ventricles repolar-
ization, see figure 3.1(c) for a typical healthy ECG patterns. Variations of the
normal ECG pattern and duration are usually ascribed to cardiac pathologies
and abnormalities, such as atrial fibrillation and ventricular tachycardia.

This electrical activation of the heart has been studied using different ap-
proaches depending on the application. In the interconnected cable method
[162, 163] the cardiac tissue is modeled as a connected network of discrete ca-
bles representing muscle cardiac fibers. This approach is broadly used because
accurately describes the fibers electrical activation at a lower computational cost
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compared to other methods and can be efficiently parallelized [164]. Starting
from the cable equation, a fractional Laplacian formulation can be used to model
the cardiac tissue including the macroscopic effects of structural heterogeneity
on impulse propagation [165] or to incorporate more complex conduction struc-
tures, such as cardiomyocytic fibers orientation and the His-Purkinje activation
network [166]. The propagation of the cellular depolarization front can be also
modeled by an eikonal approach, where the excitation time defined at each point
mesh as the time instant at which the transmembrane potential crosses the value
midway between its resting and plateau potentials is solved [167]. On the other
hand, the bidomain model called in this way because the conductive myocardium
is modeled as an intracellular and an extracellular overlapping continuum media
separated by the myocytes membranes, computes the electrical cardiac activity
by solving the quasi steady electric equations [168, 169]. The resulting system of
reaction–diffusion partial differential equations governs the electrical propagation
across the myocytes and is coupled with a set of ordinary differential equations
(the cellular ionic model) describing the current flow through the ion channels,
see § 3.2. In the case that the extracellular and intracellular conductivity tensors
are parallel to each other, the bidomain equations can be simplified as a single
governing equation for the transmembrane potential, the monodomain system,
which is computationally cheaper not only because the number of degrees–of–
freedom is reduced but also because the equations are more stable numerically
[170]. Differences in the electrical propagation and intra/extracellular potentials
between monodomain and bidomain are typically very small unless complex ac-
tivation patterns are applied, as in the case of pacing or defibrillation, where
a monodomain approach is generally deprecated [171]. The bidomain model is
hence the stat–of–the–art mathematical model for reproducing the electrical ac-
tivation of the heart chambers in healthy and pathological conditions [170, 172]
and the propagation of the myocytes depolarization over the cardiac tissue (see
[173, 172] among others). Furthermore, this model is seen to reproduce cardiac
phenomena including ischemic events and defibrillation [174] and it has been
validated through animal experiments [175, 176]. More recently, the bidomain
model has been coupled with a fluid–structure solver to build a multiphysics
model for the left heart including the mitral and aortic valves with the aim of
using computer simulations to evaluate medical quantities that would be exceed-
ingly difficult or impossible to be measured in vivo or in vitro [177].

Although the bidomain model is nowadays a well-established tool to study
cardiac electrophysiology, several quantities have to be provided as input pa-
rameters such as the chambers geometry, the orientation of the muscular fibers,
the mechanical properties of the biological tissues (whose behaviour is nonlinear
and orthotropic) along with the conduction velocities within the electrical net-
work, just to cite a few. Only some of these quantities can be estimated in vivo
through the scanning methods (e.g. echocardiography, MRI and CT-scan) and
a significant variability among individuals is known to exist [178]. Calibrating
the computational models is of crucial for the personalization of the therapies
and, as an examples, for the prediction acute hemodynamic changes associated
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Figure 3.1: (a) Sketch of the electrical network of the heart adapted from [16],
with highlighted atrial components. b) Typical depolarization/polarization cycle
of a cardiac myocytes (action potential and intracellular calcium profiles), which
triggers the muscular active tension. c) ECG pattern in a healthy subject, the
ventricular depolarization (QRS complex) and repolarization (T wave) patterns
are indicated by the red line.

with cardiac resynchronisation therapy (CRT) [179]. However, the sparsity and
the noise of the clinical data used to calibrate the model parameters have a
major impact on the model results including the transmembrane potential prop-
agation in the cardiac tissue [180]. In this framework, several computational
techniques for the model calibration have been introduced, such as variational
approaches based on the constraint optimization [181, 182], data assimilation
methods [183] or even patient–specific Bayesian inference strategies using poly-
nomial chaos expansion [184]. The uncertainty on the input parameters hence
opens the question about the reliability of the model results, thus calling for a
rigorous uncertainty quantification (UQ) analysis. The latter provides a set of
mathematical methods to study the uncertainty propagation of the input param-
eters of an electrophysiology model for heart on the model results, by combining
the deterministic approach used to solve the PDEs of the physical model with
a probabilistic framework to handle the uncertainties of input parameters and
QoIs.

In this work, we apply the UQ analysis to an electrophysiology computational
model based on the bidomain equations. Considering the whole heart electro-
physiology would require, however, to deal simultaneously with the uncertainties
of the fast conductivity bundles (e.g. internodal pathways, His Bundle, left-right
posterior-anterior bundles), of the complex geometry of the heart chambers and
of the heterogeneous properties of the cellular model through the myocardyum.
Hence, the high number of the uncertain parameters along with the computa-
tional cost of a single electrophysiology simulation of the full heart would make
the UQ analysis very demanding and it should be tackled by successive steps.
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With this goal in mind, we have decided to focus here on the UQ analysis of
the left ventricle (LV) electrophysiology, which is of paramount importance since
the LV is the heart chamber with the thicker muscular myocardium that pumps
oxygenated blood to the global body circulation and, as a consequence, is the
one that more frequently get diseases with important practical and clinical im-
plications. Furthermore, simulating the left ventricle electrophysiology allows
to consider many of the relevant electrophysiology features such as the fibers
orientations, the velocity of the electrical conduction over the myocardium, the
geometry variability of the chambers and the properties of the cellular model.
Although we mainly consider here QoIs relative to the wavefront propagation in a
healthy ventricle that could have been investigated with a simplified and compu-
tationally cheaper propagation model (e.g. eikonal or cable models), a bidomain
approach has been adopted so that the present analysis can be extended to the
case of cardiac pacing, defibrillation and arrhythmia using the same UQ method-
ology.

In the preliminary phase of this UQ analysis the probability distribution func-
tions (PDFs) corresponding to the uncertainty of these input parameters are de-
termined. However, a main difficulty arises here since no data from the literature
are available to estimate their PDFs of the cellular model input. For this reason,
the UQ analysis has been divided in two parts by studying separately the effect
on the LV electrical activation (i) of the geometrical chamber parameters and
of the electrical conductivities, whose uncertainty could be estimated by experi-
mental measures reported in the literature, and (ii) of the cellular model inputs,
whose PDFs are unknown.

Specifically, in section § 3.3.3 a global sensitivity analysis [185] about the
effects of the ventricular geometry and of the electrical conductivities on the
myocardium depolarization is carried out. In this analysis the uncertain geomet-
rical and electrical input parameters of the model are identified and their PDFs
are estimated from available data from the literature. The sensitivity analysis
is carried out using both a direct approach (QMC sampling to compute Sobol’
indices using Saltelli’s algorithm) and a metamodel one (adaptive polynomial
chaos expansion, PCE), which has been also used to run a forward sensitivity
analysis to produce the PDFs of the QoIs. Owing to the great computational
advantage of using a smaller dataset than direct strategies, the PCE is becom-
ing a common tool in electrophysiological UQ [186, 187] and can be applied to
estimate the effect of uncertainty on different QoIs (such as steady state activa-
tion/inactivation and current density in ionic channel models [187]), or to speed
up the computation eikonal models using a Bayesian multifidelity approach by
integrating the electrophysiology solver with a metamodel to achieve near real–
time UQ analyses [29].

The second analysis reported in § 3.4.3, aims at understanding the role of the
input parameters of the ten Tusscher–Panfilov cellular model [188] governing the
electrical current in the ionic channels of the myocytes on the action potential
profile as well as on the ventricular electrical activation. The effect of the input
electrical conductivities and ions concentration is rationalized through a local
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sensitivity analysis (as defined in [87, 85]) using a metamodel technique based
on an adaptive sparse PCE. This analysis allows to identify the most relevant
input quantities of the cellular model, thus allowing for a significative model re-
duction of the uncertain input parameter space and suggesting a control strategy
to adapt the cellular model to pathological cases. Conclusions and perspectives
for future works are then given in § 3.5.

3.2 Problem configuration and numerical method
The electrophysiology model and the numerical method used in this study are

thoroughly described in [177] and, therefore, only the main features are sum-
marised here. The bidomain equations governing the depolarization of the ven-
tricular myocardium read:

χ

(
Cm

∂v

∂t
+ Iion(v, s) + Is

)
= ∇ · (Mint∇v) + ∇ · (Mint∇vext),

0 = ∇ · (Mint∇v + (Mint + Mext)∇vext),
∂s

∂t
= F (v, s)

(3.1)

where v and vext are the unknown transmembrane and extracellular potential
(expressed in mV) while the surface–to–volume ratio of cells, χ = 1400 cm−1

along with the membrane capacitance Cm = 1µF cm−2 are set as in [189]. The
symbols ∇• and ∇·• indicate the gradient and divergence operators, respectively,
whereas ∂ • /∂t, indicates the partial derivative with respect to time. Mint and
Mext are the conductivity tensors of the intracellular and extracellular media that
depend on the local fiber orientation with a faster propagation velocity along
the fiber direction than in the normal ones. These tensors are diagonal when
expressed in the local coordinates (i.e. fiber, sheet and sheet–normal directions):

M∗
ext =

M
∥
ext 0 0
0 M⊥

ext 0
0 0 M×

ext

 , M∗
int =

M
∥
int 0 0
0 M⊥

int 0
0 0 M×

int

 , (3.2)

and the corresponding global conductivity tensors are given by Mext = AM∗
extA

T

and Mint = AM∗
intA

T , where A is the rotation matrix containing column–wise
the components of fiber, sheet and sheet–normal unit vectors and AT is its trans-
pose [170]. The last of equations (3.1) indicates a cellular model governing the
transmembrane ionic currents along with ionic concentrations and ion channel ki-
netics. The state vector s couples the cellular model with the bidomain equations
through the ionic current per unit cell membrane Iion (measured in µAcm−2).
Among the several models that exist to represent the cellular-scale dynamics in
the bidomain equations, the ten Tusscher–Panfilov cellular model is used, which
is seen to correctly reproduce the action potential within ventricular myocytes
with physiological detail [188]. The model includes all the major ion channels as
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well as intracellular calcium dynamics and it consists of a nonlinear system of 19
ordinary differential equations (ODEs), which are not reported here for the sake
of brevity and that are indicated in compact form in the last equation of the
system (3.1). Hence, the ionic current, Is corresponds to the electrical stimulus
applied at the bundle of His location initiating the electrical propagation and
triggering the ventricular depolarization.

The set of equations (3.1) are discretized on a triangular mesh with Lagrangian
finite elements using the electrophysiology library cbcbeat [190], based on the
FEniCS FEM library [191, 192], which provides an efficient framework to solve
electrophysiology models over arbitrary computational domains (see also [177]
where further verification and validation tests are reported). The bidomain
equations are marched in time through a second-order Strang splitting method
where a step accounting only for the ionic and the external currents and another
one involving only the right–hand–side of equation (3.2) are solved sequentially
[170]. A Rush-Larsen scheme for the ODEs of the cellular model is combined
with a θ = 1/2 second order Crank-Nicholson scheme for the integration of the
PDE step. The resulting average CPU time cost to solve a complete depolariza-
tion/repolarization cycle of the ventricle on a grid of 4’311 cells (corresponding
to 45’885 degrees of freedom including the ones of the cellular model) and using
a time step of dt = 10−2 ms is 50 CPU-minutes (defined as the time it takes to
run the program on a 1GHz reference processor). The computational resources
used for the analysis comprise an Intel Xeon Processors with 16 cores (E5-2620
v3 - 15M Cache, 2.40 GHz) that allow to run the same number of simulations
simultaneously. Figure 3.2 shows the electrical activation of the left ventricle at
several instants within a heart beat. Initially, all the cells are relaxed with a
negative transmembrane potential of about -85 mV and, at a given initial time,
an electrical impulse originated at the His bundle propagates in the ventricu-
lar muscle causing the cells to locally change the transmembrane potential. As
a consequence, a rapid flux of positive ions through the cell membrane occurs,
and the transmembrane potential raises to positive values, as visible from the
isocontours of the transmembrane potential reported in figure 3.2(a). This local
depolarization results in a propagating wavefront that travels across the my-
ocardium (see figure 3.2(b) and (c) activating the whole ventricle as visible in
figure 3.2(d). As a remark, the myocardium is simplified by considering it as
a uniform two–dimensional conductive medium and the bidomain equations are
formulated as surface PDEs with anisotropy present only in the tangent plane.
Although this approach ignores the transmural anistropy and corresponds to an
overestimation of the transmural speed of depolarization, the surface bidomain
model is seen to provide the correct depolarization timings of the ventricles as
also observed for the atria in previous works [193, 194]. The lack of the fast
conductivity fibers has been accounted by scaling the electrical conductivities by
a fixed parameter (equal to 4.99, which has been obtain through an optimiza-
tion procedure based on the Brent’s method) so that the computational model
reproduces the benchmark timings of ventricular depolarization [16].

The resulting time evolution of the transmembrane potential for one represen-
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Figure 3.2: Snapshots of the transmembrane potential as a function of time show-
ing the left ventricle depolarization. Top row: perspective side view. Bottom
row: view from the ventricle apex.

tative point was reported in figure 3.1(b) together with the intracellular calcium
profile triggering muscular contraction. In particular, when the cell is excited
by an electrical stimulus over a threshold potential (of about −70 mV), ionic
channels at the membrane open and close in a coordinated manner causing the
transmembrane potential to raise from its resting negative value to positive val-
ues of about 40 mV. This cell depolarization phenomenon is very fast (≈ 2 ms)
and is followed by a spike (phase 1) and a relatively long plateau (or dome, phase
2) lasting about 200–300 ms, which ends with a repolarization (phase 3) to the
rest potential (phase 4).

The electrical stimulus initiating the ventricular depolarization is given by
Is = Ĩse

−∥x−x0∥2/σ2
Is where the current amplitude is equal to Ĩs = 25 µA/cm2 if

the simulation time within a heart beat is less than the temporal duration of
the stimulus (5 ms) and null otherwise. The parameter σ2

Is = 0.5 cm2 concen-
trates the stimulus around the position x0 so that the stimulus is only active in
the spatial locations x close to it. The centre of the electrical stimulus, x0 is
thus placed at the bundle of His position, see figure 3.4(a), where the electrical
impulses from the atria are transmitted to the ventricles and which also corre-
sponds to the location where the pacemaker are often implanted (the so called
His-bundle pacing [195]).
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3.3 UQ analysis 1: sensitivity of the electrical
activation of the left ventricle on the cham-
ber geometry and electrical conductivities.

In this analysis we investigate the effect of the left ventricle geometry and of
the myocardial electrical conductivities on the ventricular depolarization.

3.3.1 Input parameters and their PDFs calibrations

Figure 3.3: (a) Graphical representation of long and short axes of the left ventri-
cle. (b) Local fibers orientation in the ventricular myocardium, the inset indicates
the conduction directions parallel and perpendicular to the fibers.

The shape of the heart chambers as well as the electrical conductivities are
known to vary among individuals and we consider here the effect of the follow-
ing six input parameters on the ventricular depolarization (figure 3.3): the long
axis of the ventricle L, the sphericity index SI defined as the short to long axis
ratio, the intracellular Mint (parallel and perpendicular) and extracellular Mext

(parallel and perpendicular) conductivity tensor that depend on the local fiber
orientation according to equation (3.2). However, before investigating the sen-
sitivity and the uncertainty of the model results, the uncertainty PDFs of the
input parameters have to be known. In [196] the ventricular end diastolic long
and short axes (defined as the distance from the apex to the mid-point of the
mitral valve and as the length of the segment that perpendicularly intersects the
mid-point of the long axis) have been measured using transthoracic endocardio-
graphy for a group of 26 men and 26 women with a mean age of 43 ± 14 years
for a total of 52 healthy subjects. The resulting distributions of L and SI were
observed to follow the normal distributions reported in table 3.1, which are used
here to define the uncertainty PDF of these input parameters of the electrophys-
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iology model.

input parameters normal
µ ± sd

truncation
bounds

truncation
probability

long axis (mm) 80 ± 9 [µ/1.3 = 61.53, µ × 1.3 = 104.00] 0.024
SI (sphericity index) 0.52 ± 0.06 [µ/1.3 = 0.400, µ × 1.3 = 0.676] 0.027
M

∥
int 0.268 ± 0.081 [µ/5 = 0.134, µ × 5 = 0.536] 0.0496

M⊥
int 0.031 ± 0.0168 [µ/5 = 0.0062, µ × 5 = 0.155] 0.070

M
∥
ext 0.292 ± 0.194 [µ/5 = 0.058, µ × 5 = 1.46] 0.1145

M⊥
ext 0.141 ± 0.0687 [µ/5 = 0.028, µ × 5 = 0.705] 0.050

Table 3.1: Input Gaussian distributions of the model parameter given as mean
and standard deviation. For each parameter the truncation bounds to avoid
unrealistic shapes and conductivities is also reported, whereas the truncation
probability (i.e. the probability of the truncated tails) is reported in the last
column.

On the other hand, fewer data on the electrical properties of human my-
ocardium exist owing to the difficulty to measure these quantities in vivo and
they are insufficient to accurately estimate a PDF for the uncertain conductiv-
ities (M∥

int, M⊥
int, M

∥
ext, M⊥

ext). A possible UQ strategy that is adopted when
data on the input parameters are missing, consists of estimating an initial PDF
using the few data available and then refine it through a Bayesian inverse cal-
ibration [197]. Also this method, however, relies on an iterative minimization
method based on well–known experimental observables, which are usually lack-
ing in the electrophysiology of the human heart. Nevertheless, more biological
data on the intracellular and extracellular conductivities have been acquired in
the case of animal myocardium in terms of the first two statistical moments, i.e.
mean and variance [198]. Although the mean values and the standard deviations
of the PDFs can vary among different mammalians, we assume human electrical
conductivities to be Gaussian distributed and use the few data available from
the literature (reported in table 3.2) to fit these PDFs. In particular, according
to the Kolmogorov-Smirnov test [199] the uncertainty of the intracellular and
extracellular conductivities corresponds to the normal distributions reported in
table 3.1 (all the p-values are greater than 0.5). Furthermore, in order to avoid
unphysical ventricular shapes and conductivity values, the PDF of the input pa-
rameters have been truncated (see table 3.1) according to the following method.
Given a random variable X with PDF f(X) and CDF (cumulative distribution
function) F (X), the PDF support is reduced to the range [a, b] by calculating
the conditional distribution g(x) := f(x|a ≤ X ≤ b) = 1[a,b]f(X)/(F (b) − F (a))
where 1[a,b] is the indicator function and g(X) is the truncated PDF. In the case
f(x) is the PDF a Gaussian distribution N(µ, σ), the corresponding truncated dis-
tribution is given by the analytical formula g(x, µ, σ, a, b) = I[a,b]

1
σ

ϕ(x−µ
σ )

Φ( b−µ
σ )−Φ(a−µ

σ ) ,
where ϕ and Φ are the PDF and CDF of the normal distribution N(0, 1). Adding
a truncation bound to the input distributions is important in order to avoid un-
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physical configurations in the dataset, which could yield numerical instabilities
while its effect on the UQ analysis is expected to be negligible as the Sobol’
indices are integral quantities that are not sensitive to few tail elements.

Although other kind of distributions with bounded support could be consid-
ered to fit the discrete distribution of the experimental data available, such as the
von Mises or the Beta distributions, we have used a truncated Gaussian because
it corresponds to the least informative setting as it maximizes the entropy for a
fixed mean and variance, with the random variate constrained to be in the inter-
val [51]. Additionally, truncated Gaussians could also account for asymmetries
in the PDF shape.

conductivity
[mS/mm] Clerc [200] Robert

et al. [201]
Robert and
Scher [202] Roth [203] Roth [204]

M
∥
int 0.17 0.28 0.34 0.35 0.2

M⊥
int, M×

int 0.019 0.026 0.06 0.03 0.02
M

∥
ext 0.62 0.22 0.12 0.30 0.2

M⊥
ext, M×

ext 0.24 0.13 0.08 0.18 0.08

Table 3.2: Available data from the literature on human electrical conductivities.

Figure 3.4: (a) Side and (b) bottom view of the ventricular activation map ta(x),
corresponding to the first activation time t at any location x. The yellow dot
indicate the the stimulus position corresponding to the location of the bundle of
His.

3.3.2 QoIs
At this stage the QoIs of the problem are identified by translating clinically

relevant quantities measured in vivo into outputs of the computational model.
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The QoIs investigated in this analysis are the depolarization time of the left
ventricle (DT hereafter, that is expected to be correlated to the conduction
velocity) and the depolarization uniformity (DU), which are relevant for the
patient’s health because they are known to be associated with the efficiency
of the ventricular pumping during systole [16]. Indeed, only a physiological DT
and DU determine a timely and almost simultaneous contraction of the muscular
fibers of the myocardium, which is needed to effectively propel oxygenated blood
from the left ventricle towards the aorta during systole [177]. Given the activation
map ta(x) of the ventricle, which stores the first activation time at each point x
(computed when the transmembrane potential overcomes a threshold of 0 mV,
see figure 3.4), the DT of the ventricular myocardium is defined as:

depolarization time = max{ta(x)}, (3.3)

and the DU reads

depolarization uniformity = std{ta(x)}, (3.4)

with both quantities measured in ms and the operators max and std indicating
the maximum and the standard deviation of their argument. Note that according
to equation (3.4) a higher (lower) value of the second QoI corresponds to a less
(more) uniform and synchronized ventricular depolarization. In particular, a non
null value of the time uniformity is expected since a value close to zero would
mean an instantaneous depolarization through the whole ventricular myocardium
that is unrealistic since a time lag of few milliseconds is known to occur between
the activation of septal and apical myocytes.

3.3.3 Model reduction through sensitivity analysis
In this section we aim at understanding how sensitive the QoIs introduced

above are on the model input parameters and detecting the most relevant ones.
The dimension of the input parameter space will be then reduced through a
variance based analysis [205] using the first and total order Sobol’ indices as sen-
sitivity indices [101]. The choice to use Sobol’ indices is determined by the fact
that the scatter plots in figure 3.5 do not exhibit a clear linear nor monotonic
relation between the input and the QoIs, as also revealed by the low values of
Pearson and Spearman coefficients [92] reported in table 3.3. Nevertheless, we
anticipate that the Spearman coefficients will result to be a good predictor for
the Sobol’ indices ranking.

Given the computational cost of the electrophysiology model and the avail-
able computational resources, the number of possible model evaluations is more
than what typically used to train a metamodel (dataset of the order of tens of
samples), but anyway smaller than what would be needed for a direct strategy
(dataset made by tens of thousands of samples). Therefore, we have decided to
build a training and a testing dataset of a few hundred samples and train/test
not one but a family of metamodels by varying the polynomial degree (ranging
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Figure 3.5: Scatter plots of the ventricular depolarization (a) time and (b) unifor-
mity against the 6 input variables computed using the 2’500 independent samples
of the 20’000 Saltelli’s dataset.

Pearson Spearman
input parameter time uniformity time uniformity
long axis 0.57 0.50 0.60 0.60
(SI) sphericity index 0.44 0.39 0.46 0.48
M

∥
int -0.33 -0.29 -0.35 -0.35

M⊥
int -0.24 -0.20 -0.26 -0.24

M
∥
ext -0.35 -0.31 0.34 -0.33

M⊥
ext -0.22 -0.20 -0.22 -0.22

Table 3.3: Pearson and Spearman coefficients for both time and uniformity com-
puted employing the 2’500 independent samples of the 20’000 Saltelli’s dataset.

from 1 to 16), by using two different enumeration rules (linear and hyperbolic)
and by adopting two different selection strategies (fixed and sequential). All the
resulting 16×2×2 = 64 metamodels are trained and validated against the corre-
sponding dataset. The optimal one is selected among the family according to the
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method detailed below and sketched in figure 3.6. A different metamodel is ob-
tained for each of the QoIs so that the trained metamodels are not only surrogate
models of the initial complex electrophysiology system but, more importantly,
are UQ tools for computing the corresponding global sensitivity indices needed
to designing a model reduction strategy. Furthermore, the computational cost of
training another metamodel for a different QoI is negligible compared to the cost
of building the dataset itself (see Appendix 3.6) and the UQ procedure allows
for a quick training of another metamodel in the case different QoIs are defined
(in the order of a minute CPU time).

The first step is to produce a training dataset of 400 samples using a quasi
Monte Carlo method (QMC - Sobol’ sequence) so as to maximize the informa-
tion contained and avoid samples clustering within the dataset [206]. The Sobol’
sequence is used to generate the corresponding low discrepancy sequence of the
samples [207]. The QMC has, indeed, a faster converge rate for low number of
parameters, O

(
log(N)s

N

)
where s is the input dimension, compared to the stan-

dard MC, O
(

1√
N

)
, [30]. Consequently, another 100 samples dataset independent

of the training set is produced using a pure MC strategy, which will be used as a
validation dataset. The cost of producing the whole dataset for the metamodel
approach is of about 17 CPU-days, where one CPU-day is defined as one day of
computation done on a 1GHz reference processor.

Since truncated Gaussian distributions, as the ones used to model the input
parameters, do not allow for analytical orthogonal polynomials with the respect
to the norm weighted by the input PDFs, a family of orthogonal polynomials
is produced numerically through the three terms recurrence [208]. It should be
noted that, although the data from the literature allow to estimate the uncer-
tainty PDFs of the input parameters, their statistical dependence/independence
can not be determined. Hence, the input parameters are treated here as statis-
tically independent and the multidimensional basis for the input space is then
given by the product of the mono-dimensional basis of each input parameter.
Given a computational model G : DX ⊂ Rd → R, suppose that the uncer-
tainty in the input parameters is modeled by a random vector X with prescribed
joint probability density function fX(x) [133]. The resulting quantity of interest
Y = G(X) is obtained by propagating the uncertainty on X through G and,
assuming that the input variables are statistically independent, the joint PDF is
the product of the d marginal distributions fX(x) = ∏d

i=1 fXi
(xi) for each DXi

.
For each single variable Xi and any two functions ϕ1, ϕ2 : DXi

→ R we can
define the inner product as: ⟨ϕ1, ϕ2⟩ :=

∫
DXi

ϕ1(x)ϕ2(x)fXi
(x)dx and use it to

define an orthonormal family of polynomials {P
(i)
k , k ∈ N}. This set of univariate

orthonormal polynomials can be used to define a family of multivariate ones. In
fact, given a multi-index α = (α1, · · · , αd), αi ∈ N, the associated multivariate
polynomial can be defined as Ψα(x) := ∏d

i=1 P (i)
αi

(xi). The set of all multivariate
polynomials in the input random vector X forms a basis of the Hilbert space
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Figure 3.6: Graphical scheme of the adaptive strategy used to train and validate
the optimal meta-model. Starting from the training dataset and using a least
squares error integration strategy, 64 metamodels are produced accordingly to a
sequential/fixed selections strategy coupled with a linear/q-hyperbolic enumera-
tion one and varying the polynomial degree from 1 to 16. To avoid overfitting, Q2

indices are computed on an external independent test dataset and there are not
any metamodels satisfying Q2 > 95% the training dataset is increased, otherwise
the R2 coefficients of each metamodel passing the previous test is computed.
Among the metamodel that also satisfy the underfitting test (R2 > 95%), the
optimal metamodel is selected as the one minimizing ||R2 − Q2||. If the case any
metamodels do not satisfy this last condition the maximum total degree of the
metamodel is increased and the procedure is restarted.

[136], in which Y = G(X) is given by the so called polynomial chaos expansion:

Y =
∑

α∈Nd

yαΨα(X) (3.5)

This infinite series has to be truncated in order to get a finite one approximat-
ing Y = G(X) and different truncation strategies are possible depending (i) on
how to enumerate the element of the multivariate basis and (ii) on how many
terms of the basis have to be retained. We can define the standard, or linear
enumeration strategy, based on the standard total degree of a multivariate poly-
nomial Ψα, defined as ∥Ψα∥ := ∑d

i=1 αi, that is the lexicographical order with
a constraint of increasing total degree (e.g. for a two dimensional multi-index
(0, 0) < (0, 1) < (1, 0) < (2, 0) < (1, 1, ) < · · · ).

However, the use of a standard enumeration is usually deprecated for bio-
logical applications because it yields oversized family of high order interactions
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Figure 3.7: R2 (blue line) and Q2 (orange line) coefficients as a function of the
polynomial degree according to a hyperbolic enumeration for (a) the depolar-
ization time with sequential truncation strategy and for (b) the depolarization
uniformity with fixed truncation strategy. The vertical dashed lines indicate the
total degree of the optimal metamodels that minimize the norm of R2−Q2 (green
lines, increased by a unit for visualization purposes).

coefficients that are not observed in such cases [209]. A polynomial expansion
coefficient is called a high-order interaction term when it is associated with a
polynomial with high degree in more than one variable [210]. As physical phe-
nomena are typically described by low-order interactions, an enumeration rule
favoring low-order interactions rather than high order ones is generally preferred
[211]. With this motivation, as an alternative to the linear enumeration we have
used a q-hyperbolic strategy that is based on the definition of a semi-norm char-
acterizing each coefficient of the polynomial: given a real number q ∈ (0, 1), the
q-hyperbolic quasi-norm of a multi-index α is defined as ∥α∥q =

(∑d
i=1 αq

i

) 1
q and

the space of the coefficients is explored (i.e. numerated) by increasing the value
of the norm and selecting all the coefficients with a multi-index lower than the
one selected. Smaller q yields a sharper hyperbolic selection and less high order
interactions (in terms of high degrees mixed coefficients of the PCE) for a fixed
p.

Furthermore, two selection strategies have been selected: a fixed strategy where
the total degree p is fixed and all the coefficients with norms (depending on the
enumeration strategy) smaller or equal to p are retained, and the sequential strat-
egy [211] that selects the most relevant coefficients in such a way to maximize
the number of null coefficients.

For each metamodel corresponding to a different polynomial degree, trunca-
tion strategy and enumeration rule, the training dataset is used to evaluate its
coefficients. The standard approach is to use high order Gaussian quadrature
rules providing the higher accuracy for a given number of samples [212], but this
most accurate strategy has the drawback that the computational model has to
be evaluated at the Gaussian integration points that depend on the accuracy of
the integration formula. Moreover, in case the metamodel needs to be refined,
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the previous simulations can not be used and another data set has to be pro-
duced from scratch. In order to circumvent these issues, the metamodel is fitted
in a more flexible way using a least squares error minimization of the coefficients
[213] using the training dataset (400 samples).

In summary, we used a truncated PCE to approximate the model response.
Firstly, a certain polynomial degree family (ranging from 1 to 16) is chosen,
then the PCEs are truncated by using two different enumeration strategies al-
ternatively (linear and q-hyperbolic). Lastly, only a subset of the terms of each
polynomial is retained according to the fixed or sequential truncation strategy
for a total of 16 · 2 · 2 = 64 possible metamodels that are trained on the given
training dataset by minimizing the least squares error. It should be noted that a
linear enumeration coupled with a fixed truncation rule corresponds to a dimen-
sion of the basis with cardinality

(
d+p

p

)
, with p the polynomial degree and d the

size of the input space [133].
Given this family of metamodels, the best one in terms of database fitting is

then selected as follows. The risk of under/over fitting of the metamodels is as-
sessed through a validation strategy commonly used in regression analysis, which
is based on the coefficients R2 and Q2 [129]. The dataset is split into a training
set that is used to calculate the index R2 measuring the underfitting, and a val-
idation set used to compute the index Q2 measuring the overfitting. Given the
training (testing) dataset of size n, described by the couples (xi, yi)n

i=1 (where
yi is one of the QoIs corresponding to the set of input xi) and the prediction of
the metamodel f for the same input dataset (xi, ŷi := f(xi))n

i=1, the coefficient
of determination is defined as R2(Q2) := 1 − SSr

SSt
=, where SSr := ∑n

i=1 is the
residual sum square normalized for the total sum of squares SSt := ∑n

i=1(yi − ŷi)2

with y = 1
n

∑n
i=1 yi. The R2 index is used in regression analysis to evaluate the

goodness of the fit on the training dataset and a value close to 1 means that
the metamodel correctly reproduces the variability within the training dataset
whereas a lower R2 index is a typical symptom of underfitting. On the other
hand, a low Q2 and high R2 would correspond to an overfitting condition [129].
Importantly, the R2 index does not measure the behaviour of the metamodel out-
side the training set and PCE is typically used in UQ analyses with few samples
where all samples are used in the training set so that to avoid poor metamod-
elling [214]. As a consequence, the prediction error of the metamodel is typically
evaluated through a one-leave-out cross-validation [132] that, however, does not
provide such a consistent measure of the overfitting as done by the R2 − Q2

criterion used here [214]. The latter criterion, indeed, both quantifies the under
and over fitting with a large difference between R2 ≈ 1 and Q2 ≪ 1 implying
that the metamodel has been over-adapted to the training dataset (overfitting)
[128]. Hence, the optimal metamodel is chosen as the one minimizing the dif-
ference between these two coefficients, min ||R2 − Q2|| with the constraint that
both parameters have to be larger than α = 95%, see figure 3.7(a) and (b) for
the two QoIs of the first analysis. In the case none of the trained metamodels
satisfies R2 > α, implying the polynomial family is not able to well approximate
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Figure 3.8: Metamodel validation plot for the ventricular depolarization (a) time
and (b) uniformity. Each point represents the QoI value computed using the
electrophysiology model (abscissa) against the one evaluated by the metamodel
(ordinata) for a given set of input values. The green dots correspond to the
output values of the training dataset (400 samples) while the red ones correspond
to the results of the test dataset (100 samples). The solid blue line indicate an
ideal perfect agreement between the metamodel and the full electrophysiology
model.

the training set (underfitting) and other metamodels with a higher number of co-
efficients should be trained. Conversely, if Q2 < α for every metamodel it means
that the validation set is poorly reproduced and the size training dataset has to
be increased by adding samples. Importantly, the least squares approximation of
the PCE allows to increase the dataset at any time, whereas a projection based
PCE needs to rebuild another dataset from scratch when a different size of the
dataset is needed [40]).

It turns out that the metamodels built using a sequential strategy are pre-
ferred to the ones corresponding to the fixed one, unless the total degree of the
polynomial is low and the two selection strategies become equivalent selecting the
same coefficients (and providing the same values for them). In this last case, we
indicate the optimal model as resulting from a fixed strategy to stress that all the
coefficients have been selected. Hence, it turns out that the optimal metamodel
depends on the specific QoI: a sequential truncation strategy with a total degree
of 6 according to a hyperbolic enumeration (q = 0.4) is found for the ventricular
DT with R2 = 0.9769 and Q2 = 0.97502, whereas a fixed strategy with total
degree 3 and hyperbolic enumeration (q = 0.4) is the selected metamodel for the
DU with R2 = 0.987, Q2 = 0.979. The corresponding fitting graph validating
the optimal metamodel against the full electrophysiology model for the training
(green dots) and test (red dots) datasets is reported in figure 3.8 for DT (a) and
DU (b).
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Figure 3.9: First and total order Sobol’ indices for ventricular depolarization (a)
time and (b) uniformity. Each index is computed using both a PCE strategy
(sample size 400+100) and a direct one (sample size 20’000). The direct strategy
allows to compute also the 95% Sobol’ indices intervals here reported as error
bars.

The metamodels can be now exploited to evaluate how sensitive is the vari-
ance (Sobol’ indices) of the QoIs to the input variables. Figure 3.9(a) indicates
that the shape parameters L and SI influence more than the 60% the Sobol’
indices of the ventricular DT, whereas the perpendicular conductivities of the
fibers have a cumulative influence smaller than 15%. Note that as the ventric-
ular shape parameters can be easily measured in vivo, this is not the case for
the electrical conductivities that are hardly measurable with common scanning
techniques and, relying on the results of the sensitivity analysis, the system can
be reduced by fixing the two less relevant inputs (i.e. the intracellular and ex-
tracellular perpendicular conductivities) to their nominal values, thus decreasing
the size of the input parameter space from 6 to 4. The same model reduction also
applies to the ventricular DU, which exhibits a similar hierarchy of Sobol’ indices
in figure 3.9(b) and depends on the DT according to a linear law (Spearman co-
efficient of 0.998 and a Pearson coefficient of 0.992). We refer to Appendix 3.6
for a convergence analysis of the Sobol’ indices with respect to the size of the
training dataset of the metamodel.

Before moving to the forward UQ analysis, a direct sampling approach, similar
to the one proposed in [187], is used to validate the adaptive metamodel strat-

101



Chapter 3: Sensitivity Analysis of LV

egy. To this aim, a dataset (larger and independent of the 400+100 samples used
for the metamodel approach) is built according to Saltelli’s method [103, 124]
to compute the Sobol’ indices (first and total order) using a pure MC sampling
strategy [215]. The size of the dataset Nds = 20′000 (instead of the 10′000 pro-
posed in [187]) is chosen accordingly with the Saltelli size Nds = N · (d + 2),
where d is the number of parameters and N the number of independent entry,
here d = 6 and N =2’500. This dataset requires a total of about 691 CPU-days
to be produced. It should be remarked that the computational cost to produce
the training+test dataset for the metamodel is about 2.5% of that needed for
a direct strategy, while the cost to train the metamodel itself using the given
methodology is of the order of 1 CPU-hour, therefore negligible compared to the
dataset production. Figure 3.9 reports first and total order Sobol’ indices ob-
tained by the direct sampling technique superimposed to the ones evaluated by
the metamodel. The comparison between the metamodel (trained on a 400+100
samples) and the direct validation strategy (calculated on 20’000 samples) shows
as the metamodel predicts both the ranking of the first order indices and their
magnitude with a good accuracy (exception made for M ||

e for which the meta-
model tends to underestimate the index). As expected, the direct approach
appears to be less accurate on the total order, on which the confidence inter-
val are large (in particular for the DU) but, also in this case, the metamodel
correctly identifies the relative order and approximates the indices well. On the
other hand, the smaller confidence interval for the importance measures obtained
from the asymptotic distribution of the Saltelli statistic, is a good indicator of
the convergence of the algorithm. This comparison should be considered, we
recall, only as a further check of the accuracy of the metamodels, as satisfying
the R2 −Q2 criterion a sufficient validation. As a remark, the agreement between
the two UQ techniques can be probably ascribed to the low-order non linearity
of the problem that can be readily sampled by a small dataset.

3.3.4 Forward analysis
Once performed the sensitivity analysis, we can turn to the statistical charac-

terization of the QoIs and evaluate their PDF using a direct UQ strategy. The
sampling strategy is the QMC with Sobol’s low discrepancy sequence (as detailed
in the previous section) with a dataset made by 20’000 samples (≈ 691 CPU-
days to be produced). Note that a direct strategy is the most robust method to
evaluate the QoIs PDFs but, when this is not affordable owing to the large com-
putational cost, the trained and validated metamodel is also used to produce the
PDF best–fitting the data of the training set (see the analysis 2 in section 3.4).

The computed stochastic moments are reported in table 3.4 showing for both
QoIs a similar distribution shapes (also according to the skewness and the kur-
tosis) and a narrow 95% confidence interval on the mean. The corresponding
PDFs of the QoIs are shown in figure 3.10(a,b) as histograms (using Sylvester’s
rule for bandwidth [216]) with superimposed an approximated lognormal distri-
bution. The PDF of the ventricular DT in figure 3.10 (a) can be read in the light
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depolarization
time

depolarization
uniformity

Mean 94.178 ms 22.90
Mean 95%-confidence interval [93.85,94.51] ms [22.82,22.98] ms
Standard deviation 23.86 ms 6.10 ms
Skewness 1.14 1.01
Kurtosis 5.28 5.04

Table 3.4: Statistical moments of the two QoIs according to the forward UQ
analysis using the direct QMC sampling strategy (20’000 samples) on the reduced
model.

of the medical knowledge about the ventricular DT that is measured in vivo
through electrocardiogram by monitoring the QRS complex (see figure 3.1(c)
and is considered normal as its value does not exceeds 100 ms [16]. The UQ
analysis predicts that, for input data corresponding to an healthy subject, the
event of a normal DT happens with a probability of 65.8%, whereas a DT be-
tween 100 and 130 ms that is considered intermediate or slightly prolonged has
a probability of 26.2%. Furthermore, a pathological DT longer than 130 ms has
probability 8% to happen. Vice–versa the probability to obtain a DT shorter
than 40 ms is lower than 10−6 because limited by the maximum speed of the
electrical front propagation within the myocardium. The lognormal shape of
the PDF for DT is probably related to the non–linear relationship between the
electrical conductivities and the conduction velocity and it was also obtained by
Quaglino et al [29] for the atrial myocardium by randomly perturbing both fibers
orientation and local conductivities using a Bayesian multifidelity approach.

Owing to the quasi–linear relation between the two QoIs, the PDF of the DU
(see figure 3.10b) has a similar shape as that of the DT with a mean value of
6.10 ms. For this PDF, the probability of a variation of ±10 ms with respect the
mean value results to be equal to 8.1%, whereas it is very rare to observe a halv-
ing or doubling of the uniformity (still respect to its mean value) corresponding
to a probability of 0.72%. This last result has important medical implications
since a larger value of this QoI (as defined in (3.4)) corresponds to a less uniform
ventricular depolarization and, as a consequence, a less effective blood ejection
into the aorta during systole.

3.4 UQ analysis 2: sensitivity of the electrical
activation of the left ventricle on the cellu-
lar model parameters

We now turn to investigate the UQ properties of the cellular model that de-
termines the ionic current through the membrane channels and which is coupled
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Figure 3.10: PDF of the depolarization (a) time and (b) uniformity accord-
ing to the forward analysis with QMC strategy on 20’000 cases. The grey his-
tograms correspond to the computed model outputs (using Sylvester’s band-
width), whereas the red continuous distributions are lognormals (with parame-
ters µ log = 4.05, σ log = 0.374, γ shift = 32.23 for (a) and µ log = 3.25, σ log =
0.221, γ shift = −3.67) for (b).

with the governing equations via the term Iion in equations (3.1). With this
analysis, we aim at investigating not only the sensitivity of the ventricular de-
polarization but also of the action potential profile on the input parameters of
the ten Tusscher–Panfilov cellular model [188] and determine which of them are
the most relevant. The ten Tusscher–Panfilov model, indeed, has been seen to
well reproduce the ions kinematics and the corresponding action potential pro-
file (see figure 3.1b), but its input parameters are usually taken equal to their
nominal value by the user without exploring their sensitivity on the electrophys-
iology results, which is going to be studied in this section. Furthermore, we
aim at understanding what parameters have to be varied in order to specialize
the ten Tusscher–Panfilov equations to reproduce the action potential profile in
pathological conditions or to model the myocardial depolarization in the heart
chambers other than the left ventricle (i.e. the atria and the right ventricle).

As motivated in the introduction, we recall that this UQ analysis has been
run separately with respect to the former one (see section 3.3) due to the lack of
knowledge about the PDFs of the input parameters of the cellular model, which
does not allow to perform a proper global sensitivity analysis [85] Investigating
simultaneously all the inputs would have polluted the resulting PDFs of the QoIs
and, for this reason, two separated UQ analyses are considered rather than a sin-
gle one on a larger input parameter space grouping the cellular model parameters
with the geometrical and electrical input parameters. In this analysis, hence, the
input parameters PDF are unknown and the UQ methodology is exploited to get
some more insight on the cellular model.

A possible approach to deal with input parameters with an unknown uncer-
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tainty, would be to run a one-at-time sensitivity (OAT) analysis where each
parameter p is varied around its mean µ within a range ±αµ in order to mea-
sure the sensitivity index f [µ(1+α)]

f [µ(1−α)] . The OAT analysis, however, has the main
drawback that interactions among parameters would be neglected owing to the
local variation of the parameters about their nominal values [87]. This approach
has been here extended to run a semi–local analysis by varying each parameter
uniformly across the entire range [µ(1 − α), µ(1 + α)] and using the dataset so
produced to calculate the Sobol’ indices, which consider the parameters inter-
actions. Being this analysis a generalization of the OAT sensitivity measure, it
is natural to vary the inputs uniformly around their mean rather than using a
tentative Gaussian distribution, which could yield an ill-posed global sensitivity
analysis [92].

3.4.1 Input

Input parameter Definition Nominal value
GK1 maximal IK1 conductance 5.405 nS/pF
GKr maximal IKr conductance 0.153 nS/pF
GKs maximal IKs conductance 0.392 nS/pF
GNa maximal INa conductance 14.838 nS/pF
GbNa maximal IbNa conductance 2.9e-04 nS/pF
GCaL maximal ICal conductance 3.983e-05 nS/pF
GbCa maximal IbCa conductance 5.92e-04 nS/pF
Gto epicardial Ito conductance 0.294 nS/pF

GpCa maximal IpCa conductance 0.1238 nS/pF
GpK maximal IpK conductance 0.0146 nS/pF
Cao extracellular Ca concentration 2 mM
Nao extracellular Na concentration 140 mM
Ko extracellular K concentration 5.4 mM

Table 3.5: List of the input parameter of the cellular model considered in this
analysis. Their nominal values are taken as in [188].

The ten Tusscher–Panfilov cellular model represents the cellular–scale dynam-
ics in the monodomain and bidomain equations and includes all the major ion
channels as well as intracellular calcium dynamics. The resulting system of equa-
tions is made of 19 ordinary differential equations (not reported here for the sake
of brevity) that depend on 53 input parameters. Some of these input quantities,
however, are constants, such as the gas and the Faraday constants, and some
others are well controlled and measurable, such as the temperature and the sur-
face to volume ratio of the cells. On the other hand, some other parameters
are difficult to be measured both in–vivo and ex–vivo and, despite a significant
variability among individuals is expected to happen, no data from the literature
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are available to estimate their PDFs. Therefore, among the 53 input parameters
of the ten Tusscher–Panfilov cellular model, we focus here on the influence of the
10 ions conductances and 3 ions concentrations, which are modeled as aleatory
variables uniformly distributed in a range of ±30% around the nominal values
reported in table 3.5. This variation range of the input parameters is larger than
the one used in other parametric studies, where the effect of more parameters
but varying in a smaller range was investigated [217].

3.4.2 QoIs

Figure 3.11: QoIs for the analysis 2. (a) The action potential duration (APD) is
the time in milliseconds occurring between the fast depolarization and the end of
the repolarization phase. (b) Reference action potential (blue line) and a generic
action potential (orange line) used to compute the shape similarity index.

Along with the QoIs introduced in section 3.3.2, i.e. the DT and DU, two more
QoIs related to the action potential profile are considered here. The first one is
the action potential duration (APD) defined as the time needed for a myocytes
to return to the resting state and be reactive to another electrical stimulus. This
quantity corresponds to the time interval occurring between the fast depolariza-
tion and the end of the slow repolarization of the myocytes (see figure 3.11(a)
and is measured in the numerical model as the time lag between the instant
at which the cell reaches an active potential higher than -70 mV and the one
at which the signal decreases lower than -80 mV (so to avoid possible spurious
depolarization signal triggered by small perturbations). The APD is measured
using a fixed threshold instead of the APD90 (the time for 90% repolarization
from maximum voltage), because the latter is defined using the action potential
amplitude (APA), which is sensitive to the variation of the input parameters and
could yield anomalous evaluation of the APD (see [217] and figure 3.16b-d).
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As sketched in figure 3.11(b), the second additional QoI is the shape simi-
larity index that measures the deviation of the action potential, v(t), from the
reference profile, vR(t), corresponding to the input parameters set to their nom-
inal values (as reported in table 3.5). This QoI is defined as the maximum of
the cross-correlation [218] between the action potential profile and the reference
one normalized by the auto-correlation of v∗

R(t) (i.e. the cross correlation of the
reference profile with itself with time lag τ = 0):

shape similarity index(v(t)) = maxτ

∫
t v∗(t)v∗

R(t + τ)dt∫
t v∗

R(t)v∗
R(t)dt

, (3.6)

where v∗(t) = v∗(t) + v0 and v∗
R(t) = v∗

R(t) + v0 are the action potential profiles
increased by the resting potential, v0=-85 mV. This definition of shape similarity
index is commonly used in signal analysis to identify the starting point of a
signal, even in the presence of noise [219]. Note that the formula (3.6) generally
provides a shape similarity index less than one if v(t) differs from the reference
vR(t) with the two functions having a similar amplitude, whereas values greater
than one occur when v(t) has an amplitude larger than that of vR(t).

In order to compute the APD and the shape similarity index, we monitor
the action potential at a sample node of the mesh that has to be far enough
from the input signal in order to avoid an extra potential at the beginning of
the electrical stimulus [170]. Since in a dedicated preliminary analysis the APD
and the shape similarity index were seen to be independent on the monitored
myocardial location, without loss of generality both QoIs are here evaluated at
the apex of the ventricle. These two additional QoIs investigated in this second
analysis were not considered in section 3 as a preliminary one-at-a-time (OAT)
investigation (not reported here for the sake of brevity) revealed that they are
weakly sensitive on the electrical conductivities and on the ventricular geometry.

3.4.3 Parametric study through sensitivity analysis
Owing to the large number of the input parameters, the QMC has an asymp-

totic slower convergence rate than the standard MC and about 104 samples are
needed for the QMC to perform better than the MC with 13 input variables.
For both the sampling methods, a direct strategy is not affordable in this case
and the metamodel strategy introduced in section 3.3 is applied by training the
adaptive sparse PCE against a sample dataset of 1’800 numerical simulations
built using a Latin Hypercube. An independent dataset of 200 samples is then
created with a pure MC strategy to test the trained metamodels. The adaptive
strategy described in section 3.3 yields the metamodels reported in table 3.6.
The cost of producing the entire dataset for training the metamodels is of about
70 CPU-days, whereas the cost of a direct approach similar to the one used in
the previous section would be about 3.5 CPU-years (with a Saltelli dimension of
2′500 · (13 + 2) = 37′500 samples).

The resulting scatter plots comparing the inputs variable and the correspond-
ing QoIs are reported in figure 3.12 for some relevant cases: although, a clear
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total
degree

enumeration
strategy

truncation
strategy R2 Q2

QoI1 ventricular
depolarization time 3 hyperbolic

(q = 0.4) fixed 0.995 0.995

QoI2 ventricular
depolarization uniformity 10 hyperbolic

(q = 0.4) sequential 0.999 0.999

QoI3 action potential
duration 12 hyperbolic

(q = 0.4) fixed 0.999 0.999

QoI4 action potential
shape similarity index 7 hyperbolic

(q = 0.4) fixed 0.998 0.995

Table 3.6: Selected metamodels for evaluating the different QoIs of analysis 2.

Figure 3.12: Typical scatterplots of the 4 QoIs against some of the inputs param-
eters normalized by their nominal value reported in table 3.5 using the training
dataset of the PCE (400 samples). The red boxes highlight possible input–QoIs
relation that will be eventually confirmed through a Sobol’ indices analysis.

input–QoIs correlation is not visible in all panels, some monotonic trends can
be observed such as the maximal ICaL conductance, GCaL, influencing the APD
and the action potential shape similarity index or the maximal INa conductance,
GNa, and extracellular K concentration, Ko, affecting the ventricular DT and
DU.

This monotonic behaviour is confirmed by the Spearman coefficients, which
are good predictors for low order interactions between inputs and outputs and
are reported in figure 3.13 for the four QoIs against each input parameter. It
can be noted that the DT and DU of the ventricle have a monotonic dependence
on the maximal IbNa conductance, GbNa, and extracellular K concentration, Ko,
whereas the APD and the shape similarity index of the action potential manifest
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Figure 3.13: Spearman indices of analysis 2 computed using the training dataset
(400 samples).
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input variables of the cellular model

first order - ventricular depolarization time

first order - ventricular depolarization uniformity

total order - ventricular depolarization time

total order - ventricular depolarization uniformity

first order - action potential duration

first order - shape similarity index

total order - action potential duration

total order - shape similarity index

Figure 3.14: First and total order Sobol’ indices computed using the adaptive
PCE strategy on a dataset of 400+100 samples for (a) ventricular depolarization
time and uniformity and (b) the APD and shape similarity index of the action
potential.
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Figure 3.15: Approximated polynomial response of the APD as a function of the
four most relevant inputs (see text). The input parameter in abscissa have been
normalized by the nominal value from the literature [188], which is indicated by
the superscript 0.

a monotonic dependence on the maximal IKs and ICal conductances along with
the extracellular K concentration, GKs, GCaL and Ko respectively. This prelim-
inary statistical test thus confirms the low order input–output interactions that
were suggested by the scatter plots in figure 3.12. Nevertheless, higher order
interaction among variables may be present as well and they need to be investi-
gated before reducing the input parameters space. To this aim, the importance
measures and the Sobol’ indices of the 13 input parameters of the cellular model
are computed using the trained metamodels for each QoI. Figure 3.14(a) shows
that only the maximal INa conductance, GNa, the extracellular Na concentra-
tion, Nao and the extracellular K concentration, Ko, influence the variance of
the DT and DU, while these two QoIs are almost insensitive to the remaining
10 parameters, which have a total influence of less than 5% on the variance.
Both these QoIs manifest a similar hierarchy of Sobol’ indices that can be ra-
tionalized by computing their Pearson and Spearman coefficients that are both
equal to 0.999. On the other hand, the importance measures and Sobol’ indices
of the other two QoIs (i.e. APD and shape similarity index) in figure 3.14(b)
indicate that the most influent input parameters are the maximal IKr, IKs and
ICal conductances (GKr , GKs and GCaL) along with the extracellular Ca and
Na concentration (Cao, Nao). Again, these two QoIs share the same behaviour
of Sobol’ indices with a Pearson and Spearman coefficients of 0.940 and 0.947,
respectively.

For a complete model reduction, the whole set of 4 QoIs must be taken into
account noticing that 6 input parameters have a weak influence on any QoIs
(namely GK1 , GbNa, GbCa, Gto, GpCa, GpK and GKr) and the number of input
variables can then be reduced from 13 to 7. A further reduction can then be
done if only certain QoIs are chosen (e.g. the time and uniformity or shape and
APD) as suggested by the Sobol’ indices in figure 3.14.

In this analysis the difference between first order and total order indices is very
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Figure 3.16: Variation of the action potential corresponding to doubling and
halving the most sensitive input parameter according to the sensitivity analysis:
(a) Cao, (b) GCaL, (c) GKs and (d) Nao.

little (in the order of 10−3), which is in–line with the choice of a hyperbolic enu-
meration strategy that neglects high terms interaction, and allows a substantial
reduction of the dimension of the samples needed to train the PCE. Furthermore,
this low interaction among the input and the output variables permits to use low
order polynomials to better approximate (with a least squares error of 10−4) the
QoI curves that are obtained by varying only one input parameter at the time
while fixing the others to their nominal value, as shown in figure 3.15.

The sensitivity analysis carried out here thus provides the functional depen-
dence between a local perturbation of the input parameter and the corresponding
variation of the QoIs. This result can be applied to predict how the input pa-
rameters have to be set in such a way to reproduce action potential profiles
occurring in pathological conditions or in the heart chambers other than the left
ventricle. For instance, Sobol’ indices suggest that the most effective parameters
to increase or decrease the APD are GCaL, GKs, Cao, Nao and, as an example,
these parameters have been varied in figure 3.16 showing how these values can
be opportunely tuned to effectively modify and adapt the shape of the action
potential. Vice–versa a major modification of the other conductances and ions
concentrations that are found to be irrelevant according to the sensitivity anal-
ysis do not yield a significant variation of the action potential (not reported in
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QoI1: ventricular depolarization time (ms) QoI2: ventricular depolarization uniformity (ms)

QoI3: action potential duration (ms) QoI4: action potential similarity index

(a) (b)

(c) (d)

Figure 3.17: PDF of the depolarization (a) time and (b) uniformity, (c) APD
and (d) shape similarity index of the action potential according to the forward
analysis. The grey histograms correspond to the computed metamodel outputs.

the figure).

3.4.4 Forward analysis
Although the lack of knowledge of the input PDFs makes the forward UQ

not data based, the metamodels trained as in the previous subsection are here
used to carry out a forward analysis by producing a large dataset (106 samples
according to a pure MC scheme) that is used to evaluate the QoIs uncertainty.
The computational cost of the forward analysis using a trained metamodel is
negligible once the training is complete as the 20’000 metamodel evaluations
needed for the UQ analysis are only obtained in about 1 CPU-minute, rather
than 1.9 CPU-years as in the case of running the full computational model.
The resulting PDFs are reported in figure 3.17 as histograms superimposed with
the best–fitting distributions (obtained using the Kernel smoothing method).
It results that varying the cellular model parameters within a range of ±30%
over their nominal values does not produce pathological DTs since the standard
deviation of its PDF is 9.2 ms and the probability for a DT greater than 120 ms
or smaller than 60 ms are less than 10−2% and 10−10%, respectively. Owing
to the quasi–linear relation among the DT and DU observed in section 3.3.3,
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also the distribution of the ventricular DU is concentrated about its mean value
with a standard deviation equal to 2.31 ms and a probability to experience a
DU shifted by more than 5 ms from its mean below 2.5%. Interestingly, the
asymmetric distribution of the DT and DU reported in figure 3.17 a) and b) is
due to the non linear influence of the cellular model on the conduction velocity
that has a superlinear (sublinear) dependence on the electrical conductivities for
small (large) values of the electrical conductivities themselves.

On the other hand, the APD exhibits a more symmetric PDF (skewness 0.05)
with a mean of 295.8 ms and a standard deviation equal to 23.4 ms, see figure 3.17
c). The probability of a APD 30 ms larger than the mean value, corresponding
to a longer inability of the muscular fiber to contract, is equal to 20.8%. Lastly,
the PDF of the action potential similarity index has an average of 0.98 and a
standard deviation of 4 · 10−3 where, we recall, the unitary value corresponds
to the reference action potential shape. The asymmetric distribution with a
skewness of −0.58 and the absence of a right tail means that the main effect on
the action potential shape is a modification with respect to the reference profile
(yielding indeed a cross–correlation less than one according to the equation (3.6)),
rather than a variation of its amplitude corresponding to a shape similarity index
greater than one.

3.5 Conclusions

In this work, the UQ analysis for an electrophysiology model of the human
left ventricle has been performed. The first analysis is focused on the effect of
the ventricular geometry and electrical conductivities (input parameters) on the
effectiveness of ventricular contraction during the systolic phase that is known to
be correlated with (i) the time needed to depolarize the whole myocardium and
(ii) the spatial uniformity of the depolarization front (QoIs). The uncertain PDFs
of the shape parameters are taken from available data in the literature acquired
with cardiac–echography, whereas the electrical conductivities are known to be
distributed as Gaussians for mammalians and the few available measurements
for humans are used to calibrate Gaussian PDFs. Thereafter, a sensitivity anal-
ysis has been carried out using an adaptive strategy based on a training dataset
(400 samples) produced using a QMC strategy (with Sobol’ low discrepancy se-
quence) and an independent test dataset (100 samples) obtained using a pure
MC strategy. A family of metamodels (PCE based on orthogonal polynomials
recovered using a three terms recursion) has been built by using (i) two different
selection strategies of their coefficients (fixed or sequential), (ii) two enumeration
rules (linear or hyperbolic) and varying (iii) the total maximum degree of the ex-
pansion from 1 to 16. Each of the 64 resulting metamodels is trained against the
training dataset and the optimal one is selected as the one minimizing the dis-
tance between the R2 index (evaluated on the training dataset) and the Q2 index
(evaluated on the test dataset), with the constraint R2, Q2 > 95%. The optimal
metamodel is then used to compute the first and total Sobol’ indices to determine
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the QoI sensitivities on the input parameters. In order to validate the sensitivity
analysis, a direct brute force approach has been also applied on an independent
QMC dataset of 20’000 samples to produce Sobol’ indices using Saltelli’s algo-
rithm that well agree with the one obtained using the metamodelling approach.
PCE metamodels, indeed, are seen to fit well several electrophysiology models
and to provide sensitivity results in line with direct strategy approaches but us-
ing smaller datasets than the ones needed for a direct UQ analysis (see figure 3.9
for an example) [187]. This high prediction ability, combined with the stability
of electrophysiology models at small perturbations, places PCE strategies among
the gold standards techniques for electrophysiological UQ [217].

The analysis reveals that ventricular depolarization is very sensitive to the
geometrical parameters (with an influence greater than 60%), while the parallel
and perpendicular conductivities have a total influence of about 25% and 15%
respectively. This result thus suggests to reduce the model by neglecting the
perpendicular conductivities and decrease the size of the input parameter space
from 6 to 4. Interestingly, a strong linear correlation between the DT and DU
is observed (Pearson index 0.992 and Spearman index 0.998) implying that the
same model reduction applies to both QoIs. The reduced model is then used to
run a forward analysis (QMC dataset with Sobol’ low discrepancy sequence) and
obtain the uncertainty PDFs that are seen to be in–line with clinical observa-
tions exhibiting a non–pathologic DT with a probability of 80%, whereas a slow
DT longer than 130 ms has a probability of about 8%. On the other hand, the
probability of unphysically low DT (i.e. ¡40 ms) is smaller than 10−6.

We then turned our attention to investigate the role of the input parameters
of the ten Tusscher–Panfilov cellular model on the DT and DU of the left ven-
tricle along with two more QoIs related to the active potential profile: the APD
and the shape similarity index (the latter defined with respect to the reference
case corresponding to the input parameters set to their nominal values). This
second analysis has been run separately from the first one since no data from
the literature are available to estimate the input uncertainties, which have been
modeled as independent uniform distributions with values ranging from 0.7 to
1.3 times the nominal value. In this parametric study, a direct UQ strategy is
unaffordable owing to the large number of parameters involved (10 conductances
plus the 3 ions concentrations), and the adaptive metamodel strategy used in
the first analysis has been adapted to this case to run a sensitivity analysis. The
resulting Sobol’ indices show that the DT and DU only depend on the maximal
INa conductance, GNa, extracellular Na concentration, Nao, and extracellular K
concentration, K0, whereas the other 10 input parameters have a total influence
of less than 5% on the variance. The action potential QoIs (i.e. APD and shape
similarity index) are sensitive to the maximal conductances GCaL, GKs and GKr

along with the extracellular Ca and Na concentrations NaO
and GKr , with a total

influence exceeding 95%. This result naturally suggests a model reduction from
12 to 5 input variables, namely GCaL, GKs , CaO

, NaO
,GKr .

A similar strategy for the model reduction was obtained by Hurtado et al.
[186] where a PCE approach based on the R2 validation index, similar to the
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one adopted in our analysis, is used. Although these authors considered different
cellular models compared to ours (the Nash-Panfilov and the Rice models) and
a smaller dimension of the input parameters space (5 independent inputs, rather
than 12 ones investigated here), the same order of importance for the 4 common
input parameters on the APD is observed (namely GCaL, GKs , GKr and GNa

with a negligible effect of the latter one on the APD). Furthermore, the sign of
the APD sensitivity on each input parameter reported in Hurtado et al. cor-
responds to those computed here using the Spearman’s indices, see figure 3.13.
The sensitivity analysis and the corresponding model reduction relative to the
APD is also confirmed by Pathmanathan and Cordeiro [217, 220], where a para-
metric study with normal input distributions was carried out using a direct UQ
approach on several QoIs. Also in their work GKℓ

, GKr and GCal result to be
the relevant input parameters on the APD that, instead, is less sensitive on GK1 ,
GNa and Gto.

On the other hand, if the whole set of 4 QoIs is considered, 6 variables among
13 are seen to have a weak influence on any QoI and they can be neglected with
the aim of reducing the model complexity. Importantly, the difference between
first and total order indices is small (in the order of 10−3) thus meaning that the
cellular model inputs could be varied separately to modify the QoIs. This result
has then been exploited to successfully control the APD of the cellular model by
perturbing the sensitive input parameters detected by the sensitivity analysis.
This analysis thus provides a deeper insight on the effects of the input parameters
on the action potential shape and the sensitive input parameters can be used in
future studies to reproduce the transmembrane action potential heterogeneity in
the heart chambers and/or reproduce the action potential profiles observed in
pathological conditions.

A main limitation of this work, however, is that the electrophysiology model
solves for the left ventricle as uncoupled from the rest of the heart chambers by
setting an initial electrical stimulus at the location of the bundle of His, thus
neglecting the electrical depolarization of the atria that is initiated in the sino–
atrial node. Furthermore, the electrical system of fast conduction of the heart
including the highly conductive bundles and the Purkinje network are also ne-
glected and a more evolute and accurate electrophysiology model is needed to
account for these limitations.

Nevertheless this work represents a starting point to detect the key input
parameters influencing the electrical activation of the ventricular myocardium,
to quantify the uncertainty on the depolarization pattern and to reduce the in-
put parameter space. This last aspect is of paramount importance when the
computational cost of the model is further increased as in the case of multi–
physics models for the heart where such an electrophysiology model is coupled
with the structural dynamics of the myocardium (electro-mechanical interaction)
and the mechanical stresses influence the conductivity properties of cardiac tis-
sue through a generalised reaction-diffusion-mechanics model [221, 222]. Such
refined computational models introduce additional input parameters and QoIs,
thus calling for further UQ analyses. Future UQ analyses could be thus car-
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ried out by considering other relevant quantities to describe critical features in
the cardiac dynamics such as the electrical conduction velocity or, in the case
of electro-fluid-structure interaction (FSEI [177]), fluid-dynamics QoIs such as
recirculation zones, flow patterns or the cardiac output. The size of the input
parameter space could also be increased by including the uncertainty of the fibers
orientation, of the specific membrane capacitance Cm and of the surface-to vol-
ume ratio of cells χ as well as by considering different positions and patterns of
the stimulus Is. Indeed, at higher stimulation frequencies, other ionic parame-
ters can become relevant [223, 224] and ad hoc QoIs characterizing the action
potential patterns can be introduced [225].

As a final note, we wish to remark that the accuracy of the UQ analyses
proposed here as further development of this work depend on the uncertainty
PDFs of the input parameters that need to be retrieved from real data through
dedicated in-vitro and in-vivo laboratory experiments.

3.6 Appendix: Convergence analyses

3.6.1 Convergence check of the electrophysiology model
The transmembrane potential averaged over the ventricular domain as a func-

tion of time is shown in figure 3.18(a). Each solid curve corresponds to a different
simulation of the bidomain equations with the ten Tusscher-Panfilov model on a
different grid (with cells number varying from 2’000 to 68’000), where the elec-
trical conductivities are scaled by a fixed parameter equal to 3.0 to account the
lack of the fast conductivity fibers (see section 2). The resulting transient dy-
namics of the average transmembrane potential evolves in a similar fashion to a
typical action potential profile with a steep depolarization front and a smoother
repolarization one occurring after about 300 ms (see figure 3.1b). Qualitative
differences of this quantity are visible when the number of cells is below 3’000
cells, whereas the results become insensitive on the grid resolution for number of
cells larger than 50’000. Such a resolution, however, would require a CPU time
exceeding 20’000 days to built a dataset as large as the one used for the direct
UQ analysis in section 3 (20’000 samples), thus calling for a massively parallel
CPU infrastructure. According to dedicated numerical tests, the computational
cost to solve a single time step of the bidomain model is found to increase lin-
early with the number of mesh cells and, at the same time, the largest timestep
ensuring numerical stability is seen to decrease about with the same scaling. As
a result, the total computational cost has a quadratic dependence on the number
of mesh cells as shown in figure 3.18(b). In order to reduce the computational
cost to match the computational resources available, we have conveniently used
the mesh with 4’311 cells and scaled the electrical conductivities by a fixed pa-
rameter equal to 4.99 accounting both for the lack of the fast conductivity fibers
and for the correction of the conduction velocities to mesh size effects. This
method is commonly used in modomain/bidomain modeling [226, 227, 228] as
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it allows to capture a more accurate approximation of the conductive velocity
(see the dashed line in figure 3.18a) and, consequently, to build a 20’000 samples
dataset with a CPU cost of 691 days.

Figure 3.18: a) Time behaviour of the average transmembrane potential in the
left ventricle with electrical conductivities scaled by a fixed parameter equal
to 3. The dashed line indicates the configuration used for the UQ analysis,
corresponding to the 4’311 cells grid with electrical conductivities scaled by a
factor 4.99. b) Computational cost in CPU days of producing a dataset of 20’000
samples (as large as the one used for the direct UQ analysis in section 3) as
a function of the mesh cells number. The vertical dashed line indicates the
computational cost corresponding to the configuration used to the UQ analyses
in section 3 and 4.
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3.6.2 Convergence check of the metamodel UQ method
The accuracy of both the metamodel and the direct UQ approaches has been

already shown by the crossed–validation test reported in section 3c, where the
first and total order Sobol’ indices obtained with the two techniques well agree
each other, see figure 3.9. A convergence study of the metamodel approach is
carried out here by varying the size of the training dataset. To this aim, smaller
training datasets are obtained by extracting a subset of the training dataset
used in section 3c containing from 50 to 400 samples with step of 50 (in the
last case the subset corresponds to the whole training dataset) and for each case
a different metamodel is trained using the same adaptive technique introduced
above. Figure 3.19 shows the first order Sobol’ indices as a function of the number
of samples of the dataset used to train the metamodel: as the dataset is larger
than 200 samples (i.e. half of the dataset used for training the metamodel in
section 3c), the measures of importance are almost stable thus guaranteeing the
convergence of the method. It should be noted that this good behavior of the
metamodel is also attributable to the sampling procedure (Quasi Monte Carlo),
which maps the input space effectively identifying the average properties with
few samples.

Figure 3.19: Convergence analysis for the metamodel training procedure. First
order Sobol’ indices of analysis 1 (see section 3) as a function of the size of the
training dataset for (a) DT and (b) DU.
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3.6.3 Convergence check of the direct UQ method
The convergence of the direct quasi Monte Carlo method is tested by applying

the same quasi Monte Carlo UQ procedure used for analysis 1 in section 3c to
an independent and smaller Saltelli dataset of size 4′000 samples. Figure 3.20
shows that the first order Sobol’ indices computed using the two datasets reason-
ably agree each other and, importantly, manifest the same order of importance
(except for the SI and M

∥
ext on the DU) despite this second dataset is five times

smaller than the one used in section 3c. Furthermore, the importance measures
of DT result to be within the confidence intervals calculated on the larger Saltelli
dataset of 20′000 samples.

Figure 3.20: Convergence analysis for the direct UQ procedure. First order
Sobol’ indices of analysis 1 (see section 3) using the smaller (4’000 samples) and
larger (20’000 samples) datasets.
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Abstract

In this study we present a novel computational model for unprecedented
simulations of the whole cardiac electrophysiology. According to the hetero-
geneous electrophysiologic properties of the heart, the whole cardiac geometry
is decomposed into a set of coupled conductive media having different topol-
ogy and electrical conductivities: (i) a network of slender bundles comprising a
fast conduction atrial network, the AV–node and the ventricular bundles; (ii)
the Purkinje network; and (iii) the atrial and ventricular myocardium. The
propagation of the action potential in these conductive media is governed by
the bidomain/monodomain equations, which are discretized in space using an
in–house finite volume method and coupled to three different cell models, the
Courtemanche model [229] for the atrial myocytes, the Stewart model [230] for
the Purkinje Network and the ten Tusscher–Panfilov model [188] for the ventric-
ular myocytes. The developed numerical model correctly reproduces the cardiac
electrophysiology of the whole human heart in healthy and pathological condi-
tions and it can be tailored to study and optimize resynchronization therapies or
invasive surgical procedures. Importantly, the whole solver is GPU–accelerated
using CUDA Fortran providing an unprecedented speedup, thus opening the way
for systematic parametric studies and uncertainty quantification analyses.
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4.1 Introduction

Owing to the development of accurate mathematical models capable of vir-
tually replicating biological systems and to the growing availability of computa-
tional resources to solve them, medical research is increasingly integrated with
computational engineering [231]. In particular, the correct modelling of the heart
functioning in healthy and pathological conditions – such in the case of ischemic
events (reduced blood supply to a portion of the myocardium leading to dys-
function and, possibly, to the necrosis of the tissue) or of bundle branch block
(delay or blockage along the heart electrical pathway) – entails reproducing the
highly cooperative and interconnected dynamics of the heart, including its com-
plex electrical activation.

The latter involves many embedded conductive structures with different bio-
logical properties so as to rapidly propagate the electrical activation of atria and
ventricles in order to achieve an efficient muscular contraction propelling the
blood into the circulatory system. As shown in Figure 4.1 a), the cardiac electri-
cal depolarization, corresponding to a rise in the electrical potential across the
cellular membrane owing to the transmembrane flux of ions, is initiated close to
the entrance of the superior vena cava at the sinoatrial node (SA–node). Within
the SA–node, some specialized pacemaker cells spontaneously produce a peri-
odic electrical impulse, the action potential, which propagates across the right
atrium through three high speed conductivity bundles – namely the Thorel’s
pathway/posterior internodal tract, the Wenckebach’s middle internodal tract
and the anterior internodal tract – that wrap the right atrial chamber to as-
sure a uniform activation. A branch bifurcating from the latter bundle then
penetrates into the internal muscle of the left atrium (Bachmann’s bundle), thus
initiating the depolarization also of this chamber. Since the propagation speed of
the action potential within the fast internodal bundles is of about 1–2 m/s (sig-
nificantly larger than the one observed in the atrial muscle of about 0.3–0.5 m/s
[16, 22, 232]), after 30 ms the depolarization front reaches the atrioventricular
node (AV–node) which is the electrical gate connecting the atrial with the ven-
tricular electrophysiology system, see Figure 4.1(b). In the AV–node, specialized
cells slow down the propagation of the transmembrane potential by about 100 ms
in order to allow both atria to contract before the activation wave reaches the
ventricles; this avoids the simultaneous contraction of the whole organ which
would produce inefficient filling/emptying of the four chambers and impaired
pumping [233]. Once beyond the AV–node, the signal propagates through the
His bundle, which forks into the right and left bundle branch that, in turn, pro-
gressively divide into a plethora of thin, tightly woven specialized cells named the
Purkinje network, where the propagation speed of the action potential is in the
range 1.5-4 m/s, corresponding to six times the propagation speed in the ventric-
ular muscle [16]. This fast conduction system quickly propagates the electrical
signal within the ventricular myocardium (about 30 ms to reach the termina-
tions of the Purkinje fibers) to provide an almost simultaneous contraction of
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the ventricular muscle. In addition, the Purkinje network also assures the timely
activation of the papillary muscles, which stretch the chordae tendineae so to
prevent the eversion of the mitral and tricuspid valve leaflets by pulling down
their free margins during early systole [234]. Although the precise morphology
and orientation of the Purkinje network can not be measured in–vivo, a signifi-
cant variability among individuals is known to exist [235], also depending on the
positions of the papillary muscles which also varies among the population [28].
Furthermore, its smaller fibers are randomly oriented in the subendocardium
with a penetration length in the myocardium of about 0.5 − 100 µm and with
an average distance among them of about 0.1 mm [236, 237]. The Purkinje
fibers are electrically isolated from the myocardial muscle, except at their end-
points called PMJs (Purkinje Muscle Junctions), where the electrical signal can
propagate from the Purkinje fibers to the ventricular myocardium with a delay
ranging from to 5 to 15 ms (orthodromic propagation) and vice–versa from the
myocardium to Purkinje with a delay of 2-3 ms (antidromic propagation) [238].

a) b)

Figure 4.1: Sketch of the electrophysiology system of the heart [16]. a) Fast
conduction networks of bundles and Purkinje. b) Detail of the AV bundle with
the corresponding activation times (in seconds) showing the propagation delay
happening in the AV–node.

Both the fast bundles and the Purkinje networks electrically activate the mus-
cular myocardium in terms of action potential, which then propagates in the thick
muscular myocardium at a lower speed that depends on the local fiber orienta-
tion. The myocardium is, indeed, an orthotropic medium [239] made of oriented
myocytes that enable a faster transmission of electrical impulses in the fiber di-
rection than in the orthogonal one and this tissue heterogeneity, playing a role
in the atrial [240] and ventricular [241, 242] depolarization, should be accounted
for in cardiac numerical models. According to the model proposed by Buckberg
et al. [243] the muscular fibers have a dual-orientation, with directions rang-
ing approximately from +60◦ to −60◦ across the ventricular wall [244] and this
structure has been confirmed by accurate imaging analysis of mammalians heart
[245]. An additional cause of inhomogeneity is that the ventricular myocytes
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have different electrical properties from the atrial ones, thus resulting in a differ-
ent electrical conductivity (yielding a different propagation speed) and different
ionic fluxes across the myocytes membrane, which entail a different contraction
pattern of atrial and ventricular chambers.

In the last decades few mathematical models for solving the cardiac electro-
physiology have been proposed. The eikonal approach solves directly the electri-
cal depolarization of the cardiac tissue by taking as input the propagation speed
within the media [167], whereas the interconnected cable methods solve the prop-
agation of an electrical stimulus thorough a connected network of discrete cables
representing the myocardium [162, 163]. These methodologies have a limited
computational cost and have been used to model the cardiac tissue including
the macroscopic effects of structural heterogeneity on impulse propagation [165]
and to incorporate more complex conduction structures, such as cardiomyocytic
fibers orientation and the His–Purkinje activation network [166]. On the other
hand, leveraging on the continuum hypothesis the cardiac tissue can be modeled
as an intracellular and an extracellular overlapping conductive media separated
by the cell membrane. The resulting bidomain model [168, 169] thus consists of
the coupling between a system of reaction–diffusion partial differential equations
(PDEs, governing the potential propagation in the media) and a set of ordinary
differential equations (ODEs) for the cellular ionic model describing the current
flow through ion channels. The bidomain model is the state–of–the–art math-
ematical model for reproducing the cardiac electrophysiology at a continuum
level [170, 172], it has been validated against several experiments on animals
[175, 176] and it is currently adopted to solve the action potential propagation
in healthy and pathological conditions including ischemic events and fibrillation
[173, 174, 172]. In the case the extracellular conductivity tensor is proportional
to the intracellular one, the bidomain equations can be simplified into a single
governing equation for the transmembrane potential, the monodomain system,
which is computationally cheaper than the bidomain counterpart as the number
of degrees–of–freedom (dofs of the system of PDEs) is halved [170]. Unless com-
plex pacing patterns or fibrillation are present, the monodomain equation can
be conveniently used to approximate the bidomain solution also in the case the
conductivity tensors are not proportional [171] by setting the components of the
monodomain conductivity tensor to half the harmonic mean of the corresponding
extracellular and intracellular components [170].

The bidomain/monodomain electrophysiology model has been widely used to
study different components of the cardiac electrical network such as the atrial de-
polarization also including pathological atrial fibrillation [246, 240] or to model
the AV–node depolarization [247, 248]. The depolarization in the ventricular
myocardium has been investigated in a series of works [241, 249, 250, 177] also
including the fast conduction Purkinje network [238, 245, 251], which is needed
to reproduce a realistic ventricular depolarization, especially in the presence of
infarction [252] or reentry initiation of arrhythmias [253, 254, 255]. In these
works, the geometry of the Purkinje network is generally obtained by apply-
ing a growing algorithm to a one–dimensional (1D) network of fibers, which
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has to be sufficiently dense in order to correctly activate the 3D myocardium
[256, 257, 258].

Although some studies are very advanced in solving the bidomain/monodomain
equations in a portion of the cardiac electrical network [259, 260, 261, 222, 262],
a comprehensive computational framework, solving simultaneously the fast con-
duction electrophysiology networks and the four–chambers muscular myocardium,
is still missing. Such a computational model for the whole cardiac electrophysi-
ology would entail, indeed, the solution of a large dynamical system, thus calling
for efficient code parallelization with an effective use of the computational re-
sources. This work aims at building an accurate computational framework for
solving the whole cardiac electrophysiology accounting for: (i) the fast conduc-
tivity structures of the atria and ventricles including the internodal pathways,
branch bifurcations, and the AV–node; (ii) the Purkinje network immersed in
the ventricular myocardium, which activates the ventricular muscle at the PMJs;
(iii) the thick atrial and ventricular myocardium with their muscular fibers ori-
entation yielding electrical anisotropy. These three electrical components of the
system have different electrophysiology properties and are modelled using a hi-
erarchy of interconnected geometries having different topological dimension and
cell models. The bidomain/monodomain equations are discretized in space using
an in–house finite volume method that allows for tackling complex geometries,
also deforming in time, and the whole model has been ported to CUDA to run
on GPU architectures thus providing unprecedented speedups [263, 231]. The
resulting computational model is then applied to solve the cardiac electrophysi-
ology in healthy and pathological conditions with the aim of assessing the model
performance and validating its results.

The paper is organized as follows. After the introduction of the cardiac geom-
etry used throughout the work in § 4.2, the governing equations and the GPU–
accelerated numerical methods are detailed in § 4.3. The convergence analysis
of the code and validations against benchmarks results from the literature are
reported in § 4.4. In § 4.5 the electrophysiology activation of the whole hu-
man heart is studied in healthy and pathologicalal conditions, including bundle
branch blocks and the implant of artificial cardiac pacemakers. Conclusions and
further research directions including possible uncertainty quantification analyses
are outlined in § 4.6.

4.2 Computational domain: splitting the elec-
trophysiology system

As anticipated above, the cardiac electrophysiology system is made of a (i) fast
conduction network of bundles, (ii) a Purkinje network for the ventricular acti-
vation and (iii) the massive conductive myocardium contracting as the myocytes
depolarize. Our computational approach is based on intrinsic connections among
different conductive media and pathways, and the complex electrophysiology sys-
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Figure 4.2: The a) whole cardiac electrophysiology system is split in: b) 1D net-
work of fast conduction bundles, c) 2D Purkinje network and d) 3D myocardium.

tem is thus split in several interconnected subdomains with different dimensional
topology (see Figure 4.2), namely a one–dimensional graph (1D) modelling the
fast conduction bundles (panel 4.2 b); a two–dimensional (2D) surface approxi-
mating the dense Purkinje network (panel 4.2 c); three-dimensional (3D) media
for the atrial and ventricular muscles (panel 4.2 d). The solution of the complete
system, shown in panel 4.2a, is thus obtained by the coupled solutions of these
three distinct components which are detailed in the following.

4.2.1 One dimensional fast conduction network of bun-
dles

Owing to its slenderness, the fast conductivity structures conveying the elec-
trical signal through the 3D myocardium has been modelled as a 1D fast conduc-
tion pathway with space–varying electrophysiology properties (see Figure 4.3).
The network originates from the SA–node and branches into the three internodal
pathways reaching the AV–node with one of them (the anterior internodal path-
way) further branching and connecting the right atrium to the left one through
the Bachmann’s bundle. The terminations of the internodal pathways reach the
AV–node (in two locations) connecting the atrial fast conduction network with
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Figure 4.3: Fast conduction network of bundles. The circles indicate the geomet-
rical control points of the atrial network (blue), AV–node (green) and ventricular
network (red).

the ventricular through the bundle of His, which then splits into two distinct
branches, one immersed in the right ventricle and the other in the left one.

In order to eventually adapt the fast conduction network to different patient
geometries, the entire graph is generated through a set of control points whose
coordinates can be arbitrarily set so to easily reproduce a given cardiac geometry
following the adaptive procedure. Specifically, 19 control points are distributed
among the SA–node and the atrial bundles (indicated by blue bullets in Fig-
ure 4.3), 4 control points are used for the AV–node and its connection with the
bundle of His (green bullets in Figure 4.3) and 7 more control points are used
for the ventricular bundles (red bullets Figure 4.3). The pathways connecting
the control points are built using a piecewise linear interpolation which are then
projected over the atrial and ventricular endocardium, whereas the portions of
the 1D graph lying within the ventricular septum, such as the AV–node, are
immersed in the 3D mesh volume. The 1D graph is then meshed uniformly with
linear elements of a given grid size (much finer than the distance between two
adjacent bullets). The whole procedure runs in few CPU–minutes, thus provid-
ing the correct positioning of a realistic 1D conduction network within the 3D
mesh, with multiples bundles branching/joining the same nodes, as shown in
Figure 4.3.

4.2.2 Two dimensional fast conduction Purkinje

The Purkinje network in humans and other mammals is distributed in a layer
within the subendocardium, which is thin with respect to the myocardium thick-
ness (of the order of 0.5–100 µm [264] compared to an average thickness of
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Figure 4.4: Ventricular bundles and Purkinje network, which cover the papillary
muscles.

7±1 and 15.4±2.3 mm for the right and left ventricles, respectively [265]) and
is made of thicker fibers with a branching distance of the order of 2 mm [266]
which bifurcate multiple times until forming a dense plethora of thinner fibers
[256, 267]. This dense network of fibers is typically mimicked in computational
models through the growth of a fractal structure by defining a set of generat-
ing rules and an initial topology (in a similar fashion to the growing models for
plant branches) with the smallest branching structure in the order of 100 µm
[256, 236, 237]. As an alternative approach to the growth of a fractal 1D net-
work, the dense fiber distribution of the Purkinje network is here merged into
a continuum 2D isotropic conductive medium wrapping the endocardium. Such
approach is motivated by the uncertainty on the precise arrangement of Purk-
inje fibers and the great variability among individuals, which make it difficult
to develop an accurate fractal rule for the network growth. Furthermore, a high
fiber density (more than 2000 branches and 300 PMJs for the major bundles
[268] and an even smaller branching distance of 0.1–2 mm for thinner branches
[266, 256]) is required to adequately model the Purkinje and correctly activate
the myocardium both in healthy [257] and pathological [252] cases. Figure (4.4)
shows as the 2D Purkinje network develops from the His bundle and extends
parallel to the left and right bundles until reaching the apex of the heart and
then raises up upon two third of the ventricles height, completely covering the
papillary muscles in order to timely activate their contraction at early systole.
The right and left sides of the Purkinje complex do not have a direct electri-
cal connection since they are separated by the thickness of the interventricular
septum.
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4.2.3 Three dimensional excitable myocardium
The 3D myocardium is made of three excitable and conductive media, namely

two for the left and right atria and another for the ventricles (see Figure 4.2d),
which has been built using modeling software so as to reproduce high–resolution
clinical images and medical atlas. This splitting of the myocardium is inspired by
the cardiac electrophysiology as the heart septum between the atria and the ven-
tricles (the fibrous trine plane) acts as an electrical insulator, thus decoupling the
atrial and the ventricular electrophysiology. The transmembrane depolarization
front, indeed, only propagates from the atria to the ventricles through the AV–
node that is part of the 1D network of bundles (see § 4.2.1). Similarly, the atria
are electrically insulated by the atrial septum and they can thus be modelled as
two disjoint electrical domains. On the other hand, the ventricular myocardium
cannot be further subdivided into two independent meshes as, we anticipate, the
ventricular endocardium is made by the same muscular fibers wrapped around
the ventricles which are thus electrically connected [170].

Figure 4.5: Fibers orientation in the a) right and b) left atrium. The red surface
indicate the internal endocardium.

Figure 4.5 shows the muscular fibers orientation within the (a) right and (b)
left atrial wall, with the fibers wrapping around the main atrial axes as ob-
served in–vivo by diffusion tensor magnetic resonance [233]. Since the atrial
fiber orientation is uniform within the myocardium thickness (of about 4 mm),
this is first defined on the atrial endocardium (red surfaces in Figure 4.5) and,
then replicated, at each cell across the 3D myocardium thickness. Different or
patient–specific fiber orientation in healthy and pathological conditions can be
included as well in the geometrical description of the 3D media.

The ventricular myocardium is modelled as a single 3D mesh for both the
left and right ventricles and includes the papillary muscles, whose location cor-
responds to the most recurrent one observed in a population study [269, 270].
The main reason for creating a single mesh (instead of two as in the modelling
of the atria) is that the external part of the ventricular myocardium wrapping
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Figure 4.6: a) Front and b) top view of the ventricular myocardium incorporating
the papillary muscles.

the whole heart (often described as a scarf [243]) is electrically connected and
allows for a slow propagation of the depolarization front from one ventricle to
the other, which is not observed in healthy cases as the two ventricles are simul-
taneously activated by the right and left fast conduction branches but it may
occur in pathological cases as studied in the next section.

Figure 4.7: Fibers orientation in the ventricular myocardium. The external
(yellow) epicardial muscular fibers are oriented in opposite direction compared
with the internal endocardial one (blue).

Although the orientation of the muscle fibers shows some variability among
individuals, it is known to vary across the myocardium wall from αepi = 60◦ at
the endocardium to αendo = −60◦ at the epicardium with respect to the ventricles
major axis [244, 271, 21]. The vector field, corresponding to the fibers orienta-
tion at each cell of the 3D mesh, is thus defined as α = αendo · d + αepi · (1 − d),
where d is the cell transmural distance from the endocardium normalized by the
myocadium thickness (of about 8 mm on average), yielding the typical counter-
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clockwise (clockwise) fiber orientation over the epicardium (endocadium) shown
in Figure 4.7.

4.3 Governing equations and numerical method

4.3.1 The bidomain model
The electric wave propagating across the cardiac tissue is governed by the

bidomain model that is made by the following system of two reaction–diffusion
PDEs, coupled with a set of nonlinear ODEs corresponding to the cell model:

χ

(
Cm

∂v

∂t
+ I ion(v, s) + Is

)
= ∇ · (M int∇v) + ∇ · (M int∇vext),

0 = ∇ · (M int∇v + (M int + M ext)∇vext),
ds
dt

= F (v, s).

(4.1)

Here, v and vext are the unknown transmembrane and extracellular potential (ex-
pressed in mV ), whereas the surface–to–volume ratio of cells χ = 140 mm−1 and
the specific membrane capacitance Cm = 0.01µF mm−2 are set as in [189]. M int

and M ext are the conductivity tensors of the intracellular and extracellular me-
dia that depend on the local fiber orientation with a faster propagation velocity
along the fiber than in the orthogonal directions. In the case of a 3D conductive
media as the myocardium these tensors have rank three and are diagonal when
expressed in the fiber (∥), sheet–fiber (/) and cross–fiber (⊥) directions [170], see
Figure 4.7:

M̂ ext =

mext
∥ 0 0
0 mext

/ 0
0 0 mext

⊥

 , M̂ int =

mint
∥ 0 0
0 mint

/ 0
0 0 mint

⊥

 . (4.2)

The conductivity tensor in the global coordinate system are thus obtained by
the transformations

M ext = AM̂ extAT , M int = AM̂ intAT , (4.3)

where A is the rotation matrix containing column–wise the components of fiber,
sheet–fiber and cross–fiber normal unit vectors. On the other hand, for 2D elec-
trical media as the Purkinje model, the transmembrane potential depolarization
can only propagate in the fiber and sheet–fiber directions corresponding to the
principal conductivities mext,int

∥ and mext,int
/ . Lastly, in the case of 1D conductive

media as the fast conduction network of bundles, the conduction properties are
only given by the fiber conductivity mext,int

∥ .
The last of equations (4.1) indicates a set of nonlinear ordinary differential

equations (ODEs) governing the cellular-scale dynamics in the bidomain equa-
tions. Its complexity depends on the physiological details of the model and the
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unknown state vector, s, couples the cell model with the bidomain equations
through the ionic current per unit cell membrane area I ion. Since the various
components of the cardiac electrophysiology system have different cellular prop-
erties yielding different ionic fluxes and, consequently, different action potential
profile, we adopt a Courtemanche cell model [229] for the atrial myocytes (and
the corresponding internodal pathways), a Stewart model [230] for the Purkinje
network and a ten Tusscher–Panfilov model [188] for the ventricular myocytes.
These cell models are made by a system of 21, 20 and 19 ODEs, respectively,
which are not reported here for the sake of brevity.

The ionic current, Is gives to a periodic electrical stimulus concentrated in
time and space at the SA–node triggering the electrical stimulus to the ven-
tricular myocardium, thus initiating the electrical depolarization throughout the
heart:

Is = Sa(H[t] − H[t − Sd]), (4.4)

where Sa = 1 mA/mm2 and Sd = 2.5 ms are the stimulus amplitude and du-
ration, t is the time within a heart beat and H[·] the Heaviside function. In a
previous work, we have verified through an uncertainty quantification analysis
that the values of the amplitude and duration of the stimulus do not significantly
impact the subsequent depolarization of the fast conducting bundles, as far as
they vary in physiological ranges [23].

4.3.2 Numerical method

The set of governing equations (4.1) is solved using an in–house finite volume
(FV) library, which provides a suitable approach for solving the electrophysiology
equation in complex geometries. As introduced above, the cardiac electrophys-
iology media is split in a 1D graph for the fast conduction bundles, a 2D shell
for the fast conduction Purkinje and 3D media for the atrial and ventricular
myocardium, which are respectively segmented with linear, triangular and tetra-
hedral elements.

Using the divergence theorem, the bidomain equations (4.1) can be rewritten
in conservative form on each grid cell, Ωi,

∫
Ωi

χ

(
Cm

∂v

∂t
+ I ion + Is

)
dΩ =

∫
∂Ωi

(M int∇v) · ndγ +
∫

∂Ωi

(M int∇vext) · ndγ,

0 =
∫

∂Ωi

[M int∇v] · ndγ +
∫

∂Ωi

[(M int + M ext)∇vext)] · ndγ,

(4.5)

where n is the normal unit vector of the cell boundary, ∂Ωi.
In the case of the 3D myocardium, the domain is discretized through a tetra-
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a) b) c) d) e)

Figure 4.8: Graphical scheme of the procedure to evaluate the gradient at the
cell faces of a 3D media. a) The cell—based vc is interpolated to obtain b)
the node–based vn, which is then used to estimate the same quantity at c) the
midpoint of the tetrahedrons faces, vf . The latter is used to determine d) ∇vc on
the cell center using the Gauss–Green theorem and is successively interpolated
to evaluate the e) gradient at the mesh faces ∇vf .

hedral mesh and equation (4.5) for a cell based FV method reads

χ

(
Cm

∂vc

∂t
+ I ion

c + Is
c

)
Vc =

4∑
j=1

Afj[M int
fj (∇vfj + ∇vext

fj )] · nfj,

4∑
j=1

Afj[M int
fj ∇vfj] · nfj +

4∑
j=1

Afj[(M int
fj + M ext

fj )∇vext
fj ] · nfj = 0,

(4.6)

where the subscript c indicates that the quantities are evaluated at the cell center
whereas the subscript fj denotes the j − th face of the cell c. In the case the
external and the internal conductivity tensors are parallel M ext = λM int the
bidomain model (4.6) reduces to the monodomain equation (4.6):

χ

(
Cm

∂vc

∂t
+ Iion,c + Is,c

)
Vc =

4∑
j=1

Afj[Mfj∇vfj] · nfj, (4.7)

where M = λM int/(1 + λ).
The fluxes over the tetrahedron cell faces are evaluated as indicated in ref-

erence [2] and summarized in Figure 4.8. Firstly, the transmembrane potential
at the vertex nodes vn (see panel 4.8 b) is computed by using the weighted
average of the potential within the cells surrounding that node, vk, yielding
vn = ∑Ncn

k=1 vkd−1
k /

∑Ncn
k=1 d−1

k , where Ncn is the number of cells sharing the node
and dk is the distance between the node and the k–th cell center. Once the values
vn are found, the values of the transmembrane potential at the faces centroids vf

(see panel 4.8 c) are calculated by averaging the three nodal values at the triangle
vertices. According the Gauss–Green formula (panel 4.8 d), the gradient of the
transmembrane potential ∇vc is related to the flux of the same quantity through
the cell faces and, using a second order accurate mid-point integration rule to
evaluate these fluxes, we get ∇vc = 1

Vc

∑4
j=1 vfjSfjnfj, where Vc is the volume of

the cell and vfj, Sfj, nfj, are the transmembrane potential, area and the nor-
mal vector at j–th face. The gradient at the mesh faces is then obtained as the
weighted average of the cell gradients defined at the cells c1 and c2 sharing the
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face f , ∇vf = αc1∇vc1 + αc2∇vc2 , where αc1 and αc2 are the linear interpolation
weights defined on the position of the face f with respect to the centers of the
two cells (αc1 + αc2 = 1). The resulting face gradient ∇vf is computed not only
using the two transmembrane potential values defined at the two cells sharing
the face, but also using the cell values of all the cells sharing the nodes of the
two cells c1 and c2, thus enlarging the stencil of the formula. The 3D face gra-
dient ∇vf , can be modified in such a way to include the low–stencil directional
derivative

∇vf = ∇vf +
[

vc1 − vc2

dc1c2

− (∇vf · ec1c2)
]

ec1c2 , (4.8)

where ec1c2 is the unity vector in the direction joining the centroid of the two
cells c1 and c2 straddling the face. Such treatment of the cross diffusion term
of the face gradient (which is often used to improve the stability of the method
in the case of implicit schemes through a deferred correction [2]) reduces to the
second–order difference quotient between c1 and c2 when ec1c2 is parallel to the
face normal vector, nf ; as is the case for orthogonal or locally orthogonal grids.
The face gradient (4.8) (corresponding to the last panel in Figure 4.8) can be
then directly used to compute the fluxes in the conservative equation (4.1) and
obtain the spatially discretized bidomain equations in the 3D myocardium. A
similar FV approach is used to discretize the bidomain/monodomain equations
over 1D and 2D media (in order to model the bundles and Purkinje network,
respectively) with the only exception that a vertex–based FV is used in the 1D
case so to better handling multiple bundles branching from the same grid node,
as happening at the internodal pathway and at the Bachmann’s bundle (see Fig-
ure 4.3).

This FV approach thus provides an effective spatial discretization of the bido-
main equations over complex geometries and is second–order accurate in space
provided the grid is sufficiently regular (see the convergence analysis in sec-
tion 4.4). Importantly, as typical in FV methods the mass matrix is diagonal,
thus meaning that in the case of an explicit time scheme, the discretized un-
steady bidomain equation for v (as well as the monodomain one) can be marched
in time simply correcting the transmembrane potential at the previous timestep
by summing an incremental vector. Although an explicit temporal scheme needs
a timestep small enough to prevent numerical instabilities, still the overall com-
putational cost is smaller than that of an implicit scheme which requires the
solution of a nonlinear system at each mesh element and any timestep owing to
the nonlinearity of the cell model. However, the cell models are extremely stiff,
due to the significant variables variations over short timescales of the spike–and–
dome of the action potential and of the so–called gating variables (describing the
opening and closing dynamics of ion channels) and require prohibitively small
timesteps to assure numerical stability. This difficulty can be circumvented by
noting that the ODEs governing the gating variables are quasi-linear and can be
solved analytically within a timestep if the transmembrane potential v is held
constant, whereas an explicit method is used to integrate the remaining nonlin-
ear ones. This semi–analytical approach is known as the Rush–Larsen scheme
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[272, 273] and it has been successfully applied to the three cell models adopted
here: the Courtemanche model with 15 gating variables out of 21 state variables,
the Stewart model with 13 gating variables out of 20 state variables and the
ten Tusscher–Panfilov models with 13 gating variables out of 19 state variables.
The enhanced stability properties of the method thus allow for an integration
timestep more than one order of magnitude larger than the one used with a
standard explicit time scheme.

On the other hand, owing to the first order accuracy of the Rush–Larsen so-
lution, the non–gating variables of the cell model (typically describing the varia-
tions of intracellular ions concentrations) and the spatially discretized bidomain
equations (4.6) are integrated in time using a forward Euler method [273] and
at each timestep the updated transmembrane potential v(tn+1) is thus obtained
as an explicit function of v, vext, I ion and Is previously computed at time tn

and, similarly, the updated state vector of the cell model sn+1 is computed using
sn. As the numerical converge analysis (see section 4.4) reveals that the error of
the numerical solution is more sensitive to the spatial rather than to the tempo-
ral refinement, the Rush–Larsen method with its remarkable stability properties
is thus a convenient temporal scheme for the bidomain/monodomain model, al-
though first order accurate. Furthermore, in the perspective of multiphysics heart
simulations including the coupled structural and blood dynamics, the timestep
will be limited to few µs by the fluid–structure–interaction [177] and a first order
temporal scheme for the electrophysiology system entails a numerical precision
of the solution with such a small timestep. In the case of bidomain model, once
v(tn+1) is solved, the external potential vext(tn+1) , is obtained by solving the
linear system given by the second equation of the system (4.6) through an iter-
ative GMRES method with restart [274] using the external potential computed
at previous time, vext(tn), as first estimate for the unknown field vext(tn+1).

The FV library has been GPU accelerated using CUDA Fortran [275] which
extends Fortran by allowing the programmer to define Fortran functions, called
kernels, which when called are executed N times in parallel by N different CUDA
threads, as opposed to the serial nature of the regular Fortran functions, thus
greatly improving the performance. Furthermore, CUDA provides CUF kernel
directories which automatically run single and nested loops on the GPU de-
vice without neither modifying the original CPU code nor writing a dedicated
GPU subroutine. Specifically, the electrophysiology solver results in a sequence
of loops on the mesh cells and on the mesh faces, which are GPU accelerated
simply wrapping the original CPU code in the CUF kernel directive.

4.3.3 Subsystems coupling
The topological splitting of the cardiac electrophysiology network requires a

coupling mechanisms to connect electrically the various subdomains. In particu-
lar, three two–way couplings are needed: (i) a first one between the 1D bundles
and the 2D Purkinje networks, (ii) another between the 1D network of bundles
and the 3D atrial myocardium and (iii) a last one between the 2D Purkinje and
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Figure 4.9: Sketch of electrical coupling between the 1D fast conduction bundles
and the surrounding 2D (or 3D) mesh. The wave front of the electric potential
propagates across 1D mesh causing the threshold values of the communication
nodes to be exceeded, thus activating the 2D (or 3D) cells within a radius Rs.

the 3D ventricular myocardium.
As sketched in Figure 4.9, the communication between the 1D mesh and the

underlying 2D (or 3D) counterpart occurs through some communication nodes
(CNs, indicated by red circles) which are defined in the preprocessing phase as a
subset of the bundle grid nodes (black dots). In particular, as the transmembrane
potential at a CN exceeds a certain threshold (here set to 0 mV), an external lo-
calized stimulus Is (with Sa = 1 mA/mm2 and Sd = 0.5 ms, see equation (4.4))
is applied to the underlying 2D (or 3D) mesh cells within a distance RS from
the CN, thus initiating a depolarization front in the 2D (or 3D) media. Specif-
ically, since the 1D domain represents the network of internodal pathways that
are some millimeters thick in the atrial myocardium [232], the communication
range for the coupling between the 1D and the 3D atrial mesh is taken equal to
RS = 1 mm, whereas any CNs between the 1D and the 3D ventricular mesh are
not present since the bundles do not directly excite the ventricular myocardium
(they are isolated by fibrous sheaths) but they only transfer the propagation front
to the Purkinje network [276]. Hence, the depolarization of the Purkinje mesh
is initiated by the CNs between the 1D and the 2D domains having a smaller
communication range of RS = 0.1 mm, scaling as the local Purkinje thickness.
Although all bundle nodes (black dots in Figure 4.9) can be taken as CNs, only a
subset of them is used in order to reduce the computational cost of the coupling
since at any timestep the local transmembrane potential at the CNs should be
monitored for eventually applying a localized electrical stimulus. In this work,
the CNs are equally distributed over the 1D network with a relative distance
among them of ς · τ ≈ 1 mm, where ς = 2 m/s is the typical internodal pathways
propagation speed and τ = 0.5 ms is the maximum time delay in the activation
between two consecutive CNs, which is found to trigger correctly the depolariza-
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tion of the Purkinje network as later shown in section 4.5.1. On the other hand,
a shorter τ would correspond to a denser distribution of the CNs and vice–versa.

a) b)

interventricular 

septum

sparse connection

Figure 4.10: Distribution of the communication nodes (CNs) between the 2D
Purkinje and the 3D ventricular myocardium, corresponding to the Purkinje
muscle junctions (PMJs).

Figure 4.10 show the distribution of the CNs between the 2D and the 3D
ventricular media (RS = 0.1 mm), which allow the Purkinje network to activate
the ventricular myocardium with an orthodromic delay of 5 milliseconds [238].
The density and the positions of these CNs is user–defined and it has been set
so to reproduce the ones of the Purkinje muscle junctions (PMJ ) [268, 277]. In
this work 300 CNs equally distributed among the left and right ventricles [278]
have been considered with their distribution corresponding to the one of the PMJ
with no CNs present in the interventricular septum as the Purkinje network is
insulated by fibrous sheaths in that region [279, 276] (Figure 4.10 a).

In the case of healthy cardiac electrophysiology, the electrical coupling through
the CNs is one–way, meaning that only the lower topological domain triggers an
electrical stimulus on the higher one, e.g. the 1D bundle excites the 3D my-
ocardium but not vice–versa. On the other hand, in some pathological cases
such as nodal re-entry tachycardia [280] or antidromic propagation (re–enter of
the signal in the Purkinje network from the myocardium) [238], the coupling is
two–way and the 3D myocardium can eventually excite back the 1D bundles and
the 2D Purkinje, as shown in § 4.5.
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Figure 4.11: Activation time along the main diagonal in the a) 1D, b) 2D and c)
3D domain according to the monodomain model for various temporal and spatial
resolutions (∆x is the grid spacing the x direction in 1D, x, y in 2D and x, y, z
in 3D). The corresponding average transmembrane potential is reported in d),
e) and f), respectively.

4.4 Numerical convergence and validations

The convergence of the numerical method is investigated using a procedure
similar to the one reported in the benchmark paper [189] by solving the mon-
odomain and the bidomain equations over a 3D Cartesian domain of size 20×7×3
mm3 coupled with the ten Tusscher–Panfilov cell model [188]. In order to vali-
date the 2D and 1D solvers, a similar test–case is also run on a rectangular 2D
domain (20 × 7 mm2) and on a straight linear domain (of length 20 mm). In all
cases, the Cartesian domain is discretized by a structured grid with a minimum
grid size of 0.5, 0.2 and 0.1 mm in each direction (x in the 1D, x, y in the 2D
and x, y, z in the 3D), and three different timesteps have been used, namely 0.05,
0.01 and 0.005 ms. The muscle fibers are taken aligned with the long axis direc-
tion (20 mm in 2D and 3D) and the electrophysiology parameters, including the
initial state variables of the cell model, are set as in [189]. The initial stimulus
is applied within a line/square/cube of side 1.5 mm placed in the corner closer
to the origin.

In the case of the monodomain solver, Figure 4.11 reports the activation time
(defined as the instant when the transmembrane potential exceeds 0 mV) along
the diagonal of the domain departing from the corner where the stimulus is
applied for the (a) 1D (b) 2D and (c) 3D domains. The corresponding trans-
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Figure 4.12: Same as Figure 4.11 but solving the bidomain electrophysiology
model.

membrane potential averaged in the domain volume V , v(t) =
∫

V v(x, t)dV/V
are reported as a function of time in Figure 4.11(d,e,f), showing that, as the spa-
tial grid is refined, the propagation speed of the depolarization front increases
until convergence is attained for the more refined grid spacing with a timestep
equal–smaller than ∆t = 0.01 ms. The corresponding convergence curve for the
bidomain model are given in Figure 4.12 for each topological dimension of the
conductive media, thus showing similar results for the same grid spacing and
timestep.

In the 3D case, the numerical solution of the monodomain and bidomain equa-
tions can be validated against previous results from the literature. The former
is validated against the benchmark paper of Niederer et al. 2011 [189] where 11
different numerical codes (either based on finite elements or finite differences)
have been used and the resulting average activation time along the diagonal of
the cubic domain (blue solid line) and standard deviation (blue shaded region)
are reported in Figure 4.13 (a). Moreover, the solution of the bidomain equa-
tions is validated against the results of Cuccuru et al. [282], which is reported in
Figure 4.13 (b) for different spatial steps and different polynomial degrees, see
[282] for further details on their numerical method. Both the monodomain and
the bidomain results obtained with our numerical solver fit well those reported
in the literature.

The corresponding convergence curves are reported in Figure 4.14 in the case
of the 1D, 2D and 3D monodomain model. Figure 4.14(a) indicates the second
order spatial accuracy of the FV method by showing the error on the average
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Figure 4.13: Average transmembrane potential in the 3D domain according to a)
the monodomain and b) the bidomain electrophysiology model. a) Our numeri-
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tion. In panel b) our code is validated against the results reported [282].
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Figure 4.14: (a) Spatial and (b) temporal convergence curves of the 1D, 2D,
and 3D monodomain solver. In (a) the error on the average transmembrane
potential (computed at time t = 50 ms for ∆t = 0.005 ms) is shown as a function
of the mean grid size, ∆x. In (b) the same quantity (at time t = 50 ms for
∆x = 0.31 mm) is reported as a function of the timestep, ∆t.
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transmembrane potential over the domain at time t = 50 ms (and timestep set
to ∆t = 0.005 ms) as a function of the average grid size, ∆x. On the other hand,
Figure 4.14(b) reports the same quantity (evaluated with ∆x = 0.31 mm) as a
function of the timestep ∆t, thus retrieving the first order temporal accuracy of
the Rush–Larsen temporal integration scheme, where the non–gating variables
are solved using forward Euler. The numerical error could be reduced by adopting
a second–order Adams–Bashforth scheme for the non–gating variables (dashed
blue line for the 1D case), although a modified second order Rush–Larsen scheme
[283] would be needed to attain a second order accuracy.

Grid
∆x, cells

CPU
bidomain

GPU
bidomain

speedup
bidomain

CPU
monod.

GPU
monod.

speedup
monod.

0.5 mm,
20’160

0.027 s 0.0015 s 18 0.018 s 0.0002 s 90

0.2 mm,
315’000

0.45 s 0.017 s 27 0.20 s 0.0013 s 154

0.1 mm,
2’520’000

3.7 s 0.09 s 41 1.6 s 0.009 s 177

Table 4.1: Wall–clock time for integrating a single bidomain and monodomain
time step for the three Cartesian grids considered in Figures 4.11–4.13. The CPU
time is obtained using a single core Intel(R) Xeon(R) Gold 6230 with 2.10GHz,
whereas the GPU time corresponds to a Tesla V100 from Nvidia.

Table 4.1 reports the wall–clock time for solving a single bidomain and mon-
odomain timestep on the benchmark Cartesian domain using a single CPU core
or GPU device. Running the GPU version of the code yields a significant speedup
in all cases, which increases as the grid gets more refined owing to the better bal-
ance of workload across the GPU threads running in parallel. It can be observed,
that the speedup is larger in the case of monodomain computations with respect
to the bidomain counterpart because the Arnoldi iteration and the solution of
the corresponding Hessenberg system in the GMRES algorithm are based on the
Lapack library running on the CPU.

The convergence of the numerical solution over the cardiac domains used in
sections 4.2 and 4.5 for the electrical conductivities reported in Table 4.2 is as-
sessed by monitoring the average transmembrane potential as a function of time,
v(t). Figure 4.15(a) shows v(t) solved over the 1D network of fast conduction
bundles using the monodomain model coupled with the Courtemanche cell model
with a timestep equal to ∆t = 0.001 ms, thus showing good convergence for a
spatial discretization finer than ∆x = 0.25 mm (corresponding to a number of
cells equal to 2′000). On the other hand, the monodomain equations over the
right Purkinje 2D media coupled with the Stewart cell model are at convergence
for the number of triangles of about 54’000 (i.e. ∆x = 0.45 mm). The bidomain
solution over the 3D left atrium becomes grid independent for a number of cells
around 5’500’000 (∆x = 0.31 mm), but a coarser grid with 1’500’000 cells (cor-
responding to ∆x = 0.53 mm) yields a slower propagation of the depolarization
front corresponding to a time delay of the electrical activation of the chamber be-
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Figure 4.15: Average transmembrane potential for different temporal and spatial
resolutions over the a) the internodal pathways, b) the right Purkinje network
and c) the left atrium. In the 3D case, a spatial resolution of ∆x = 0.53 mm
corresponds to a delay in the chamber activation below 3.5%T , where T is the
heart beating period which is equal to 750 ms for a heart rate of 80 b.p.m..

low 3.5% the heart beating period (equal to 750 ms for a heart rate of 80 b.p.m.).
Based on these results, a 1D grid made of 2’500 linear elements and a 2D grid
of 108’000 triangles have been used to discretize the fast conduction and the
Purkinje networks with a timestep of 0.0001 ms. Hence, the electrophysiology of
the 3D myocardium is integrated with a timestep of ∆t = 0.005 ms using using
1’500’000, 2’500’000 and 5’500’000 tetrahedra for the left atrium, right atrium
and ventricles, respectively. The electrophysiology of each 3D chamber is inte-
grated using a dedicated GPU card Tesla V100 from Nvidia and the wall–clock
time to run a single heart beat is thus given by that of solving the ventricular
electrophysiology, which is equal to 7.9 hours (corresponding to a speedup of 60
times with respect to the serial CPU version of the code). Remarkably, since the
computational cost is dominated by the 3D solution of the bidomain equations,
it can be greatly reduced by using a monodomain approach as it avoids solving
a large linear system for vext, thus obtaining a wall–clock time of 1.4 hours per
heart beat.

4.5 Results:
electrophysiology of the whole heart

The electrophysiology of the whole heart is solved using the cardiac config-
uration introduced in § 4.2 (Figure 4.2), which is composed of a 1D network
of bundles, a 2D surface to mimic the Purkinje placed at the ventricular endo-
cardium and 3D media for atrial and ventricular myocardium. In order to better
account for their heterogeneous electrophysiology properties three different cell
models are adopted (Figure 4.16). In particular, the Courtemanche model [229]
is used for the atrial bundles and myocardium, which has a resting potential of
−80 mV and is characterized by rapid repolarization occurring in about 200 ms.
On the other hand, the high peak of depolarization followed by a stable plateau
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phase of about 250 ms observed in the Purkinje cells is modelled through the
Stewart cell model [230], whereas the ionic fluxes across the ventricular myocytes
are governed by the ten Tusscher–Panfilov cell model [188] exhibiting a resting
potential of about −85 mV and a longer depolarization plateau of about 300 ms
which is related to a longer muscular contraction of the fibers. Furthermore,

-80

-40

0

40

(mV)

-80
300 (ms)1500

Courtemanche

atrial cellular model

-40

0

40

(mV)

300 (ms)1500

Stewart

Purkinje cellular model

-80
300 (ms)1500

-40

0

40

(mV) Ten Tusscher-Panfilov 

ventricular cellular model

Figure 4.16: Action potential at different cardiac locations. a) The Courte-
manche cell model [229] is used in the 1D atrial bundles and in the 3D atrial
myocardium, b) the Stewart model [230] is adopted for the Purkinje network and
c) the ten Tusscher-Panfilov model [188] governs the action potential in the 3D
ventricular myocardium.

the depolarization front propagates at different velocity through these media
according to different electrical conductivities, which have been set in the elec-
trophysiology model as summarized in Table 4.2. Since the monodomain and
bidomain models are equivalent in the case of a 1D domain, only a single electri-
cal conductivity has been set so to reproduce the propagation velocity reported
in the literature [16]. Owing to the high density of the Purkinje fibers and their
heterogeneous intracellular and extracellular orientation, the Purkinje network
is modelled as a uniform media governed by the monodomain equation with an
isotropic conductivity tensor with its components set to reproduce a propagation
velocity of 4 m/s [23, 24, 22]. The intracelluar and extracellular electrical hetero-
geneity in the 3D ventricular myocardium is accounted by setting an anisotropic
conductivity tensor in the bidomain equations as reported in the literature [189]
(Table 4.2). Owing to the lack of data on the atrial myocardium conductivity,
the same conductivity tensors as in the ventricles have been used but rescaled
by a factor to match the propagation velocity measured experimentally.

4.5.1 Healthy electrophysiology
We can now analyze the whole cardiac electrical activation in a healthy heart.

Figure 4.17 shows the depolarization of the fast conduction atrial bundles (pan-
els a,b,c) and of the 3D atrial myocardium (panels d,e,f) at three different time
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heart
component

cell/PDE
model

conductivity
(mS/mm)

reference

1D internodal
bundles

Courtemanche,
isotropic
monodomain

m∥ = 1.29 corresponding to
a velocity 1.54 m/s
[22, 24, 23]

2D Purkinje
network

Stewart, isotropic
monodomain

m∥ = m/ = 3.95 corresponding to
a velocity 4.0 m/s [16]

3D ventricles ten Tusscher–
Panfilov,
bidomain

mext
∥ = 0.62

mext
⊥ = mext

/ = 0.24
mint

∥ = 0.17
mint

⊥ = mint
/ = 0.019

data from [189]

3D atria Courtemanche,
bidomain

same as ventricles
but rescaled by
a factor 1.05

corresponding to
a longitudinal velocity
0.5 m/s [16, 22]

Table 4.2: Monodomain and bidomain electrical conductivities of the various
cardiac components, as defined in section 4.3.2.

d)
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b)

f)

c)

t = 14 ms t = 38 ms t = 140 ms 
SA node 

33 

0 

-50

-85

left atrium

activation 

internodal 

propagation 

Figure 4.17: Atrial depolarization. Transmembrane potential in the fast conduc-
tion atrial bundles at a) t = 14 ms b) t = 38 ms and c) t = 140 ms, whereas
the corresponding depolarization of the 3D myocardium is shown in d), e) and
f), respectively. In (a,d) the depolarization front has just been initiated in the
SA–node, in (b,e) most of 3D right atrium is depolarized and the depolarization
front just reached the left atrium through the 1D bundles. In c) both atria are
depolarized and the right one starts the repolarize.

instants, with t defined as the time lag with respect to the SA–node activation
(corresponding to t = 0). In both 1D and 3D media, the transmembrane poten-
tial, v, has an initial resting value of −80 mV (red isolevel) and transiently reaches
a positive value (yellow isolevel) as the depolarization front advances. The latter
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originates at the SA–node, where the effect of the pace–maker cells translates into
an initial electrical stimulus (4.4) activating the SA–node (Figure 4.17 a), which
then advances simultaneously into the three internodal pathways, namely the
Thorel’s posterior internodal tract, the Wenckebach’s bundle-middle internodal
tract and the anterior internodal tract that further bifurcates in the Bachmann’s
bundle towards the left atrium (Figure 4.17 b). The propagation fronts in these
three internodal pathways then recollect at the bottom of the atrial network into
the AV–node (see Figure 4.17 b) after about 25-40 ms from the SA–node ac-
tivation, first throughout the anterior and middle bundle and later throughout
the posterior one. In the meantime the depolarization front propagates in the
1D network of bundles, it activates the surrounding atrial myocardium through
the CNs, thus triggering another depolarization front in the 3D media, as shown
by the incipient myocardial activation near by the SA–node in Figure 4.17(d).
Although the conduction speed in the 3D myocardium is anisotropic and the
transmembrane depolarization advances faster in the directions aligned with the
muscular fibers (owing to a larger electrical conductivity), the myocardium depo-
larization is about three times slower than the one in the bundles. This leads to
a complete activation of both 3D atrial chambers after about 140 ms, as visible
in Figure 4.17 (f). Interestingly, the endocardial and epicardial depolarization
fronts in Figure 4.17 (e), reveal that the epicardium depolarizes with few millisec-
onds delay with respect to the endocadium, which corresponds to the time lag
needed by the 3D depolarization front (originated at the bundles placed within
the endocardium) to propagate across the atrial wall in the cross–fiber directions.

In non–pathological profiles, as is the case here, the signal carried into the
AV–node by the internodal pathways propagates from the left atrium to the ven-
tricles only through the AV–node itself. In the AV–node, the propagation speed
of the depolarization front greatly reduces, yielding a delay of about 100 ms be-
tween the atrial and the subsequent ventricular depolarization (Figure 4.18 a).
After the depolarization front swept the AV–node, it reaches the bundle of His
before propagating in the two ventricular chambers through left bundle and right
bundles (Figure 4.18 a), which, in turn, are electrically connected to the Purkinje
network. The latter carry the depolarization front in both ventricular chambers
with a propagation speed of about 4 m/s (roughly ten times the surrounding
myocardial tissue), first activating the lower part of the ventricle (Figure 4.18
d,e) and then the upper part (Figure 4.18 e,f). As visible in the same panels, the
activation of the 2D Purkinje network precedes the surrounding 3D ventricular
activation, thus yielding a more synchronous depolarization of the 3D media. As
visible in the upper panels of Figure 4.18, the 3D myocardium is electrically acti-
vated by the 2D Purkinje network through the PMJs with an orthodromic delay
of 5 ms. Importantly, when the ventricles are almost completely depolarized, the
atria are repolarizing (Figure 4.18 e) and, successively, when the ventricles are
completely activated, the atria are fully repolarized (Figure 4.18 f).

Figure 4.19 compares the electrical activation at various cardiac locations re-
ported in medical atlas [16] with respect to those obtained by our computational
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Figure 4.18: Ventricular depolarization. Transmembrane potential at a) t =
180 ms b) t = 200 ms and c) t = 330 ms showing the action potential propagation
front in the Purkinje and the locations of the PMJs coupling the Purkinje with
the ventricular myocardium. The same data are reported in panels d) e) and
f) but using a different transparency so to better visualize the 3D ventricular
depolarization. In panels (a,b) both atria have been activated, whereas in panel
(c) they are completely depolarized.
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Figure 4.19: Time lag (in ms) of the cardiac depolarization at various heart
locations with respect the SA–node stimulus according to a) our numerical model
and b) medical atlas [16].
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Figure 4.20: a) Positions of the right and left ventricular bundle blocks. b) Most
common leads potitioning for atrial and ventricular pacemaking [284].

model, where each number corresponds to the time interval in milliseconds that
lapse between the activation of SA–node and that of the location indicated by
the number: an overall good agreement can be observed. In particular, the fast
atrial 1D conduction system (internodal pathways) correctly ensures the activa-
tion of the atrioventricular node after 30 milliseconds from the activation of the
SA–node, with a perfect match with what observed in–vivo reality. Furthermore,
the slower conduction velocity in the AV–node and the subsequent rapid spread-
ing of the depolarization front in the 2D Purkinje network provide the correct
activation of the entire ventricular endocardium, including the papillary muscles.

4.5.2 pathological and aided electrophysiology: bundle
branch block and artificial pacing

The present high–fidelity computational framework for the whole heart elec-
trophysiology allows also to model cardiac pathologies and predict the effect of
medical devices, such as the artificial pacing applied to a patient affected by a
bundle branch block. The latter consists of the delay or blockage of the electrical
propagation within a ventricular bundle (see Figure 4.20a), thus implying a de-
layed activation of some areas of the ventricular myocardium and a consequent
anomaly in the activation/contraction profile of the ventricle [285, 286]. Possi-
ble causes originating a bundle branch block include heart attacks (myocardial
infarction involving the bundles), myocarditis (viral/bacterial infection of the
heart muscle), cardiomyopathy (thickened/stiffened or weakened heart muscle),
congenital heart abnormality (such as atrial septal defect) or even high blood
pressure (hypertension) [287, 288].

The occurrence of this pathology is included in the 1D fast conductivity bun-
dles and in the 2D Purkinje network as a local reduction of the electrical con-
ductivities proportionally to the severity of the bundle branch delay, whereas
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a null conductivity tensor is used to simulate a complete block of the bundle.
The resulting pathological activation in the case of a right bundle branch block
is reported in Figure 4.21 showing that, despite the depolarization of the left
ventricular myocardium is correctly initiated after about 180 ms (panel 4.21a),
the missing propagation of the depolarization front through the right Purkinje
network prevents the normal depolarization of the ventricular myocardium ob-
served in the healthy cases (Figure 4.18 d,e). However, as the left and right
ventricular myocardium are a unique 3D excitable media, the right ventricular
depolarization is triggered by the surrounding left ventricular one with a delay
of about 20 ms and the propagation front then travels throughout the chambers
(panel 4.21b). Nevertheless, as the conduction speed in the 3D myocardium is
about ten times slower than the one in the Purkinje network, the depolarization
of the right chamber results significantly delayed with respect to healthy con-
ditions with an asynchronous depolarization of the apical, equatorial and basal
myocytes (Figure 4.21c), which would entail an inefficient systolic contraction
[16]. Vice–versa, the presence of a left bundle block, shown in Figure 4.22, yields
a delayed activation of the left ventricle owing to the missing propagation in the
left ventricular bundle and Purkinje network.

a) b) c)
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-50

-85
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Figure 4.21: pathological ventricular activation in the case of right bundle block
at various time instants with respect the SA–node activation. In particular, the
time instants of panels (a) and (b) corresponds to the ones for the healthy cases
reported in Figure 4.18. The black arrow in panel c) highlights the delayed right
ventricle depolarization caused by the disease.

Bundle block pathologies, as well as other cardiac diseases such as sinus node
dysfunction and intermittent AV block [289, 290] are often treated with artificial
stimulation through the implantation of an artificial cardiac pacemaker [284],
which consists of inserting an artificial lead in contact with the internal muscu-
lar wall (endocardium) inducing the periodic depolarization of the surrounding
tissue. The effect of an implanted pacemaker lead can be accounted for in the
model through an additional stimulation current Is in equation (4.1) acting on
the 3D myocardium and localized at the lead position. Among the most common
atrial (septal, right lateral, appendage) and ventricular (apex, interventricular
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Figure 4.22: pathological ventricular activation in the case of left bundle block
at various time instants with respect the SA–node activation. In particular, the
time instants of panels (a) and (b) correspond to the ones for the healthy cases
reported in Figure 4.18. The black arrow in panel c) highlights the delayed left
ventricle depolarization caused by the disease.
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Figure 4.23: Cardiac electrophysiology with an artificial pacing at the ventric-
ular apex, the white symbol indicates the lead location. Panels (a,b,c) show
the action potential front in the Purkinje network while panels (d,e,f) describe
corresponding depolarization of the surrounding 3D myocardium. The AV–node
communication is interrupted (AV block).

septum, left ventricle) leads implantation sites reported in Figure 4.20(b), here
we consider a ventricular apex pacing to mitigate a pathological atrioventricu-
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Figure 4.24: Cardiac electrophysiology with an artificial pacing at the atrial
appendage, the white symbol indicates the lead location. Panels (a,b,c) show
the action potential depolarization front within the internodal pathways, whereas
panels (d,e,f) indicate the corresponding 3D myocardium.

lar block (inability of the signal to cross the AV–node) simulated by setting the
conductivity of the AV–node to zero. As shown in Figure 4.23(a), although the
ventricular myocardium is not activated by the fast conduction Purkinje com-
plex, as in healthy conditions, the pacing lead implanted within the apical tissue
of the right ventricle induces an electrical stimulus with a delay of 160 seconds
with respect to the SA–node. In particular, the depolarization front propagates
from the 3D myocardium activated by the lead to the Purkinje network through
the PMJs (with an antidromic delay of 3 ms, see Figure 4.23 b,e), and then
rapidly propagates through the rest of the Purkinje network which, in turn,
triggers the depolarization of the underlying 3D myocardial tissue through the
downstream PMJs (with an orthodromic communication delay, see Figure 4.23
e). Hence, in agreement with the medical evidence, the presence of an artificial
stimulation through an implanted lead manages to activate the Purkinje network
downstream the bundle block and to recover an effective depolarization of the
ventricular myocardium in a similar fashion as the healthy depolarization pat-
tern studied above and reported in Figure 4.18.

In addition, Figure 4.24 shows the cardiac electrophysiology corresponding to
an atrial pacemaking, where the lead is positioned in the right atrial appendage
[291], one of the most frequent implantation sites for an atrial lead [284]. Ini-
tially, the electrical stimulus provided by the lead only depolarizes a surrounding
piece of the 3D atrial myocardium (panel 4.24 d), whereas the atrial 1D bundles
are not directly activated by the lead (panel 4.24 a). The electrical depolariza-
tion front propagates in the 3D myocardium until reaching and, consequently,
activating the fast conduction bundles (see panel 4.24 b), which then rapidly
propagates the depolarization front in the whole 1D network, including the left
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atrial network (panel 4.24 c). The combined effect of slow (3D) and fast (1D)
depolarization fronts induced by the atrial lead thus yields a homogeneous acti-
vation of the left atrium. Nevertheless, compared to healthy propagation shown
in Figure 4.17 b), the atrial depolarization occurs with a delay of approximately
95 ms.

4.6 Discussion

In this work, a numerical framework for solving the cardiac electrophysiology
of the whole human heart in healthy and pathological conditions has been pro-
posed. According to the complex spatial distribution of the electrophysiology
properties of the heart, the whole cardiac geometry is decomposed into a set
of coupled conductive media of different topology, namely (i) a 1D network of
bundles comprising a fast conduction atrial network, the AV–node and the ven-
tricular bundles; (ii) a 2D Purkinje network; and (iii) the 3D atrial and ventricu-
lar myocardium. These overlapping subdomains are two–way electrically coupled
and the advancing depolarization front can propagate from one media to another,
as happens in physiological conditions. Specifically, in a healthy heart, the fast
conduction atrial network activates the 3D atrial myocardium and the AV–node
which, in turn, activates the ventricular bundles transmitting the depolariza-
tion front to the Purkinje network which rapidly activates the 3D ventricular
myocardium through the PMJs. Nevertheless, different activation patterns, also
including backward activation from the 3D myocardium to the bundles and/or to
the Purkinje, may occur in pathological conditions as observed in section 4.5.2.
Although the propagation of the depolarization front in all these conductive
media is governed by the bidomain/monodomain equations, the heterogeneity
of the cardiac electrophysiology properties at the cellular scale corresponds to
different electrical conductivities and ionic currents across the myocytes mem-
brane at the continuum scale, which has been accounted in the numerical model
through non–uniform conductivity tensors which depend on the local fiber orien-
tation and using three different cell models. Specifically, the Courtemanche cell
model [229] is used for the atrial myocytes (and the corresponding internodal
pathways), the Stewart cell model [230] is adopted for the Purkinje Network,
whereas the transmembrane ionic fluxes in the ventricular myocytes are solved
through the ten Tusscher–Panfilov cell model [188], which correctly reproduces
the action potential within ventricular myocytes. These models are coupled with
the bidomain/monodomain equations, which are discretized in space using an
in–house finite–volume method tailored for 1D, 2D and 3D complex geometries
and the explicit Rush–Larsen temporal integration scheme guarantees enhanced
stability properties. The numerical solver has been thoroughly validated with
available benchmark results from the literature [189, 282] and the resulting de-
polarization within the whole heart well agrees with in–vivo observations [16].

The whole solver is GPU–accelerated using CUDA Fortran with the extensive
use of kernel loop directives (CUF kernels) providing an unprecedented speedup,
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thus allowing to solve a complete heartbeat in less than 8 wall–clock hours us-
ing Tesla V100 GPU devices. It should be noted that such computational cost
could be further reduced either resorting to a monodomain model for the 3D
myocardium corresponding to a 1.5 wall–clock hours per heartbeat, or using the
next generation Tesla A100 GPU devices which are expected to provide a further
acceleration of about four times while keeping the same code [41].

Purkinje network

PMJs distribution

PMJs density

orthodromic/antidromic time 

Internodal pathways

control points position

pathways conductivity

size of connections 

Cellular models

Courtemanche model

AV node properties

Stewart cellular model

ten Tusscher model

Volume

right atrial volume

left atrial volume

ventricles volume

Conductivities

atrial conductivity

AV conductivity

Purkinje conductivity

ventricular conductivity

Fiber orientation

atrial fiber orientation

ventricular fiber orientation

Stimulus properties

SA size

SA orientation

Figure 4.25: Summary of the electrophysiology components having a high vari-
ability among individuals and which may be studied systematically with the
proposed numerical model through an UQ analysis.

The resulting digital twin of the human cardiac electrophysiology could be
applied to study spatiotemporal alternans patterns within ventricles and assess
the role of the Purkinje network in the initiation/suppression of arrhythmia,
also through the use of appropriate spatiotemporal correlation indices [225]. A
natural development of the model is the integration of the corresponding elec-
trocardiogram profile (ECG) either using a pseudo-ECG formulation [292] or a
more realistic torso model with a detailed body surface potential analysis [293].
The latter would allow not only to directly compute the ECG problems of a given
cardiac configuration, but also to determine in a reverse fashion the electrophys-
iology network corresponding to an observed pathological ECG [294].

Importantly, the computational high–performance of the solver and its versa-
tility in controlling the geometrical and electrical properties of the whole cardiac
electrophysiology open the way for systematic uncertainty quantification (UQ)
analyses. The human electrophysiology system, indeed, presents high variabil-
ity in the several of its components such as the fiber orientations, conductiv-
ity tensors, chambers volume, internodal pathways positions and the density of
PMJs, and our numerical framework is designed to easily control and vary all
these relevant quantities summarized in Figure 4.25. The splitting of the cardiac
electrophysiology system in a set of interconnected conductive media not only
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reduces the computational cost, but also provides an ideal framework for investi-
gating the effect of an electrical or geometrical modification of the fast conduction
network (bundles and/or Purkinje) on the cardiac depolarization, thus allowing
to optimize cardiac resynchronization therapies or invasive surgical procedures
[295, 296, 297]. Furthermore, the computational bottleneck given by the 3D bido-
main simulations can be circumvented by exploiting appropriate multi–fidelity
strategies [298, 299, 300]. On the other hand, a monodomain inverse conductiv-
ity problem (MICP) [181, 301] can be solved for the fast conduction network of
bundles to calibrate the electrical conductivities of monodomain model in order
to match medical data acquired in–vivo. As a last comment, the relationship
between the cardiac valves functioning [302, 303, 234] and the geometry of the
Purkinje network, papillary muscles and chordae tendinae could be investigated
by integrating our electrophysiology model within a fluid–structure solver [177],
so to also account for the cardiac hemodynamics and tissues kinematics in the
UQ analysis.
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Abstract
Cardiac modeling entails the epistemic uncertainty of the input parameters,

such as bundles and chambers geometry, electrical conductivities and cell pa-
rameters, thus calling for an uncertainty quantification (UQ) analysis. Since
the cardiac activation and the subsequent muscular contraction is provided by a
complex electrophysiology system made of interconnected conductive media, we
focus here on the fast conductivity structures of the atria (internodal pathways)
with the aim of identifying which of the uncertain inputs mostly influence the
propagation of the depolarization front.

Firstly, the distributions of the input parameters are calibrated using data
available from the literature taking into account gender differences. The out-
put quantities of interest (QoIs) of medical relevance are defined and a set of
metamodels (one for each QoI) is then trained according to a polynomial chaos
expansion (PCE) in order to run a global sensitivity analysis with non–linear
variance–based Sobol’ indices with confidence intervals evaluated through the
bootstrap method. The most sensitive parameters on each QoI are then identi-
fied for both genders showing the same order of importance of the model inputs
on the electrical activation. Lastly, the probability distributions of the QoIs are
obtained through a forward sensitivity analysis using the same trained meta-
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models. It results that several input parameters – including the position of the
internodal pathways and the electrical impulse applied at the sinoatrial node –
have a little influence on the QoIs studied. Vice–versa the electrical activation of
the atrial fast conduction system is sensitive on the bundles geometry and elec-
trical conductivities that need to be carefully measured or calibrated in order for
the electrophysiology model to be accurate and predictive.

5.1 Introduction

At each heartbeat the synchronized contraction of the cardiac chambers is
originated by the timely electrical activation of the myocytes that are integrated
in a sophisticated and robust electrical network. As sketched in Figure 5.1(a),
the local myocytes depolarization starts from the sinoatrial node (SA-node here-
after), which is located in the right atrium at the junction of the crista terminalis
close to the entrance of the superior vena cava, and then propagates across the
atria. When a myocyte is reached by the electrical propagation front, the local
transmembrane potential rapidly changes from the negative potential (of about
−85mV) to a positive value (of about 20mV) before returning to the resting
negative potential after about 300 ms, see Figure 5.1(b). The propagation of
the electrical depolarization front is affected by the strong heterogeneity of the
cardiac tissue, with an average conduction velocity of about 0.3-0.5 m/s in the
atrial fibers that reaches 1.5-2 m/s in specialized high conductivity structures,
the so-called internodal pathways [16, 22]. These (i) anterior internodal, (ii)
middle (Wenckbach) and (iii) posterior (Thorel) bundles connect the SA-node
to the left atrium (through the Bachmann’s bundle) and to the atrioventricular
node (AV-node hereafter), thus ensuring a rapid and smooth conduction across
the whole heart. The AV-node connects the atrial to the ventricular electrical
network and is made by specialized cardiac cells designed to slow down the elec-
trical propagation by an AV-delay of about 90 ms [16], which plays a crucial
role for the cardiac dynamics as it ensures a timely atrial contraction before the
ventricular one. The AV-node is thus the electrical connection between the atrial
and the ventricular bundle network: the propagation front travelling across the
AV-node to the bundle of His further propagates through the Purkinje network
at a higher conduction speed of about 4 m/s [16], thus allowing for an almost
simultaneous activation of the ventricular muscle.

The state–of–the–art model for simulate and study the electrical activation
within the heart chambers in healthy and pathological conditions is the bidomain
model [170, 172], which is called in this way because the conductive myocardium
is modeled as an intracellular and an extracellular overlapping continuum media
separated by the myocytes membranes [168]. The resulting system of reaction–
diffusion partial differential equations governs the electrical propagation across
the myocytes and is coupled with the cellular ionic model (given by a set of ordi-
nary differential equations) describing the current flows through the ion channels.
In the case the extracellular and intracellular conductivity tensors are parallel
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Figure 5.1: a) Sketch of the electrical network of the heart adapted from [16],
with highlighted the atrial components. b) Sketch of a typical depolariza-
tion/polarization cycle (action potential) of an atrial myocyte [16].

to each other, as is always the case in monodimensional domains, the bidomain
equations can be simplified as a single governing equation for the transmembrane
potential, the monodomain system. The latter is computationally cheaper not
only because the number of degrees–of–freedom is reduced but also because the
equations are more stable numerically [170]. In contrast with computationally
cheaper electrophysiology models such as the eikonal [167] method that correctly
solve the electrical propagation through the medium, the monodomain/bidomain
model is also seen to accurately reproduce cardiac phenomena including ischemic
events and defibrillation.

Cardiac modelling, however, entails a high epistemic uncertainty for the geo-
metrical and electrical input parameters entering in the governing equations as
only some of these quantities can be measured in–vivo. The calibration of elec-
trical input parameters for monodomain equations based on available medical
data is typically solved in the framework of monodomain inverse conductivity
problem (MICP). Multiple techniques, including variational data assimilation
procedure [181] and proper generalized decomposition (PGD) [301], were used to
derive space-dependent conductivity for 2D and 3D media. The input parameters
variability among individuals can be rigorously accounted for through an uncer-
tainty quantification (UQ) approach, where the input parameters are treated as
aleatory variables with an uncertainty probability distribution function (PDF).
Consequently, not a single simulation but a set of simulations is run in order
to determine the sensitivity of some quantities of interest (QoIs) on the input
parameters (and their PDFs) as well as the PDFs of the QoIs. This statistical
approach has been recently used by the authors to investigate the propagation
of uncertainties in an electrophysiology model for the electrical activation of the
left ventricular myocardium [304].

In this work we study the global sensitivity of the electrical activation within
the atrial fast conduction network on the geometry and on the electrical prop-
erties of the system. The aim is to isolate which of the model parameters,

157



Chapter 5: Atrial UQ

either geometrical or electrical, have a greater impact on the atrial depolariza-
tion dynamics and, through the atrioventricular node, on the ventricular one.
The identification of the most sensitive parameters would not only increase our
comprehension of the electrophysiology phenomena, but it would also allow to
improve existing computational models. Furthermore, determining what param-
eters influence the initial cardiac activation through sensitive analysis, as done
here, is a first step towards reduced order models and the design of effective
inverse calibration for patient–specific applications.

The paper is organized as follows. The computational model for the fast con-
duction atrial bundles based on the monodomain equations coupled with the
ten Tusscher–Panfilov cellular model is detailed in (§ 5.2.1). The uncertainty
PDFs of the input parameter space owing to the variability among individuals is
calibrated in § 5.2.2 using available experimental data from the literature, while
the QoIs of the study are defined in § 5.2.3. The UQ analysis is based on a meta-
modelling technique (polynomial chaos expansion [212, 40]) with a quasi Monte
Carlo Sobol’ low discrepancy sampling strategy so that to minimize the size of
the dataset. The metamodel performance in reproducing the QoIs as obtained
by the full electrophysiology model is verified through a cross validation strat-
egy and the confidence intervals of the sensitivity indices are calculated using
the bootstrap method as detailed in § 5.3. Section § 5.4.1 reports the sensitiv-
ity analysis of the selected QoIs on the input parameter space using the Sobol’
sensitivity index, whereas the corresponding forward analysis, still obtained by
the PCE, is reported in § 5.4.2. A final discussion of the UQ results and future
developments of the work are proposed in § 5.5.

5.2 Electrophysiology problem, input parame-
ter and quantities of interest

5.2.1 Bidomain/monodomain equations for the fast con-
ductive bundles

The computational domain consists of four bundles, with three of them (the
posterior internodal pathway, the middle internodal pathway, the anterior in-
ternodal pathway) originating from the SA-node, while the fourth one, the Bach-
mann’s bundle, connects the right and left atrium among them and bifurcated
into three small bundles within the left atrium, see Figure 5.2. The bundles
are immersed in the atrial endocardium through some control points and, conse-
quently, any modification of the atrial geometry studied in the UQ analysis (e.g.
owing to a different volume of the cardiac chambers) directly affects the bundles
geometry, which move so that to follow the location of the atrial control points.
For any configuration of the atrial network, the bundles are automatically re–
meshed in order to have the same spatial discretization for all UQ samples, see
appendix 5.6 for more details about the convergence of the numerical method.
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Figure 5.2: Computational domain of the atrial fast conduction network (yellow)
and the surrounding myocardium (red).

The propagation of the electrical front through the myocardium is governed
by the bidomain equations where the conductive tissue is modelled as an interior
and exterior media [170]. Owing to the slenderness of the fast conduction bundles
they can be considered as a network of one dimensional fibers that bifurcate and
intersect at the network nodes and, as a consequence, the bidomain equations
are equivalent to the monodomain equations as the intracellular and extracellular
electrical conductivities reduce to scalar quantities necessarily proportional one
each other:

Cm
∂v

∂t
+ Iion(v, ξ) + Is = χ−1 ∂

∂s

(
M

∂v

∂s

)
,

∂ξ

∂t
= F (v, ξ). (5.1)

Here v is the unknown transmembrane potential, χ = 140 mm−1 and Cm =
0.01µF mm−2 are the surface–to–volume ratio and the membrane capacitance of
the cells [189]. The effective conductivity M is assumed to be uniform over the
computational domain and is equal to half the harmonic mean of the intracellular
and extracellular conductivities M = MintMext

Mint+Mext
. The quantity Iion is the net ionic

current across the cell membrane and it is determined using the the ten Tusscher–
Panfilov cellular model [188], which is indicated in compact form in the second
equation (5.1). The solver imposes homogeneous Neumann boundary conditions
on the transmembrane potential, whereas the network nodes are automatically
handled by the FEM library as internal dofs and branching conditions do not
need to be imposed. For each tissue location, the cellular model is given by a set
of nonlinear ordinary differential equations (19 in our case that are not reported
here for the sake of brevity) that is two–way coupled to the monodomain equation
through the cell model state vector ξ and the transmembrane potential v. The
current Is corresponds to the electrical stimulus applied at SA-node location (see
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Figure 5.3) where the electrical propagation originates:

Is = Sa(H[t] − H[t − Sd]), (5.2)

with Sa and Sd being the stimulus amplitude and duration, t the time within a
heart beat and H[·] the Heaviside function.

The governing equations (5.1) are discretized on a one-dimensional domain
immersed in the atrial endocardium using the electrophysiology library cbcbeat
[190], which is based on the finite element library FEniCS [191].The monodomain
equation (5.1) is integrated in time using a fractional step method based on the
Crank-Nicholson scheme and the cellular model is solved in each mesh cell using a
Rush-Larsen integration scheme, see [177, 304]. The resulting average CPU time
cost to solve a complete activation of the fast conduction bundles until reaching
the AV-node on a reference grid of 2’397 linear elements (corresponding to 47’940
degrees of freedom including the ones of the cell model) and using a time step
of dt = 5 · 10−3 ms is of about 30 CPU-minutes (defined as the time it takes to
run the program on a 1 GHz reference processor). The computational resources
used for the analysis comprise an Intel Xeon Processors with 16 cores (E5-2620
v3 - 15M Cache, 2.40 GHz) that allow to run the same number of simulations
simultaneously.

5.2.2 Input parameters

Figure 5.3: (a) Atrial electrical pathways with sketched the angle parameters
θA, θM , and θP along with the size of the sinoatrial node SAL. (b) Stimulus
current as a function of time, the parameters Sa and Sd indicate the amplitude
and duration of the stimulus.

160



Chapter 5: Atrial UQ

In order to run a global sensitivity analysis of the fast bundles electrical acti-
vation on the model input parameters, their uncertainty PDFs have to be deter-
mined from the in-vitro an in-vivo data reported in the literature. Unfortunately,
these input PDFs are usually not available and even when systematic measure-
ments of clinical quantities on a large population are carried out (e.g. the volume
of the heart chambers) only the first (the mean µ) or the first and second (the
mean µ and standard deviation σ) statistical moments of the PDF are reported
in the literature. In such cases, in information theory, the PDF shape matching
the statistical moments available is typically selected as the one maximizing the
Shannon entropy (or its continuous extension) [52] as done here. In particular, in
the case the PDF is known to be bounded in the interval [a, b], the correspond-
ing PDF maximizing the entropy is the uniform random variable U[a, b]. On
the other hand, if also the experimental mean value µ and standard deviation σ
are available, a truncated normal distribution N[a,b](µT , σT ) should be considered.
With formalism N[a,b](µT , σT ) we indicate the truncated normal distribution with
mean µT = µ and variance σT = σ, which is the maximum entropy distribution
for fixed mean, variance and support.

The left atrium volume can be measured using several non-invasive techniques
such echocardiography and magnetic resonance imaging (MRI) and a significant
statistical difference between male and female atrial size is observed whereas the
patient age weakly influences the atrial volume change for healthy subjects [26].
The mean and standard deviation of the left atrial volume measured on a popu-
lation of 45 females and 63 males is equal to (41, 11) ml and (46, 14) ml, respec-
tively. These results were obtained throughout a CMR (cardiovascular magnetic
resonance imaging) procedure [27], with lower and upper bounds of (20, 120) ml
measured on a larger population using MRI (including both genders) [305]. It
should be noted that although both CMR and echocardiography can provide
high resolution data, the volume chamber is typically evaluated by a human op-
erator that necessarily introduces an additional source of uncertainty [27]. It is
not possible, however, to distinguish the impact of the human operator on the
measure of the volume chamber and the variability of this geometrical parameter
is here ascribed to the individual variability only. According to the principle
of maximum entropy mentioned above, the left ventricle volume for males (Vm)
and females (Vf ) is modelled as two random variables distributed according to
the truncated Gaussian distributions N[20ml,120ml](µT = 46ml, σT = 14ml) and
N[20ml,120ml](µT = 41ml, σT = 11ml).

In the UQ analysis, left and right atrial volume are assumed to be correlated
and the same random variable (Vm for male and Vf for female population) is used
to vary the volume of both chambers. The one–dimensional bundle geometry lies
within the atrial myocardium with a nominal orientation of bundles as reported
in Figure 5.3(a). The internodal angles are varied over their nominal orientation
by an angular rotation around the vertical axis passing by the SA-node (dashed
line) of size θA for the anterior, θM for the middle (Wenckebach) and θP for the
posterior (Thorel) bundle, which are modeled as uniform distributions with am-
plitude ±π/7 so that to vary significantly the bundles orientation but avoiding
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variable symbol nominal value distribution
volume males Vm 46 ml N[20,120](µT = 46, σT = 14)
volume females Vf 41 ml N[20,120](µT = 41, σT = 11)
anterior internodal θA 0 U[−π/7, π/7]
middle internodal θM 0 U[−π/7, π/7]
posterior internodal θP 0 U[−π/7, π/7]
electrical conduction M 0.87 mS/mm U[0.33, 1.41]
SA stimulus duration Sd 2.5 ms U[0.5, 5.5]
SA stimulus amplitude Sa 1 mA/mm2 U[0.5, 1.5]
SA size SAl 6.85 mm U[5.2, 8.5]
Extra AV time AVd 90 ms U[80, 100]
maximal INa

conductance GNa 14.838 nS/pF U[11.870, 17.805]

extracellular Na
concentration NaO 140 mM U[112, 168]

extracellular K
concentration KO 5.4 mM U[4.32, 6.48]

Table 5.1: Input parameters for the sensitivity analysis. The bounds, mean
and standard deviation of the PDFs reported in the last column have the same
physical dimensions of the corresponding nominal value.

to overlaps and cross intersections among them.
Regarding the electrical properties of the fast conduction network, the input

parameter space includes the electrical conductivity M influencing the conduc-
tion velocity of the fibers (see the monodomain equations (5.1)). The uncertainty
PDF of the electrical conductivity is obtained in a reversed engineering fashion
from the conduction velocity that is indicated to be of about 1-1.1 m/s [16, 24]
and in general below 2 m/s [22]. Hence, we have considered the conduction
velocity to be bounded within the interval 1-2 m/s (in agreement with the ve-
locity range measured in the canine atrial pathways, 0.88-1.66 m/s [306]), which
corresponds to an electrical conductivity range of M = 0.33−1.41 S/mm accord-
ing to the deterministic relation between the conduction velocity and electrical
conductivity reported in appendix 5.8. As only the mean value and the bounds
for the electrical conductivity are known, a uniform distribution is considered as
reported in Table 5.1.

Furthermore, the sensitivity of the bundles electrical activation on the dura-
tion Sd and amplitude Sa of the stimulus in the SA-node, along with extension
of the SA is studied. The input current stimulus, see Figure 5.3(a), is modelled
as a rectangular function with duration and amplitude equal to Sd and Sa whose
uncertainty is modeled as uniform distributions containing the values used in
the literature to activate the wavefront propagation [307]. On the other hand,
the length of the SA is known to vary between 5.2 and 8.5 mm [308], and these
values have been used as bounds for the spatial extension of the stimulus applied
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in the SA-node. Additionally, the variability of the time delay in the propagation
of the electrical signal occurring the AV-node, AVd, is considered as a uniform
PDF with mean value 90 ms and bounds equal to ±10 the mean value [16].

The effect of the input parameters of the ten Tusscher–Panfilov cellular model
on the electrical activation is studied by accounting for variability of the maxi-
mal INa conductance, GNa, of the extracellular Na concentration, NaO, and of
the extracellular K concentration, KO, that were seen to be the most relevant
parameters in previous analyses [186, 304]. A uniform uncertainty of ±20% the
nominal value around the nominal value itself is considered.

The dimension of the input parameter space is thus equal to d = 12 and the
corresponding PDFs are reported in Table 5.1. As the relationships between
these input random variables are unknown, they are modeled as independent
random variables.

5.2.3 Quantities of interest
As the main objective of the analysis is to investigate the effect of the model

input parameters introduced above on the propagation of the electrical wavefront
through the atrial pathways, the quantities of interest (QoIs) of the UQ analysis
are defined as the activation times of the network nodes. Referring to Figure 5.4,
the UQ analysis monitors the time needed to reach the two junctions of the AV-
node (t1, t2), along with the activation times of the tips of the Bachmann’s bundle
(t3, t4, t5). Additionally, two further QoIs are defined as the activation time of the
upstream t∗ = min(t1, t2) and downstream tAV tip of the AV. We recall that the
downstream tip of the AV-node transmits the electrical propagation front to the
ventricular fast conduction system (not included in this UQ analysis). A last QoI
is given by the conduction velocity vc of the propagation of the depolarization
front, which is uniform across the bundles since the electrical conductivity and
the cell model properties are uniform in the domain. Without loss of generality
the conduction velocity is thus measured at the middle internodal pathway.

5.3 UQ methods

5.3.1 Polynomial chaos expansion
The sensitivity of the QoIs on the input parameters is investigated through a

variance-based global sensitivity analysis using first (also called importance mea-
sures) and total order Sobol’ indices [309]. These quantities are defined as the
influence of input parameters on the variance of the QoIs and are able to describe
the combined effects of multiple input variables, thus providing a deeper under-
standing of the physical system at study. Computing the Sobol’ indices using a
direct approach can be computationally expensive because the QoIs dependence
on the input variables is obtained by solving the full system (the monodomain
model here). As an example, given d input parameters, the computational cost
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Figure 5.4: Activation time at the AV bundle (t1, t2), at the end of the Bach-
mann’s bundle (t3, t4, t5) and at the downstream tip of the AV-node tAV .

for evaluating the first order Sobol’ indices is O(dN2) using a a standard Monte
Carlo (MC) approach or O((d + 2)N) applying the Saltelli’s algorithm, with
N ≈ 103 the size of the samples needed to approximate one of the input vari-
ables. In order to reduce the computational cost of the UQ analysis, a polynomial
chaos expansion (PCE) approach is adopted [40], which belongs to the family of
the metamodelling techniques where the sensitivity indices are evaluated using
a simplified model rather than the whole physical system as done in the direct
methods. The adaptive procedure for the PCE calibration used here has been
previously validated in the case of the electrical depolarization of the ventricular
myocardium [304]. All of the details of the algorithms, the validations and the
convergence checks can be found in the above reference; only the main features
are summarized here. The metamodel is built so that to reproduce/approximate
the input–output relation of the governing equations using a training and a test-
ing dataset.

In particular, given a computational model, G : DX ⊂ Rd → R, the uncer-
tainty of the input parameters is modeled by a random vector X prescribed by
joint probability density function fX(x) [133] and the QoI Y = G(X) is obtained
by propagating the uncertainty on X through G. Assuming that the input vari-
ables are statistically independent, the joint PDF is the product of the d marginal
distributions fX(x) = ∏d

i=1 fXi
(xi) for each DXi

and we can define the inner prod-
uct for each single variable Xi and for any two functions ϕ1, ϕ2 : DXi

→ R as:
⟨ϕ1, ϕ2⟩ :=

∫
DXi

ϕ1(x)ϕ2(x)fXi
(x)dx and use it to define an orthonormal family

of polynomials {P
(i)
k , k ∈ N}. This set of univariate orthonormal polynomials

can be used to define a family of multivariate ones. In fact, given a multi-index
α = (α1, · · · , αd), αi ∈ N, the associated multivariate polynomial can be defined
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as Ψα(x) := ∏d
i=1 P (i)

αi
(xi). The set of all multivariate polynomials in the input

random vector X forms a basis of the Hilbert space, in which Y = G(X) is given
by the so called polynomial chaos expansion:

Y =
∑

α∈Nd

yαΨα(X) (5.3)

This infinite series has to be truncated in order to get a finite one approximating
Y = G(X) and different truncation strategies are possible depending (i) on how
to enumerate the element of the multivariate basis and (ii) on how many terms
of the basis have to be retained. The standard (linear) enumeration strategy is
based on the total degree of a multivariate polynomial Ψα (with ∥Ψα∥ := ∑d

i=1 αi)
and is defined as the lexicographical order with a constraint of increasing total
degree (e.g. for a two dimensional multi-index (0, 0) < (0, 1) < (1, 0) < (2, 0) <
(1, 1, ) < · · · ). The chosen selection strategy is a fixed one, in which the total
degree p is fixed and all the coefficients with total degree smaller or equal to p
are retained. It should be noted that a linear enumeration coupled with a fixed
truncation rule corresponds to a dimension of the basis with cardinality

(
d+p

p

)
,

with p the polynomial degree and d the size of the input space [133]. The optimal
hyper-parameter for each metamodel (i.e. the total degree) is calculated using
an adaptive strategy [304].

The PCE coefficients are chosen using a least squares strategy (LQS hereafter),
which minimizes the least squares error of the metamodel response on the training
set. The main advantage of using an LQS is the fact that the training dataset can
be extended if needed, whereas the use of integration rules based on Gaussian
point can not. A training dataset of 2’000 samples is here built using a quasi
Monte Carlo method (QMC) with low discrepancy Sobol’ sequence in order to
maximize the information contained and avoid clustering phenomena within the
dataset [309]. The QMC has, indeed, a faster asymptotic converge rate for low
number of parameters, O

(
log(N)d

N

)
where d is the input dimension, compared to

the standard MC, O
(

1√
N

)
, [30].

5.3.2 Metamodel validation and confidence intervals
Metamodelling techniques require a validation protocol to verify their ability

to reproduce the results of the original physical system. In this analysis the risk
of underfitting and overfitting is measured by evaluating the coefficients R2 and
Q2. To this aim, a testing dataset of 200 samples (independent from the ones of
the training dataset) is produced according to a pure MC strategy and used to
validate the metamodel. Given the training (testing) dataset of size n, described
by the couples (xi, yi)n

i=1 with yi the QoIs corresponding to the set of input xi,
and the prediction of the metamodel f for the same input dataset (xi, ŷi :=
f(xi))n

i=1, the coefficient of determination is defined as R2(Q2) := 1 − SSr

SSt
, where

SSr := ∑n
i=1(yi − ŷi)2 is the residual sum square normalized for the total sum of

squares SSt := ∑n
i=1(yi −y)2 with y = 1

n

∑n
i=1 yi. The R2 index is commonly used
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in regression analysis to measure the metamodel performance in reproducing the
variability within the training dataset with values close to one implying that the
metamodel is well–trained, whereas low Q2 and a high R2 would correspond to
an overfitting condition [128].

In contrast with a direct approach such as Saltelli’s algorithm, the confidence
intervals for Sobol’ indices can not be derived from the asymptotic distribution
of the estimators of the indices, but they can still be assessed without performing
further simulations through a resampling method, the bootstrap [144]. The
main idea is to create a few artificial datasets of different sizes by sampling
with replacements the individual elements of the original training one. These
artificial datasets are then used to calculate the Sobol’ indices (using the PCE
method introduced above), thus obtaining an empirical distribution of the indices
quantifying the stability of the results with respect to a variation of the input
dataset. The α-percentile bootstrap interval is defined as: [Si[α/2], Si[1−α/2]] where
Si[α/2] and Si[1−α/2] are the α/2 and the 1 − α/2 empirical quantiles of the i-th
Sobol’ index distribution [145]. This interval does not require hypotheses about
the Si distributions (compared to standard intervals which assume normality
[145]) but it needs many resamplings to estimate them accurately.

5.4 Results

5.4.1 Sensitivity analysis
An optimal PCE is trained and validated as detailed in the previous section

for each QoI and the resulting hyper-parameters are summarized in Table 5.2.
Although the resulting total polynomial degree is relatively low (equal to to 3)
for each QoI the metamodels are able to describe over 99% the output variance,
as visible by the R2 coefficients reported in Table 5.2. Furthermore, the non-
zero coefficients of the PCEs, are related to the interactions of single variables,
which implies that the PCEs neglect high order interactions (i.e. associated with
a polynomial with high degree in more than one variable [210]) and that the
Sobol’ total order are expected to be similar to the corresponding importance
measure. The cost of producing the entire dataset for the metamodel approach
is approximately 42 CPU-days, where a CPU-day is defined as a compute day
run on a 1 GHz reference processor, while the metamodel is trained in about
1 CPU-minute.

As the input uncertainty of the atrial volume is different for male and female
population, see (§ 5.2.2), two different sensitivity analyses are carried out for each
QoI that are depicted by the blue and pink histograms in Figure 5.5. The small
error bars on top of the histograms (corresponding the 95%-confidence interval
computed using the bootstrap method with 500 resamplings) indicate that the
training dataset is sufficiently large to accurately evaluate the Sobol’ indices, see
appendix 5.7 for a convergence analysis of the PCE method. We anticipate that,
as the sensitivity results of t1, t2 (t3, t5) are similar to the ones of t∗ (t4) their
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Sobol’ indices are not reported in the figure.

QoI enumeration
strategy

truncation
strategy p

PCE
cardinality R2/Q2

Female t4 linear fixed degree 3 364 0.991/0.986
Female t4 linear fixed degree 3 364 0.999/0.998
Male t∗ linear fixed degree 3 364 0.992/0.987
Male t∗ linear fixed degree 3 364 0.999/0.999
Female tAV linear fixed degree 3 455 0.995/0.990
Male tAV linear fixed degree 3 455 0.995/0.990
vc linear fixed degree 2 78 0.999/0.999

Table 5.2: Optimal metamodels selected by the adaptive PCE methodology.

As visible in Figure 5.5(a,b) both t∗ and t4 are sensitive on the electrical
conductivity (with an importance of about 80%) and on the size of the atrial
chambers (with a lower importance of about 20%). The sensitivities presented
in Figure 5.5 are described in terms of both first order Sobol’ indices (impor-
tance measure, defined for females and males as female importance and male
importance) and total order (defined for females and males as female total and
male total). Additionally, the cell model parameter GNa has a minor effect (with
about 5%) importance, whereas the rest of the input parameter space, including
the duration and amplitude of the electrical stimulus along with the length of
the SA-node, have a negligible effect on the QoI. A similar weak influence on the
QoIs is observed for the angle perturbation of the bundles with the only excep-
tion of θA that slightly influences t∗ because the anterior internodal pathway is
the shortest path connecting the SA-node to the AV-node and a variation of its
length owing to the angular variation (we recall that the bundle is constraint on
the atrial endocardium) affect the time at which the AV-node is reached by the
electrical propagation front. Importantly, males and females population manifest
similar sensitivities of t4 and t∗ on the input parameters with a relatively larger
sensitivity of the female population on the electrical conductivity and a relatively
smaller one on the atrial volume.

Conversely, the activation time of the lower tip of the AV-node (the one to-
wards the ventricular network), tAV , is not only sensitive to the electrical conduc-
tivity (importance of about 45%) but is also affected by the time delay occurring
in the AV-node AVd (importance of about 35-40%). It should be noted that even
the small percentage variation of the AVd considered here (about ±11% of the
mean value, see Table 5.1) has a relevant effect on tAV and a larger variation
of AVd would further increase the time needed to fully activate the AV-node.
Furthermore, the AVd is slightly more important in female hearts with respect
to the male population (one tailed t-test with N = 500 refusing the hypothesis
that male AVd is lower the female AVd at a level α = 10−3 for both importance
measure and total order) as the volume variation for females has a lower stan-
dard variation (11 ml against 14 ml for males), thus naturally increasing the
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Figure 5.5: Importance measures (e.g. female/male importance) and Sobol’ total
order indices (female/male total) for (a) t4 (b) t∗ (c) tAV and (d) vc. Females
(males) population is indicated by the pink (blue) histograms, whereas the er-
rorbars indicate the confidence intervals of the metamodels.
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sensitivity of the other parameters. Regarding the other parameters, the tAV is
seen to also depend on the atrial volume, on GNa and on θA, whereas the other
angular perturbations and the current stimulus parameters (Sa, Sd and Sl) have
a negligible effect on the QoI.

As expected in diffusion dominated problems, the conduction velocity vc is
greatly sensitive on the electrical conductivity M with an importance exceeding
90 %, see 5.5(d). The complementary part of the importance indices is shared
among the three input parameters of the cell model with a major influence of
GNa. This result differs from what observed in the two–dimensional solution
of the bidomain equations where the NaO and KO were seen to influence the
ventricular activation time more than GNa [304].

5.4.2 Forward analysis
Let now turn to evaluate the PDFs of the QoIs through a direct UQ strategy

using the trained metamodel (see Table 5.2), rather than the full monodomain
system. The metamodels, one for each QoI, are applied on a very large input
dataset (106 samples) sampled using a Latin hypercube strategy to avoid clus-
tering phenomena, and the corresponding output dataset is used to approximate
the PDFs of the QoIs that are reported in Figure 5.6. The computational cost
of this forward analysis using the metamodel trained for the sensitivity analysis
is negligible (of the order of CPU-minutes), whereas the same forward direct
analysis would have required 57 CPU-years using the initial electrophysiology
equations (5.1).

Table 5.3: Statistical moments for t∗, t4, tAV and vc. The means and standard
deviations of the times are expressed in ms, the velocity in m/s.

female
t∗

female
t4

female
tAV

Male
t∗

Male
t4

Male
tAV

vc

mean 32.19 41.2 122.19 33.55 43.62 123.54 1.62
std 7.13 9.12 9.15 7.62 9.72 9.54 0.31
skewness 0.74 0.73 0.34 0.73 0.73 0.37 -0.14
kurtosis 3.13 3.00 2.85 3.16 3.05 2.90 1.96

The PDFs of the activation times t∗ and t4 have a similar skewness and kurtosis
for both, male and female population but with a larger mean value, respectively
of 6.4% and 5.8%, for the former, see Table 5.3. On average, t∗ corresponds
to what observed in–vivo (about 30 ms [16]), even if the high standard devi-
ations resulting from our forward analysis implies that it is not uncommon to
have longer activation times. According to the PDFs, the probability of a nor-
mal/physiological activation time of the AV-node corresponding to a t∗ comprises
between 20 and 50 ms is equal to 97.6% for females and 96.3% for males, where in
both cases the positive skewness of the PDFs favors longer activation time with
respect to the mean t∗ rather than shorter ones. Specifically, the probability of
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experiencing an AV activation time shorter than 10 ms is about 0, whereas a t∗

shorter than 20 ms has a probability to occur of 0.7% and 0.5% for females and
males, respectively. On the other hand, the probability of having an AV activa-
tion time greater than 50 ms is larger for the males population (3.2% probability)
than for females (1.6% probability).

The PDF of the activation time at the downstream tip of the AV-node tAV , is
shown in Figure 5.6(c), while the statistical moments are reported in Table 5.3.
As could be inferred from the Sobol’ indices, the sensitivity of tAV on the time
delay in the AV, AVd, reduces the differences between the PDFs of males and
females with relative difference of the mean values of about 1.1%. Furthermore,
the statistical dispersion for tAV (evaluated by variation coefficient σ/µ), is also
reduced (-7.4% for females and -7.7% for males) with respect to the one observed
in t∗ (-22.1% and -22.7 %) The PDF for the tAV results in line with the medical
knowledge, with an about null probability of activation time higher than 150 ms
that would compromise a timely ventricular contraction. [16].

As it could have been anticipated by noting that the Sobol’ index correspond-
ing to the volume parameter is about null, no differences are present among the
PDFs of the vc for the males and females population shown in Figure 5.6(d).
Moreover, the PDF skewness is a consequence of the nonlinear relation be-
tween the conduction velocity and the electrical conductivity documented in
appendix 5.8. Specifically, as a symmetric PDF around its mean has been con-
sidered to model the uncertainty of the electrical conduction, the probability of
vc to be slower (faster) than the physiological lower (upper) bound of 1 m/s (2
m/s) is below 0.5% (13%).

5.5 Discussion and future developments

In this work, we have investigated the global sensitivity analysis of the elec-
trical activation of the atrial fast conduction network on the geometrical and
electrical input parameters of the electrophysiology model. The network has
been modelled as four mono–dimensional bundles, with three of them connect-
ing the SA-node to the AV-node whereas the last one joins the right with the
left atrium. The propagation of the electrical depolarization front through the
myocardium is governed by the bidomain equations, which, in the case of a one-
dimensional domain, are equivalent to the monodomain model. The uncertainty
PDFs of these input parameters have been taken from the experimental data
available and the gender difference has been accounted for in the UQ analysis
by considering two different PDFs for the atrial volume of the females and males
population. Moreover, the PDF of the electrical conduction has been obtained
through an inverse calibration of the conduction velocity data from the literature.
The UQ analysis is based on the PCE method with a different metamodel trained
for each QoI on a training dataset, which is built running the full monodomain
model. The risk of overfitting has been assessed by testing the metamodels per-
formances against a testing dataset, which is independent of the training one,
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Figure 5.6: PDF of the QoIs obtained using 106 samples evaluated through the
optimal metamodel: (a) t4, (b) t∗, (c) tAV and (d) vc.

whereas the confidence intervals of the Sobol’ indices, computed using the boot-
strap technique, indicate that the sensitivity results are converged with respect
to the size of the dataset used to train the metamodel.

For both the female and male population, the activation times of the atrial
fast conduction network, t4, t∗ and tAV , are seen to be sensitive to the electrical
conductivity M , the atrial volume V and the temporal delay in the AV AVd with
a total effect on their variance exceeding 95 %. Importantly, the relative posi-
tions of the internodal pathways that, to the authors’ knowledge, can be hardly
measured in–vivo and are not sufficiently documented in the literature only play
a marginal role in the activation of the atrioventricular node according to the
Sobol’ indices (total effect on the QoI variance below 5 %). According to our
results, these geometrical input parameters could be disregarded in future UQ
analyses. The smaller atrial volume (on average) of the female population leads
to a reduced effect of this input parameter on the variance of the QoIs compared
to the males population, in particular the Sobol’ total order of V reduces from
0.21 to 0.17 for t∗ and from 0.20 to 0.16 for t4 . Consequently, the other inputs
have a larger effects on the QoIs in the female population, as an example, the
sensitivity of t∗ (t4) on M and GNa increases from 0.71 and 0.034 (0.75 and
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0.0351) in the male population to 0.74 and 0.035 (0.78 and 0.0354) in female
one.

On the other hand, the conduction velocity is only sensitive to the electrical
conduction (with an effect of about 95%) and to the maximal INa conductance
(GNa, with an effect of about 5%) while the other ten input parameters, including
the extracellular Na concentration, NaO, and the extracellular K concentration,
KO, have a negligible effect on the QoIs variance. This result differs from what
observed in the solution of the bidomain equations in a multi–dimensional do-
main where both the extracellular Na concentration, NaO, and the extracellular
K concentration, KO, were seen to have a greater effect on vc with respect to
GNa [217, 304]. As a consequence, isolating the internodal pathways from the
surrounding three–dimensional myocardium yields to a smaller input parameter
space and, consequently, to a reduced computational cost for future UQ studies.

It should be noted that both the electrical activation of the network and the
conduction velocity are insensitive to the parameters of the electrical stimula-
tion (stimulus intensity Sd, stimulus amplitude Sa and size of the SA-node SAl)
and any simulation protocol able to originate the depolarization front is suit-
able in such electrophysiology models. Further studies, however, could assess
the possible differences in the electrical activation of the electrical pathways if
the SA-node is modeled using a three–dimensional geometry integrated in the
electrical network rather than as a localized in put current as done in this work
[310, 311].

The same metamodels used in the sensitivity analysis have been then used to
determine the uncertainty PDF of the QoIs (forward UQ analysis) by producing a
large dataset of 106 elements. The PDFs of the activation times are characterized
by a positive skewness (i.e. with a longer right tail with respect to the left one)
while the conduction velocity has a negative one. The PDFs of t4 and t∗ have a
high statistical dispersion equal to σ/µ ≈ 20%, while tAV has a smaller dispersion
(about 7.5%) owing to the higher sensitivity on the AV-delay, AVd. The PDF of
the activation times well agrees with the medical knowledge [16] with a probabil-
ity for the AV-node to be reached by the electrical stimulus (t∗) in less than 20ms
or more than 50 ms below 0.7% and 3.2%, respectively (for both males and fe-
males population), while tAV has an almost zero probability of being higher than
150 ms. We recall that the activation time of the ventricular tip of the AV-node
tAV plays a major role in the synchronization of atrial–ventricular contraction
and if tAV is not sufficiently long the ventricles would start contracting before
the end of atrial systole, thus yielding to an inefficient blood pumping. Although
the activation time of the whole atrial myocardium is known from the clinical
evidence to have an average depolarization time of 148.8 ms with a standard
deviation of 18.9 ms [312], these data can only be considered as an upper bound
with respect to the activation time of the fast conduction bundles that is studied
here. Indeed, the high conductivity structures should be fully activated before
the surrounding myocardium depolarizes, which is in line with our UQ analysis
where the average time needed for the electrical signal to reach the AV-node, t∗,
results equal to 32.19 ms (33.55 ms) for the females (males) population. More-
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over, for both genders t∗ is less than the lower bound of the activation time of the
three–dimensional myocardium reported in the literature (defined as the mean
value minus three times the standard deviation 148.8 ms−3 ·18.9 ms = 92.1 ms)
with a probability exceeding 99%.

The uncertainty PDFs of the conduction velocity vc is seen to be skewed to-
wards the high velocity range as it has been previously observed in the case
of electrical conduction within the atrial myocardium by randomly perturbing
both fibers orientation and local conductivities [29]. This result can be probably
explained by the non-linear relationship between the electrical conductivity and
the conduction velocity reported in appendix 5.8, which means that consider-
ing a symmetric PDF of the electrical conductivity automatically introduces a
skewness in the conduction velocity distribution and, eventually, in the PDFs of
the other QoIs. Alternatively, considering a symmetric uncertainty PDF for the
conduction velocity, it would greatly reduce the marked skewness phenomenon
in the forward analysis, thus suggesting to use the conduction velocity as input
parameter rather than the electric conduction. Nevertheless, proper calibration
of the electric conduction could solve the problem of considering uniformly varied
inputs with the consequent output asymmetry, and the model reduction carried
out here offers a starting point for a Bayesian inverse calibration of the electrical
conduction–conduction velocity from the available experimental measurements of
the AV-activation time t∗. The sensitivity analysis, indeed, shows that the time
needed for the depolarization front to reach the AV, t∗, basically only depends on
M and V (with a reduced influence of GNa) and all these quantities but M can
be measured through non-invasive medical procedures such as MRI for the atrial
volume [305] and ECG for t∗ [312]). This is the optimal context for Bayesian
inverse calibration where only an input parameter is unknown, which can be
retrieved knowing the PDFs of the other physical quantities at play [313, 314].
Similar techniques used in the framework of MICP (monodomain inverse conduc-
tivity problem) to calibrate space-dependent conductivity for two-dimensional
[181] and three-dimensional [301] models can be adapted to the one-dimensional
problem proposed here. Even the presence of local perturbations of conductivity
can be taken into account both in the direct and inverse problem, possibly ex-
ploiting a multi-fidelity method applied using the monodomain as a high fidelity
model and a simplified alternative (e.g. eikonal) as a low fidelity one [29].

A natural extension of the present UQ analysis would be to include the effect
of the fast conduction bundles on the three–dimensional myocardial tissue sur-
rounding them, thus allowing to investigate further QoIs commonly used in the
medical field, such as the atrial activation time (that is expected to depend on
the stimulus location [315]), the uniformity of the depolarization front propaga-
tion and the action potential duration [316, 217], which are known to be relevant
for the patient’s health as they influence the efficiency of the atrial systole [16].
Given the proposed decomposition between the fast structures and the underlying
three-dimensional fiber, the model to be used. The anisotropic and heterogeneous
myocardium could also be modelled using the new fractional models [165, 317],
which show promising results in cardiac dynamics and can naturally integrate
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techniques for the calibration of the model parameters [182]. Furthermore, in
addition to the healthy myocardium [318, 319, 240, 245] the effect of pathologies
can be included in the UQ analysis by accounting for modified electrical prop-
erties of the conductive medium [320, 321, 322]. As the electrical signal travels
from the atria to the ventricles passing through the AV, this analysis could be
also extended by adding the ventricular fast conduction bundles (including the
Purkinje network) to investigate how sensitive is the ventricular activation to
atrial dysfunctions such as atrial fibrillation [323]. A further open question call-
ing for dedicated UQ studies, is the effect of the stimulation frequency on the
action potential duration and the depolarization front propagation and, interest-
ingly, the most relevant input parameters of the cellular model are expected to
strongly depend on the stimulation frequency itself [223, 224, 303].

5.6 Appendix: Convergence of the electrophys-
iology model
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Figure 5.7: Time behaviour of the average transmembrane potential in the atrial
fast conduction network by refining a) the spatial and b) the temporal resolution.
The insets show the same quantity within the initial fast depolarization phase.
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The transmembrane potential averaged over the ventricular domain as a func-
tion of time is shown in Figure 5.7. Each solid curve corresponds to a different
simulation of the monodomain equations with the ten Tusscher-Panfilov model
on a different grid with elements number varying from 600 to 4’000 and different
time step sizes. [189]. The averaged transmembrane potential becomes basically
grid independent for mesh resolution exceeding 2’000 elements and, based on
this result, a mesh with 2’397 elements (corresponding to a ∆x = 0.25 mm) and
∆t = 0.005 ms is used for the UQ analysis. The corresponding computational
cost to run a single simulation is of about 30 CPU-minutes and, consequently,
the cost to build the UQ datasets is of about 42 CPU-days. The numerical simu-
lation have been run on an Intel Xeon Processors [E5-2620 v3 - 15M Cache, 2.40
GHz], with 16 CPUs.

5.7 Appendix: Convergence of the PCE analy-
sis

Figure 5.8: (a) R2 and Q2 indices for tAV of the female dataset. Indices are
reported for an increasing size of the training dataset and a fixed testing dataset
of size 200 is used to compute the corresponding Q2 index. (b) Stability anal-
ysis of Sobol’ indices for tAV on the female dataset with 5-percentile confidence
intervals calculated using a bootstrap methodology.

Figure 5.8(a) shows the coefficient R2 and Q2 introduced in section 5.2 for the
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case of tAV in the female population as a function of the training dataset size.
The optimal metamodel (see Table 5.2) is trained each time using a different
training dataset with size ranging from 500 to 2’000 and tested against the same
testing dataset made of 200 samples. The R2 index is stable with respect to
the training data set size as the number of samples is larger than 500, which
means that the variety of the metamodel is sufficient to describe the physical
phenomenon at study. Conversely, lower size of the training dataset lead to a
suboptimal value of the index Q2, which corresponds to a reduced ability of the
metamodel to predict values outside the training sample. Hence, the convergence
of the difference R2–Q2 indicates that the metamodel can be considered stable
when the size of the training metamodel exceeds 1’000 cases. Similar results are
obtained for the other QoIs and the males population (not reported here for the
sake of brevity).

Another approach for testing the metamodel performance consists of evaluat-
ing its stability to a perturbation of the training dataset. Specifically, the results
of the UQ analysis are shown as a function of the dataset size thus determining
for what size they become stable, as shown in Figure 5.8(b) where the Sobol’
indices are seen to be stable for dataset size larger than 1’000. The figure also
reports the 5-percentile confidence intervals calculated using a bootstrap method
on the training dataset.

5.8 Appendix: Electrical conductivity vs con-
duction velocity
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Figure 5.9: Conduction velocity as a function of the electrical conductivity (black
dots) with superimposed a square root interpolation function (blue line). The
straight red lines indicate the ranges of the electrical conductivity and of the
conduction velocity studied in the UQ analysis.

The electrical conductivity M is an important input parameter of the elec-
trophysiology model. However, most of the available measurements in the liter-
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ature refer to the conduction velocity rather than to the electrical conductivity
[16, 22, 24, 306]. For this reason, an inverse calibration has to be preformed to
determine the electrical conductivities corresponding to the conduction veloci-
ties measured experimentally. In order to determine such relation between the
electrical conductivity and the conduction velocity, the monodomain equations
have been solved over a one–dimensional straight domain of length 100 mm for
several electrical conductivity values. The corresponding conduction velocity is
measured by selecting two points 50 mm apart each other inside the domain and
monitoring their activation time (defined as the instant when the transmembrane
potential exceeds −70 mV). The conduction velocity is thus measured as the ra-
tio between the distance between the monitoring points and the time interval
among their activation and is reported in Figure 5.9 for spatial and temporal
discretization of ∆x = 0.25 mm and ∆t = 1 · 10−3 ms and current stimulus
applied at one tip of the domain as defined in equation (5.2) with Sd =2.5 ms,
Sa =1 mA/mm2 and SAl = 6.85 mm.
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Abstract

The recruitment of patients for rare or complex cardiovascular diseases is a
bottleneck for clinical trials and digital twins of the human heart have recently
been proposed as a viable alternative. In this paper we present an unprecedented
cardiovascular computer model which, relying on the latest GPU–acceleration
technologies, replicates the full cardiac dynamics within a few hours. This opens
the way to extensive simulation campaigns to study the response of synthetic co-
horts of patients to cardiovascular disorders, novel prosthetic devices or surgical
procedures. As a proof–of–concept we show the results obtained for left bundle
branch block disorder and the subsequent cardiac resynchronization obtained
by pacemaker implantation. The in–silico results closely match those obtained
in clinical practice, confirming the reliability of the method. This innovative
approach makes possible a systematic use of digital twins in cardiovascular re-
search, thus reducing the need of real patients with their economical and ethical
implications. This study is a major step towards in–silico clinical trials in the
era of digital medicine.

After the initial phase of research and development, the standard route for
the transfer of a novel treatment to clinical practice is through randomised tri-
als. In fact, every human is one of a kind and the efficacy of a new therapy can
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be assessed only via statistical analyses on large cohorts of patients. These are
collected into randomised homogeneous groups and subjected to different treat-
ments to compare the outcome of the new therapy with the established ones.

However, recruiting enough participants for trials on rare or complex diseases
could be very challenging while biased and incomplete cohorts yield inconclusive
or misleading results. Paradoxically, clinical trials can thus become a barrier
preventing some patients from accessing innovative treatments (not to mention
the ethical question associated with sub–optimal or placebo therapies applied to
some trial control groups).

The generation of synthetic data by high–fidelity computer models might be
an effective strategy to mitigate the above issues and this is one of the main aims
of digital medicine.

In fact, these models are referred to as digital twins and, when provided with
appropriate input parameters, they can be used to surrogate real patients with
‘on demand’ features. In this way, the completion of thorough and cost effective
clinical trials could be possible even in those cases in which enrolling a patients
cohort would be challenging.

The advantages of digital twins are huge since not only they can produce
specific data but, in principle, they can anticipate the outcome of a surgical pro-
cedure, the progression of a disease or the performance of an implanted device
thus shifting the medical paradigm from decisions based on past experience to
predictions guided by virtual models.

Considerable efforts have been made in the last decade to produce digital
twins for clinical applications and cardiac modelling has been among the fastest
growing fields. Leaving aside the wealth of literature dealing with individual
parts of the heart, recent examples include the computational investigation of
electromechanical features [324, 325], the influence of cardiac contraction on the
electrocardiogram (ECG)[326] and of the heart rate variability [327]; the recent
review Sung et al. [328] gives a detailed account of whole–heart electromechani-
cal models.

Models including the hemodynamics are more scarce and the flow is often
parametrised by simplified laws, as by considering only the blood pressure within
each heart chamber while all valves are reduced to viscous resistances[329] or by
introducing a more realistic hemodynamics within a bi–ventricular configuration
with simple lumped models for the heart valves[330]. More recently, an accurate
model which includes the atria and the hemodynamics has been proposed [331],
although only the systolic function is considered and, therefore, the sealed atrio–
ventricular valves are modelled as impermeable plane disks while the fully open
semilunar ones as circular holes.

From the above literature review, it appears that implementing a truly dig-
ital twin for the whole heart, capable of simulating all the features throughout
the heartbeat is a formidable task which has not been fully accomplished yet.
Furthermore, in order for a digital twin to be reliable and predictive, it must re-
produce all the relevant dynamical details of the real counterpart thus requiring
hundreds of million degrees of freedom. Even on modern supercomputers, such
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models entail simulation times of weeks or months and this prevents their routine
clinical use: overcoming such limitation has huge cardiovascular potential and
this has motivated the present work.

In this paper we present a groundbreaking virtual heart model coping with
all the main features of the cardiovascular function: it accounts of the dynamics
of the complex biological tissues both, active myocardium and passive valves,
the transitional and turbulent hemodynamics, the myocardium electrophysiol-
ogy and their strongly coupled interactions. The complete computer model uses
up to one billion of spatial degrees of freedom and half a million time steps per
heartbeat to capture with uncompromised accuracy the complex heart dynamics.
The resulting huge computational burden is tackled by the latest graphics pro-
cessing units (GPU) technologies which reduce the time–to–solution from months
to hours [332].

In the following we show first some results for a healthy heart with a phys-
iologic function then, by disconnecting the electrical conduction between the
atrio–ventricular node and the left bundled branch, we induce its block and ob-
serve a deterioration of several cardiovascular indicators similarly to the clinical
experience. Starting from this impaired configuration, cardiac resynchronization
is simulated by pacemaker therapy and a small clinical trial is generated by vary-
ing the position of the implanted lead within the left ventricle. The outcome of
the various virtual treatments is discussed in the light of the clinical experience
(of one of the authors) and perspectives for future work are finally given.

Results

The quantities of interest, used to monitor the heart function and their dy-
namics, are obtained by our computer model whose details are given in the
section Methods. Here we add that the heart, including the four cardiac valves
and main arteries/vessels, is properly located in a human torso (see Fig. 6.1a-d)
and, during the simulations the electrical signals reaching the skin surface are
detected to produce synthetic ECGs.

In fact, in addition to the composite heart elastomechanics and hemodynam-
ics [333], the model accounts also for the complex, hierarchical structure of the
electrophysiologic system [334], therefore it produces a realistic source of electric
potential which propagates throughout the body.

Owing to the inherent human variability, defining a representative geometry of
a heart is a problem in itself and two opposite directions can be taken: i) replicat-
ing the heart of a particular individual (patient–specific model) or ii) modelling
a ‘normal’ organ with average properties. In this case the latter approach was
pursued with the shape of each chamber, the local thickness of the tissues and
their fiber directions obtained by surgical atlases [335] or measurements whose
means and standard deviations are reported in Table 6.1. It is worth mentioning
that the heart resulting from these parameters does not belong to any specific
individual but it rather exemplifies a standard configuration representative of
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Figure 6.1: Geometrical and topological features of the cardiac digital
twin. a, Location of the heart model in a human torso and position of two
virtual electrodes with which the ECG is computed. b, Geometrical assembly of
the heart model with the main elements, including veins and arteries. c, Zonal
separation of the heart with the external fibers orientation; the black dashed
line is the trace of the cutting plane of panel d. The active and passive me-
chanical properties of the tissues are specific of each heart structure. d, Plane
section through the apical region of the ventricles to show the fibers orienta-
tion across the myocardium thickness. Note that the active contraction of the
myocardium occurs along these directions thus yielding anisotropic and inhomo-
geneous features. e, Hierarchical structures of the electrophysiological system:
the conduction velocity of the electrical signal is position dependent. f, Instan-
taneous snapshot of the flow streamlines coloured with the velocity magnitude
(0 m/s white, 1.5 m/s dark red); the clustering of lines in the ventricles evidences
a swirling motion while the dark regions in veins and arteries show intense flows.
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the heart of adult humans.
A typical run consists of a couple of initial heartbeats, during which the tran-

sient is accommodated, followed by ten cycles which are used to extract phase
averaged quantities and statistics; each simulation lasts ≈ 12 hours per heartbeat
on 8xA100 Nvidia cards and produces a database of ≈ 8 Tbytes to be analysed
by successive postprocessing.

Physiologic conditions. The reference healthy case is generated by running
the model under nominal conditions and some representative results are given in
the figures respectively for the electrophysiology, hemodynamics and the tissue
mechanics.

Fig. 6.2 shows the depolarization pattern which starts from the sino–atrial
node and quickly proceeds through the atria via the fast conducting bundles. The
signal then slows down in the atrio–ventricular node for about 100 ms to allow
the fully contracted atria to complete the filling of the relaxed ventricles. A quick
propagation follows along the His bundle and the Purkinje fibers to depolarize
the ventricles and lead to their strong (almost) synchronous contraction.

The electrically driven contraction and relaxation of the tissues squeezes the
blood from atria to ventricles and then to veins and arteries following precise
directions which are ensured by the passive opening and closing of the heart
valves. Fig. 6.3 shows the flow structure during several instants of the heartbeat
and, since a single planar section cannot describe the complex structure of the
heart, the flow on two different planes for the left and right heart is shown.

For the sake of completeness, in Fig. 6.4, the intensity of the tissue contraction
is visualised through tension stress along the tissue fibers with results which are
complementary to the activation potential of Fig. 6.2 and the produced hemo-
dynamics of Fig. 6.3.

Although a high–fidelity digital model makes easily accessible the complex
three–dimensional dynamics of the various heart systems the same is not true in
the routine clinical practice which, instead, relies on simpler quantities that can
be directly measured or inferred through standard analyses. Examples are the
pressure variations during a heartbeat, the volume of the left ventricle and the
ejection fraction or the ECG as shown at the bottom of Fig. 6.4.

The values obtained for the healthy configuration are 127/76 mmHg for sys-
tolic/diastolic pressure, ≈ 50.5% for the ejection fraction and an ECG trace
showing the appropriate duration of the QRS complex and T wave.

We wish to stress that all these quantities have obtained as part of the model
results without additional inputs other than the electro–mechanical properties
of the system thus providing evidence of its predictive capability.

Pathological left bundle block. A further step forward for the model
assessment is to show that not only it behaves correctly in healthy physiologic
cases (for which it has been designed) but it also reproduces the pathological
conditions of a specific induced disfunction. In order to accomplish this goal, we
have disconnected the electrical conduction between the atrio–ventricular node
and the left His bundle (Fig. 6.5c) thus causing a left bundle block disorder.

The immediate consequence is that the tissue depolarization proceeds quickly
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Figure 6.2: Instantaneous snapshots of the activation potential during the heart-
beat: a, the sino–atrial node ‘sparks’ the initial triggering signal (t ≃ 0 s);
b, The electrical signal spreads quickly, via the internodal pathway, across the
atrial tissue and depolarises them (t = 160ms); c, The signal reaches the atrio–
ventricular node where it is delayed by ≈ 100 ms by the very small conduction
velocity of the signal in that region (t = 190ms); d, At t = 395ms, the activation
potential has spread through the bundle of His, the Purkinje fibres and the my-
ocardial tissue of the ventricles; e, While the myocardium repolarises a vigorous
contraction starts (t = 460ms); f, The ventricles attain the strongest contraction
at t = 560ms, a long relaxation period follows until the beginning of the next
heartbeat.
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Figure 6.3: Instantaneous snapshots of the blood velocity magnitude over plane
sections crossing the left (a,–f,) and right (g,–l,) parts of the heart. The left plane
position is such to cross in the middle the mitral and aortic valves. Similarly,
the right plane crosses the pulmonary and tricuspid valve. a, and g, t = 500ms,
b, and h, t = 540ms, c, and i, t = 600ms, d, and j, t = 620ms, e, and k,
t = 680ms, f, and l, t = 780ms.
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Parameter Source Population (female) Normal range Digital heart

LV end diastolic volume (ml) [336] 800(462) 75-211 176
LV end systolic volume (ml) [336] 800(462) 37-101 86
LV stroke volume (ml) [336] 800(462) 56-136 90
LV ejection fraction (%) [336] 800(462) 48-68 51

RV end diastolic volume (ml) [336] 800(462) 110-254 189
RV end systolic volume (ml) [336] 800(462) 41-129 98
RV stroke volume (ml) [336] 800(462) 77-117 91
RV ejection fraction (%) [336] 800(462) 42-66 48

LA max volume (ml) [336] 795(462) 28-104 75
LA stroke volume (ml) [336] 795(432) 18-62 38
LA ejection fraction (%) [336] 795(432) 46-74 51

RA max volume (ml) [336] 795(432) 30-130 84
RA stroke volume (ml) [336] 795(432) 9-61 35
RA ejection fraction (%) [336] 795(432) 24-64 42

LV long axis diastole (mm) [196] 52(26) 62-98 92
LV short axis diastole(mm) [196] 52(26) 36-48 50
LV sphericity index diastole [196] 52(26) 0.40-0.64 0.54

RV long axis diastole (mm) [337] 41(21) 71.0-81.0 79
RV short axis diastole (mm) [337] 41(21) 27.0-33.0 32

Aortic annulus diameter (mm) [338] 3370(1156) 17.4-27.1 23
Pulmonary annulus diameter (mm) [338] 3997(1408) 19.5-30.8 22

Mitral annulus area (mm2) [339] 211(114) 460-1220 800
Tricuspid annulus area (mm2) [340] 209(116) 460-1260 800

Table 6.1: Normal ranges of cardiac parameters in healthy adults calculated as
the mean value ± the standard deviation and corresponding parameters of the
digital twin (normal electrophysiology case)
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Figure 6.4: a–f Instantaneous surface distribution of the tension along the fi-
bres axes (force per unit area) during a heartbeat; during diastole, when atria
contract, the heart is viewed from above (panels a–c), during systole (d–f) the
viewpoint is from below to evidence ventricles contraction. a, t = 20ms, b,
t = 120ms, c, t = 260ms, d, t = 460ms, e, t = 560ms, f, t = 640ms. g, Time
evolution of the left ventricle blood pressure during systole: black solid line for a
healthy heart; red solid line for the impaired heart with a left bundle block; blue
solid line for the impaired heart after resynchronization. The dashed lines have
the same meaning as before but for the aortic pressure. h, Time evolution of the
left ventricle volume during systole, the colour code is the same as in panel g. i
ECG trace from the two sensors as in Fig. 6.1a), the colour code is the same as
in panel g.
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in the right ventricle along the Purkinje fibers but it is much delayed on the
left counterpart as the activation potential can propagate only through the slow
conducting myocardium: this is evident in Fig. 6.6b showing the largely polarized
(not contracted) posterior region of the left ventricle compared with the fully
contracted myocardium of the healthy case (Figs. 6.6a,g). The hemodynamics
produced by the impaired left ventricle function yields a weak aortic jet evidenced
by Fig. 6.6e. Also the myocardium contraction is consistent with the above
picture and Fig. 6.6h confirms that the left ventricle fails to reach the same
contraction strength as the right part.

Concerning the classical clinical indicators, we see that the peak left ventricle
and aortic systolic pressures drop by about 30% (95/69 mmHg) and the systole
duration is extended in the cycle. The ejection fraction decreases to a value
of 34% with the ECG trace evidencing slower repolarization, prolonged QRS
duration and QT interval which are all common indicators of the left bundle
block disorder.

Effect of cardiac resynchronization therapy. Cardiac resynchronization
therapy (CRT) is indicated in patients with heart failure evidenced by depressed
ejection fraction and wide QRS complex in the ECG trace. In short, CRT con-
sists of the implantation of a pacemaker which using artificial electrical signals
restores the coordination of ventricles contraction. A common device is the biven-
tricular pacemaker which has three leads implanted, respectively, in the upper
part of the right atrium, in the apex of the right ventricle and in the posterior
wall of the left ventricle. The leads are inserted via the upper vena cava and the
left ventricle is reached passing through the coronary sinus; as a consequence, it
can be implanted only in the regions crossed by its main tributary veins (Fig.
6.5a). On the other hand, the most appropriate positioning would be the latest
depolarized point of the left ventricle whose position neither is known precisely
nor is necessarily reached by a main vein. In Fig. 6.5d,e we show the optimum
implantation point (hereafter indicates as LP1– lead position one), according to
the above criteria, with the lead activation time tuned so to yield the maximum
cardiac output. Fig. 6.6 show the activation potential, the hemodynamics and
tissue contraction after the resyncrhonization therapy which exhibit features sim-
ilar to the physiologic case. Further quantitative confirmation comes from the
standard clinical indicators of Fig. 6.4g–i whose values and time evolution closely
match those of the healthy reference case. In particular blood pressure values
recover to 118/72 mmHg while the ejection fraction raises to 48% with the ECG
trace which regains the physiologic timings.

Sub–optimal left–ventricle lead implantation. For real patients, instanta-
neous maps of the activation potential such as that of Fig. 6.5d are not available
and the exact location of the latest depolarised left–ventricle region is not known
a–priori. Furthermore, the main myocardium veins form a very sparse network
thus the left–ventricle lead is unlikely to be implanted in the best possible posi-
tion and the initial sub–optimal outcome is usually improved by successive tuning
of timings and delays among the atrial and ventricular leads.
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Nevertheless, depending on the particular lead position, the cardiac function
improves only up to a given threshold and in Fig. 6.7 we report the results of a
simulation campaign, in which the left ventricle lead has been implanted in five
possible alternative positions. For each case, denoted by LP2–6, the activation
time of the left ventricle lead has been tuned, by complementary simulations, so
to obtain the best cardiac output similarly to the procedure following real im-
plantation surgery. The data are presented in the same form as for the previous
cases and, in the sake of conciseness, we avoid to show all the maps of activation
potential blood flow and active tension distribution over the tissue; the emerging
picture from the results of Figs. 6.7d–e is that the cardiac function improved
in all cases although the recovery is the smaller the farther is the implantation
point from the optimal position identified by the LP1 case. Similar indication
comes from the ECG traces of Fig. 6.7f when comparing the duration of the
QRS complex and the repolarization time delay with the values of the healthy
reference case.

More quantitative data about the efficacy of the resynchronization procedure
is summarised in Table 6.2 in which volumes, pressures and derived quantities
are computed for all the simulated cases. As the position of the left ventricular
lead is moved from the optimal position LP1 to the suboptimals ones LP2-6,
the end systolic volume increases, thus corresponding to a decrease of the stroke
volume, of the ejection fraction and of the peak systolic pressure.

Discussion

In this paper we have presented a proof–of–concept for the use of a human
heart digital twin to study specific features of the cardiac function; the model
has reproduced the physiologic behaviour when run in healthy conditions while
pathological alterations have emerged after having induced a disorder. Finally,
the same model has predicted the outcome of a resynchronization treatment
aimed at restoring the cardiac function; in order to account for the inherent
uncertainties related to the clinical procedure, different positions of the left ven-
tricle pacemaker lead have been tested and the results have yielded the whole
range of possible outcomes, from full recovery to marginal improvements.

The complete set of simulations presented in this paper can therefore be re-
garded as a proof–of–concept for a small clinical trial aimed at assessing the effect
of uncertainty in the positioning of the ventricular lead of a pacemaker device.
In real clinical practice this would be achieved by collecting data from different
patients and performing a retrospective statistical analysis. However, each pa-
tient is different from the others, therefore when comparing different outcomes
it is practically impossible to separate the effects of the surgical procedure from
the epistemic variability of each individual.

In contrast, the present model produces different cases simply by changing
one or more input parameters which, therefore, can be assigned to form a repre-
sentative cohort of patients in clean, repeatable and controllable conditions.
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Figure 6.5: a, Sketch of the biventricular pacemaker device with the atrial lead
(in red), right ventricular lead (in yellow) and left ventricular lead (in green).
b, Arrangement of the fast conducting structures of the electrical signal in the
heart. The two white arrows evidence the branching of the signal in the Bundle
of His, after the Atrio–Ventricular node. c, The same as a, but with a red cross
indicating the point where the electrical connection for the left side has been in-
terrupted. d, Surface distribution of the activation potential in the myocardium
(at t = 316ms) for a configuration as in panel b, with overlapped the position
of the main veins; the green bullet indicates the optimal point for the lead im-
plantation as it can be reached via the coronary vein and is located within the
polarised portion of the tissue. e, Same configuration as in panel b, with the
position of the three pacemaker leads. Note that in this configuration the atrial
and right ventricle leads operate only as sensors since only the left ventricle lead
is allowed to issue triggering signals.
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Figure 6.6: Comparison of different quantities for healthy (a, d, g), impaired
(b, e, h) and resynchronized (c, f, i) hearts during systole. a–c, Instantaneous
surface distribution of the activation potential (t = 252ms). d–f, Blood velocity
distribution on a planar section cutting the left heart at peak systole (t = 520ms).
g–i, Surface distribution of the tension along the fibres axes at peak systole (force
per unit area, t = 520ms).
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Figure 6.7: a–c, Views of the different possible positions for the left ventricular
lead with a sketch of the main veins arrangement. d, Time evolution of the left
ventricle blood pressure during systole: black solid line for healthy, red solid for
impaired and blue solid for the heart after optimal resynchronization. The dashed
lines represent the other resynchronization cases for different lead positions as
detailed in panels a–c. e, Time evolution of the left ventricle volume during
systole, the colour code is the same as in panel d. f, ECG trace from the two
sensors as in Fig. 6.1a), the colour code and labels are the same as in previous
panels.
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Parameter Healthy LBB LBB+CRT
LP1

LBB+CRT
LP2

LBB+CRT
LP3

LBB+CRT
LP4

LBB+CRT
LP5

LBB+CRT
LP6

LV end diastolic volume (ml) 176 176 176 176 176 176 176 176
LV end systolic volume (ml) 86 116 92 94 97 97 105 111
LV stroke volume (ml) 90 60 84 82 79 79 71 65
LV ejection fraction (%) 51 34 48 47 45 45 40 37
max LV pressure (mmHg) 130 95 120 118 110 109 102 98

Table 6.2: Main cardiac parameters as obtained from the model for the various
healthy, pathological and treated cases. The labeling of the cases is the same as
in figure 6.7.

In fact, clinical trials infer the quantities of interest (QoIs) by comparing the
outcome of alternative treatments on different cohorts of homogeneous patients.
These should include a number of individuals large enough to properly represent
the statistics of the population in turn entailing a random sampling. This is
equivalent to a Monte Carlo analysis (MC), which gauges the size N of the
cohort needed to compute the statistics; since the error in estimating statistical
moments [30] decays as ∼ 1/

√
N , a cohort of about N = 400 patients is needed to

reduce the uncertainty below 5% while it ramps up to N = 10000 for a threshold
of 1%.

When resorting to in–silico trials, however, the features of virtual patients can
be defined on demand and this allows the use of more efficient sampling strate-
gies which ensure a faster convergence than MC. For example, using a variance
reduction technique (such as the Latin Hypercube sampling [69]), the error de-
creases as ∼ C/N1/2, with the constant C ≤ 1 [30]. The converge of the QoIs
statistic can be further improved considering the so called quasi–random sam-
pling strategies, such as the Sobol’ low discrepancy sequence [207]. In this case
the error decays as 1/Nα, with the exponent α in the range [1/2, 1] [74].

It appears that combining a quasi–random method with a moderate variance
reduction technique entails a significant reduction of the number of samples and,
consequently, the size of the virtual patients cohort. For example, with α = 0.7
and C = 0.08, an in–silico study would need N = 50 (N = 500) samples to
estimate QoIs within 5% (1%), rather than N = 400 (N = 10000) of a standard
MC method routinely employed in the clinical practice.

Before concluding this section we wish to point out that the advantages
associated with in–silico trials and the optimal sampling techniques are even
larger when the analysis is focused on rare diseases. In fact, estimating events
with low probability (p ≪ 1) yields a prohibitively slow convergence rate (∼
1/

√
pN for standard MC methods while, using a method like the Subset Simu-

lation [32], which sequentially samples the distribution tails, the error decays as√
(log(p−1)2/N [66]. This implies that, for an uncertainty threshold of ≈ 10%, an

event of probability p = 10−2 needs a cohort of 10’000 patients for MC sampling
and only about 400 with a Subset Simulation approach.
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Methods

Cardiac geometry. The 3D heart geometry including the four cardiac valves
and the main vessels has been built using modeling softwares (Rhinocad, Blender,
MeshMixer, Meshlab) so as to reproduce high-resolution clinical images and med-
ical atlas, where the corresponding lengths and thicknesses are within the normal
ranges reported in Table 6.1. In the left part of the heart, the left atrium (red
chamber in Fig. 6.1c) receives oxygenated blood via the pulmonary veins (orange
veins in the same figure) and is connected to the left ventricle through the mitral
valve which has two leaflets, an anterior next to the aortic valve and the other
posterior close to the lateral myocardium (see Fig. 6.1b). The left ventricle (yel-
low chamber) pumps blood through the aorta causing the three-leaflets aortic
valve (see Fig. 6.1b) to open during systole and to close during diastole. On the
other hand, the right atrium (green chamber in Fig. 6.1c) receives deoxygenated
blood from the superior and inferior vena cava (green veins) and is connected
to the right ventricle through the tricuspid valve that has three leaflets (see
Fig. 6.1b). The right ventricle (blue chamber) pumps blood through the three-
leaflets pulmonary valve (see Fig. 6.1b) towards the pulmonary artery (brown
artery in Fig. 6.1c). The heart tissues are made of fibers which make their elec-
trical conductivities and elastic properties orthotropic. In particular, the muscu-
lar fibers of the ventricular myocardium have a dual-orientation[243, 341], with
directions ranging approximately from +60◦ to -60◦ across the ventricular wall
[244] whereas atrial fiber orientation is uniform within the myocardium thickness
[233], see Figure 6.1c,d.

The Lagrangian mesh used for the structural and electrophysiology solver of
the heart is described by ∼ 5 × 105 cells including the four cardiac valves. The
heart geometry is immerse in a computational box for the hemodynamics of
Lx × Ly × Lz = 10 × 10 × 14 cm3 that is discretized, with an Eulerian mesh of
531×531×751 nodes corresponding to a grid spacing ≤ 190 µm, which is needed
to correctly solve the hemodynamics. A small time step of about 2µs is needed
to advance a single heart beat, which corresponds to 500’000 time steps with a
heart rate HR = 60 bpm.

Fluid-Structure-Electrophysiology interaction (FSEI). The digital twin
of the human heart is based on a multi-physics computational model tailored to
accurately solve cardiovascular flows, which can cope with the electrophysiology
of the myocardium, its active contraction and passive relaxation, the dynamics of
the valves and the hemodynamics within the heart chambers and arteries. These
models are three-way coupled with each other, thus capturing the fully syner-
gistic physics of the heart functioning and the resulting FSEI is here summarized.

Structural solver. The dynamics of the deformable heart tissues is solved using
a spring–network structural model based on the Fedosov’s interaction potential
approach [342]. A 3D solver is used for the ventricular and atrial myocardium
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that are discretized using a tetrahedral mesh, with the endocardium wet by the
blood corresponding to a triangular inner surface. On the other hand, thin mem-
branes as the valve leaflets are discretized through 2D triangulated surfaces. The
orthotropic and hyperelastic nature of biological cardiac tissues is modelled by
a larger elastic stiffness in the fiber direction, êf , than in the sheet, ês, and
sheet–normal, ên, directions and by a nonlinear strain–stress behaviour accord-
ing to a Fung–type constitutive relation, where the strain energy density reads
We = c

2(eQ −1), with Q = αfϵ2
ff +αsϵ

2
ss +αnϵ2

nn being a combination of the Green
strain tensor components in the fiber, ϵff , sheet, ϵss, and sheet–normal ϵnn direc-
tions. The coefficients c, αf , αs, αn have been set so as to reproduce the stress-
strain curves in the fiber and cross-fiber direction measured ex-vivo in different
portions of the cardiac tissue [343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 333].

Electrophysiology solver. The heterogeneous properties of the electrophys-
iology network are captured by resorting to a state-of-the-art electrical model
of the whole heart [334]. Specifically, the cardiac geometry is decomposed into
a set of coupled conductive media having different topology and electrical con-
ductivities: (i) a network of slender bundles comprising a fast conduction atrial
network, the AV–node and the ventricular bundles; (ii) the Purkinje network;
and (iii) the atrial and ventricular myocardium (see Figure 6.1e). The propa-
gation of the cellular action potential in these conductive media is governed by
bidomain equations:

χ

(
Cm

∂v

∂t
+ Iion(s) + Is

)
= .

. ∇ · (Mint∇v) + ∇ · (Mint∇vext),

0 = ∇ · (Mint∇v + (Mint + Mext)∇vext),
ds
dt

= F (s, v, t),

where v and vext are the transmembrane and extracellular potential, χ and Cm are
the surface–to–volume ratio of cells and the membrane capacitance and Is is the
external triggering stimulus initiating the myocardial depolarization placed in the
sino–atrial node. The intracellular, Mint, and extracellular, Mext, conductivity
tensors are set to reflect the orthotropic myocardium electrical properties [334]
and thus depend both on the conductive media and on the local fiber orientation
(Figure 6.1c,d). The set of bidomain equations is solved using an in–house finite
volume library, which provides a suitable approach for solving the electrophysi-
ology equations in complex geometries [334], and it is coupled through the ionic
current per unit cell membrane Iion to three different cellular models (indicated
by the last equation): the Courtemanche model [229] for the atrial myocytes,
the Stewart model [230] for the Purkinje Network and the ten Tusscher–Panfilov
model [188] for the ventricular myocytes. The active muscular tension Fact

n at
the mesh cell is then obtained as a function of the transmembrane potential v
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through the model equation proposed by Nash and Panfilov [353].

Fluid solver. The blood velocity u and pressure p are governed by the in-
compressible Navier–Stokes and continuity equations that in non–dimensional
form read: ∂u

∂t
+ ∇ · (uu) = −∇p + ∇ · τ + f , ∇ · u = 0. (6.1)

In the case of a Newtonian fluid, the viscous stress tensor is given by τ =
Re−1(∇+∇T )u with Re the Reynolds number, whereas non-Newtonian fluids call
for more complex constitutive relations. Blood is a concentrated suspension of
cells, in a Newtonian liquid, the plasma, therefore its overall behaviour is that of
a non–Newtonian fluid owing to the surface tension of the cell membranes on the
Newtonian matrix. In order to account also for this behavior, a non-Newtonian
(shear-thinning, Carreau–Yasuda [354]) blood model has been implemented in
the flow solver even if it has been shown that the non-Newtonian blood features
become relevant only in vessels of sub-millimeter diameter while in the ventricu-
lar flow they produce only minor effects. The governing equations (6.1) are solved
over Cartesian meshes using central second–order finite–differences discretized on
staggered grids, whereas the equations are marched in time using a fractional step
with an explicit Adams–Bashforth method for the nonlinear convective term and
an implicit Crank-Nicolson method for the viscous terms[333, 332]. The no–slip
condition on the moving wet heart tissues is imposed through the instantaneous
forcing f using an immersed boundary technique based on the moving least square
(MLS) approach [355]. In order to provide the hydrodynamic loads as input to
the structural solver for fluid–structure coupling, the pressure and the viscous
stresses are evaluated at the Lagrangian markers laying on the immersed body
surface as Fext

f = [−pfnf + τ · nf ]Af , being Af the area of the triangular face
and n its normal direction. The hydrodynamic loads evaluated at the wet faces
are then transferred to the wet nodes thus obtaining, Fext

n , used in the Newton’s
equation in the next paragraph. In the case of the valve leaflets, both sides of the
tissues are wet by the fluid and the local hydrodynamic force at the wet triangu-
lar surface Fext

f is computed over both the positive n+ and negative n− = −n+

normal directions: Fext
f = [−(p+

f − p−
f )n+

f + (τ+
f − τ−

f ) · n+
f ]Af , where Af is the

area of the triangular face. On the other hand, for closed surfaces, like the ven-
tricle, aorta and atrium, hydrodynamic loads are only computed over the inner
surface.

Coupling and boundary conditions. The contraction and relaxation of the
heart chambers along with the passive motion of the aorta and valve leaflets
result from the dynamic balance among the inertia of the tissues, the external
hydrodynamic forces given by the fluid solver Fext

n , the internal passive forces
coming from the structural solver Fint

n and the active tension computed by the
electrophysiology solver Fact

n : mn
d2xn

dt2 = Fext
n + Fint

n + Fact
n , where mn is the

tissue mass associated with the nth−Lagrangian mesh node and xn its (instan-
taneous) position. The hydrodynamics force is non–zero only on the mesh nodes
belonging to the wet surfaces (namely the valve leaflets and the inner wall of the

196



Chapter 6: GPU accelerated digital twin

heart chambers), whereas the active tension can be non–zero only for the nodes
belonging to the muscular myocardium, i.e. ventricles and atria. Both a strong
and loose coupling approaches have been implemented in the code[333, 332] .

As it happens in IB methods, the heart is immersed in the fluid domain (Eu-
lerian grid) without crossing its boundaries and during the cardiac dynamics
blood can be sucked from the outer volume through the inlets of the pulmonary
veins and superior/inferior vena cava or propelled towards the same outer volume
through the aorta and the pulmonary arteries. However, the heart is just a por-
tion of the whole circulatory system and since the 3D modelling will be limited to
the heart and to the initial tracts of the main vessels, boundary conditions must
be applied at the inlets and outlets of the model, so to account for the resistive,
elastic and inertial features of the missing vascular network. These features are
represented into a lumped parameter network whose description requires inex-
pensive ordinary differential equations (analogous to those of electrical circuits)
[356]. We use a Windkessel with 3 elements to reproduce the dynamics of the
missing parts of circulatory system. and matching its physiologic impedance.

Synthetic ECG. The heart model has been enclosed in the idealized torso
geometry shown in Figure 6.1a, which also indicates the surface locations used
to calculate the ECG. The difference between these two leads examines the car-
diac depolarization along the junction between atria and ventricles (heart vertical
axis), with negative electrical potentials corresponding to electrical wavefronts
moving towards the apex of the heart. The surface potential at the ECG leads,
Vs, can be obtained by solving the electrical potential within the torso coupled
with the cardiac electrophysiology system [357]. Alternatively, in the assumption
of isotropic electrical conductivity in the torso, Vs at a surface position xs and
time t is given by [358]:

Vs(xs, t) = −
∫

Ωheart

∇v(x, t) · ∇
(

1
||xs − x||

)
dx,

where Ωheart indicates the cardiac domain where the electrophysiology bidomain
equations are solved and v(x) is the transmembrane potential at the cardiac lo-
cation x. A spike signal before the P wave and the QRS complex has been added
to the ECG profile to indicate the activation of the atrial and ventricular leads,
respectively.

GPU acceleration. A drawback of the FSEI is that it requires a large com-
putational power implying long time to obtain results. GPUs, however, have
emerged as a convenient platform for high performance computing as they al-
low for unprecedented speed-ups and, consequently, considerable reductions of
the time-to-solution. To this aim, the code has been ported to CUDA-Fortran
[332] and the GPU-accelerated FSEI algorithm can now tackle complex cardiac
simulations with ∼1 billion dofs (including the demanding solution of the Navier-
Stokes equations) within a few hours, thus allowing for running in–silico clinical
trials.
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Abstract

Correlation analyzes are a cornerstone of applied statistics, providing a pow-
erful and intuitive tool for investigating the relationship between variables. The
study of the correlation index and its statistical significance is strongly influenced
by the error measurements on such variables, which are unavoidable in experi-
mental settings, including social and medical studies. The canonical approach to
mitigate measurement errors is to increase the correlation index on the basis of
the error distribution, which may lead to spurious correlations, especially when
working with small data sets. A novel approach is presented here to determine
how robust the analyzed sample is to errors, both in the case that their distribu-
tion is known to the experimenter (forward perturbation index) and in the more
common case of exploratory analyses (inverse perturbation index). Accordingly,
two perturbation indices are defined along with an algorithmic methodology nec-
essary for their calculation, which is based on the propagation of uncertainties
using the Monte Carlo method. The python code used for numerical validations
of the method has been open-sourced.
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7.1 Introduction

In applied statistics and particularly in medical sciences, the study of corre-
lation among variables retains a crucial role for the correct interpretation of the
results. As an example, identifying a strong correlation between two variables
where one is more easier to be measured than the other, would allow to use the
former as a predictor for the latter (see [359, 360, 361]. On a more fundamental
level, determining a proper correlation index (as the Pearson correlation coeffi-
cient, defined as the ratio of the covariance among two variables and the product
of their standard deviations) is a preliminary step of more complex analysis
and multivariate methods (such as General Linear Models, Principal Compo-
nent Analysis [362], Partial Least Squares regression and Canonical Correlation
Analysis [363]). Furthermore, when modeling the joint probability of the param-
eters of a numerical model, the presence of correlations between variables must
be entered by defining an appropriate copula that takes this phenomenon into
account [44, 43], whereas neglecting this dependence can lead to unpredictable
results in subsequent analyzes.

Figure 7.1: Effects of perturbation (orange) on a standard dataset (purple) for
Pearson (r), Spearman (ρ) and Kendall (τ) correlation indices. Panels a), b),
c) show an original linear, parabolic and cubic relationship respectively. In all
the cases described, the attenuation of the index calculated in the presence of an
error can be noted (e.g., Panel a), Spearman ρ decreasing from 0.99 to 0.89 after
the perturbation).

However, in most of the applications, researchers have to deal with data af-
fected by measurement errors, which is intrinsic to every experimental technique
and measurement methodologies, can pollutes the corresponding statistical an-
alyzes. When the dependent variable is affected by error, a reduction in the
statistical power of correlation tests is observed [364]. Viceversa, measurement
errors of the independent variable can lead to different coefficients in regression
models, see [365, 366]. The most marked effect of the presence of measurement
errors in the datasets under consideration results in a bias of the calculated
correlation coefficient [367, 368, 369], which is known since the pioneer work of
Spearman [370]. In particular, a low estimation of the measuring instruments
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reliability [367, 371, 372, 373] or an error on both variables [374, 375, 364, 373]
attenuates the calculated correlation index (as shown in Figure 7.1 for Pearson,
Spearman and Kendall correlation indices).

A peculiarity of correlation analyzes in medical practice and human sciences
is the presence of high measurement errors combined with low sample sizes (of-
ten less than n = 100) [376, 377, 378]. These errors, although often neglected
in studies [379], can lead to erroneously different conclusions between studies
analyzing (different) small datasets [380].

A methodology to correct the attenuation in the correlation index has already
been addressed by Spearman and Rosner for uncorrelated errors [370, 381, 382]
making assumptions on the error distribution and modifying the formula for cal-
culating the correlation indices so as to enforce an increase in the correlation
value obtained to balance the presence of errors. In more recent times, exten-
sions to cases with more complex (correlated) errors have been proposed [374].
These methodologies, however, lend themselves to a fictitious increase in the
calculated index, with values that may exceed 1 [383, 384, 385], and may create
spurious correlations, especially when working on small datasets (e.g. n ∼ 20)
[373]. Therefore, when insufficient information about the error is known, a cau-
tious approach must be applied when using correlation index corrections [367].
A different methodological approach is based on the introduction of confidence
sets obtained through Monte Carlo methodologies [384]. These intervals, calcu-
lated using several numerical repetitions, can be used to compare the results of
different analyses using corrective indices and, thus, to make inferences. This
method is of considerable interest but still little used as it is more difficult to
interpret than corrected indices [386]. Again in a perspective based on the use of
simulations, recent bootstrap-based methods have been developed to determine
a deattenuated correlation with the corresponding confidence intervals [386].

In this work we presents an approach based on Monte Carlo simulations in
line with modern works on de-attenuated correlation indices [384, 387, 386] but,
instead of looking for a method to correct the index once the error is known, a
perturbation index to describe the stability of the analysis results with respect
to the presence of an error on the dataset is introduced. This index is based on
the need to provide a conservative tool, in particular for very small datasets (e.g.
n < 50), which allows to understand whether the correlation analysis performed
is stable in the presence of errors and, therefore, it is not possible to use corrective
methods [367]. The index, is defined by setting the problem as a forward analysis
of uncertainty quantification. Its purpose is to provide easy-to-read information
to determine if the presence of possible measurement errors can alter the corre-
lation analysis made and it can be calculated a posteriori. Section 7.2 describes
the most common types of errors in datasets and their modeling based on the
complete work of [374]. Section 7.3 describes the methodology for integrating the
errors previously described in the calculation of the correlation value. A formal
definition of the correlation perturbation index is then provided. Contextually,
an inverse measure is introduced in order to use a variant of the index even if the
information on the errors is not known to the investigator. Section 7.4 presents
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numerical simulations to experimentally verify the index’s ability to strengthen a
pre-existing correlation analysis. In particular, the effectiveness of the variation
of the sample size, the α level and the type of error considered are discussed. In
Section 7.5 are the discussions with the consequent conclusions.

7.2 Definition of the errors types

Let us consider two correlated random variables X̃ and Ỹ , and let us introduce
a non-reproducible component called the error component (or uncertainty/noise)
that can alter their values. This error can be modeled as a random variable
that will act on the X̃ and Ỹ values in an additive, proportional, or combined
(realistic) way. In this section, we introduce three models of error in uncorrelated
and correlated cases in line with Saccenti, Carroll, Rocke and Buonaccorsi’s
full discussions [374, 364, 388, 389]. A short section is therefore proposed that
summarizes the commonly used distributions to be used to model the error.

7.2.1 Uncorrelated errors
The most simple models for the error are called additive and proportional (or

multiplicative). The additive model defines the error as the difference between
the measurements and the true value, while the proportional one defines the
error as the ratio between the two. Additive errors can be found in relationships
that range from birth infants weight [390] to soil-plant [391] or even in control
engineering [392], whereas proportional error models are instead common in daily
precipitations measurements [393], animals detection [394] or economy [395, 396].
If the measurement process leads to both additive and proportional errors, the
error generated is said to be realistic. Examples of additive, proportional and real
errors are reported in Figure 7.2, where these models are applied to a database
with a strong linear correlation. The proportional error affects more the higher
scores by causing a pronounced spread between the values and a consequent
reduction in the correlation determined between the variables. The models for
the univariate random variables affected by errors therefore lead to consider the
data as a combination between the original random variables (X̃, Ỹ ) unaffected
by errors and the errors E itself. To apply correction of the correlation index,
the error must fulfil additional conditions, e.g. be normally distributed around
zero [374] despite most of the error distributions are non-normal. The proposed
discussion is, therefore, not limited to normally distributed error models. [394,
397, 393].

7.2.2 Correlated errors
Although often simplified to allow for systematic treatment, the measurement

errors found in the real world are often correlated. The correlation between two
variables is common in clinical measurements [398], examples are the indicator
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Figure 7.2: Effect of additive (panel a), proportional (panel b) and real error
(panel c) on the variable Ỹ of a dataset characterized by a strong linear correla-
tion (reported in purple). While the additive error acts uniformly on the values,
the proportional and real errors affect the higher values more.

dilution technique for the estimation of cardiac output [399, 400], metabolic
analyzes [401], or studies of epidemiology [402]. More generally, the correlation
among errors occurs every time the data is treated similarly, measured with
similar tools or, more commonly, the data are repeated measurements of the
same dataset. [403].

7.2.3 Error notation
Considering both the correlated/uncorrelated errors and the proportional and

additive cases, we obtain the general realistic error presented by Saccenti et al.
[374] based on the uncorrelated realistic error discussed by Rocke et al. [388]:X = X̃ · (1 + EP

X + EP
X,C) + EA

X + EA
X,C

Y = Ỹ · (1 + EP
Y ± EP

Y,C) + EA
Y ± EA

Y,C

where all errors are assumed to be independent of each other (proportional
rispetto ad additive) and independent of the original values (X̃ and Ỹ ). EP

X ,EP
Y

are the uncorrelated proportional errors for the variables X̃ and Ỹ , while EA
X ,EA

Y

are the uncorrelated additive ones. The correlated errors EP
X,C ,EP

Y,C ,EA
X,C ,EA

Y,C

are the correlated errors, with, the ± symbol modelling the sign of errors corre-
lation.

In this study, we investigate the (unknown) error-free variables, which, based
on the equation above, are denoted as follows:X̃ = (X − EA

X − EA
X,C)/(1 + EP

X + EP
X,C)

Ỹ = (Y − EA
Y ∓ EA

Y,C)/(1 + EP
Y ± EP

Y,C)
(7.1)

Specifically, given a study dataset {(xi, yi)}n
i=1 affected by errors {(εi

x, εi
y)}n

i=1,
we would like to study the dataset without the errors {(x̃i, ỹi)}n

i=1. Not knowing
εi this can only be done in an approximate manner, hence the need to introduce
the perturbation index.
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7.2.4 Errors distribution based on maximum entropy prin-
ciple

Using modified indices to account for the presence of errors that pollute the
measurements requires very strong assumptions about the distribution of these
errors (i.e., they are typically considered normal errors with zero mean). In clin-
ical and applicative practice, these assumptions are often missing, as errors have
non-standard distributions [373]. Unfortunately, these input PDFs are usually
not available and they must be reconstructed on the basis of known informa-
tion [404, 23]. In such cases, in information theory, the PDF shape matching
the statistical moments available is typically selected as the one maximizing the
Shannon entropy (or its continuous extension) [51, 52].

knowledge maximum entropy
distribution notation

support [a, b] Uniform U([a, b])
support [0, 2π) [periodic]
mean µ
variance σ2

Von Mises V onMises(µ, k = h(σ))

support (−∞, ∞)
mean µ
variance σ2

Normal N(µ, σ2)

support (0, ∞) [positive]
mean µ
variance σ2

LogNormal Lognormal(µ, σ2)

Table 7.1: Table describing the four most common maximum entropy distribu-
tions in practical applications as experimenter knowledge varies. Where k = h(σ)
is the solution of the equation σ = 1 −

∫ 2π

0 eixf(x|µ,k)dx∫ 2π

0 f(x|µ,k)dx
where f(·) is the density

function of the Von Mises distribution.

Table 7.1 shows the 4 most common distributions used in statistical applica-
tions. If only the support is known and is limited between a and b, the maximum
entropy distribution is the uniform one U([a, b]). If the support is periodic (e.g.
[0, 2π)), once the mean and the variance is known, the Von Mises distribution is
the least-informative default. If the support is unbounded and both the mean µ
and the variance σ2 is known, the maximum entropy distribution is the normal
one N(µ, σ2). Viceversa, if the support is positive (e.g. (0, ∞)), the Log-Normal
distribution is the maximum entropy one. It should be emphasized that in several
applicative settings, particularly in medical and human science fields, the only
known information regards the boundaries of the support (e.g. many accuracy
ranges of measuring instruments are provided in the form of maximum/minimum
accuracy calculated in the evaluation), and therefore the corresponding optimal
distribution according to the maximum entropy principle is the uniform distri-
bution and not the normal one.
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7.3 Perturbation indices

Figure 7.3: Scheme of the definition of the forward and inverse perturbation in-
dices. The problem is seen as a forward/inverse analysis of uncertainty quantifi-
cation, for which the uncertain parameters are the significance level α, the error
on the dependent variable and the error on the independent variable. These un-
certain parameters are applied to the datasets {(xi, yi)}n

i=1 (defined a priori) on
which the correlation analysis is performed. Using a Monte Carlo methodology,
this uncertainty is propagated and an appropriate perturbation index is defined
based on the correlation tests passed/failed at the α level.

In this section we define the forward and inverse perturbation indices, where
the latter are obtained by structuring the problem as an uncertainty quantifica-
tion analysis, see Figure 7.3. The uncertain parameters of the problem are the
level of significance of the correlation test alpha, along with the type and the
amount of estimated error present on the datasets under consideration. These
uncertain parameters affect the model, which consists of the two (fixed) datasets,
the correlation index chosen and the test applied to determine the presence or
absence of a statistically significant correlation. It should be noted that the un-
certainty does not lie in the datasets, but in the amount and types of error that
are supposed to corrupt the data available.

The output of the problem is the result of the correlation test at a signifi-
cance level α (positive if the correlation test detects statistical significance of the
presence of correlation at the level α on the datasets {(xi, yi)}n

i=1 for the defined
error). Based on the relationship between the amount of perturbation and the
test results, the forward perturbation index and the corresponding inverse index
can be defined.

The forward index is the probability that the dataset perturbed with the
given error distribution satisfies the test at the α level. The inverse index is
the minimum amount of error that can be applied to the dataset, such that the
probability that the dataset perturbed with the given error distribution pass the
test at the α level becomes less or equal to a threshold β.
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7.3.1 Forward index definition
Given the random variables affected by the errors that we are studying (X, Y )

and the corresponding sample {(xi, yi)}n
i=1, a canonical analysis of correlation

aims to test a null hypothesis (i.e. there is no monotone correlation, Spearman
ρ = 0) for a given significance level α. The correlation between two variables can
be investigated using different correlation indices, like the Pearson r, the Spear-
man ρ, and the Kendall τ . However, each of the corresponding tests requires
different assumptions on the distribution of (X, Y ). In particular, to test the
presence of linear correlation (Pearson), (X, Y ) has to follow a bivariate normal
distribution. This assumption is often violated with low sample numbers, also
because the error (both actually present and modeled) does not follow a normal
distribution [373]. It should be emphasized that the (normal) distribution of the
sample after applying a proportional or realistic error loses its normality even in
the case of normal errors [405, 374]. Consequently, although the methodology
does not depend on the chosen correlation index, the analysis is set up using
only the Spearman index, which does not require the normality of (X, Y ) [406].
Furthermore, the Spearman index is a good candidate as it is more inferentially
robust than Pearson r [407], and also applicable to non-continuous ordinal data
(common in psychology and human sciences [408, 409]

Given a dataset {(xi, yi)}n
i=1 and a significance level α we want to define the

forward perturbation index for a given error distribution. The latter is a mul-
tivariate distribution E∗ := (EA

X ,EP
X ,EA

Y ,EP
Y ,EA

C,X ,EP
C,X ,EA

C,Y ,EP
C,Y ) as described

in Section 7.2, which admits a probability density function φE(ε). The index is
defined as the probability that the correlation test is passed (at level α) consid-
ering the error distribution on each element of the dataset. Therefore, we can
introduce the multivariate random variable (E∗)n := (E∗, · · · ,E∗), whereas each
entry is independent from the others and describes the error on the ith element of
the dataset. This variable admits a density φ∗

E(ε1, · · · , εn) and the perturbation
index is defined as:

Iα({(xi, yi)}n
i=1,E

∗) :=
∫∫

Testρ({(x̃i, ỹi)}n
i=1, α)φ∗

E(ε1, · · · , εn) dε∗
1 · · · ε∗

n

where the dataset {(x̃i, ỹi)}n
i=1 is defined as a possible original dataset without

the errors realization (ε∗
1, · · · , ε∗

n) (as described in Section 7.2); and Testρ(·, α) is
the test, which can return values 1 (the null hypothesis of no monotonic corre-
lation is rejected) or 0 (the null hypothesis cannot be rejected) at a significance
level α the Spearman’s rank correlation coefficient.

Increasing the amount of errors affects the original dataset leading to a re-
duction in the value of the correlation coefficient and, therefore, of the ability of
the test to detect an actual correlation (the so-called attenuation phenomenon
[370, 381, 382]). However, the decay rate of the correlation index is strongly
influenced by the distribution of the variables (X, Y ), the sample size N and the
type and distribution of the error. Therefore, some datasets will be more robust
to the presence of errors while others will lead to marked changes in the pertur-
bation index Iα({(xi, yi)}n

i=1,E
∗) for smaller perturbations of the available data.
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The index, expressed as a percentage, is thus an indicator of the robustness of
the original correlation analysis carried out.

As an example, given a sample {(xi, yi)}n
i=1 with a statistically significant

monotone correlation index ρ = 0.84 at a level α = 0.2. Given a uniform propor-
tional error of 10 % on both variables (e.g., EP

X = EP
Y = U([−0.1, 0.1]) ): an index

I0.2 = 100% implies that the amount of error considered is unable to invalidate
the statistical analysis performed. On the contrary, I0.2 = 15% means that the
error considered significantly modifies the tests (e.g. in 85% of the perturbed
cases, the correlation test leads to a negative result). The value thus calculated
depends on the significance level chosen. A result (ρ = 0.82 significant at α = 0.2,
I0.2 = 74% while I0.5 = 98%) can be read as data showing a strong monotonous
reaction, not excessively stable to perturbations but which, by accepting a lower
significance in order to understand the E∗ errors in the analysis, is nevertheless
shown to be present.

Algorithm 1: Forward perturbation index algorithm
Result: Forward perturbation index Iα

Given the datasets {(xi, yi)}n
i=1 ;

Define error distribution E∗ ;
Choose the significance level α ;
Define the maximum iteration M ;
Initialize test passed = 0 ;
while (converged == FALSE and j ¡M) do

# Sample L times the n-dimensional space of the error:
{(ε∗

i )n
i=1}L

k=1 ∈ (E∗)n ;
for k=1:L do

for i=1:n do
# Define the new dataset:
x̃i = (xi − εA

X,k,i − εA
X,C,k,i)/(1 + εP

X,k,i + εP
X,C,k,i) ;

ỹi = (yi − εA
Y,k,i − εA

Y,C,k,i)/(1 + εP
Y,k,i + εP

Y,C,k,i) ;
end
if correlation test({x̃i}n

i=1,{ỹi}n
i=1, α)==TRUE then

test passed++ ;
end
j++ ;

end
Iα = test passed/j ;
converged = convergence test(Iα);

end

Algorithm 1 details the procedure to calculate the forward perturbation index
Iα(·). Given the dataset formed by the two samples {xi}n

i=1 and {yi}n
i=1 whose

index is to be evaluated, the distributions of the errors are defined as described
in Section 7.2: E∗ := (EA

X ,EP
X ,EA

Y ,EP
Y ,EA

C,X ,EP
C,X ,EA

C,Y ,EP
C,Y ). Where the distri-
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bution could include only the additive or proportional error on one or both the
variables. The α significance level is then fixed for the analysis (e.g. coinciding
with the α level used in the correlation test used in the canonical correlation anal-
ysis), as well as M (the maximum number of iterations of the algorithm). Each
step of the algorithm involves sampling the error space {(ε∗

k,i)n
i=1}L

k=1 ∈ (E∗)n

L-times, and as described by Equation (7.1), the error defined above is then
removed from the dataset {(xi, yi)}n

i=1, resulting in the new dataset {(x̃i, ỹi)}n
i=1.

The correlation test is then carried out between the two datasets {x̃i}n
i=1, {ỹi}n

i=1
of significance level α. If the test is passed, it means that the amount of error
considered in step kth is not such as to invalidate the statistical significance of the
correlation determined and the counter test passed, which is the number of times
that the test is passed, is incremented. Otherwise, the dataset has remained
stable. After performing this procedure L times, the index Iα is calculated as
the ratio between the number of times the test is passed and the total number
of simulations. This approach is a Monte Carlo integration of the probability of
passing the test with respect to the space of possible perturbations (errors) of
the data set. At the same time, the reliability of the result obtained is deter-
mined (e.g., if the method has reached convergence/the estimator of the index
is reliable) as described in the next section. If the method is convergent, the
perturbation index is returned. Otherwise the error space is sampled another L
times and the procedure is iterated until the maximum M .

Assessing the convergence of the sampling methodology and defining a proper
stopping criterion is essential for the algorithm because the ability to halt the
simulations when sufficient accuracy has been attained permits reducing the
computational burden of Monte Carlo. A method that works for crude MC is
a sampling-splitting bootstrap methodology [73] that can be used to assess con-
vergence for the mean value of a function of the sampled data which, in our
case, it is exactly the perturbation index evaluated by the Algorithm 1. The
accuracy indicator is the standard deviation of the estimated perturbation Iα,
which after n sampling steps is randomly split in m-groups. The perturbation in-
dices are calculated for every group leading to m values {Iα(·)i}m

i=1. The internal
single-n-run-set based accuracy indicator for Iα(·) is [410, 70]:

std(Iα(·)) = stdm ({Iα(·)1, · · · , Iα(·)m})√
m

(7.2)

where stdm is the standard deviation of these m values. The algorithm is there-
fore iterated until the convergence test (i.e. std(Iα(·)) < fixed threshold) is
passed. The result is then collected without evaluating other samples. The value
of m influences directly the computational cost. Lower value of m requires less
simulation. While higher values of m are advocated in literature [69, 387] even
smaller values of m ∼ 5 can lead to accurate results [73].
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7.3.2 Inverse perturbation index
In practical applications the probability distribution of the errors is not avail-

able to and it is not possible to define the forward index as above. We therefore
propose the definition of an inverse perturbation index which is based on mod-
eled error family, such as Gaussian, uniform, additive, or proportional

Given the dataset {(xi, yi)}n
i=1 and the significance level α of the correlation

test, we first introduce the maximum admitted perturbation β ∈ [0, 1]. The lat-
ter is the maximum permissible perturbation value (given by the forward index
introduced) on the test value (i.e. the QoI). A value of β = 100% means that all
tests must be passed, while a value of β = 90% implies that up to 10% of failed
tests are considered acceptable. The range of possible standard deviations of the
errors [0, σmax] is then defined (i.e. the maximum error expected on the dataset),
where σmax = 0 describers a dataset with no error, while a higher σmax leads to
more perturbed dataset. The error distribution over the dataset (dependent on
its standard deviation) is reported as E(σ) and the inverse perturbation index is
defined as:

Iα,β({(xi, yi)}n
i=1) := max (σ ∈ [0, σmax] : Iα ({(xi, yi)}n

i=1,E(σ)) ≥ β)

Intuitively, the inverse perturbation index is the amount of error (expressed by
its standard deviation σ) admissible before the number of times the correlation
test at α level fails falls below the β threshold (the maximum admissible pertur-
bation). The error E(σ) can be either additive or proportional and it is applied
to a single variable (X or Y ). This choice leads to an error which is dependent
on only one parameter (σ), and therefore it is easier to define the inverse pertur-
bation index. As a remark, it is known from the literature that an increase in the
amount error leads to a reduction in the estimated correlation [370, 364, 374]. As
a consequence, the index Iα is monotonic to the respect of σ from which follows
the choice of defining the inverse index as a maximum.

It should be noted that a choice of β = 100% means that the index is the
minimum σ such that there is at least one perturbation in the data set that
leads to a negative correlation test. Therefore, it can also be interpreted as the
maximum amount of perturbation before the correlation vanishes. To further
improve the interpretability of the index, the error distribution can be chosen as
uniform.

Several strategies can be used to calculate the inverse perturbation index.
However, for each candidate σ, the evaluation of the function

Iα ({(xi, yi)}n
i=1,E(σ))

is computationally very expensive (it is the calculation of a direct index). In-
stead of using a brute force approach (i.e., subdividing the interval [0, σmax] and
evaluate the function Iα(·) several hundred times), this problem can be rewritten
as a root-finding problem, introducing the function:

g(σ) = Iα ({(xi, yi)}n
i=1,E(σ)) − β
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which can be solved by using one of the classical iterative methods (e.g. New-
ton, bisection, secant, etc.) to reduce the amount of calculation compared to
the brute-force approach. In this work we used the Brent’s method, which is a
hybrid root-finding algorithm that requires only very few evaluations of g(σ).

The Brent method can be adapted to the particular structure of this problem
by using it first with a low-fidelity version of the forward index and then by refin-
ing the result with the high-fidelity one (multilevel Brent’s method). Indeed, by
setting a less restrictive condition on the adaptive convergence parameter, each
evaluation required by Brent’s method is much less computationally expensive
(requiring less simulation to reach convergence). This low fidelity method can be
applied to obtain a first rough estimate of the root/inverse index rootLF and the
high-fidelity version of the method itself (i.e., the one with no downgrade on the
adaptive convergence parameter) can be sequentially applied using as a starting
interval [((1 − s) · rootLF ), s · σmax + (1 − s) · rootLF )] where s is a chosen scaling
parameter. When the root is close enough, Brent’s method no longer exploits
bisection method but the secant one to approximate the result with great speed.
Furthermore, obtaining the first estimate of the root rootLF can be computa-
tionally less onerous than one single evaluation of the direct method without the
adaptive parameter downgrading.

7.4 Results

These methodologies have been tested on some artificial dataset to better
control the performance of the index. The code is written in Python 3.6.7 [411,
412] and released under the MIT license, available at GitHub repository:

https://github.com/GDelCorso/PerturbedCorrelationIndex.git

The simulations are performed on a single processor (Intel(R) Pentium(R) Silver
N5000 1.1GHz) and the computing time reported here are therefore indicative of
a common laptop so to underline as the method proposed is fast to be run event
without recurrign to high performance computing.

As shown in Figure 7.4a), dataset (C1) (correlated-large) represents two cor-
related variables (Spearman index r = 0.93, p = 3.8 · 10−9) with medium-high
sample size (20). Dataset C2 (correlated-small) is a subset of the previous one
(10 elements), the correlation is therefore always present but statistically less
relevant (Spearman index r = 0.91, p = 2.0 · 10−4). Viceversa, dataset C3
(uncorrelated-large) is a set of 40 samples whose variables are linked by a hyper-
bolic relationship (therefore not monotone). However, with a more permissive
threshold it is possible to determine an apparent monotonous relationship be-
tween the variables (Spearman index r = 0.33, p = 3.6 · 10−2): this dataset
therefore allows to assess the method in the presence of fictitious correlations.
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Figure 7.4: Panel a) shows the three different datasets: (1) correlated-large (red),
(2) correlated-small (green), and (3) uncorrelated-large (blue). Index conver-
gence, plotted against a reference solution calculated with 60000 simulations, is
shown in panel b). Panel d) shows the corresponding values of the convergence
index, highlighting the stopping threshold (0.0125) for the three datasets. Panel
c) underlines the dependence on the α significance level of the forward index.
The perturbation is applied on the Y variable of the (1) correlated-large dataset
and the error is additive and uniform.

7.4.1 Forward algorithm convergence

The forward methodology involves the execution of several thousand simu-
lations to obtain an estimate of the proposed index. Given the low speed of
convergence of the Monte Carlo methods for the approximation of integral quan-
tities (order O(1/

√
n)), Figure 7.4b shows the forward indices as the number of

simulations increases. The simulations are performed by applying a Gaussian
proportional error without bias N(0, 0.5) to the three datasets and the horizon-
tal reference consists of the solution calculated with 60000 iterations. As can be
seen from the figure, after a first transient of the order of a few thousand cases,
the solution approaches the limit value. In accordance with the convergence the-
orems, for over 10000 simulations, the values are approximated with an accuracy
of less than 1%. Given a negligible code initialization cost, 10000 simulations
take 46 seconds on the smallest dataset and 55 seconds on the largest.

Figure 7.4d) shows the corresponding values of the adaptive convergence index
as the number of simulations increases, where the convergence index is calculated
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on M = 10 subsets per Mmean = 5 times and making the average to reduce the
presence of fluctuations that can lead to an early stop. The graph also high-
lights the number of simulations required to bring the index below a threshold of
0.0125. The comparison of these data with Figure 7.4b), shows that even with a
small number of simulations the results are significant.

Given the definition of the index, it is expected that as the α level of the test
decreases (i.e., requiring stronger statistical evidence for the presence of corre-
lation) the index will be more sensitive to perturbations. The same behavior
occurred for all the simulations carried out, as reported for example for dataset
1 by applying a uniform additive error U(·, ·) in Figure 7.4c): as the α level is
reduced, the index become unstable. A minor perturbation is therefore sufficient
to lower the index below 100 % (σ = 0.75 for α = 0.05 while σ = 0.35 for
α = 0.001).

7.4.2 Forward perturbation index

Figure 7.5: Forward perturbation index (α = 0.05) for different error distribu-
tions (Gaussian, Uniform), error type (additive in panel a and proportional in
panel b), and datasets ((1) correlated-large in red, (2) correlated-small in green,
and (3) uncorrelated-large in blue) by varying the standard deviation of the error
(σ). The error is applied to the dataset variable Y.

Figure 7.5a shows the experiments (α = 0.05) for additive errors on the for-
ward perturbation index at varying Y error (Gaussian, Uniform) and dataset type

212



Chapter 7: MC correlation tests

((C1) correlated-large, (C2) correlated-small, (C3) uncorrelated-large), whereas
the same analysis for proportional errors is reported in panel b). For both ad-
ditive/proportional errors, it can be verified that the stable datasets (red and
green) are less affected by perturbations. The proportional error has a greater
impact on the dynamics which is not surprising since the datasets are values of
the order of a few units (Figure 7.4a)), the absolute value of the proportional
error is much greater than the additive error. As a remark, there is a minor dif-
ference in the effect of the type of distribution (uniform or Gaussian): for higher
values of the perturbation (σ > 0.5, panel b) the uniform variable has a greater
impact on the dynamics than the Gaussian one (lower index value), especially for
stable datasets (red and green). It is interesting to observe how, for both panels,
the index remains stably at 100% for stable datasets (red and green) while at the
slightest disturbance the dataset with the fictitious correlation (blue), the value
falls well below 95%. In particular, for the dataset with strong correlation and
fairly high numerosity (red), the additive perturbations up to σ = 0.75 or pro-
portional up to σ = 0.25 do not lead to any variation. The choice of determining
the maximum admissible perturbation such as to keep the forward index equal
to 100% is therefore interesting (inverse analysis, β = 100%).

7.4.3 Inverse perturbation index

case index case index
[C1] correlated - large
σmax = 0.2
EP

Y = U(·, ·)
-

[C2] correlated - small
σmax = 1
EA

Y = N(0, ·)
Iα=0.05,β=0.99 = 0.20

[C1] correlated - large
σmax = 1
EP

Y = U(·, ·)
Iα=0.05,β=0.99 = 0.26

[C2] correlated - small
σmax = 1
EA

Y = U(·, ·)
Iα=0.05,β=0.99 = 0.21

[C1] correlated - large
σmax = 2
EP

Y = U(·, ·)
Iα=0.05,β=0.99 = 0.26

[C2] correlated - small
σmax = 1
EA

X = N(0, ·)
Iα=0.05,β=0.95 = 0.27

[C1] correlated - large
σmax = 2
EP

Y = U(·, ·)
Iα=0.05,β=0.95 = 0.33

[C2] correlated - small
σmax = 1
EP

X = N(0, ·)
Iα=0.05,β=0.95 = 0.05

[C1] correlated - large
σmax = 2
EP

Y = U(·, ·)
Iα=0.05,β=0.90 = 0.37

[C3] uncorrelated - large
σmax = 1
EP

X = U(·, ·)
Iα=0.10,β=0.95 = 0.02

[C1] correlated - large
σmax = 2
EP

Y = U(·, ·)
Iα=0.05,β=0.80 = 0.43

[C3] uncorrelated - large
σmax = 1
EA

Y = N(0, ·)
Iα=0.10,β=0.95 = 0.10

Table 7.2: Table of inverse indices calculated on different datasets and with
different parameters (α, β, σmax). The error type is described using the previously
introduced formalism EP

X ,EA
Y are a proportional error on X and an additive error

on Y respectively.

The results of the simulations for the inverse indices using the same datasets
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(C1 correlated - large, C2 correlated - small, and C3 uncorrelated - large) are
shown in Table 7.2 for different choices of σmax and error type and distribution.
The simulations are carried out using a first low-fidelity run with maximum
number of simulations 1500 and adaptive parameter 0.01. The high-fidelity sim-
ulations are instead carried out with maximum number of simulations equal to
60000, the adaptive parameter set as 0.001, on the interval reduced by a factor
of 80% centered around the low fidelity result. The median of the number of
low-fidelity runs performed is 14, while the median of the high-fidelity ones is
8. The CPU time of the entire low fidelity procedure is less than the execution
time of a single high-fidelity run and the average execution time of the entire
procedure is approximately 20 minutes. The first three simulations (column 1,
lines 1-3) show the effect of the interval to be explored on the index obtained.
In the first case the maximum interval [0, σmax] is not wide enough to identify
a sufficient perturbation and therefore the result is null. The second and third
simulations return the same value, as for the definition of the index, a greater
extension of the σ explored must not lead to a different result. The remaining
three simulations (column 1, lines 4-6) show the behavior of the index as the
β threshold decreases (95%, 90% and 80% respectively). Reducing the β value
means determining the perturbation such as to induce a variation in (1 − β)
cases. Therefore decreasing β values require an ever greater value of σ before
inducing a sufficient effect on the ensemble (0.33, 0.37, 0.43 respectively). The
difference in the form of the error distribution is appreciable in simulations 1
and 2 of the second column, where the same maximum σ = 1 and type of error
(additive error on Y) is considered, but in the first case the variable is Gaussian
while in the second it is uniform. This leads for the first case to an inverse index
of 0.20, while in the second one it is 0.21. Simulations 3 and 4 of column 2 show
the difference in the impact of an additive variable (index 0.27) compared to a
proportional, where already a value σ = 0.05 brings the forward index below
the threshold of 0.95. Finally, the latest simulations (5 and 6 of column 2) show
the ability of the inverse index to determine the instability of a set with low
correlation. Indeed, even selecting a much more permissive alpha (α = 0.10),
the minimum perturbation (only 0.02 for the proportional uniform case and 0.10
for the Gaussian additive case) leads to a marked variation .

We observe that for an exploratory analysis of the dataset reduced fidelity sim-
ulations can be performed in a very short time (N ≈ 10000, adaptive parameter
≈ 0.01).

7.5 Discussion and conclusion

A methodology based on direct error propagation using Monte Carlo strategies
was presented in order to integrate possible measurement errors (either additive,
proportional, or real) in a correlation study. The method yields to a forward
and an inverse perturbation indices, with the first index evaluating the impact
of a known error distribution on the correlation of a dataset, whereas the second
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one allows to estimate the stability of the dataset (with respect to a correlation
analysis) when the amount of the error is not known but only its distribution.
It should be noted that the proposed perturbation indices complement the well-
established Spearman ρ as they increase the strength of a previously performed
analysis by assessing the stability of the correlation analysis to perturbations.
The proposed algorithm to compute these indices is based on a sampling mech-
anism to minimize the number of computing steps and an adaptive method to
evaluate the convergence of the procedure. The indices were tested numerically
on some representative problems and the corresponding code was made as open
source.

This work is therefore to be considered as an integration of an already flour-
ishing literature on the analysis of measurement errors (and their calibration
[413, 414]), corrections to classical indices [374, 382, 386] and Monte Carlo meth-
ods for probability and UQ estimation [404, 23, 415]. While corrective methods
infer the exact value of the correlation index by increasing the one obtained taking
into account errors, our method conservatively proposes to determine the effec-
tive stability of the correlation analysis carried out. On the other hand, when
the investigator can structure a two-step analysis to both accurately estimate
the error and then assess the correlation, other more advanced methodologies
are preferable [416, 417, 418, 419, 415, 420]. Furthermore, in the event that the
population under examination follows particular distributions (e.g. Gaussian)
and has a high sample size, it is possible to determine analytical formulations
of the proposed indices, making the introduced Monte Carlo methodology su-
perfluous. Finally, it should be noted that the proposed indices are conservative
and therefore have more the purpose of confirming a correlation highlighted on
a small sample than to hypothesize a correlation present [382, 374].

The natural development of this work concerns a systematic application of
the indices to application contexts in which the presence of an error is known
(e.g., social sciences, exploratory analyzes with a reduced number of data, cor-
relation between scores and psychological tests). Having defined the algorithmic
procedure for the determination of the indices also allows to structure a com-
plete analysis of uncertainty quantification to determine how the sample size,
the family and the entity of the errors and the distributions of the data can alter
a correlation study (global sensitivity analysis using Sobol’ indices [205, 309]).
The inverse index should be extended to the case that both variables are af-
fected by error. Furthermore, in some practical applications the interest is not
related to the presence of correlation (i.e., correlation test H0 : r = 0) but rather
whether the correlation is greater than a certain threshold (i.e., correlation test
H0 : r ≤ r0) [421, 422].
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Abstract
The application of in silico models to real problems is often limited by the

presence of uncertainties. Differences induced by individual variability or the
presence of random phenomena intrinsic to the model must be properly investi-
gated by means of an uncertainty quantification analysis. The main purpose of
most uncertainty quantification applications is to perform a sensitivity analysis,
i.e. to determine which of them has the greatest impact on the model. How-
ever, a sensitivity analysis is only accurate when the sources of uncertainty are
estimated correctly. This assumption, however, is often unfulfilled in practical
applications, where only partial information about these distributions is avail-
able. In this paper, we present an index to assess the robustness of the sensitivity
analysis on a perturbation of the input uncertainties, which is expressed in terms
of the statistical moments of the uncertainty distributions. A direct algorithmic
procedure (nested Sensitivity Analysis) for calculating this robustness sensitivity
index, along with an alternative approach based on metamodelling that is more
suitable for uncertainty quantification analyses on computationally expensive
models.

217



Chapter 8: Robustness index

8.1 Introduction
The evolution of mathematical modeling associated with an increase in com-

putational power has made possible to study how model uncertainties affect
the model reults. Indeed, all models used as digital twins of reality contain
uncertainties relating to unknown properties of the parameters (epistemic uncer-
tainties), or quantities which by their nature are intrinsically random (aleatoric
uncertainties). The corresponding research branch is called uncertainty quantifi-
cation (UQ) and deals with two main issues: how to interpret a non-deterministic
analysis (e.g. containing uncertain or random elements) and how to do it in a
computationally efficient way. The related UQ strategy depends on the problem
at study which may include calibrating the uncertain parameters of a model (un-
certainty inverse calibration), determining the propagation of the uncertainties
on the model results (uncertainty propagation) or, even more, determining what
are the most relevant parameters (sensitivity analysis).

epistemic
uncertainty

model
uncertainty

parametric
uncertainty

aleatoric
uncertainty

inputs model

PDF
moments
(variance)

probability
of failure

sensitivity analysis

parameter prioritization

trend identification

interaction quantification

QoI

output

Figure 8.1: Sketch of a sensitivity analysis. Uncertainties (epistemic and
aleatoric) both affect the inputs and the model itself. Appropriate quantities
of interest (QoI), extracted from the output, are then used to study the effect
of uncertainties. In particular, it is determined which of the parameters most
influences the output.

Referring to Figure 8.1, in a sensitivity analysis the model is described by
a family of uncertain inputs (which are influenced by both random and para-
metric uncertainties) and a numerical model, whose parameters are also affected
by uncertainties. The output of the model is used to define some experimental
quantities of interest (QoI), whose probability distribution (PDF), moments or
probability of failure are studied. Sensitivity analysis studies the relationship
between uncertainties and the QoIs [102]. This relationship can serve several
purposes: parameter prioritization (i.e., identify the input parameters that can
most influence QoI [423]), trend identification (i.e., whether an increase/decrease
in a parameter leads to an increase/decrease in QoI [424]) and interaction quan-
tification (i.e., understand if the variation of the QoI is the direct sum of the
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individual effects of the variations in the parameters [92]). The central objective
of the sensitivity analysis remains, however, the subdivision of the inputs into
two families, those whose uncertainty influences the result (QoI) from those that
can be neglected in subsequent analyses (model reduction).

In recent times, an extensive literature has developed on various indices for
sensitivity analyses, raging from the elementary One-at-a-time Sensitivity Index
[87] to the most complex variance based sensitivity indices like the Sobol’ in-
dices [85, 100]. It is important to emphasise that the optimal index to be used
depends on the problem at study [87]. In particular, in order to reduce the
computational cost of sensitivity analyses, which can often be prohibitive [425],
the use of metamodels that approximate the real problem at a lower cost has
become increasingly popular, allowing the analysis to be carried out with fewer
simulations. A metamodel, also called surrogate model, is a simplified numerical
duplicate that emulates the input quantity relation of interest of the original
problem. Examples are Kriging (or Gaussian modelling) [39], polynomial re-
gression, Multivariate Adaptive Regression Splines [426] or Polynomial Chaos
expansion [139].

full knowledge 
on inputs and parameters

full knowledge 
on uncertainties

partial knowledge 
on uncertainties

limited 
knowledge local/semilocal SA

nested SA

global SA 

deterministic approach

knowledge on inputs method

Figure 8.2: Scheme of the relationship between the knowledge available about
the uncertainty of the inputs and the method of analysis to be used. This study
focuses on when knowledge is partial (i.e., error distributions are known but are
approximate or cannot be guaranteed to be accurately estimated) and proposes
an analysis technique called Nested Sensitivity Analysis.

Despite the presence of increasingly sophisticated techniques to reduce the
amount of data needed for a proper sensitivity analysis, the quality of informa-
tion on uncertainties available to the investigator remains a fundamental pre-
requisite for obtaining reliable results. According to Figure 8.2, the amount of
knowledge on inputs influences the choice of technique to be used. When only
the reference values of uncertain quantities (i.e., minimal knowledge) are known,
the model parameters can be only varied locally, i.e. close to their nominal value,
such as in One-at-Time (OAT) local analyses [87] or in the adjoint method [427].
Detailed information on the distributions of uncertainties allows to explore the
problem in more detail (global sensitivity analysis, [85]) by analyzing the inter-
actions between variables and their effect on the QoI.

However, in many cases there is a lack of knowledge on the uncertainty distri-
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butions, such as in several biomedical and engineering applications where only
the range of variation of a parameter is known (e.g. tolerance range provided by
the manufacturer) or only mean and standard deviation of the PDF are reported
[26, 27, 305]. This inaccuracy in the definition of uncertain quantities can alter
the results of the sensitivity analysis and it is thus important to assess the ro-
bustness of the sensitivity analysis to a modification of the input uncertainties.

In this work, an algorithmic non-intrusive approach (Nested Sensitivity Analy-
sis) is proposed to define a robustness index for global sensitivity analysis in order
to check whether the uncertainty on the input distributions can alter the result of
a canonical sensitivity analysis. In Section 8.2 the standard sensitivity analysis
and its corresponding notation is presented. Section 8.3 describes the perturba-
tions of the most common distributions used to model error uncertainties, and
the corresponding nested sensitivity analysis methodology used to define the ro-
bustness index. To reduce the computational burden of the analysis, an approach
based on the use of surrogate models is presented in Section 8.4, along with the
definition of an appropriate minimal extended training space (founded on the
effect of perturbations on input quantities). The applicability of the method and
future research directions are discussed in Section 8.5. The appendix contains
details on the perturbed distributions (i.e. tilted uniform distribution) and on
the algorithm to calculate the sorting cost.

8.2 Standard sensitivity analysis
An uncertainty quantification analysis seeks to understand how uncertainties

in the model inputs and parameters, X, propagate through the model G to the
output Y = G(X) or, more in general, to some quantities of interest which de-
pend on the output, QoI = f(Y) = f(G(X)), see Figure 8.3.

G(X)

model/real experiment

X

input space

C

X!

X

X"

d

..
...
.

copula

Y!

Y

Y"

j

..
.

output Y

f(Y)

QoI

Figure 8.3: Sketch of a standard sensitivity analysis. The input space X is
described by the d variables Xi and a suitable copula C. A sample of this input
(the inputs/parameters) is passed to the model/experiment G obtaining result
Y, which is used to extract a scalar function f(Y), called quantity of interest
(QoI), whose empirical distribution is calculated based on the values assumed by
the model.

The input random vector X is affected by uncertainties and is made of d in-
dependent variables {Xi}d

i=1. However, it is possible to exploit Sklar’s theorem
to generalize the space to non-independent variables [428]. Some uncertainty
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quantification techniques assume the hypothesis of independence of variables
(e.g. standard Polynomial Chaos Expansion) but can be generalized (through
decorrelation methodologies or directly use of Gram-Schmidt orthogonalization)
to be integrated with the copula formalism described above for working with
dependent variables [429, 430]. In the manuscript we will deal with independent
variables for simplicity but the whole methodology can be generalized for depen-
dent variables using the copula formalism. Therefore, hereafter we consider an
input vector X = (X1, · · · , Xd) for which the variables Xi are independent.

These inputs are sampled according to a suitable ssampling strategy (crude
Monte Carlo, Latin Hypercube Sampling, quasi Monte Carlo [30]) and the corre-
sponding output Y = G(X) and QoI = f(Y) are computed. Model G can be an
experiment or a numerical simulation and it is often the bottleneck of the whole
analysis, unless metamodels are used. An example can be a model describing the
electrical signal propagation in human ventricular chambers, a family of inputs
describing the conductivity properties and the underlying cellular models, an
output that is the cardiac activation profile, and scalar QoIs of medical interest
such as the signal propagation speed or the activation time of the entire chamber
[23, 404, 431].

Importantly, the sensitivity analysis allows to determine what are the most
sensitive parameters in the model and, vice–versa, the ones less affecting the
QoIs, which can be set tot their nominal value in subsequent analysis in a model
reduction fashion. The effect of an input variable on the QoI is quantified thor-
ough a sensitivity index, such as the Sobol index (first order/importance measure
and total order) [92], which belongs to the broader family of variance-based sen-
sitivity indices. Other examples which are computationally cheaper (but neglect
the nonlinear interaction between the variables) include: correlation coefficients,
standardized rank correlation coefficients, partial rank correlation coefficients
[85], or the Shapley effect [432, 433]. Since the proposed methodology is inde-
pendent of the measure, the term sensitivity index is going to be used in the rest
of the manuscript.

Algorithm 2: Standard sensitivity analysis
Result: Sorting vector v0
Define the input vector X = (Xi)d

i=1 ;
Choose the sensitivity index for the analysis ;
Standard sensitivity analysis:

Sample the input distribution and get {x(i)}n
i=1 ;

Evaluate the sample {y(i)}n
i=1 = G({x(i)}n

i=1);
Evaluate the corresponding quantities of interest f({y(i)}n

i=1) ;
Calculate the vector of the sensitivity indices (sj)d

j=1;
Define the (reference) sorting vector v0 ;

On the basis of the chosen sensitivity index, a standard global sensitivity
analysis can be performed. The result of this analysis consists of a vector (sj)d

j=1
with sj the sensitivity index of the jth input variable on the QoI (i.e. the relative
order of importance of each input) and is the reference value to investigate the
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robustness of the SA, as described in Algorithm 2. Once the sensitivity indices
have been computed, one can define a sorting vector v0, labelling the most rele-
vant input with 1, the second most relevant one with 2 and so on, thus defining a
hierarchy of importance of the model parameters. As an example v0 = (3 1 4 2)
indicates that the variable with the greatest effect is X3, the second one is X1 and
so on. This vector, commonly used in model reduction to select which variables
to keep in the model, will be used to define the nested SA analysis in the next
section.

8.3 Nested SA
The proposed methodology to evaluate the impact of an imperfect knowledge

of uncertainties on the model parameters is reported in Algorithm 3.
Algorithm 3: Nested sensitivity analysis steps

Result: robustness index I and perturbation map M
Define the perturbations P = (Pi)d

i=1 of the inputs X = (Xi)d
i=1 ;

Nested UQ analysis:
Define the new problem:

The new inputs are the perturbations P = (Pi)d
i=1 ;

The new QoI is the sorting cost s(·) ;
The new model is G2nd(P) = s(v(P), v0)

Sample from perturbation distribution ;
(IF G is costly) Surrogate model:

Define the extended input vector X ;
Sample from X distribution ;
Calculate f(G(X)) ;
Train a surrogate model S to approximate

(
X, f(G(X))

)
;

for each element p = (pi)d
i=1 of the sample do

Define the perturbed input X(p) ;
Calculate the new sorting vector v(X(p)) using f(G) or S;
Calculate the sorting cost s(v(X(p)), v0) ;

end
Define the robustness index I and the perturbation map M ;

8.3.1 Define the perturbations:
The distributions of the uncertain inputs are perturbed by modifying their

principal moments. Formally, the perturbation of the ith input is a random vec-
tor Pi = (H(i)

1 , · · · , H
(i)
ℓ ) such that H

(i)
1 is the distribution of the (perturbed)

mean, H
(i)
2 the (perturbed) variance distribution, H

(i)
3 the (perturbed) skew-

ness and H
(i)
4 the (perturbed) kurtosis. As an example, given a random input

X2 ∼ U(3, 5), which has a mean 4 and variance 1/3, a possible perturbation can
be P2 = (H(2)

1 , 0) with H
(2)
1 ∼ U(3.8, 4.2) corresponding to an uniform uncer-
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tainty of ±5% of the original mean. Another example is P2 = (H(2)
1 , H

(2)
2 ) with

H
(2)
1 ∼ N(1/3, 0.2) which also adds a Gaussian uncertainties on the variance.
Once that the perturbation P = (Pi)d

i=1 is defined, the relationship between a
value pi (sampled from Pi) and the change in the variable Xi(pi) has to be inves-
tigated. Indeed, most commonly used distributions (such as Uniform, Gaussian,
LogNormal) are uniquely determined by the values of mean, variance, skewness
and kurtosis. By emulating the method of moments [434], the corresponding
perturbed distribution (see Table 8.1) is therefore defined for each assignment in
the ranges of mean, variance and skewness obtained as a value pi of the pertur-
bation Pi. Table 8.1 is to be considered as non-exhaustive since, analytically or
numerically, a much larger family of distributions can be determined by setting
their stochastic moments.

input
distribution

perturbation
p = (h1, · · · , hℓ)

corresponding
parameters

Uniform
U([a, b])

h1 = (b+a)
2

h2 = (b−a)2

12

a = h1 −
√

3
√

h2
b = h1 +

√
3
√

h2

Normal
N(µ, σ2)

h1 = µ
h2 = σ2

µ = h1
σ2 = h2

Log-normal
LogNor(m, s2)

h1 = e

(
m+ s2

2

)
h2 = (e(s2)−1)e(2m+s2)

m = log
(

h2
1√

h2
1+h2

)
s2 = log

(
h2
h2

1
+ 1

)
Exponential
Exponential(λ) h1 = 1

λ
λ = 1

h1

Laplace
Laplace(µ, b)

h1 = µ
h2 = 2b2

µ = h1

b =
√

|h2|
2

Exponentially
modified Gaussian
EMG(m, s2, λ)

h1 = m + 1
λ

h2 = s2 + 1
λ2

h3 = 2
s3λ3

(
1 + 1

s2λ2

)−3/2

m = h1 −
√

h2
(

h3
2

)1/3

s2 = h2

[
1 −

(
h3
2

)2/3
]

λ = 1
√

h2(h3
2 )1/3

Tilted uniform
T(M, A, α)

h1 = M + Aα
6

h2 = A2
(

3−α2

36

)
h3 = z(α) = 2

5
α(5α2−9)
(3−α2)3/2

M = h1 −
√

h2
3−z−1(h3)2 z−1(h3)

A = 6
√

h2
3−z−1(h3)2

α = z−1(h3)

Table 8.1: Where {hi}3
i=1 act, respectively, on the mean (µ = h1), the variance

(σ2 = h2) and the skewness (µ̃3 = h3) of the given input distribution. The
function z−1 is discussed in the appendix.

The perturbations that can be defined are limited by the input distribution.
Although a Gaussian or Uniform distribution would only allow for a perturbation
of the first two moments, the effect of a skewness perturbation can be included in
the analysis, by extending these distributions to the Tilted uniform distribution
and modified Gaussian distribution (see Table 8.1 and Appendix 1).
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8.3.2 Nested SA model:

G(X(P))

input X(P)
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Y (p )
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..
.

output Y(P)
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..
.
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l
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..
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s(v(P),v#)
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sorting
cost

G2nd input G2nd QoI

Figure 8.4: Sketch of the nested sensitivity analysis, which can be seen as a new
problem that has the perturbations vector P as input, for each sampled value p it
defines a perturbed input vector of the original problem X(p) and calculates the
new sorting vector v(X(p)). The QoI of the new nested problem is the sorting
cost s(v(X(p)), v0).

The graphic scheme of the nested sensitivity analysis is shown in Figure 8.4.
To evaluate the perturbation robustness of the SA analysis on the uncertainties
of the inputs, we set up an extended UQ problem which has as input the per-
turbations defined above, while the G2nd model consists of the entire standard
sensitivity analysis described in § 2 but having as input the perturbed one X(p).

The perturbation of the inputs X can modify the QoI f(G(X)) under exam-
ination. As a result, the relative order of the relevant variables may change,
leading to a new ordering vector different from the original v0. The quantity of
interest of the new problem G2nd is therefore a measure of similarity between
the (reference) sorting vector vo and the perturbed one v(X(p)), this quantity is
called sorting cost and is denoted by s(v(X(p)), v0) which is detailed in the next
section.

8.3.3 Sorting cost:
Given a value p of the perturbation P, an ordering of the input variables

(X1, · · · , Xd) is obtained with respect to the sensitivity index chosen. A method
to represent the order of variables (X1, · · · , Xd) with respect to the sensitivity
index is by means of a sorting vector of length d where the ith cell contains j if
the variable Xj is the ith in order of importance. The sorting vector obtained for
p must be compared with the original ordering v0 to evaluate the effective impact
of the different configuration of the input. Given two integers vectors v1, v2 ∈ Nd,
the sorting cost s(v1, v2) is defined as the minimum number of adjacent swap-
ping necessary to sort v2 respect to v1 (e.g. v1 = (1, 3, 5) and v2 = (3, 1, 5) have
a sorting cost of 1). The choice of using adjacent swaps to calculate the sorting
cost is dictated by the fact that the usual application of sensitivity analyzes is to
obtain a model reduction which is, indeed, based on ranking the parameters by
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their sensitivity on the QoI. Intuitively, the impact of the perturbation is greater
in the case of a switch between the first and last sensitive parameters (cost d−1)
with respect to the case of a switch between the first and second ones (cost 1).

To simplify the reordering algorithm, a preliminary step is performed by defin-
ing the vector v∗

2, where its ith element is the v1-index of the entry v2. As an
example given v1 = (1, 3, 4, 2) and v2 = (3, 4, 1, 2), then v∗

2 = (2, 3, 1, 4). Hence,
owing to this replacement the problem of determining the sorting cost of v2 with
respect to v1 becomes the problem of calculating the sorting cost of v∗

2 with re-
spect to vector (1, 2, · · · , d). The overall complexity of Algorithm 4 is O(d2).

Algorithm 4: Compute sorting cost
Result: Sorting cost s
Given the vector v∗

2 ∈ Nd;
s = 0 ;
for i = 1 : d do

# Find the position of the ith element:
for j=i:d do

if v∗
2[j] = i then
element position = j ;

end
# Move the element i to the right position:
temporary =v∗

2[element position] ;
v∗

2[(i+1):element position] = v∗
2[i:(element position-1)] ;

v∗
2[element position] = temp ;

v∗
2[i] = temp ;

# This can be done with (element position-i) adjacent swap:
s = s + (element position-i) ;

end
end
In most of the model reductions we are only interested in how the k most

important parameters behave. In this framework, the proposed analysis approach
could only focus on the relative orderings of the k most important values (and
neglect the remaining d−k less sensitive parameters). Given two integers vectors
v1, v2 ∈ Nd, the k-sorting cost sk is defined as the minimum number of adjacent
swapping necessary to sort the first k elements of v1 in the vector v2 (e.g. v1 =
(1, 2, 3, 4, 5) and v2 = (2, 3, 1, 5, 4) have a 2-sorting cost of 1 of 2). Algorithm 4
can be adapted to calculate the k-sorting cost by replacing the outer for loop
with: for i = 1 : k do. The choice of the value k, as long as the sorting vector
is stored as the perturbations vary, can be carried out without having to repeat
the analysis.

8.3.4 Robustness index and perturbation map

Given the perturbation P and the nested problem G2nd, a forward analysis
provides the empirical distribution function of the QoI (the sorting cost c), which
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reads:

CDFs(y) = P(s(G2nd(X)) ≤ y)

ˆCDF s(y) = 1
n

n∑
i=1

1s(G2nd(P,X))≤y

with 1A the indicator function of the event A and s(G2nd(P, X)) the sorting cost
of the perturbations. The robustness index of the problem is defined as:

IP,α = β such that:
[
CDFs(β) ≈ ˆCDF s(β) = 1 − α

]
(8.1)

where α is a parameter fixed by the user.
The index thus defines the maximum number of exchanges (in the importance

order of the input variables) expected in the 1 − α of the perturbations of the re-
sult. It should be emphasized that the sorting cost is a positive defined value and,
therefore, the index represents the minimum β such that P(s ∈ [0, β]) > 1 − α.
As an example, a robustness index IP,0.01 = 2 means that 99 % of the pertur-
bations results in a number of adjacent changes ≤ 2 in the order of the sorting
vector, and therefore the problem is very stable to perturbations. Conversely,
an index IP,0.4 = 6 means that in 40% of cases the number of permutations ob-
tained exceeds 6 and that therefore the perturbations have a greater impact on
the dynamics.

To consider the k-sorting cost sk defined on the first k values of the sorting
vector, the index can be adapted as follow:

IP,α,k = β such that: [CDFsk
= 1 − α] (8.2)

As an example IP,0.2,k=5 = 3 with an input X of dimension 12 means that 80%
of the perturbations lead to a number of changes of the first 5 elements less than
or equal to 3 and does not consider any changes in the order of the remaining 7
parameters less relevant in the sorting vector v0.

In order to identify what kind of perturbation have larger effect on the SA
results we introduce the perturbation map. Indeed, having defined the nested
problem as a new UQ analysis, the information on how the perturbations affect
the result can be seen as a new sensitivity analysis with as input the perturbations
P and as QoI the sorting cost c. The perturbation map MP is the matrix of the
Sobol’ indices [102] corresponding to the given perturbations P:

MP =


Sobol(1)

1 · · · Sobol(1)
ℓ

... ...
Sobol(d)

1 · · · Sobol(d)
ℓ

 (8.3)

where Sobol(i)j is the Sobol’ index of the jth perturbation of the ith random input
variable Xi. The latter can be calculated using standard techniques (such as
Saltelli’s algorithm) or using a metamodel approach (PCE, Kriging) to reduce
the computational load.
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8.4 Direct sampling, extended space and meta-
modelling

Once the index has been defined, it is necessary to introduce an efficient
methodology to calculate it. This section presents a direct sampling method
(Monte Carlo) and the identification of an appropriate extended space to train
a metamodel.

The calculation of the index can be done by direct Monte Carlo simulations
by sampling from the space of perturbations P in order to obtain the parameters
that perturb the space of inputs X. For the obtained realization p of P, we sam-
ple from the perturbed space X(P) in order to obtain the perturbed inputs. This
double sampling (first from the perturbations and then from the corresponding
inputs) gives the method its name (nested) and can be effectively applied when
the model evaluation requires only few minutes/seconds.

A direct double sampling approach can be computationally expensive and
overwhelm available computational power even by using efficient sampling method-
ology (like a Latin Hypercube sampling or a Sobol’ low discrepancy sequence
[30]). In addition, most of the perturbation does not significantly vary the in-
puts and, therefore, it is convenient to use an appropriate methodology to take
this into account.

8.4.1 Extended space
To reduce the computational cost of the nested analysis when necessary (e.g.

computationally expensive model) we define an extended space, sample from it
and use the sample as a training set for a metamodel which approximate the
original problem G.

The extended input vector X can be defined as the set of the input values to
be analyzed in the nested analysis (weighted by the probability to be effectively
used during the analysis). As an example, consider a problem for which the input
variable X1 is a uniform random variable U[(2, 3)]. In the nested analysis, we
can add a perturbation P1 that alters the inputs, such as an uncertainty of 10
% in the correct amplitude of the uniform variable. During the nested analysis,
therefore, values of variable X1 between 1.9 and 3.1 must be sampled, which is
the extended input.

Given the input X with marginals {Xi}d
i=1 with densities {φi}d

i=1, and the
perturbation vector P = (P1, · · · , Pd), the extended marginals X i densities (as-
sumed independent) are defined as

φi(x) =
∫

φi(x, pi)φPi
(pi)dpi

where φi(x, pi) is the density φi after a perturbation pi, and φPi
is the density

of the perturbation Pi. The extended input vector X is defined as a random
vector which distribution is derived by the original Copula C and the extended
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marginals X i. In practical applications the extended space is very similar to the
original one. Consequently, the sample size to be obtained as a training set is
comparable to that of a normal SA, and the nested analysis does not amplify
the computational cost of the nominal sensitivity analysis. For example, any
symmetrical perturbation of the skewness of a uniform distribution leaves the
extended space coincident with the original.

The extended space, being the set of input parameters admissible in the course
of the nested analysis, weighted for the probability of each perturbation (e.g.
for the distribution of perturbations), is the ideal space for training a meta-
model/surrogate model S that approximates f(G) on the entire spectrum of the
possible values of the perturbed Xi.

Sampling from extended space:

When the density of the marginals of the extended space can be calculated
explicitly, standard sampling techniques (Monte Carlo, Quasi Monte Carlo, strat-
ified sampling) can be adopted. Nevertheless, it may be convenient to sample
from the extended space without computing such marginals distribution explic-
itly. In this case, the extended space can be sampled using a two-step procedure:
first, a perturbation p = (pi)i=1d is obtained on the basis of its distribution, and
then the perturbed density of the marginals is defined (φi(pi))d

i=1 and one sample
from the extended space can be obtained from this distribution. By iterating this
two steps procedure n times, a full sample can be obtained.

8.4.2 Metamodel
Direct methods to calculate the robustness index can be computationally bur-

densome. An alternative is the use of a S metamodel which, if properly trained
and validated, can reduce the number of simulations to be performed. The use
of a metamodel is therefore particularly advantageous in the case of analyses
that are computationally burdensome or for which it is already known that a
metamodel approximates the problem well.

Once a suitable surrogate model S approximating S(x) ≈ f(G(x)) has been
chosen, it is trained and validated on the entire extended space. This surrogate
model is capable of predicting the output of the original model for all those in-
puts values obtainable by perturbing the original inputs. Indeed, by considering
a choice of the perturbation parameters during the nested analysis p ∈ P, to this
choice corresponds a variation of the marginal densities φi(pi) characterizing the
input vector X. To study the effect of perturbations it is necessary to sample
from the new perturbed densities and perform a new first order analysis. This
computationally burdensome step can be avoided by using the surrogate model
S by observing that the values assumed by the samples belong to the extended
space on which this latter has been trained.

As a remark, the choice of the right metamodel S and the corresponding
training and validation methodology depends on the problem under examina-
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tion. Possible choices are polynomial models, artificial neural networks (ANN),
Kriging, and so on. It is important to underline that the choice of surrogate mod-
els with specific advantages for the UQ (e.g. the Polynomial Chaos Expansion)
is not necessarily advantageous as the training of the model on the extended
space is necessary only for the subsequent evaluation of the input and perturbed
variables.

8.5 Discussion and conclusion
In this paper, a robustness index was presented to determine the robustness of

a global sensitivity analysis to a perturbation of the model uncertainty distribu-
tions. In particular, the relationship between the perturbations of the moments
of an input distribution and the corresponding perturbed one was defined. On
the basis of these perturbations, an index was defined which identifies whether
the sensitivity analysis is affected by the presence of these alterations. To ease
the computational cost necessary for this analysis in the case of expensive mod-
els, a method for calculating the index based on the use of metamodels was also
proposed. In addition, the theoretical derivation of the sorting cost used to de-
fine the index was discussed in the appendix and the normal Skew distribution
was briefly presented.

The proposed robustness index, therefore, extends a global sensitivity analyses
in case of a lack of knowledge on the uncertainty distribution of the model inputs.
In particular, the definition of the index is not linked to a specific sensitivity in-
dex and can be integrated with the different sensitivity indices commonly used in
uncertainty quantification, such as Sobol’ indices [100], entropy-based sensitivity
indices [435], or distribution based ones [436].

The main limitation of this method is that further simulations in addition to
those used for the nominal SA analysis are required and is therefore better suited
to analyses with a low computational model cost. The proposed use of extended
space and metamodels, as verified on test cases, presents the usual problems of
metamodelling. In particular, the choice of the correct metamodel, its validation,
and the ability of the metamodel to analyse particularly non-linear phenomena.

In future works the proposed index will be applied to real world problems to
extensively verify its predictive ability. In addition, we want to study a more
general formulation of the perturbations defined on moments to include arbitrary
input distributions and not be limited to the most common ones. Similarly, being
able to extend the perturbations also to the copula and describe the relationship
between variables would increase the applicability of the method [437]. Finally,
given the high use of sensitivity screening techniques, it is interesting to ex-
tend the definition of the index to different methods such as the Morris method
[35, 112] or the Radial design. [438].
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8.6 Appendix: Tilted uniform distribution
The family of uniform distributions does not allow for non zero skewness.

In order to analyze the impact of the skewness in the proposed second order
analysis, it is necessary to extend the family of uniform distributions to admit
non zero skewness. A family of distributions is therefore presented, called tilted
uniform distribution, which admits non-zero skewness and such that it has the
uniform distribution as its specific case. This tilted distribution is a specific case
of the extended family of distributions introduced by Kotz and van Dorp [439]
based on Topp and Leone’s work [440] and it is covered here in detail for second
order analysis. This family is different from other skew-symmetric distributions
which extend of the uniform distribution [441, 442, 443], indeed it maintains an
intuitive geometric meaning of the parameters that control it.

A tilted uniform X ∼ T(M, A, α) with parameters (M, A, α) ∈ R × (0, ∞) ×
[−1, 1] (respectively the center, the amplitude and the shape parameter) is the
continuous random variable with density:

φ[M,A,α](x) = 1[M−A/2,M+A/2](x)
[

2α

A2

(
x −

(
M − A

2

))
+ (1 − α)

A

]
(8.4)

where 1 is the indicator function. This density is reported in Figure 8.5 and
shows how given the effects of the 3 parameters on the shape of this latter.
The distribution X ∼ T(M, A, α) is a generalization of the uniform distribution,
indeed

T(M, A, 0) = U([M − A/2, M + A/2])

x

y

M+A/2MM-A/2

(1+ )/A

(1- )/A

Figure 8.5: Reference density φ[M,A,α]. This density is uniquely determined by 3
parameters: the position of the center M , the width A of the support and the
variation of the height of the extremes (1 − α)

f[M,A,α](x) is a density for every values of [M, A, α] ∈ R × (0, ∞) × [−1, 1].
f[M,A,α](x) is a product of an indicator function (i.e. 1 in [M − A/2, M − A/2])
and a function that is positive in the interval [M − A/2, ∞), indeed:

2α

A2

(
x −

(
M − A

2

))
+ (1 − α)

A
> 0 ⇐⇒

(
x −

(
M − A

2

))
> − A

2α
(1 − α)

⇐⇒ x > M − A

2 − A

2α
(1 − α) > M − A

2
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The function φ[M,A,α](x) is the product of an indicator function of closed inter-
val and a linear function on a finite support, therefore is Lebesgue integrable.
Furthermore:

∫ M+ A
2

M− A
2

2α

A2

(
x −

(
M − A

2

))
+ (1 − α)

A
dx =

= 2α

A2

∫ M+ A
2

M− A
2

xdx − 2α

A2

(
M − A

2

) ∫ M+ A
2

M− A
2

dx + (1 − α)
A

∫ M+ A
2

M− A
2

dx

= 2α

A2
((M + A

2 )2 − (M − A
2 )2)

2 − 2α

A

(
M − A

2

)
+ 1 − α

= 2Mα − 2(M − A/2)α
A

+ 1 − α = α
A

A
+ 1 − α = 1

Therefore φ[M,A,α](x) is a probability density function and the continuous random
variable X is uniquely determined.

Given the tilted uniform X ∼ T(M, A, α), it allows for an analytical CDF:

FX(x) :=
0 x ≤ M − A

2
αx2

A2 + A−2αM
A2 x + (M− A

2 )
A2

(
αM − A

(
1 − α

2

))
x ∈

[
M − A

2 , M − A
2

]
1 x ≥ M + A

2
(8.5)

Using the location-scale transformation we can write X = c + dX0 where
c = M − A/2 is the location parameter, d = A the scale parameter and X0 ∼
T(0.5, 1, α) the standard tilted uniform distribution that has density:

φX0(x) = 1[0,1](x) [2αx + (1 − α)]

which admits an explicit formula for the moments:

E[X0] = 3 + α

6 ; E[X2
0 ] = 2 + α

6 ; E[X3
0 ] = 5 + 3α

20

and therefore for the mean, the variance and the skewness:

E[X0] = 3 + α

6

V ar[X0] = 3 − α2

36

Skewness[X0] = 2
5

α (5α2 − 9)
(3 − α2)3/2
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With this choice of c and d it holds that X ∼ T(M, A, α). We must prove
that φ[A,M,α](x) = 1

|d|φX0[A,M,α]
(

x−c
d

)
:

φX0[A,M,α]
(

x−c
d

)
|d|

= 1[0,1]

(
x − c

d

) [1
d

(
2α

x − c

d
+ (1 − α)

)]

= 1[c,c+d] (x)
[
2α

x − c

d2 + (1 − α)
d

]

= 1[M−A/2,M+A/2] (x)
[

2α

A2

(
x −

(
M − A

2

))
+ (1 − α)

A

]
= φ[A,M,α](x)

Using the location-scale transformation we can compute the mean, the variance
and the skewness of the tilted uniform distribution X ∼ T[A, M, α]:

E[X] = (M − A/2) + A
(3 + α

6

)
V ar[X] = A2

(
3 − α2

36

)

Skewness[X] = 2
5

α (5α2 − 9)
(3 − α2)3/2

where the skewness is calculated using that if c ∈ R and d ∈ R \ {0}:Skewness[X = c + dX0] = Skewness[X0] d > 0
Skewness[X = c + dX0] = −Skewness[X0] d < 0

Sample generation through inverse transform sampling:

The density family described in the article requires a method for gener-
ating the sample. Since the CDF (8.5) is strictly monotone in the support
[M − A/2, M + A/2], it admits an inverse function F −1

X (·). This latter can
be applied to use the inverse transform sampling to generate a sample from X.
That is, given a sample {u}N

i=1 sampled from the uniform distribution U([0, 1]),
the corresponding element sampled for the trapezoidal distribution can be com-
puted as {F −1

X (ui)}N
i=1. For α ∈ [−1, 1] ̸= 0 this corresponds to the quantile

function:

F −1
X (u) =

−A + 2αM + A

√
(A−2αM)2

A2 − 4α
(

(M− A
2 )

A2

(
αM − A

(
1 − α

2

))
− u

)
2α

While if α = 0 the inverse function is:

F −1
X (u) = Au +

(
M − A

2

)
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Define the perturbation:

To apply the perturbation of the mean, variance and skewness defined in
Section 8.3.1 we have to solve the following non-linear system:

h1 = M +
(

Aα
6

)
h2 = A2

(
3−α2

36

)
h3 = z(α) = 2

5
α(5α2−9)
(3−α2)3/2

=⇒


M = h1 −

√
h2

3−z−1(h3)2 z−1(h3)
A = 6

√
h2

3−z−1(h3)2

α = z−1(h3)

where the function z(α) admits derivative

z′(α) = 54(x2 − 1)
5(3 − x2)5/2

which is negative for α ∈ [−1, 1], therefore it admits an inverse function z−1(h3)
for h3 ∈

[
−2

√
2

5 , 2
√

2
5

]
that can be calculated numerically.
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Abstract

Serious games, and especially Digital Game Based Learning (DGBL) method-
ologies, have the potential to strengthen classic learning methodology in all med-
ical procedures characterized by a flowchart (e.g., neonatal resuscitation algo-
rithm). However, few studies have compared short- and long-term knowledge
retention in DGBL methodologies with a control group undergoing specialist
training led by experienced operators. In particular, resident doctors’ learning
still has limited representation in simulation-based education literature.

A serious computer game DIANA (DIgital Application in Newborn Assess-
ment) was developed, according to newborn resuscitation algorithm, to train
pediatric/neonatology residents in neonatal resuscitation algorithm knowledge
and implementation (from procedure knowledge to ventilation/chest compres-
sions rate). We analyzed user learning curves after each session and compared
knowledge retention against a classic theoretical teaching session.

Pediatric/neonatology residents of the Azienda Ospedaliera Universitaria
Pisana (AOUP) were invited to take part in the study and were split into a
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game group or a control group; both groups were homogeneous in terms of
previous training and baseline scores. The control group attended a classic
80-minute teaching session with a neonatal trainer, while game group partic-
ipants played four 20-minute sessions over four different days. Three written
tests (pre/immediately post-training and at 28 days) were used to evaluate and
compare the two groups’ performances.

48 pediatric/neonatology residents participated in the study. While clas-
sic training by a neonatal trainer demonstrated an excellent effectiveness in
short/long-term knowledge retention, DGBL methodology proved to be equiva-
lent or better. Furthermore, after each game session, DGBL score improved for
both procedure knowledge and ventilation/chest compressions rate.

In this study, DGBL was as effective as classic specialist training for neonatal
resuscitation in term of both algorithm memorization and knowledge retention.
User appreciation for the methodology and ease of administration, including
remotely, support the use of DGBL methodologies for pediatric/neonatology
residents education.

9.1 Introduction
Globally, an estimated 2.5 million newborns die each year worldwide from

childbirth asphyxia (defined as a failure to initiate or sustain spontaneous breath-
ing at birth) [444] as approximately 15% of full term births require effective
resuscitation [445]. Correctly performed neonatal resuscitation can save around
700000 lives worldwide every year (SIN (Società Italiana di Neonatologia - Italian
Neonatology Society) Survey on the organization of care in the delivery room,
2020). However, resuscitation guidelines are not adhered in more than 90% of
cases [446].

Digital Game Based Learning (DGBL) methodologies have proved effective
in multiple medical contexts [447, 448, 449] by integrating the advantages of
the classic teaching process with the possibilities offered by the use of simula-
tions (replicability, standardized teaching environment, user adaptability of the
procedure). They can be applied to most flowchart-based medical procedures
and, crucially, their high repeatability and the possibility of dividing a each ses-
sion into several parts can stimulate procedural memory [450, 451]. Further
advantages of DGBL methodologies include the provision of an optimal context
for user result analysis (every action performed by the learner is stored) and a
higher attention/appreciation rate by users.

While it is questioned whether DGBL approach can fully replace classic teach-
ing methodologies [452, 453, 454, 455], DGBL methods are known to be effective
in checking what was learned and reinforcing motivation to enhance adult learn-
ing in medical education [456] and, more in general, in higher education [457].
With particular regard to medical practice [457, 458, 459], and especially neona-
tal resuscitation [452, 460, 461, 462], numerous existing studies demonstrate the
effectiveness of DGBL/simulation methods in stimulating better learning. How-
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ever, many of these studies lack a scoring baseline (pre-test), a subsequent follow
up to evaluate knowledge retention and/or a homogeneous and independent con-
trol group.

DGBL methodologies can be applied to most flowchart-based medical proce-
dures. In this study, we implemented a new ad hoc digital serious game DI-
ANA (DIgital Application in Newborn Assessment) and we developed it for
neonatal resuscitation teaching. Rather than focusing on a single skill (e.g., en-
dotracheal intubation) this computer game aims to teach the entire neonatal
resuscitation algorithm. Unlike most published studies, which involved medical
students [452, 463, 464] and expert neonatal professionals [460, 465] as learn-
ers, we tested it on a group of resident students of varying experience, using
a randomized control study design with the primary goal of testing short- and
medium-/long-term knowledge retention [primary endpoint: compare knowledge
retention of DGBL and classical training]. The analysis is done by comparing
the DGBL group with an independent group undergoing classic training (e.g.,
80 minutes’ theoretical teaching session provided by an expert neonatal trainer).
Indeed, despite an autonomous training using didactic material [452], the choice
of a guided approach provides a more controlled training path [453]. In addition,
several other secondary endpoints were tested to evaluate the performance obtain
from DGBL recording scores: knowledge scores, time decision, ventilation/chest
compression rate, and user acceptance of this new training methodology.

9.2 Material and methods

9.2.1 Software description
The DIANA software was developed according to newborn resuscitation flow

chart to verify DGBL methodology for training. The DIANA software code was
implemented with the real-time development platform Unity. The video game
was divided into four sessions (i.e., distributed study) with an inter-study in-
terval (ISI) of 48 hours, to consolidate information memory through repetition
[447]. Each game session consisted of a theoretical and an interactive part. The
interactive part started with one minute of equipment check. The interactive
part simulated a clinical case, where the user would choose how to proceed from
one of four options provided. A virtual assistant would intervene in case of er-
rors, and provide detailed instructions to enhance learning without diminishing
the gaming experience [466]. In the theoretical part the same virtual assistant,
with a human voice, would give a theoretical tutorial using videos to demonstrate
technical skills. The first session included an interactive game and complete theo-
retical teaching about the whole neonatal resuscitation procedure. In the second
session, the theoretical part addressed equipment check, neonatal care, and as-
sisted ventilation. The interactive part of the video game followed on from the
first session, with successful resuscitation after correctly assisted ventilation. In
the third session, the theoretical part dealt with endotracheal intubation skills,
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Figure 9.1: Panel A - Newborn resuscitation flow chart showing corresponding
sections in the DIANA game (Equipment check, Neonatal care and PPV, Intuba-
tion, Chest compression and Drug administration, umbilical vein catheterization
(UVC, CVO in italian and consequently in this game version ) and drug admin-
istration, and Complete). Panel B - details of the game sessions (1,2,3,4).

chest compressions, and drug delivery, with the interactive part of the video game
ending after the execution of chest compressions. Lastly, the fourth session con-
sisted of three activities: a tutorial on venous umbilical catheter insertion, a mini
game related to the procedure, and the full execution of resuscitation simulation
as in the first session (Figure 9.1). To the aim of the present study, residents did
not have free access to the software except for sessions scheduled on the basis of
the time intervals described in the study. In this work we scheduled the DIANA
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sessions to ensure the same time practice between residents. However, for future
practical uses of DIANA to support classical training, this fixed schedule is not
imposed by the software. Indeed, DIANA does not impose on the user the se-
quential use of the game levels (e.g., a practitioner can freely select one of the
four sessions). This allows the end user to freely practice on a single flowchart
topic or to assess their knowledge of the entire algorithm. The only limitation is
that the user within the session will be guided to follow the theoretical part first
and then the practical part.

Figure 9.2: Software screenshots: equipment check (panel A) and dynamic curves
of the simulated newborn’s main vital signs (panel B). In equipment check (panel
A) the user follow the instruction of the game in the red box in the left corner
(in English: “click on the materials you want to check”).

Figure 9.3: Software screenshots: execution of endotracheal intubation and as-
sisted ventilations by the virtual assistant.During the execution by virtual as-
sistant the user can read some useful advice as you can see in the white panel
where you can read “consider the corrective actions of ventilation as endotra-
cheal intubation or insertion of the laryngeal mask”. During the execution of
assisted ventilation the virtual assistant execute the compression of Ambu when
the users click on button identify as VENTILA (translate as “act ventilation”).
The number of ventilation acts performed is showed next to VENTILA button.

Within the interactive video game, the user had one minute to select the es-
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sential tools (Figure 9.2A), categorized as totally correct, partially correct, and
incorrect; Depending on the tool, size and setting selection would be required.
After one minute, the chosen tools would appear in a box, checked in green (”se-
lection made”) or red (”missing” equipment). When assessing the clinical state
of the patient, a monitor would show dynamic curves and heart rate, respiratory
rate, and oxygen saturation (Figure 9.2B). Practical procedures were performed
by the virtual assistant (Figure 9.3). During ventilation execution, the user de-
fined the timing of the ventilation by selecting a ”Ventilation” button. The game
was designed to last 30 seconds, during which, every 10 seconds, the assistant’s
voice would reassuringly provide feedback to the user, e.g., advising them to
increase or reduce the rhythm or complimenting him/her for maintaining an op-
timal respiratory rate in assisted ventilation. Importantly, chest compressions
execution would imply cooperation between user and virtual assistant: the for-
mer would perform the required three chest compressions, following one assisted
breath by the latter.

9.2.2 Study design and procedure
Study participants filled a questionnaire to assess their previous knowledge

and experience (Figure 9.4). Based on questionnaire results, two homogeneous
groups (Stratified random sampling, similar to other DGBL studies [467, 455])
were randomized to either the classic teaching process (frontal teaching session)
or the one based on digital simulations (DGBL), respectively.

Figure 9.4: Study analysis scheme. Subjects are divided using a stratified random
sampling into two homogeneous and independent groups, based on the score in a
prior knowledge questionnaire. The first group (theoretical lesson) is trained by
an expert neonatal trainer for 80 minutes. The second group (DGBL method)
is trained using DIANA for the same length of time on 4 different sessions.
Three written tests (0 pre-test, 1 post-test, 2 follow-up) are used to compare the
methodologies (comparisons 0,1,2) and to evaluate learning and memory decay.
The knowledge test 0 is used to evaluate the stratified random sampling.

The theoretical teaching session (Figure 9.4, in purple) was given in person
by an expert neonatal trainer, with no more than 10 medical residents for each
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group, which allowed them to take a very interactive lesson. After finishing the
theoretical part, residents practiced the technical skills of PPV, chest compression
and endotracheal intubation on a medium fidelity mannequin (Newborne ANNE,
https://laerdal.com/it/doc/222/Newborn-Anne). Neither in the theory lesson
nor in the software a specific (limited) clinical case was presented and discussed.
On the contrary, in both training residents were asked to perform the whole
resuscitation algorithm.

The DGBL group training methodology is based on the use of DIANA soft-
ware. The software guided the user through the entire resuscitation flowchart
divided into four phases. Indeed, starting from the promising results obtained
even with a single session of a serious game approach [452, 465, 460], DGBL group
(Figure 9.4, in orange) training was based on the natural subdivision allowed by
a digital game: four sessions of 20 minutes each, separated by a 48-hour break;
knowledge tests began 24 hours after the last session, with the same evaluation
process as for the classic training group.

Both the groups (Figure 9.4, in purple) underwent three knowledge tests about
neonatal resuscitation algorithm and equipment check. The test was adminis-
tered at three different times: immediately before the tutorial (pre-test 0), at
24 hours (post-test 1) and at 28 days (follow-up test 2) after training ending;
the questions and answers remained the same, while their order was randomly
altered. Specific time intervals between assessments were chosen to capture ac-
tual knowledge retention. A 24-hour post-training time interval was specifically
chosen to filter out the positive effects of short-term memory on scores [468]. The
28-day interval to evaluate of memory decay has been widely used in DGBL [469].
Unlike a much longer interval adopted by other Authors [452, 460], it minimizes
the high risk of study drop out within a medical resident population, or the con-
founding effect of further training. Similarly, candidates were not made aware
of our study’s assessment methods and timings, including the 28-day delayed
test, in order to prevent skewed outcomes. The three scores for either learning
method were compared to evaluate the two methodologies, their strengths and
limitations (comparisons 0,1,2 in red in Figure 9.4). Knowledge test 0 was also
used to evaluate the design.

Furthermore, in DGBL group, user improvement was evaluated as the sessions
progressed by recording any change in individual tests’ numerical values (equip-
ment score, procedure score, response time, ventilation frequency, compression
rate) as common in DGBL methodologies [470]. At the end of data collection,
a user satisfaction questionnaire was administered to DGBL group, to integrate
subsequent versions of the software with user suggestions.

9.2.3 Measures
The primary endpoint of this study is to compare the effectiveness between

DGBL (DIANA) and classic learning methodology on knowledge retention based
on knowledge questionnaire performance. The several secondary endpoints re-
garding the evaluation of the effectiveness of the DGBL methodologies on the
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user’s performance during the gaming sessions and the satisfactions evaluation of
this new methodology are summarized in Table 9.1 and described below (”Knowl-
edge test scores” and ”DGBL scores”).

Comparison Feature
observed

Comparison
Tool Question to answer

DGBL
and

classic learning
methodology

knowledge
retention

and
equipment
checklist

knowledge
tests
(pre-training,
1 day post, and
28 days post
training)

Did the DGBL
training methodology
prove as effective
as theoretical teaching session
in knowledge retention?

DGBL
games

performance

knowledge
retention performance of

different session
game scores

Was the DGBL
training methodology
effective to learn a flowchart
reducing decision time and
increasing scores results?

equipment
checklist

Was the DGBL
training methodology
effective to learn
the equipment checklist?

ventilation
rate

Was the DIANA
ventilation game
effective to learn
the correct
ventilation rate to perform during
a PPV procedure?

chest compression
rate

Was the DIANA
chest compression
game effective to learn the correct
rate to perform during
a newborn resuscitation?

satisfaction
of new

methodology

satisfaction
questionnaire

Has the DGBL
methodology been
considered useful
and effective by users?

Table 9.1: Description of the variables observed during the study divided be-
tween primary endpoints (evaluate the effectiveness of DGBL and classic learn-
ing methodology on knowledge retention) and secondary endpoints (evaluate the
effectiveness on user’s performance during the gaming sessions).

Knowledge test scores

Knowledge tests are used in DGBL analysis to evaluate performance [464].
The test used in this work was written by neonatal resuscitation trainers accred-
ited by SIN, and consisted of 21 questions (each with 1 correct and 5 incorrect
answers) related to the correct resuscitation procedure and a list of 40 items (21
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correct, 6 partially correct and 13 incorrect) to check. The knowledge test score
was calculated by allocating 1 point for each correct answer, 0 for null, and -0.2
for incorrect ones, so that the average score could be assumed to be zero in case
of randomly selected answers. The result was then normalized by the number of
questions. The equipment score, on the other hand, consisted of the number of
correct instruments (21) selected from the list of 40 items.

DGBL scores

During the execution of DIANA game the following parameters were recorded:
decision-making/response time, answer correctness from the multiple options in-
cluded in the simulation, choice of equipment before each simulation, uniformity
and correctness of ventilations/compressions timing. A positive score was as-
signed for a correct answer, a negative value for an incorrect selection and a
neutral (null) score for selecting the ”Get help” option, available for every ques-
tion to cover the operator’s inability to make a decision. Choosing this option
was followed by a detailed explanation of the correct decision by the virtual
assistant, to stimulate learning and improve subsequent sessions’ performance.
Knowledge score was calculated as the number of correct answers normalized
by the number of questions for each session. The equipment score consisted of
the number of correct instruments selected from a list of 40 items (21 correct, 6
partially correct and 13 incorrect). As some game sessions covered only part of
the resuscitation procedure (Figure 9.1), the knowledge score was calculated on
three question subsets: on care and assisted ventilation (PPV) (sessions 1-2-3-4);
on intubation and compressions (sessions 1-3-4), and those on drug administra-
tion (session 1-4), respectively. For each answer, the response time (i.e., the time
elapsed between the question administration and the execution of the action)
was also calculated.

Compression and ventilation scores

In the games involving compressions and ventilations, choosing a score that
rewarded maintenance of a correct frequency and penalized frequency fluctua-
tions was essential. The number of acts per minute is not necessarily a reliable
parameter to tell an excellent performance (i.e., correct and uniform rate) from
a sub-optimal one, such as correct but non-uniform rate with marked varia-
tions in frequency. With reference to Figure 9.5, we defined the sequence of
acts 1, · · · , n and the corresponding ∆i := ti − ti−1 as the difference between
the time of act i and the time of the previous act i − 1. The correct tim-
ing intervals are then defined [minfreq, maxfreq] (40-60 ventilations per minute
and 80-100 [+30] compressions per minute, where +30 represents the ventila-
tions performed alternately by the virtual assistant). These ranges represent
the reference values that the user must maintain, and correspond to an inter-
val [mintiming, maxtiming] = [1/maxfreq, 1/minfreq] between the minimum and
maximum of the time interval allowed to perform a correct number of acts per
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n

mintiming

maxtiming

∆i

d=0

d=0
d=0

d=0

d=0

d=0

d=0
d=0

d=0

∆a

∆b

∆c

d= |∆a-mintiming|

d= |∆b-maxtiming|
d= |∆c-maxtiming|

Figure 9.5: Example of a possible of ventilation/compression pattern (black).
If the ∆i between two consecutive acts is correct it falls between the horizontal
dashed lines y = mintiming and y = maxtiming, in this case the value is considered
perfectly correct (e.g. d = 0). Excessively irregular patterns lead to a positive
value of d (red).

minute. Therefore, the correctness value of the i-th act is defined as follows:

di :=
0 if ∆i ∈ [mintiming, maxtiming]

max (|∆i − mintiming| , |∆i − maxtiming|) otherwise

With reference to Figure 9.5, every act falling within the correct ranges is rated
as zero, while any variation outside the range (in red in the figure) increases the
score in proportion to how much it deviates from the reference values. The first
score is defined as the average of the {di}n

i=1 (e.g. scoremean = meann
i=1(di).

A null score represents a candidate who has always maintained an optimal fre-
quency of acts while a higher score identifies any deviation from the correct
execution. The second score is based on the standard deviation of the {di}n

i=1
(e.g. scorestd = stdn

i=1(di). This score characterizes the irregularity of the values
and is, therefore, indicative of maintaining a non-homogeneous timing during the
test.

9.2.4 Statistical Analysis
The study design is based on a stratified random sampling to control the nui-

sance factors. The strata are designed on the basis of a score extrapolated from
a questionnaire of previous theoretical/clinical/practical experience. This score
was used to create four levels of competence (0 no experience, 1 - one of the
three experiences, 2 - two experiences, up to 3 for those who participated in all
simulation, theory and practice experiences), then used in the study design to
divide the candidates of the two groups. The uniformity of the knowledge test
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0 score distributions of the two groups’ clinical experience, was tested using a
Kolmogorov-Smirnov (KS) two-sided test. A further indicator of uniformity is
the amount of times a random sampling could have produced a better subdivi-
sion than the chosen design. This estimate was achieved by using a Monte Carlo
method for probability estimation: 100000 times the group of all candidates (as-
sociated with their respective knowledge test score 0) is randomly divided into
two groups (27 and 21 respectively). This (artificial) subdivision represents a
possible result of a random fully experimental design. Then, the Kolmogorov-
Smirnov distance D between the two sets is calculated and compared with that
obtained in the stratified random sampling. The knowledge test scores calcu-
lated before learning, at the end of learning and 28 days later, were evaluated by
comparing the means, variances and distributions (KS test). The normality of
the scores obtained was tested by Shapiro-Wilk test. Variances were compared
by F-test for (independent) groups comparison and by Pitman-Morgan test of
variance for paired sample for internal group comparisons. Under the assump-
tions of normality and homogeneity of variances, the independent t-test was used
to compare means. In the absence of these hypotheses, the non-parametric (con-
servative) Wilcoxon signed-rank test and the Mann-Whitney U test were used.
Considering that the scores calculated in the knowledge tests 0, 1 and 2 are re-
peated measures of the same group and the frequent absence of the hypothesis of
normality, the values are preliminary compared using a Friedman test. Post-hoc
pairwise analysis through the previously described paired tests are then applied
to detect variations of the score. Bonferroni correction is presented to counter
the problem of multiple post-hoc analysis. The comparison between independent
groups (i.e., DGBL vs theory) pre-training, at 1 day and at 28 days is instead
carried out with non-paired tests. To analyze the performance of the individual
game sessions, the same tests were applied to learning score procedure, the re-
sponse times of the questions and the uniformity of the ventilation/compression
timing. One-sided versions of the tests were applied to test the monotony of the
scores. Statistical analysis was carried out using the software R [4.1.1] [471].

9.2.5 Ethical approval
Users were pediatric/neonatology residents of the Azienda Ospedaliera Uni-

versitaria Pisana (AOUP) who consented to the acquisition, processing and dis-
semination of data in anonymized form. The study was approved by the local
Institutional Review Board for Ethic Issues. All analyzed data were anonymized
and the entire analysis was blinded.
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9.3 Results

9.3.1 Participant characteristics and stratified sampling
63 pediatric/neonatology residents from the Azienda Ospedaliera Universi-

taria Pisana (AOUP) were recruited for the study, ranging from the first to the
fifth specialty year with a high variability in previous training. The level of com-
petence of each resident depends on the experience acquired before the start of
the analysis (year of specialty, practice using a simulator, having attended the-
oretical training, and also real clinical practice with newborns). These nuisance
variables (i.e., a variable that may alter the outcome of the study but is of lim-
ited interest in the chosen design) were of no interest to the study and had to
be controlled to ensure homogeneity of the two groups using the stratified ran-
dom sampling. By applying the Monte Carlo approach against the Kolmogorov-
Smirnov distance calculated with the chosen design (d=0.13), only 8% of the
random subdivisions thus generated show a distance D < d = 0.13, confirming
the validity of the design used.

Figure 9.6: Group subdivision based on competence levels for the stratified ran-
dom sampling (DGBL group in orange, theoretical teaching session group in
purple). Using a Monte Carlo approach based on the knowledge test 0 score
and the Kolmogorov-Smirnov distance, it can be shown that this subdivision is
better than 92% of those artificially obtained through a fully random design.

Furthermore, the validity of the study design was tested also by comparing
the knowledge test 0 and the check equipment scores between the two groups:
no statistically significant differences were found (two-sided Mann-Whitney U
test p = 0.21 ≫ 0.05 and two-sided independent t-test p = 0.51 ≫ 0.05 for
equipment score). Furthermore, the distributions of both values were also not
dissimilar (two-sided Kolmogorov-Smirnov test, p ≫ 0.5). The experiment de-
sign, and the corresponding subdivision of the population in strata, allowed to
obtain a homogeneous level of past experience (as shown by the level of compe-
tence in Figure 9.6). The two groups were therefore considered uniform in the
baseline scores (knowledge test 0) and homogeneously subdivided according to
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Figure 9.7: Subdivision of the population of the study between DGBL group (in
orange) and classic theoretical teaching group (in purple). Panel A shows the
year of specialty training (not one of the variables considered in the stratified
random sampling and is therefore characterized by a higher variability. Panels
B, C, D show the percentage of the subjects that had used a newborn clinical
simulator, underwent theoretical training in neonatal resuscitation, and practiced
in neonatology, respectively.)

the confounding variables.
The design led to two groups uniform in terms of previous experiences (Fig-

ure 9.7). Candidates who dropped off for personal reasons, or those failed to meet
learning and testing sessions deadlines, were excluded from the study: of a total
of 15, the majority affected DGBL group, yielding 27 candidates for the classic
learning group and 21 for DGBL group. In the breakdown of the study sample by
specialty year, 56% of the residents clustered around first and second year (Fig-
ure 9.7A), only 35.3% of the trainees had practiced at the simulator before this
study (Figure 9.7B), whereas, 47.9% had already received theoretical training in
neonatal resuscitation (Figure 9.7C). User characteristics that could significantly
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impact results (e.g., neonatal clinical experience, as shown in Figure 9.7D) were
uncommon in this cohort (only 10.3% of candidates); this setting required a
proper design in order to prevent concentrating the few candidates with any par-
ticular characteristic in only one of the two groups. Consequently, the reference
sample can be described as having a dominant component of students of the first
years, mostly with no previous experience (45.8%). The older residents were the
ones with greater medical experience (clinical/simulation/theoretical), with all
fifth-years students having received at least one theoretical teaching session and
one practical tutorial at the simulator.

9.3.2 Comparison between DGBL and classic learning

Knowledge retention

Figure 9.8: Results of knowledge tests evaluated pre-training, 1 day post-
training and at 28 days follow-up (score medians and middle 50% interquantile
([0.25,0.75]); theoretical teaching session group scores in purple, DGBL method
group scores in orange). Whereas pre-training groups are comparable, post train-
ing scores demonstrate the effectiveness of both methodologies, and of DGBL in
particular.

The first analysis was based on the scores obtained in the knowledge tests
0,1,2 (respectively pre-training, 1 day post-test and 28 days later follow-up).
None of the observed test score distributions could be assumed to be normal
except pre-training scores (Shapiro-Wilk test, α = 0.05) as shown in Figure 9.8
(purple for classic learning and orange for DGBL approach). After a preliminary
Friedman test (α = 0.05) that found differences in scores between the knowledge
tests 0,1,2 for both the DGBL (p≪ 0.001) and the theoretical training (p≪
0.001), we moved on to the post-hoc pairwise analysis. The effectiveness of
the theoretical teaching session was proved by an increase in pre-training and
post-training tested scores at 1 day, with an increase in median scores from
42.8% to 71.4% (paired one-sided Wilcoxon signed rank test, p ≪= 0.001).
An even greater increase in scores was found for DGBL training, with median
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scores ranging from 42.8% pre-training to 83.8% post-training (paired one-sided
Wilcoxon signed rank test, p ≪ 0.001). There was no statistically significant
reduction in scores following the 28-day wait (α = 0.05). Even considering a
conservative Bonferroni correction factor (m = 2) to control the family-wise
error rate, the reported results have much lower p-values than the corrected
α̃ = α/m = 0.025. The initial pre-training scores could be considered coincident
both as medians (two-sided Mann-Whitney U test, p = 0.21 ≫ α = 0.05)
and as distributions (two-sided Kolmogorov-Smirnov test, p = 0.97 ≫ α =
0.05). This allowed to compare the score increases for the two methodologies.
Therefore, considering the post/pre-training score differences, DGBL method
was statistically not inferior to the classic teaching session (one-sided Mann-
Whitney U test, p = 0.005). As represented graphically in Figure 9.8 (28 days),
score variance decreased between pre-training and post-training (1 day) for both
methodologies (one-sided paired Pitman-Morgan test, p ≪ α = 0.001). There
was no statistically significant variance increase 28 days post-learning for DGBL
group (p = 0.07 > α = 0.05), while variance increased significantly for the classic
methodology group (p = 0.02 < α = 0.05). Furthermore, the variance at 28 days
for the classic learning group was greater than that of DGBL group, with values
more distributed over the score range (one-sided F-test, p = 0.03 < α = 0.05).
The variance of the analyzed scores makes it possible to distinguish between a
population with a homogeneous knowledge (low variance) compared to one with
marked differences between the scores of the individuals (high variance). For
this reason we want to investigate whether following learning there is a simple
increase in scores, which is an indication of an effective transmission of knowledge,
or even a consequent reduction in the variance of scores, that is representative
of uniformity of skills following learning (e.g., we were able to teach them what
we wanted to teach them).

Equipment game

Equipment scores were divided into three categories: totally correct, partially
correct, incorrect. Learning was considered to be effective if users selected a
greater number of correct options and fewer of the incorrect/partially correct
ones. The scores evaluated at steps 0,1,2 (respectively pre-training, 1 day post-
training, 28 days follow-up) of classic learning (in purple, panel A) and DGBL
methodology (in orange, panel B) are shown in Figure 9.9. All the score distribu-
tions were non-normal, except scores for the correct tools at the 0 / pre-training
evaluation (Shapiro-Wilk, α = 0.05). A preliminary Friedman test (α = 0.05) is
performed to detect if there is a difference among the 3 assessments (knowledge
test 0,1,2) for both DGB/classic learning and for the totally/partially correct
and incorrect items. A statistical significance of the learning effect is only found
for the totally correct items (classical theoretical learning, p = 0.02) and for
both totally correct (p ≪ 0.001) and incorrect (p = 0.007) items score for the
DGBL training. Classic learning (Figure 9.9A) was effective in achieving mem-
orization of totally correct objects (57.1% to 71.4%, paired one-sided Wilcoxon
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Figure 9.9: Equipment scores of totally correct/partially correct and incorrect
items selected by the control group (standard teaching session, panel A) and
DGBL group (panel B). Initial equipment scores for the two methodologies are
not statistically different. DGBL methodology leads to a greater increase in
correct item selection. It also reduces selection of incorrect/partially correct
items, whereas after theoretical teaching no reduction is observed.

signed-rank test con p ≪ 0.001). No other statistically significant improvement
(α = 0.05) was noted in any of the other scores, either in relation to the 1-day
or 28-day assessment. Conversely, there was an increase in the partially correct
objects chosen in Test 1 (33.3% to 50.0%, p = 0.01). The DGBL methodol-
ogy proved more effective (Figure 9.9B), with not only a statistically significant
improvement in pre-training/ 1-day scores for correct items (57.1% to 90.5%,
paired one-sided Wilcoxon signed-rank test con p ≪ 0.001), but also with a
moderate a reduction of incorrect items (23.1% to 15.4%, p = 0.03) which is not
statistically relevant for the classical learning method. The initial scores for the
correct objects coincide for the two groups for both the median (57.1%, paired
two-sided Wilcoxon signed-rank test con p = 0.72 ≫ 0.05) and the mean values
(59.2% theoretical teaching session, 56.7% DGBL, two-sided independent t-test,
p = 0.51 ≫ α = 0.05). As the coinciding baselines allow an analysis of the
pre / post-training differences of the two groups, the DGBL methodology led
to a significantly greater improvement than the classic learning one (one-sided
Mann-Whitney U test, p = 0.009 < α = 0.05). We did not carry out the same
analysis for partially correct and incorrect objects, as uniformity between the
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two strategies cannot be assumed at the α = 0.05 level. In this analysis, con-
sidering a Bonferroni correction factor (m = 2) did not change the result of the
effect of training on score of correct items. However, the effect of the reduction
of incorrect items for the DGLB group can no longer be considered statistically
significant.

Figure 9.10: Number of items selected by users (regardless of learning mode)
during the knowledge tests, divided by color into incorrect (red), partially correct
(yellow) and totally correct (green). Greater color opacity indicates a greater
number of selected items. Selected elements numbers are subdivided as pre-
training (inner circle), 1-day post-training (middle circle) and at 28 days follow-
up (outer circle). Color opacity shifts highlight the items for which learning
has proved particularly effective (e.g. ECG leads that go from 27 pre-training
to 38/33 post-training or ET tubes( size 2.5, 3, 3.5) that are reduced from 30
to 19/17), whereas uniformity of color opacity across the concentric circles show
the items for which learning has proved ineffective (e.g., Intensive care ventilator,
Laryngeal mask airway or Check neonatal incubator).
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Item choice in equipment check

With regard to the total number of times that each tool was selected dur-
ing the knowledge tests (regardless of the learning mode), training methodology
can be improved. Indeed, Figure 9.10 highlights the elements for which the
methodology worked well (increasing values for totally correct from the center
outwards, and decreasing for partially correct/incorrect ones) and those for which
it does not (stable scores among the sessions). For almost all totally correct op-
tions, learning proved effective with both methodologies; however, some options
were too obviously correct, e.g., adrenaline administration (45 to 47/47) or pulse
oximeter use (41 to 40/44). The best training effect was seen on discouraging
the selection of Endotracheal Tubes (ET) (0,1) (30 to 19/17). For other incor-
rect items (intensive care ventilator, E.R. Bag, E.T. Tube size) and partially
correct ones (laryngeal mask airway (31 to 33/33), check neonatal incubator (37
to 43/43), E.R. bag (20 to 18/15) and Intensive care ventilator (19 to 25/27)),
the learning was not effective enough, as users continued to rate them as neces-
sary despite training indicating otherwise. We are planning the implementation
of software changes, which will allow to investigate communication effectiveness
for these learning objectives. It should be emphasized that some incorrect tools
(ultrasound machine, ultrasound probe, LISAcath(R)) proved poor distractors,
as users hardly ever selected them. Therefore, future versions of the game will
not include those items.

9.3.3 DGBL game performance

Knowledge retention

Figure 9.11A shows the scores and the respective averages of the game ses-
sions (e.g., the number of correct answers) by category and session number
(1,2,3,4). The medians response times (seconds) for the entire corresponding
series of questions are shown in Figure 9.11B. After three preliminary Friedman
tests for scoring (CARE and PPV, intubation and chest compression and drug
administration) and three more for answer times (α = 0.05), all identifying a
statistical difference, we moved on to post-hoc pairwise analysis. Both panels
show a strong monotonicity in the functions, with increasing scores (∼ 65.3 to
96.7) and decreasing times (∼ 11.9 s to ∼ 7.7 s) as the sessions progress (one
sided paired Wilcoxon signed-rank test, α = 0.05), except for equipment CARE
and PPV/intubation and chest compression scores between session 3 and session
4 (α = 0.05), which did not show a statistically significant increase (knowledge
plateau). After a Bonferroni correction by a factor (m = 5) for the CARE and
PPV and a factor 3 for intubation and chest compression, the same results re-
mained valid at a level of α̃ = α/m = 0.01 except for the CARE and PPV scores
between session 2 and 3, whose increase was no longer statistically significant.
Test values at sessions 1 and 4 highly correlate (ρ = 0.84, Pearson test for linear
correlation p ≪ 0.001) with knowledge test scores 0 and 4. The game scores are
therefore predictive of success in the following knowledge test.
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Figure 9.11: Panel A - DIANA game scores, and corresponding median values,
over the 4 sessions. The scores are subdivided into three categories (CARE
and PPV, intubation and chest compressions, drugs administration) for ease of
analysis. Panel B - corresponding average answer times (in seconds).

Equipment game

As anticipated by knowledge tests (Figure 9.8), the sessions improve users’
ability to choose the correct objects. Indeed, the number of totally correct objects
selected (Figure 9.12A) and of partially correct/incorrect ones (Figure 9.12B) re-
spectively increased and decreased after each session. Specifically, since all the
scores are not normal (Shapiro-Wilk test at the alpha level = 0.05), we proceeded
to test the monotony of the score with a non-parametric test (preliminary Fried-
man test at a level α = 0.05 that revealed a statistical difference between the
totally correct scores, and post-hoc one-sided paired Wilcoxon signed-rank test,
respectively p ≪ 0.001, p = 0.01, p = 0.003 between sessions 1-2, 2-3 and 3-4).
Unlike procedure memorization highlighted by the scores (Figure 9.11), there is
still a statistically significant improvement for this game between sessions 3 and
4 (p = 0.003). A Bonferroni correction factor m = 5, the number of pairwise
analysis carried out, can be applied (α̃ = α/m = 0.01). Despite the correc-
tion, the results presented remain unchanged. Furthermore, candidates made
fewer mistakes when the tool name was paired with its picture (medians of 0
for partially correct items and incorrect ones vs 33.3% and 15.4% for the same
students during the knowledge test), as shown in Figure 9.12B and Figure 9.9B,
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Figure 9.12: DIANA game equipment scores (as selected items and their per-
centage of the median of total items) for totally correct (panel A) and partially
correct/incorrect items (panel B). Panel A shows a monotonous increase of cor-
rectly chosen elements (from 24% to 56%). Panel B shows extremely low values
of partially correct/incorrect scores. This finding reinforces the idea that visual
memory plays a pivotal role in memorization. Panel B shows the percentage of
the mean values because the corresponding medians are all equal to 0.

respectively.

Ventilation and compression game

Figure 9.13 shows the deviation from the correct ventilation- (40-60 breaths
per minute = intervals between 100-150 hundredths of a second) and compres-
sion ranges (80-100 breaths per minute = considering 30 alternating breaths per
minute, intervals between acts of 46-54 hundredths of a second). The score (Y
axis) represents the precision of execution in terms of number of acts, a score
of 0 representing a frequency kept within the range. Circle size is the stan-
dard deviation (STD) of the uniformity score d. Smaller circles represent greater
execution uniformity. Ventilation frequency was not as effectively learned as
compression rate, despite the apparent similarity of the games aiming to teach
them (Figures 9.13A and B, respectively). From a statistical point of view, the
values of the scores and the STDs of the rates all follow non-normal distributions
(Shapiro-Wilk test, p < 0.001 for scores and p < 0.01 for STDs). Regarding the
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Figure 9.13: DIANA game scores (y axis) and standard deviation (circle size) for
ventilation (panel A) and chest compression (panel B) execution. Low y values
imply an execution frequency closer to the correct one, while short circle radii
identify smoother acts. Panel A shows performance improvement in terms of
both correct frequency (decreasing score to 0) and smoothness of execution (small
circles radii). Panel B shows a less noticeable improvement in performance, with
users still unable to execute compressions correctly after the fourth session.

ventilations there is an improvement of both parameters. Score values are de-
creasing with monotony (one tailed Wilcoxon signed rank test p < 0.01). As
regards STDs, on the other hand, there is a statistically significant reduction be-
tween the first/second session (p = 0.03) and the third/fourth session (p = 0.001)
but not between the second/third. The same tests, applied to compressions, were
all statistically inconclusive.

Satisfaction questionnaires

Of the data collected from DGBL user satisfaction questionnaires (20/21), we
evaluated perceived utility and enjoyment of the procedure (both using a five-
level Likert scale). Ratings were generally positive in terms of perceived utility
(40% (5/5) and 60% (4/5)) and procedure agreeableness (40% (5/5) and 60%
(4/5)). Suggestions mainly concerned the need to increase available equipment
game time, perceived as too short. Positive feedback was given on spreading the
game sessions over different days.
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9.4 Discussion

This study successfully applied a DGBL-based approach to neonatal resusci-
tation teaching through the use of a newly developed software (DIANA). DIANA
game focused on the entire neonatal resuscitation algorithm (including: equip-
ment check, neonatal care, drug administration, assisted ventilation and chest
compressions). The study was aimed at pediatric/neonatology residents (a learn-
ers’ category considered in few studies as in the mixed study group by [455]);
while the majority of previous findings in this field have focused on undergradu-
ate medical students [452, 463, 464], healthcare professionals [454, 465, 455], and
experienced neonatal providers [460, 465]. This study’s sample size is similar
to other DGBL studies in the medical/neonatal field [452, 472, 473, 453, 460].
Learner allocation (Stratified random sampling) to two experience-based groups
(year of specialty training, previous theoretical teaching session, simulation ex-
perience, clinical practice experience) proved effective in obtaining homogeneous
baseline scores (Section 9.3.1). Furthermore, the subdivision obtained was bet-
ter than 92% of those eventually obtained by applying a completely random
method. This study is among the few that: 1) fully exploit the ability of a game
to extract user data (e.g., ventilation/compression game scores, response time,
etc.), 2) define a treatment group and an independent control group through a
baseline score (pre-test), 3) evaluate two follow-ups (short- and long-term knowl-
edge retention). In addition, compared with the majority of published studies,
which tested learner months apart [452, 453, 460], we preferred to keep the test-
ing interval shorter (and yet longer than 2 weeks, in line with best practice
in assessing DGBL learning [474]); as the studied cohort was recruited among
pediatric/neonatology residents, specialty training would invariably continue to
provide reinforcement of the skills assessed. It should be noted that 28 days are
considered a sufficient timeframe to evaluate memorization of a procedure in the
medium- to long term [469].

The DGBL methodology proved to be useful and appreciated by users to teach
both neonatal resuscitation algorithm and ventilation execution. Furthermore,
it proved to be even more effective than the classic frontal teaching session for
both short-term procedure memorization and equipment game score. In partic-
ular, the scores related to short-term knowledge retention proved to be higher
than those obtained by the theoretical frontal teaching session, in line with the
existing literature [453, 463, 464]. Also in line with the limited number of stud-
ies with a follow-up at more than 28 days [452, 460, 453], long-term knowledge
retention for DGBL group was as good as the control group one. Furthermore,
candidates who had received classic training demonstrated a regression to lower
scores, unlike DGBL methodology learners. DGBL methodology was particu-
larly effective in the learning of clinical equipment checking. Whereas the classic
theory teaching session led to a statistically significant, but moderate increase in
the number of correct objects chosen (57.1% to 71.4%), DGBL-based approach
led to a much greater improvement (57.1% to 90.5%). Furthermore, while the
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classic teaching session had almost no effect on changing the scores for partially
correct/incorrect items (33.1% to 50.0% and 23.1% to 15.4%), DIANA game
reduced or leave unchanged scores for both partially correct (33.1% to 33.1%)
and incorrect tools (23.1% to 15.4%). This score discrepancy is likely due to
the difference in the way the learning objective is conveyed: DGBL approach
breaks learning into sub-games (one of which is the explicit teaching of which
tools should be used), while during a theory teaching session the tools are named
progressively at the time of their use. Overall, the DGBL methodology subdi-
vision of learning into multiple sessions was confirmed to be effective for the
learning of neonatal resuscitation in line with further previous simulation-based
studies [472, 473], especially for the maintenance of the acquired competencies
[475]. The information collected in the DGBL sessions allows performance anal-
ysis (learning curve) related to flowchart learning, response times, equipment
check, and timing of assisted ventilations/chest compressions. Procedure learn-
ing was effectively achieved, in line with the existing literature [452, 460, 465]:
the first three sessions showed significant improvements in learning, while the
fourth highlighted a learning plateau. Of note, there was a constant improve-
ment in response times along the four sessions, with a total reduction of more
than 30% of the initial one. Similarly, there was a steady improvement in the
correct equipment check score (from 24% to 57%). In the assisted ventilation
game, DGBL methodology proved to be effective, as residents responded to the
feedback from the game and learned to keep the correct rate independently.
However, in the chest compressions game, similar in execution to the assisted
ventilation one, we did not observe the same effectiveness; candidates did not
improve in either the frequency (remaining outside the required clinical range)
or the regularity of compressions. This pattern persisted across all four sessions.
The discrepancy between these two results could be induced by the differences
between the two games. Indeed, during the compression game, the user must
interact with the virtual assistant which performs ventilation. To complete the
task before next the ventilation, users’ tend to perform excessively clustered and
irregular compressions.

The administration of a user satisfaction questionnaire confirmed a greater
appreciation for DGBL as a training methodology than the classic frontal the-
ory teaching session, in line with the existing literature [456, 463, 464]. DGBL
methodology usability is crucial for future developments, as learners positively
disposed to digital tools tend to respond more effectively [470]. Based on the
satisfaction questionnaire results, appreciation was lower for the check equipment
game compared to the others, despite its effectiveness on improving user scoring.

One of the limitations of this study is the inability of digital software to
teach the execution of technical skills. Particularly for complex tasks (also to be
combined with another operator), such as chest compressions, this methodology
proved ineffective: users’ acts remained too frequent, inappropriately clustered
and not coordinated with the virtual assistant. Furthermore, the knowledge
test does not guarantee that users will apply those skills effectively in a clinical
context. Future versions of this software will be developed from the analysis pre-
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sented in this study and the suggestions collected through the satisfaction ques-
tionnaire. Specifically, we aim to reduce the number of sessions to 3 (learning
plateau detected at the fourth one), allow no time limitation for the equipment
check game, and exclude from the tool list the obviously incorrect options (poor
distractors). To overcome the limitation of learning technical skills in DGBL
methodology, future developments may require integration with a physical sup-
port structure to allow the candidate to practice clinical tasks. To improve the
application of these training methodologies we are developing the online imple-
mentation of DIANA (both in Italian and English) to allow the autonomous use
of DIANA in further medical realities, as a free tool for training and re-training.
Thanks to the online platform we are already extending the same analysis on a
wider population. In this way we can use our findings (on both population char-
acteristics and expected scores) to estimate the required sample size to improve
future studies. The future development of a hardware device for the execution
of practical skills will also allow to overcome a known limitation in simulation
field (i.e. by lack of a report on the technical performance of the user with high-
fidelity mannequins). A high-fidelity simulator could offer a report on the correct
execution of the flowchart, based on human external observation of simulation.
However, with a hardware device designed to record the events performed, both
in terms of decision-making and practical performance, it will be possible to con-
duct a more detailed and precise study of the effectiveness of this two training
methodologies.

We will also seek to modify the software with/without hardware integration
to widen the potential user base, including other clinical specialties and varying
levels of experience. In particular, we aim to extend this learning tool to users
less accustomed to digital technology to further assess the impact of user mindset
on the effectiveness of DGBL methodology [470]. Moreover, as DGBL is unlikely
to be adopted as a stand-alone teaching method [454] (especially in higher educa-
tion [457]), future research may involve using the two methods in sequence, e.g.,
reinforcing the classic theory teaching session by DGBL, or a simulator-based in-
troduction to a classic teaching session. This blended approach has been already
validated for simulations outside neonatology [476]. Considering the positive
feedback obtained by remotely testing DGBL in other healthcare education con-
texts [460], deployment of DGBL to support healthcare education in low-income
countries could represent another future development in the use of this learning
technology.

9.5 Conclusion

In this study, DGBL methodology for pediatric/neonatology resident training
proved to be superior to theoretical teaching session (led by a neonatal expert
trainer) on short- and long-term knowledge retention of memorization of the cor-
rect equipment to assemble. In addition, DGBL proved to be at least as effective
as the teaching lesson for memorization and retention of neonatal resuscitation
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algorithm. DIANA game allows individual user session analysis, with an im-
provement in ”session-after-session” scores and a reduction in decision-making
times. We propose that DGBL could be a valuable addition to classic learning
methodology for all medical procedures involving a procedural algorithm.

Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential con-
flict of interest.

Author Contributions
S.B. and G.D.C. share co-first authorship. S.B. fully implemented the soft-

ware DIANA, collected the data, drafted the initial manuscript, reviewed, and
revised the manuscript. G.D.C. designed the study and the data collection tools,
analyzed the data, carried out statistical analysis, drafted the initial manuscript,
reviewed, and revised the manuscript. M.D.P., F.L. collected the data, were
involved in the classic training sessions and revised the manuscript. R.T.S.,
M.C., and A.C. wrote the knowledge test, taught during the classic training
sessions, integrated the analysis with the corresponding medical discussion, re-
viewed, and revised the manuscript. N.F. reviewed, critically analyzed and re-
vised the manuscript including revision of English language.

259



Chapter 9: DIANA

260



Chapter 10

Chicago Classification v4.0 Proto-
col Improves Specificity and Ac-
curacy of Diagnosis of Oesopha-
gogastric Junction Outflow
Obstruction

Pierfrancesco Visaggi, Matteo Ghisa, Giulio Del Corso, Federica
Baiano Svizzero, Lucia Mariani, Salvatore Tolone; Marzio

Frazzoni, Andrea Buda, Massimo Bellini, Vincenzo Savarino,
Roberto Penagini, C. Prakash Gyawali, Edoardo V. Savarino and

Nicola de Bortoli
Alimentary Pharmacology & Therapeutics (2022)

Summary
Background: Chicago Classification version 4.0 (CCv4.0) introduced strin-

gent diagnostic criteria for oesophagogastric junction outflow obstruction (EGJOO),
in order to increase the clinical relevance of the diagnosis, although this has not
been demonstrated yet.
Aims & Methods: We aimed to determine the prevalence of EGJOO using
CCv4.0 criteria in patients with CCv3.0-based EGJOO, and to assess if provoca-
tive maneuvers can predict a conclusive CCv4.0 diagnosis of EGJOO. Clini-
cal presentation, high-resolution manometry (HRM) with rapid drink challenge
(RDC), and timed barium oesophagogram (TBE) data were extracted in patients
diagnosed with EGJOO as per CCv3.0 between 2018-2020. Patients were then
reclassified according to CCv4.0 criteria, using clinically relevant symptoms (dys-
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phagia and/or chest pain), and abnormal barium emptying at 5 min on TBE.
Receiver operating characteristic (ROC) analyses identified HRM predictors of
EGJOO.
Results: Of 2010 HRM studies, 144 (7.2%) fulfilled CCv3.0 criteria for EGJOO
(median age 61 years, 56.9% female). Upon applying CCv4.0 criteria, EGJOO
prevalence decreased to 1.2%. On ROC analysis, integrated relaxation pressure
during RDC (RDC-IRP) was a significant predictor of a conclusive EGJOO diag-
nosis by CCv4.0 criteria (area under the curve: 96.1%). The optimal RDC-IRP
threshold of 16.7 mmHg had 87% sensitivity, 97.1% specificity, 95.7% negative
predictive value and 91.3% positive predictive value for a conclusive EGJOO di-
agnosis; lower thresholds (10 mmHg, 12 mmHg) had better sensitivity but lower
specificity.
Conclusion: CCv4.0 criteria reduced the prevalence of EGJOO by 80%, thereby
refining the diagnosis and identifying clinically relevant outflow obstruction. El-
evated RDC-IRP can predict conclusive EGJOO per CCv4.0.

10.1 Introduction

Oesophagogastric junction outflow obstruction (EGJOO) can manifest as a
motor disorder of the oesophagus with incomplete relaxation of the lower oe-
sophageal sphincter (LES) and intact oesophageal body peristalsis on high-
resolution manometry (HRM) [477]. However, EGJOO can also occur from struc-
tural etiologies, from non-specific mechanisms, and can be an artefact [478]. Clin-
ically, patients with conclusive EGJOO may report dysphagia and/or non-cardiac
chest pain (NCCP), while reflux symptoms are less common [478]. Therapeutic
strategies include medications and invasive procedures aimed at reducing LES
tone [479]. For EGJOO diagnosis, Chicago Classification version 3.0 (CCv3.0)
required elevated LES median integrated relaxation pressure (IRP) with pre-
served oesophageal body peristalsis and no HRM criteria for achalasia4, with
prevalence from 5% to 24% among patients undergoing HRM [478]. However, up
to 94% of these patients may improve without treatment, raising questions on
the significance of the diagnosis [479, 480, 481, 482]. In the recently published
CCv4.0 [477], diagnostic criteria for EGJOO were made more clinically relevant,
requiring elevated IRP in both supine and upright positions, intact oesophageal
body peristalsis, as well as elevated intrabolus pressure (IBP) in ≥ 20% of supine
swallows [477, 483]. Additionally, manometric EGJOO is considered clinically in-
conclusive [478], needing relevant symptoms (i.e., dysphagia and/or chest pain)
and supportive non-manometric investigations such as timed barium oesopha-
gogram (TBE) and/or functional lumen imaging probe (FLIP) for a conclusive
diagnosis. Oesophageal pressurization during the rapid drink challenge (RDC)
provocative test is considered supportive evidence for EGJOO [477]. Although
diagnostic criteria for EGJOO are now more stringent, impact on disease preva-
lence and consequently, relevance to clinical practice are currently unknown. The
primary aim of this study was to determine EGJOO prevalence using CCv4.0
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criteria among patients with EGJOO according to CCv3.0. The secondary aim
was to assess whether RDC could predict EGJOO.

10.2 Materials and methods

10.2.1 Study design and patients
In this multi-center retrospective cohort study, HRM studies in adults >18

years of age from tertiary referral centers in Pisa, Padova, and Feltre between
2018-2020 were retrieved and analyzed using both CCv3.0 and CCv4.0. Further
data, including clinical presentation, demographics and barium oesophagograms
(when available) were collected in patients meeting CCv3.0 criteria for EGJOO.
All patients stopped proton pump inhibitors (PPIs), H2-receptor antagonists
(H2RA), opioids or prokinetics at least 3 weeks prior to HRM. Exclusion criteria
were evidence of luminal stricture, extraluminal compression, or hiatus hernia
on endoscopy; history of foregut surgery; neoplasia; eosinophilic oesophagitis;
pregnancy and/or breast feeding. Participants were allowed to take alginates
as rescue therapy for controlling heartburn [484]. CCv4.0 criteria were applied
to the cohort with CCv3.0 EGJOO diagnosis to determine proportions with a
clinically relevant conclusive diagnosis of EGJOO. Prior to the HRM study, all
patients underwent a detailed clinical interview, including medical history (with
recording of height and weight), current medications, smoking, coffee and alco-
hol consumption. All patients also completed validated questionnaires evaluating
GERD symptoms10 and dysphagia [485]. Patients were further categorized into
those with and without clinically relevant symptoms (dysphagia and/or chest
pain). A timed barium oesophagogram (TBE) with assessment of barium re-
tention at 5 minutes (TBE5) was recommended to all patients for evaluation
of oesophageal emptying when EGJOO was identified as per CCv3.0 criteria on
HRM, and those who underwent TBE were classified into those with or without
a conclusive CCv4.0 diagnosis of EGJOO. The study was conducted in accor-
dance with the Helsinki Declaration (Sixth revision, Seoul 2008). Because all
patients were part of each institution’s institutional review board-approved data
collection., and only de-identified data were shared across the participating insti-
tutions with no links to the original patients, repeat institutional review board
approval was not deemed necessary.

10.2.2 High resolution manometry protocol
Oesophageal HRM was performed using a 4.2 mm outer diameter, solid-state

catheter assembly with 36 circumferential pressure sensors spaced 1 cm apart
(Medtronic Inc, Shoreview, MN, USA) after at least a six-hour fast. The HRM
protocol included a 30-second baseline recording, and ten 5-ml water swallows at
20-30 sec interval in the supine position [486, 487]. Three sets of multiple rapid
swallows (MRS) were performed, consisting of five consecutive 2 mL swallows
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in rapid succession within 10 seconds [486]. The RDC test consisted of rapidly
drinking 200 ml of water through a straw in the sitting position. The HRM
studies were analyzed using the ManoViewTM Analysis Software v3.0 (Medtronic)
by experts from each center.

10.2.3 High resolution manometry analysis
For each tracing, EGJ relaxation with integrated relaxation pressure (IRP),

EGJ morphology, distal contractile integral (DCI), distal latency (DL), and intra-
bolus pressure (IBP) were recorded [486, 488]. The IBP was considered elevated
when >20mmHg2. The EGJ-CI was calculated as previously reported [489]. For
each MRS maneuver, the time to complete the MRS, oesophageal body inhibi-
tion, mean IRP of the three MRS (MRS-IRP), and mean DCI of the three MRS
(MRS-DCI) were assessed [490]. Oesophageal body inhibition was considered
abnormal if there was a contraction segment with isobaric contour >20mmHg
and >3cm in length [491], during the MRS course. Deglutitive inhibition of the
LES was considered abnormal if the MRS-IRP was >15mmHg. The presence
of contraction reserve was assessed using the ratio of MRS DCI to SS DCI, and
MRS/SS ratio > 1 indicated preserved contraction reserve. Therefore, an intact
MRS response consisted of complete deglutitive inhibition of the oesophageal
body and LES during the repetitive swallows, and presence of contraction re-
serve [477]. Pressurization during MRS (i.e., evidence of pressurization with
isobaric contour >20mmHg during the repetitive phase of the MRS) was also
recorded. For each RDC test, the time to complete the RDC, post-RDC DCI
(RDC-DCI), the IRP of the entire duration of the RDC (RDC-IRP), and the
presence of pressurization (i.e., evidence of pressurization with isobaric contour
>20mmHg during the repetitive phase of the RDC) were assessed. Finally, the
percentage of time with pressure >20mmHg was calculated as the sum of the
duration of the pressurizations divided by the time taken to complete the RDC
[491].

10.2.4 Timed Barium Oesophagogram
TBE was performed in the upright position within thirty days following HRM.

Radiological images were obtained in the upright position after ingestion of 200
mL of low-density barium sulphate; frontal spot films of the oesophagus were
obtained at baseline and 5 minutes after ingestion [492]. The height of the
barium column was measured vertically from the EGJ using a lead scale placed
directly on the patient. Complete emptying was defined as a barium column
height of ¡1 cm at 5 minutes.

10.2.5 Conclusive EGJOO Diagnosis according to CCv4.0
A conclusive diagnosis of EGJOO according to CCv4.0 required manometric

EGJOO, relevant clinical symptoms, and abnormal TBE5. Only patients with
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complete HRM, clinical, and TBE5 data were included in the assessment of
EGJOO prevalence using CCv4.0 criteria. Since HRM studies were performed
using the CCv3.0 protocol [493], upright single swallows (SS) were not available
for assessment.

10.2.6 Statistical analysis
Continuous data are described as median and interquartile range (IQR), and

categorical data as counts and percent. Normality was evaluated using Shapiro-
Wilk test. Homogeneity of the variances was verified with Fligner-Killeen test.
Non-normal continuous variables were evaluated with non-parametric Mann-
Whitney U test (one-sided and two-sided), while categorical variables were an-
alyzed using Pearson’s χ2 test (using Yates’ correction for continuity). Unless
otherwise specified, the continuous variables were found to be non-normal and/or
to have a non-uniform variance between the two groups, and therefore the non-
parametric U-test was used. Correlation between the non-normal continuous
variables was tested using the non-parametric Spearman coefficient. Receiver op-
erating characteristic (ROC) curve analyses were used to assess the performance
characteristics of predictors of conclusive EGJOO as per CCv4.0, including area
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) with bootstrap 95% confidence intervals (CI)
when appropriate. A p-value of < 0.05 was considered statistically significant.
The statistical analysis was performed using R-studio version 4.1.2.

10.3 Results

10.3.1 Clinical characteristics
Among 2010 patients undergoing an oesophageal HRM during the study pe-

riod, 144 (7.2%) were diagnosed as EGJOO using CCv3.0 criteria, and met the
inclusion criteria for this study (median age 61 years, 56.9% female). Clinical
presentation and demographics of the included patients are described in Table
1. Of these, 54 patients (37.5%) had clinically relevant symptoms of dysphagia
and/or chest pain. Demographics, BMI, smoking, coffee and alcohol use were
similar between patients with and without clinically relevant symptoms (Ta-
ble 10.3.1). Proportions with heartburn (31.5% vs. 47.8% respectively, p=0.08)
and regurgitation (51.9% vs. 50.0% respectively, p=0.97) were not statistically
different.

10.3.2 High resolution manometry findings

Single swallows

Patients with EGJOO with clinically relevant symptoms had higher median
IRP (p < 0.001), mean DCI (p=0.017), and mean IBP (p < 0.001) compared
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to those without clinically relevant symptoms (Table 10.3.2). Type 1 EGJ mor-
phology (no hiatus hernia) was significantly more prevalent, in the presence of
clinically relevant symptoms (p=0.013). There were no differences in basal EGJ
pressure or mean DL between the two groups (Table 10.3.2).

Provocative tests

There were significant differences on provocative tests during HRM between
EGJOO patients with and without clinically relevant symptoms. With MRS,
both mean MRS-IRP (p < 0.001) and oesophageal pressurization (p < 0.001)
were higher in the presence of clinically relevant symptoms, while the propor-
tion with contraction reserve was lower (p=0.014) (Table 10.3.2). Similar find-
ings were noted with RDC, with higher mean RDC-IRP and higher oesophageal
pressurization in the presence of clinically relevant symptoms (p < 0.001).

266



Chapter 10: CCv4.0 improves diagnosis of EGJOO

10.3.3 Timed barium oesophagogram findings
Although all 144 patients were asked to undergo TBE, only 95 (66.0%) ulti-

mately underwent TBE. Radiographic evidence of EGJOO was noted in 65.7%
(23/35) of patients with clinically relevant symptoms, compared to none with no
clinically relevant symptoms (p < 0.001, Table 10.3.3). Additionally, the mean
barium column height at 5 minutes was significantly higher in the presence of
clinically relevant symptoms (p < 0.001).

10.3.4 Prevalence of EGJOO according to Chicago Clas-
sification v4.0

A complete investigation profile (HRM metrics, symptoms, and TBE findings)
to determine prevalence of EGJOO according to CCv4.0 criteria were available
for 95/144 patients. Accordingly, the CCv4.0 prevalence of EGJOO was cal-
culated out of a total of 1961 patients, and was 1.2% (23/1961, 95% CI 0.7%-
1.6%), significantly lower than the CCv3.0 prevalence of 7.2% (144/2010, 95%
CI 6.0%-8.3%). Among patients with clinically relevant symptoms, 23 of 35 pa-
tients (65.7%) with a complete investigation profile fulfilled CCv4.0 criteria for
EGJOO. In contrast, none of patients with other foregut symptoms had barium
retention on TBE5 (p < 0.001, Table 10.3.3).

10.3.5 Predictors of EGJOO
Median RDC-IRP in patients with a conclusive diagnosis of EGJOO as de-

fined by CCv4.0 (21.4 mmHg, IQR 19.5-25.0 mmHg) were higher compared to
those of patients without a conclusive EGJOO diagnosis (6.9 mmHg, IQR 5.3-9.9
mmHg, p < 0.001). On ROC analysis, RDC-IRP predicted a conclusive diagnosis
of EGJOO as defined by CCv4.0 with an AUC of 96.1% (95% CI 91.5%-100%).
(Figure 10.1). The optimal RDC-IRP cut-off, selected to maximize the sum of
specificity and sensitivity, was 16.7 mmHg, with a sensitivity of 87.0% (95%
CI 73.9%-100.0%), specificity of 97.1% (95% CI 92.6%-100.0%), NPV of 95.7%,
(95% CI 91.3%-100%) and PPV of 91.3% (95% CI 78.6%-100%). Two additional
thresholds were evaluated as predictors of conclusive EGJOO. The RDC-IRP
threshold of 12 mmHg, corresponding to the upright IRP threshold proposed
by CCv4.01, had 87% sensitivity (95% CI 73.9%-100%), 88.2% specificity (95%
CI 80.8%-95.6%), 95.3% NPV (95% CI 90.3%-100%), and 71.7% PPV (95%
CI 58.8%-87.0%) for a conclusive CCv4.0 diagnosis of EGJOO. The RDC-IRP
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Figure 10.1: Receiver operating characteristic (ROC) analysis of the performance
of integrated relaxation pressure (IRP) during rapid drink challenge (RDC) in
predicting a conclusive diagnosis of oesophagogastric junction outflow obstruc-
tion (EGJOO) according to Chicago Classification version 4.0, with radiographic
evidence of barium column >1 cm at 5 minutes on a timed upright oesophagram.
The performance characteristics were most optimal at RDC-IRP threshold of 16.7
mmHg, with sensitivity of 87.0%, specificity of 97.1%, negative predictive value
of 95.7% and positive predictive value of 91.3%. Area under the curve (AUC)
was 96.1%.

threshold of 10.0 mmHg, reported to predict abnormal TBE in treated achala-
sia19, had 95.7% sensitivity (95% CI 87.0%-100%), 75.0% specificity (95% CI
64.7%-85.3%), 98.1% NPV (95% CI 94.2%-100%), 56.4% PPV (95% CI 47.7%-
67.7%) for a conclusive CCv4.0 diagnosis of EGJOO. When considering patients
with a complete clinical, HRM, and TBE profile, 95.7% (22/23) with a con-
clusive CCv4.0 diagnosis of EGJOO had RDC-IRP above all three thresholds
studied (>10.0 mmHg, >12 mmHg and >16.7 mmHg), and 100% (23/23) had
oesophageal pressurization for ≥20% of the duration of the RDC. On the other
hand, 23.6% (17/72), 11.1% (8/72) and 2.7% (2/72) of those without a conclusive
diagnosis of EGJOO had RDC-IRP above the three thresholds, respectively, and
11.8% (8/68) had ≥20% oesophageal pressurization during RDC (Figure 10.2).
There was a strong correlation between RDC-IRP and oesophageal pressuriza-
tion (ρ = 0.61, ρ < 0.001) with higher RDC-IRP values corresponding to higher
HRM metrics, and between RDC-IRP and barium column height at 5 minutes
(ρ = 0.71, ρ < 0.001).
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Figure 10.2: Scatter-graph showing integrated relaxation pressure (IRP) values
during rapid drink challenge (RDC) in patients with a conclusive diagnosis of
oesophagogastric junction outflow obstruction (EGJOO) according to Chicago
Classification version 4.0 criteria (black circles) and inconclusive EGJOO (fulfill-
ing Chicago Classification version 3.0 criteria but not 4.0 criteria) (grey circles).
Performance characteristics were most optimal for RDC-IRP threshold of 16.7
mmHg; sensitivity was higher at a 10.0 mmHg threshold, at the expense of
specificity. Only 3 patients (13.0%) had RDC-IRP < 16.7 mmHg, and 1 patient
(4.3%) had RDC-IRP< 10.0 mmHg.

10.4 Discussion

The clinical relevance of an EGJOO diagnosis using CCv3.0 has been ques-
tioned, with patients likely to undergo unnecessary additional testing and inva-
sive treatments that may not change prognosis, since a large proportion improve
with non-specific measures or no therapy [479, 494, 495, 496]. With this back-
ground, the recently published CCv4.0 updated diagnostic criteria strived to
make EGJOO a more clinically relevant diagnosis1, requiring symptoms of dys-
phagia and/or chest pain, and mandating supportive findings on complementary
tests for a conclusive diagnosis. In this retrospective study we estimated the
prevalence of conclusive EGJOO among diagnosis made using CCv3.0, which
was expected to decline with use of stringent CCv4.0 criteria [478]. We demon-
strate a 6-fold reduction in prevalence of EGJOO, declining from 7.2% using
CCv3.0 to 1.2% using CCv4.0 criteria, particularly by selecting out patients
with clinically relevant symptoms, and by use of RDC. Our findings further sup-
port use of provocative maneuvers, especially RDC during HRM, as conclusive
EGJOO confirmed by oesophageal barium retention on TBE could be predicted
with impressive performance characteristics using RDC metrics, obviating need
for adjunctive confirmatory testing when abnormal RDC metrics are found. Ad-
ditionally, these findings lend further support for the expansion of the HRM test
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protocol recommended by CCv4.0. In the years since EGJOO has been clinically
recognized, it has become increasingly evident that this manometric pattern is
a clinical conundrum. While a small proportion of patients with EGJOO based
solely on an abnormal median supine IRP have true motor obstruction that
responds to achalasia like treatments, the majority require no therapy or non-
specific medical approaches [482, 497]. Therefore, a singular management ap-
proach does not apply to all EGJOO patients. The new CCv4.0 criteria attempts
to circumvent the clinical conundrum by requiring not just relevant symptoms,
but also confirmation of outflow obstruction using TBE or FLIP [477, 478]. Using
these criteria as a gold standard, we show that the expanded CCv4.0 HRM pro-
tocol is indeed able to identify conclusive EGJOO with a high degree of accuracy,
especially using RDC during HRM. Although CCv4.0 criteria suggest that ab-
normal provocative maneuver findings are supportive, our findings suggest that
these findings add additional confidence for a conclusive EGJOO diagnosis, and
might obviate need for additional testing. Several of the steps recommended by
CCv4.0 were factored into the current study. The first step involved identification
of patients with clinically relevant symptoms of dysphagia and chest pain. When
segregated by clinically relevant symptoms, reflux symptoms were reported less
often, albeit not statistically significant. Median IRP during single swallows,
MRS and RDC, as well as IBP were significantly higher when symptoms were
clinically relevant, supporting obstructive pathophysiology. When applying the
gold standard of abnormal TBE5, 65.7% with clinically relevant symptoms had
radiographic EGJOO, and these patients fulfilled conclusive EGJOO criteria by
CCv4.0. In contrast, none of the patients with other upper gastrointestinal symp-
toms had radiographic obstruction on TBE5. On the other hand, ten patients
who reported dysphagia and/or chest pain in the context of an elevated supine
median IRP did not have obstruction on TBE5, which is consistent with previ-
ous reports where primary EGJOO was associated with normal TBE5 [498, 499].
Although upright swallows were not performed, RDC was effective in identifi-
cation of patients with radiographic obstruction on TBE. Obstruction during
RDC has been associated with abnormal TBE findings, with published evidence
supporting its value in confirming latent obstructive processes1. Woodland et
al. reported that an elevated RDC-IRP correlates with obstructive symptoms
(as measured by the Eckardt score) and was the best predictor of EGJ obstruc-
tion on TBE5 [500]. Penagini et al. [501] also demonstrated that RDC-IRP
strongly correlates with TBE5, with RDC-IRP >10 mmHg providing excellent
discrimination between complete from incomplete barium emptying in treated
achalasia patients, leading the authors to speculate that RDC-IRP could be dis-
criminative in identifying any obstructive oesophageal syndrome. Our findings
support the value of RDC in patients with clinically relevant symptoms, where
an RDC-IRP of 10 mmHg had 95.7% sensitivity, 75.0% specificity, 98.1% NPV,
and 56.4% PPV in identifying conclusive EGJOO according to CCv4.0. Higher
RDC-IRP thresholds had even better performance characteristics, and a thresh-
old of 16.7 mmHg had the best performance characteristics, with sensitivity of
87.0%, specificity of 97.1%, NPV of 95.7%, and PPV of 91.3%. Oesophageal
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pressurization during RDC is a surrogate for elevated RDC-IRP, as all patients
with elevated RDC-IRP also demonstrated pressurization of ≥20% during RDC.
Our findings thus confirm that RDC is a valuable addition to the HRM protocol,
and that higher RDC-IRP values strongly predict radiographic EGJOO, making
RDC findings potentially conclusive for EGJOO diagnosed using CCv4.0 with-
out need for supplementary investigation. Our retrospective cohort study has a
few limitations that need to be considered. First, HRM were performed using
the CCv3.0 protocol [493]; while provocative maneuvers were performed, upright
swallows were not part of the protocol and were not available for comparison.
Data from Triggs et al. shows that radiographic EGJOO associates with higher
median upright IRP, and dysphagia and upright IRP predict barium retention
on TBE5 in patients with a CCv3.0 diagnosis of EGJOO [502]. In addition, Mis-
selwitz et al. showed that patients with EGJOO or achalasia in single swallows
in both supine and upright positions, had RDC-IRP >12mmHg in 75% of cases
[503]. In addition, upright and supine IRP correlated with RDC-IRP. Although
upright swallows were not performed in this study, RDC-IRP predicted a clin-
ically relevant EGJOO as defined by CCv4.0 with an AUC of 96.1%. Taken
together, these findings add confidence to the fact that an elevated upright IRP
would have likely been abnormal in patients with conclusive EGJOO by CCv4.0
criteria in our study, although we could not provide conclusive evidence for this.
Second, although CCv4.0 proposes that TBE should preferably be performed
in conjunction with a barium tablet swallow, TBEs were performed with 200
mL of low-density barium sulphate alone in this study. Third, 19/54 patients
with clinically relevant symptoms in the context of EGJOO according to CCv3.0
did not undergo radiographic evaluation, and had to be excluded from evalua-
tion of CCv4.0 EGJOO prevalence to avoid potential bias. Fourth, FLIP and
some of the additional provocative tests, including solid test meal or pharma-
cologic provocation of the EGJ, were not performed in this study. Finally, this
study only evaluated diagnosis of EGJOO and management was not addressed.
Therefore, the impact of conclusive vs. inconclusive CCv4.0 EGJOO diagno-
sis on treatment response could not be evaluated. However, other studies have
shown that provocative testing during HRM, including RDC and MRS, have
high sensitivity in identifying clinically relevant EGJOO that will respond to
an EGJ-directed treatment [504, 505]. Further prospective studies are needed
to address the impact of CCv4.0 criteria on management outcome of EGJOO
diagnoses. In summary, the more stringent CCv4.0 criteria have significantly
reduced the prevalence of EGJOO compared to CCv3.0, allowing identification
of clinically relevant radiographically confirmed outflow obstruction. The ex-
pansion of the HRM testing protocol to include provocative testing augments
the diagnostic yield of conclusive EGJOO, and use of abnormal RDC-IRP may
obviate the need for radiographic confirmation of EGJOO. The impact of the
new EGJOO criteria on the therapeutic management of the disease remains to
be investigated.

271



Chapter 10: CCv4.0 improves diagnosis of EGJOO

10.5 Author contributions
P.V. and N.d.B. conceived and drafted the study. P.V., R.P., C.P.G., E.V.S.,

N.d.B. drafted the manuscript. P.V., G.D.C., C.P.G., and N.d.B. analyzed all
data. All authors commented on drafts of the paper. All authors have approved
the final draft of the manuscript.

272



Chapter 11

Efficacy of Second PPI Course Fol-
lowing Steroid-Induced Remission
in Eosinophilic Esophagitis Refrac-
tory to Initial PPI Therapy

Pierfrancesco Visaggi, Federica Baiano Svizzero, Giulio Del Corso,
Massimo Bellini, Edoardo Savarino, Nicola de Bortoli

American Journal of Gastroenterology (2022)

Abstract
Background and Aims: Eosinophilic esophagitis (EoE) requires maintenance
therapy to avoid recurrence. We investigated the efficacy of a second course of
proton pump inhibitors (scPPIs) to maintain steroid-induced histological remis-
sion (HR) in EoE patients who had previously failed induction of remission with
PPIs.

Methods: We retrospectively included 18 patients who achieved HR with top-
ical steroids (TS) but could not be maintained on long-term TS. Treatment
outcomes were assessed after 12 weeks of scPPIs.

Results: Most patients (67%) maintained HR with high-dose PPIs monother-
apy at week 12.

Conclusion: scPPIs might work as maintenance strategy in primary PPIs non-
responder EoE patients.
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11.1 Brief communication

Eosinophilic esophagitis is a chronic disorder of the esophagus characterized by
symptoms of esophageal dysfunction and eosinophil-predominant inflammation,
in the absence of secondary causes of eosinophilia [506]. Adult often complain
of dysphagia, bolus impaction, and chest pain, but less specific symptoms are
common in childhood [506]. The diagnosis requires at least 15 eosinophils/high
power field (eos/hpf) in at least one esophageal biopsy [507]. On endoscopy, dis-
ease activity is assessed based on the EoE endoscopic reference score (EREFS)
[508]. Improvement of histology, endoscopic findings, and symptoms all rep-
resent treatment endpoints [509]. Therapeutic options include proton pump
inhibitors (PPIs), topical steroids, elimination dietary regimens (ED), and di-
lation of strictures, all of which can be considered as first line treatment [510].
Only recently, the FDA approved the use of dupilumab, a monoclonal antibody
against interleukin-4 receptor alpha, for EoE patients of 12 years or older. Other
novel treatment strategies are increasingly being investigated in randomized con-
trolled trials (RCT), although most are not routinely available in clinical practice
[511]. In this regard, when standard pharmacological treatments fail to induce
remission or are poorly tolerated, and patients refuse dietary regimens [512], the
management of EoE may become challenging. Thus, we retrospectively investi-
gated if EoE patients who had not responded to a first course of PPIs and had
achieved histological remission with subsequent topical steroid treatment could
be maintained in histological remission with scPPIs monotherapy.

We included EoE patients who did not respond histologically (i.e., ≥ 15
eos/hpf) to a 12-week course of high-dose PPIs who subsequently achieved histo-
logical remission following 12 weeks of second line therapy with topical steroids
between January 2020 – March 2022. Among topical steroid responders (TSR),
those who were intolerant to or concerned of long-term treatment with steroids
or complained of any steroid-related adverse event after a minimum of 12 weeks
of treatment were offered a therapeutic switch to either ED or scPPIs. TSR
patients who declined ED and opted for a therapeutic switch to scPPIs were
then evaluated histologically with at least 4 esophageal biopsies after 12 weeks
of scPPIs monotherapy. We only included patients for which all the following
information were available: sex; age; age at diagnosis; voluptuary habits history
(alcohol, smoking, coffee); history of upper gastrointestinal symptoms (dyspha-
gia, chest pain, heartburn, regurgitation, history of bolus impaction); history
of allergic comorbidities including asthma, nasal polyposis, and food allergy;
EREFS score and peak eosinophil count (PEC) at specific timepoints (before
and after first PPIs course, after topical steroids, after scPPIs); type and dose of
PPI and topical steroid used. We excluded patients taking systemic steroids or
who had esophageal dilation. Continuous variables were analysed using a two-
sided Mann-Whitney U test, while a two-sided Fisher’s exact test was used for
categorical variables. Significance level was set at p ≤ 0.05.

We found that 98 primary PPIs non-responders who were TSR had complete
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Figure 11.1: The plot shows mean values and 95% confidence intervals of peak
eosinophil counts at each treatment efficacy assessment

Figure 11.2: Differences and similarities between scPPIs responders and non-
responders.
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data and could be evaluated. Of these, 18 (14 males; 35.1±13yrs) opted for scP-
PIs following withdrawal of topical steroid treatment because of treatment con-
cerns (n=7), intolerance (n=6), or adverse events (oral candidiasis n=4; fatigue
n=1). All patients received esomeprazole 40mg twice daily for both courses of
PPIs. All patients received topical steroids via a multi-dose inhaler (n=15 budes-
onide 2mg daily, n=3 fluticasone propionate 1750mcg daily). Based on endoscopy
with biopsies, 12 patients (66.7%) (10 males, 34.3±13.8yrs) were scPPIs respon-
ders (scPPIs-R, i.e., eos/HPF > 15), and 6 (33.3%) (4 males, 36.8 ± 13.4yrs)
were scPPIs non-responders (scPPIs-NR, i.e., eos/HPF > 15). ScPPIs-NR were
more frequently drinkers of more than 2 units of alcohol per day. Significantly
more scPPIs-NR patients reported history of bolus impaction (scPPIs- NR=67%
vs scPPIs-R=8% p=0.02) or had nasal polyposis (scPPIs-NR=83% vs scPPIs-
R=8%, p=0.004). Symptoms improved following topical steroids and remained
stable during scPPIs in both cohorts. PEC was higher in scPPIs-NR at each
histologic evaluation timepoint (p ≤ 0.05) (Figure 11.1). The EREFS score im-
proved in both groups following topical steroids but worsened after scPPIs in
scPPIs-NR patients (Table 11.2).

Our findings allow to speculate that a scPPIs, at least in the short-term, might
work as a maintenance strategy in primary PPI non-responders who achieved
histological remission with topical steroids. In this setting, a clinical history of
previous bolus impaction, nasal polyposis, and higher PEC may help to identify
patients less likely to maintain histological remission after a scPPIs.

This study has limitations that should be considered. First, this was a ret-
rospective study and there was no control group taking placebo instead of scP-
PIs. Second, the study cohort was small because only patients who could not
be maintained on long-term topical steroids who had refused ED were offered
a scPPIs. Finally, the follow-up was limited to 12 weeks and symptoms were
not evaluated with validated questionnaires. Although it could be argued that
steroids were responsible for the maintenance of histology remission at week 12
following scPPIs, a recent RCT [513] showed that, when treatment with topical
budesonide is withdrawn following induction of histological remission, 86.4% of
patients show active inflammation on histology (i.e., > 15 eos/hpf) when as-
sessed at week 12 regardless of symptoms. In contrast, in this study, 67.7% of
patients maintained histological remission under scPPIs after 12 weeks from top-
ical steroids withdrawal. In addition, although symptoms were not statistically
different between cohorts during scPPIs treatment, scPPIs-NR showed a trend
towards symptoms recurrence. In this regard, EoE is a complex disease with dif-
ferent histological, endoscopic, and clinical markers of disease activity and there
may be modest correlation across different outcome measures, possibly due to co-
existing psychological distress or esophageal dysmotility [514, 515] . Moreover, a
recent RCT also showed that the median time to symptoms recurrence following
steroid discontinuation exceeds 12 weeks [516] . Therefore, although we showed
that scPPIs have maintained histology and endoscopy improvements in scPPIs-R
patients, we were less precise in estimating the efficacy on EoE symptoms.

In conclusion, scPPIs could represent a maintenance treatment strategy in
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primary PPIs refractory patients. The efficacy of a scPPIs should be confirmed
prospectively in a RCT as PPIs could represent the least expensive maintenance
treatment worthwhile considering in clinical practice.
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Chapter 12

Conclusions

This manuscript deals with the development and validation of an in-silico
duplicate of human cardiac electrophysiology and associated uncertainty quan-
tification analyses. Indeed, the overwhelming individual variety in terms of form
and characteristics makes canonical validation methodologies inadequate. Anal-
yses were therefore performed using uncertainty quantification (UQ) techniques
to understand how variability propagates over quantities of medical interest (for-
ward analysis) and which of the uncertain variables impact most the dynamics
(global sensitivity analysis). The application of these methodologies led to the
subsequent development of original UQ techniques for contexts with partial in-
formation on individual variability.

With reference to Figure 12.1a), starting with a model of the ventricle, sim-
plified but already with a very good match with reality, a detailed UQ analysis
was carried out. The latter investigated which of the geometric, conductivity
or cellular pattern uncertainties played a decisive role in the fast, correct, and
uniform activation of the heart. In the case of healthy hearts, it was evident that
the dominant components were the macroscopic ones: muscle fibers orientation,
geometry and, above all, the conduction velocity of the Purkinje network.

On the basis of these results, a complete cardiac electrophysiology model was
therefore developed from scratch, incorporating the description of the four atrial
and ventricular chambers, a realistic orientation of the muscle fibers and, above
all, the presence of the fast conduction structures (Purkinje network, internodal
bundles, Bachmann’s bundle, etc.), see Figure 12.1b. The model so defined is
also fully parametric: the features are described by individual scalar values which
alter the macroscopic structure (e.g. the orientation of the ventricular fibres de-
pends on three angles, three electrical conduction values describe the Purkinje
network, two parameters its extension, etc.). This characterisation therefore
makes the model ideal for carrying out structured uncertainty quantification
analysis. In addition to healthy cardiac activation, some pathologies related to
the detailed electrophysiological structure implemented were investigated. In
particular, heart stroke, bundle branch blocks and artificial pacemaking have
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Figure 12.1: Evolution of the cardiac model. Panel a) shows the original [177]
model, comprising an atrial chamber, a ventricular chamber, and a simplified
electrophysiology model (monodomain on 2D domain approximating 3D tissue).
Panel b) shows the advanced electrophysiology model. In this second version,
atrial internodal pathways, ventricular conduction fibres, the AV-node and the
Purkinje network are added. The cellular models were then differentiated be-
tween atrial and ventricular chambers, providing a different shape of the action
potential. Finally, the two-dimensional simplification of the myocardium was
eliminated in favour of a three-dimensional model incorporating a complex ge-
ometry of muscle fibres. Panel c) shows the final cardiac model, which includes
the four heart valves (Aortic, Mitral, Pulmonary and Tricuspid), the principal
veins, and the main arteries. The geometry was modified to obtain an average
heart in line with a large body of literature. The electrophysiological model was
then coupled with the original fluid structure solver, resulting in one of the first
fully parametric complete human heart models.

been discussed.
This novel model was therefore used to analyse which parameters of atrial

dynamics most affect ventricular activation, distinguishing between male and
female hearts. The analysis reveals that electrical conduction and fast conduc-
tion fibers control more than 90% of the dynamics of a healthy heart. The
electrophysiology model has been then integrated with a fluid-structure solver
developed by out group, thus obtaining an electro-fluid-structure digital heart,
see Figure 12.1c.

The latter provides the optimal starting point for structuring an extensive
body of research in three major branches.

• In order to improve medical and didactic applicability, it is possible to
define a simulated ECG to further investigate the properties of the model
and to provide medical students with an unprecedented learning technique.
Indeed, as it is possible to manipulate the cardiac model parameters as re-
quired, it is possible to generate pathological situations/rare events and
provide the students with both the full three-dimensional visualisation of
cardiac dynamics and the corresponding ECG. Incorporating medical ex-
pertise, it is also possible to further refine the model by integrating the

280



Conclusions

atrial and ventricular trabeculae, acting on the local wall thicknesses and
performing a precise adjustment of the cell model parameters.

• A second research strand is based on the modelling of further pathological
phenomena to be integrated into the model. In addition to heart stroke and
artificial pacemaking, it is indeed possible to introduce cardiac ablations,
the effect of temperature on cardiac dynamics, and arrhythmias.

• Given the high parameterisability and low computational cost of the model,
the most important future developments concern uncertainty quantification
applications. Using adaptive sampling techniques (based on Kriging) com-
bined with the pre-analysis performed on atrial important variables, it is
possible to perform a sensitivity analysis of the entire human heart with
quantities of medical interest. Furthermore, the modular nature of the hu-
man heart combined with the possibility of defining low fidelity models (i.e.,
by reducing the grain of the mesh) is the optimal context for performing
multi-fidelity analyses.

Throughout the entire manuscript, the pivotal importance of using the correct
input distributions was emphasised. In view of the great variety of medical data
and the dependence of both additional characteristics (gender, age, training sta-
tus, etc.) and investigative techniques (MRI, echography, etc.) an important
step towards the standardisation of UQ-analysis consists in the creation of a
selected bibliographic database. The latter, integrated into an online platform,
would allow not only the sharing of data on which to carry out UQ analyses, but
also a more precise comparison of the results obtained.

The flexibility of the uncertainty quantification methodologies made it possi-
ble to conduct research projects with several different groups. In particular, the
collaboration with the ”Centro di Formazione e Simulazione Neonatale NINA” re-
sulted in the development of UQ methodologies for medical application. Indeed,
unlike in-silico models, individual variability and low control over confounding
factors prevent the use of most canonical UQ techniques. While developing soft-
ware to teach neonatal resuscitation procedure to medical residents, an adaptive
splitting procedure was therefore introduced. The latter integrates forward UQ
methodologies with the medical need for a simple tool to achieve optimal splitting
of study populations. The collaboration with the Gastroenterology Unit, Depart-
ment of Translational Research and New Technologies in Medicine and Surgery
of the University of Pisa led instead to the application of standard statistical
techniques integrated with predictive metamodels for the study of esophagitis.
In addition, a methodology integrating forward analysis with the study of corre-
lation indices was developed in order to reduce errors in medical analyses.

However, the combined experience of cardiac UQ and medical applications
has demonstrated a fundamental problem that taints much of UQ analysis: the
information available to the investigator is almost always inadequate. A key
development of the work begun in this thesis is therefore the development of
appropriate indices to assess whether the resulting analyses are valid even in the
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presence of incomplete information (Nested Sensitivity Analysis). The techniques
presented in this thesis, their flexibility, and their numerous applications, confirm
that nowadays a deterministic numerical approach must be supplemented with a
shrewd study of uncertainties to fully describe the complexity of real phenomena.
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[52] J.-L. Muñoz-Cobo, R. Mendizábal, A. Miquel, C. Berna, A. Escrivá, Use
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