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Abstract

Recent years have seen a global widespread adoption of smart mobile devices, notably,

smartphones and tablets. Coupled with them is the even more explosive diffusion of mo-

bile apps. The diffusion of such devices provides end users with previously unimaginable

capabilities, and sensitive tasks such as purchasing products, managing bank accounts or

keeping track of vital health information are now possible with just the flick of a finger.

This increased reliance on smart mobile devices and apps is not without risks. They have

an unprecedented access to sensitive personal information that is increasingly collected

and used by companies.

To counteract this issue, the European Commission launched the Next Generation Inter-

net (NGI) initiative, with the ultimate goal of ensuring the creation of an internet that

respects human and societal values, privacy, participation and diversity. Privacy and

Trust play a key role, as NGI will inherently contain technical capabilities to support

the data sovereignty of the end user, who should have the authority to decide how and

by whom her data are used.

In this dissertation, we investigate how mobile apps can be made more in line with the

NGI vision, shifting to a more human-centric approach to privacy protection by giving

control back to the user. Specifically, focusing on the Android platform, we investigate

existing issues in its current security- and privacy-preserving mechanisms that result in

a negative impact on users’ trust on the whole platform. Building on the results of this

investigation, we propose a new permissions model that enables end-users with more

control over their personal data and, at the same time, provides a better understanding

of how and why such data are used.

The contributions of this dissertation are: (i) an up-to-date map of the state of the art in

static analysis of mobile apps, complete with an evaluation of the potential for industrial

adoption; (ii) the identification of a number of existing issues in the current Android

permissions system from the end user perspective; (iii) an empirical investigation on the

introduction by developers of permissions-related issues in open-source Android apps,

complete with a characterization of their frequency and decay time; (iv) the realization

and evaluation of Android Flexible Permissions (AFP), a new flexible permissions model

that empowers end users to specify and enact flexible permissions for Android apps.



Contents

Abstract i

List of Figures vi

1 Introduction 1
1.1 Smartphones and privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A new perspective and its challenges . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research approach and method . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Structure of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8
2.1 The mobile apps ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Android operating system . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Permission systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Android install-time permission system . . . . . . . . . . . . . . . . 12
2.3.2 Android usage-time permission system . . . . . . . . . . . . . . . . 13
2.3.3 Static program analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

3 State of the Art 16
3.1 Users behavior on privacy decisions . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Effectiveness of Android permissions . . . . . . . . . . . . . . . . . . . . . 17
3.3 Extensions of Android permissions . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Finer-grade extensions . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Mock-based extensions . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Context-based extensions . . . . . . . . . . . . . . . . . . . . . . . 23

4 Software engineering techniques for statically analyzing mobile apps:
research trends, characteristics, and potential for industrial adoption 25
4.1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Search and selection process . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2.1 Selection criteria . . . . . . . . . . . . . . . . . . . . . . . 31
Inclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . 31
Exclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Data synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



Contents iii

4.2 Results - research trends (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Year of publication . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Publication venue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Publication venue type . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Analysis goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 Macro analysis goal . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.6 Paper goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Results - characteristics of approaches (RQ2) . . . . . . . . . . . . . . . . 39
4.3.1 Platform specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Static/hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Usage of machine learning techniques . . . . . . . . . . . . . . . . . 41
4.3.5 App artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.6 Additional inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.7 Analysis pre-steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.8 Analysis technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Results - potential for industrial adoption (RQ3) . . . . . . . . . . . . . . 47
4.4.1 Target stakeholder . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Tool availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Technology readiness level . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.5 Number of analysed apps . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.6 Apps provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.7 Evaluation soundness . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.8 Industry involvement . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Orthogonal findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Discussion and future challenges . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 An investigation into Android permissions from an end users’ perspec-
tive 67
5.1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Goal and research questions . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Subject selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.5 Study replicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 The classification pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Automatic classification . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 RQ1 - How accurate is an automated approach in classifying user

reviews via different combinations of machine learning techniques? 77
5.3.2 RQ2 - To what extent do app reviews express concerns about the

Android run-time permission system? . . . . . . . . . . . . . . . . 81



Contents iv

5.3.3 RQ3 - What are the main concerns about the Android run-time
permissions system in app reviews? . . . . . . . . . . . . . . . . . . 81

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Open challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Permission Issues in Open-source Android Apps:An Exploratory Study 90
6.1 Goal and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Data collection and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Repository collection . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 Detection of PRIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1 RQ1 – What are the most common types of permission- related

issues in Android apps? . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 RQ2 – How long do permission-related issues tend to remain in

Android apps across their lifetime? . . . . . . . . . . . . . . . . . . 101
6.3.3 RQ3 – To what extent does developer experience correlate with

the introduction of permission-related issues? . . . . . . . . . . . . 103
6.3.4 RQ4 – To what extent does developer experience correlate with

fixes of permission-related issues? . . . . . . . . . . . . . . . . . . . 105
6.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Enhancing trustability of Android applications via user-centric flexible
permissions 109
7.1 Design philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 The AFP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 App developer perspective . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 End user perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Flexible permission data model . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Features specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5 App instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.6 Permissions enactment and enforcement . . . . . . . . . . . . . . . . . . . 118
7.7 Implementation and used technologies . . . . . . . . . . . . . . . . . . . . 119
7.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.8.1 Experiment 1: performance of the AFP instrumenter . . . . . . . . 121
7.8.2 Experiment 2: Performance of AFP-enabled apps . . . . . . . . . . 123
7.8.3 Experiment 3: Usability and acceptance of AFP by developers . . 126
7.8.4 Experiment 4: Usability and acceptance of AFP by end users . . . 131

7.9 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Conclusions 141
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Limitations of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2.2 Limitations of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 143



Contents v

8.2.3 Limitations of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2.4 Limitations of Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Appendix: mapping primary studies 147



List of Figures

1.1 Past and predicted global app revenues . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The Android software stack . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Android Activity lifecycle1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Install-time permission request dialog2 . . . . . . . . . . . . . . . . . . . . 13
2.4 Usage-time permission request dialog3 . . . . . . . . . . . . . . . . . . . . 14

4.1 The search and selection process of this study . . . . . . . . . . . . . . . . 29
4.2 Bubble plot of primary studies by year and venue type . . . . . . . . . . . 34
4.3 Macro analysis goal by year . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Example of an analysis technique requiring additional inputs . . . . . . . . 43
4.5 Distribution of industry involvement . . . . . . . . . . . . . . . . . . . . . 53

5.1 Summary of the data collection process . . . . . . . . . . . . . . . . . . . . 69
5.2 Overview of the classification pipeline (steps marked with an * are optional) 75
5.3 Permission-related reviews by number of requested permissions . . . . . . 83
5.4 Permission-related reviews by requested permission . . . . . . . . . . . . . 84
5.5 User ratings across reviews categories (outliers not shown) . . . . . . . . . 85

6.1 Repositories collection and filtering process . . . . . . . . . . . . . . . . . 94
6.2 Distributions of developers’ experience when introducing PRIs . . . . . . . 103
6.3 Distributions of developers’ experience when fixing PRIs . . . . . . . . . . 105

7.1 Overview of the AFP approach . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Flexible permissions data model . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Feature to Android components mapping specification form . . . . . . . . 116
7.4 Comparison between an original byte code file (Listing A) and the rewrit-

ten version produced by the AFPInstrumenter (Listing B). . . . . . . . . 118
7.5 Screenshots of the permissions configuration procedure enabled by the

AFPApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6 Execution times of the AFPInstrumenter pipeline (in seconds) . . . . . . . 122
7.7 Performance of selected apps (both original and instrumented) . . . . . . 125
7.8 Results about the acceptance of AFP by developers . . . . . . . . . . . . 129
7.9 Frequency distribution of answers to SUS statements by developers . . . . 130
7.10 Example of execution scenario for the com.yopapp.yop app: to sell an

object the user (a) taps on the "sell now" button, (b) takes a picture and
(c) fills out listing details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vi



List of Figures vii

7.11 Perceived trustability of Android 6 and AFPpermission systems w.r.t. the
way the app asked permissions (Q1) and how likely the participant is likely
to use the app (Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.12 Acceptance of AFPby end users in terms of: clarity of the definitions
(Q3 and Q4) and usefulness (Q5 and Q6) of feature-based and level-based
permissions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.13 Frequency distribution of answers to SUS statements by users . . . . . . . 137



Chapter 1

Introduction

1.1 Smartphones and privacy

Recent years have seen a global widespread adoption of smart mobile devices (i.e., smart-

phones and tablets). This trend is expected to continue, with the total worldwide smart-

phone subscriptions projected to grow from 4.3 billion in 2019 to 7.2 billion in 2023 [1].

Coupled with the diffusion of mobile devices is the even more explosive diffusion of mobile

apps, i.e., software that is specifically designed to run on mobile devices. Global mobile

app revenues are currently estimated at 87 billion US$ and further grow is forecasted,

with a predicted estimate of 129 billion for 2021 (as shown in Figure 1.1) [2]. The An-

droid operating system represents a key player in this landscape, as it is the smartphone

OS market leader among all age segments in the US, UK, and other countries [3]. The

Android apps market, represented by the well known Google Play Store, now counts

more than two millions apps, downloaded billions of times per year [4].

The tremendous diffusion of smartphone and mobile apps enables end-users with previ-

ously unimaginable capabilities, as sensitive tasks such as purchasing products, managing

their bank account and keeping track of vital health information are now possible with

just the flick of a finger. Unsurprisingly, this increased reliance on smarthpone and mo-

bile apps is not without risk, as mobile apps have an unprecedented access to sensitive

personal information.

A 2014 survey conducted among adult Americans [5] found that 91% of participants

believe that consumers have lost control over how personal information is collected and

used by companies and that most participants would like to do more to protect their

personal information online. In a similar manner, a study among American mobile phone

users found that more than half of app users have uninstalled or decided to not install

an app due to concerns about personal information [6].

1
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Figure 1.1: Past and predicted global app revenues

1.2 A new perspective and its challenges

The Internet raison d’être is enabling the exchange of data in its multiple forms, whether

it is about sending an email, watching videos, listening to music, chatting or posting

pictures. A big portion of our life happens on the internet where a huge amount of data

is generated and elaborated. This, in an increasingly digital world, raises serious concerns

as citizens’ lack of control over their personal data can lead to inequalities, manipulation

of information and restriction in freedom of choices [7].

To address these issues, the Next Generation Internet (NGI) initiative has been launched

by the European Commission with the ambition to ensure the creation of an internet

that respects human and societal values, privacy, participation and diversity, and offers

new functionalities to support people’s real needs, and addresses global sustainability

challenges [7]. The overall vision is grounded on the idea that via increased connectivity

and the progressive adoption of advanced concepts and technologies better value will be

delivered to the people and to the society [8].

For this vision to be realised, several open questions and challenges need to be addressed

at economic, political, legal and technological levels. Among them, Privacy and Trust

play a key role, as the NGI must inherently contain technical capabilities to support the

data sovereignty of the end user. The end user should have the power to decide how and

by whom her data are used [8, 9]. This will allow citizens to take back control of the
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internet and make it a powerful tool to improve their lives in areas as diverse as health,

democracy, environment and mobility.

1.3 Research questions

In this dissertation, we investigate how mobile apps can be made more in line with

the NGI vision, shifting to a more human-centric approach to privacy protection by

giving control back to the user. Specifically, we focus on the Android platform, given its

dominant position in the smartphone OS market, its open-source nature, and the fact

that it has been the platform of choice for past research work on mobile software.

In order to accomplish our goal, multiple aspects have to be considered. On the one hand,

current Android security- and privacy-preserving mechanisms can provide a valuable

source of information, as lessons can be learned by identifying and understanding issues

that affect them and that have a negative impact on users’ trust on the whole platform.

On the other hand, Android security and privacy-preserving mechanisms have to be

rethought, as to enable end-users with more control over their personal data and, at the

same time, provide a better understanding of how and why such data is used.

RQ1 What is the state on the art on static analysis for mobile applications?

The redesign of Android security- and privacy-preserving mechanisms will be heav-

ily based on static analysis. Hence, overviewing the current state of the art is

necessary to understand which techniques can be adopted to answer RQ3. This

research question will be answered in Chapter 4.

RQ2 Are there any existing issues in current Android security- and privacy-preserving

mechanisms that negatively affect the users’ trust on the whole platform?

The identification and analysis of existing issues in current Android security- and

privacy-preserving mechanisms can provide us with key insights on how these mech-

anisms are perceived by users. This information will be key to conceive a more

user-centric redesign of aforementioned mechanisms. This research question will

be answered in Chapter 5 and Chapter 6.

RQ3 How can we rethink Android security- and privacy-preserving mechanisms in order

to make them more user-centric and in line with the NGI vision?

Rethinking Android security- and privacy-preserving mechanisms comes with mul-

tiple challenges. On the one hand, solutions to the issues identified in RQ2 must

be user-friendly and accepted by end-users. On the other hand, in order to make
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proposed solutions adoptable in practice, modifications to the existing Android

platform and any additional effort required from app developers must be mini-

mized. Considering both these aspects, the answer to this question is provided in

Chapter 7.

1.4 Research approach and method

Given the dual nature of the goal at hand, a variety of investigation and analysis tech-

niques have been used to gather insights and to empirically validate the proposed modi-

fications to security- and privacy-preserving mechanisms.

For this purpose, the following qualitative and quantitative investigation and analysis

techniques were used:

• Mining of software repositories (MSR) describes a broad class of investiga-

tions into the examination of software repositories, in the broad sense of artifacts

that are produced and archived during software evolution. They include sources

such as the information stored in source code version-control systems (e.g., the Sub-

version versioning system), requirements/bug-tracking systems (e.g., Bugzilla), and

communication archives (e.g., e-mail). These repositories hold a wealth of infor-

mation and provide a unique view of the actual evolutionary path taken to realize

a software system. The premise of MSR is that empirical and systematic investiga-

tions of repositories will shed new light on the process of software evolution and the

changes that occur over time by uncovering pertinent information, relationships,

or trends about a particular evolutionary characteristic of the system [10].

• App store analysis is a form of software repository mining. Unlike other software

repositories traditionally used in MSR work, app stores usually do not provide

source code. However, they do provide a wealth of other information in the form

of pricing and customer reviews. Hence, data mining can be used to analyse apps’

technical, customer and business aspects [11].

• Systematic Mapping Study (SMS) or scoping studies is a qualitative research

method designed to give an overview of a research area through classification and

counting contributions in relation to the categories of that classification [12, 13].

The outcome of a mapping study is an inventory of papers on the topic area,

mapped to a classification. Hence, a mapping study provides an overview of the

scope of the area, and allows to discover research gaps and trends.
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• Experiment and Quasi-experiment. An experiment in software engineering is

an empirical inquiry that manipulates one factor or variable of the studied set-

ting. Based on randomization, different treatments are applied to or by different

subjects, while keeping other variables constant, and measuring the effects on out-

come variables. The effect of the manipulation is measured, and based on this

a statistical analysis can be performed. A quasi-experiment is a similar inquiry

in which, unlike experiments, the assignment of treatments to subjects cannot be

based on randomization, but emerges from the characteristics of the subjects or

objects themselves [12].

1.5 Contributions

Concrete contributions of this dissertation are provided below.

• a semi-automatic classification pipeline to classify Android reviews according to

specific concerns. Accuracy of the pipeline, and of the underlying machine learning

techniques, has been evaluated in the field in the context of an empirical study

focused on Android run-time permissions that analyzed 18,326,624 reviews about

15,124 apps.

• the identification of a number of potential issues of the run-time permission system

from the end user perspective. Such issues are identified starting from app reviews

that mention the Android run-time permission system, have been organized into a

taxonomy and how they can be addressed in the future has is discussed.

• an empirical study that investigates the introduction of permission-related issues

(PRIs) by developers in their apps. In the context of 1,059 GitHub repositories

of open-source Android apps, we analyze the occurrences of four types of PRIs

across the lifetime of the apps, characterize their frequency and their decay time

and provide an objective assessment of whether PRI introduction and fix correlates

with the experience of the developer performing it.

• a classification framework for categorizing, comparing, and evaluating approaches

for static analysis of mobile apps according to a number of parameters (e.g., analysis

goal, supported platforms, type and number of needed inputs, types of supported

analysis).

• an up-to-date map of the state of the art in static analysis of mobile apps, complete

with an evaluation of the potential for industrial adoption of existing research, and

a discussion of the emerging challenges and their implications for future research.
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• the realization of Android Flexible Permissions (AFP), a new flexible permission

model for Android apps that empowers end users to specify and enact flexible

permissions. AFP has been evalutaed by means of four different experiments and

it’s implementation is made publicly available.

1.6 Structure of this dissertation

Figure 1.2 provides an outline of the structure of this dissertation.

Figure 1.2: Structure of the dissertation

In the following, a brief description of the contents of each chapter:

• Chapter 2 introduces the necessary background concepts about mobile apps, the

Android OS and static program analysis.

• Chapter 3 provides an overview of the current state of the art for each of the

research fields related to the thesis.

• Chapter 4 introduces a mapping study on existing approaches for static analysis of

mobile apps. Such techniques are fundamental for the work of Chapter 7, hence

this chapter serves as a preliminary investigation of the state of the art.

Parts of this chapter were previously submitted as:

Marco Autili, Ivano Malavolta, Alexander Perucci, Gian Luca Scoccia, Roberto

Verdecchia. Software Engineering Techniques for Statically Analyzing Mobile Apps:

Research Trends, Characteristics, and Potential for Industrial Adoption. Journal

of Systems and Software. Journal of Systems and Software.
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• Chapter 5 reports on an preliminary empirical study, focused on the analysis of

mobile apps user reviews, performed in order to identify existing issues in the

Android permission system from the end-user perspective.

Parts of this chapter were previously published as:

Gian Luca Scoccia, Stefano Ruberto, Ivano Malavolta, Marco Autili, Paola Inver-

ardi. An Investigation into Android Run-time Permissions from the End Users’

Perspective. 5th IEEE/ACM International Conference on Mobile Software Engi-

neering and Systems, 2018.

• Chapter 6 presents an empirical study, focused on the analysis of repositories of

open-source mobile apps, performed in order to identify existing issues in the An-

droid permission system from the developer perspective.

Parts of this chapter were previously published as:

Gian Luca Scoccia, Anthony Peruma, Virginia Pujols, Ivano Malavolta, Daniel E.

Krutz. An Empirical History of Permission Requests and Mistakes in Open Source

Android Apps. International Conference on Mining Software Repositories, 2019.

Parts of this chapter were previously submitted as:

Gian Luca Scoccia, Anthony Peruma, Virginia Pujols, Ivano Malavolta, Daniel E.

Krutz. Permission Issues in Open-source Android Apps: An Exploratory Study.

International Symposium on Empirical Software Engineering and Measurement,

2019.

• Chapter 7 reports on the design and the experimentation of Android Flexible Per-

missions (AFP), a user-centric approach to flexible permissions management aimed

at empowering end users to play an active role with respect to Android permissions.

Parts of this chapter were previously published as:

Gian Luca Scoccia, Ivano Malavolta, Marco Autili, Amleto Di Salle, Paola Inver-

ardi. User-centric Android flexible permissions. IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), 2017

Parts of this chapter were previously submitted as:

Gian Luca Scoccia, Ivano Malavolta, Marco Autili, Amleto Di Salle, Paola Inver-

ardi. Enhancing Trustability of Android Applications via User-Centric Flexible

Permissions. IEEE Transactions on software engineering.

• Chapter 8 provides concluding remarks and possible future work.



Chapter 2

Background

This section gives a brief explanation of background concepts that will be mentioned in

the chapters to come.

2.1 The mobile apps ecosystem

A mobile app (short for mobile application) is a computer program designed to run

on mobile devices such as smartphones and tablet computers. Mobile apps were origi-

nally offered for general productivity and information retrieval, including email, calendar,

contacts, stock market and weather information. However, public demand drove rapid

expansion into other categories and nowadays are used by millions of people, who use

them for their everyday activities like purchasing products, messaging, entertainment,

etc. [14]. Analyst’s reports estimate that the app economy creates revenues of more than

10 billion e per year within the European Union, while 1.8 million jobs have been created

in 28 EU states due to the growth of the app market [15]. Apps that are not pre-installed

are usually available through application distribution platforms, which began appearing

in 2008. App stores are typically operated by the owner of the mobile operating system

(such as the Apple App Store1, Google Play2 or the Windows Phone Store3). Generally,

mobile apps are downloaded directly from the distribution platform to a target mobile

device.

Mobile apps fall broadly into three categories: native, web-based, and hybrid [16]. Na-

tive applications run on a device’s operating system and have direct access to services

provided by their underlying mobile platform, via means of Application Programming
1 https://www.apple.com/it/ios/app-store/
2https://play.google.com/
3https://www.microsoft.com/store/apps/windows-phone

8
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Interfaces (API). Thanks to platform-specific APIs and tools, developers can create na-

tive mobile apps with rich user experiences, advanced graphics, and high performance.

However, the use of platform-specific technologies leads to the phenomenon of mobile

platform fragmentation, i.e., code written for one mobile platform (e.g., the Java code

of an Android app) cannot be used on another (e.g., the Objective-C code of an Apple

iOS app). Fragmentation results in potentially higher development time, higher testing

and maintenance costs, and low portability.

Web-based apps are developed with web technologies, hosted on remote servers, served

via standard protocols, and accessed via a web browser on a mobile device. Since the

code of mobile web apps conforms to standard languages, a single app delivers a uniform

experience across multiple platforms, resulting in faster development, simpler mainte-

nance, and full application portability. Nonetheless, even if the browser is increasingly

becoming a fully-fledged software platform ( as new web APIs allow for geolocation, ac-

cessing the camera, microphone, etc.), as of today mobile web apps struggle in handling

heavy graphics and still lack straightforward means to access low level features (e.g.,

background services management). Finally, as mobile web apps are hosted and served

like usual websites, they cannot be distributed via app stores.

Hybrid apps are web-based apps hosted inside a native application. They are developed

via standard web technologies and they can be distributed for any supported mobile

platform, like Android or iOS. More specifically, a hybrid development framework (e.g.,

Apache Cordova) allows developers to create a cross-platform hybrid mobile app by

providing (i) a native wrapper for containing the web-based code, and (ii) a JavaScript

API that bridges all the service requests from the web-based code to the corresponding

platform API. Thanks to the native wrapper, a hybrid mobile app can be packaged and

distributed for any supported platform. Existing knowledge of web developers can be

reused also for developing mobile apps, and the development process is simplified, as a

single code base can be used for all platforms. On the negative side, hybrid mobile apps

can access the platform APIs only via the bridge provided by the hybrid development

framework, which considers only a subset of all the possible APIs provided by each

platform and imposes an additional performance overhead when accessing platform APIs.

At the time of writing, the mobile operating systems market is dominated by two main

platforms: Android and iOS. Combined, these two platforms make up over 99% of smart-

phone sales worldwide [17].
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2.2 The Android operating system

Android is an open-source, Linux-based mobile device operating system developed by

Google. The Linux kernel was chosen due to its proven driver model, existing drivers,

memory and process management, networking support along with other core operating

system services [18]. On top of the Linux kernel, various layers, libraries and apps are

built in order to support higher functionality. The complete Android software stack is

presented in Figure 2.1.

Figure 2.1: The Android software stack

Android apps are written in the Java programming language and are compiled into an

APK file, short for Android package. An APK contains all the compiled code plus any

data and resource files that are required by the application. Of particular note, inside

the apk resides the app manifest file, which provides essential information about the

app to the Android system, such as required libraries and APIs. For a given app, the

related APK can be distributed, directly or through app stores, to Android-powered

devices in order to install the app. However, differently from standard Java applications,
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instead of the class files being run in a J2ME virtual machine, the code is translated

after compilation into a “Dex file” that can be run on an ad-hoc virtual machine named

Dalvik. Compared with regular Java class files, Dex files are optimized to be smaller

in size. The virtual machine itself is optimized to perform well on mobile devices with

a slow CPU, limited memory, no operating system swap space and most importantly

limited battery power. As to enable a higher level of security and privacy, every Android

application runs in its own process, with its own instance of the Dalvik virtual machine.

Dalvik has been written so that a device can run multiple VMs efficiently.

Each Android app is built by composing four kinds of essential application components:

Activities, Services, Broadcast Receivers, and Content Providers. An Activity is the entry

point for interacting with the user and represents a single screen with a user interface. A

Service is a component that runs in the background to perform long-running operations.

A Broadcast Receiver is a component that enables the system to deliver events to apps

outside of regular user flow. It allows apps to respond to system-wide events, even if

they are not cur- rently running. A Content Provider manages a shared set of app data.

Through it, other apps can query or modify the data if the content provider allows it.

Figure 2.2: Android Activity lifecycle4

During the lifetime of an application, as the user interacts with it, activities and services

that compose the app go through a set of well defined states, collectively named as
4Image source: https://developer.android.com/guide/platform/
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lifecycle. Figure 2.2 shows the lifecycle of an activity. Developers can insert their own

logic into each state change by hooking into one or more callback methods that are

invoked during each transition. Inside an Android application, components communicate

with each other through the use of Intents. An Intent is an abstract description of an

operation to be performed, and can be used to activate and request an action from other

app components.

2.3 Permission systems

Operating systems provide development platforms that support thriving markets for

third-party applications. However, third-party code creates risks for the user: some third-

party authors are malicious or can unintentionally introduce vulnerabilities. In order to

protect users from the threats associated with third-party code, modern platforms make

use of permission systems to control access to security- and privacy- relevant parts of

the platform [19]. These systems limit damages from security breaches by enacting

the principle of least privilege [20]. According to this principle, every program and

every privileged user should operate using the least amount of privileges necessary to

complete the job at hand. The goal of the principle is to reduce the number of potential

interactions among privileged programs to the minimum necessary, so that one may

develop confidence that unintentional, unwanted, or improper uses of privilege do not

occur. When the principle is followed, effects of accidents are reduced and the number

of programs which must be audited to discover an accident’s root causes is minimized.

Nowadays, newer application-based permission systems, where permissions are granted

individually to each application, are gaining popularity over traditional user-based per-

mission systems, where privileges are granted to users and apply to all user applications.

The former can be further divided into usage-time permission systems, that prompt users

to approve permissions as needed by applications at runtime, and install-time permission

systems, that ask developers to declare their applications permission requirements up-

front so that users can grant them during installation [19]. Most recent Android releases

(i.e., from Android API version 23 onwards) use a usage-time permission system while

former versions rely on an install-time permission system.

2.3.1 Android install-time permission system

Up to version 5.1.1 (i.e., Android API level 22), Android makes use of an install-time

permissions system to regulate access to sensitive APIs of the platform. Developers have

to declare upfront (in the app manifest file) if their app requires access to security- and
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privacy-relevant parts of the platform. During app installation, the user is notified of

required resources and possible risks by a dialog shown on the screen, such as the one in

Figure 2.3. She can then choose whether to continue with the installation, thus granting

the app access to all requested resources, or to abort the installation process. Once

granted, permissions cannot be removed, except by completely uninstalling the app.

Figure 2.3: Install-time permission request dialog5

2.3.2 Android usage-time permission system

Starting with Android 6 (i.e., Android API level 23), access to privacy- and security-

relevant parts of the platform is enforced by a usage-time permission system. While the

app is running, whenever access to a restricted part of the platform is attempted, the

system checks whether the app has the required permissions. If necessary, it prompts

the users for confirmation with a dialog, such as the one in Figure 2.4, from which the

permissions can be granted or denied. In the latter case, app execution continues with

possibly (partially) degraded functionalities.

Unlike the previous system, users can selectively grant permissions, i.e., they can choose

to grant only a subset of requested permissions. Nonetheless, permissions are still granted

on a whole-app basis, i.e., once granted the permission is valid for the entire app. Once

granted, permissions be can dynamically removed at a later time accessing the device
5Image source: https://developer.android.com/guide/topics/permissions/overview
6Image source: https://developer.android.com/guide/topics/permissions/overview
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Figure 2.4: Usage-time permission request dialog6

system settings and manually changing the app permission settings. Developers still have

to list all permissions required by an app in its manifest file.

In addition, permissions are grouped into permission groups. A permission group is

a set of two or more permissions that reference the same resource. For instance, the

permissions READ_CONTACTS and WRITE_CONTACTS both belong to the CON-

TACTS permission group. Whenever an app tries to access a protected resource, users

are prompted for confirmation only if no other permission in the belonging permission

group is already granted.

2.3.3 Static program analysis

Static program analysis [21] allows for predicting (precise or approximated) quantitative

and qualitative properties related to the run-time behavior of a program without actually

executing it. For instance, static analysis techniques allow for statically inferring cost-

related properties (such as the estimation of the maximal number of loop iterations and

the related worst-case execution time), as well as properties related to resource consump-

tion (such as memory/heap usage and energy consumption). Many kinds of theoretical

and practical approaches exist in the literature, e.g., structural and control-flow anal-

ysis, data-flow and state-based analysis, taint analysis, etc. Practical static analysis is

usually carried out by automatic tools - the analyzers - and can be performed against

program models or intermediate representations (e.g., Carmel intermediate representa-

tion of Java Card byte code), or against the actual (source or binary) program code.
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Models enable static analysis approaches which are independent from any technologi-

cal solution. When performed against these models, static analysis is able to compute

under- or over-approximations of the actual program behavior. When performed against

the actual program code, it allows for directly obtaining more precise values or refining

their approximations.

In the literature, static analysis of mobile apps has been applied with variety of goals

in mind, ranging from malware and privacy leaks detection to detection of bugs in the

app source, to reduction of energy and memory consumption [22–26]. Seeking to attain

these goals, researchers have experimented with a variety of different static analysis

techniques. Among the ones worth mentioning, data-flow analysis considers a program

as a graph: nodes are elementary blocks and edges describe how control passes from one

block to another [21]. Taint Analysis is a special case of data-flow analysis that aims to

detect the existence of a data flow from sensitive data sources, often simply referred as

sources, to untrusted program statements, called sinks [24]. Type Analysis aims to verify

the type safety of a program, i.e., if we can guarantee that the eventual value of any

expression in the program will not violate that expression’s static type. In other words,

type analysis aims to detect type errors in a program source code. Abstract interpretation

is a sound approximation of the semantics of a program, based on monotonic functions

over ordered sets. It is able to extract information about the semantics of a program

without performing all the calculations. Program slicing aims to compute the set of

program statements, referred to as the program slice, which may affect the values at

some point of interest, referred to as a slicing criterion.

An in depth overview of state of the art on static program analysis for mobile apps is

provided in Chapter 4.



Chapter 3

State of the Art

This chapter discusses the state of the art of the research fields that are relevant to our

work. Section 3.1 briefly touches on the literature that studied users’ behavior regarding

privacy decisions. Section 3.2 discusses the literature that investigated end users percep-

tion of mobile app permissions. Section 3.3 gives an overview of existing literature that

proposes enhancements and modifications to the Android permission system in order to

address its shortcomings.

3.1 Users behavior on privacy decisions

Permissions-related decisions belong to the broader category of privacy and security

choices to which individuals are confronted in their daily on-line activities. Users’ be-

havior in relation to those decisions has been a subject of interest for researchers of

different fields, such as human computer interaction, behavioral economics and usability

research.

Initial efforts to formalize users’ behavior in relation to these choices relied on the theory

of rational choice [27]. According to this model, users are assumed to be fully rational

agents that, when confronted with a decision, choose the option that maximizes their

utility, in accordance with their preferences.

Over the years, limitations of such a view became more evident, leading to the emergence

of new models in which users exhibit a “bounded rationality”. Rather than viewing users

as purely rational decision makers, Simon [28] views individuals as agents with limited

computational capabilities, unable to perform a thorough exploration of all possible

outcomes of a choice. Hence, heuristics are used instead as shortcuts in decision making.

In addition, a wide variety of cognitive and behavioral biases may factor their influence

into the decision making process [29];

16
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Akerlof [30] modeled scenarios in which the two parties involved in a transaction have

access to information that is, incomplete, that is when parts of it are lacking for both

sides, or asymmetrical, when availability of it is different between the two sides. Informa-

tion unavailability hinders involved subjects ability to perform correct decision making.

The aforementioned scenarios are the norm in the on-line privacy domain as threats and

technologies continuously evolve and as user interfaces purposely hide relevant informa-

tion [31].

Böhme et al. propose a model in which user attention is seen as a scarce resource,

quickly depleted by repeated requests for intervention. Since lack of attention can lead

to privacy and security breaches, the former should be best allocated to the primary task

and the decisions that really matter [32]. Such model is consistent with a phenomenon

known as “warning fatigue”, i.e., users may become insensitive to warning dialogs af-

ter being exposed to an excessive amount, that has been observed in privacy-relevant

applications [33, 34].

3.2 Effectiveness of Android permissions

With the growth in popularity of Android since its first release in 2008, a comprehensive

body of research has focused on its permission system and its effectiveness, with the

purpose of identifying shortcomings and possible points for improvement.

Seminal work on Android permissions has been conducted by Felt et al. that, in [35],

investigated the effectiveness of the (at the time novel) Android install-time permission

system warnings, focusing on users’ understanding and attention to permission infor-

mation provided during app installation. Towards this goal, the authors performed two

usability studies, in the form of an on-line survey involving 308 Android users and a

series of semi structured live interviews with 25 Android users. Results of both studies

evidenced the existence of several usability issues in the system, with only 17% of par-

ticipants that paid attention to permissions during installation, and only 3% of Internet

survey respondents that correctly answered questions aimed at assessing their under-

standing of permissions. From the data and the observations collected during interviews,

the authors highlighted several issues experienced by users, such as confusing permission

names, lack of a proper risks explanation and warning fatigue affecting some users.

Similar issues have been found by Kelley et al. in a concurrent study [36] carried on

as a set of semi-structured interviews with 20 participants. Although permission-related

warnings were generally found to be viewed and read, at the same time comprehension
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and understanding of them was found to be lacking. In addition, users were found to be

largely uninformed about the existence of malware and malicious applications.

Mylonas et al. [37] observed that despite the fact that smartphone users increasingly

download and install applications from official application repositories, vetting mech-

anisms are often not in place. Instead the user is delegated with the critical task of

authorizing which functionality and protected resources can by accessed by applications.

In this respect, a little or badly informed user can easily become prey of malicious app

developers. Hence, they conducted 458 structured interviews with smarthpone users that

routinely install applications from official repositories to assess their security awareness.

From the analysis of the data collected during interviews, a general security complacency

emerges, with most users believing that downloading apps from official repositories poses

no security risk and only a minority that routinely scrutinizes warning messages. As

a first step towards overcoming highlighted issues, the authors developed a prediction

model to identify users who blindly trust app repositories.

In [38], Kelley et al. investigated how providing users with additional privacy informa-

tion, alongside used permissions, affects their decision during the app selection process.

For this purpose they developed a “Privacy Facts” display that, in the form of a short

checklist, informs users about privacy and security risks associated with a given appli-

cation. Effectiveness of said display was evaluated in a laboratory study and an on-line

study involving respectively 20 and 366 participants. In each study participants were

asked to select applications for a friend who has just gotten their first Android phone

and were assigned to use either the privacy checklist or the standard Android permis-

sions display. Results of both studies reveal that both the timing and the content of the

displayed privacy information may impact the extent to which users pay attention to the

information. A similar beneficial effect of providing users with additional information

was noticed by Egelman and colleagues [39] that, performing a survey among 483 An-

droid users, found that when participants were comparison shopping between multiple

applications that performed similar functionality, a quarter responded that they were

willing to pay a $1.50 premium for the application that requested the fewest permis-

sions, when viewing the permissions requested by each application side-by-side. Such

results suggest that many smartphone users are concerned with their privacy and are

willing to pay premium for applications that are less likely to request access to personal

information.

Following the changes to the permissions system, effective from Android version 6, re-

searchers have started investigating the effectiveness and issues of the new run-time

system. Andriotis et al. collected and analyzed anonymous data from 50 participants

in order to understand users’ adaptation to the new run-time permission model. In [40]
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they conclude that users adapted positively to the new model and that most of them

prefer to use the new system over the previous. Moreover, they highlight that users are

generally willing to allow access to permissions directly related to an app main function-

ality and that users’ behavior is consistent regarding the resources they allow different

social media applications to access. In [41] they suggest that although people are more

reluctant to allow access to resources such as their cameras or microphones, they tend

to grant these permissions to specific app categories. Furthermore, they point that users

should be informed about the least required resources an app needs to provide its basic

functionality before installation. In [42] they report the results of a second data collection

round held a month after the first one, that found that 50% of the study participants did

not change a single permission on their devices and only 2.26% of installed applications

presented altered permission settings.

Peruma et al. [43] conducted an in-person study, involving 185 participants, to under-

stand users perception of the current run-time Android permissions model, former install-

time model and a third proposed one, where users are also informed about other apps on

the device that use a given permission whenever it is requested. Their results highlight

that the current Android runtime model does not make users feel more secure in com-

parison with the older install-time model, although it is significantly beneficial in helping

users to recall the requested permissions.

3.3 Extensions of Android permissions

Over the years a diverse amount of work has investigated various possible extensions of

the Android permissions system. In the following, existing works are presented, grouping

together works that employed similar strategies.

3.3.1 Finer-grade extensions

Many approaches aim to offer end-users a finer-grain control over permissions granting

and enforcement. For this purpose, a wide array of strategies have been employed.

One of the first approaches of this kind is Apex [44]. Apex addressed one of the main

problems of the original Android install-time permission system (see Section 2.3.1), i.e.,

users could not selectively grant permissions: if she wishes to use an application, all

requested permissions had to be granted. Moreover, Apex allows restricting the usage of

resources based on runtime constraints such as the location of the device or the number

of times a resource has been previously used. Apex is implemented via small changes
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to the existing Android source code and provides end-users with a modified applications

installer that allows users to specify their constraints for each permission at install time

using a simple and usable interface.

Similarly, Aurasium [45] allows the definition of fine-grained policies to prevent privacy

violations such as attempts to retrieve a user’s sensitive information, send SMS covertly,

or access malicious IP addresses. Aurasium does not require modifications to the Android

OS. Rather, to achieve its goals, applications are preemptively repackaged to insert

user-level code that implements sandboxing and policy enforcement. Evaluated over

a large sample of both benign and malicious Android applications, repackaging and

sandboxing success rate was close to 100 percent, although repackaged apps suffer from

some performance and space overhead.

A related, yet more flexible, solution is Crèpe [46, 47] (Context-Related Policy Enforc-

ing), an extension of Android security mechanisms that is able to enforce fine-grained

policies that depend on the smartphone context. Crèpe considers a broader concept of

context, that can be defined either by the status of some variables (e.g. location, time,

temperature, noise, and light), presence of other devices, particular interactions between

the user and the smartphone, or a combination of these. Furthermore, Crèpe allows

context-related policies to be defined either by the user or by trusted third parties.

Similarly, AppGuard [48, 49] allows for the definition and enforcement of user-defined

security policies on untrusted Android applications, without requiring alterations to the

Android operating system. To achieve its goals AppGuard takes an untrusted app and

a user-defined security policy as input and embeds a security monitor in the app, thus

obtaining a self-monitoring app. In the latter, sensitive API calls are redirected to the

embedded security monitor that checks whether executing the call is allowed by the user-

defined security policy. Unlike similar approaches, AppGuard supports fully-automatic

on-the-phone instrumentation of third-party apps and automatic update of rewritten

apps. Evaluated on 25,000 apps, taken from two different app markets, over 99% of the

experimental subjects were found to be stable after the instrumentation although they

were not checked for semantic equivalence.

Jeon et al. [50, 51] observed that Android permissions can be divided into broad categories

according to the kind of resource that is being protected and that a few, general strategies

for deriving finer-grade variants can be applied to all permissions in the same category.

Hence, rather than allow users to define their own security policies, they focus on deriving

finer-grade variants of existing Android permissions. For instance, ContactCol(c) is a

finer-grade version of the READ_CONTACTS permission that allows access only to a

particular field c of an accessed contact in the user’s address book. To this purpose,

they developed a suite of tools that allow these fine-grained permissions to be inferred
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on existing apps, to be enforced by developers on their own apps, and to be retrofitted

by users on existing apps. A set of 14 apps from the Google Play store were used as case

study, evidencing that finer-grade permissions can be inserted into existing apps with

minimal side effects or loss of functionality.

Shen et al. [52, 53] propose an extension of Android permissions named “Flow Permis-

sions”, directly inferred from an existing app using static taint analysis techniques. The

goal of flow permissions is to inform users about the existence of data-flows that could

potentially leak sensitive information to the outside, e.g., transmitting the users’ phone

number over the network, but are not actively enforced at runtime. In order to support

Flow Permissions on Android, the authors developed a static analysis engine that de-

tects flows within an Android application and between two communicating applications.

Evaluated by means of a survey over 540 participants, Flow Permissions were found to

be able to significantly impact user’s decisions on whether to install an app when the

users are unbiased, i.e., when users do not have any preconceived notions about the app

or its developer.

Russello et al. devised YAASE [54], a modification of Android that extends its security

model to support fine-grained access control policies. YAASE allows users to define

labels (such as public, private, confidential, etc.) and use them to mark data and enforce

security decisions on how data has to be disseminated within the device (application to

application) or the outside world (through internet connections). Only a preliminary

evaluation performance was performed and YAASE appears to introduce a substantial,

yet tolerable, overhead.

Jaebaek et al. developed FLEXDROID [55], an extension to the Android permission

system that allows app developers to control access to a user’s private information by

third-party libraries. To this end, FLEXDROID provides an interface, as a part of the

app manifest, for app developers to specify a set of different permissions granted to each

third-party library. Upon any request for user’s information, FLEXDROID identifies

the source of the request (either an app or third-party libraries) via a new security

mechanism, called inter-process stack inspection and then accordingly allows or denies

the request. Evaluated on a set of 32 Android apps, all but 5 of them run as normal

under FLEXDROID’s permission system, without any code modification except for the

manifest, and with minimal performance over-heads.
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3.3.2 Mock-based extensions

Several works in the literature present approaches that aim to increase user’s control

of sensitive resources without depriving them of application’s functionality. These ap-

proaches are built upon the concept of “mocking” of sensitive information, i.e., when, ac-

cording to user’s preferences, access to a sensitive resource has to be denied, anonymized

information is instead provided to the requesting app.

Among the first works that explored anonymization, Beresford et al. devised Mock-

droid [56], a modified version of the Android operating system which allows a user to

mock an application’s access to a resource. Said resource is subsequently reported as

empty or unavailable whenever the application requests access. The authors speculate

that existing applications continue to work on MockDroid, even if with reduced func-

tionality, because applications are written to tolerate resource failure, such as network

unavailability or lack of a GPS signal. Evaluation on a set of 23 applications was per-

formed, manually exercising each application after enabling mocking for internet and/or

gps resources. All applications were found to continue to function, although with severely

reduced functionality in case of apps that made major use of internet access.

Similarly Zhou et al. developed TISSA [57], a lightweight modification of Android that

introduces a novel “privacy mode” in the operating system. When enabled, such mode

allows to fine tune an app’s access to private information stored on the phone, such as

device ID, contacts, call log, and location. When access to a given resource has to be

denied, three options can be employed to provide an answer to the requesting application:

“empty” that simply returns an empty result to the requesting app, “anonymized” that

provides an anonymized version from the original information and “bogus” that provides

a fake result of the requested information. Evaluation was performed on a set of 24

Android apps that were known to leak (i.e., transmit without user consent) personal

information to third parties. All apps were found to maintain full functionality without

raising security exceptions when enabling TISSA’s privacy mode.

Hornyack et al. [58] proposed AppFence, a modification of the Android OS that combines

anonymization with taint analysis, to introduce advanced privacy controls that allow for

blocking of network transmissions containing sensitive data. In order to evaluate the

effectiveness of their approach, the authors devised an automated testing methodology

that records screenshots of application executions with and without AppFence’s privacy

controls. Then, it automatically highlights the visual differences between executions.

Evaluated on a set of 50 apps, for 66% of them AppFence was able to introduce its

privacy controls without visible side-effects.
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Fawaz et al. [59] developed LP-Guardian, a framework for protection against location

tracking and profiling. LP-Guardian utilizes decision logic, taking into account the user’s

preferences, to determine an appropriate anonymization strategy on a per-app basis, as

to preserve functionalities as much as possible. According to participants of a user study,

the loss of app functionality was perceived to be tolerable by the majority of them.

Brutschy et al. conceived SHAMDROID [60], a transformation algorithm that rewrites

an Android app to eliminate dependencies on sensitive resources. SHAMDROID’s goal

is to, simultaneously, disable access to sensitive resources specified by the user while, at

the same time, retaining, as much as possible, application’s functionalities that depends

on non-sensitive resources. These two requirements combined translate to substituting

sensitive inputs with mock values that exhibit “maximal utility”, i.e., they can drive

execution along a maximal path. Hence, the authors propose an app-sensitive mocking

algorithm, in which mock synthesis is governed by the particular behaviors of the sub-

ject app. When compared on a dataset of 27 apps, the SHAMDROID anonymization

mechanism was found to cause abnormal behavior in only 1 app.

Although not fully focused on improving mocking techniques, some works [55, 61] make

use of mocking to increase app stability. Indeed, experimental evaluation has evidenced

that many existing apps can’t handle the forceful revocation of a permission [62], and

hence mocking techniques are used in place of full revocation.

3.3.3 Context-based extensions

An emerging line of research is investigating the possibility of constructing an auto-

matic permission granting mechanism. Such mechanism leverages run-time contextual

information (such as device connectivity, user’s location, recently used applications) to

systematically determine when to grant (and when to deny) permission requests without

user intervention.

Preliminary work on the topic was performed by Wijesekera and colleagues that, in [63],

instrumented the Android platform to collect data regarding how often and under what

circumstances smartphone applications access protected resources regulated by permis-

sions. After collecting and analyzing data from 36 participants of a field study, they

found that apps rarely respect “contextual integrity” [64], i.e., applications often access

protected resources when users are not expecting it. Moreover, in exit interviews, par-

ticipants stated that at least 80% of them would have preferred to prevent at least one

permission request, and overall, declared a desire to block over a third of all requests.
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SmarPer [65] was the first attempt to utilize contextual information for automatic per-

mission granting. SmarPer adopted a Bayesian linear regression model [66] to mimic user

decisions, obtaining a mean correct classification rate of 80% after training the model

with data collected from 41 Android users. Wijesekera et al. built upon such results

and investigated the effectiveness of such techniques on a larger scale [67], obtaining a

96.8% precision in a 131-person field study. A second 31-person field experiment was

performed in [61], and showed that, with slight model modifications, performance is-

sues and practical limitations are dealt with, while suffering an acceptable reduction in

precision.

Towards further improving existing results, researchers are focusing on identifying and

incorporating in such decision systems other relevant sources of contextual informa-

tion. Votipka et al. [68] conducted a 2,198-participant fractional-factorial vignette study,

showing that both when and why a resource is accessed are important to users’ comfort.

Moreover, they identified different meaningful classes of accesses for each of these factors,

showing that not all background accesses are regarded equally by users.



Chapter 4

Software engineering techniques for

statically analyzing mobile apps: research

trends, characteristics, and potential for

industrial adoption

Static program analysis allows for predicting (precise or approximated) quantitative and

qualitative properties related to the run-time behaviour of a program without actually

executing it [21]. For instance, static analysis techniques allow for statically inferring

cost-related properties (such as the estimation of the maximal number of loop iterations

and the related worst-case execution time), as well as properties related to resource

consumption [69] (such as memory/heap usage and energy consumption).

Under this perspective, static analysis of mobile apps can be of interest for both app

developers, app store moderators and, indirectly, end users. App developers can use

it to quickly get non-trivial insights about their apps, such as the presence of subtle

security issues (as the ones discussed in Chapter 6), energy hotspots, programming an-

tipatterns, and inefficient use of hardware sensors. App store moderators, can leverage

static analysis for systematically assessing the level of quality of apps they distribute,

possibly identifying those apps with an unacceptable level of quality due to the pres-

ence of well-known security flaws, requesting suspicious permissions, and with strong

energy inefficiencies. Leveraging static analysis, end users can be empowered with new

approaches that allow them to specify and validate their own requirements to which an

application must comply to be considered as trustable.

Static analysis of mobile apps is gaining a growing interest in both academia and in-

dustry. Literally hundreds of (often overlapping) kinds of (theoretical and practical)

25
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static analysis approaches exist in the literature, ranging from structural and control-

flow analysis, to data-flow and state-based analysis, interval analysis (used in optimizing

compilers) and so on [21]. Such approaches exploit static analysis techniques from differ-

ent perspectives and belong to extremely different research areas of software engineering,

such as software analytics, security, testing, verification, etc. Industrial tools are also

emerging and 65 being maintained by key players in the technological panorama. For

example, Facebook’s Infer1 applies separation logic and bi-abduction for inter-procedural

analysis [70] and it is used by Facebook itself, Spotify, Mozilla, the Amazon Web Services

division, etc.

The goal of this study is to precisely characterize existing software engineering research

on static analysis of mobile apps from three different perspectives, namely: (i) research

trends, (ii) the characteristics of the proposed approaches, and (iii) their potential for

industrial adoption.

In order to achieve this goal, we applied the systematic mapping study methodology [12,

13]. The aim of this methodology is to provide an objective, replicable, and unbiased

approach to answer a set of research questions about the state of the art on a given

topic. In this paper, we systematically selected 140 primary studies from over 8,000

potentially relevant publications on static analysis of mobile apps. Then, we defined

a classification framework for categorizing the selected approaches, and we rigorously

applied it to the 140 primary studies. Finally, we synthesized the obtained data to let

emerge a crystal-clear snapshot of the state of the art on static analysis of mobile apps.

4.1 Study design

This research was organized into three main phases, which are well-established when it

comes to systematic literature studies [12, 71]: planning, conducting, and documenting.

Planning. After establishing the need for performing a review on static analysis of

mobile apps, we identified the main research questions (Section 4.1.1), and we defined

the protocol to be followed by the involved researchers.

Conducting. We performed the mapping study by following all the steps defined in

our research protocol, namely: (i) search and selection of primary studies, i.e., the

relevant research articles on static analysis methods and techniques of mobile apps (Sec-

tion 4.1.2), (ii) extraction of relevant data from each primary study according to a

rigorously-defined classification framework (Section 4.1.3), and (iii) synthesis of main

findings emerging from the analysis and summary of the data extracted in the previous

activity (Section 4.1.4).
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Documenting. The main activities performed in this phase are: (i) a thorough elab-

oration of the data extracted in the previous phase, with the main goal of setting the

obtained results in their context, (ii) the discussion of possible threats to validity, spe-

cially to the ones identified during the definition of the review protocol (in this activity

new threats to validity may emerge too), and (iii) the writing of a final report (i.e., this

article) describing the performed mapping study.

A complete replication package is publicly available to allow interested researchers to

independently replicate and verify our study1. It includes the review protocol, the list

of both searched and selected studies, a detailed data extraction form, the raw extracted

data, and the R scripts for data analysis.

4.1.1 Research questions

We formulate the goal of this study by using the Goal-Question-Metric perspectives (i.e.,

purpose, issue, object, viewpoint [72]). Table 4.1 shows the result of the above mentioned

formulation.

Purpose Identify, classify, and evaluate
Issue trends, characteristics and potential for industrial adoption
Object of existing research in static analysis of mobile apps
Viewpoint from a researcher’s and practitioner’s point of view.

Table 4.1: Goal of this research

The results of this study are targeted to both (i) researchers willing to further contribute

to this research area, and (ii) practitioners willing to understand existing research on

static analysis approaches of mobile apps and thereby to be able to adopt those solutions

that better fit with their needs. We refined our abstract goal into the following research

questions:

RQ1 - What are the research trends on static analysis of mobile apps?

Rationale: a multitude of researchers are investigating static analysis for mobile

apps over time with different degrees of independence and different methodologies.

By answering this research question, we aim at characterizing the scientific interest

on static analysis approaches of mobile apps, the relevant venues where academics

are publishing their results on the topic, and their contribution type.
1http://cs.gssi.it/mobileStaticAnalysisReplicationPackage

http://cs.gssi.it/mobileStaticAnalysisReplicationPackage
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RQ2 - What are the characteristics of existing approaches for static analysis of mobile

apps?

Rationale: static analysis of mobile apps is a multi-faceted research topic, where

researchers can focus on very different aspects (e.g., energy consumption, secu-

rity), applying very different research methodologies (e.g., industrial case studies,

empirical evaluations), providing different types of contributions (e.g., tools for au-

tomating development activities, techniques for analyzing a specific aspect of the

mobile app). By answering this research question, we aim at providing (i) a solid

foundation for classifying existing (and future) research on static analysis of mobile

apps, and (ii) an understanding of current research trends and gaps in the state of

the art on static analysis of mobile apps.

RQ3 - What is the potential for industrial adoption of existing research on static

analysis of mobile apps?

Rationale: while it is well known that mobile apps have their roots in industry,

many research groups focus on them from an academic perspective. Therefore, it

is natural to ask ourselves how the produced research findings and contributions

can be actually transferred back to industry. By answering this research question

we aim at assessing how and if the current state of the art on static analysis of

mobile apps is ready to be adopted in industry.

4.1.2 Search and selection process

Our first choice for searching potentially relevant studies was to perform an automatic

search on known data sources (e.g., IEEE Xplore, the ACM Digital Library, SCOPUS).

However, from the results of a preliminary study [73], we understood that the research

topic of mobile static analysis resulted to be extremely heterogeneous; for example, many

keywords like “program analysis” resulted to be profoundly overloaded, leading to im-

precise and inaccurate automatic search results. In order to prevent biases associated

to automatic searches, we adopted two complementary manual search activities. This

decision is supported by the evidence that automatic searches and backward snowballing

activities lead to similar results, and that the decision on which to prefer is context

specific [74]. Our search strategy was divided into two subsequent and complementary

steps. The first step was carried out by manually inspecting all the publications of the

top-level software engineering venues. The papers identified through this first step were

then subsequently utilized as input for a backward and forward snowballing2 process [75].
2Inspection of the studies referenced by a paper (backward snowballing) and of the studies referencing

it (forward snowballing)
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In order to ensure the correctness of the adopted manual approach, the backward snow-

balling activity was based exclusively on the papers selected from the top-level software

engineering venues. Furthermore, the backward snowballing results were further contem-

plated by adopting a forward snowballing process, that ensured soundness and relevance

of the set of the selected primary studies.

Figure 4.1: The search and selection process of this study

Figure 4.1 shows our search and selection process, whose main steps are detailed in the

following. Our search and selection process is designed as a multi-stage process in order

to have full control on the number and characteristics of the studies being either selected

or excluded during the various stages.

1. Perform initial manual search. We performed a manual search by considering

exclusively articles published in the top-level software engineering conferences3 and in-

ternational journals4 according to well known sources in the field. Table 4.2 shows the

considered conferences and journals. The time span of our search ranges from January

20075 to December 2016. This step resulted in a total of 8,402 potentially relevant studies

distributed across more than 9 years of research in software engineering.

2. Apply selection criteria. Each study was filtered according to a set of well-defined

selection criteria. The adopted criteria are detailed in Section 4.1.2.1. An adaptive

reading depth was applied in order to carry out the selection process in a time-efficient

and objective manner [76]. This step resulted in a total of 38 potentially relevant studies.

This significant reduction of the number of potentially relevant studies is due to the fact

that (i) we considered exclusively top-level venues in the field of software engineering,

and (ii) the considered venues are quite general, with static analysis of mobile apps being

only one of the many topics of interest of those venues.
3http://goo.gl/auU7su
4http://www.webofknowledge.com
5Given that the concept of mobile app exists only since 2007

http://goo.gl/auU7su
http://www.webofknowledge.com
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Conferences #Studies Journals #Studies
International Conference on
Software Engineering (ICSE)

810 IEEE Transactions on Soft-
ware Engineering (TSE)

616

European Software Engineer-
ing Conference (ESEC)\ACM
SIGSOFT Symposium on the
Foundations of Software Engi-
neering (FSE)

638 ACM Transactions on Software
Engineering and Methodology
(TOSEM)

205

International Conference on
Fundamental Approaches to
Software Engineering (FASE)

285 Information and Software
Technology (IST)

1026

IEEE/ACM International
Conference on Automated
Software Engineering (ASE)

624 Automated Software Engineer-
ing (ASE journal)

149

ACM SIGPLAN conference on
Systems, Programming, Lan-
guages and Applications: Soft-
ware for Humanity (SPLASH)

480 Software Maintenance & Evo-
lution - Research & Practice
(JSEP)

352

European Conference on
Object-Oriented Programming
(ECOOP)

275 Software and Systems Model-
ing (SoSyM)

381

International Symposium on
Software Testing and Analysis
(ISSTA)

317 Empirical Software Engineer-
ing (ESEJ)

371

Journal of Systems and Soft-
ware (JSS)

1873

Total 3429 Total 4973

Table 4.2: Searched data sources

3. Backward and forward snowballing. In this step, we applied backward and

forward snowballing in order to take into account also studies that are published outside

the conferences and journals considered in the previous step. In particular, this process

was carried out by considering the studies selected in the initial search, and subsequently

selecting relevant papers among those cited by the initially selected ones. This method

is commonly referred to as a backward snowballing activity [75].

In addition to the backward snowballing, we also analyzed the research citing the studies

selected through the initial search. This process is usually referred to as a forward

snowballing activity [75]. Specifically, we included this further literature search method

in order to consider also newer studies that, at that time, had not been included in official

journal volumes or conference proceedings yet.

Regarding the forward snowballing process, the Google Scholar6 bibliographic database

was adopted to retrieve the studies citing the ones selected through the initial search

phase.

The final decision about the inclusion of the papers was based on the adherence of the full

text of the studies to the predefined selection criteria presented in Section 4.1.2.1. This

step resulted in a total of 154 potentially relevant studies. The total number of potentially

relevant studies increased significantly since in this step we considered papers published

in all research venues, which by definition are far more than the top-level ones.
6https://scholar.google.it/

https://scholar.google.it/
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4. Exclude studies during data extraction activity. While reading in details each

potentially relevant study, we agreed that 14 studies were semantically out of the scope

of this research, so they were excluded. This final step led us to the final set of 140

primary studies.

4.1.2.1 Selection criteria

Following the guidelines for systematic literature review for software engineering [71], in

order to reduce the likelihood of biases, we defined a set of inclusion and exclusion criteria

beforehand. In the following, we detail the set of inclusion and exclusion criteria that

guided the selection of the potentially relevant studies. A potentially relevant study was

included if it satisfied all the inclusion criterion stated below; whereas, it was discarded

if it satisfied at least one of the exclusion criteria reported below. In order to reduce

possible biases, three researchers performed the studies selection independently.

Inclusion criteria

I1 Studies proposing or using a static analysis method or technique for mobile apps.

I2 Studies in which the static analysis method or technique takes as input one or more

mobile applications in the form of binary files or source code.

I3 Studies providing some kind of evaluation of the proposed method or technique

(e.g., via formal analysis, controlled experiment, exploitation in industry, applica-

tion to a simple example).

Exclusion criteria

E1 Studies not describing any implementation of the proposed method or technique.

E2 Studies in which the static analysis method or technique takes as input only store

metadata (e.g., user reviews, ratings) or other app artifacts (e.g., manifest files).

E3 Secondary or tertiary studies (e.g., systematic literature reviews, surveys).

E4 Studies in the form of editorials, tutorial, short, and poster papers, because they

do not provide enough information.

E5 Studies not published in English language.

E6 Studies not peer reviewed.
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4.1.3 Data extraction

This phase concerns (i) the creation of a classification framework for the primary studies,

and (ii) the collection of data from each primary study.

In order to carry out a rigorous data extraction process, as well as to ease the control

and the subsequent analysis of the extracted data, a predefined data extraction was

designed prior the data extraction process. The data extraction form is composed of the

various categories of the classification framework. For each primary study, the principal

researchers collected a record with the extracted information in the data extraction form

for subsequent analysis.

Table 4.3: Overview of the classification framework

Research trends (RQ1)
• Year of publication • Publication venue
• Publication venue type • Analysis goal
• Macro analysis goal • Paper goal

Characteristics (RQ2)
• Platform specificity • Implementation
• Static/hybrid approach • Usage of machine learning
• App artifact • Additional inputs
• Analysis pre-steps • Analysis technique

Potential for industrial adoption (RQ3)
• Target stakeholder • Tool availability
• Technology readiness level • Execution time
• Number of analysed apps • Apps provenance
• Evaluation soundness • Industry involvement

As suggested in [12], the principal researchers piloted the data extraction form inde-

pendently. In order to validate our data extraction strategy, we performed a sensitivity

analysis to check whether the results were consistent, independently from the researcher

performing the analysis. More specifically, the principal researchers considered a ran-

dom sample of 5 primary studies and analyzed them independently by filling the data

extraction form for each of them. Then, each disagreement was discussed and resolved

with the intervention of the research methodologist.

The classification framework is composed of three distinct parts, one for each research

question of our study7. The overview of each part of the classification framework is

reported in Table 4.3, whereas the definition of each specific parameter is given in Sec-

tions 4.2, 4.3, and 4.4.
7For the sake of simplicity, we do not report standard publication information (e.g., study ID, title,

search strategy), they are available in the replication package.
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4.1.4 Data synthesis

The data synthesis activity involves collating and summarising the data extracted from

the primary studies [77, § 6.5] with the main goal of understanding, analysing, and

classifying current research on static analysis of mobile apps.

Our data synthesis was split into two main phases: vertical analysis and horizontal

analysis. When performing vertical analysis, we analyzed the extracted data to find

trends and collect information about each parameter of each category of our classification

framework. When performing horizontal analysis, we analysed the extracted data to

explore possible relations across different parameters of our classification framework. We

used contingency tables for evaluating the actual existence of those relations8.

In both phases, we performed a combination of content analysis (mainly for categorizing

and coding the studies under broad thematic categories) and narrative synthesis (mainly

for explaining in details and interpreting the findings coming from the content analysis).

During the horizontal analysis, we used contingency tables for evaluating the actual

existence of inter-parameter relations.

4.2 Results - research trends (RQ1)

4.2.1 Year of publication

An overview of the year of publication of the primary studies is depicted in Figure 4.2.

Overall, the publication rate results to be constantly increasing through time. The only

year that is not in line with this trend is 2013, but the decrease of the publication rate

of this year can be seen as negligible (-4 publications with respect to previous year).

A steep increase of publication rate can be noticed between the years 2011-2012 and

2015-2016, with a difference of 13 publications. We can conjecture that the first steep

increase (years 2011-2012) is due to the popularity gained in those years by the operating

system Android 4.0. The appearance of lightweight static analysis approaches for mobile

application, e.g., Flowdroid [79], could instead be one of the root causes of the increase

of publications between the years 2013 and 2014. No publication was found before the

year 2011. We conjecture that the topic considered (static analysis methods for mobile)

was not a popular research topic before 2011. Additionally the paper selection procedure

(manual scan of venues integrated with snowballing) might have influenced this results.

Regarding the year 2017, the low number can be attributed to the period in which the

paper selection was carried out, i.e., mid 2016 till January 2017.
8For our horizontal analysis we applied the same process as the one in [78, § 4.4].
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Figure 4.2: Bubble plot of primary studies by year and venue type

4.2.2 Publication venue

Studies on static analysis of mobile apps have been published to a certain extent in all the

most prominent top-level conferences and journals in software engineering. An overview

of the most targeted venues and the papers there published is reported in Table 4.4. The

ASE conference results to be the venue in which most studies on this topic were published

(21/140), followed by ICSE (12/140). Overall, a high heterogeneity can be found in the

publication venues, which led to a total number of 71 different venues. Only a small

number of venues results to be focused on mobile related topics. The vast majority

results to be focused on general topics, e.g., software engineering, security, testing and

program analysis.

4.2.3 Publication venue type

As shown in Table 4.5, most of the papers were published in conferences (111/140),

followed by journals (14/140) and workshops (15/140). The higher number of conference

papers might be due to the high pace of technological advances in the topic. Specifically,

researchers may have focused more on timely publications in conferences, rather than

targeting journals, which have a (usually) slower publication timeline. Interestingly, as

shown in Figure 4.2, 7 out of 14 journal papers were published in 2016, meaning that

the the application of static analysis techniques to mobile apps is maturing as a scientific

topic.
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Table 4.4: Most targeted publication venues

Publication venue
(acronym)

#Studies Studies

Automated Software Engineer-
ing (ASE)

21 P22, P23, P24, P25, P26, P33, P39, P44,
P46, P52, P53, P54, P55, P56, P57, P89,
P111, P113, P116, P120, P135

International Conference on
Software Engineering (ICSE)

12 P20, P40, P43, P49, P50, P71, P72, P73,
P88, P97, P98, P115

Conference on Computer and
Communications Security
(CCS)

8 P12, P19, P93, P95, P109, P119, P134,
P137

Network and Distributed
System Security Symposium
(NDSS)

7 P3, P64, P68, P84, P86, P132, P140

Symposium on Applied Com-
puting (SAC)

6 P32, P83, P85, P106, P112, P124

International Symposium on
Software Testing and Analysis
(ISSTA)

5 P28, P60, P61, P66, P117

Workshop on Security and Pri-
vacy in Smartphones and Mo-
bile Devices (SPSM)

5 P67, P92, P108, P118, P121

Other 76 P1 P2 P4 P5 P6 P7 P8 P9 P10 P11 P13
P14 P15 P16 P17 P18 P21 P27 P29 P30
P31 P34 P35 P36 P37 P38 P41 P42 P45
P47 P48 P51 P58 P59 P62 P63 P65 P69
P70 P74 P75 P76 P77 P78 P79 P80 P81
P82 P87 P90 P91 P94 P96 P99 P100 P101
P102 P103 P104 P105 P107 P110 P114
P122 P123 P125 P126 P127 P128 P129
P130 P131 P133 P136 P138 P139

Table 4.5: Publication venue type

Publication
venue type

#Studies Studies

Conference 111 P1, P2, P3, P4, P6, P10, P11, P13, P16, P17, P19, P20,
P21, P22, P23, P24, P25, P26, P27, P28, P32, P33, P34,
P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P49,
P50, P51, P52, P53, P54, P55, P56, P57, P58, P59, P60,
P61, P62, P64, P65, P66, P67, P68, P69, P70, P71, P72,
P73, P75, P76, P77, P78, P79, P81, P83, P84, P85, P86,
P87, P88, P89, P91, P92, P93, P94, P95, P96, P97, P98,
P99, P100, P103, P104, P105, P106, P108, P109, P110,
P111, P112, P113, P114, P115, P116, P117, P119, P120,
P121, P122, P124, P125, P126, P129, P131, P132, P133,
P134, P135, P136, P137, P138, P139

Workshop 15 P7, P8, P12, P14, P18, P47, P48, P74, P82, P102, P118,
P123, P128, P130, P140

Journal 14 P5, P9, P15, P29, P30, P31, P35, P36, P63, P80, P90,
P101, P107, P127
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4.2.4 Analysis goal

The analysis goal represents the principal purposes for which the static analyses ap-

proaches were conceived. By carefully analyzing the primary studies, twelve main analy-

sis goal categories were identified through the keywording process. In Table 4.6, the com-

prehensive mapping of primary studies to analysis goals is reported. The most recurrent

goals result to be privacy (50/140), malware (31/140), inter-component communication

(20/140) and energy (18/140).

From an inspection of the more recurrent goals, we can observe that most of the stud-

ies focus either on analysing crucial aspects of the mobile ecosystem (e.g., privacy and

malware) or on improving existing analysis methods (e.g., inter/intra-component commu-

nication). We can conjecture that this trend may be due to the fast pace of development

that usually characterises mobile applications, where new app releases must be quickly

developed and tested in order to be published in the app stores. This may lead to a lack

of interest to analyse less critical software aspects of the app, such as refactoring the

code of the app itself or identifying specific code anti-patterns.

Table 4.6: Analysis goal
(Categories not mutually exclusive)

Analysis goal #Studies Studies
Privacy leaks
identification

50 P2, P10, P11, P12, P13, P14, P15, P16, P26, P38, P50,
P61, P62, P65, P66, P67, P68, P73, P75, P76, P78, P81,
P82, P83, P84, P89, P92, P93, P94, P101, P103, P104,
P106, P109, P110, P111, P119, P120, P121, P122, P123,
P124, P125, P131, P132, P134, P135, P137, P138, P140

Malware detec-
tion

31 P1, P3, P5, P9, P17, P29, P30, P36, P41, P49, P57, P58,
P60, P61, P63, P70, P85, P86, P88, P95, P96, P98, P99,
P105, P108, P112, P114, P118, P126, P130, P133

Inter-comp.
communication

20 P10, P19, P35, P54, P56, P57, P64, P70, P71, P72, P79,
P81, P82, P83, P91, P103, P109, P111, P113, P125

Energy assess-
ment

18 P20, P21, P25, P34, P42, P43, P44, P47, P48, P74, P90,
P97, P100, P115, P116, P117, P128, P129

Inter-app com-
munication

14 P12, P14, P35, P37, P39, P54, P55, P56, P82, P96, P104,
P111, P125, P139

Testing 12 P7, P8, P18, P22, P26, P27, P33, P44, P80, P107, P127,
P136

Performance 8 P6, P25, P33, P51, P52, P87, P97, P102
Resource usage 6 P44, P45, P46, P59, P97, P116
Framework 6 P23, P31, P32, P40, P77, P91
Refactoring 5 P34, P52, P59, P84, P87
Reflection 5 P4, P24, P28, P57, P69
Anti-patterns 1 P53

4.2.5 Macro analysis goal

The macro analysis goal refers to the generic goal considered by the static analyses. This

parameter can have three distinct values, namely: (i) external quality, if the approach

evaluates some external quality attribute, e.g., performance; (ii) internal quality, if the
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approach evaluates some internal quality attribute, e.g., maintainability; (iii) improving

of methodology, if the approach is conceived to improve a static analysis technique.

Table 4.7: Macro analysis goal
(Categories not mutually exclusive)

Macro analy-
sis goal

#Studies Studies

External qual-
ity

104 P1, P2, P3, P5, P6, P9, P10, P11, P12, P13, P14, P15,
P16, P17, P20, P21, P25, P26, P29, P30, P33, P34, P36,
P38, P41, P42, P43, P44, P47, P48, P49, P50, P51, P52,
P57, P58, P60, P61, P62, P63, P65, P66, P67, P68, P70,
P73, P74, P75, P76, P78, P81, P82, P83, P84, P85, P86,
P87, P88, P89, P90, P92, P93, P94, P95, P96, P97, P98,
P99, P100, P101, P102, P103, P104, P105, P106, P108,
P109, P110, P111, P112, P114, P115, P116, P117, P118,
P119, P120, P121, P122, P123, P124, P125, P126, P128,
P129, P130, P131, P132, P133, P134, P135, P137, P138,
P140

Methodology
improvement

38 P4, P10, P12, P14, P19, P23, P24, P28, P31, P32, P35,
P37, P39, P40, P54, P55, P56, P57, P64, P69, P70, P71,
P72, P77, P79, P81, P82, P83, P91, P96, P97, P103, P104,
P109, P111, P113, P125, P139

Internal quality 21 P7, P8, P18, P22, P26, P27, P33, P34, P44, P45, P46,
P52, P53, P59, P80, P84, P87, P107, P116, P127, P136

The macro analysis goals considered by the primary studies are reported in Table 4.7. The

majority of the primary studies focus on external quality (104/140). A smaller amount

of studies focuses on the improvement of static analysis methodologies (38/140) and only

a small portion addresses internal quality (21/140)9. From this data, we conjecture that

the high pace of the mobile technological advances and the strong role of end users in the

mobile ecosystem are leading researchers to give more importance to external qualities.

Research aimed to refine static analysis approaches results to be higher than the ones

focusing on internal quality, making us conjecture that the ones considering internal

quality are either at an early stage of development or have been less explored than the

ones improving the existing methods. In addition, the distribution of macro analysis

goals throughout the years is depicted in Figure 4.3. Here we observe that, although

studies focusing on methodology improvement have been the majority in each of the

considered years, a steady increase in number can be observed for studies that focus on

either external or internal qualities, starting from the year 2013.

4.2.6 Paper goal

This parameter can be of two types, namely: (i) Quality attribute assessment, if the

research reported in the primary study focuses on assessing a quality attribute of mobile

apps (e.g., security); (ii) Improvement of methodology, if the research reported in the

primary study focuses on improving existing static analyses for mobile apps.
9It is important to note that these categories are not mutually exclusive, i.e., a paper could be mapped

to more than one category if it addresses more than one type of goal
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Figure 4.3: Macro analysis goal by year

The goals taken into account by the primary studies is documented in Table 4.8. The

majority of the primary studies (110/140) focusses on the assessment of some qual-

ity attribute(s) of mobile apps. Only a lower number instead (30/140) considers the

improvement of static analysis techniques. We can conjecture that this trend can be

associated to the more “immediate impact”, e.g., ease of adoption and real-life utilization

by practitioners. From this, we can conjecture that, while a certain maturity with respect

to assessment of apps quality attributes has been achieved (and hence a high presence of

such approaches is observable), techniques improving the existing methods are still not

yet explored.

Table 4.8: Paper goal

Paper goal #Studies Studies
Quality at-
tribute assess-
ment

110 P1, P2, P3, P5, P6, P9, P10, P11, P12, P13, P14, P15,
P16, P17, P18, P20, P21, P25, P29, P30, P34, P36, P38,
P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50,
P51, P52, P53, P54, P57, P58, P59, P61, P62, P63, P65,
P66, P67, P68, P70, P73, P74, P75, P76, P77, P78, P81,
P82, P83, P84, P85, P86, P87, P88, P89, P90, P92, P93,
P94, P95, P96, P97, P98, P99, P100, P101, P102, P103,
P104, P105, P106, P107, P108, P109, P110, P111, P112,
P114, P115, P116, P117, P118, P119, P120, P121, P122,
P123, P124, P125, P126, P128, P129, P130, P131, P132,
P133, P134, P135, P137, P138, P140

Improvement
of methodology

30 P4, P7, P8, P19, P22, P23, P24, P26, P27, P28, P31, P32,
P33, P35, P37, P39, P55, P56, P60, P64, P69, P71, P72,
P79, P80, P91, P113, P127, P136, P139

Main findings on research trends:

I The intensity of research on static analysis for mobile apps is growing year by

year, specially after the introduction of Android 4.0 and app-specific techniques
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have been devised (e.g., Flowdroid).

I Researchers are targeting primarily conferences (e.g., ASE and ICSE), even if

workshop and journal publications have been much more targeted in 2016 (the

last full year considered in this study).

I Many of the approaches are focussing on security-related concerns, such as

privacy leaks identification and malware detection.

I Approaches for enhancing the modeling and analysis of both inter-component

communication (e.g., intent raising across Android activities) and inter-app

communication are receiving quite an intensive scientific attention.

I The vast majority of primary studies is targeting externally visible quality

attributes (e.g., security, energy) with respect to internally visible ones (e.g.,

maintainability, resource usage, code anti-patterns).

I Reasonable research effort is being devoted to improvement of the methodology,

such as devising more sound static analyses, support for more events in the

mobile components lifecycles (e.g., Android intents sharing).

4.3 Results - characteristics of approaches (RQ2)

4.3.1 Platform specificity

This parameter identifies whether the proposed approach is specifically designed for

a specific platform (e.g., Android or iOS ) or if it is generic and can in principle be

applied to any platform. As shown in Table 4.9, the vast majority of the approaches

(119/140) presents an analysis approach specific for Android; only one study (1/140)

presents an approach specific for iOS. A smaller amount of studies (20/140) presents

an approach that is generic. Possible reasons for this imbalance may be due to the

popularity and the open-source nature of the Android platform, which eases the effort

required by researchers during the design of new analyses. Furthermore, Android app

binaries can be straightforwardly disassembled with off-the-shelf software libraries (e.g.,

apktool10, dex2jar11), and their internal structure and contained static resources are

easily analyzable in an automatic way.
10http://ibotpeaches.github.io/Apktool
11http://github.com/pxb1988/dex2jar

http://ibotpeaches.github.io/Apktool
http://github.com/pxb1988/dex2jar
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Table 4.9: Platform specificity

Platforms #Studies Studies
Android 119 P1, P3, P4, P5, P6, P8, P9, P10, P11, P12, P13, P14, P15,

P16, P17, P18, P19, P21, P22, P23, P24, P25, P26, P27,
P28, P29, P30, P32, P33, P34, P35, P36, P37, P38, P39, P40,
P41, P42, P44, P45, P46, P47, P48, P49, P50, P51, P52, P53,
P54, P55, P56, P58, P60, P61, P62, P64, P65, P66, P67, P68,
P69, P70, P71, P73, P74, P75, P77, P78, P79, P81, P82, P83,
P84, P85, P86, P87, P89, P90, P91, P92, P94, P96, P97, P98,
P99, P100, P102, P103, P104, P105, P106, P107, P108, P109,
P110, P111, P112, P114, P116, P118, P121, P122, P123, P124,
P125, P126, P127, P128, P129, P130, P131, P132, P133, P134,
P135, P136, P137, P138, P139

Generic 20 P2, P7, P20, P31, P43, P57, P59, P63, P72, P76, P80, P88,
P93, P95, P101, P113, P115, P117, P119, P120

iOS 1 P140

4.3.2 Implementation

Values for the implementation parameter, summarized in Table 4.10, were extracted

from the primary studies according to whether the implementation used for evaluation

purposes is implemented for a specific platform, e.g., Android or iOS, or it is Generic,

applicable to apps developed for any platform. Almost all the studies (136/140) imple-

ment the proposed approach exclusively for the Android platform. Two studies present

approaches (2/140) having a generic implementation, applicable to any platform. Only

one study (1/140) presents an approach that is implemented specifically for the iOS plat-

form. Other less popular platforms are almost completely absent, with only one study

(1/140) implementing the proposed analysis on TouchDevelop scripts [80]. We speculate

that the reason for this disproportion, in addition to the ones already evidenced in the

discussion of the platform specificity parameter, stem from the fact that some of the

most popular static analysis frameworks (e.g., Soot [81] and WALA [82]) are adapted to

support analysis of Android apps. The same cannot be said for the other platforms and,

hence, researchers interested in performing static analysis on apps designed for those

platforms experience a higher barrier to entry as they must develop their own tools,

often from scratch.

4.3.3 Static/hybrid approach

The static/hybrid approach parameter describes whether an approach relies on static

analysis only (Static) or utilizes some form of dynamic analysis also (Hybrid). Results

for the extraction of this parameter are summarized in Table 4.11. The preponderance of

the studies (112/140) present an approach that relies on static analysis only. Nonetheless,

a considerable amount of them (28/140) present an approach that complements static

analysis with dynamic one. The presence of dynamic analysis in a considerable portion
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Table 4.10: Implementation

Implem. #Studies Studies
Android 136 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13,

P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24,
P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36,
P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48,
P49, P50, P51, P52, P53, P54, P55, P56, P57, P58, P59, P60,
P61, P62, P63, P64, P65, P66, P67, P68, P69, P70, P71, P72,
P73, P74, P75, P76, P77, P78, P79, P81, P82, P83, P84, P85,
P86, P87, P88, P89, P90, P91, P92, P94, P95, P96, P97, P98,
P99, P100, P101, P102, P103, P104, P105, P106, P107, P108,
P109, P110, P111, P112, P113, P114, P115, P116, P117, P118,
P119, P121, P122, P123, P124, P125, P126, P127, P128, P129,
P130, P131, P132, P133, P134, P135, P136, P137, P138, P139

Generic 2 P93, P120
iOS 1 P140
Other 1 P80

of the studies can be explained by considering that, despite all its drawbacks, dynamic

analysis still provides an invaluable contribution for a variety of purposes, such as privacy

leaks detection, GUI-modeling, energy profiling. A further discussion on the fields where

dynamic analysis is most common can be found in Section 4.5.

Table 4.11: Static Hybrid approach

Static Hybrid
approach

#Studies Studies

Static 112 P3, P4, P5, P7, P9, P11, P13, P15, P16, P17, P18,
P19, P20, P21, P22, P23, P24, P25, P28, P29, P30,
P31, P32, P33, P35, P36, P37, P39, P40, P41, P42,
P43, P44, P46, P49, P50, P51, P52, P53, P54, P55,
P56, P57, P58, P59, P60, P61, P64, P65, P66, P67,
P68, P70, P71, P72, P73, P75, P77, P78, P79, P80,
P81, P82, P83, P84, P85, P86, P87, P88, P89, P91,
P92, P93, P95, P96, P97, P98, P99, P101, P103, P104,
P105, P107, P109, P111, P112, P114, P115, P116,
P119, P120, P121, P122, P123, P124, P125, P126,
P127, P128, P129, P130, P131, P132, P133, P134,
P135, P136, P137, P139, P139, P140

Hybrid 28 P1, P2, P6, P8, P10, P12, P14, P26, P27, P34, P38,
P45, P47, P48, P62, P63, P69, P74, P76, P90, P94,
P100, P102, P106, P108, P110, P113, P117, P118

4.3.4 Usage of machine learning techniques

Values for this parameter are summarized in Table 4.12. The possible values identify

whether the approach under evaluation complements its analysis with machine learning

techniques (Yes) or not (No). A vast majority of the studies (119/140) does not make use

of machine learning in the proposed approach. The remaining studies (21/140) perform

features extraction from the application source code or other intermediate representa-

tions (e.g., a method-level call graph), and applies machine learning techniques on the

extracted features. Machine learning techniques are widely used for some specific goals
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(e.g., malware detection), but their application to others has not been explored yet by

researchers.

Table 4.12: Machine Learning

Machine
Learning

#Studies Studies

No 120 P2, P4, P6, P7, P8, P9, P10, P12, P13, P14, P17, P18, P19,
P20, P21, P22, P23, P24, P25, P26, P27, P28, P31, P32, P33,
P34, P36, P37, P38, P39, P40, P41, P42, P43, P44, P45, P46,
P47, P48, P49, P50, P51, P52, P53, P54, P55, P56, P57, P58,
P59, P61, P62, P64, P65, P66, P67, P68, P69, P71, P72, P73,
P74, P75, P77, P79, P80, P81, P82, P83, P84, P87, P89, P90,
P91, P92, P93, P94, P95, P96, P97, P99, P100, P101, P102,
P103, P104, P105, P107, P108, P109, P110, P111, P112, P113,
P115, P116, P117, P118, P119, P120, P121, P122, P123, P124,
P125, P127, P128, P129, P130, P131, P132, P133, P134, P135,
P136, P137, P138, P139, P140

Yes 20 P1, P3, P5, P11, P15, P16, P29, P30, P35, P60, P63, P70, P76,
P78, P85, P86, P88, P98, P106, P114, P126

4.3.5 App artifact

The values of this parameter describe what formats are accepted as input by the se-

lected studies for the apps to be analyzed. As shown in Table 4.13, the majority of

the studies (122/140) accepts as input apps in the form of binary packages (Binary),

i.e., APK (Android PacKage) files for the Android platform or IPA (iPhone Application

Archive) packages for the iOS platform. This implies that the proposed analysis can be

performed by a variety of subjects (app store moderators, researchers, security experts,

etc.), and not only by app developers. Nonetheless, a considerable amount of primary

studies (23/140) takes as input the app source code (Source Code), hence targeting app

developers and researchers. In those cases, developers can potentially integrate them

into their development workflow, e.g., as dedicated analyses integrated into the Android

Studio IDE or as specific steps in their continuous integration pipeline. Note that both

APK and source code are valid inputs for some of the studies.

4.3.6 Additional inputs

The possible values for the additional inputs parameter, listed in Table 4.14, identify what

other inputs, if any, are required by the primary studies to perform the proposed analysis

(in addition to the app itself). As an example, Figure 4.4 presents eCalc, the technique

proposed by Hao et al. [83] (P129) that provides energy consumption estimates for an app.

In this case, eCalc takes as input the app itself, together with the test cases exercising

its features and a previously built CPU profile containing the energy cost functions for

each type of instruction of the CPU. In P129, those additional inputs are needed for
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Table 4.13: App artifact
(Categories not mutually exclusive)

App arti-
fact

#Studies Studies

Binary 123 P1, P2, P3, P4, P5, P8, P9, P10, P11, P12, P13, P14, P15,
P16, P17, P20, P21, P22, P23, P24, P25, P26, P27, P28,
P29, P30, P31, P32, P35, P36, P37, P38, P39, P40, P41,
P42, P43, P44, P45, P46, P47, P48, P49, P50, P51, P53,
P54, P55, P57, P58, P59, P60, P61, P62, P63, P64, P65,
P66, P67, P68, P69, P70, P72, P73, P74, P75, P76, P77,
P78, P82, P83, P84, P85, P86, P88, P89, P90, P91, P92,
P94, P96, P97, P98, P99, P100, P101, P102, P104, P105,
P106, P107, P108, P109, P110, P111, P112, P114, P115,
P116, P117, P118, P119, P121, P122, P123, P124, P125,
P126, P127, P128, P129, P130, P131, P132, P133, P134,
P135, P136, P137, P138, P139, P140

Source code 22 P6, P7, P18, P19, P33, P34, P40, P52, P56, P68, P71, P79,
P80, P81, P87, P93, P95, P103, P113, P116, P120, P130

automatically running and profiling the app under analysis multiple times in order to

take into account the well-known phenomenon of energy consumption fluctuations at

run-time.

Figure 4.4: Example of an analysis technique requiring additional inputs

Overall, the majority of primary studies (109/140) is able to perform the analysis without

any additional input, whereas 31/140 studies require some additional inputs. We consider

this to be a positive trend, as it simplifies adoption of the proposed techniques by industry

and other researchers, additionally enabling batch analysis of a large quantity of apps

more easily. Nevertheless, as for P129, in some cases relying on additional inputs is a

necessity, e.g., when the app needs to be executed in a controlled, non-random, non-

trivial manner.

When focusing on the studies requiring additional inputs, we can observe that mappings

from the source code of the app to other auxiliary information is the most commonly

required additional input (8/140). It is followed by techniques that verify whether given

policies, rules or constraints are violated (5/140), and techniques that focus on a list of

one or more methods of interest in the app source code (5/140). A few studies (3/140)
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Table 4.14: Additional input
(Categories not mutually exclusive)

Additional input #Studies Studies
Source code mappings 8 P22, P57, P96, P111, P112, P118, P131, P137
Methods of interest 5 P1, P6, P67, P81, P91
Policies, rules & con-
straints

5 P7, P16, P92, P95, P125

Platform description 3 P15, P67, P90
App Store Descriptions 3 P16, P53, P88
System profile 1 P128
Bug information 1 P45
Target permission to re-
voke

1 P59

User defined Analysis 1 P77
Test cases 1 P128
Workload Description 1 P115

take as input app descriptions coming from the app stores, and leverage the information

there contained in order to perform their analyses. For example, CHABADA [25] aims at

automatically identifying malicious apps by evaluating how their implementation differs

from their description in the app store. Some proposed techniques take as input the

platform (3/140) or system (1/140) profiles for application execution. Only one study

(1/140) takes as input test cases. This is particularly noteworthy as test cases are arti-

facts commonly produced during the software development cycle, and how information

can be extracted from them has widely been investigated in the software engineering

literature [84, 85]. Similarly, another study (1/140) leverages information extracted from

bug reports to perform the analysis. A single study (1/140) focuses on the problem of

removing unwanted system permissions and, consequently, takes as input an identifier of

the permission to remove. Finally, a description of the workload to be executed (1/140)

and a user defined analysis (1/140) are required by only one study respectively. It is

important to notice that the vast majority of these additional inputs require the knowl-

edge of a developer or a domain expert in order to be reproduced and only a handful can

be reproduced by end-users. This makes it harder to reproduce the results and might

hinder large-scale adoption.

4.3.7 Analysis pre-steps

The analysis pre-steps parameter identifies whether the studies under evaluation require

steps that must be executed manually before the analysis can be performed. Results are

listed in Table 4.15.

The majority of the approaches (111/140) does not require any analysis pre-step. A still

considerable amount (29/140) requires some analysis pre-step to be performed manually.

Examples of possible pre-steps include, but are not limited to, building models of the

platform APIs or libraries used by the application under analysis, collecting execution
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Table 4.15: Analysis pre steps

Analysis
pre steps

#Studies Studies

No
presteps
required

111 P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P13, P14, P18,
P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29,
P30, P31, P32, P34, P36, P37, P38, P39, P40, P41, P42, P43,
P44, P46, P47, P48, P49, P50, P51, P52, P54, P55, P56, P58,
P59, P60, P61, P64, P65, P66, P67, P68, P69, P70, P71, P73,
P74, P75, P78, P79, P80, P82, P83, P84, P86, P88, P89, P91,
P92, P93, P94, P96, P97, P99, P101, P102, P103, P104, P105,
P107, P108, P109, P110, P112, P113, P114, P116, P118, P119,
P120, P121, P122, P123, P125, P126, P127, P129, P130, P132,
P133, P134, P135, P136, P137, P138, P139, P140

Presteps
required

29 P1, P12, P15, P16, P17, P33, P35, P45, P53, P57, P62, P63,
P72, P76, P77, P81, P85, P87, P90, P95, P98, P100, P106,
P111, P115, P117, P124, P128, P131

traces, collecting runtime power consumption measures, creating rule sets or security

policies. Similarly to the previous parameter, having to perform manual steps before or

during the application of a static analysis approach may hinder its reproducibility and

large-scale adoption.

4.3.8 Analysis technique

This parameter identifies the family of static analysis techniques performed by the ap-

proaches proposed in the primary studies. Results are summarized in Table 4.16. A wide

variety of static analysis techniques is used in the primary studies, the most common

being Flow (82/140) and Taint Analysis (26/140). A considerable amount of primary

studies limit their analysis to data mining (24/140) to extract relevant information from

the application bytecode or source code. Machine learning classification, slicing and

model-based analysis are also other relevantly used techniques, each being used in eigh-

teen (18/140), eleven (11/140), and ten (10/140) studies, respectively. Other less fre-

quently used techniques are string analysis (6/140), abstract interpretation (4/140), type

inference (3/140), code instrumentation (3/140), symbolic execution (3/140), points-to

analysis (2/140), constant propagation (2/140), termination analysis (1/140), typestate

analysis (1/140), statistical analysis (1/140), responsiveness analysis (1/140), pattern-

based contextual analysis (1/140), nullness analysis (1/140), and class analysis (1/140).

We speculate that the popularity of Flow and Taint analysis is due to the fact that

many of the issues researchers want to detect in mobile apps can be modeled under those

analysis paradigms and, as further discussed in Section 4.5, it appears that researchers

identify the technique to be used in a goal-driven fashion. We also believe that, again,

researchers are limited by the available frameworks and tools, and choose to focus more

on those techniques for which mature tools exist (e.g., Soot).
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Table 4.16: Analysis technique
(Categories not mutually exclusive)

Analysis technique #Studies Studies
Flow Analysis 82 P1, P4, P5, P6, P7, P8, P10, P11, P13, P14, P15,

P17, P18, P19, P20, P21, P24, P25, P26, P27,
P28, P30, P31, P34, P35, P36, P39, P45, P46,
P47, P49, P50, P51, P52, P54, P55, P56, P57,
P58, P62, P63, P64, P65, P67, P68, P71, P74,
P77, P79, P83, P87, P89, P92, P93, P94, P95,
P96, P98, P100, P104, P106, P107, P108, P111,
P112, P115, P116, P118, P120, P123, P124, P125,
P128, P129, P130, P132, P133, P134, P135, P137,
P139, P140

Taint Analysis 26 P14, P23, P37, P38, P39, P40, P41, P44, P61,
P66, P70, P72, P73, P75, P76, P81, P82, P84,
P91, P96, P99, P103, P107, P122, P125, P131

Data Mining 24 P5, P16, P29, P33, P48, P60, P63, P65, P69, P76,
P78, P85, P86, P88, P97, P105, P110, P114, P119,
P126, P131, P135, P137, P138

Classification 18 P5, P16, P29, P36, P60, P63, P76, P78, P85, P86,
P88, P105, P110, P114, P119, P126, P132, P133

Slicing 11 P2, P22, P33, P37, P59, P65, P84, P106, P112,
P113, P140

Model Based Analysis 10 P3, P9, P11, P12, P38, P53, P74, P85, P90, P130
String Analysis 5 P4, P43, P96, P101, P121
Abstract Interpreta-
tion

4 P57, P80, P81, P136

Constant Propagation 4 P24, P28, P117, P121
Code Instrumentation 3 P32, P33, P117
Type inference 3 P4, P59, P95
Symbolic Execution 3 P12, P17, P109
Pointer Analysis 2 P4, P68
Nullness Analysis 1 P127
Termination Analysis 1 P127
Statistical Analysis 1 P48
Typestate Analysis 1 P13
Pattern-based Analysis 1 P42
Responsiveness Analy-
sis

1 P102

Class Analysis 1 P127

Main findings on characteristics of approaches:

I Being Open source pays off from a scientific perspective. The vast majority of

the studied approaches is specific to the Android platform, both from a con-

ceptual and implementation perspective. Thanks to its open-source nature,

Android gives more control and flexibility, and fuels an ecosystem of accom-

panying tools and libraries useful for static analysis (avoiding to reinvent the

wheel). This is also proved by the fact that Android has been chosen as imple-

mentation platform also for generic static analysis approaches.

I Static analysis of mobile apps is widely performed in isolation and by consider-

ing only the app to be analysed (no additional input like test cases or platform

profiles). If on one side this is a confirmation of the fact that static analysis is

a very versatile tool for analysing non-trivial properties of mobile apps, on the
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other side, researchers may be loosing an opportunity for pushing further by

complementing static analysis with other artifacts and/or additional analysis

techniques (e.g., like done in the eCalc approach in P129).

I Machine learning techniques seem to be promising and are applied in conjunc-

tion with static analysis techniques. However, machine learning techniques are

widely used for some goals (mainly for security), but they are yet fully explored

in other areas, such as app store analysis [86] and software repository mining.

I Many are the static analysis techniques used by researchers when considering

mobile apps, ranging from flow analysis, to taint analysis, to type inference

and abstract interpretation. The clear winner is flow analysis. We conjecture

that this success is mainly due to a combination of factors: (i) as of today the

programming model of mobile platforms is inherently based on a flow of (often

asynchronous) messages exchanged between a set of components (e.g., Android

activities, iOS views) reacting to events (e.g., a tap of the user, a callback from

a sensor request), (ii) flow analysis nicely lends itself to identify and predicate

on both intra- and inter-app interactions (a cornerstone capability for security

and reliability analyses), and (iii) the availability of open-source tools like Soot

that developers can use as building blocks for their own approaches.

4.4 Results - potential for industrial adoption (RQ3)

4.4.1 Target stakeholder

As shown in Table 4.17, app developers are the most recurrent stakeholders of static anal-

ysis approaches (76/140). Platform vendors (59/140) like Apple and Google distribute

apps via their own dedicated mobile application markets. They can benefit from the use

of static analysis approaches for systematically assessing the level of quality of their dis-

tributed apps, possibly identifying those apps with an unacceptable level of quality (e.g.,

apps with well-known security flaws, apps asking for suspicious permissions, apps with

strong energy inefficiencies). Interestingly, some approaches directly target app users,

who might use static analyses to better understand how their installed apps behave and

for examining and granting explicit information flows within an application. Also, users

may be interested in implicit information flows across multiple applications, such as per-

missions for reading the phone number and sending it over the network. As an example,

one of the 12 studies targeting users focuses on debugging energy efficiency of apps in
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their real context of use. Specifically, in P42 the user can launch an automatically in-

strumented app to precisely record and report observed energy-related failures in order

to assists the developer by automatically localizing the reported defects and suggesting

patch locations. Last but not least, 7 primary studies explicitly mention researchers as

target stakeholders, who can extend and/or apply the proposed techniques (and their

results) to their own studies on mobile applications.

Table 4.17: Target stakeholder
(Categories not mutually exclusive)

Target stakeholder #Studies Studies
App developer 76 P1, P4, P6, P7, P8, P10, P13, P14, P15, P16, P18,

P19, P20, P21, P22, P24, P25, P26, P27, P28,
P31, P33, P34, P39, P42, P43, P44, P45, P46,
P47, P48, P49, P50, P51, P52, P53, P54, P55,
P56, P57, P59, P61, P62, P64, P67, P74, P79,
P80, P81, P82, P83, P84, P85, P87, P90, P91,
P93, P97, P100, P101, P102, P104, P106, P107,
P113, P115, P116, P117, P121, P125, P127, P128,
P129, P134, P136, P139

Platform vendor 59 P2, P3, P5, P9, P12, P13, P16, P17, P18, P29,
P30, P35, P36, P37, P40, P41, P54, P57, P58,
P60, P63, P65, P66, P69, P70, P73, P75, P76,
P77, P82, P85, P88, P89, P92, P94, P95, P96,
P98, P99, P103, P105, P108, P109, P112, P114,
P118, P122, P123, P126, P130, P131, P132, P133,
P134, P135, P137, P138, P139, P140

User 12 P11, P38, P42, P68, P78, P86, P92, P110, P111,
P120, P124, P139

Researcher 7 P19, P23, P32, P71, P72, P91, P119

4.4.2 Tool availability

All the primary studies contribute with a tool implementing the proposed approach.

Nonetheless, our results also show that only 28 studies over 140 (see Table 4.18) released

the tool, making it publicly available for download and adoption. When possible, the

availability of a tool supporting the proposed approach is desirable as it surely helps in

making the obtained results more credible, reproducible, and replicable by the commu-

nity.

4.4.3 Technology readiness level

Defined by the systematic measurement system for assessing the maturity of a particular

technology [87], the technology readiness level (TRL) is an integer n where 1 ≤ n ≤
9. This measure has been proposed by the Horizon 2020 European Commission for

the 2014/2015 work program12. In the context of this study, we assess the technology
12http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/

h2020-wp1415-annex-g-trl_en.pdf

 http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
 http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
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Table 4.18: Tool availability

Tool availability #Studies Studies
No 112 P1, P2, P5, P6, P7, P8, P9, P10, P11, P12, P15,

P16, P17, P19, P21, P23, P24, P25, P27, P29,
P30, P31, P32, P34, P35, P37, P38, P39, P40,
P41, P42, P45, P46, P47, P48, P49, P51, P52,
P53, P54, P55, P56, P57, P58, P59, P61, P62,
P63, P64, P65, P66, P67, P68, P70, P71, P72,
P73, P74, P75, P76, P77, P78, P79, P80, P81,
P84, P85, P86, P88, P90, P92, P93, P94, P96,
P98, P99, P100, P101, P102, P103, P105, P106,
P107, P108, P109, P110, P113, P114, P115, P116,
P117, P118, P119, P120, P121, P122, P123, P124,
P125, P126, P128, P129, P130, P131, P132, P133,
P134, P135, P137, P138, P139, P140

Yes 28 P3, P4, P13, P14, P18, P20, P22, P26, P28, P33,
P36, P43, P44, P50, P60, P69, P82, P83, P87,
P89, P91, P95, P97, P104, P111, P112, P127,
P136

readiness level of an approach by using three values (see Table 4.19): high if the approach

is evaluated or adopted in an industrial environment (n ≥ 7), medium if the approach

has been applied on real apps, e.g., those mined from the Google Play store (5 ≤ n ≤
6), low if the approach is evaluated via ad-hoc, synthetic apps (n ≤ 4). Our analysis

reveals that the majority of primary studies have a medium TRL (117/140), followed by

low (22/140), and high (1/140). The only primary study classified with an high TRL is

P96 since the proposed approach is adopted in an industrial environment, in addition to

having been evaluated by using an large dataset of real applications.

Table 4.19: Technology Readiness Level (TRL)

TRL #Studies Studies
High 1 P96
Medium 117 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P12, P14, P16, P17,

P18, P19, P20, P21, P22, P24, P25, P27, P28, P29, P30, P31,
P32, P33, P34, P35, P36, P37, P38, P39, P41, P42, P43, P44,
P46, P47, P48, P49, P50, P52, P53, P54, P55, P56, P58, P59,
P62, P63, P64, P65, P66, P67, P68, P69, P70, P71, P72, P73,
P74, P75, P76, P77, P78, P79, P81, P83, P85, P86, P87, P88,
P89, P90, P91, P93, P94, P97, P98, P99, P100, P101, P102, P103,
P104, P105, P106, P107, P109, P110, P111, P112, P114, P115,
P116, P117, P119, P120, P121, P122, P123, P125, P126, P129,
P130, P131, P132, P133, P134, P135, P136, P137, P138, P139,
P140

Low 22 P11, P13, P15, P23, P26, P40, P45, P51, P57, P60, P61, P80,
P82, P84, P92, P95, P108, P113, P118, P124, P127, P128

4.4.4 Execution time

The classical argument against static analysis is its long execution time, which may

impact its applicability in the everyday workflow of developers. With this parameter we

want to investigate on this and report the average execution time of each static analysis

approach, as reported in its corresponding primary study. Specifically, we categorize
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execution times according to the following sets: low if the analysis execution time is less

than 1 minute, medium if the analysis execution time is between 1 and 10 minutes, high

if the analysis execution time is higher than 10 minutes, and NA if the execution time

is not reported in the primary study. Unfortunately, as shown in Table 4.20, in many

primary studies the researchers are not reporting the execution time of their proposed

approach (NA values in the table). When the execution time is reported, in more than

half of primary studies the execution time is medium (49/90), followed by low (34/90),

and High (7/90). This result shows that static analysis approaches can be executed in

acceptable time, depending on the used approach.

Table 4.20: Execution time

Execution time #Studies Studies
High 7 P1, P19, P20, P31, P88, P89, P100
Medium 49 P3, P5, P6, P8, P15, P16, P21, P25, P28, P29,

P30, P33, P36, P39, P40, P41, P42, P43, P45,
P47, P49, P50, P55, P56, P60, P69, P74, P75,
P77, P84, P85, P90, P94, P97, P98, P99, P104,
P107, P108, P109, P110, P111, P113, P115, P117,
P122, P123, P127, P136

Low 34 P7, P10, P11, P14, P17, P18, P22, P24, P35, P44,
P48, P61, P62, P64, P65, P66, P67, P76, P79,
P80, P83, P86, P87, P91, P93, P103, P112, P116,
P128, P129, P131, P132, P133, P134

NA 50 P2, P4, P9, P12, P13, P23, P26, P27, P32, P34,
P37, P38, P46, P51, P52, P53, P54, P57, P58,
P59, P63, P68, P70, P71, P72, P73, P78, P81,
P82, P92, P95, P96, P101, P102, P105, P106,
P114, P118, P119, P120, P121, P124, P125, P126,
P130, P135, P137, P138, P139, P140

4.4.5 Number of analysed apps

The authors of the analyzed primary studies evaluate and validate their findings by using

an input set of applications. The evaluation of this parameter builds on the assumption

that approaches evaluated on a larger set of apps are more adoptable in industry since it

is less likely that they exhibit unexpected behaviors (specially for corner cases). Here we

categorized the primary studies according to the number of apps used for evaluating them.

As shown in Table 4.21, in the majority of studies (58/140) the number of applications

used for evaluating the proposed approach is greater than 1,000, followed by those studies

which evaluated their approach by using less than 100 apps (50/140), and those studies

(32/140) which took into account a medium set of apps (between 100 and 1,000). This

result is promising in that a relatively good number of approaches was evaluated on a high

number of applications, making the scientific community and practitioners reasonably

confident about their applicability in industrial contexts. Nevertheless, it is important to

note that evaluating an approach on a low number of apps should not be seen as a strongly

negative point because it may have been a necessity from an empirical perspective. For
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example, the number of analyzed apps could depend on the execution time of the analysis

tool; if the analysis tool requires a large amount of time for each app (e.g., including user

thinking time), then the input set of applications is inevitably small in order to keep the

experiment duration acceptable from a pragmatic perspective.

Table 4.21: Number of analyzed applications

# Apps evalu-
ated

#Studies Studies

High (more than
1,000)

58 P1, P4, P6, P7, P8, P9, P12, P16, P17, P19, P20,
P22, P24, P25, P30, P32, P33, P35, P36, P37, P38,
P42, P44, P46, P50, P55, P64, P65, P66, P67, P73,
P75, P76, P77, P78, P81, P85, P86, P88, P89, P91,
P93, P94, P99, P101, P103, P104, P105, P106, P110,
P112, P114, P122, P131, P132, P133, P134, P140

Medium (between
100 and 1,000)

32 P11, P14, P27, P29, P41, P43, P48, P52, P53, P54,
P58, P59, P68, P70, P71, P72, P80, P83, P96, P98,
P109, P111, P116, P119, P120, P121, P125, P126,
P135, P137, P138, P139

Low (less than 100) 50 P2, P3, P5, P10, P13, P15, P18, P21, P23, P26, P28,
P31, P34, P39, P40, P45, P47, P49, P51, P56, P57,
P60, P61, P62, P63, P69, P74, P79, P82, P84, P87,
P90, P92, P95, P97, P100, P102, P107, P108, P113,
P115, P117, P118, P123, P124, P127, P128, P129,
P130, P136

4.4.6 Apps provenance

From the analysis of the primary studies, it emerged that the majority of the studies,

during the evaluation phase, use exclusively unmodified applications (see Table 4.22)

mined from an app market (118/140). In other cases, the applications to be analysed

were created for the purpose of the evaluation, or they were customized versions of real

apps (34/140). In some cases (e.g., P12, P14, P16, P17) a combination of real and

custom applications is used; in those cases, custom apps support the evaluation of the

proposed approach to exercise specific aspects of the proposed static analysis approach

(e.g., corner cases when building a control flow graph of the app under analysis), which

are not fully covered by the mined original apps.

Overall, the obtained results are promising since approaches evaluated on (a potentially

large number of) real apps in principle undergo a more realistic investigation with re-

spect to those evaluated on synthetically-built apps. This realism comes also from the

fact that apps mined from app stores are developed in real industrial contexts involving

practitioners working under real business and organizational constraints (e.g., release

deadlines, specific development workflows). Moreover, apps mined from app stores can

be totally different from synthetic apps because the former are distributed to and down-

loaded by real users; it is well known that users play a central role in the success (and

indirectly in the development process) of the apps, e.g., by providing publicly accessible

app ratings and reviews [86], deciding to uninstall disappointing apps, etc.
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Table 4.22: Apps provenance
(Categories not mutually exclusive)

Apps provenance #Studies Studies
Unmodified App 118 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P12,

P14, P16, P17, P18, P19, P20, P21, P22, P24,
P25, P27, P28, P29, P30, P31, P32, P33, P34,
P35, P36, P37, P38, P39, P41, P42, P43, P44,
P46, P47, P48, P49, P50, P52, P53, P54, P55,
P56, P58, P59, P62, P63, P64, P65, P66, P67,
P68, P69, P70, P71, P72, P73, P74, P75, P76,
P77, P78, P79, P81, P83, P85, P86, P87, P88,
P89, P90, P91, P93, P94, P96, P97, P98, P99,
P100, P101, P102, P103, P104, P105, P106, P107,
P109, P110, P111, P112, P114, P115, P116, P117,
P119, P120, P121, P122, P123, P125, P126, P129,
P130, P131, P132, P133, P134, P135, P136, P137,
P138, P139, P140

Customized App 34 P11, P12, P13, P14, P15, P16, P17, P23, P26,
P38, P40, P45, P48, P51, P57, P60, P61, P80,
P81, P82, P83, P84, P85, P86, P92, P95, P106,
P108, P113, P116, P118, P124, P127, P128

4.4.7 Evaluation soundness

When proposing a scientific contribution is of paramount importance to rigorously evalu-

ate it by following methodologies which are well-known and accepted by the community.

According to this, we assessed the evaluation phase of each primary study by considering

the checklist for empirical guidelines proposed by Wohlin et al. [12, § A.2]. The pro-

posed checklist is composed of 23 items, each of them dealing with a specific aspect to

consider when reading an experiment article. Examples of items include: Is the sample

used representative of the population? Are the hypotheses clearly formulated? Is the type

of design clearly stated?

Table 4.23: Evaluation soundness

Evaluation sound-
ness

#Studies Studies

High 49 P2, P3, P4, P5, P9, P13, P16, P17, P20, P21,
P25, P27, P29, P30, P31, P32, P33, P34, P35,
P36, P37, P43, P49, P63, P64, P66, P68, P69,
P70, P82, P89, P91, P93, P94, P95, P97, P100,
P101, P106, P109, P110, P112, P114, P117, P121,
P127, P129, P133, P140

Medium 58 P1, P6, P8, P10, P11, P12, P14, P15, P23, P40,
P42, P48, P50, P52, P53, P54, P56, P59, P60,
P61, P62, P65, P67, P71, P72, P73, P74, P75,
P76, P77, P78, P83, P84, P85, P86, P87, P90,
P96, P98, P103, P104, P105, P107, P108, P111,
P113, P115, P120, P122, P123, P125, P126, P128,
P131, P132, P134, P137, P139

Low 33 P7, P18, P19, P22, P24, P26, P28, P38, P39, P41,
P44, P45, P46, P47, P51, P55, P57, P58, P79,
P80, P81, P88, P92, P99, P102, P116, P118, P119,
P124, P130, P135, P136, P138
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We ranked the evaluation soundness of a primary study as high if it covers more than 15

items of the empirical checklist, medium if it covers between 5 and fourteen items, and

low if it covers less than 5 items of the checklist.

As shown in Table 4.23, a large number of the studies partially adhere to the checklist

for empirical studies (medium, 58/140). To follow, 49 primary studies ranked as high

in terms of evaluation soundness, whereas 33 primary studies have a low evaluation

soundness. Overall, these results show that more than half of the considered primary

studies perform a medium to high evaluation in terms of empirical evaluation, leading

therefore to a reasonably higher level of confidence about the results of their evaluation.

4.4.8 Industry involvement

Each primary study was classified as (i) Academia, if the authors are affiliated exclu-

sively to an academic organization, e.g., university or research center; (ii) Industry if the

authors are affiliated exclusively to an industrial organization, e.g., a company, startup,

or software house; (iii) Academia and Industry if some of the authors are affiliated to an

academic organization and some others to an industrial one. As depicted in Figure 4.5,

the vast majority of the authors of our primary studies is academic (115/140), followed by

a combination of researchers and industrial practitioners (24/140), and finally 1 contri-

bution involves industrial authors only. The emerged result is quite disappointing, as in

almost all of the studies there is no involvement of industrial researchers or practitioners.
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Figure 4.5: Distribution of industry involvement
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If we consider the single industry-only primary study (i.e., P96), an industrially-relevant

problem related to mobile apps is about the fact that “the danger of Android application

collusion is often overlooked, as single-app exploitation is still a profitable means for

adversarial activity; however, we [the authors of P96] believe that the perceived difficulty

of using multiple applications is much higher than the actual cost”. Therefore, the authors

present a collection of tools that provide static information flow analysis across sets of

applications, showing a holistic view of all the applications running on a particular device.

The techniques proposed in P96 include: (1) static binary single-app analysis, (2) security

lint tool to mitigate the limits of static binary analysis, (3) multi-app information flow

analysis, and, (4) evaluation engine to detect information flows that violate specified

security policies. We believe that P96 is a good example of a research study tackling

an industrially-relevant problem and proposing an industry-driven solution. Academic

researchers could compare with or be inspired by the work in P96 for designing and

evaluating the approaches for static analysis of mobile apps of the future.

Main findings on potential for industrial adoption:

I It comes without a surprise that app developers and platform vendors are the

most targeted stakeholders. Still, a potentially unexplored venue is related to

static analysis targeting the end users of mobile apps, who may have different

requirements and needs with respect to the apps currently installed in their

devices.

I In the vast majority of primary studies, researchers are not providing any tool

implementing their proposed approaches. This result is strongly negative, as it

impacts study replications and comparative evaluations, which are at the basis

of the scientific method. We suggest researchers to always provide publicly

available implementations of their approaches (when possible); this will help

researchers and practitioners in improving the overall quality of research in

static analysis of mobile apps.

I Execution times of current static analysis approaches for mobile apps are rel-

atively low; this provides evidence that practitioners can adopt static analysis

to improve the quality of their mobile apps, without having a strong impact on

their development workflows (e.g., by including the analysis in their continuous

integration workflow).

I The evaluation of the proposed approaches is generally performed on unmod-

ified apps (i.e., experimentation in the wild). The number of apps considered

in the evaluation phase is either high (more than 1,000) or low (less than 100).
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The empirical soundness of the performed evaluations are generally between

medium and high.

I As a community, we should encourage new connections between academia and

industry in order to potentially improve the knowledge exchanged between

them, where (i) research is performed on industrially relevant problems and

(ii) new methods, technologies and tools are transferred from academia to

industry.

4.5 Orthogonal findings

In the following, we report the results of our horizontal analysis. We recall that in this

phase of the study we built contingency tables for pairs of parameters coming from our

vertical analysis, we analyzed each of them, and identified perspectives of interest.

Analysis goal - Platform specificity. In general, privacy results to be the most

recurrent analysis goal for all platforms, and specifically results to be vastly studied

for the Android operating system. The only iOS approach found in the literature is

also focusing on privacy. Malware results to be the second most studied subject in

both Android and generic approaches. Overall, very little studies result to be platform-

independent, and none appear for the categories performance, inter-app communication,

and antipatterns.

We conjecture that the popularity of privacy and malware analysis goals can be associ-

ated to the ubiquity and handling of sensitive data that nowadays characterizes mobile

apps. As a consequence, new methods and techniques to address the associated chal-

lenges is receiving a growing attention. In addition, many of the research focusing on

privacy rely on a technique, namely, the inspection of the AndroidManifest.xml, that

is quite simple to implement. This consideration further explains the high occurrences

of such studies. Regarding the performance, inter-app communication and antipatterns

goals, we hypothesize that such goals can be studied exclusively from a platform-specific

point of view due to their tight relationship with the platform on which the app is

running.

Analysis goal - Static\Hybrid approach. In general, all of the goal categories are

mostly studied through hybrid approaches, indicating that approaches combining static

and dynamic analyses are far more popular than pure static or dynamic ones. Overall,

privacy results to be the most studied subject in both static and dynamic approaches
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(40 static approaches and 11 hybrid ones). Energy consumption (11 static approaches

and 7 hybrid ones) is the second most recurrent goal of hybrid analyses. Frameworks

and antipatterns result to be supported exclusively by static analysis.

We believe that the rationale behind the popularity of hybrid approaches resides in the

ability to circumvent weaknesses that arise when using only one kind of analysis, hence

making it possible to gather more comprehensive, yet precise, results. As presented in

the previous section, the popularity of the privacy goal can be justified by the interest of

final users, developers and app store vendors to protect sensitive data from unauthorised

access. The high number of hybrid approaches targeted at the energy goal evidences the

reliance of such approaches on dynamic methodologies, utilised to exercise the applica-

tions under analysis, and gather empirical energy consumption measurements. On the

other hand we conjecture that the lack of usage of dynamic analysis by approaches aimed

at the frameworks and antipatterns goals is due to the nature of these goals, which are

more tightly related to source code metrics rather than runtime ones, thus making static

analysis techniques more suitable for them.

Analysis goal - App artifact. In general, the vast majority of the approaches require

the APK package of the mobile application. This has to be attributed to the skewed data

gathered for this research, from which most of the approaches result to focus on Android

applications. In contrast, the most studied goal requiring source code as input is focusing

on inter-component communication. The only goals that require more often source code

than APK s are the ones focusing on refactoring and performance. Additionally, two

goals that do not require access to the source code of the application were identified,

namely reflection and antipatterns.

Regarding the goals for which analyses are mostly performed on source code, we believe

that the underlying reason for this skewness is that these types of analysis require the

exact source code of the app under analysis to be carried out properly. Even though

Android decompilers and disassemblers do exist, at the time of writing, their precision

is not high enough to perform these kind of analysis on packaged applications [88]. On

the other hand, when focusing on the analysis goals requiring an APK as input, we can

notice that for testing, privacy and energy consumption researchers have been focusing

on black-box approaches, while neglecting white-box ones (at least partially). For these

goals, approaches of the latter kind could be of assistance during development of mobile

apps, either notifying developers when they unknowingly insert known antipatterns in

their code (e.g., an energy hotspot in the case of energy consumption or a privacy leak

in the case of privacy) or in helping them in performing more efficient testing (in the

case of testing).
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Analysis technique - Analysis pre-steps. Eight out of 20 analysis techniques do not

require pre-steps. Such analyses, such as nullness, points-to and termination analysis, are

in fact carried out by inspecting the source code repository of the application, and hence

do not require additional tooling or configuration. The remaining 12 analysis techniques

require pre-steps of different nature. As expected, most of the analysis techniques needing

pre-steps require the manipulation of source code, such as code instrumentation and

abstract interpretation (for which two out of three papers required analysis pre-steps).

In general, only three of the 20 identified analysis techniques resulted to require in the

majority of the cases analysis pre-steps. This indicates that the vast majority of analysis

techniques is executable “as is”, i.e., without requiring any additional process before the

analysis can be actually carried out.

Target stakeholder - Analysis goal. Approaches targeting app stores vendors result

to be mostly interested in privacy (27 studies) and malware (25), followed by inter-

component and inter-app communication (7 studies each). Approaches targeting devel-

opers also result to be mostly interested in privacy-related analyses (21 studies), but also

consider more low-level goals, such as energy consumption (18 studies), inter-component

communication (13 studies), and testing (12 studies).

Approaches targeting researchers result to be mostly related to the improvement of

the state of the art analysis techniques, hence often considering goals related to inter-

component communication (4 studies), and frameworks (3 studies). As expected, ap-

proaches targeting end users result to be mostly interested in privacy (9 studies), and

approaches targeting app store vendors are more interested in malware than developers

(27 against 5 studies). In contrast, approaches targeting developers result to be more in-

terested than those targeting app store vendors in analyses related to testing (12 against

1 study), resources (5 against 0), refactoring (5 against 0), performance (8 against 0),

and energy (18 against 0). Again, this indicates that approaches targeting developers are

more interested in the quality of the applications than those targeting app store vendors;

the latter are mainly focused on ensuring the security of the end user by identifying

potential malware and privacy leaks.

TRL - Analysis goal. For all goals there is a noticeable lack of advanced field-tested

techniques ready for industrial adoption, with the majority of the studies positioned at

the medium level of TRL. Studies that achieved a high TRL are only present for the

goals malware (1 out of 31), and inter-app communication (1 out of 14). It is worth to

note that, even if the majority of the studies focuses on privacy, none of the approaches

addressing privacy were used in practice. When considering studies that achieved a

middle-level technological readiness, the most can be found for the goals privacy (42 out

of 51), malware (24 out of 30), energy (17 out of 18), and inter-component communication
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(17 out of 20). Framework and testing are the goals that are lagging behind the most,

with 2 out of 6 and 3 out of 12 studies positioned at low, respectively.

From these results, we can notice that static analysis techniques for mobile apps are

not yet ready for industrial adoption, although popularly targeted by academia. We

advocate that, to favor adoption in industry, researchers should not only further refine

and improve existing techniques, but also rethink how evaluation is performed, aiming

at performing it in a real industrial setting, when possible.

Evaluation soundness - Analysis goal. Adherence to evaluation guidelines varies

among different goals. Studies targeting malware and privacy are the ones that follow

them more strictly, with 14 and 16 studies having a high evaluation soundness. Studies

that partially adhere to evaluation guidelines (i.e., medium evaluation soundness) are

most commonly targeting the refactoring (4 out of 5), privacy (27 out of 51), inter-

component communication (10 out of 20), inter-app communication (9 out 14), and

antipatterns (1 out of 1) goals. Studies with testing (7/12) and resource (4/6) goals are

those that at least follow the evaluation guidelines, with 7/12 and 4/6 studies having a

low evaluation soundness, respectively.

We conjecture that the unbalance in evaluation soundness among goals is due to the fact

that the empirical research approach is traditionally followed more strictly in some fields,

e.g., security; whereas, it is less frequent in others (e.g., resource analysis). We advocate

the adoption of empirical research techniques to researchers working in those fields in

which evaluation soundness is lagging behind in order to foster the rigor, objectivity, and

replicability of the proposed research results.

Execution time - Analysis technique. Almost all of the studied approaches require

either a low or medium computation time in order to perform their analysis. High values

for analysis time can be found only for class analysis (1), classification (1), data mining

(1), and flow analysis (6).

Focusing only on the studies that require either a medium or low execution time, we can

notice that medium execution times are more common across all analysis types. The

only exceptions are statistical analysis (1 low and no medium), symbolic execution (1 low

and 1 medium), slicing (3 low and 3 medium) and abstract interpretation (1 low and 1

medium). Nevertheless, this result is likely due to the low number of studies that make

use of those kinds of analyses.

Execution time - Analysis goal. Almost all of the studies under evaluation report

an execution time that is either medium or low, with only 7 studies that require a high

execution time spread among different analysis goals without a noticeable trend. We can
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therefore conclude that no analysis goal requires an amount of time of a greater order of

magnitude with respect to the others in order to complete the analysis.

Focusing on the studies that require either a low or medium execution time, we can

notice that those that fall into the malware and energy goals have an average execution

time slightly skewed more towards medium since: the former has 12 studies that require

medium and 5 low ; the latter has 10 studies that require medium and 5 low. A sim-

ilar trend can be noticed for performance (a single low and 4 medium), albeit with a

smaller sample size. Hence, we can conjecture that analyses focusing on such subjects

are generally more expensive w.r.t. execution time.

The opposite trend can be noticed only for the inter-component communication goal,

which has 7 studies characterized by a low execution time and only 4 characterized by

a medium one. We believe that this can be justified by the higher level of abstraction

at which these analyses are usually carried out, as only component interfaces must be

considered.

Usage of machine learning - Analysis goal. Usage of machine learning techniques

is not evenly distributed among all goals. In particular, machine learning techniques are

mostly employed for the goal of malware detection: out of 23 studies leveraging machine

learning techniques in their analyses, 15 fall into the malware goal, the remainder is split

among privacy (5), inter-component communication (2) and inter-app communication

(1). This trend is traceable to the common techniques utilized to identify malware ap-

plications, which most often rely on training a classifier on a collected dataset of both

benign and malicious applications. It is meaningful to notice that the same machine

learning techniques can potentially be applied when targeting other goals, such as per-

formance or energy consumption; surprisingly, none of the studies that fall into those

goals make use of machine learning. We believe that this is due to the greater effort

required for the collection of large datasets when considering these goals.

Industry involvement - Analysis goal. As expected, all analysis goals are consid-

ered by academic researchers. Privacy (38/140), malware (26/140), energy (18/140), and

inter-component communication (16/140) are the most targeted goals for academic re-

searchers. In some cases, when the analysis goal concerns privacy (12/140), malware

(4/140), inter-component communication (4/140), inter-app communication (4/140),

framework (2/140), testing (1/140), resource (1/140), and refactoring (1/140), academic

researchers are supported by industrial professionals.

By analyzing these results, we can conjecture that, although industrial organizations are

interested in addressing the problematics related to these goals, there is still a lack of
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industrial involvement when targeting other research goals, such as energy and perfor-

mance, that would improve the overall user experience of mobile apps, and thus also

translate into benefits for industry practitioners. We argue that researchers should try

more actively to involve industry practitioners when working on such goals.

Target stakeholder - Analysis technique. Approaches to be utilized by app stores

vendors rely mostly on techniques such as data mining (17/140), taint analysis (15/140),

and classification (14/140). This is in line with the most prominent goal of such stake-

holder, i.e., identifying malicious applications in order to remove them from their stores.

On the contrary, approaches to be utilized by developers, that are more interested in the

inner workings of the applications, result to be characterized by a higher usage of tech-

niques based on flow analysis (51/140). An explanation for this trend is the difference

in performance among different static analysis techniques: approaches targeted at app

stores must be highly scalable, as they have to be executed daily on thousands of apps,

while approaches targeted at developers have less stringent requirements. This evidences

that improving the performance of some techniques is a relevant open problem, as they

are currently a limiting factor for the kind of analyses that can be performed on app

stores.

Tool availability - Analysis goal. When dealing with static analysis, automation is

a crucial requirement for an approach to be effectively adopted in practice. Although

for the majority of the identified analysis goals many different approaches have been

proposed, most of them do not have a (released) tool ready for adoption by practitioners.

On the one hand we can argue that addressing goals such as privacy and malware, may

require the realization of a mature supporting tool requiring a development effort that

cannot be always afforded. On the other hand, addressing some goals represent more a

theoretical interest, with potentially marginal practical impact, such as the study of an

analysis framework itself. Nonetheless, we encourage researchers to undergo the extra

effort required for making their analysis tool available to the research community: not

only it makes easier to replicate their results but also analysis types for which a mature

tool has been made available have been far more explored by the scientific community

(as in the case of Flowdroid [79] for flow analysis).

4.6 Discussion and future challenges

The results presented in the previous sections give a data-driven, objective overview of

the current state of the art on static analysis for mobile apps. In this section, we provide

our own interpretation of the main points we deem as important challenges for future

researchers in this area.
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Is there life after Android? When considering the targeted platforms, it is evident

that Android is the clear winner, with more than 85% of approaches targeting it. If

on the one hand, we could have expected this result (as of today, Android is the most

popular mobile operating system with more than 90% market share [3] and a relatively

large number of open-source tools for apps analysis), on the other hand, it makes us

wonder what will be the fate of this Android-specific large body of knowledge and tools

we researchers are producing in the future. If we look back in time, it is widely recognized

that the mobile ecosystem is extremely dynamic, with platforms unpredictably raising

and failing in terms of sales of devices, company acquisitions, users flowing to/from other

platforms, etc. For example, 8 years ago, Apple iOS and Symbian were having 38% and

16% of the market share, whereas today they account for less than 14% together13.

It is encouraging to see that 20 approaches out of 140 are generic (even though the

implementation of the majority of them is again Android-specific). We believe that in

the future researchers should reason at a higher level of abstraction, and focus more

on approaches which are technology-independent, generic, and applicable to different

platforms with reasonable effort. It is only in this way that our research results will

pass the test of time and will (hopefully) remain relevant also in the future, despite the

inevitable technological waves we will be facing. It is important to note that we are

not suggesting to totally neglect platform-specific aspects, rather we are proposing to

design our own research products to be platform-independent and robust with respect to

(future) technologies; among many, researchers might take advantage of the well-known

principles of extensibility and separation of concerns, of layered or plugin-based archi-

tectures for making their research products applicable in the context of new technologies

without disrupting their general principles and base mechanisms. This will also speed up

research by helping researchers in avoiding to reinvent the wheel whenever a (potentially

applicable) research product will be applied to a new mobile platform.

Analysis goals shall be expanded substantially. The results of our study tell that

privacy and malware are the most targeted analysis goals, far more than the others (e.g.,

performance, energy, resources usage). This is a clear gap that we, as researchers in the

area of mobile apps analysis, should be filling in the future.

Given its strong importance for mobile apps, it seems that performance is extremely

under-explored. Indeed, performance is a fundamental aspect of mobile apps develop-

ment, which are often providing computationally-intensive features and being used for

mission-critical tasks. Last but not least, a pleasant user experience is often a key fac-

tor to determine the success of an app [89]. Moreover, anti-patterns identification and
13 https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-

systems/
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refactoring are among the least explored analysis goals so far, despite the fact that bug

fixing and code re-organization are among the most recurrent activities of mobile apps

developers [90]. In this context, P52 can be considered as a reference study about how

to propose, design, and evaluate a refactoring method for mobile apps. Specifically,

P52 presents a preliminary large-scale formative study about how developers approach

asynchronous programming in Android apps. Then, based on the obtained results (e.g.,

that developers are using the Android AsyncTask construct also for long running opera-

tions, potentially leading to memory leaks, lost results, and wasted energy), a tool-based

method is proposed for (i) statically identifying usages of the AsyncTask construct which

can be automatically improved, and (ii) refactoring those parts of the app via a safe code

rewriting algorithm. Finally, an empirical evaluation provides objective and reproducible

evidence about the applicability and saved effort of the proposed method.

Users are being left out of the equation. From the results of RQ3 it emerged that

only 12 studies consider end users as stakeholders, revealing that researchers are mostly

focusing on techniques aimed at assisting developers, store moderators and researchers

instead. Although this unbalance is not unexpected, when also considering that the

majority of studies focused on privacy as their goal, we can notice a lack of users-first

privacy approaches. Indeed, privacy is a subjective property, as different users may

have different requirements to consider an application trustable, current solutions fail to

address this subjective aspect of privacy, considering all users as equals. Hence, in light

of these considerations, we can identify one research area currently open and overlooked:

the design of more user-centric approaches to privacy, where users are provided with

the necessary tools to specify and validate the “personal” requirements to which an

application must comply [91].

Developers are being left out of the equation too! Even though when answering

RQ3 it emerged that practitioners were involved in 25 studies, it also emerged that almost

all approaches have not been evaluated or adopted in an industrial environment (i.e.,

high TRL). We consider this finding as an indication that practitioners are involved in the

technical phases of the study (e.g., elicitation of the requirements for the approaches,

analysis steps definition, experiments results evaluation), but not as subjects of the

evaluation of the proposed approaches. This situation is in strong contrast with the fact

that the most recurrent stakeholders of the proposed approaches are the practitioners

themselves. For the future, we strongly advise to close the loop by including practitioners

in all the phases of the studies, specially while (i) defining the assumptions, requirements,

and usage scenarios of the proposed static analysis approaches, as well as (ii) evaluating

the proposed approaches in terms of their usefulness, applicability, and usability. At

best, the latter can be performed by applying the case study methodology [12]. This is
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already happening in other research areas within the software engineering domain, such

as software energy efficiency [92], technical debt [93] and software testing [94].

Tools and datasets shall be released and publicly available. An underlying

problem which hinders static analysis of mobile apps research lies in tool availability.

In fact, from the results of our research, we evince that only a small portion of tools

utilized or developed in the primary studies are available online. This constitutes a

serious problem for researchers interested in extending or adapting tools which have

been already developed. Additionally, the data utilized in the primary studies (e.g.,

accurate versioning history of apps used for experimentation) is only seldom available.

This potentially slows down investigations, as datasets still have to be created on an ad-

hoc basis for research, as the number of already available ones is scarce. In recent times,

this trend has been opposed by the constitution of some conference tracks explicitly

aimed to make datasets publicly available. Among the most prominent ones are the

“Artifact” track of the International Conference on Software Maintenance and Evolution

(ICSME), and the “Data Showcase” track of the Mining Software Repositories (MSR)

conference. Research belonging to these tracks range from general purpose datasets,

e.g., large versioning datasets focusing on Android applications [95], to context-specific

datasets, e.g., to support dynamic analyses of Android applications [96]. Finally, from

the findings of our study, we detect a shortcoming shared by many studies of static

analysis of mobile apps, namely the impossibility to replicate the reported results. In

fact, the absence of structured replication packages, in form of tools and dataset utilized,

precludes the possibility to replicate the results reported in the primary studies. This

constitutes a major problem affecting not only researchers interested in the field of mobile

static analysis, but also the soundness of the studies itself.

4.7 Threats to validity

In order to ensure the high quality of the data gathered for this study a well-defined

research protocol was established before carrying out the data collection. The research

activities were designed by following a set of well-accepted and revised guidelines for

systematic mapping studies [77]. From the formalization of such guidelines we established

the research protocol that was strictly followed throughout the study, as documented in

Section 4.1. In addition, in order to further ensure the adherence to the protocol and

the envisioned quality standards, all the steps of the research (e.g., study design, search

and selection, data extraction, data analysis, etc.) were carried out as a team. This

activity was deemed necessary also to lower potential sources of bias by discussing crucial

considerations in the team. Even by adopting a methodic literature review approach,
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threats to validity are still unavoidable. The following reports on the main threats to

validity to our study and how we mitigated them.

External validity refers to conditions that hinder the ability to generalize the results

of our research [12]. The major threat of this category is represented by the fact that

our primary studies are not representative of the state of the art research on static

analysis of mobile applications. In order to mitigate this threat, we adopted a search

strategy consisting of a manual search encompassing all the top-level software engineering

conferences14 and international journals15 according to well known sources in the field.

Such process was further extended by executing a backward and forward snowballing

process on the selected literature. In order to ensure the quality of the selected research,

we exclusively considered peer-reviewed papers and excluded the so-called grey literature,

such as white papers, editorials, etc. We disregard such decision as a significant source of

bias, as peer-review processes are a standard requirement for high quality publications.

Finally, we adopted a set of well-defined inclusion and exclusion criteria, which rigorously

guided our selection of the literature.

Internal Validity refers to the influences that can affect the design of the study, without

the researcher’s knowledge [12]. In this regard, we defined a priori a rigorous research

protocol for the study. The classification framework adopted was established iteratively

by strictly following the keywording process. Regarding the synthesis of the collected

data, such process was carried out by adopting simple and well-assessed descriptive

statistics. Subsequently, during the orthogonal analysis, we performed sanity tests on

the extracted data by cross-analyzing different parameters of the established classification

framework.

Construct validity refers to the extent to which the primary studies selected are suited

to answer our research questions [12]. In order to mitigate such threat, we manually in-

spected thoroughly the literature published in the top-level software engineering confer-

ences and journals. This procedure was performed by adhering to a rigorous predefined

protocol. In addition, the results of such process were expanded by integrating the re-

sults gathered through a backward and forward snowballing process. Subsequently, we

methodologically selected the identified studies by applying a set of well-documented

inclusion and exclusion criteria. This latter process was carried out by three researchers

independently. As recommended by Wholin et al. [12] a random sample of eight studies

were selected and analyzed by all three researchers in order to ensure that the analyses

were aligned.
14http://goo.gl/auU7su
15http://www.webofknowledge.com

http://goo.gl/auU7su
http://www.webofknowledge.com
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Conclusion validity refers to issues that might hinder the ability to draw the correct

conclusion from the data gathered [12]. In order to minimize the presence of such threat,

we carefully carried out the data extraction and analysis by strictly adhering to an a

priori defined protocol. Such protocol was specifically conceived to collect the data

necessary to answer our research questions. This enabled us to reduce potential sources

of bias resulting from the data extraction and analyses processes. In addition, such

methodology guaranteed us that the extracted data was fitted to answer our research

questions. In order to further mitigate potential threats to conclusion validity, we adhered

to the best practices reported in several well known guidelines for systematic literature

reviews [12, 13, 71]. Such guidelines were strictly followed throughout each phase of our

research, and were comprehensively documented in order to make our research approach

transparent and replicable.

4.8 Conclusions

In this chapter we reported on the design, execution and results of a systematic mapping

study aimed at answering the first of the research questions addressed by this dissertation

(discussed in Chapter 1.3). That is:

RQ1 - What is the state on the art on static analysis for mobile applications?

The systematic mapping study reported in this study permitted us to precisely charac-

terize the most relevant methods and techniques for statically analyzing mobile apps.

Starting from over 8,000 potentially relevant studies, we applied a rigorous selection pro-

cedure resulting in 140 primary studies along 71 scientific venues and a time span of 7

years.

We rigorously defined a classification framework with the target of identifying, evaluating

and classifying the characteristics of existing approaches to the static analysis of mobile

apps, while understanding trends and potential of industrial adoption.

The main findings of this study have been synthesized by performing (i) a combination

of content analysis and narrative synthesis (vertical analysis), and (ii) a correspondence

analysis via contingency tables (horizontal analysis). Of particular interest, among other

results, is the fact that only a small minority of studies consider end users as stakeholders

despite the fact that the majority of studies focused on privacy as their goal. Hence,

we can notice a lack of users-first privacy approaches. Indeed, as previously

discussed in Chapter 1, privacy is a subjective property, as different users may have

different requirements to consider an application trustable, with current solutions failing

to address this subjective aspect, considering all users as equals.
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Our study will help researchers and practitioners in identifying the purpose and the

limitations of existing research on static analysis of mobile apps. Also, we assessed

the potential of research on static analysis of mobile apps, discussing how to foster

industrial adoption and technological transfer. The knowledge of the potential of existing

methods and techniques constitutes a reference framework in support of researchers and

practitioners, such as app developers, who are interested in selecting/choosing existing

static analysis approaches, and want to critically understand what they offer and how.

In this sense, we can argue that this work constitutes a valuable asset to the academic

and industrial world in the wide spectrum of static analysis.



Chapter 5

An investigation into Android permissions

from an end users’ perspective

As mentioned in Chapter 3, researchers have studied usability and effectiveness of the

Android permission system, evidencing the existence of several issues with it: only a

minority of users are aware of the implications of their privacy decisions and warning

dialogs are not easily understood [35, 36, 97]. Towards addressing these problems, the

permission system has been revamped and, starting with Android 6, access to privacy-

and security-relevant parts of the platform is enforced by a new run-time permission

system.

We investigated how end users perceive the new run-time permission system of Android,

with the ultimate goal of identifying possible points of improvement, despite the recent

changes. For this purpose, we conducted a large-scale empirical study, collecting and

inspecting over 4.3 million user reviews about 5,572 apps published in the Google Play

Store that adopt the run-time permission system. Using a combination of an established

keyword-based approach [98] and machine learning techniques, we identified among them

permission-related reviews regarding the new Android permission system and categorized

the main concerns expressed by end users into a taxonomy.

5.1 Study design

This section describes the study design and how the different steps were executed. In

order to perform an objective and replicable study, we followed the guidelines on empirical

software engineering in [12] and [99].

67
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5.1.1 Goal and research questions

Goal of the study is to evaluate the Android run-time permission system for the purpose

of characterizing the way end users perceive its issues and benefits in the context of

15,124 free Android apps published in the Google Play Store. We refined this goal into

the following research questions:

RQ1 - How accurate is an automated approach in classifying user reviews via different

combinations of machine learning techniques?

RQ2 - To what extent do app reviews express concerns about the Android run-time

permission system?

RQ3 - What are the main concerns about the Android Run-time permissions system in

app reviews?

RQ1 is a meta research question. By answering it, we aim at objectively assessing the

accuracy of different combinations of machine learning techniques, e.g., Naive Bayes

classifier and support vector machines. Indeed, since the proposed software pipeline can

include different components, it is expected that different combinations will result in

different levels of accuracy. Obviously, we use the results of the most accurate software

configuration when answering RQ2 and RQ3.

RQ2 aims at assessing how end users consider issues and benefits related to the Android

run-time permission system, and if they vary across app categories.

The rationale behind RQ3 is to identify the main concerns of end users about the Android

run-time permission system, what issues are still unresolved, but also positive reactions

about it (e.g., praises).

5.1.2 Subject selection

Hereafter, we describe how we built the dataset used as a basis for our study. The

collection process is summarized in Figure 5.1.

Apps selection – As a starting point for our selection, we considered the top 500 most

popular free apps from each of the 35 categories of the Google Play Store, as ranked

by the App-Annie service for app ranking analysis1 as of October 11, 2016. The total

amount of entries we extracted is 15,517. At the time, some new categories (such as
1www.appannie.com/apps/google-play/top-chart/united-states
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Figure 5.1: Summary of the data collection process

Dating and Parenting) had recently been introduced in the store, and they contained

less than 500 entries. We removed those duplicate apps that appeared in more than one

category, achieving a set of 15,124 unique app IDs. Selection was limited to free apps, as

binaries are necessary to identify apps that adopt the new permission system. In fact,

free apps represent 93.99% of all Google Play Store apps and they are downloaded more

often [100].

Apps and reviews collection – We downloaded from a third party service2 the binary

files (i.e., the APKs) of the apps identified in the previous step. Some of the apps did

not exist anymore in the Google Play store, and have therefore been excluded. This can

happen if the developers decide to remove the app from the store or if Google decides to

remove the app for violation of some publishing policies. This led to the discarding of 327

apps, resulting in a total of 14,797 apps. Using an open-source web scraper3, we collected

all the user reviews published in the Google Play store for all surviving apps. For each

review, we collected the full review text, the publication date, and the review rating, i.e.,

a grade, on a scale from one to five, assigned by the reviewer to the app. As the Google

Play store exhibits only a limited amount of reviews for each app at a given time [101],

we repeated the collection process multiple times to collect a more extensive dataset.

Afterwards, we merged the results of each collection iteration, discarding duplicates,

leading to an acquired total of 18,326,624 individual reviews. The whole process lasted

8 weeks. The most recent review in our dataset is dated 28 February 2017.
2https://apkpure.com
3https://github.com/facundoolano/google-play-scraper
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Apps and reviews filtering – We developed a tool for automatically disassembling

the APK of an Android app, analyzing its manifest file, and identifying the Android

API Level targeted by the application (i.e., the value of the androidtargetSdkVersion

attribute of the uses-sdk tag4). With such a tool, we identified the apps using an

Android API version equal or greater than 23, which is the Android version in which

the run-time permission system was first introduced. A total of 5,572 apps fell into

this last category. Since we are only interested in reviews that discuss the new run-

time permission system, we excluded all reviews belonging to apps that still use an API

version earlier than 23. This filtering step resulted in a set of 9,631,378 reviews. From

this set, we further filtered out all the reviews predating 5 October 2015, the release date

of Android API 23, hence achieving a total of 4,366,049 reviews.

Keyword-based selection – In order to identify potential permission-related reviews,

we performed an additional keyword-based selection, following the intuition that users

often use semantically similar or related keywords to describe an issue or a feature, as

suggested in [98]. To select our keywords we relied on the MARK tool by Vu et al. [98,

102]. We chose MARK over other tools (e.g., CALAPPA [103] or AR-Miner [104]) for

its ability to grasp semantic similarity among words and provide suggestions of keywords

similar to the ones given as input. We provided the keyword permission as input and,

by following the tool suggestions, we added to the set of keywords the words privacy

and consent. We choose not to expand our keywords set further and limit ourselves

to a concise set of neutral, pertinent keywords. Indeed, expanding it further would

allow us to identify a larger set of potentially permission-related reviews. However, it

would come at the expense of precision, while potentially introducing biases into our

subsequent analysis stemming from positive/negative connotations associated with some

words or expressions. The result of this filtering step is a set of 6,345 reviews. The high

discard-rate in this step is not surprising, rather it is in accordance with existing research

confirming that only a (relatively) small fraction of app reviews mention application

permissions [105].

Supervised classification – The final step of our data collection process is a super-

vised classification procedure. First, we manually classified a sample of 1,000 randomly

extracted potential permission-related reviews to build a ground truth for a subsequent

automatic classification procedure. This resulted in a set of 780 classified permission-

related reviews (others were discarded as, despite containing selected keywords, clearly

do not deal with Android permissions, e.g., “Simple enough for beginners. Includes

features like backup, paper wallet and privacy settings.”). Complete details about the

manual classification procedure are provided in Section 5.2.1. Secondly, we extended the

classification to the remaining 5,345 potential permission-related reviews leveraging an
4http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
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automatic classification pipeline built on top of established machine learning and natural

language process techniques, described in Section 5.2.2. The result of this step is a set

of 3,574 permission related reviews, which form the objects of our study.

5.1.3 Variables

The main focus of RQ1 is on the configuration of the classification pipeline. The inde-

pendent variables are three, each of them mapping to a specific phase of the pipeline:

preprocessing, features extraction, and classification. The specific levels for these vari-

ables are described in detail in Section 5.2. For what concerns the dependent variables,

we measure the accuracy of our classification pipeline by relying on two key metrics com-

monly used in the field of automatic classification: precision and recall [106]. Precisionc
is the fraction of reviews that are classified correctly to belong to class c. Recallc is

the fraction of reviews of class c which are classified correctly. We used the following

formulas to calculate them:

Precisionc =
TPc

(TPc + FPc)
Recallc =

TPc

(TPc + FNc)
(5.1)

TPc stands for True Positives, the number of reviews classified as of class c that actually

belong to class c. FPc stands for False Positives, the number of reviews not belonging

to class c mistakenly classified as belonging to class c. FNc stands for False Negatives,

the number of reviews mistakenly classified as not belonging to class c even though they

actually belong to class c. Considering precision and recall, we calculated one further

metric, the F1-Score, defined as the harmonic mean of the two, and provides a single

measure of accuracy [106].

When addressing RQ2, for each app a in our dataset, we considered the following vari-

ables: the number of its permission-related reviews (Rp
a), the total number of reviews it

received in the Google Play Store (Ra), and its category in the Google Play Store (cata).

Concerning RQ3, we considered the different categories of reviews concerning the run-

time permission system, as extracted by our classification pipeline (see Section 5.2).

5.1.4 Execution

Concerning RQ1, we implemented our classification pipeline in Python, by relying on the

Scikit-learn [107] and Nltk [108] Python modules version 0.19.01 and 3.2.2 respectively,

with default parameters. We executed all the meaningful (possible) configurations for
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our classification pipeline, investigating the impact that each single component of the

pipeline had on its overall accuracy. Then, considering the limited availability of training

data, we decided to evaluate each configuration by adopting the k-fold cross-validation

method [109], with k = 10 . According to this method, we split the available training

data into k equal sized partitions. A single partition was retained as the validation data

for testing; the remaining k − 1 partitions were used as training data. The training-

validation process was repeated k times, with each of the k partitions being used exactly

once, as per the validation data. At each iteration, we computed both the precision

metric and the recall metric. In order to further account for the possible variability of

the results that might occur due to the selection of the random partitions, we repeated

the whole process 100 times for each configuration of our classification pipeline. Then,

at the end of all iterations, we calculated the average to produce a single estimation.

The whole experiment was performed on a Ubuntu Linux virtual machine equipped with

8GB RAM and an Intel Xeon CPU E5630 Processor.

We extracted the values of the variables for answering RQ2 and RQ3 by relying on the

data we mined when building the dataset and on the semi-automated process for identi-

fying permission-related reviews. There, Rp
a is the count of permission-related reviews for

each specific app category (as defined in the Google Play Store). We approached auto-

matic classification of user reviews with a dual goal in mind: (i) we wanted to automate

a process that would be infeasible to perform manually; (ii) we still wanted to retain a

satisfactory level of accuracy. Ra and cata are extracted when building the dataset (see

previous section).

5.1.5 Study replicability

In order to allow for complete replicability of the study, the source code of the classifi-

cation pipeline, the source code developed for the experiments, and the raw data with

the results of both manual and automatic processes are publicly available in the on-line

replication package5.

5.2 The classification pipeline

Given the number of items to classify (i.e., 6,435 potential permission-related user re-

views), it would be infeasible to perform a complete manual analysis. Therefore, we re-

sorted to a two-step semi-automated classification pipeline. First, we manually analyzed

a sample of the data and built a taxonomy of end users’ comments, grouping together
5http://cs.gssi.it/MobileSoft2018ReplicationPackage
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permission-related reviews into relevant groups with descriptive labels (see Section 5.2.1).

Then, we trained a machine-learning classifier with the manually-built sample, and we

used the trained classifier on all remaining reviews (see Section 5.2.2).

5.2.1 Manual analysis

To perform the initial manual analysis, we randomly selected a sample of 1,000 reviews

from the permission-related set of our dataset. Such a sample allowed us to achieve a

confidence level higher than 95% and a 5% confidence interval. We further divided the

sample into two equal parts and assigned each to a different researcher. To reduce bias,

each researcher independently surveyed the reviews in his sample, grouping together

reviews containing similar concerns, and determined an informative label for each group

found. After completing the analysis, the two researchers discussed together the identified

groups, aligned the labels with each other, and solved all the cases in which there was

a disagreement. During this revision step, a total of 48 reviews were reclassified: one

category identified by one researcher was divided into more finer-grade ones detected

by the other; another category was discarded (it grouped user complaints about apps

performing actions without their knowledge but not related to the Android permission

system, e.g., “Sends requests to Facebook friends without permission.”). The resulting

categories are discussed in Section 5.3.3, whereas, the manually-classified reviews are

available in the replication package of this study.

The manual analysis of the 1,000 reviews led to the definition of a taxonomy composed of

10 categories of recurring user concerns. In addition, we identified two macro-categories:

positive opinions (in the following marked with a + sign), and negative ones (marked

with a − sign). In the following we describe each category.

+ Permission Praise (PP) – The reviewer expresses some praise for the app han-

dling of permissions, but it does not delve into details. A clarifying example is the

following: “Cool game, clean code and permission friendly app.”

+ Minimal Permissions (MP) – The reviewer feels that the app asks only for

permissions strictly needed in order to carry on with its advertised functionalities.

An example of this kind of review is: “I’ve tried others, this is the simplest, easiest

to use. Does not ask for permissions!! ”

– Permissions Complaint (PC) – The reviewer expresses some complaints about

the app handling of permissions, but does not provide details about it. An example:

“Used to love it. Don’t like the new permissions.”
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– Too Many Permissions (TMP) – The reviewer complains about the exces-

sive amount of permissions requested by the app. An illustrative case: “This app

demands access to contacts, the camera, and SMS. Too many permissions for a

glorified chat app. A real shame.”

– Unclear Permissions (UP) – The app does not explain why some of the re-

quested permissions are needed or the provided explanation is not convincing. An

example is the following: “Why on earth does it need that permission? ”

– Permission-related Bug (PB) – The app contains some bug related to permis-

sion requests that prevents its correct functioning. An instance: “Whenever I tried

to measure my bp, it gave error that doesn’t have permission to access camera but

actually it has access to camera.”

– Repeated Permission Requests (RPR) – When some permissions are denied,

the app repeatedly keeps requesting them, rendering usage of the app itself impos-

sible or burdensome. An example of this kind of review is: “App sounds like a great

idea. However you cannot go without swiping one app with location denied before

it asks for a permission again. Im not searching for jobs in my area I don’t want

the location on. [...]”

– Settings Permissions (SP) – Despite adopting an Android API version greater

or equal to 23, the app does not perform run-time permission requests properly.

Thus, in order to properly use the app functionalities, the review author was forced

to manually grant permissions to it through the device system settings. One exam-

ple is the following: “Nexus 5, had to manually give the app permissions to access

GPS. Seems to be working now.”

– Bad Request Timing (BRT) – According to the review author, run-time per-

mission requests are performed at a wrong time during app execution. One example

of such reviews is the following: “Strange that you ask for all the permissions up

front now, instead of the Marshmallow approach of asking for permissions when

people actually invoke the corresponding functionality [...] ”

– Functionality Unavailable (FU) – Without granting one or more permissions,

usage of some key app functionality is impossible. A clarifying example is the

following: “The app requests permissions per API 23, but if you refuse to grant

them, the app shuts down and refuses to run [...] ”

Notice that a review can potentially be assigned to more than one category, as not-all

categories are mutually exclusive (e.g., Settings permissions and Permission-related bug

are non-exclusive, as the user might be forced to assign permissions from the device
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settings to circumvent a bug). A breakdown of the amount of reviews classified in each

category is provided in Table 5.6.

5.2.2 Automatic classification

The structure of our classification pipeline is outlined in Figure 5.2. A detailed descrip-

tion follows.

The main input of our classification pipeline is composed of the raw text of end users’

reviews. Also, since the quality of the results may potentially be improved by feeding

the classification pipeline with additional data, we included also user ratings as part of

the input.

Figure 5.2: Overview of the classification pipeline (steps marked with an * are op-
tional)

In the following, we illustrate the design of our classification pipeline and the main

components that constitute it.

Preprocessing – The quality of the results can be affected by the preprocessing steps

performed on the inputs. Therefore, we experimented with different preprocessing steps

commonly performed in the field of Natural Language Processing, whose purpose is to

refine the data fed to the subsequent classification step. We experimented with the

following techniques:

• Removal of stopwords – words commonly used in the English language, such as “as”,

“can”, “it”, “so”, which do not greatly affect the semantics of a sentence. Removing

stopwords from reviews potentially removes noise from input data, thus allowing

classifiers to focus on more relevant words. We experimented with the default list

used by Scikit-learn6.
6https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/

stop_words.py

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/stop_words.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/stop_words.py
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• Stemming – the process of reducing inflected or derived words to their root form.

For instance, the words “connections”, “connective” and “connected” are all reduced

to the same base word “connect”.

• Lemmatization – a process that reduces a word to its canonical form named lemma.

Unlike stemming, lemmatization is performed with the aid of dictionaries and takes

the linguistic context of the term into consideration. For instance, lemmatization

correctly identifies “good” as the lemma of the word “better”.

Reviews representation – We selected the popular bag-of-words model [110] to rep-

resent reviews in our pipeline. Bag-of-words is a simplifying representation in which a

document is represented as the multiset of its words, disregarding grammar and word or-

der, but keeping multiplicity. From this representation classification algorithms can learn

the review type based on the terms existence and frequency. However, common words

like “the”, “a”, “to” are almost always the terms with highest frequency in documents. To

address this problem we employed tf-idf (term frequency-inverse document frequency)

normalization [110], that weighs with diminishing importance terms that occur in the

majority of documents.

One of the known disadvantages of bag-of-words representation is that spatial information

about words sequences is not preserved. Hence, we also experimented with n-grams [110],

another commonly used document representation model. An n-gram is a sequence of n

contiguous words extracted from document text. We consider n-grams of length 2 and

3, namely bi-grams and tri-grams respectively.

Classification – Since, potentially, a review can contain multiple users’ comments,

it can correctly be classified as belonging to multiple categories. Therefore, our case

falls into the problem of multi-label classification. This poses the question of whether to

train a single multi-label classifier or multiple binary classifiers, one for each category. A

binary classifier is a classifier trained for the task of deciding whether an input instance

belongs to a given class or not. A multi-label classifier instead is trained to assign a

given instance to one of multiple classes, greater than two, with no restriction on how

many of the classes the instance can be assigned to. We decided to rely on the former for

two main reasons: (i) previous research provided evidence that multiple binary classifiers

perform better than multi-label ones for user reviews [111]; (ii) training multiple binary

classifiers gives us more flexibility, potentially allowing us to choose a different classifier

for each taxonomy category.

We included four commonly used binary classification techniques known to perform well

on textual inputs in our experimentation [112]:



Android permissions from end users’ perspective 77

• Naive Bayes [113], a popular algorithm for binary classifiers based on applying

Bayes’ theorem with strong independence assumptions between features. It is

computationally efficient and achieves good predictive performance in many real-

world applications.

• Decision tree learning [114], which iteratively constructs a decision tree to be used

as a classifier. A decision tree is a tree-shaped graph in which each non-leaf node

denotes a test on a specific feature, each branch represents the outcome of a test,

and each leaf holds a class label. Decision trees are simple to interpret and mirror

human decision making more closely than other approaches. For our experimenta-

tion we adopted a CART tree [115].

• Maximum entropy [116] (also known as MaxEnt or multinomial logistic regression),

a probabilistic classifier based on the principle of maximum entropy. It does not

assume conditional independence of features.

• Support vector machines (SVM) [117], a non-probabilistic binary classifier. SVMs

plot each data item as a point in n-dimensional space and finds the hyper-plane

that maximizes the gap among the two different classes.

5.3 Results

5.3.1 RQ1 - How accurate is an automated approach in classifying
user reviews via different combinations of machine learning tech-
niques?

As discussed in Section 5.1.4, we executed a large number of runs of our classification

pipeline, exploring different combinations of review representations, preprocessing steps,

and classification algorithms. Complete results of all the performed runs are available

in the replication package, together with a complete implementation of our classification

pipeline.

Baseline: No preprocessing – bag-of-words representation. Table 5.1 summa-

rizes the results of the first combination we explored. We provided as inputs to the

classification algorithms the raw text of the reviews in the bag-of-words representation

and without any preprocessing. This is the basic configuration that allowed us to assess

the baseline performance of the different algorithms for our problem.

Decision Tree performed the worst, achieving an F1-Score of 0.635, well below the 0.75

threshold reached by the other algorithms. Still, despite achieving a similar F1-Score,
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PP PC MP TMP UP PB FU RPR SP BRT Avg

Precision

Naive Bayes 0.786 0.664 0.790 0.671 0.676 0.753 0.608 0.635 0.640 0.615 0.684
Decision Tree 0.693 0.612 0.716 0.641 0.731 0.679 0.597 0.620 0.587 0.529 0.640
Max Entropy 0.788 0.686 0.833 0.733 0.811 0.788 0.675 0.696 0.700 0.638 0.735
SVM 0.766 0.681 0.821 0.712 0.791 0.792 0.680 0.702 0.747 0.653 0.735

Recall

Naive Bayes 0.732 0.777 0.897 0.873 0.903 0.915 0.895 0.887 0.910 0.799 0.859
Decision Tree 0.714 0.595 0.735 0.649 0.743 0.670 0.582 0.577 0.554 0.488 0.631
Max Entropy 0.751 0.723 0.865 0.747 0.775 0.849 0.779 0.812 0.868 0.713 0.788
SVM 0.754 0.714 0.841 0.737 0.773 0.833 0.768 0.794 0.890 0.732 0.784

F-Score

Naive Bayes 0.758 0.716 0.840 0.759 0.773 0.826 0.724 0.740 0.751 0.695 0.758
Decision Tree 0.703 0.603 0.725 0.644 0.737 0.675 0.589 0.597 0.570 0.508 0.635
Max Entropy 0.769 0.704 0.848 0.740 0.793 0.818 0.723 0.750 0.775 0.673 0.759
SVM 0.760 0.697 0.831 0.725 0.782 0.812 0.721 0.745 0.812 0.690 0.757

Table 5.1: Baseline precision, recall and F1−Score for all algorithms

we can notice a difference in the performance of the remaining algorithms: Naive Bayes

attained an high recall (the highest for 9 categories out of 10, with an average of 0.859)

at the cost of a lower precision, while the opposite is true for Maximum Entropy and

SVM, as both attained an higher precision (0.735 on average for both) at the cost of a

lower recall.

PP PC MP TMP UP PB FU RPR SP BRT Avg

Bag-of-words

Naive Bayes 0.758 0.716 0.840 0.759 0.773 0.826 0.724 0.740 0.751 0.695 0.758
Decision Tree 0.703 0.603 0.725 0.644 0.737 0.675 0.589 0.597 0.570 0.508 0.635
Max Entropy 0.769 0.704 0.848 0.740 0.793 0.818 0.723 0.750 0.775 0.673 0.759
SVM 0.760 0.697 0.831 0.725 0.782 0.812 0.721 0.745 0.812 0.690 0.757

Bigrams

Naive Bayes 0.709 0.675 0.813 0.730 0.771 0.774 0.700 0.738 0.711 0.655 0.729
Decision Tree 0.598 0.570 0.618 0.663 0.683 0.635 0.464 0.569 0.611 0.484 0.594
Max Entropy 0.685 0.665 0.803 0.726 0.777 0.765 0.683 0.725 0.702 0.641 0.718
SVM 0.689 0.663 0.809 0.725 0.777 0.771 0.696 0.743 0.737 0.661 0.728

Trigrams

Naive Bayes 0.586 0.572 0.722 0.677 0.718 0.685 0.638 0.663 0.555 0.625 0.648
Decision Tree 0.678 0.457 0.365 0.564 0.646 0.292 0.143 0.262 0.262 0.110 0.426
Max Entropy 0.597 0.570 0.711 0.668 0.715 0.669 0.627 0.639 0.544 0.601 0.637
SVM 0.645 0.572 0.700 0.667 0.715 0.671 0.628 0.664 0.532 0.617 0.642

Bag-of-words + Bigrams

Naive Bayes 0.759 0.724 0.853 0.762 0.782 0.825 0.723 0.750 0.755 0.689 0.766
Decision Tree 0.699 0.594 0.702 0.642 0.722 0.671 0.577 0.616 0.596 0.498 0.632
Max Entropy 0.761 0.716 0.856 0.757 0.806 0.817 0.723 0.750 0.753 0.688 0.765
SVM 0.764 0.714 0.859 0.754 0.808 0.827 0.729 0.771 0.788 0.697 0,773

Bag-of-words + Bigrams + Trigrams

Naive Bayes 0.755 0.725 0.857 0.762 0.784 0.822 0.718 0.742 0.742 0.691 0.763
Decision Tree 0.687 0.588 0.682 0.639 0.721 0.666 0.590 0.616 0.606 0.514 0.632
Max Entropy 0.758 0.717 0.857 0.763 0.807 0.818 0.720 0.744 0.732 0.682 0.762
SVM 0.759 0.719 0.863 0.761 0.805 0.825 0.722 0.767 0.778 0.693 0.771

Table 5.2: Algorithms F1−Score for different reviews representation
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No preprocessing – different review representations. Going further, for our second

set of runs, we aimed at evaluating which review representation, or combination of,

leads to a better classification accuracy. Hence, we performed several runs changing the

review representation while still not performing any preprocessing or introducing the

score metadata. Table 5.2 summarizes results of this second set of runs.

Results highlight that adopting bigrams or trigrams does not improve the accuracy for

any of the algorithms. We conjecture that this lack of improvement over the bag-of-words

representation is due to the short length of reviews (in the sample we used for the manual

analysis, the average length is 204 characters, with a standard deviation of 128) from

which only a relatively low number of features can be extracted when choosing n-grams

over bag-of-words. However the quality of the results improves when combining bigrams

with bag-of-words. With this combined representation, Naive Bayes is outperformed

by both Max Entropy and SVM, the latter achieving the best F1-Score of 0.773. We

conjecture that this improvement is due to the ability of this combined representation to

extract a sufficient number of features, while preserving spatial information that helps

when having to discern different usages of frequent words, e.g., the bigrams “excessive

permissions” and “no permissions” have a very different meaning despite both containing

the term “permission”. Additionally including trigrams in this combined representation

does not seem to lead to a further improvement.

With preprocessing – combined review representations. For our next set of

runs, we introduced different preprocessing steps in the classification pipeline, while still

maintaining the combined representation of bigrams and bag-of-words, which resulted in

the best quality of results in the previous case. Results of this set of runs are provided

in Table 5.3.

The results of this new set of runs show evidence that stemming, stopwords removal,

and the combination of the two slightly improve the accuracy of the Naive Bayes and

Decision Tree algorithms, with the former achieving an F1-Score of 0.778 (the highest so

far). SVM and Maximum Entropy are instead negatively affected by this preprocessing

method. Usage of lemmatization, both alone and combined with stopwords removal,

instead improves average accuracy for all algorithms. With lemmatization, SVM also

achieves an F1-Score of 0.778, tying for the best performance so far.

With preprocessing – with user ratings. In this case, we consider also user rat-

ings as input to the classification pipeline. We performed both stopwords removal and

lemmatization since they gave the best results in the previous set of runs. Table 5.4

shows the results we obtained in this set of runs.
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PP PC MP TMP UP PB FU RPR SP BRT Avg

Stemming

Naive Bayes 0.770 0.729 0.852 0.768 0.789 0.835 0.721 0.752 0.765 0.711 0.773
Decision Tree 0.705 0.631 0.752 0.673 0.753 0.712 0.601 0.699 0.648 0.540 0.672
Max Entropy 0.783 0.689 0.827 0.738 0.791 0.821 0.695 0.714 0.784 0.657 0.751
SVM 0.755 0.664 0.815 0.735 0.784 0.796 0.671 0.709 0.796 0.601 0.734

Stopwords

Naive Bayes 0.769 0.729 0.854 0.770 0.787 0.834 0.722 0.758 0.793 0.718 0.778
Decision Tree 0.703 0.629 0.756 0.676 0.753 0.714 0.615 0.724 0.702 0.548 0.683
Max Entropy 0.781 0.688 0.827 0.736 0.792 0.821 0.692 0.728 0.803 0.669 0.755
SVM 0.755 0.663 0.815 0.731 0.784 0.796 0.677 0.722 0.815 0.626 0.739

Lemming

Naive Bayes 0.758 0.727 0.862 0.765 0.788 0.830 0.716 0.746 0.759 0.711 0.771
Decision Tree 0.702 0.597 0.724 0.653 0.721 0.703 0.593 0.648 0.663 0.517 0.653
Max Entropy 0.761 0.719 0.864 0.757 0.822 0.834 0.718 0.759 0.775 0.694 0.773
SVM 0.765 0.719 0.864 0.749 0.815 0.836 0.723 0.777 0.803 0.707 0.778

Stemming + Stopwords

Naive Bayes 0.771 0.728 0.853 0.768 0.790 0.833 0.721 0.753 0.770 0.702 0.773
Decision Tree 0.707 0.630 0.754 0.673 0.754 0.712 0.603 0.718 0.675 0.561 0.680
Max Entropy 0.780 0.688 0.826 0.736 0.791 0.820 0.685 0.730 0.784 0.645 0.749
SVM 0.755 0.664 0.814 0.736 0.785 0.795 0.680 0.698 0.795 0.601 0.733

Lemming + Stopwords

Naive Bayes 0.781 0.719 0.809 0.775 0.778 0.839 0.733 0.761 0.785 0.722 0.774
Decision Tree 0.718 0.628 0.681 0.661 0.686 0.717 0.641 0.710 0.609 0.484 0.654
Max Entropy 0.776 0.720 0.810 0.769 0.786 0.853 0.729 0.770 0.785 0.703 0.772
SVM 0.772 0.720 0.804 0.763 0.777 0.852 0.745 0.776 0.807 0.709 0.775

Table 5.3: Algorithms F1−Score for different preprocessing techniques

PP PC MP TMP UP PB FU RPR SP BRT Avg

Precision

Naive Bayes 0.604 0.911 0.578 0.868 0.892 0.820 0.833 0.784 0.611 0.667 0.757
Decision Tree 0.762 0.691 0.791 0.664 0.739 0.699 0.641 0.661 0.648 0.542 0.684
Max Entropy 0.740 0.663 0.737 0.676 0.686 0.731 0.680 0.624 0.627 0.648 0.681
SVM 0.756 0.718 0.799 0.733 0.761 0.790 0.686 0.667 0.681 0.642 0.723

Recall

Naive Bayes 0.997 0.278 0.999 0.451 0.615 0.702 0.240 0.432 0.745 0.317 0.578
Decision Tree 0.764 0.654 0.797 0.652 0.758 0.710 0.601 0.644 0.711 0.487 0.678
Max Entropy 0.923 0.779 0.914 0.820 0.824 0.816 0.868 0.747 0.828 0.745 0.826
SVM 0.885 0.774 0.916 0.834 0.843 0.861 0.902 0.819 0.916 0.807 0.856

F-Score

Naive Bayes 0.752 0.426 0.732 0.593 0.728 0.757 0.373 0.557 0.672 0.429 0.655
Decision Tree 0.763 0.672 0.794 0.658 0.748 0.705 0.620 0.652 0.678 0.513 0.681
Max Entropy 0.822 0.717 0.816 0.741 0.749 0.771 0.763 0.680 0.713 0.693 0.747
SVM 0.815 0.745 0.854 0.780 0.800 0.824 0.780 0.735 0.781 0.715 0.787

Table 5.4: Final precision, recall and F1−Score for all algorithms

In this new configuration, the Naive Bayes algorithm achieved the highest average pre-

cision, with a value of 0.757, but it came at the cost of recall, for which it performed

worst with a value of 0.578. Differently, Max Entropy and SVM have an increased

F1-Score, while still retaining a reasonable balance among precision and recall. SVM,

with an average F1-Score of 0.787, is the configuration that attained the best perfor-

mance. We statistically tested this result by applying the Wilcoxon rank-sum test [118]
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for pairwise data comparison under the alternative hypothesis that the samples do not

have equal medians. The performed test confirmed that this last configuration performs

statistically better than the others (higher p-value = 2.2e−16 ). We believe that this im-

provement comes from the synergistic effect of all the techniques that we selected during

the exploration. Based on this result, we adopted the lemmatization+bigrams+bag-

of-words+SVM configuration to answer RQ1 and RQ2.

5.3.2 RQ2 - To what extent do app reviews express concerns about
the Android run-time permission system?

We identified a total of 3,574 reviews that discuss the Android run-time permission

system. Even if they amount for a very small portion of the 18,326,624 reviews we started

from, these belong to a total of 1,278 unique apps, equal to the 23% of the collected apps

that employ the run-time permission system, and 8.6% of the total amount of all apps

of our dataset.

Looking at the frequencies of permission-related reviews among app categories (sum-

marized in Table 5.5), we can observe that permission-related reviews occur in almost

all categories, with the exception of Libraries and demo and Events (notice that both

categories were recently introduced in the Google Play Store and thus contain a smaller

amount of apps). This observation may be an indication that permission-related reviews

are somehow orthogonal across apps, independent of the specific context and permissions

requirements. We can also notice that, even if still limited in numbers, categories Pro-

ductivity and Tools contain more permission-related reviews than others. The opposite

is true for other categories, like Games and Photography, which have a lower amount,

despite a high number of reviews.

5.3.3 RQ3 - What are the main concerns about the Android run-time
permissions system in app reviews?

Results of both the manual and automatic classification are summarized in Table 5.6.

Using our classification pipeline, we have been able to assign a total of 3,251 labels dis-

tributed among all categories of the manually extracted taxonomy. The total amount of

assigned labels from the combination of manual and automatic classification is 4,156 (they

are distributed over 3,574 unique reviews). The majority of the classified reviews belong

to categories Unclear permissions (914), Too many permissions (745), Permissions praise

(700), Permission-related bug (543) and Minimal permissions (521). A smaller amount

has been identified for categories Repeated permission request (95), Functionality un-

available (86), Setting permissions (42) and Bad request timing (21), presumably since,
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Category (cata) Apps Reviews (Ra) Permission-related reviews (Ra
p)

Productivity 483 982,607 453 (0.0046‰)
Tools 490 1,343,676 372 (0.0028‰)
Communication 471 953,134 287 (0.0030‰)
Health and fitness 480 678,978 276 (0.0041‰)
Entertainment 498 1,039,598 234 (0.0023‰)
Shopping 484 631,367 216 (0.0034‰)
Business 495 482,456 209 (0.0043‰)
Lifestyle 494 713,815 201 (0.0028‰)
Social 491 747,139 176 (0.0023‰)
Android Wear 500 851,086 176 (0.0201‰)
News and magazine 491 419,504 149 (0.0035‰)
Travel and local 481 435,270 138 (0.0032‰)
Media and video 486 729,509 131 (0.0018‰)
Transportation 492 249,239 119 (0.0048‰)
Finance 493 523,841 102 (0.0020‰)
Music and audio 485 830,703 101 (0.0012‰)
Weather 484 237,229 99 (0,0041‰)
Personalization 497 713,124 99 (0.0014‰)
Education 500 675,976 81 (0.0012‰)
Photography 496 1,002,740 78 (0.0008‰)
Sports 488 331,062 78 (0.0023‰)
Games 444 1,654,846 76 (0.0004‰)
Books and reference 495 551,705 67 (0.0012‰)
Family 418 848,046 58 (0.0007‰)
Medical 497 195,632 47 (0,0024‰)
Food and drink 498 115,387 35 (0.0030‰)
Auto and vehicles 493 54,428 31 (0.0057‰)
House and home 292 57,990 23 (0.0040‰)
Comics 500 116,881 19 (0.0016‰)
Dating 247 61,489 19 (0.0031‰)
Beauty 95 6,760 11 (0.00162‰)
Art and design 492 44,323 4 (0.0090‰)
Parenting 185 26,667 2 (0.0001‰)
Libraries and demo 137 17,615 0 (0‰)
Events 52 2,748 0 (0‰)
Sum total 15,124 18,326,624 3,574 (0.0019‰)

Table 5.5: Distribution of apps, reviews, and permission-related reviews across cate-
gories

for these categories the amount of reviews identified during the manual analysis was

insufficient for proper training of the classifier.

The heatmap in Figure 5.3 provides an overview of how the frequency of these permission-

related reviews is distributed among apps, grouping the latter according to the number

of requested permissions. Here, we focused only on dangerous permissions [119], the

only ones that must be granted at run-time after the changes introduces by Android

6. We can notice that, for apps that only request one or two dangerous permissions

the majority of permission-related reviews belongs to categories Minimal Permissions

(MP) and Permission Praise (PP) thus suggesting that privacy-aware users notice, and

appreciate, the low amount of privileges required by these apps. Unsurprisingly instead,

for apps that request all 9 dangerous permissions, the majority of permission-related

reviews belong to category Too Many Permissions (TMP). Furthermore, focusing on

apps that request between 3 and 6 dangerous permissions, we notice that the majority

of permission-related reviews for these apps belong to categories Too Many Permissions
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Category Manual
Classification

Automatic
Classification Total

Permission praise (+) 128 572 700
Minimal permissions (+) 121 400 521
Permission complaint (-) 100 386 486
Too many permissions (-) 151 594 745
Unclear permissions (-) 175 739 914
Permission-related bug (-) 120 423 543
Functionality unavailable (-) 41 45 86
Repeated permission requests (-) 28 67 95
Settings permission (-) 20 22 42
Bad request timing (-) 21 3 24
Sum total 905 3,251 4,156

Table 5.6: Breakdown of classification results
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Figure 5.3: Permission-related reviews by number of requested permissions

(TMP) and Unclear Permissions (UP) but does not significantly increase, as one would

expect, as the number of requested permissions increases. We may conjecture that users

are keen to form a binary opinion about the number of permissions requested by an

app: they appreciate it when a low amount of permissions is requested and they are

disappointed when it is higher than they expect.

Figure 5.4 show the distribution of categories of permission-related reviews across the

types of requested permission. Praises and complaints about permissions expressed by

users in app reviews are distributed evenly, independently of the type of requested per-

mission, with the sole exception of the Sensors permission, for which users seem to be

concerned more when too many permissions are requested.
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Figure 5.4: Permission-related reviews by requested permission

5.4 Discussion

Overall we identified 3,574 reviews discussing the run-time permission system. These

reviews belong to a total of 1,278 unique apps, which are 23% of the collected apps

that employ the Android run-time permission system, and indeed the 8.6% of the total

amount of apps collected from the store. Considering these numbers, we can infer that:

The number of users having concerns w.r.t. the Android run-time permission system

is quite limited, even though problems pertaining to permissions are widespread

among apps (As shown in Section 5.3.3 23% of apps in our study employing the

Android 6 permission system are affected).

Going one step further, when focusing on the macro-categories of positive and negative

opinions, we can notice that the majority of classified reviews belong to the latter and

amount to 70.6% of the total. Negatives opinions appear in a total amount of 2,459

reviews, as opposed to 1,185 reviews containing positive ones (note that only 70 reviews

contain both positive and negative opinions).

The distribution of ratings, shown in Figure 5.5, is skewed towards the maximum score

(i.e., 5 stars) for positive categories; instead the distribution of ratings of negative

categories is skewed towards the lower end. We verified for statistical significance of

these differences in ratings by performing the two-tailed Mann-Whitney U-test among
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Figure 5.5: User ratings across reviews categories (outliers not shown)

each possible pair positive-negative categories, obtaining always a p-value below 2.2e−16.

Henceforth, we can deduce that:

For privacy-aware users, negative concerns on how permissions are handled are cor-

related with negative concerns about the whole app, thus confirming the importance

of users’ judgments about permissions.

We identified a total of 972 apps whose reviews contain negative opinions. Analyzing the

number of identified reviews, displayed in Table 5.6, negative categories with the highest

count are Unclear permissions (914), Too many permissions (745) and Permission-related

bug (543). The high cardinality of the first category evidences one of the problems of

the run-time permission system:

Users still do not understand why they are being asked for a permission. More work

is required to fully point out the reasons, which could derive from poor design of the

run-time permission system itself or from developers that do not utilize it properly,

often requesting permissions without providing an explanation.

App com.chopracenter.meditationexperience is a clear example of the latter, one of the

apps with the highest amount of this kind of reviews. One of them points out: “Why

does the app now need to use my permission to use my phone and my contacts? Seems

unnecessary.”. Furthermore, the high number of reviews belonging to the category Too

many permissions leads us to believe that:

The problem of permission creep [23, 120], i.e., apps routinely requesting more per-

missions than needed to carry on with advertised functionalities, is still present under

the new run-time permission system.
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This issue is clear when looking at the reviews of com.lge.app1, an app having numerous

reviews of this kind: “Update app to use less permissions and I’ll reconsider. No way it

needs to make phone calls or see my calendar to function with the TV.”. The high count

of reviews classified under Permission-related bug evidences that:

The introduction of the new run-time permission system also introduced a new class

of bugs that didn’t exist before, in the old install-time permission system. These

bugs derive from the fact that developers do not always correctly perform permission

requests.

We believe that this misusage of permission requests by developers is partially due to

a lack of understanding of the inner workings of the run-time permission system, and

partially because it is hard for developers to foresee all points where a permission must

be requested at run time. Indeed, Android apps often have a complex event-driven

control-flow with multiple entry points [121]. For instance, one of the apps with a high

amount of this kind of reviews is com.getittechnologies.getit, where users highlight that

the developer never requested the required permission: “It can’t access my GPS location

but I don’t think it ever requested permission to do so”.

Even if not among the most numerous, the categories Repeated permissions requests and

Functionality unavailable can be an indication of the fact that:

Some developers do not adhere to the guidelines provided by Google [122, 123].

Rather, they attempt at coercing users to provide some permissions, by constantly

repeating permission requests or completely blocking access to specific features when

permissions are not granted.

One example of the former case is com.htc.Weather: “Annoying that it keeps asking per-

mission of location [...] ”. An instance of the latter case is com.dteenergy.mydte: “I can’t

effectively use it because I denied accessing my contacts and files. There is no reason to

allow that [...] ”.

From a more technical standpoint, our analysis shows that:

Well-established, off-the-shelf machine learning techniques, combined with basic NLP

preprocessing, can be profitably used to derive interesting insights from app store

reviews, even on specific topics when sufficient amounts of data are considered.
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5.5 Threats to validity

In the following, we discuss the threats to validity of our study according to the Cook

and Campbell categorization [124].

Internal validity refers to the causality relationship between treatment and outcome [12].

In our study we classified user reviews dealing with Android run-time permissions relying

on machine learning techniques. This kind of analysis is non-deterministic as different

runs of the analysis may lead to different results. To mitigate this potential threat, we

repeated the experiments multiple times to correctly assess the accuracy of the different

combinations of applied techniques. Moreover, we manually created training data for

the machine learning models, following the procedure described in Section 5.2.1. To

ensure that the final model used for classification does not show abnormal behavior, we

manually analyzed 100 classification results to exclude the presence of glaring anomalies.

External validity deals with the generalizability of obtained results [12]. To ensure

that our subjects are representative of the population of Android apps, we downloaded

the top 15,124 apps in the United States across all categories of the Google Play Store,

as ranked by App-Annie. Since the apps are the top ranking apps of all categories,

we can expect that they have a high number of users because they are ranked using a

combination of number of downloads and aggregate user ratings. Also, by considering

the most popular free apps per category, we increase the chance to include apps with a

more active user base in terms of quality and number of reviews. Free apps represent

75% of all Google Play Store apps and they are downloaded more often [125].

Construct validity deals with the relation between theory and observation [12]. The

goal of our study is to analyse user reviews dealing with the Android run-time permis-

sion system, with the ultimate goal of identifying its recurrent issues from the end user

perspective. Even when focusing on issues potentially noticeable by end users, only a

minority of them show sufficient awareness. Hence, the proposed approach might not

discover the more subtle issues. We mitigate this threat by considering an initially large

set of reviews. Moreover, as we employed keyword-based filtering, we might have missed

an amount of reviews that reference permissions using keywords not in our list. We

mitigated this threat by adopting a list of highly pertinent neutral keywords, thus, albeit

in lower number, the selected reviews are highly on target for our purposes.

Conclusion validity deals with the statistical correctness and significance [12]. In this

study we assumed that user reviews are a reliable source for inferring user concerns

about the Android run-time permission system. However, there may be other factors

that potentially may affect users judgment. To mitigate this threat, while performing

the initial manual analysis we also ensured that many permissions-related reviews bring
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meaningful insights on the subject. Numerous examples of purposeful reviews have been

reported in the paper to highlight the usefulness of classified concerns. The full set of

classified user reviews is publicly available in the replication package of this study.

5.6 Open challenges

From the observations of Section 5.4, three open challenges for future research can be

identified. We list and discuss each in the following.

Link permissions to functionalities - In Section 5.4, it was evidenced that: (i) users

still tend to not understand why they are being asked for permissions, and (ii) developers

routinely request more permissions than needed. We believe that one possible way to

address these problems is to design new permission systems in which permissions are

granted to individual app functionalities, rather than to the full app as a whole. With

such systems, users may better understand why a given permission is requested. The first

stepping stone in this direction is to devise an effective way to logically link permissions

to functionalities.

Better support for developers - A numerous category of user perceptions is about

Permission-related bugs. Indeed, the shift to run-time permissions burdened developers

with one additional task, as now they have to preemptively ask for allowance of permis-

sions before accessing restricted parts of the platform. Failure to properly do so renders

functionalities or, in worst cases, the whole app unreachable and/or unusable. In order to

properly deal with this additional task, developers should not only be further educated,

but also empowered with tools that assist them in correctly handling permissions and

suitably positioning the corresponding requests.

Impact of run-time permission requests on user experience - Developers are

faced with one additional challenge when dealing with run-time permissions: on the one

hand, they must promptly and precisely inform users about needed sensitive data; on

the other hand, they must carefully plan the usage of notification dialogs, so as to avoid

disrupting the user experience (recall the phenomenon of warning fatigue [33]). When

using run-time permissions, there can be cases in which introducing new functionalities

that require additional permissions may even be detrimental to the app success. Hence,

a further open research area is understanding and quantifying the effects of run-time

permission requests on the overall user experience and how performing them at different

phases of program execution impacts user experience.
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5.7 Conclusions and future work

In this chapter we reported on the design, execution and results of an empirical study

aimed at investigating answers to the second of the research questions addressed by this

dissertation (discussed in Chapter 1.3). That is:

RQ2 - Are there any existing issues in current Android security- and privacy-preserving

mechanisms that negatively affect the users? trust on the whole platform?

To investigate possible answers to this question we conducted a large-scale empirical

study to investigate users’ perceptions about the run-time permission system offered

by Android. We inspected over 4.3 million user reviews out of 5,572 apps within the

Google Play Store. The reviews were classified and analyzed by employing a classifi-

cation pipeline based on machine learning and natural language processing techniques.

Its accuracy has been empirically evaluated with promising results and, starting from

recurring concerns expressed by users, we identified several points of improvement for

the run-time permission system.

Our investigation confirms the presence of issues in current security- and privacy-preserving

mechanisms aswe have found permission-related issues to be widespread among

apps (23% of Android 6 compliant apps are affected) and, for privacy-aware users, they

have a significant impact on their judgment about the whole app. Moreover,

multiple problems that existed in the previous iteration of the Android permission system

are still present today: users still do not comprehend why they’re being asked

for a permission while developers routinely ask for more permissions than needed and

fail to follow best practices. In Chapter 7, we present an approach that addresses the

first two of these challenges, while providing users with increased control over granted

permissions.



Chapter 6

Permission Issues in Open-source Android

Apps:An Exploratory Study

Mobile apps nowadays empower users with the ability to quickly and efficiently perform

a wide range of tasks, from stock trading to recording of vital health information. Al-

though these apps provide immense amounts of power, they also present an unparalleled

opportunity for security and privacy threats. Due to the magnitude of these threats, it

is imperative that mobile developers create apps capable of sufficiently protecting our

privacy and security [126].

The sensitive data and functionality used by an app is protected through permissions.

Android apps use a permission-based system where an app requires specific permissions to

carry out specific operations [119]. It is crucial for developers to make proper permission-

related decisions since improperly used permissions (under and over-permissions) carry

a wide range of ramifications. These include increased app susceptibility to malware

and unwanted data leakage to ad libraries [35, 127, 128]. Additionally, not adhering

to permissions best practices may have a wide range of implications. These may range

from hurting the user experience, to creating functional defects and privacy and security-

related issues [43, 129, 130].

Unfortunately, developers do not always correctly use permissions for numerous rea-

sons, including a lack of permissions-related knowledge [131] and even confusion over the

permission’s name [35]. There is substantial work examining the detrimental effects of

permissions misuse [19, 63, 97] and tools to assist in the identification of a variety of

permission-related issues (PRIs) [35, 132]. However, none of the existing work examines

when, why and who is making permissions-related mistakes when developing apps.

In this study, we aim to provide a better understanding of how developers are creating

and fixing permissions-related issues and the types of mistakes developers were making.

90
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To this aim, we analyzed the GitHub repositories of 574 apps collected from the F-Droid

repository [133]. Using custom-built software along with the existing permission analysis

tools M-Perm [134] and P-Lint [130], we identified a variety of PRIs ranging from not

properly adhering to permissions best practices to apps requesting too many permis-

sions. This empirical information provides us with a history of the app’s development

life cycle including (i) When permissions and their related issues were introduced and

fixed, (ii) who is making these decisions, (iii) file-change history that we could examine

using permissions analysis tools, and (iv) all other commit information such as commit

messages.

Our obtained results reveal that: (i) PRIs are a frequent phenomenon in the context

of Android apps (about 50% of examined apps exhibit at least one PRI, with over-

permissions being the most recurrent one); (ii) the majority of issues are fixed in a

timespan of a few weeks after their introduction; (iii) in many cases, permission-related

issues can linger inside an app for an extended period of time, that can be as high

as several years, before being fixed; (iv) developers tend to introduce (and fix) different

types of PRIs independently of their experience within the project, but more experienced

developers tend to introduce and fix more under-permission issues.

To summarize, the main contributions of this study are:

• characterization of the frequency of PRIs and their decay time in the context of

574 open-source Android apps;

• an objective assessment if PRI introduction and repair correlates with the experi-

ence of the developer performing it;

• the replication package of the study containing its results, raw data, and mining-

and data analysis scripts [135].

6.1 Goal and research questions

The primary goal of this study is to provide a better understanding of permission-

related issues introduced and fixed by developers in Android apps. To achieve this

goal, we first collect 2,002 Android repositories from F-Droid and then analyze these

repositories using three existing open-source analysis tools: M-Perm [134], P-Lint [130],

and oSARA [136].

The following are the research questions that we set to answer:

RQ1 - What are the most common types of permission-related issues in Android apps?
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RQ2 - How long do permission-related issues tend to remain in Android apps across their

lifetime?

RQ3 - To what extent does developer experience correlate with the introduction of permission-

related issues?

RQ4 - To what extent does developer experience correlate with fixes of permission-related

issues?

By answering RQ1, we aim to determine the most prevalent permission-related issues

in Android apps, thus developers can be made cognizant of these issues and devote

appropriate efforts to avoid them in their apps. Answering RQ1 will also help researchers

in gaining better insights into the prevalence of permission-related issues in Android apps.

Previous work has examined permissions-issues on the older install-time model [35, 132,

137, 138], yet, to our knowledge, this is the first study that examines permission-related

issues on a large scale on the current Android run-time model.

Answering RQ2 will allow us to understand how long permission-related issues typically

exist in the code of Android apps and can provide insight on how long introduced issues

can be expected to impact the app. Indirectly, answering RQ2 provides an objective

indication about how Android developers are considering a priority to locate and address

permission-related issues.

Answering RQ3 allows us to determine if a developer’s experience within a project sig-

nificantly correlates with the introduction of PRIs and provides insight on who should

be making permission-based decisions and modifications in Android apps. Also, it can

provide additional insight on if developers with low or high experience in the project are

creating a disproportionately high amount of permissions-related issues. This can create

the foundation for improving the assignment of code reviews. For example, security-

oriented reviews may be performed on code authored by developers whose experience is

more correlated with the introduction of PRIs.

Answering RQ4 provides insight on if developers with higher amounts of project experi-

ence are devoting a correlating amount of effort to fix PRIs. Additionally, this provides

insight on if developers with more experience are more adept at fixing permission-related

issues. The knowledge related to RQ4 can guide the assignment of security-oriented

refactoring sessions or code reviews directly to developers with more than one year of

experience, as they tend to fix more PRIs.
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6.2 Data collection and analysis

The data collection and analysis process consists of three phases: (i) Repository Col-

lection; (ii) Detection of PRIs; and (iii) Data Analysis. In the Repository Collection

phase, we mine the F-Droid catalog to obtain a list of open-source Android apps and

perform a set of filtering steps on collected apps. The PRI Detection phase involves the

execution of the P-Lint and M-Perm tools for statically analyzing apps source code and

project files. In the last phase (Data Analysis), the results of the static analysis tools

are statistically analyzed.

6.2.1 Repository collection

F-Droid is a catalog of free open source apps for the Android platform. F-Droid contains

links to Android app Github repositories. These projects range from small infrequently

updated apps, to large popular apps. We chose F-Droid as our primary source for open-

source Android projects due to the diversity of apps in its catalog and for its use in prior

research work [139–141]. To retrieve the project repositories of the cataloged apps, we

first cloned the F-Droid repository and then parsed the text files associated with each

app to extract the apps’ metadata. Extracted metadata includes name, description,

category and repository URL of each app. We then cloned the GitHub repository of all

the apps. In order to avoid duplicates, we excluded apps from our dataset that were

duplicated/forked by ensuring that all source URLs and commit log SHA’s are unique.

After cloning the repositories, we extract the following data from each of them:

• Commit Log Details: via the commit log git tool, we retrieve additional data

associated to each commit, such as the author and committer of the commit, their

respective timestamp, the commit message.

• Affected Files: for each commit of all apps, we examine the list of affected files and

extract the revision of all the “*.java” and “AndroidManifest.xml” files.

As shown in Figure 6.1, we mined a total of 2,002 GitHub repositories. Since we used

GitHub repositories, we ran the risk of including inactive or unmaintained repositories

in our study [142]. To help mitigate this risk, we consider only those repositories that (i)

have a lifetime span1 of at least 8 weeks, (ii) contain at least 10 commits, (iii) with at

least one commit since January 2017, and (iv) also published on the Google Play store.

The 10-commits threshold comes from the fact that 90% of all considered repositories
1Lifetime span: the range between the first and last commits of a repository.
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Figure 6.1: Repositories collection and filtering process

have more than 10 commits before this filtering step. The 8-weeks threshold comes from

the fact that 8 weeks is the average development time for an Android app [143] and it has

been used in previous study on mining GitHub repositories of Android apps [144]. The

2017 rule has been adopted in order to filter out unmaintained apps, without removing

apps that are seldom updated. We excluded from our dataset apps not published on the

Google Play store in order to filter out unfinished or proof-of-concept apps. This filtering

results in a final dataset of 574 active GitHub repositories, containing a total of 502,907

commits performed by 7,945 unique developers.

Table 6.1 provides a summary of demographics for apps included in the study. As

demonstrated, apps in our dataset have a median rating on the Google Play store of

4.294 (out of a maximum of 5), while the median number of installs2 is 10k. At the same

time, median number of commits for apps in our study is 260 and median number of

committers per app is 7. Based on these numbers, we are relatively confident that the

apps considered in our study are of good quality and representative enough of real-world

projects.

Table 6.1: Demographics of apps included in the study (SD = standard deviation,
IQR = inter-quartile range)

Metric Min. Max. Median Mean SD IQR

Rating 0 5 4.294 4.179 0.6681 0.4767
Installs 1 100m 10k 926.1k 7,594k 99k
Commits 11 34,380 260 876.10 2246.97 707.5
Committers 1 486 7 16.67 32.71 13

2 Google Play does not provide the precise number of installs, but instead provides a range (i.e.,
100-1000). We conservatively adopted the bottom of the range for our calculations. Hence, all statistics
on installs should be considered as a lower bound.
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6.2.2 Detection of PRIs

To detect permission-related issues in Android apps, we run the M-Perm [134] and P-

Lint [130] tools. Although both have been used in foundational studies [130, 134], we

decided to further evaluate them before including them in our own research. Other

permission analysis tools, such as Stowaway [35] and PScout [132], have been used in

existing literature to conduct permission analysis. However, a direct comparison with

these tools was unfeasible, as both are several Android versions out of date, and neither

is compatible with the current run-time permission model. Hence, we decided to con-

duct our own evaluation of precision and recall [145] of M-Perm and P-Lint. This was

accomplished by creating a small set of 5 oracle Android apps in our study. These were

a simple calendar, camera, SMS messaging, contact storage and location recording app.

We then created a second version of these apps with each having: one unique over and

under permissions and one permission-smell. We then ran each tool against these 10 apps

and obtained a value of 1.00 for both precision and recall. Although largely elementary,

these positive results provided confidence in the benefits of incorporating these tools into

our study. These oracle apps are available on the project website [135].

After the successful analysis of these tools, we used them to analyze all 502,907 commits

belonging to the 574 apps in our dataset. These tools enable us to identify a variety of

permissions-based issues, ranging from not correctly adhering to the permission standards

proposed by Google [129], to more severe issues such as over-permissions. Table 6.2

presents the PRIs considered in this study. M-Perm is able to detect occurrences of

over and under-permission issues (i.e., O and U PRIs). An app is over-privileged if it

requests too many permissions. Likewise, if it asks for too few permissions then it is

under-privileged [35]. Apps that misuse permissions have an increased attack surface,

making them more susceptible to a variety of security and privacy related issues [35, 134].

M-Perm analyzes Android ≥ 23 apps and identifies instances of being over and under-

privileged.

Similar to code smells, permission smells are symptoms of issues, but are not a definitive

indication that a problem exists [130]. P-Lint analyzes Android ≥ 23 apps for proper

permissions usage from a standards perspective. In this study we focused on the missing

check (i.e., MC ) and multiple requests in proximity (i.e., MRP) PRIs since (i) they

were prevalent, occurring in a large number of apps and (ii) they were well-defined and

had a clear negative impact. We focused on these four types of PRIs because they are

(I) Impactful (II) Well-defined (III) Have been extensively analyzed in existing work

(permission gap) [35, 63, 138]. We focused on Android because we were able to easily

collect and reverse engineer a large set of Android apps. We are unaware of such an

available dataset for iOS apps, or the necessary tools to analyze them.
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Table 6.2: Permission-related issues detected in this study

Primary Issue
ID Permission Issue Quality Security Tool

O Over-permission: too many permissions, violating
the principle of least privilege.

X M-Perm

U Under-permission: not enough permissions re-
quested.

X M-Perm

MC Missing Check: app does not call
checkSelfPermission() when making per-
mission requests.

X P-Lint

MRP Multiple Requests in Proximity: Multiple permis-
sion requests made in close proximity, possibly
overwhelming user with requests.

X P-Lint

After the detection of the PRIs, we next determine the commits that introduced and fixed

each of them. This is a non-trivial task because identifying these issues involves much

more analysis than merely examining each committed version with the static analysis

tools.

The following statuses were used to define each PRI event:

• New. When a PRI is found, we check if it exists in the app at the time of the

previous commit. If it does not, starting from the version containing the issue we

examine each version of the app in a commit-by-commit fashion to determine the

commit that introduced the PRI. Identifying this commit allows us to determine

the committer responsible for introducing the PRI.

• Exist. If the detected PRI is also found to exist in the previous and subsequent

versions of the app, then we record it as ‘Exist’ since the commit does not modify

the state of the issue. These are expectedly observed quite frequently as developers

often make a variety of changes to apps that are not permission-related.

• Fix. For every detected PRI, we check if the PRI exists in the subsequent com-

mitted version of the app. If it does not exist, then our task is to determine the

commit that fixed the issue. We accomplish this by starting with the immediately

subsequent commit after the version of the app exhibiting the detected PRI and

examining its source code using the static analysis tools. If the issue is not found,

then we mark the current commit as the commit that fixed the issue. If the issue

persists, then we perform the same process on each subsequent commit until we find

the commit that fixed the issue. This enables us to identify the committer respon-

sible for fixing the permission issue. If we reach the last commit of the repository

and no PRI fixing commit is found, then the PRI is marked as unresolved.
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Demographics information about the detected PRIs and their related commits are pro-

vided in Section 6.3.1.

oSARA Tool and Replication Package. We developed the open Source Android

Repository Analyzer (oSARA) tool to perform the necessary data collection and analysis

for our study. oSARA performs the following tasks: (I) Collects all relevant Android

repository information from F-Droid (II) Extracts all relevant permission information

and versions from these repositories (III) Analyzes each extracted version for PRIs using

M-Perm and P-Lint (IV) When PRIs are discovered, oSARA analyzes previous and

subsequently committed files to determine the commit that either added or removed

the PRI. Using this commit information, we are able to discern information about the

developer performing the commit.

Our project website [135] contains all source code, along with installation and usage

instructions for oSARA. The project website also contains the complete raw dataset (>

6 GB) and schema details of our collected data, along with the oracle Apps used to verify

P-Lint and M-perm. The objective is to make these tools and datasets not only available

for other researchers to validate and recreate our study, but to also build off our work as

well.s

6.2.3 Data analysis

In the following we list the techniques and tools adopted to answer each research question:

RQ1. We account for all occurrences of each type of PRI and provide an indication

about their distribution by means of summary statistics. We employ the Fisher?s ex-

act test [146] to assess independence of observations among occurrences of the four PRIs

types. We adopt the Fisher?s test over other alternatives (e.g., χ2-test) due to its robust-

ness when dealing with sparse, unbalanced data. We employ the same test to perform

post-hoc analysis, performing all tests for all pairs of populations and adjusting resulting

p-values for inflation due to multiple comparisons via the Holm correction procedure.

The omnibus Friedman test [118] is then used to statistically determine if the four types

of PRIs exhibit a significant difference. The Friedman test is a non-parametric test for

one-way repeated measures analysis of variance by ranks. We use the Friedman test be-

cause (i) RQ1 is designed as a 1 factor – 4 treatments experiment, (ii) the collected data

is not adhering to the assumptions of the ANOVA statistical test, and (iii) the Friedman

test is a non-parametric alternative to ANOVA that does not assume independence of

observations. We apply the Conover’s all-pairs comparison test as post-hoc analysis for

performing pairwise comparisons among each pair of PRI types [147]. Since we are ap-

plying multiple statistical tests, we correct the obtained p-values via the Holm correction
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procedure [148]. In addition, we compute the effect-size of the differences among PRIs

distributions using the Cliff’s delta (d) non-parametric effect size measure [149], which

measures how often values in a distribution are larger than the values in a second distri-

bution. Cliff’s d ranges in the interval [-1, 1] and is considered negligible for d < 0.147,

small for 0.148 ≤ d < 0.33, medium for 0.33 ≥ d < 0.474, and large for d ≥ 0.474.

RQ2. In this phase of the study, we collect the decay time of each occurrence of PRI.

The decay time of a PRI represents the number of days in which a PRI is present in

the source code of an app. We compute the decay time of a PRI as the difference (in

days) between the timestamp of the commit in which the PRI has been fixed and the

timestamp of the commit in which it has been introduced in the GitHub repository of

the app. In this phase of the study we consider exclusively the PRIs which have been

fixed along the lifetime of the app, so that their decay time is meaningful (i.e., the last

commit of a PRI includes the actual fix of the PRI and it does not correspond to the

last commit within the whole repository).

Summary statistics are used for providing an indication about how decay times vary

across the four types of PRIs. The same statistical tests as in RQ1 (i.e., Friedman,

Conover, Holm correction and Cliff’s delta) are used for statistically assessing the differ-

ences of decay times across PRIs.

RQ3, RQ4 - Both research questions RQ3 and RQ4 are based on the concept of de-

veloper’ experience. In existing literature, a number of repository-based metrics for

proxying developer’s experience have been proposed, such as (i) the Developer’s Commit

Ratio (DCR), defined as the number of contributions made by a given developer for a

repository divided by the number of all commits done by all repository contributors [150],

(ii) maintainers and contributors defined as those contributors with more than 30% and

less than 10% of all repository’s commits, respectively [151], and (iii) project newcomers

defined as those contributors with less than 3 commits in a repository [152]. However,

even if those metrics are relatively simple to implement, they are not applicable in our

study because of the following issues: (i) they heavily rely on the number of commits a

developer does, which may greatly vary due to different developer’s habits or organiza-

tional guidelines, (ii) they do not take into account the exact time in which a developer

is performing a commit, e.g., a developer can be a simple contributor at the beginning

of the project and later become a maintainer, and (iii) some of them strongly depend

on the total number of commits in the repository, making them semantically different

and not comparable across projects, e.g., a developer with 30 commits is categorized

as a contributor in a project with 1,000 commits, whereas he/she is categorized as a

maintainer in a project with only 100 commits. Based on these reflections, in this study
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we represent the experience of a developer d at a given commit c in a repository r as:

exp(d, c, r) = authDate(cd)− authDate(fCommit(d, r)) + 1 (6.1)

where c is the specific commit in r for which we want to calculate d’s experience,

authDate(cd) is the day in which a commit c has been authored by a developer d and

fCommit(d, r) is the day of the first commit authored by d in r. Intuitively, exp(d, c, r)

represents the number of days in which the developer is active in a specific repository at

the time of commit c. We opted for the exp(d, c, r) metric since (i) it is independent from

the commit frequency of the developer (which may very depending on her development

style, personality, project guidelines), (ii) it takes into account the time in which a com-

mit is performed, and (iii) it is independent from the size of the repository r. Intuitively,

an exp value of 1 indicates that commit c is the first contribution of the developer to the

project, while an exp value of 365 indicates that a year has passed since the developer

first contribution to the project.

In order to avoid the well-known aliasing problem, i.e., the same developer having mul-

tiple identities in GitHub repositories [153], in this study we apply the Naive heuristics

proposed by Kouters et al. for resolving developers using multiple identities when com-

mitting to the same repository [154]. The heuristics merges committers with the same

email prefix, i.e., the part before the @ symbol. Despite its apparent simplicity, there is

empirical evidence that the Naive heuristics proposed by Kouters et al. provides a good

enough trade-off between performance and simplicity of implementation when consider-

ing long time frames as in our study [155]. We refer the reader to [155] for a detailed

evaluation of various heuristics for solving the aliasing problem.

For answering RQ3 and RQ4, we produce a combination of violin plots and descriptive

statistics showing how developer experience is distributed among commits introducing or

fixing each type of PRI. Next, we apply the omnibus Friedman test and the Conover test

as post-hoc analysis for statistically testing how the medians of developers’ experience

vary across the four types of PRIs. We then correct the obtained p-values using the

Holm correction procedure. We use the Cliff’s delta to estimate the magnitude of the

difference between PRI types

6.3 Results and discussion

Discussed below are the results obtained for our research questions.
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6.3.1 RQ1 – What are the most common types of permission- related
issues in Android apps?

Results. Table 6.3 provides descriptive statistics for occurrences of PRIs, as well as

counts of unique issues and affected apps. A total of 3,900 unique permission issues were

identified. They are distributed across 402 distinct apps, with a median of 1 PRI per

app. For all types of PRI, we can observe that the mean amount of occurrences is higher

than the median, meaning that the average is influenced by apps in the upper part of

the data that exhibit an especially high amount of PRIs. Furthermore, we can observe

that over and under-permissions are the two most common issues, with 2,635 and 939

occurrences respectively. We can also note that in our dataset apps have on average more

than four over-permission issues and more than one under-permission issue. Diffusion

of issue types MC and MRP appears to be on a lower scale, with 205 and 91 instances

affecting 60 and 9 apps, respectively.

Table 6.3: Descriptive statistics for occurrences of PRIs
(SD = standard deviation, IQR = inter-quartile range)

PRI # Affected
apps # Min. Max. Median Mean SD IQR

O 2,635 387 0 269 1 4.59 16.98 3
U 969 82 0 251 0 1.69 12.31 0
MC 205 60 0 32 0 0.36 1.76 0
MRP 91 9 0 67 0 0.16 2.84 0

Aggr. 3,900 402 0 377 1 6.79 26.28 4

As a preliminary step to further analysis, we test for independence of observations among

the four PRIs types. We statistically test this hypothesis by applying the Fisher’s exact

test. The results of the test (p - value < 0.01) allow us to reject the null hypothesis of

independence among occurrences of PRI types. Likewise, the null hypothesis is always

rejected (p - value < 0.01) for all post-hoc pairwise comparisons.

Differences in mean and standard deviation across the four types of PRIs suggest that

the distribution of occurrences differs according to PRI type. We statistically test this

hypothesis by applying the Friedman omnibus test. The results of the test (p− value <
0.01) allow us to reject the null hypothesis, thus informing us that difference of medians

across different PRI types is statistically significant. Results of pairwise comparisons,

performed via the Conover’s test, reveal that the distribution of occurrences of each PRI

type is statistically different from the others. Estimations of magnitude of differences,

via pairwise applications of Cliff’s d, reveal a large effect size for all pairs involving PRIs

of type O, while it is negligible for all other pairs.
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Main outcomes. Permission-related issues are a frequent phenomenon in Android apps.

The vast majority of the analyzed apps suffer from the presence of at least one PRI. Over

and under-permissions are more prevalent than MC and MRP PRIs. The distribution of

occurrences significantly differs for each PRI type. By examining the number of issues

identified for each PRI type, we can easily observe that the majority of issues is of types

O and U. The mean amount of occurrences per app differs among the two, with a value

µ = 4.59 for the former and µ = 1.69 for the latter. These results provide an initial

notion of the prevalence of over- and under-permission phenomena in Android apps,

as partially also confirmed by Felt et al. [35]. Moreover, by examining the counts of

identified issues for all PRI types, we notice that issues of types MC and MRP amount

to a comparatively small minority of the total. Although further research is required

to fully determine the reason behind this imbalance, we believe that a primary factor is

that MC and MRP issues are harder to introduce. In fact, in order to introduce MC

or MRP , specific conditions must be met in the application code. However, types O

or U may only require a mistake in the Android Manifest file. The dependence among

occurrences of PRI types hints that whenever one type of PRI is found in the development

history of an app, then also other kinds of PRIs are likely to be present. Indeed, this is

not surprising, as we expect developers that are not knowledgeable about or not attentive

to permissions to introduce multiple types of PRIs in their apps.

Actionable Insights. The most common types of PRIs occurring in Android apps are of

types O and U. This result evidences that, even if these issues and their consequences are

well known and have been studied in-depth by the academic community [35, 132, 137],

they are still a common occurrence, even in apps developed for newer versions of Android.

As a consequence, not only we advise developers to pay more attention to these PRI types

but we advocate for the adoption of permission analysis tools (such as M-Perm [134] and

P-Lint [130]) during app development. Investigating how to encourage adoption of such

tools and assessing possible benefits that developers could reap from them is an open

area of research.

6.3.2 RQ2 – How long do permission-related issues tend to remain in
Android apps across their lifetime?

Results. Descriptive statistics of decay time for each type of PRI are summarized in

Table 6.4. We can observe that for all PRI types the minimum decay time is equal

to 1 day, while the maximum is close to 7, 3, 2 and 1.5 years for issues of type O, U,

MC, and MRP, respectively. Median decay is quite similar for O and U issues, with a

value of approximately one week, but significantly differs for issues MC and MRP, with

a value of about 12 weeks for the former and 1 day for the latter. As expected, results
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of the application of the Friedman omnibus test (p − value < 0.01) allows us to reject

the null hypothesis that the medians of decay times across the four types of PRIs do not

significantly differ. Post-hoc analysis, performed via the Conover’s test, reveals that the

distribution of decay times for each PRI type is significantly different from the others,

with the sole exception of the U-MC pair, for which we cannot reject the null hypothesis.

Table 6.4: Descriptive statistics for decay time of PRIs
(SD = standard deviation, IQR = inter-quartile range)

PRI Min. Max. Median Mean SD IQR

O 1 2,784 6 187.6 419.11 105
U 1 1,066 5 45.25 102.35 28
MC 1 760 82.5 166.8 200.96 303.75
MRP 1 544 1 43.82 124.29 1.5

Aggr. 1 2,784 6 150.3 360.51 84

Mean of decay time is much higher than the median for all PRI types. This suggests that

the average is greatly influenced by a subset of the data on the higher part of the scale.

This observation is even more notable for O and MC PRIs, that exhibit a comparatively

much higher mean (187.6 and 166.8 days, against 45.25 and 43.82 days for issues U and

MRP) and standard deviation (419.11 and 200.96 days, opposed to 102.35 and 124.29

days). We additionally observe that MC issues exhibit a relatively higher inter-quartile

range (303.75 days), implying that decay time for MC issues is much more dispersed

than for other PRIs. Results of applications of Cliff’s d for effect size estimations reveal

a small effect between O and MC and negligible for all other pairs.

Main outcomes. Results indicate that the majority of PRIs are fixed in a timespan of

a few weeks after their introduction. Nonetheless, in many cases PRIs can linger inside

an app for an extended period of time, that can be as high as several years, before being

fixed.

Discussion. The PRIs considered in this study can impact the end-users opinion of

the app [39, 43], and can result in security problems [35]. Therefore, understanding

characteristics and reasons for the persistence of these longer-living PRIs represents a

relevant research question that demands further investigation.

Of particular interest are the higher median values of issuesMC. As previously mentioned

in RQ1, specific conditions must be met inside an app’s source code to introduce one of

these issues, meaning that the issue cannot solely exist in the AndroidManifest file. We

speculate that this greater specificity of necessary conditions is also the reason behind

the greater median decay time, i.e., once introduced, more non-trivial changes in the
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source code must be carried out to fix such issues. In other words, MC issues are harder

to introduce but also harder to fix once introduced.

Actionable Insights. Given the fact that PRIs of all kinds can linger inside an app for

an extended period of time we encourage developers and organizations to pay increased

attention to code that has been written during early project life, during quality assurance

activities (i.e., code review sessions). Moreover, since MC issues tend to persist a long

time once introduced, extra attention should be paid by developers and organizations to

both ensure that they are not introduced, but to also regularly check their apps for these

types of issues. Further work is needed to understand precisely why MC s tend to last

longer compared with other PRIs.

6.3.3 RQ3 – To what extent does developer experience correlate with
the introduction of permission-related issues?

Results. Figure 6.2 and Table 6.5 report the distributions and the descriptive statistics

of developers’ experience when introducing each type of PRI, respectively. We observe

that PRIs are introduced by developers with varying levels of experience within the

project, with extreme cases ranging from 1 day to 3,309 days of experience (~9 years).

Moreover, the median experience of developers introducing PRIs is 314.5 days (almost 1

year) and ranges from 244 days (~8 months) when introducing MRP issues to 843 days

(~2 years and 4 months) when introducing U issues.
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Figure 6.2: Distributions of developers’ experience when introducing PRIs

The Friedman’s omnibus test reveals that the medians of the experience of developers

when introducing a PRI are different among PRI types (p−value < 0.01). An additional

pairwise comparison between all types of PRI, via the Conover’s test, reveals that the
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distribution in terms of developers’ experience significantly differs for all pairs. Estima-

tions of effect size reveal a small magnitude for pairs O-MC and O-MRP and negligible

for all other pairs.

Table 6.5: Descriptive statistics for developers’ experience (in days) when introducing
PRIs

(SD = standard deviation, IQR = inter-quartile range)

PRI Min. Max. Median Mean SD IQR

O 1 3,309 376.6 189.0 478.7 569.0
U 1 2,865 843.0 843.0 636.0 824.0
MC 1 991 351.0 287.5 253.2 459.5
MRP 1 2,140 244.0 398.3 473.3 472.0

Aggr. 1 3,309 314.5 487.9 553.9 756.0

Main outcomes. Developers with more than 2 years of experience tend to introduce

under-permission issues in Android apps. Developers’ experience at PRI introduction

time is quite homogeneous across all the other types of PRIs. We do not have an

evidence-based explanation about why developers with more than 2 years of experience

are injecting more under-permission issues. However, we can conjecture that this phe-

nomenon is happening because more experienced developers are the ones who are in

charge of performing changes in the Android manifest file, which is one of the most

important components in an Android app and frequently contains permission-related in-

formation. We suggest organizations and project maintainers to be cognizant of under-

permission issues, even when experienced developers are involved. As future work, we

will perform a more in-depth analysis of this phenomenon.

Interestingly, IQRs are relatively high (between ~459.5 and ~824.0 days). High IQRs

may be an indication that both experienced and inexperienced developers actually risk

to introduce PRIs when working on their Android apps. We suggest organizations and

project maintainers to take special care of PRIs during the first days of activity of project

newcomers, e.g., by planning dedicated code review sessions.

The number of PRI introducing commits across different types of PRIs tend to increase

for developers with more than 1 year of experience. However, the same tendency can

be observed when looking at all commits within our dataset (median = 314.5, mean =

487.9, IQR = 756 days). Therefore we can conjecture that this phenomenon merely

depends on the fact that in our dataset developers with more than 1 year of experience

tended to commit more in their GitHub repositories.

Actionable insights. Since developers with more than two years experience are more

likely to introduce issues, then this demonstrates that even experienced developers need
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to be cognizant of PRIs. This fact strengthens the case for the adoption of permis-

sion analysis tools during app development, as already discussed in Section 6.3.1. In

addition, we suggest organizations and project maintainers to be cognizant of under-

permission issues during activities that might require changes to app permissions, even

when experienced developers are involved.

6.3.4 RQ4 – To what extent does developer experience correlate with
fixes of permission-related issues?

Results. We answer this research question by following the same procedure of RQ3;

the only differences are that (i) now we are focusing on the commits in which PRIs have

been fixed (as opposed to when they are firstly introduced) and (ii) we are considering

exclusively the PRIs which have been fixed along the lifetime of the app, so that their

PRI fixings commit is meaningful. Figure 6.3 and Table 6.6 report the distributions

and the descriptive statistics of developers’ experience when fixing each type of PRI,

respectively.
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Figure 6.3: Distributions of developers’ experience when fixing PRIs

The data exhibits a high skewness towards developers with more than 1 year of experience

in the project. The Friedman’s omnibus test results in a p− value < 0.01. Similarly to

what happened also for RQ3, the post-hoc analysis with the Conover’s test reveals that

the distribution in terms of developers’ experience significantly differs for all the pairs

involving PRIs of type U. Applications of Cliff’s d reveal an effect size of small mag-

nitude for all pairwise comparisons involving O, while it is negligible for all other pairs.

Main outcomes. The distribution of developers’ experience when fixing PRIs tends to

follow the same trends as the ones related to the introduction of PRIs (see Section 6.3.3),

but with one main difference: less experienced developers tend to fix fewer PRIs. We can
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Table 6.6: Descriptive statistics for developers’ experience (in days) when fixing PRIs
(SD = standard deviation, IQR = inter-quartile range)

PRI Min. Max. Median Mean SD IQR

O 1 3,086 352.0 506.7 522.9 605.0
U 1 2,717 841.0 838.2 625.7 807.5
MC 1 1,337 455.0 390.9 249.2 330.5
MRP 1 2,838 328.0 473.9 546.6 581.0

Aggr. 1 3,086 420.0 578.8 563.3 732.0

expect this observation since we can speculate that PRI are non-trivial issues and are

managed (and fixed) by developers who are more familiar with the internals of the app

being developed. The obtained results confirm the reasonable intuition that, being PRIs

non-trivial issues in an Android app, they tend to be fixed by developers who are not

newcomers in the project. At the time of writing we do not have an objective explanation

for explaining why issues of type U are fixed by developers with longer experience in the

project, this is left for a future in-depth analysis.

Actionable insights. The distributions of developers? experience when fixing PRIs

tend to follow the same trends as the ones related to the introduction of PRIs (see

Section 6.3.3), but with one main difference: less experienced developers tend to fix

fewer PRIs. We can expect this observation since we can speculate that PRI are non-

trivial issues and are managed (and fixed) by developers who are more familiar with

the internals of the app being developed. The obtained results confirm the reasonable

intuition that, being PRIs non-trivial issues in an Android app, they tend to be fixed by

developers who are not newcomers in the project. At the time of writing we do not have

an objective explanation for explaining why issues of type U are fixed by developers with

longer experience in the project, this is left for a future in-depth analysis.

6.4 Threats to validity

Although our research led to several interesting results, there are several threats to

validity.

Internal Validity. We heavily relied upon M-Perm and P-Lint, and while these tools

have been published in peer-reviewed venues, they are both still reasonably new. Like

with all static analysis tools, they are not perfect, and tool imperfections have the capa-

bility to skew research results. While we analyzed a large number of open-source Android

applications, we only examined a small subset of the millions of available Android apps.

However, we feel that our analysis provides a reasonable representative subset of apps.
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We examined ‘commit ownership’ and not ‘code ownership’ in our study. While ‘code

ownership’ is a general term used to describe whether one person is primarily responsible

for a software component [156], commit ownership is merely the author who made the

commit to the repository. Due to our empirical examination of existing repositories,

it would have been impossible to examine code ownership in our study. Since we only

knew the committing author, we were unable to account for other developers who may

have contributed to the commit, for example in the case of pair programming. We,

therefore, considered ‘code ownership’ out of scope for this study and focused on ‘commit

ownership’. However, future work could also include code ownership to provide a possible

alternative view on the results.

We utilized Git user names to identify developers. An inherit limitation of using this

process is that developers could use different user names throughout the project, and

the researcher would only be able to assume that these are two different developers.

An additional limitation of many empirical studies is if developers are following a pair

programming process, then the committer of the code will be assumed to be the sole

developer. The study would not be able to account for the efforts of the non-committing

developer.

During the analysis of permission smells in the commits, we always assume that the

same smell occurs in the methods with the same name. If the developer changes the

name of the method (or the file name), then we treat it as two different permission-smell

occurrences. Additionally, we only consider the authors of the commits in the master

branch. This may be a threat in the event a project fully adheres to the open-source

development model. In this scenario, external contributors fork the repository, conduct

their changes, and perform pull requests. In our analysis, we do not see their commits

directly, but we just consider the commit in which the pull request is merged.

In some cases, due to licensing reasons, open-source app repositories might not contain

parts of the app code that is added at a later stage, before publication in app stores

(e.g., ad libraries). In these cases, the app manifest file might include some permissions

currently not used in its code but added in anticipation of additions. Our analysis of

over-permissions might have been influenced by these instances.

For our study, we empirically analyzed the version control repositories of open-source

apps. Other permission analysis tools such as PScout [132] could also have been included

to examine apps that rely on the install-time permission system, in use until Android API

versions 5.1. In our study, we did not include other tools as we focused on the current

Android permission model and for consistency reasons. M-Perm uses a call graph to

determine the reachability of the app’s source code. However, during our analysis we

did not evaluate M-Perm’s ability to reach dynamically loaded code. We may, therefore,
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consider this a potential limitation to our study. Our work is empirical in nature, enabling

us to analyze a large number of apps. Future work could conduct a laboratory study

and include developer interviews to further understand developer permissions-decisions

and mistakes.

6.5 Conclusion and future work

In this chapter we reported on the design, execution and results of an empirical study

aimed at further investigating the second of the research questions addressed by this

dissertation (discussed in Chapter 1.3). That is:

RQ2 - Are there any existing issues in current Android security- and privacy-preserving

mechanisms that negatively affect the users? trust on the whole platform?

For this purpose we conducted an empirical study on permission-related issues in Android

apps. By mining a set of 574 GitHub repositories containing Android apps, we detected

four types of permission-related issues by executing two static analysis tools (M-Perm and

P-Lint) on a commit-by-commit fashion. The execution of the analysis tools required the

development of custom software (oSARA), which is available in the replication package

of the study [135].

The results of the study provide evidence-based insights for better understanding and

managing permission-related issues in Android apps. Specifically: (i) permission-

related issues are a frequent phenomenon in Android apps, with a strong preva-

lence of over-and under- permissions; (ii) the majority of permission-related issues are

fixed in a timespan of a few weeks, even though in many cases some issues can plague the

app for an extended period of time (i.e., years) before being fixed; (iii) under-permission

issues are significantly more prone to be introduced and fixed by experienced develop-

ers; (iv) less experienced developers tend to fix fewer PRIs, possibly indicating that

permission-related issues are non-trivial and are managed (and fixed) by developers who

are more familiar with the internals of the app being developed.

Future work includes the investigation on whether PRIs accumulate-diminish over the

lifetime of an Android app, potentially revealing interesting patterns about their evo-

lution. We are also planning to perform a more in-depth study in order to understand

what developers do when they introduce or fix PRIs. Our work provides a direct benefit

to both developers and researchers to better understand permission-related issues. For

researchers, this study creates the foundation for future work in the area of permissions-

related issues. For developers, this provides insight on how teams can better plan their

development activities.



Chapter 7

Enhancing trustability of Android

applications via user-centric flexible

permissions

In this chapter we describe the design, development and evaluation of Android Flexible

Permissions (AFP), a user-centric approach to flexible permissions management aimed

at empowering end users to play an active role with respect to Android permissions.

AFP embraces the European vision of next generation internet, more human-centric and

concerned with privacy protection by giving control back to users [157]. End users are

allowed to specify and customize fine-grained permission levels on private or sensitive

resources, according to their own subjective privacy and security concerns. AFP lever-

ages a novel permission model through which fine-grained app permissions are specified

on a per-feature basis. Differently from the current Android permission model, AFP

empowers end users to selectively grant finer-grained permissions by specifying (i) the

desired permission levels (e.g., access to the contacts list can be granted to all contacts

that do not belong to specific circles of people like relatives or close friends), and (ii) the

features of the app in which the specified permission levels are granted (e.g., access to the

relatives circle in the contacts list can be granted only during a video call in a messaging

app). AFP offers a dedicated external mobile app for managing flexible permissions.

From the developer’s point of view, AFP enables apps to dynamically adapt to user-

defined permission levels with very limited additional effort. Developers can work on

their mobile apps as usual, without using any additional library or tool. In order to

comply with AFP, a developer is provided with automatic support by the AFP Web

application that (by means of a guided workflow) allows to (i) define the features of-

fered by the mobile app; (ii) map each feature to the components that implements

it, i.e., Android activities, services, broadcast receivers, or content providers. Given

109
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the feature-component mappings, AFP leverages static control-flow analysis for auto-

matically retrofitting the app so that it is able to dynamically handle fine-grained and

feature-based permission levels at runtime.

We evaluated AFP by designing, conducting, and reporting four independent experiments

aimed at empirically investigating on key aspects of AFP. Specifically, we assessed the

performance of the AFP instrumenter via 1,277 real-world apps, the performance at

runtime of 7 AFP-enabled real-world apps, the usability and acceptance of AFP for both

end users and developers (involving 47 and 11 subjects, respectively).

7.1 Design philosophy

Design of our proposed approach has been done with the main principles of the Next

Generation Internet initiative in mind, according to whom the end user should have the

power to decide how and by whom her data are used [8, 9]. In addition, each of the

studies presented in previous chapters provides valuable insights that have an influence

on the design. In particular:

• Results of the study of Chapter 4 evidence that there is lack of users-first

privacy approaches. Indeed, as discussed in Chapter 1, privacy is a subjective

property, as different users may have different requirements to consider an applica-

tion trustable. This fact guides the design of our approach towards a customizable

solution, to better fit to individual privacy and security preferences without con-

sidering all users as equals. In addition, as the execution times of current

static analysis approaches for mobile apps are relatively low, strength-

ened the choice of adopting static analysis for our approach (specifically, for the

instrumentation of Android apps as will be shown in Section 7.2).

• One of the major takeaways of the study of Chapter 5 is that in current solutions

users do not comprehend why they are being asked for a permission. As

such, the design of the proposed approach has to be carried out with the goal of

making explicit the link between permissions and app functionalities.

• The study of Chapter 6 evidences that permisson-related mistakes by devel-

opers are a frequent occurrence in Android apps, with over-permissioning

being the most frequent one, even in the case of experienced developers. Our

solution takes this fact into account and addresses this issue by enabling end users

with the ability of specifying fine-grained permission levels on private or sensitive

resources.
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Figure 7.1: Overview of the AFP approach
(underlined labels represent manual steps, whereas all the others are fully automatic)

7.2 The AFP approach

Android Flexible Permissions (AFP) grants permissions on a per-feature basis by (i)

keeping track of user security and privacy preferences, and (ii) automatically enacting

and enforcing them at runtime. AFP is composed of the following main components:

• AFP App, an app from which users can manage their own flexible permissions;

• AFP Library, a library to enforce permissions at runtime;

• AFP Server, a web app that allows developers to automatically retrofit an existing

app so as to comply with AFP. It also offers mechanisms for signing and verifying

AFP-enabled apps.

With reference to Figure 7.1, in the following we will describe the workflow of AFP.

We divide its explanation into two subsections. From the developer point of view, Sec-

tion 7.2.1 describes the steps to be followed by developers before publication, in order to

make their apps compatible with AFP. From the end-user point of view, Section 7.2.2

describes the steps to be followed upon the first app execution, in order to specify the

desired permissions.
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7.2.1 App developer perspective

Our design goal for the developer workflow is to provide them with an automatic ap-

proach, as to minimize the effort needed to create apps compatible with the flexible

permission system.

Developers create their mobile apps as usual, without using any additional library or tool.

When an app X is ready to be published (right-hand side of Figure 7.1), the developer

can send the APK archive of X to the AFP Server so to enable AFP (1). As detailed

in Section 7.5, the Android Components Extractor extracts all the Android components

of X, i.e., its constituent activities, services, broadcast receivers, and content providers

(2). Then, the developer uses a web-based editor for (i) defining the features of X in

terms of their name and description (later used by end users), and (ii) mapping each one

of them to (a subset of) the extracted Android components implementing it (3). Step 3

is the only additional effort we request to developers, and it is greatly facilitated by the

web-based editor together with the automatic extraction of Android components. The

output of this phase is the feature-component mapping model, specifying the mapping

between app features and Android components.

The AFPInstrumenter statically analyzes and automatically retrofits app X to enable

AFP on it (4). The instrumenter performs the following operations (that are totally

transparent to the developer): (i) automatically includes our AFP Library in the app;

(ii) instruments X so that all calls to sensitive Android APIs are proxified and redirected

to the AFP Library ; (iii) injects the code in the main activity of X for allowing the end

user to switch to the AFP App when launching X for the first time; (iv) assigns a unique

secret key to the app X, which will be used at runtime by the AFP App Checker (12);

(v) creates a new record into the repository of registered apps; (vi) rebuilds and re-signs

X as a new APK archive. Finally, the instrumented APK of X is made available to the

developer (5), who can then proceed with the publication of the APK in the Google Play

Store (6).

7.2.2 End user perspective

The user workflow is designed to minimize the end user effort to specify flexible permis-

sions.

Users can download and install (7) apps that adopt the AFP system directly from the

Google Play Store since no modifications to the Android OS are required. Upon the first

launch of the newly installed app (8) they are redirected to the AFP App (9), which in

turn invites them to configure the flexible permissions. Should the user be unwilling to



User-centric flexible permissions 113

do so, she can immediately abort the process, and the app usage will continue with the

standard permission system provided by the Android platform.

Once inside the AFP App, for each feature of the app the user can specify her own

permission preferences (10). This aspect of AFP allows to address a well-known problem

in the current Android permission model, i.e., the fact that users tend to not understand

why they are being asked for certain permissions, often complaining about this aspect in

their reviews in the Google Play store (as seen in Section 5). Indeed, by explicitly asking

end users to define the permission levels on a per-feature basis allows users to (i) read

the description of each feature provided by the developer and (ii) better understand why

certain permissions are being requested in the context of each specific feature of the app,

rather than within the app as a whole. By using AFP, end users have a more transparent

view of the features provided by their apps, and a better knowledge about the context

in which (sensitive) permissions are requested by the app.

While the end user is setting her desired permissions, in the background, the AFP App

also interacts with the AFP Server (11). The server uses an internally generated secret

key (4) to check the app installation and verify the developer’s identity, hence certifying

that nobody tampered with the AFP Library. Moreover, it verifies that the APK down-

loaded from the Google Play Store is exactly the one produced by our approach (12).

When the results of the checks are ready (13), and the configuration phase finishes, the

user will be redirected to the newly installed app, together with the configured flexible

permissions configuration (14). The permissions configuration is then associated with the

AFP-enabled app and the user can continue with app usage, in a completely transparent

way, i.e., no further user interaction or dialogs are required.

The access to private or sensitive resources will be granted by the AFP Library according

to the specified permissions configuration (15). The AFP Library proxifies each call of

the app to sensitive Android APIs (e.g., call to the Android geolocation manager), hence

wrapping the access to sensitive resources.

The AFP App allows to specify default levels for the permissions (e.g., geolocation is

allowed only at the city-level, independently of the app requesting it), that will be used

as a basis during the configuration of the flexible permissions for any newly installed

AFP-compliant app. This characteristic permits to speed up the configuration of the

permissions for each newly installed AFP-enabled app.
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7.3 Flexible permission data model

This section presents the AFP data model to which permission configurations conform

(Figure 7.2). It is based on the following core concepts:

• Resource represents a sensitive part of the Android platform whose access can be

controlled by the AFP library. In AFP, resources are both physical parts of the

device, such as the device camera and microphone, and logical ones, such as the

user’s contacts book.

• Feature represents a user-level functionality of the app. Every Feature uses one

or more Resources. In addition, every Feature is directly connected through the

realizedBy relation with one or more AndroidComponent instances, each of them

representing one or more source code files inside the app.

• A PolicyItem regulates access to the Resources used by the Feature. It represents

a single access restriction rule that can be imposed upon one or more Resources.

For instance, a PolicyItem could specify that the access to the device camera has

to be forbidden, or that only the user’s city should be shared when the device is

queried for the user position.

• AccessPolicy is a conjunction of one or more PolicyItems and it is linked to a

Feature.

The remaining classes in the data model define the restrictions that can be enforced:

• BooleanPolicyItem permits either full access to the resource or no access at all.

• RestrictedPolicyItem restricts the access to a restrictionSet, whose type can be

either BLACKLIST or WHITELIST. For instance, it can be used to restrict access

to the contacts list to only contacts that do not belong to specific circles of people

like relatives or close friends.

• ReadWritePolicyItem and LocationPolicyItem extend the LayeredPolicyItem class

and allow for granting access to a Resource at incremental levels. Higher levels are

used for less restrained access to the Resource. ReadWritePolicyItem has four possi-

ble levels. In particular, ADD_NEW_ACCESS andMODIFY_EXISTING_ACCESS

allow for adding new records to the Resource and editing existing ones, respectively.

For example, it is possible to grant access to the sms messages but prevent creating

and sending new ones. LocationPolicyItem instead provides four levels of different

precisions for access to the user position.
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feature 
1..1

AccessPolicy 

+ name: string 

Resource 

+ name: string 

Feature 

+ name: string 

AndroidComponent 

+ name: string 

+ fullyQualifiedName: string 

realizedBy 
1..*

Activity 
 

Broadcast Receiver  ContentProvider  Service 

uses 
1..*

PolicyItem 

+ name: string 

policyItems 
1..* 

restricts 
1..1

BooleanPolicyItem 

+ allowAccess: boolean 

LayeredPolicyItem 

LocationPolicyItem 

+ accessLevel: LocationLevels 

ReadWritePolicyItem 

accessLevel: ReadWriteLevels 

LocationLevels 

- NO_ACCESS 

- CITY_LEVEL_ACCESS 

- REGION_LEVEL_ACCESS 

- FULL_ACCESS 

ReadWriteLevels 

- NO_ACCESS 

- READ_ONLY_ACCESS 

- ADD_NEW_ACCESS 

- MODIFY_EXISTING_ACCESS 

RestrictedPolicyItem 

+ restriction: RestrictionType 

+ restrictionSet: set 

RestrictionType 

- WHITELIST 

- BLACKLIST 

Figure 7.2: Flexible permissions data model

7.4 Features specification

The AFP approach involves (i) the automatic extraction of Android components com-

posing the mobile app (step 2 in Figure 7.1) and (ii) the definition of a mapping between

features and the Android components implementing them in the app (step 3).

For what concerns step 2, all relevant information is extracted from both the XML file

of the Android manifest and the bytecode of the Java classes of the app. The output of

this step is a fragment of configuration conforming to the flexible permission data model

described in Section 7.3 containing only instances of the AndroidComponent class and its

subclasses.

In order to specify the mappings (step 3), the developer uses a form (Figure 7.3) where

she can declare the main features of the app and, by means of check boxes, associate

them to the automatically extracted Android components. The final result of this step

is the complete configuration, which also includes the required instances of the Feature

class.
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Figure 7.3: Feature to Android components mapping specification form

7.5 App instrumentation

The AFP approach involves also the automatic instrumentation of the app (step 4 in

Figure 7.1). Such step is carried on by the AFP Instrumenter that performs a set of

operations that can be grouped into three main phases: (i) decomposing the input APK,

(ii) rewriting the app bytecode, and (iii) repackaging the rewritten app.

The goal of the first phase is to extract, from the compiled binary files of the app under

analysis, the app Java bytecode. Although the bytecode is a low-level representation, it is

suitable to perform analysis and instrumentation. In turn, the third phase performs the

reverse operation, transforming the instrumented bytecode back into a compiled binary

file. The logic behind the first and the third phases is straightforward, and they are

both carried out using freely available tools arranged in a pipe-and-filter pattern. The

adopted tools are described in Section 7.7.

During the second phase, rewriting of the app bytecode is performed by an ad-hoc ana-

lyzer, following Algorithm 1. Given as input an Android app and its feature-component

mappings, the algorithm returns an AFP-compliant version of the app. In order to do

so, the algorithm iterates over all Android components that constitute the app (line 2

in Algorithm 1) and extracts from each of them the set of sensitive API calls performed

inside its logic (line 3). Each call is analyzed for the purpose of identifying the affected

resource (lines 10-16), and creating and binding instances of the Resource class in the

AFP data model. Each sensitive call is then replaced with a corresponding call to the
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AFP library (line 17), which contains a proxy class for each of the Android APIs that

enable access to restricted parts of the platform (further details in Section 7.6). While

performing the rewriting, the algorithm also checks that all classes containing calls to

restricted parts of the Android API belong to a feature (lines 4-6). This ensures that

the developer does not leave some Android components out of the mapping. Additional

code (via Android Intents) is added in the main activity (i.e., the app entry point) to

set up communication between the app under rewriting and the AFP App. It enables

the configuration of the flexible permissions on the startup of the app (lines 7-9).

input : App, an Android app
C, set of Android components ∈ App
F, set of features ∈ App
M, mapping of elements of F to C

output: App′, AFP-compliant version of App

1 begin
2 foreach c ∈ C do
3 scan C to extract SC, set of sensitive calls ∈ C
4 if SC 6= ∅ and c /∈M then

/* found sensitive call not mapped to any feature, raise error
and terminate */

5 break
6 end
7 if c is App main activity then
8 add intent trigger towards AFPapp to allow for permissions configuration
9 end

10 foreach sc ∈ SC do
11 identify r, resource affected by sc
12 foreach f ∈ F do
13 if c is mapped to f then
14 add r to fr, set of resources used by f
15 end
16 end
17 replace sc with sc′, call to AFPlibrary wrapper
18 end
19 end
20 end

Algorithm 1: Rewriting algorithm of AFPinstrumenter

The illustrative example, given in Figure 7.4, shows bytecode rewriting of an API call

for reading the last registered user’s location. In the original version (Listing A), a

LocationManager object is loaded from a local variable and pushed onto the stack (in-

struction 1). Then, the constant string “network”, used as a parameter in the upcoming

method invocation, is also pushed onto the stack (instruction 2). Both are consumed

from the stack with an invocation to the virtual method getLastKnownLocation (in-

struction 9). Finally, the Location object resulting from the method call is read from
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the stack and stored in a static field (instruction 10). In the rewritten version (Listing

B), the invocation to the virtual method getLastKnowLocation has been replaced with

a static call to its proxified method in the AFPLibrary (instruction 9). Since this method

also requires, as an array parameter, the identifiers of features to which it belongs, this

information is also pushed onto the stack (instructions 4-8).

1 aload_0
2 ldc network
3
4
5
6
7
8
9 invokevirtual android / l o c a t i on /

LocationManager . getLastKnownLocation
: ( Ljava/ lang / St r ing ; ) Landroid/
l o c a t i on /Locat ion ;

10 putstatic l o c a t i o n : Landroid/ l o c a t i o n /
Locat ion ;

11

Listing A

1 aload_0
2 ldc network
3 iconst_1
4 anewarray java / lang / St r ing
5 dup
6 iconst_0
7 ldc WeatherForecast
8 aa s to r e
9 invokestatic g s s i /aq/ i t / a f p l i b r a r y /

AFPLocationManager .
getLastKnownLocation : ( Landroid/
l o c a t i o n /LocationManager ; Ljava/ lang /
St r ing ; [ Ljava/ lang / St r ing ; ) Landroid/
l o c a t i o n /Locat ion ;

10 putstatic l o c a t i o n : Landroid/ l o c a t i on /
Locat ion ;

11

Listing B

Figure 7.4: Comparison between an original byte code file (Listing A) and the rewrit-
ten version produced by the AFPInstrumenter (Listing B).

7.6 Permissions enactment and enforcement

As described in Section 7.2 (see Figure 7.1), a user can download and install AFP-enabled

apps from the Google Play Store, as she would normally do for all apps. Upon starting

a newly installed app for the first time, she is redirected to the AFPApp, which enables

permission enactment by allowing her to configure the flexible permissions associated to

it. Two screenshots of the app are presented in Figure 7.5. During the configuration,

she is presented the list of features offered by the AFP-enabled app. For each feature,

the accessed sensitive resources are listed and, for each one of them, she can set her

preferences, hence regulating the access to the resources for that single feature. As

an example, consider a user interested in the Facebook app. After downloading and

installing it on her device, on the first run she is presented with the list of app features,

i.e.,, Wall, Messaging, Events, etc. Assuming that she does not want her friends to know

her exact location every time she posts on her Wall, she can restrict the precision of the

Location resource for the Wall feature, while leaving it unchanged for Events in order to

still discover ongoing events nearby.

While the configuration is ongoing, the AFP App establishes communication with the

AFP Server and checks the validity of the app secret key, promptly raising a warning

should it be different from the one stored on the server.
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The configuration procedure can be terminated at any time and, upon termination, the

configured permissions configuration is transmitted back to the calling app, and stored

by the AFP Library.

Permission enforcement is in the hands of the AFP Library, which contains a proxy class

for each of the Android APIs that enable access to restricted parts of the platform. The

methods contained in the proxy classes perform a check against the configured permission

model and allow access to the restricted parts of the platform only if admitted by the

model. If access to a resource has to be allowed only at certain level, then partial

adjustments on returned data are performed.

7.7 Implementation and used technologies

AFP makes use of a number of different techniques and technologies. Static analysis

techniques are used to verify APK packages uploaded by developers on the AFP Server.

Specifically, static analysis is utilized to verify that developers accessed sensitive resources

only through the methods provided by the AFP Library (otherwise we cannot guarantee

that the preferences set by users in permissions configurations will be fulfilled). In order

to do so, AFP utilizes an intra-procedure analysis to detect Android API invocations

within each method of the app’s code. The complete list of sensitive Android API calls

is obtained with SuSi [158], a machine learning based tool provided by Artz et al. For

Figure 7.5: Screenshots of the permissions configuration procedure enabled by the
AFPApp
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the implementation of this analysis we rely on the static analysis framework Soot [81],

coupled with Dexpler [159] to disassemble APK packages and transform Android’s Dalvik

bytecode into a format suitable for analysis.

In order to avoid the possibility that malicious developers could tamper with the AFP

Library implementation, thus circumventing the need of obtaining authorization against

the permissions configuration, integrity of the aforementioned library is also checked by

the AFP Server through a checksum-based integrity verification mechanism.

Communication between the AFP App and any AFP-compliant app is enabled by An-

droid’s Intents [160]. An Intent is a special kind of object used to enable inter-app

communication. In AFP, explicit Intents are leveraged to both redirect the end user to

the AFP App and return the configured fine-grained permissions configuration once it

has been personalized.

Changes to the permission system introduce the risk of app instability, as apps may not

expect to have their permission requests denied [62]. When denying permissions leads

to crashes, users are likely to become more permissive to improve app stability, thus

counteracting the whole reasoning behind feature- and level-based permissions. With

this concern in mind, in our implementation, we make use of “mocking”1: in the event of a

denied permission our system supplies apps with well-formed but non-sensitive data. For

example, if the end user allows only city-level geolocation, when the app calls the Android

location manager, the AFP Library intercepts that call and returns the geographical

center of the city where the user is, instead of her precise location. This enables apps

to continue functioning usefully unless access to the protected resource is critical for its

correct behavior.

To perform the automatic extraction of the Android components composing the mobile

app (step 2 in Figure 7.1) we firstly decode the input APK using apktool2. The Android

manifest file is then analyzed via a simple XML parser we developed in Java. The

analyzer of the Java bytecode is implemented by using the Apache Commons Byte Code

Engineering Library3.

The tool that allows developers to specify feature-components mappings (step 3) has

been implemented as a web-based tool, built upon the Flask4 web framework.

The AFP Instrumenter is implemented by using several tools. The tool apktool is used

for decomposing the APK and producing a Classes.dex file containing the app bytecode.
1This aspect is inspired by the Mockdroid approach by Beresford et al. [56])
2http://ibotpeaches.github.io/Apktool/
3http://commons.apache.org/proper/commons-bcel/
4http://flask.pocoo.org

http://ibotpeaches.github.io/Apktool/
http://commons.apache.org/proper/commons-bcel/
http://flask.pocoo.org
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Then, the dex2jar5 tool is used to obtain a conventional jar file that, subsequently

unpacked via the zip shell command, permits to obtain the .class files constituting the

app. Rewriting of the .class files is done by our Java implementation of Algorithm 1,

leveraging the Apache Commons Byte Code Engineering Library. Instrumented .class

files are then repackaged back to a .dex archive via the Android SDK dx6 tool, and the

APK archive is reassembled using again apktool. At the end, the resulting package is

signed using jarsigner7. The whole end-to-end process is tied together by a Python

script.

7.8 Evaluation

In this section, we report the four independent experiments we performed to evaluate

the AFP approach. For the purposes the experiments 2, 3 and 4, we focused on the three

Android APIs that are among the ones considered the most sensible by end users [161]

while at the same time widely used by apps on the Google Play market [162]: Camera,

LocationManager, and MediaRecorder. To allow easy replication and verification of

the experiments, we provide a complete replication package8 including: the source

code of all the components of the AFP approach, the source code of the measuring tools

we implemented for carrying on the experiments, the raw data we obtained from the

experiments, and all the scripts for analysing the experiments’ results.

7.8.1 Experiment 1: performance of the AFP instrumenter

Design – The goal of this experiment is to assess the performance of the AFP In-

strumenter, the module of the AFP server that performs the app static analysis and

instrumentation. We chose the AFP Instrumenter as the object of our experiment since

(i) it is the most complex component in our AFP Server, and (ii) its malfunctioning

or low performance in terms of execution time may negatively impact the adoption of

the whole approach by developers, who will not be willing to spend a (relatively) long

time for the result of the app instrumentation phase. This experiment is designed as a

multi-test within object study [12], because it is conducted on a single object (i.e., the

current implementation of the AFP Instrumenter) across a set of subjects (i.e., the APKs

archives). More specifically, we randomly selected 1,277 APK archives from a dataset

consisting of 11,917 free apps from the Google Play Store; the dataset was created in
5http://github.com/pxb1988/dex2jar
6http://wing-linux.sourceforge.net/guide/developing/tools
7http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
8https://github.com/gianlucascoccia/androidflexiblepermissions

http://github.com/pxb1988/dex2jar
http://wing-linux.sourceforge.net/guide/developing/tools
http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
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the context of a previous research in which we mined the top 500 most popular free

apps for each category of the Google Play store [163]. We executed the experiment by

(i) automatically generating a feature-component mapping containing a feature for each

Java class of the app (this can be considered a worst case scenario for our instrumenter),

(ii) isolating the AFP Instrumenter component so that it could be programmatically

executed in isolation, and (iii) sequentially executing AFP Instrumenter for all the 1,277

APKs. For each execution of the AFP Instrumenter, we measured the time for per-

forming each single step of its internal pipeline (see Section 7.7). Measurements were

taken via a Macbook Pro-Retina running Mac OSX 10.11.5 with a 2.6 GHz Intel core i5

processor and 8 Gb of memory.
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Figure 7.6: Execution times of the AFPInstrumenter pipeline (in seconds)

Results – Figure 7.6 shows the execution times of each step of the AFP Instrumenter

pipeline. Each step takes an average of less than 10 seconds, with the only exception

of the dx tool (18.78 seconds in average), mainly because of its heavy I/O operations

and performed optimizations9. When considering the total execution time of the whole

pipeline (see the last box plot in the figure), we can observe that our AFP Instrumenter

takes an average of 41.19 seconds to complete, with a minimum of 4.03 seconds and a

maximum of 143.07 seconds.

Discussion – We consider the results as satisfactory. On average, developers have to

wait less than a minute for obtaining the AFP-enabled app from the AFP Server, and

less than 3 minutes in the worst case of our experiment. Since the AFP Instrumenter is

executed only once for each app, we consider the waiting time for developers due to app

instrumentation reasonable. Hence:
9https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/

dx/src/com/android/dx/command/dexer/Main.java

https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/dx/command/dexer/Main.java
https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/dx/command/dexer/Main.java
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The results of Experiment 1 provide evidence that the performance of the AFP

Instrumenter are satisfactory, requiring on average less than a minute.

Threats to validity – A possible threat to validity of our experiment is represented by

the selection of only free apps as subjects. Although this choice was driven by budgetary

constraints, free apps are representative as they represent 75% of all Google Play Store

apps and are downloaded more often [164] than paid apps.

A second threat is represented by the fact that, in this experiment we consider only one

kind of hardware machine. This choice is mainly guided by budget constraints related

to both time and available resources. Notwithstanding, the used hardware is consumer-

grade, hence we believe that collected measures are representative of performance that

can be obtained on ordinary hardware. Moreover, it is important to note that the AFP

Instrumenter is deployed in the AFP Server, whose hardware and software performance

can be far higher than the machine we used for this experiment and can be easily scaled

up if deployed in a virtualized/containerized environment.

7.8.2 Experiment 2: Performance of AFP-enabled apps

Design – The goal of this experiment is to assess the performance of the AFP-enabled

apps at run-time (i.e., app X in Figure 7.1). The main rationale behind this experiment is

to assess how the application of our AFP approach may actually impact the performance

of instrumented apps, thus potentially impacting the overall user experience.

For this experiment, we selected 7 mobile apps from a publicly available dataset composed

of 2,443 open-source Android apps that are freely distributed in the Google Play store

and whose source code is hosted on GitHub [89]; these two conditions permitted us

to have a dataset with apps designed and developed as real projects with real users,

and to easily check that instrumented apps behave as the original ones (we did this by

a combination of source code inspection and the addition of logging instructions in key

parts of the app). Among the 2,443 apps, we randomly selected the 7 apps (see Table 7.1)

among those requesting at least one of the permissions considered for our experiments

(i.e., geolocation, camera and microphone access).

We executed the experiment by performing the following steps for each app: (i) we

defined one or two (depending on the complexity of the app, see Table 7.1) common

usage scenarios that start from the main activity and end with the complete stop of the

app; (ii) we executed each usage scenario, while measuring the CPU load and memory

consumption of the process of the app; (iii) we created feature-component mappings using
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Table 7.1: Selected apps for study 2

ID Name Version Type Scenarios

a1 WordPress 5.6.1 Blog manager 2
a2 Ottawa Bus Follower 2.0.11 Bus-related utility 2
a3 Streetlight Seattle Reporter 1.2.0 Citizen participation 2
a4 Local Weather 1.0.0.7 Weather 1
a5 Run Helper 1.3 Fitness tracker 1
a6 Selfie HD 1.1 Photo camera 1
a7 Flickr Uploader 2.3.2 Photo upload 1

the AFP Web application; (iv) we instrumented the app via the AFP Instrumenter by

using the mapping defined in the previous step; (v) we executed and measured again

each usage scenario on the instrumented version of the app.

From a tooling perspective, we used (i) MonkeyRecorder10 for recording all the actions we

manually performed for each app during a pilot manual execution of all the basic usage

scenarios, (ii) a shell script using Android monkeyrunner11 for replaying the previously

recorded scenarios, and (iii) another shell script periodically executing the Android top

or dumpsys tools via the Android Debug Bridge (ADB)12 for collecting the CPU load

and memory consumption of the app at runtime. All the shell scripts and tools were

executed from the same laptop of Experiment 1, whereas the apps have been executed

on an LG G3 855 (quad-core CPU at 2.5 GHz and 3 Gb of memory) running Android

5.0.

Results – Collected measurements are presented in Figure 7.7. For each app, we per-

formed a comparison of both the CPU load and memory consumption for its two versions

(i.e., original or instrumented) by using the Mann-Whitney test [12] with α = 0.05, one-

tailed. In all cases, we obtained a p-value much larger than α, thus allowing us to confirm

that there is low difference in the medians of CPU and memory consumption, with and

without app instrumentation.

Discussion – From Figure 7.7 it is evident that both CPU load and memory consump-

tion of the original and instrumented versions of each app are comparable, as confirmed

by statistical tests. The results of this experiment give a positive indication about the

performance of AFP-based apps.

It is important to note that the focus is not on the formal systematic assessment of the

precision of the app instrumentation (i.e., we do not have a formal proof that instru-

mented apps do not crash in some corner cases); nevertheless, we performed a manual
10https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/

android/monkeyrunner/recorder/MonkeyRecorder.java
11http://developer.android.com/studio/test/monkeyrunner
12http://developer.android.com/studio/command-line/adb.html

https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/android/monkeyrunner/recorder/MonkeyRecorder.java
https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/android/monkeyrunner/recorder/MonkeyRecorder.java
http://developer.android.com/studio/test/monkeyrunner
http://developer.android.com/studio/command-line/adb.html
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Figure 7.7: Performance of selected apps (both original and instrumented)
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assessment of stability of the 7 apps in experiment 2 by performing a set of evaluation

runs, observing that the instrumented app conformed to the expected behavior. To

recap:

The results of Experiment 2 evidence that the performance of AFP-enabled apps are

comparable to those of regular apps.

Threats to validity – One common risk to validity of the experiment is the threat that

adopted feature-component mappings and execution scenarios may not be representa-

tive of real app usage. To mitigate this threat, as a preliminary step, selected apps were

examined by (i) analysing apps description in the Google Play store, (ii) manually in-

specting their source code, and (iii) performing a set of preliminary runs while observing

app behavior. Two different researchers were involved in the definition of both artifacts:

first they were proposed by one and then verified to be representative by a second one.

A second threat is represented by the limited amount of apps involved in the experi-

ment (7), a very small minority of all apps available to mobile app users. Hence, results

might not generalize to other apps. Nonetheless, selected apps have reasonably varied

purposes (see Table 7.1), thus partially mitigating the threat.

Finally, as for experiment 1, in this experiment we consider only one kind of hardware

machine for the server and mobile device. As the hardware we used is likewise consumer-

grade, we believe that collected measures are representative of those that can be obtained

on ordinary hardware.

7.8.3 Experiment 3: Usability and acceptance of AFP by developers

Goal of the experiment – The goal of this experiment is to evaluate the usability

and acceptance of AFP by developers. For this purpose, we conducted an on-line study,

involving Android developers, in which we asked them to build the feature-component

mappings for one or more apps they developed. We focused on this aspect as it is the

main effort required to developers to make their app AFP-compliant (all the other steps

are automated).

Research questions – we formalize the experiment goal as the following two research

questions:

RQ1 – What is the acceptance of AFP from Android developers?

RQ2 – How do Android developers perceive the usability of AFP?
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Answering RQ1 will provide an indication of how welcoming are Android developers of

the AFP approach and of their willingness to adopt it in real world Android apps.

Answering RQ2 will provide an objective assessment of the usability of the AFP web

editor. Assessing the perceived usability of this component is of particular interest,

given the fact that this is the only part of the approach that requires manual effort from

developers (as seen in Section 7.2). Hence, perceived usability of the web editor has a

major impact on the willingness to adopt AFP.

Subjects selection – We posted an announcement on pertinent on-line discussion

groups (i.e., Android developer forums, mailing lists) to enlist developers willing to

take part in the study. Each developer was asked to provide (at least) one link to an app

published on the Google Play store, on which (s)he worked (either alone or in a team).

No compensation was given in exchange for participation in the study.

Independent and dependent variables – The independent variable in our experiment

is the app for which a feature-component mapping is being created (apps used in the

experiment are listed Table 7.2). Dependent variables are the developer acceptance of

the AFP approach, its perceived usability and the mapping time, i.e., the time required

time required by each participant for creating the feature-component mappings.

To measure both acceptance and usability we rely on an evaluation questionnaire, whose

structure is shown in Table 7.3. The acceptance part is composed of three closed ques-

tions (q1 - q3) with possible answers ranging on a five-point scale. For the usability part,

we adopted the System Usability Scale (SUS), a simple and widely-adopted scale for

assessing the usability of products and services [165, 166]. The SUS consists of a ques-

tionnaire composed of 10 items (s1 - s10) and each item can be assessed by respondents

along a 5-level Likert scale ranging from Strongly agree (4 points) to Strongly disagree

(0 points). SUS is proved to be a valuable, robust, and reliable evaluation tool and it

correlates well with other subjectives measures of usability [165, 167]. The mapping time

is instead measured in seconds and is recorded during experiment execution in a manner

transparent to the subjects.

Experiment execution – Participants in the experiment were invited to access a web-

based app containing: (i) the definitions of feature- and level-based permissions, and

(ii) the AFP web editor for the feature-component mappings. The participants were

instructed to create the feature-component mappings for one of their previously-linked

apps, and we collected the mappings defined by developers. After completing the map-

ping, participants were asked to complete the on-line evaluation questionnaire about

AFP described in Table 7.3. Demographic information was also collected in this phase.
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Table 7.2: Apps developed by participants of Experiment 3

Developer
ID

App
ID

Package Name Version Type Resources Features Mapping
time
(s)

D1 A1 com.rubikssolutions
.daily5sec

3.2 Video sharing Camera,
Micro-
phone

2 21

D2 A2 com.ambiensvr.mobile 0.9 Augmented re-
ality

Camera 4 924

D3 A3 fr.inria.es.electrosmart 1.6 Electromagnetic
waves meter

Location 8 337

D3 A4 ums.lovely.university 9.8.4 University
management
system

Camera,
Location

4 1809

D4 A5 com.digitech.foodel 1.9 Food delivery Camera,
Location

22 1758

D5 A6 com.mobile
.wabi_tech.gadfly

2.2.9 Citizen partici-
pation

Location 3 49

D6 A7 com.Jitendra93266
.jitu.knowmovies

1.0 Movies
database

- 3 54

D7 A8 de.jw.mymensa 0.9.0 Menu viewer - 2 47
D8 A9 com.peaklens.ar 1.0.11 Augmented re-

ality
Camera,
Location

7 455

D9 A10 com.yopapp.yop 1.9.4 Online market-
place

Camera,
Location

4 192

D10 A11 com.myoxygen
.press.weaf

3.0 Aerospace
news

Location 4 61

D11 A12 ro.notnull.Identical
FilesFinder

3.4.0 System man-
agement

- 4 80

Table 7.3: Structure of the evaluation questionnaire used for developers

Evaluation goal Question ID Question text

Acceptance

q1
Is the definition of level-based and feature-based per-
mission clear to you?

q2
Do you rate the definition of level-based and feature-
based Android permissions as useful?

q3
Are you willing to use feature- and level-based per-
missions in your apps?

Usability s1-s10 As defined in the System Usability Scale [165].

A total of 11 developers completed both the mapping definition and the evaluation

questionnaire, providing us with twelve mappings in total (one developer performed

the mapping construction for 2 apps). Developers participating in the experiment are

also quite heterogeneous, both in terms of experience, number of developed apps, and

size of organization. Specifically, participants have an average of 3.45 years of Android

development experience (standard deviation = 2.66) and their majority (5) developed

between 2 and 5 Android apps during their career, followed by 2 developers who developed

more than ten. For what concerns organizations, the majority of developers work in

small organizations (i.e., with 2 to 10 members), but we have also participants working

in organizations with a number of members between 2 and 10 and between 10 and 50.
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Finally, six developers declared to be Satisfied with current Android 6 permissions, three

declared to be Unsatisfied and two are Unsure.

Data analysis – A breakdown of the apps submitted by the participants is provided

in Table 7.2. Minimum and maximum amount of features defined by developers is 2

and 22, respectively. For what concerns the time for creating the feature-component

mappings, developers took an average of 482.25 seconds, i.e., 8.03 minutes (median =

136s, min = 21s, max = 1809s, SD = 660s). Even in the worst case, the time required

by the participants to create the feature-activities mapping is close to half an hour. We

consider such amount of time acceptable, considering that the definition of such mapping

is conducted only once for an app.

Figure 7.8 summarizes the distribution of answers for questions q1, q2 and q3. When

developers were asked about whether they understood the concepts behind feature- and

level-based permissions (q1), only one developer answered No, three answered Absolutely

Yes and the remainder Yes. On a similar note, when asked whether they consider feature-

and level-based permissions as useful (q2), answers were two Absolutely Yes, five Yes, one

Don’t know, two No and one Absolutely No. Concerning whether they would be willing

to use the AFP permissions in their apps (q3) answers were two Absolutely Yes, four Yes,

two Don’t know, two No and one Absolutely No. For all three questions median value of

answers is Yes.
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Figure 7.8: Results about the acceptance of AFP by developers

Results of the usability part of the evaluation questionnaire are presented in Figure 7.9,

where each column of the heatmap represents the distribution of answers for each of the
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ten statements that comprise SUS. The procedure described in the SUS guidelines [165]

was applied to normalize answers to each statement. For most statements, answers pro-

vided by respondents are mostly agglomerated towards the middle of the scale, with the

exception of s3 and s4, skewed towards the upper and lower end of the scale respectively.

A mean SUS score of 49.77 was obtained across all participants.
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Figure 7.9: Frequency distribution of answers to SUS statements by developers

Discussion – To answer RQ1 we consider the answers to the acceptance part of the

evaluation questionnaire (presented in Figure 7.8). We can see that almost all developers

understood the concepts required to be able to use feature- and level-based permissions

(q1). On a similar note, the majority of participants considered feature- and level-based

permissions as useful (q2). Summarizing, a first answer to RQ1 is the following:

The results of the acceptance evaluation provide evidence that feature- and level-

based permissions are both understood and deemed useful by developers.

Concerning their willingness to adopt the proposed permissions approach in their apps

(q3 in Figure 7.8), the majority of developers declared that they would be willing to

adopt it in their apps. Although the number of participants is relatively limited, such

results are encouraging. Further expanding our answer to RQ1, we can state that:

The majority of participants in the acceptance evaluation are willing to adopt feature-

and level-based permissions in their apps.
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To answer RQ2, we focus on answers to the usability part of the evaluation question-

naire (shown in Figure 7.9). We can see that answers are clustered towards the middle

of the scale for the majority of statements, revealing an acceptable usability. Further

confirmation is found in the obtained mean SUS score (49.77) that, according to prior

research [166], is to be evaluated as Ok. Exceptions are statements s3 and s4. Most

participants are in agreement with the former, that reads “I thought the system was easy

to use”, confirming that the process was not overly difficult. At the same time developers

felt in agreement with the latter: “I think that I would need the support of a technical

person to be able to use this system”. Such results, and the fact that developers are not

always familiar with permission-related technical aspects [168], encourages us to inves-

tigate in the future on techniques to assist in (or even to automate) the definition of

feature-component mappings. Summarizing, we provide the following answer to RQ2:

During the usability evaluation, developers judged positively the usability of the

AFP approach. Improvements can be made on making the definition of the feature-

component mappings more straightforward from a technical perspective.

Threats to validity – Possible threats to the validity and points of improvement for

experiment 3 are as follows. The number of participants in the experiment (11) represents

a very small minority of mobile app developers in the real world, hence results might

not generalize. This threat is mitigated by the fact that developers who participated in

the experiment have varied years of experience, nationalities and work in organizations

of different size.

A second threat is represented by the limited number of apps for which developers created

the mappings. Thus, the results of our study might potentially not generalize to other

apps. This threat is mitigated by the fact that submitted apps have very different

purposes, provide different features, and have been developed by different developers.

Finally, as the study has been conducted on-line, we had no way to ascertain that par-

ticipants fully understood the task they were asked to complete. We mitigated this

potential threat by directly asking in the final questionnaire whether developers had

additional comments or doubts to clarify with respect to AFP.

7.8.4 Experiment 4: Usability and acceptance of AFP by end users

Goal of the study – The goal of this study is to evaluate usability and acceptance

of AFP from the end-user perspective. To this end, we conducted an in-person study

involving 47 participants.
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Research question – We formalize the experiment goal in the following three research

questions:

RQ1 – How does AFP trustability compare to the one of the current Android permission

system?

RQ2 – What is the acceptance of AFP from end-users?

RQ3 – How do end-users perceive the usability of AFP?

Answering RQ1 will provide an indication of whether end-users feel more in control of

their own data, having a greater degree of control on how and by whom her data are

used, when using AFP as opposed to the current Android permission model.

Answering RQ2 will provide an indication of how welcoming are Android users of the

AFP approach and of their willingness to use it in everyday activities.

Answering RQ3 will provide an objective assessment of the usability from the end-user

perspective. Users’ perceived usability of the approach is of paramount importance as it

has a major impact on the their willingness to adopt AFP.

Subjects selection –We recruited participants for the experiment contacting in-person

potential subjects in the University of L’Aquila and other public facilities. A total of 47

participants volunteered to take part in the experiment. Professions and backgrounds

of participants are varied and include students, shop assistants, mechanical engineers,

lawyers, etc.

Independent and dependent variables – during the experiment each participant

was asked to try out in succession three Android apps, employing in succession either

AFP or the current Android 6 permission system. As such, the independent variable

in the experiment is the permission system. Dependent variables are instead the user

perceived trustability, acceptance and usability.

To measure the three dependent variables we relied on an evaluation questionnaire, whose

structure is shown in Table 7.4. It can be divided into three main parts, according to

the different goal of each one: the first part comparatively evaluates AFP and Android 6

trustability, the second one evaluates the acceptance of AFP and the last one assesses us-

ability of AFP. The first part of the questionnaire (Trustability) consists of two questions

(Q1, Q2). It was filled by participants twice, respectively after trying out both permis-

sion systems. Second part of the questionnaire (Acceptance) contains four questions (Q3

- Q6). All answers to questions Q1 – Q6 range on a five-point Likert scale. Third part

of the questionnaire concerned Usability. For this part, we relied again on the System

Usability Scale (S1 - S10). The second and third parts of the questionnaire were filled by
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participants at the end of the experiment, when we also collected open comments from

the participants.

Table 7.4: Structure of the evaluation questionnaire for end users

Evaluation
goal

Evaluated
for

Question
ID

Question text

Trustability AFP vs
Android 6

Q1
How do you judge the way the app asked for per-
missions?

Q2
How likely are you to use the app on your device,
considering the permission you were asked for?

Acceptance AFP

Q3
Is the definition of feature-based permission clear
to you?

Q4
Is the definition of level-based permission clear to
you?

Q5 Do you rate feature-based permission as useful?

Q6 Do you rate level-based permission as useful?

Usability AFP S1-S10 As defined in the System Usability Scale [165].

Experiment execution – Experiment execution is composed of three main phases:

1. Pre-study: each participant was given a short description about the goal of the

experiment, together with the definition of feature- and level-based permissions.

Demographic information was also collected.

2. First trial: each participant was asked to try out three Android apps, employing

either AFP or the current Android 6 permission system. First part of the evaluation

questionnaire was given at the end of the trial.

3. Second trial: the participant was asked to repeat the trial, this time employing

the permission system that was not used during the previous phase. Remainder of

the evaluation questionnaire was given at the end of the trial.

During each trial, participants were allowed to freely explore the given apps, while being

monitored by one researcher that provided assistance, when needed. The researcher

ensured that a minimal set of steps, namely an execution scenario, was executed for

each app, to guarantee that participants were properly familiar with the apps and the

underlying permissions systems before filling out the questionnaires. Each execution

scenario was defined a priori and focused on one of the app main functionalities. An

example of execution scenario for app A10 is given in Figure 7.10: in order to sell an

object on the marketplace, users have to (a) tap on the “sell now” button, (b) take

a picture of the object with the device camera (granting the required permissions if
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(a) (b) (c)

Figure 7.10: Example of execution scenario for the com.yopapp.yop app: to sell an
object the user (a) taps on the "sell now" button, (b) takes a picture and (c) fills out

listing details

needed) and (c) fill out remaining listing data before submitting. Users were asked to

complete the same execution scenarios between the two trials although inevitably some

middle steps differed, i.e., users had to grant permissions at run-time under Android 6

as opposed to app startup with AFP. All trials were performed on a device specifically

made available, namely a LG G3 running Android 6.0.

In order to keep the experiment as representative as possible, we decided to reuse three

of the apps for which real developers provided a mapping in Experiment 3. The app

selection was performed with the goal of having at least one app making use of each of the

device resources currently adopted by the current implementation of AFP (i.e., Camera,

Microphone, and Location). Unfortunately, we could not successfully instrument app A1,

the only one in our dataset that uses the microphone, because it relies on Java reflection

(a language construct traditionally hard to deal with by approaches relying on static

analysis [169]). Hence, we discarded it and selected an alternative app, thus ending with

apps A3, A10, A11 in our final app selection.

Participants were mostly male (68%) and the mode of their age is Between 21 and 30

years old. The mean self-assessed knowledge of Android is 3.43 on a 1-5 scale (1.17

standard deviation). Roughly half of the participants (24/47) tried out the apps with

the Android 6 permission system as first, and with AFP as second. The opposite order

was adopted for the others.
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Data analysis – Table 7.5 provides the breakdown of the permission preferences config-

ured by participants during the experiment. Overall, preferences were varied, with each

access level being selected by at least one participant for all features. On average, par-

ticipants required 17.27 seconds to configure their permission preferences for A3, 36.45

seconds for A10 and 13.63 seconds for A11 (with a standard deviation of 13.21, 25.08 and

12.64 seconds respectively).

Table 7.5: Breakdown of end users privacy preferences

App µ Configuration
time (σ)

Feature Resource Access level (%)

A3 17.27s (13.21s) F1 Location

Full access: 19 (40%)
Region only: 6 (13%)
City only: 17 (36%)
Deny: 5 (11%)

A10 36.45s (25.8s)

F2 Camera Allow: 38 (81%)
Deny: 9 (19%)

F3 Location

Full access: 4 (9%)
Region only: 17 (36%)
City only: 23 (49%)
Deny: 3 (6%)

F4 Location

Full access: 5 (11%)
Region only: 20 (43%)
City only: 18 (38%)
Deny: 4 (9%)

A11 13.63s (12.64s) F5 Location

Full access: 9 (19%)
Region only: 15 (32%)
City only: 10 (21%)
Deny: 13 (28%)

Figure 7.11 summarizes the distribution of answers for questions Q1 and Q2 for both

AFP and the Android 6 permission system (recall that participants were asked these

questions twice). For both questions, users provided more favourable answers for AFP,

with a median value of Trustable for Q1 and Likely for Q2, as opposed to Android 6

which achieved a median of Neutral for both questions. Obviously, differences in answers

are statistically significant, which we confirmed by performing the two-tailed Mann-

Whitney U-test [118]. We obtained a p-value of 7.623e−08 for Q1 and 4.802e−05 for Q2,

thus rejecting the null hypothesis that the distributions of the answers about Android 6

and AFP are equal.

Answers for the Acceptance part of the questionnaire (i.e., Q3, Q4, Q5 and Q6) are

summarized in Figure 7.12. The answers are skewed towards the positive part of the

scale and the median value is Absolutely yes for most of them, with the only exception

of Q5 for which the median value is Yes.
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Figure 7.11: Perceived trustability of Android 6 and AFPpermission systems w.r.t.
the way the app asked permissions (Q1) and how likely the participant is likely to use

the app (Q2)
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Figure 7.12: Acceptance of AFPby end users in terms of: clarity of the definitions
(Q3 and Q4) and usefulness (Q5 and Q6) of feature-based and level-based permissions).
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Results of the usability evaluation are shown in Figure 7.13. Each column of the heatmap

presents the frequency distribution of answers for one of the ten SUS statements. The

procedure described in the SUS guidelines [165] was applied to normalize answers to each

statement. For all ten statements, participants provided mostly positive answers with

the total amount of negative ones being less than 15% for all statements. A mean SUS

score of 78.19 was obtained across all participants.
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Figure 7.13: Frequency distribution of answers to SUS statements by users

Discussion – From the collected users privacy preferences (see Table 7.5), we can notice

that choices are varied and, for all features, each level was selected by at least a minority

of users. This variability in choices reveals that participants indeed took advantage of the

added control provided by feature- and level-based permissions. Such data substantiates

the intuition that users have diverse privacy and security concerns that cannot really

be satisfied by one-size-fits-all approaches, like the current Android permission model.

Hence, we can infer that:

Collected users privacy preferences indicate that feature- and level-based permissions

allow for an experience more tailored to individual privacy inclinations.

Still concerning users choices, it is worth noting that, when possible, users favoured

more restricted access levels and seldom provided full location access. An exception

is represented by feature F1, for which full access is the consensus choice. During the

execution of the experiment, we observed that users believed that full access was strictly
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necessary for performing this feature, thus explaining such difference. Consequently, we

can state that:

Collected privacy preferences provide an indication that, when possible, most users

choose levels that disclose a restricted amount of data.

To answer RQ1 we focus on answers to questions Q1 and Q2 (see Figure 7.11). We can

point out that users generally felt more secure when employing AFP and praised the

added control over shared personal data provided by it. Such considerations are also

supported by some of the comments collected during the evaluation questionnaire: one

participant stated that “(Between the two systems) I prefer AFP as I have more control

on permissions and I feel more secure”, while another participant pointed out that “as a

user, with AFP I am more aware on how an app uses my phone”. This leads us to the

following reflection point, as an answer to RQ1:

Answers to Q1 and Q2 provide evidence that users feel more secure and are more

willing to use apps on their smartphone when using feature- and level-based permis-

sions.

To answer RQ2 we focus on answers to the acceptance part of the evaluation questionnaire

(questions Q3 through Q6, summarized in Figure 7.12). The definitions of feature- and

level-based permissions were both well understood and deemed useful by users, although

the former achieved worse answers regarding its perceived usefulness (Q5). We conjecture

this difference is due to the fact that the perceived benefit of level-based permissions

is more immediate to users. Further confirmation of the perceived usefulness can be

found in the open comments: one participant stated “I appreciated the greater choice of

options provided by AFP”; a second one noted that “(Android 6) permission pop-ups are

misleading and enforce a binary choice. I appreciated AFP’s level-based permissions”. In

conclusion, to answer RQ2:

Results of the acceptance evaluation show that feature- and level- based permissions

are both well understood and deemed useful by end users, although the usefulness

of the latter is more immediate to them.

To answer RQ3 we focus on the results of the usability evaluation. According to prior

research [166], the achieved mean SUS score (78.19) is to be interpreted as a Good level

of usability (see Figure 7.13). Focusing on the distribution of answers for each statement,
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positive answers are the majority for all statements although some points of improvement

can be identified. Statements S1, S2, S3 and S5 achieved a comparatively lower amount

of maximum score answers, revealing that some users did experience some difficulties

while using the system. Investigating the comments left by participants, we noticed that

some users would prefer to grant feature- and level-based permissions at run-time. In

particular, one user noted “I would like to grant permissions when needed. Configuring

permissions preemptively could take too long for some apps”. To address this issue, in

the future we plan to investigate alternative ways to elicit user’s privacy preferences (see

Section 7.9). On the positive side, for S10, mostly maximum score answers were collected,

hence highlighting that participants did not consider the amount of new notions that they

had to learn as excessive. Summarizing, to answer RQ3 we can state that:

During evaluation, end-users judged AFP usability as Good.

Threats to validity – There are several threats and points of improvement for Ex-

periment 4. Although users were instructed to act as they would do with their own

smartphone, they were still performing the trials in a controlled environment, poten-

tially different from the normal. This means that participant activities and answers may

differ from what can be observed in the real world. As future work, we will mitigate

this potential threat to validity by performing the experiment via an app that users can

install on their own smartphone in order to monitor the AFP-enabled apps during their

usage.

Despite our efforts to have a balanced and unbiased set of participants, we ended up

with a group of relatively young people (age between 21 and 30 years old) and with a

majority of male participants (32 males as opposed to 15 females). Moreover, we are

aware that the sample size of this experiment (47 participants) is limited with respect to

all Android smartphone users today. We mitigated this potential threat by contacting

participants with different backgrounds and professions, different experience about the

Android platform, and by letting them interact with the real apps instead of Android

emulators or simulated environments.

Another possible threat is represented by the limited amount of apps used to perform

trials in the study. Hence, results of our study might potentially not generalize to other

apps. We mitigated this threat by selecting three apps with very different purposes

and features, thus collecting data on users behavior in varied scenarios. Additionally,

participants were not familiar with selected apps in advance. Hence, their behavior

during the trial might properly resemble the one of a user that runs a freshly installed

app for the first time.
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7.9 Conclusions and future work

In this chapter, we have presented an approach aimed at overcoming some limitations

of the current Android permission model evidenced in previous chapters. The proposed

approach and its evaluation answers the third of the research questions addressed by this

dissertation (discussed in Chapter 1.3). That is:

RQ3 - How can we rethink Android security- and privacy-preserving mechanisms in

order to make them more user-centric and in line with the NGI vision?

The proposed approach empowers end users to selectively grant permission by

specifying (i) the desired level of permissions granularity and (ii) the specific

features of the app in which the chosen permission levels are granted. The

approach is supported by an infrastructure comprising three main components: a library

internal to the apps enacting the approach at runtime; a stand-alone mobile app that

allows end users to configure and negotiate at any time the permissions for each app

on their devices; a web-based server for allowing developers to analyze their own mobile

apps, and enhance them with the new flexible permission system with very low effort.

Four experiments have been designed, conducted, and reported for evalu-

ating performance, usability, and acceptance from both the end users and

developers perspective, confirming confidence on the approach.

As anticipated in Section 7.8.4, a future work concerns the definition of a procedure for

(semi) automatically extracting the features provided by an Android app from its binary

or source code. A second line of future work concerns assisting end users in the configu-

ration of flexible-permissions. Since runtime permissions expose context, which can help

users in making their decision, the extension would require to understand how the context

can be suitably extracted and presented to users during the apps configuration phase, or

even leveraged to automatically configure permissions without user intervention.



Chapter 8

Conclusions

This concluding chapter briefly recaps on the contributions of this dissertation and

presents possible future work.

8.1 Contributions

The goal of this work is to investigate how mobile apps can be made more in line with

the next-generation internet vision, shifting to a more human-centric approach to privacy

protection by giving control back to the user.

The results achieved so far by this research work are summarized in the following. Each

result is defined in the context of the corresponding research question, as defined in

Section 1.3.

RQ1 What is the state on the art on static analysis for mobile applications?

The systematic literature review, reported in Chapter 4, was aimed at identify-

ing, evaluating and classifying characteristics, trends and potential for industrial

adoption of existing research in static analysis of mobile apps. Reviewing the re-

sults of our study, we identified that the main corpus of research on the topic has

focused on the Android platform, and that privacy and malware are the most tar-

geted analysis goals. Nonetheless, researchers are mostly focusing on techniques

aimed at assisting developers, store moderators and researchers, while end users

are mostly being left out of the equation. We further noticed that all approaches

have not been evaluated or adopted in an industrial environment.

RQ2 Are there any existing issues in current Android security- and privacy-preserving

mechanisms that negatively affect the users’ trust on the whole platform?

141
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Chapter 5 presented the results of an empirical study in which we investigated the

issues perceived by end users in the current Android run-time permission system.

Even under the new system, apps still request an amount of permissions that is

perceived as excessive from end-users, often without providing an explanation on

why these permissions are needed. Moreover, developers do not always perform

permission requests correctly, thus introducing quality issues into their apps that

contribute negatively to the user experience. Some developers deny the usage of

key app functionalities when permissions are denied.

In Chapter 6, we report on a second study that analyzed the occurrences of four

types of permission-related issues across the development lifetime of 574 open-

source apps. The study represents a first step in understanding why and when

such issues are introduced into apps, by providing evidence-based insights for better

understanding and management of them. Our findings revealed that permission-

related issues are a frequent phenomenon in Android apps and that, despite the

fact that the majority of issues are fixed in a time span of few weeks, in many cases

they can linger inside an app for longer, up to several years.

RQ3 How can we rethink Android security- and privacy-preserving mechanisms in order

to make them more user-centric and in line with the NGI vision?

In Chapter 7, we presented an approach aimed at overcoming some limitations of

the current Android permission model. The proposed approach uses a new flexible

permission model thanks to which end users can grant and negotiate the level

of each single permission, on a per feature-basis. Developers can easily produce

apps compatible with the proposed approach, as it does not require changes to

their traditional workflow. Although much still needs to be done, confidence on

the approach is confirmed by four experiments aimed at evaluating performance,

usability, and acceptance from both the end users and developers perspective.

8.2 Limitations

In the following, we list the major known limitations for each of the chapters of this

dissertation:

8.2.1 Limitations of Chapter 4

As with all systematic mapping studies, even though a well-defined research protocol was

established before carrying out the data collection and followed during all the steps of the

research, some limitations still exist. In particular we adopted a search strategy consisting
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of a manual search encompassing all the top-level software engineering conferences and

international journals according to well known sources in the field. Publications from

other venues might have potentially been missed despite the fact that the search process

was further extended by executing a backward and forward snowballing process on the

selected literature.

8.2.2 Limitations of Chapter 5

Despite the extensive review collection process performed at the beginning of the study,

only a limited share of reviews that refer to permissions was identified. As such, to

confirm generalizability of the results, it would be opportune to replicate the study,

extending the initial review dataset or integrating it with other sources of data (e.g.,,

direct interviews with Android users).

Furthermore, identification of permission-related reviews was performed starting out

from a keyword-based selection. Precision of this selection process is another limita-

tion of the study, that can potentially be improved adopting more precise approaches or

resorting to manual analysis.

8.2.3 Limitations of Chapter 6

The empirical study of Chapter 6 provides information about a variety of aspects of

permission-related issues, such as: (i) when permissions and their related issues were

introduced and fixed, (ii) who is making these decisions, (iii) file-change history that we

could examine using permissions analysis tools, and (iv) all other commit information

such as commit messages. Still, other aspects still remain to be explored in future works,

such as whether PRIs accumulate-diminish over the lifetime of an Android app, and an

investigation of the reasons behind the introduction of permission related issues.

8.2.4 Limitations of Chapter 7

Our current implementation of AFP is fully contained in the application layer of the

Android stack. This might represent a vulnerability that can be exploited by malicious

software such as malware. Our prototype implementation has been developed with the

main goal of assessing users’ perception of feature- and level-based permissions and, in

order to guarantee the complete safety of users’ data, a more tightly-coupled integration

with the lower levels of the Android stack has to be introduced. This limitation can
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be addressed adopting AFP in conjunction with other existing works on kernel-space

security [45, 170, 171].

As most of the approaches in the literature using static analysis, the use of reflection,

self-decrypting code, or obfuscation techniques in general challenge our approach. We

are currently investigating a hybrid approach combining our static analysis with dynamic

flow analysis. We have preliminary evidence that such a hybrid approach may result in

a valid and viable compromise towards mitigating this challenge.

Another limitation of our approach resides in the policy configuration module. In it’s

current implementation, the list of sensitive Android APIs has to be kept constantly

updated and wrappers for each of them have to be manually created and maintained. In

the future we plan on investigating possible categorizations of Android APIs in order to

develop more general configuration policies, each able to encompass a specific category

of APIs.

8.3 Future research directions

Multiple are the possible future extensions of this work. We can broadly classify them

in two main research directions: (i) deepening our understanding of user’s and devel-

oper’s behavior towards application permissions; (ii) developing new technical solutions

to challenges that are still open.

Some possible future directions towards deepening our understanding of user’s and de-

veloper’s behavior are the following:

• Characterizing the impact of run-time permission requests on user ex-

perience - When employing run-time permissions, developers are faced with one

additional challenge: they must carefully plan the usage of notification dialogs, as

to avoid excessive disruptions in the user experience. There can be cases in which

introducing new functionalities that require additional permissions may even be

detrimental to the app success. All this considered, currently we only have a lim-

ited understanding of the impact of run-time dialogs on user experience. Hence,

an open research area is understanding and quantifying the effects of run-time

permission requests on the overall user experience.

• Expanding our knowledge on permission-related issues in Android apps -

The work presented in Chapter 6 represents a first step towards understanding why

and when permission-related issues are introduced in Android apps. Nonetheless,

our knowledge on the topic is far from complete and a possible future work is to
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investigate whether permission-related issues accumulate/diminish over the lifetime

of Android apps, potentially revealing interesting patterns about their evolution. In

addition, a more in-depth study would be required to understand what developers

do when they introduce or fix permission-related issues.

• Understanding the factors impacting user’s decision making - As seen

in Section 7.8.4, end users have varied privacy preferences, resulting in different

choices when they are confronted with permission requests. Understanding what

are the factors that have an impact on their decision making is an open question,

the answer to which may have a significant impact on ongoing efforts to create

automatic permission granting mechanisms (see Section 3.3.3). In fact, a deeper

understanding of users behavior can lead to automatic granting mechanism that

are more precise and more in line with each user preferences.

Regarding the development of new technical solutions, the following are some open chal-

lenges:

• Enriching permission requests with contextual information - permission

requests fall in the category of transactions with asymmetrical information de-

scribed by Akerlof [30]. When answering a permission request end users lack some

information that is instead available to developers, e.g., what will the permission

be used for, what functionalities will not be available without granting it, etc. It

is known that this lack of information has a negative impact on users judgment.

Hence, one open research challenge is inferring the missing information and pre-

senting it to the user in a suitable fashion.

• Design better support tools for developers - As evidenced in Chapter 5, many

users complained in app reviews about permission-related bugs. Indeed, developers

now have to preemptively ask for allowance before accessing restricted parts of the

platform. Failure to properly do so renders functionalities or, in worst cases, the

whole app unreachable and/or unusable. In order to solve this issue, developers

should not only be further educated, but also empowered with tools that assist

them in correctly handling permissions and suitably positioning the corresponding

requests.

• Devising techniques for automated feature detection - While designing

AFP, particular care was employed in limiting the additional effort asked of de-

velopers to make their apps AFP-compliant. Nonetheless, as evidenced in sec-

tion 7.8.3, some of them still experienced a noticeable amount of friction during

the mapping of features to components. Hence, to ease this task, one possible point
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of improvement is the definition of techniques for automated feature discovery and

location. Benefits would not only be limited to our approach but could expand

to tasks of interest for both developers and researchers. The former would gain a

benefit from such techniques while managing large code-bases and in order to au-

tomate certain tasks during app development (i.e., writing app descriptions). The

latter could employ such techniques to perform more in depth empirical studies.

• Enhancing the AFP data-model The current AFP data model only permits

the specification of PolicyItems that reference a single resource. The data model

could be expanded to allow reasoning on multiple resources (e.g., do not allow

access to contacts book if the app also requests Internet access), and the specifica-

tion of dynamic constraints (e.g., do not allow access to the contacts book during

nighttime).
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Appendix: mapping primary studies

Table 1 reports the full list of the 140 primary studies included in the mapping study of

Chapter 4.

ID Title Authors Year
P1 NeSeDroid–Android Malware Detection Based on Network Traffic

and Sensitive Resource Accessing [172]
N.T. Cam, N.C.H. Phuoc 2017

P2 Analyzing Remote Server Locations for Personal Data Transfers
in Mobile Apps [173]

M. Eskandari, B. Kessler, M. Ahmad, A. Santana de
Oliveira, B. Crispo

2017

P3 MaMaDroid: Detecting Android Malware by Building Markov
Chains of Behavioral Models [174]

E. Mariconti, L. Onwuzurike, P. Andriotis, E. De
Cristofaro, G. Ross, G. Stringhini

2017

P4 Ripple: Reflection Analysis for Android Apps in Incomplete In-
formation Environments [175]

Y Zhang, T Tan, Y Li, J Xue 2017

P5 AndroDialysis: Analysis of Android Intent Effectiveness in Mal-
ware Detection [176]

A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez, S.
Furnell

2017

P6 Profiling the responsiveness of Android applications via auto-
mated resource amplification [177]

Y. Wang, A. Rountev 2016

P7 Detecting Invalid Layer Combinations Using Control-Flow Anal-
ysis for Android [178]

N. Suzuki, T. Kamina, K. Maruyama 2016

P8 Graph-aided directed testing of Android applications for checking
runtime privacy behaviours [179]

J.C.J. Keng, L. Jiang, T.K. Wee, R.K. Balan 2016

P9 Dexteroid: Detecting malicious behaviors in Android apps using
reverse-engineered life cycle models [180]

M. Junaid, D. Liu, D. Kung 2016

P10 IacDroid: Preventing Inter-App Communication capability leaks
in Android [181]

D. Zhang, R. Wang, Z. Lin, D. Guo, X. Cao 2016

P11 Practical, formal synthesis and automatic enforcement of security
policies for android [182]

H. Bagheri, A. Sadeghi, R. Jabbarvand, S. Malek 2016

P12 CapaDroid: Detecting Capability Leak for Android Applica-
tions [183]

T. Wu, Y. Yang 2016

P13 Asynchrony-aware static analysis of Android applications [184] A. Mishra, A. Kanade, Y.N. Srikant 2016

P14 Identifying Android inter app communication vulnerabilities us-
ing static and dynamic analysis [185]

B.F. Demissie, D. Ghio, M. Ceccato, A. Avancini 2016
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