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Abstract

The world is moving at a dynamic pace, and this has led to the technological advance-

ment of mobile applications. This rise in the advancement of the mobile application

comes with critical concerns to end-users in terms of the performance, especially when

implementing high intensive features. Moreover, enjoyable user experience in terms of

performance is often considered as the main parameter to measure the success of any

app. Poor implementation of source code, lack of developers knowledge, and time con-

straints on resolving performance issues are few of the major potential performance

drawbacks in Android applications.

To overcome these performance issues, in this dissertation, we focus on investigating

the performance-related issues in open-source Android application (mainly apps from

GitHub). Our thesis can be divided into four key research objectives: (i) initially we

investigate on the extent to which developers consider performance issues in their com-

mits (while maintaining their apps) and how they document it, (ii) to complement this

study, we conduct an experiment to study the evolution of Android specific performance

issues detected by Android Lint, and based on the obtained results, (iii) we introduce

an Eclipse plugin that can be used to automatically resolve seven types of performance-

related issues detected by Android Lint; in addition to this, we performed a survey-based

study to analyze the self assessed performance refactoring code of the proposed tool from

the developers’ perspective; and (iv) we design and conduct a measurement-based study

to examine the impact of performance violations at run-time.

The key contributions of this thesis are (i) a taxonomy of developers’ concerns about

performance, obtained by applying card sorting technique on a dataset of commit mes-

sages extracted from GitHub, (ii) the empirical research considering seven types of per-

formance issues identified by Lint tool resulted: (a) a taxonomy for different kinds of

evolution patterns of Android performance issues emerged by tracing the history of

Android apps, (b) a catalog of documented performance issues resolved by Android de-

velopers, (iii) an automatic refactoring tool to address the seven types of performance-

related issues of Android Lint, (iv) developers perspective related to refactoring and

non-refactoring code in the form of survey responses, and (v) a measurement-based

study to analyze run-time performance of Android apps. These results provide develop-

ers a base to take the next leap in solving performance-related issues in the mobile apps

of the future.
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Chapter 1

Introduction

1.1 Mobile Applications and Performance

The current society is mainly driven by smart gadgets such as mobile phones, Personal

digital assistant (PDAs), laptops and tablets to get digital services in various domains

of life. It is expected that this dynamic trend is going to increase rapidly in the coming

years due to technological advancements and digitalization with the number of con-

nected devices increasing from 4.3 billion in 2019 to 7.2 billion in 2023 worldwide [68].

The widespread diffusion of smartphones is directly proportional with faster growth of

mobile applications (apps)1 to ease the human life in various key applications such as

online shopping, social networking, and net banking etc. The underline apps economy is

forecasted to rise from 62 billion USD in 2016 to 139 billion USD in 2021 [12], especially

when the gaming app industry is projected to generate a revenue from 11.3 billion to

33.8 billion. Moreover, the time spent on surfing various mobile apps is 3.2 hours on an

average for the age group between 18-24 [78] (Fig. 1.1 reports for other age groups as

well). The Android operating system is playing the lead role in this phenomenal apps

revolution, as it is popular and the most used among all the age segments in countries

like the US and UK [78]. As of 2017 [13], nearly 3.5 million Android apps are published

over the Google play store (The official online store for Android apps) and downloaded

a billion times annually (82 billion downloaded in 2016).

The huge diffusion of mobile phones and apps stimulates end users to perform various

tasks like managing a bank account, health-monitoring information, and buying online

products etc. in a single touch. However, the continuous increase in users demand for

new features (especially apps like games and video streaming) can trigger performance

issues in mobile apps. Performance is a crucial aspect in any app because it can provide

1In the rest of the dissertation, we use apps as an acronym for applications

1
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Figure 1.1: Number of hours spent by different age groups on mobile apps [78].

various critical mobile services in the cases where the margin of error is thin. A good

case example can be monitoring accuracy and delay related to critical services for the

aeronautical and military industry. Nevertheless, an enriched user experience increases

good reviews and rating that ultimately result in the success of any app. Whereas apps

which exhibit bad performance not only impede users to fully use some features but also

may not survive long in the market competition.

Liu et al. [9, 83] randomly crawled 60,000 Android apps from Google Play Store and

by analyzing the user reviews and release logs, they found that more than 11,108 apps

were suffering or have suffered from at least one performance issue. Moreover, 75% of

apps tend to have been uninstalled in the first three months [28] and poor performance

is ranked as the second potential reasons for the app removal [27]. Therefore, it is very

crucial to consider performance as a top-priority aspect for app developers during app

development (i.e., need to give more attention).

1.2 Challenges

In recent years, researchers are more concerned about performance issues for mobile

apps and studied them from different dimensions. Liu et al. [83] conducted a study by

identifying and characterizing 70 real-world performance bugs in 8 android application

and came to a consensus by boiling them down to three main categories as GUI lagging

(53/70), energy leaks (10/70), and memory bloat (8/70). Among these three categories,

GUI lagging (53/70) is said to be more recurrent than energy leaks (10/70) and memory

bloat (8/70). On the other hand, few studies are dedicated to analyzing different types of

code smells in mobile apps [55][101], such as resource leaks, member ignoring methods

(MIM), getters and setters etc. However, there is still more work that is required to



Introduction 3

deeper understand performance issues (and its categories) during the development and

maintenance of real-time Android apps.

Static code analysis tools have been largely used for identification of various code smells,

including performance-related smells. Such tools use keywords based pattern matching

to highlight the problematic statements, while others perform a more detailed and ac-

curate analysis that includes data flow analysis. Regarding the static analysis tools i.e.,

FindBugs2, and PMD3 scan Java projects to fulfill some common goals, such as ensuring

the overall correctness of the source code. However, there are few tools like Paprika [63],

PerfChecker [83], aDoctor [92], and Android Lint [5] that are more specific to Android

applications. However, there is still a wide scope to investigate the evolution of per-

formance issues over the whole span of projects. These details may allow developers

to detect some types of performance issues at early stage of development. In addition

to this, further research is needed to analyze how the Android-specific performance-

related issues are resolved and documented by developers in open source apps available

on GitHub.

As discussed, the main purpose of many static code analyzers is to highlight the perfor-

mance issues and provide some useful suggestions to manually resolve it. However, there

may be few hardships to manually resolve performance issues, e.g., (i) lack of knowledge

to resolve them, (ii) time and effort to resolve them e.g., HandlerLeak, (iii) issues that

do not affect the functionality of app, but can degrade the performance of app, effort

has been already highlighted as a drawback of the current process to fix performance

issues. A potential solution to these issues is an auto-refactoring tool, that can automat-

ically resolve the performance issues. Building an automated refactoring tool to address

performance issues is still an open problem.

1.3 Research Questions

The goal of this dissertation is to analyze the performance issues of Android apps with

the purpose of investigating various aspects with respect to identification, evolution, and

resolution of performance issues from the viewpoint of developers and researchers in the

context of open-source Android apps.

To achieve the above goal in the context of free, open-source Android apps, we formulated

the following three main (high-level) research questions in this dissertation.

2FindBugs - Find Bugs in Java Programs. http://findbugs.sourceforge.net/
3PMD - an extensible cross-language static code analyzer. https://pmd.github.io/

http://findbugs.sourceforge.net/
https://pmd.github.io/
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RQ1 Which are the most recurrent types of performance-related issues observed in the

developers commits for Android apps?

Performance issues have been analyzed from various aspects (i.e., from apps bug

reports) but not well-explored through the commit messages. This research ques-

tion focuses on analyzing the performance-related commits with the aim to identify

different types of performance problems in Android apps. This research question

will be answered in Chapter 4.

RQ2 How do the performance issues identified by Android Lint evolve in Android apps?

This research question emphasizes on the evolution of performance issues through-

out the lifespan of Android apps by inquiring to what extent these types of issues

are resolved and documented by developers. Chapter 5 shows the results for this

research question.

RQ3 Is it possible to automatically resolve statically-detectable performance issues in

Android apps?

This research question investigates the information obtained from RQ2 to auto-

matically resolve such issues. Chapter 6 describes the proposed solution for this

research question.

1.4 Research approach and method

In order to address the different flavor of research questions, we adopted various methods

and approaches. Few of them are briefly explained below.

� Mining Software Repositories (MSR) is a software engineering field used to

extract useful pattern and phenomenon from the data of software projects [24]

such as issue tracking systems, communication lists (e.g., email), bug tracking sys-

tems (e.g., Bugzilla), version control repositories [16] etc. and also analyze the

relationship between two variables. Various data mining techniques are usually

anticipated for the data analysis purpose. The MSR field allows researchers and

software practitioners to empirically evaluate the different artifacts of a software

project, which will help them to understand various parameters of software evolu-

tion, and changes over time [70].

� Card Sorting is a qualitative method to organize and give a meaning to some

unstructured or scattered information. Participants use cards to arrange different

topic into categories and then label the each category accordingly. Generally, Card

Sorting is applied in software engineering to evaluate some useful categories from
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available data. There are two types of Card Sorting i.e., Open Card Sorting and

Closed Card Sorting. In Open Card Sorting, participants are advised to analyze the

data (content) and label it according to the best-described content. This technique

is generally adopted when there are no such predefined groups available, whereas,

in Closed Card Sorting, predefined set of categories are available. Participant

analyzes the content and group them into given categories. [8].

� Experiments and Quasi-experiments The experimental study is done with the

focus to reveal the causal relationship between different variables. For instance,

to study the behavior of action X, we consider the impact of other factors or vari-

ables as constants. Generally, four factors should be formulated before conducting

an experiment i.e., (i) Independent and Dependent Variables, (ii) Treatment and

Hypothesis, (iii) Causality, and (iv) Matching and Randomization. Using random-

ization, various assignments of treatments (or subjects) are analyzed while setting

other variables as constant [6]. While in Quasi-experiment, researchers may not

have control over all these four factors, and thus try to analyze the causal rela-

tionship. In simple words, the assignment of treatment of subjects is not based on

randomization, rather evolve from the characteristics of subjects itself [119].

1.5 Contributions

The main contributions of this dissertation are provided below.

� A quantitative and qualitative study has been carried out with the aim of analyzing

the performance-related commits in 180 Android apps. The main contributions

of this study are twofold: the quantification of ”how much” developers are

concerned about performance issues, and the taxonomy of concerns,

which can be used as a checklist by developers

� The extensive empirical study to investigate how Android performance issues

evolve during the life cycle of 316 apps detected by Android Lint. The

findings of this study presented five different evolution patterns by tracing the

evolution history of seven types of performance issues. Furthermore, we manually

analyzed the previously resolved documented commits, and we provided a catalog

of solutions for each type of performance issue.

� To complement the above contribution, we introduced an auto-refactoring

Eclipse plugin with the aim of automatically resolving seven types of

performance issues reported by Android Lint. The proposed Eclipse plugin
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Figure 1.2: Structure of this dissertation.

is extended from Leafactor tool through implementing three new issues (rules) and

slightly modifying two existing rules.

� To evaluate the proposed tool, a survey-based study was performed to in-

vestigate the self-accessed auto-refactoring code from the developer’s

point of view. The survey involves 21 Android developers and features two

versions of code (i.e., before and after refactoring) for the seven types of Android-

specific performance issues. Developers’ responses with respect to code execution

and comprehensibility of refactored vs. non-refactored code versions.

� A measurement-based study is dedicated to analyze the run-time per-

formance of Android apps. This preliminarily study analyse CPU utilization

and memory consumption for the apps before and after the removal of the perfor-

mance issues.

1.6 Structure of this dissertation

Fig. 1.2 summaries the overall structure of the thesis, which is organized as below.

� Chapter 2 introduces the background, consisting of concepts and definitions used

in this dissertation work such as Mobile apps, Android Programming Model, and

static tools.
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� Chapter 3 presents the recent state-of-art work carried out in different areas related

to the scope of this dissertation.

� Chapter 4 provides the quantitative and qualitative study to analyze the perfor-

mance problems from GitHub commit messages. The main types of performance

problems are grouped from performance-related commits by applying the card

sorting technique.

Parts of this chapter are published in:

Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. A Quantitative and

Qualitative Investigation of Performance-Related Commits in Android Apps. In

ICSME 16 Proceedings of the 32nd International Conference on Software Mainte-

nance and Evolution, IEEE, 2016.

� Chapter 5 reports an empirical study aimed at investigating the evolution of per-

formance issues in 316 out of 724 analyzed Android apps i.e., when an issue is

injected and resolved in the apps. A total of seven types of performance issues

are considered in this study which is identified through static code analyzer An-

droid Lint. Moreover, this chapter also provides the snippet of examples, where

developers have resolved the performance issues and documented them.

Parts of this chapter are published in:

Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. Characterizing the

evolution of statically-detectable performance issues of Android apps. Empirical

Software Engineering (Journal), 2018.

� Chapter 6 proposes an auto-refactoring Eclipse plugin, developed to resolve the

performance-related issues of Android Lint. Moreover, this chapter also listed a

survey-based study which is conducted to analyze the usefulness of proposed auto-

refactoring plugin from the developers’ perspective. In the last part of the chapter,

a preliminarily measurement-based experimental study is discussed to measure the

run-time performance impact (i.e., CPU utilization and Memory consumption) in

the context of Android apps.

� Chapter 7 summarizes and concludes this dissertation. It also briefly discusses

possible future research directions.
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Background

This chapter describes an overview of the key concepts and definitions related to the

scope of research problems discussed in this dissertation. In section 2.1, we began with

a brief explanation of the mobile app and its different types. Furthermore, the Android

Programming Model is discussed in section 2.2. Finally, we conduct a recap of static

analysis and refactoring tools for Android apps in section 2.3.

2.1 Mobile Applications (apps)

A mobile application (acronym used as mobile app) is a compact program developed

to be deployed and executed on mobile phones and tablets. Mobile apps were initially

designed in the past for very professional oriented tasks such as weather prediction, email,

stock market etc. However, later on, as they started to attract a more diverse audience

(kids, young and older people) in almost every domain of daily life such as entertainment,

health care, banking, online shopping, social networking and many more. In a recent

report [87], experts mentioned that the annual revenue generated from such apps is

nearly 10 billion euros. The incremental growth in apps provided a positive impact on

the job market by providing around 1.8 million jobs in at least 28 EU countries.

The apps are programmed to run on a particular mobile OS. (i.e. Android, Windows

phone, iOS, Symbian, Blackberry) and the APK file (pre-installed version) for each

mobile apps are published over their digital distribution platform i.e., app market, which

is an online store for the distribution of apps. Currently, there are mainly three app

stores available which are popular and widely adopted among users; Google play store

owned by Google, App Store operated by Apple and Microsoft Store (previously known

as Windows Store) sponsored by Microsoft. As of 2017, Google play store1 has published

1Google play. https://en.wikipedia.org/wiki/GooglePlay

8

https://en.wikipedia.org/wiki/Google Play
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over 3.5 million apps and cumulatively more than 82 billion of different copies of apps

were downloaded until 2016. On the other hand, App store2 has more than 2.1 million

apps and altogether more than 130 billion of various copies have been downloaded until

January 2017. In Microsoft Store3, nearly 0.669 million apps were present until 2015.

Generally, APK file of apps can be directly downloaded and installed from these digital

distributed platforms into mobile phones. The two key terms review and rating are

associated with the mobile apps, indicate the success of any app. In this dissertation,

our research work is only focused on Android apps.

2.1.1 Types of mobile apps

The mobile apps can be mainly categorize into three types.

� Native apps are implemented to run on a specific mobile operating system. In

other words, an app developed on one particular OS platform can not run on

another operating system e.g., Android native app will not work on iOS; instead,

it will only work for its Android operating system. The key benefits of developing

native apps are advanced graphics, pleasant user experience, and high performance.

Moreover, developers use native device UI and have access to a larger variety of

API’s that does not constraint the app utilization. The problem with native apps

is platform fragmentation. Since code written in one platform is not compatible

with other platforms which leads to higher maintenance and testing costs, and

consume more implementation time [26].

� Hybrid apps are developed via multi web-based technologies disguised in a native

wrapper. Hybrid apps are comparatively more straightforward and quicker to

implement. Since there is one code written for all platforms, which results in low

maintenance cost and easier updating process. The major demerits of hybrid apps

are; (i) slow in execution, (ii) less performance and optimization concerning native

apps, and (iii) potential design problems may occur because an app coded for one

platform does not need to look absolutely similar in another platform [26].

� Web apps are designed using web technologies and need a web browser to execute.

Usually, they are programmed in CSS, HTML5, and JavaScript.The data related

to web apps are stored in the database server. Therefore it consumes relatively

less memory as compared with storage in smartphones. Moreover, to observe an

enjoyable and user-friendly experience, it is mandatory to have a good Internet

2App store (ios). https://en.wikipedia.org/wiki/AppStore(iOS)#Mostdownloadedapps
3Microsoft store (digital). https://en.wikipedia.org/wiki/MicrosoftStore(digital)

https://en.wikipedia.org/wiki/App Store (iOS)#Most downloaded apps
https://en.wikipedia.org/wiki/Microsoft Store (digital)
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connection because the data will be sent and retrieved from the server. The main

disadvantage of web apps is that it would not be possible to use all the API’s [26].

2.2 The Android Programming Model

Android is a Linux-based open-source operating system introduced by Google. Cur-

rently, it is among one of the most famous and highly used mobile app platform[17][4].

Mobile apps running on the Android platform are mostly developed using the Java pro-

gramming language and are built via the Android Studio4. However, in some cases,

developers use the Android Native Development Kit5 (NDK) for implementing parts of

their apps through native code, mostly in C and C++. NDK is often used when devel-

opers need to reuse libraries written in C or C++ (e.g., the OpenCV vision library6) or

for processor-intensive tasks. An Android app is always built into a so-called Android

PacKage (APK) which contains the compiled code, the used libraries, an XML-based

manifest file providing essential metadata about the app (e.g., used permissions, unique

identifier, supported Android APIs, etc.), and the local data and resource files that are

required by the app at run-time. The APK of an Android app can be published in the of-

ficial Google Play store to make it available and directly installable to Android-powered

devices.

Android apps are composed of mainly four types of components: Activities, Services,

Broadcast Receivers, and Content Providers [1]. Activities can be performed on the

single screen of the user’s app interface and can be able to do; (i) reaction to user events

(i.e., a touch on the screen) and (ii) updation to the user interface for providing informa-

tion. An Android app can usually perform multiple activities to provide a cohesive user

experience. For example, the app’s screen showing the user to fill the personal details for

reservation of flight ticket could be managed by a dedicated activity, whereas another

activity may be in charge of managing the screen for showing the list of available flights

for a given destination. Services are the components which run in the background to

perform long-running operations e.g., a service might play music in the background in-

dependently and may not dependent on the current tasks being executed in the app by

the user. Broadcast receivers allow apps to react to events asynchronously. Broadcast

receivers can receive events coming either from other components of the app or from

other apps, sensors, or system services. As an example, if the user receives a message

containing the geographical position of one of its contacts, then the messaging app can

4https://developer.android.com/studio
5https://developer.android.com/ndk
6https://opencv.org/platforms/android/

https://developer.android.com/studio
https://developer.android.com/ndk
https://opencv.org/platforms/android/
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Figure 2.1: Life-cycle of an Activity.

open the corresponding mapping app on the user’s device by launching an intent tar-

geting the broadcast receiver of the mapping app. Finally, Content providers provide

an abstraction layer for the data managed by the particular app. They can be queried

and accessed by other components of the app (e.g., performing CRUD operations on

the data), provide standard data validation policies, and can make the data accessible

to other apps (if needed) etc. Content providers offer a common API for accessing

data independently by its internal persistence strategy. The data delivered by a content

provider can be internally stored in a dedicated local database, file system, or in a server.

For instance, in a messaging app, all the messages exchanged between the app users and

its contents can be stored in a dedicated content provider and made available to all the

other components of the app.

The communication among the various components within the Android application is

carried out through the Intents. An Intent contains the short details of the operations

or tasks that are going to be executed, and further, it can also be used to plea and invoke

any specific actions from the other components of the app.

Furthermore, every application essentially follows some well-defined states which are

called lifecycle of an activity [7]. Fig. 2.1 describes how an activity is created, utilized,

and in the end, destroyed. Generally, the lifecycle of any activity is composed of seven

different states, however, developers can have their logic to interpret the callbacks of

each state. It can be shown in the Fig. 2.1, when an application is launched to create an
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activity oncreate() state is called, whereas onStart() handler will be invoked to visible the

activity to user, this is the time when application is prepared to enter in the foreground

state. Activity will go to the foreground or Running State (the state where the user

interacts with activity) when the onResume() is called. However, if any other activity

comes to the foreground state, then the onPause() is called. Moreover Onstop() state is

called when the activity is no more visible and onRestart() state is anticipate to make

activity visible again from Onstop(). There may be cases when stopped, and paused

activities can be forcefully killed due to immediate releasing of memory by the system

to accommodate higher priority apps. In the last onDestroy() will call if the activity is

finished or destroyed/killed by the system.

2.3 Static analysis and refactoring tools for Android apps

This section is composed of two sub-sections. Section 2.3.1 describes some of the avail-

able static analysis tools which are prominently used to detect performance issues.

Whereas, section 2.3.2 is dedicated to explore various auto-refactoring tools which is

utilized to auto-resolve various issues, including performance-related issues.

2.3.1 Static analysis tools

The fundamental purpose of static analysis tools is to ensure the quality of the software

system by inspecting the code, without actually running it. The static analysis tools can

be executed on different granularity level i.e., on APK files, byte code, source code or any

other artifacts to search for bugs. There are various reasons [69, 81] behind the massive

popularity of static analysis tools in both industry and academia researchers. Moreover,

many static analysis tools are conceived for Android apps and work on the different

principals (techniques) including; keyword-based searching, control flow to data flow

analysis, interval analysis and much more [81]. Among the available static analysis tools

for Android platforms, many allow developers to highlight performance-related bugs.

Some of them scan the source code of the project, some would analyze the metadata of

the APK file, and while others would consider byte code as input with the aim to identify

performance-related issues. In the following, we will recap some of the primarily adopted

tools to find the performance-related issues in Android apps. Moreover, we classified

them into two types (i) first, those which are used commonly in Java-related projects

i.e., general-purpose tools and (ii) others that are more precise to Android applications.



Background 13

FindBugs7 takes Java byte code as input, by analyzing, it can detect various code

defects in Java projects. As it is an open-source static analysis tool, the configuration

of FindBugs in the programming platforms is rather simpler such as in Eclipse IDE,

and Netbean through ANT or maven settings. Moreover, it is smoothly executable from

its official graphical user interface as well as from the command line. Since FindBugs

is a general-purpose tool, so it can cover a wide range of code defects and also have

separate categories for them such as correctness, maintainability, and performance issues

etc. Each category is further divided into subcategories with a low, medium, or high

severity.

PerfChecker is conceived to detect two kinds of performance-related anti-patterns in

Android apps, i.e., (i) lengthy operations in the main thread of a program, and (ii)

violations of the viewholder pattern [83]. PerfChecker analyzes the Java byte code

through the Soot framework8, and throws a warning to the developer in case of such

types of violations are found.

PMD9 scans the Java projects in order to check for syntactic mistakes in the source

code. Moreover, it is an open-source analyzer that can find bad programming habits

and deficient code, which collectively lead to poor performance [20].

Paprika tool is capable to find the performance smells in open-source Android apps [63].

It receives APK file and its parsed metadata (such as app name and package) as input,

generates a set of raw metrics related to Android programming model (also related

to object-oriented (OO)). Initially, along with raw data (such as metrics, entities, and

properties), the model is computed and then further, converted into a graphical model

(stored in a database Neo4j). Then Paprika allows developers to detect different types

of anti-patterns (e.g., bob class, MIM [63] etc.) by applying respective queries to the

database. The working of Paprika tool is dependent on the Soot10, a popular framework

for Java code optimization.

aDoctor is completely an automatic linter with good ability to identify 15 types of

Android code defects [92]. Among various code smells detected, 7 are about the perfor-

mance related issues such as Inefficient Data Structure (IDS), Internal Getter and Setter

(IGS) and Leaking Inner Class (LIC) etc. Palomba et al. [92] transforms various rules

into a tool (aDoctor), which are exactly described in the catalog proposed by Reimann

et al. [101]. Furthermore, aDoctor utilizes the abstract syntax tree of the program and

trigger the bug based on the rules similar to the one defined in [101].

7FindBugs - Find Bugs in Java Programs. http://findbugs.sourceforge.net/
8Soot - a framework for analyzing and transforming Java and android applications. http://www.

sable.mcgill.ca/soot/.
9PMD - an extensible cross-language static code analyzer. https://pmd.github.io/

10Soot - a framework for analyzing and transforming Java and Android applications. http://www.

sable.mcgill.ca/soot/.

http://findbugs.sourceforge.net/
http://www.sable.mcgill.ca/soot/.
http://www.sable.mcgill.ca/soot/.
https://pmd.github.io/
http://www.sable.mcgill.ca/soot/.
http://www.sable.mcgill.ca/soot/.
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Android Lint11 is one of the most widely used among the Java and Android developers.

It takes Java code file or XML file (or whole Java project) as input and highlights several

types of issues12. Android Lint can be operated via command line as well as through

IDE plugin (as it can be easily integrated with Eclipse and by default present in Android

Studio). Like FindBugs, Android Lint has a dedicated category for each types of issues

such as accessibility, performance, security, and usability etc.. Furthermore, each issue

type has its subtypes, such as DrawAllocation is a sub-issue type of performance category

deals with avoiding the allocation of objects during the draw operation inside onDraw

method as described in Listing 2.1

DrawAllocation

--------------

Summary: Memory allocations within drawing code

You should avoid allocating objects during a drawing or layout operation.

These are called frequently, so a smooth UI can be interrupted by garbage collection

pauses caused by the object allocations.

The way this is generally handled is to allocate the needed objects up front and to

reuse them for each drawing operation.

Some methods allocate memory on your behalf (such as Bitmap.create) and these should be

handled in the same way.

Listing 2.1: DrawAllocation description by Android Lint Tool

In this dissertation, we select Android Lint for multiple reasons; (i) it considers com-

paratively a higher number of frequent Android-specific performance issues, (ii) it has a

separate category for performance-related issues in Android13, (iii) it is integrated within

Android Studio (i.e., an official development platform for Android apps), being the stan-

dard de facto tool for Android apps, and (iv) it can smoothly run from the command

line, effortlessly incorporated with other environments, and used into a broader set of

software pipelines, similarly to those we implemented in chapter 5 (see Section 5.1.3).

2.3.2 Automated Refactoring Tools

There are few tools as well as plugins available to perform auto-refactoring. A summary

of which is reported below for Java and Android apps.

11Android studio project site. http://tools.android.com/tips/lint
12Android lint checks. http://tools.android.com/tips/lint-checks
13At the time of writing only FindBugs also provides a dedicated category for performance-related

issues, but it is not specific to Android apps.

http://tools.android.com/tips/lint
http://tools.android.com/tips/lint-checks
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Walkmod14 is an open-source tool used to strengthen the code by automatically resolving

the Java coding style issues of CheckStyle, PMD and SonarQube.

Facebook pf 15 consists of different APIs and tools to examine various aspects related to

the source code. These aspects may include; code navigation, code visualization, static

code analysis, or code-to-code transformation (i.e., refactoring of source code). Pfff

can provide support to various languages such as C, PHP, Javascript, and Java. It is

also preliminary compatible with a few other languages such as C++, C#, CSS, Rust,

Haskell, Erlang, SQL, Python, Lisa, Html, and OPA.

Kadabra tool16 is used for transferring and instrumenting java-to-java source code. It

works on the spoon which is an open-source library. This project is still under develop-

ment phase.

AutoRefactor17 is one of the popular open-source Eclipse plugins for automatically re-

solving the code smells in Java projects. The AutoRefactor allows developers to perform

refactoring in many ways ranging from cleaning up the unnecessary code to replacing

the piece of code with the more efficient version of the code etc. Furthermore, these set

of rules can be applied individually (on a file) as well as collectively on a given input

project.

Leafactor is an eclipse plugin, working on the principles of AutoRefactor tool. It can be

conceived with an intention to auto-resolve some of the performance-related issues listed

by Android Lint. Leafactor covers five rules for Java code base and one rule for XML

resource files [45]. These rules includes DrawAllocation, Recycle, ViewHolder, WakeLock

and ObsoleteLayoutParam (rule for XML). Leafactor tool takes a file or project as input

then it looks for the above described five performance issues and automatically refactor

them by transforming the performance smell code with a more optimized version of code.

In chapter 6, we extend the Leafactor plugin to provide an automatic solution for

performance-related issues in Android apps.

14WalkMod. http://walkmod.com/
15Facebook pf. https://github.com/facebookarchive/pfff
16Kadabra. http://specs.fe.up.pt/tools/kadabra/
17AutoRefactor - Eclipse plugin to automatically refactor Java codebases. https://github.com/

JnRouvignac/AutoRefactor

http://walkmod.com/
https://github.com/facebookarchive/pfff
http://specs.fe.up.pt/tools/kadabra/
https://github.com/JnRouvignac/AutoRefactor
https://github.com/JnRouvignac/AutoRefactor
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State of the Art

In this chapter, we will discuss state of art studies on topics that are close to those

analyzed. The literature studies related to performance issues in mobile apps is explained

in section 3.1, evolution of statically-detectable issues are addressed in section 3.2, while

studies using linters are discussed in section 3.3.

3.1 Performance issues in mobile apps

Many recent studies focused on the identification and characterization of performance

issues. Liu et al. [83] performed an empirical study to investigate performance-related

bugs in 8 well-known Android apps. They manually classified the 70 performance bugs

into three main categories i.e., GUI lagging, energy leak, and memory bloat. According

to their findings, GUI lagging is the most frequent category with 75.7% bugs followed

by energy leak with 14.3% and memory bloat with 11.4%. In the later part of their

research, a static analysis tool—PerfChecker— was proposed to detect the two types of

performance-related anti-patterns in Android apps.

Few efforts are also done to identify the performance issues from the developers point

of view. Linares-Vsquez et al. [113] investigated the performance bottlenecks and the

best practices to tackle them by interviewing 485 developers. The findings of their study

show that developers mainly rely on static analysis tools for performance profiling as well

as for debugging the Android apps. Regarding the best practices adopted, developers

usually use multi-threading to resolve and improve performance bottlenecks.

One of the recent study conducted by Moura et al. [89], used the same approach as we

did in Chapter 4. However, the context of their study is to analyze the energy-aware

16
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commits whereas our Chapter 4 is more tilt towards analyzing the performance-related

commits.

Over the years, various studies emphasis on identifying the performance issues via au-

tomated tools. For instance Nistor et al. [91] introduced a technique—SunCat—which

can help developers to understand the performance issues by applying small common

input and predict the potential issues for larger inputs. Whenever developer executes

the application with common input then SunCat tool builds a list of recurrent patterns

with some extra information to help developers in the future for larger inputs. To an-

alyze the usefulness of their approach, Nistor et al. applied SunCat on the 29 different

scenarios, which are taken from 5 Windows phone apps. Their results indicated that

SunCat were able to find 9 performance issues.

Gomez et al. [54] proposed a context-aware approach named DUNE, intending to high-

light UI performance regressions in previous releases of Android apps [54]. DUNE

operated on two principles; (i) initially, it generates an ensemble model from the UI

performance metrics obtained via previous test runs and (ii) Further, in next new test

run, it will pinpoint the possible performance defects with deviations. To validate their

approach, they conducted empirical study which involved three Android apps.

In many previous studies, performance smells are investigated in the context of energy

aspects, such as bugs related to networking, sensors, non-sleep, and general [84, 95, 96,

116, 121]. All these studies are either conducted on app repositories or some forums.

Where as Linarez et al. [112] investigate the API calls to detect the energy related

code smells in 55 open-source Android apps by measuring through hardware power

monitor. The findings of their study indicate that some design and implementation

patterns can heavily impact the energy consumption in apps such as the usage of Model-

View Controller, information hiding, or else development of the persistence layer by

using a relational database. In chapter 4 of the thesis, we provided a quantitative

and qualitative study on performance commits that resulted in different performance

categories such as Local database, Networking, and load time etc.

Also, Cruz et al. [44] analyzed the impact of Lint based performance issues in the context

of energy efficiency on six Android apps. The most important observation of their

research work was that by resolving the few types of Android Lint based performance

issues can save battery usage by one hour. The different types of performance issues

associated with battery life improvements are; DrawAllocation, ObsoleteLayoutParam,

Recycle, ViewHolder, and WakeLock. Cruz [44] introduced a tool named Leafactor aimed

to auto-resolve various performance issues (mentioned above) to improve the energy

consumption in Android apps.
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Similarly, in another extensive study, Cruz et al. [46] presented a catalog highlighting

22 different design patterns that reduce the energy efficiency of apps. The study is

based on the analysis of commits, issues, and pull requests of 1027 Android and 756 iOS

apps. Results of their study highlight that the iOS developers would have less awareness

regarding improvements of energy efficiency with respect to Android app developers.

Palomba et al. [93] conducted an extensive empirical study with the aim to analyze the

impact of code smells on energy consumption of mobile apps. In particular, investigating

on (i) how to identify energy-related code smells in the source code of mobile apps, and

(ii) whether refactoring activities such as removing these smells can improve the energy

efficiency. The study was carried out on nine method-level code smells specify for 60

Android apps. Results of their study showed that the four types of issues i.e., Internal

Setter, Leaking Thread, Member Ignoring Method, and Slow Loop methods consume

87 times more energy than the other types of code smells. Furthermore, refactoring of

these code smells (i.e., removing the code smell) can significantly improve the energy

efficiency of Android apps.

Guo et al. [55] identified and characterized the resource leaks in Android apps. The

presence of resource leaks can lead to app crash or performance degradation. Authors of

this study proposed a lightweight tool named Relda, aimed to automatically detect the

resource leaks by focusing on the application resource operations and help the developers

by identifying the root causes of missing release operations.

Many past studies have been focused on adopting the profiling approaches to measure

the performance optimization [98, 99] for mobile apps. For example, in [98], Qian et al.

look into the interaction between the resource management layer and the application

layer to detect inefficiencies in the usage of those resources that are mainly accountable

for performance degradation in mobile apps.

Moreover, Habchi et al. [56] conducted an extensive interview-based study in order to

understand the different aspects (e.g., bottlenecks, limitation and best practices) of

performance issues identified through Android Lint. Their study involved a total of

14 Android developers and adopted qualitative research methodology using Grounded

Theory [31]. Along with other findings, their study shows that Android Lint can allow

developers to take advantages in the form of learning the Android framework, quickly

detecting performance issues and foresee the possible performance bottlenecks. More-

over, the study further revealed that how Android Lint is used e.g., in some cases, it

is used to fulfill the need of an individual development, in some cases, it is significantly

used on a team level, and while in other cases it is purely exploited for the performance

optimizations purposes. The study also reported some key obstacles that restrict the

use of Android Lint such as the perspective that linters is not beneficial in terms of
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performance, some organization follow reactive approach to deal with the performance

aspect, and outcomes of analysis does not well presented to developers.

Hecht et al. [62] analyzed the real-time performance impact of three Android code

smells on two open-source Android apps. They exploit PAPRIKA tool to detect the

three Android code smells in their study i.e., Getter/Setter, Member Ignoring Method,

and HashMap Usage. Hecht et al. analyzed the four versions of each app independently

as well as all of them. And then measure the UI and memory performance using a

case scenario in order to analyze the four metrics i.e., frame time, number of garbage

collection calls, number of delayed frames, and memory usage. Their findings show

that by resolving these three Android code smells can improve the UI and memory

performance. More precisely, they observed an up to 12.4% enhancement on UI matrices

while resolving the Member Ignoring Method (MIM) smell and about 3.6% related to

memory matrices while addressing all the three code smells.

To understand code smells in mobile apps, Palomba et al. [92] proposed a fully auto-

mated tool named aDoctor, identifies 15 Android-specific code smells, that are already

described in the catalog presented by Reimann et al.. Further, to analyze the useful-

ness of the proposed tool, they conducted an empirical study which involves 18 Android

applications. Result of their research indicated that aDoctor is promising in identifying

the different code smells with nearly 98% of precision and 98% of recall.

Habchi et al. [58] conducted a large empirical study to examine survival life span of

Android code smells. The study considered 8 different types of code smells in 255k

commits of 324 Android apps along with history of 180k instances of code smells. The

findings of their research suggest that about 75% of code smells are eliminated in the 34

commits on the host file. Moreover, such smells are resolved faster for the projects that

are larger in terms of classes, developers and commits. Another interesting observation

can be drawn that the code smells identified through Android Lint tend to remove faster

than other types of issues, and thus have very little chances of survival. Furthermore,

the granularity of code smells has greater impact on survival chances i.e., code smell

hosted by class are likely to survive higher than the inner classes and methods.

3.2 Evolution of statically-detectable issues

There are various studies that have been done in the past, which emphasize on the

evolution of code smells identified by various tools. For example, Paprika has been

used [61] for investigating the evolution of quality metrics of Android apps over time.

The study involved seven different anti-patterns (4 were related to Android and 3 were
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Object-Oriented) of PAPRIKA tools. The Android specific smells include; Member

Ignoring Method, Leaking Inner Class, and UI Overdraw. These identified anti-patterns

are exploit to observe the quality of the apps. The evaluation of their study is based on

running the Paprika on different versions of 106 apps, gathered from Google Play Store.

The baseline of software quality is measured through the complete set of considered apps.

Further, in order to measure the quality of each versions of the app, they calculated the

deviation with respect to baseline of the software system. The results of the study

projected the relationship between various anti-patterns (e.g., the complex class and

blob anti-patterns tend to evolve together) and finally, they provided five different quality

evolution patterns. Similar to this, in Chapter 5, we also present five different evolution

patterns emerged from the investigating the lifetime history of 316 apps.

An empirical study is carried out by Di Penta et al. [97] focuses on the evolution of

different vulnerabilities in the source code. In their study, three different tools namely

Splint, Rats and Pixy were executed on three popular large scale networking apps (i.e.,

Squid, Samba and Horde) with aim to analyze the evolution of various issues over time.

In the Chapter 5 of our thesis, we performed similar kind of evolution study; however our

context is related to performance issues (from Android Lint), and the object of the study

is relatively much larger i.e., 724 apps. Whereas, Di Penta et al. ran the tools on the

lifetime of three projects and their study was mainly emphasized on the security-related

vulnerabilities.

Another study investigating the evolution of four code smells over the whole span of

two large scale open source applications (i.e., JFlex and JFreeChart) is performed by

Chatzigeorgiou et al. [40]. The issues considered in their study were Feature Envy

problems, Long Methods, God class, and State Checking smells. The key outcomes of

the study reflects that code smells tend to remain up to the latest releases of the app.

Furthermore, survival analysis indicated that whenever the issues are injected, they

survived (remain alive) quite long in the source code repository. And most noticeable

result was that few resolutions were analyzed and the purpose of resolution was not

intentional (e.g., refactoring) but rather unintentional (e.g., issue resolved while doing

some other activities like implementing a feature or performing a change in some part

of code.).

Tufano et al. [110] conducted an extensive study focusing on the survival analysis of

bad code smells. Their study considered all the commits of 200 open source software

systems extracted from the GitHub. The results reports in their study indicated that a

majority of analyzed smells tend to remain alive in the system (i.e., 80%)and only 9%

of the issues were resolved with intention to perform the refactoring tasks. The main
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difference with Chatzigeorgiou et al. [40] and Tufano et al. [110] work and what we did

in Chapter 5 is we consider the performance-related issues instead of bad code smells.

A preliminary study targeted at investigating the time to fix a bug from its introduction

was conducted by Kim, et al. [74]. Their primary focused was on the distribution times

of bug fixing of two projects named as PostgreSQL and ArgoUML. Moreover, their

results also reported the top bug fixing times.

Few past studies used survival model to perform the survival analysis. For example,

Wedel et al. [117] used cox proportional hazard model to investigate the occurrence of

bugs in Eclipse. Whereas Canfora et al. [39] also used same survival model but their

context of the study is on the survival time of bug rather than occurrence of bug fixes.

Various work have been done to analyze the distribution of occurrence of bugs. The

results of studies [67],[74] indicated that main trend occurrence of bugs was related to

system and they follow exponential and Weibull distributions. Whereas in the Chapter 5

of this thesis, we apply six different distributions on our identified issues with aim to

investigate if any types of performance issue follow some specific type of distribution.

Some of such studies also focused on the automated detection of anti-patterns and their

decays in continuous integration (CI). For instance, Vassallo et al. [115], initially sur-

veyed 124 developers regarding CI anti-patterns. Then, they have proposed a tool named

CI-ODOR, which detects the occurrence of four types of anti-patterns by analyzing the

information of build logs and repositories. Moreover, they exploit the tool on 18,474

build logs of 36 widely used Java projects. The output indicated that there were 3,823

high-level warnings, which were distributed across all the considered projects. They

validate their study by giving CI-reports to 13 original survey developers and through

general feedback, 42 of them acknowledged the relevance of their reports.

To observe the refactoring activities in open-source projects, Vassallo et al. [114] per-

formed a large-scale empirical study considering the change history of commits in 200

projects to investigate (i) developers’ refactoring activities and their diffusion, (ii) the

temporal context in which the refactoring operations are carried out, and (iii) the critical

developer-related factors that can lead to the refactorings. The findings of their study

showed that developers do not perform refactoring very frequently, but whenever they

do perform, the most commons methods are; Rename Method, Rename Class, and Move

Field. Moreover, the refactoring activities are generally carried out usually after at least

one year from the start of the project or when the new version is about to release. Fur-

thermore, enhancing features and bug fixing are the common developer-oriented factors,

which leads to refactoring. And in the last developers tend to improve the design of the

project when their workload is less than medium.
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Mazuera-Rozo et al. [88] conducted a recent study aiming to investigate performance

bugs in mobile apps. The study involves 500 commits extracted from 47 Android apps

and 31 iOS apps (i.e., 250 commits per each operating system). The main contribu-

tions of their study are (i) taxonomy of different types of performance bugs occurring in

Android and iOS mobile apps, and (ii) survivability of such identified performance bugs

i.e., time taken (in days) from bug introduction to its resolution. The findings of their

study showed that resource leak performance bugs are quite recurrent in Android apps

(96 instances) followed by performance bad practices (47 instances). The resource leak

performance bugs are broadly categorized into memory leak (61 instances) and subopti-

mal CPU usage (32 instances). Regarding the potential performance bugs affecting iOS

apps are also related to resource leak (120 instances) with the majority of them related

to memory leaks (110 instances). Moreover, on average, bug survives for 98 days, and it

may increase to 178 days for the random-effects model, and up to 342 days for the max

estimated survivability. Furthermore, performance bugs of type ”resource leak” tend to

survive longer with respect to other types of considered issues. Our study is different as

we analyzed the performance issues in only Android apps with a much higher dataset of

457 commits distributed over 180 apps (Chapter 4). Also, we analyzed the survivability

of 1314 performance issues of 316 Android apps (Chapter 5), which is much larger than

their study. Whereas, their study presented a nicer taxonomy of performance bugs and

survivability analysis of such issues in both Android and iOS mobile apps.

Various studies on API migration have been done in the past. For instance, Halrubaye

et al. [33] discussed the effect of library API migration on software quality. They

computed commonly used values of software quality both for before and after migration

of 9 widely used APIs, which were occurred in the corpus of 57,447 open-source Java

projects. The findings of their study revealed that the library API migration tend to

improve the different aspects of software quality, such as increased cohesion, reduced

coupling, and improved code readability. Moreover, they introduced an online portal for

software developers, which can be used to understand the preliminarily effect of library

migration on software quality and to provide the best design and implementation-related

API migration examples that can improve the quality of software. Furthermore, they

also offer a large dataset to the software engineering community with the aim to stimulate

the library API migration research.

Lamothe et al. [76] investigated on the automatic API migrating techniques in prac-

tices. Their study analyzed the practical experience of the use of API migration in

(Android) apps mined from the FDroid repository. For analysis, this study considered

different documentation and historical code changes. The findings of this experience-

based study showed that there are various challenges in the migration through historical

code changes, and API documentation is significantly underestimated. The majority
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of migration from depreciated API’s to add a new API can be recommended through

making a simple search in the documentation. Moreover, their practical experience sug-

gested that API migration problems lie far away from the migration suggestions, e.g.,

coping with parameter type varies in the latest Android APIs.

3.3 Studies using Linters

Studies using linters have been done in different contexts, for example, to investigate the

usefulness of linters in dynamic programming, a study is conducted by Tmasdttir et al.

[109]. Their study involved 15 developers to know the reasons behind why JavaScript

developers practice ESLint [11] linter in OSS. The main findings of research shows that

(i) lint is very helpful for enhancing the test suite, (ii) it motivates the newcomers to

contribute, and (iii) it spares from wasting the time, which is spent onto talking about

the code styles.

To investigate the importance of static code analysis, a survey and interview-based

empirical study has been performed by Christakis et al. [41]. Among various impor-

tant findings, they showed that performance-related issues are the second top potential

concerns that demand frequent attention (from developers) to address. Moreover, per-

formance issues are among the top four priority that developers looks for. Whereas,

Johnson et al. [66] performed a study to analyze why developer do not consider static

analysis tool for bug detection purpose. Their study reports the results obtained from

interviewing 20 participants, which showed that a majority of participants were not

denying the advantages of static tool analysis, but the only obstacles which restricted

them not to adopt was representation of false positives and warnings.

Habchi et al. [56] presented a study aimed to understand the advantages and restrictions

of detecting performance issues in Android apps using linters (Android Lint). This

study was based on the interviews conducted from 14 experience developers. Their

observations opened up different future research directions for developers, researchers,

and tool creator communities. One of the benefits for developers to use linter was

that it helps to tackle the performance issues, which were usually a tedious job for

developers in terms of recognizing and resolving it. Also, linters can increase or promote

the culture of performance within the team level. Further, their findings confirmed that

the researcher community widely utilized a reactive approach to resolve performance-

related issues [113]. They suggest it as a new future outlook direction for real-time

comparison between reactive and proactive approaches. Regarding the findings for tool

creator, linters should be more comprehensive and explicitly focused to different checks
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of various categories. Furthermore, some additional details are required for developers,

which may help them to resolve the issues such as nature and impact of identified issues.

Liu et al. [83] proposed a linter named PerfChecker, which is able to detect two types of

performance issues in Android apps. Such code smells include (i) lengthy operations in

the main thread of a program, and (ii) violations of the view holder pattern. By using

the Soot framework, PerfChecker seeks byte code as input and generate a warning if

any of above two violations is observed. Authors of the tool found 126 instance of these

violations patterns when they evaluate this linter on 29 popular Android apps. Out

of 126 violations, 68 were confirmed by developers as bugs (which were previously not

known), and developers resolved further 20 violations.

One popular study focus on identifying the anti-patterns through a linter is conducted

by Hecht et al. [63]. They introduce Paprika, which is capable to find various anti-

patterns, including performance code smells in Android apps. Currently, Paprika can

detect 3 Object-Oriented antipatterns and 4 Android-specific antipatterns. As discussed

in section 3.2, in order to evaluate, Paprika has been ran on various versions of 106

Android apps, accumulated from the Google Play Store. Then, (i) for the baseline of

software is calculated from the quality metrics of the considered apps, and (ii) for all the

versions of each considered apps, the quality has been estimated using deviation with

respect to the baseline. The outcome of their study shows the presence of co-relation

between various anti-patterns (e.g., the blob and complex class anti-patterns emerged

together).And further, they proposed five main different evolution patterns, similar to

what we identified in Section 5.3.

Another linter named aDoctor is introduced by Palomba et al. [92], which covers a

wide range of Android-specific code smells (i.e., 15 types). While writing this thesis, we

observed 7 out 15 code smells are related to performance issues i.e., Member Ignoring

Method (MIM), Inefficient Data Structure (IDS), and Internal Getter and Setter (IGS)

etc. The definition of the rules implemented in aDoctor is defined in a catalog by

Reimann et al. [101]. Further, Palomba et al. conducted an empirical study involving

the source code of 18 Android applications. The result shows that aDoctor can detect

antipatterns with 98% of precision and recall.

FindBugs is one of the publicly available linter with dedicate performance bugs category

and can be incorporated both using GUI as well as standalone (i.e., from command line).

Some past studies are done using FindBugs linter, for instance the study by Khalid

et al. [72] investigate the relationship between FindBugs warnings and end-user ratings.

They investigate the rating and associated review comments of 10,000 free Android apps

from Google Play Store and analyze the corresponding warnings of apps obtained after

executing FindBugs linter on source code. One of the outcome of their study suggest that
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some categories of FindBugs warnings such as the Bad Practice, Internationalization,

and Performance are quite significant in numbers.

There are many linters available, which is emphasis on auto resolving different types of

code smells, including the performance-related issues [25] [19] [15]. Also, few studies on

the linter has been done with aim to auto refactoring code smells including the perfor-

mance issues. One of the recent study done by Cruz et al. [44], in which authors analyze

the impact of performance-related warnings detected by Android Lint in the context of

energy consumption in six Android apps. Cruz et al. introduce a tool named Leafactor

(an extension of the AutoRefactor tool), which is able to auto-resolve five Lint based per-

formance warnings i.e., ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam,

and Recycle. These performance issues are implemented with purpose of battery saving

in the Android apps. The main findings of their study shows that by resolving a set of

performance issues can save up to one hour of battery life of the mobile phones.



Chapter 4

An Investigation of

Performance-Related Commits in

Android Apps

This chapter reports a preliminarily study aimed at conducting a quantitative and qual-

itative characterization of performance-related commits for Android apps. First—and

similarly to what previously done in a work on energy-related commits [89]—we identify,

using regular expressions, commits explicitly referring to performance-related issues. In

other words, instead of using static source code analysis—as done by Liu et al. [83],

or dynamic analysis—which would require appropriate execution profiles and it is not

practicable on large-scale—we rely on documented performance related changes, as pre-

viously done by Ray et al. [100] for the analysis of bug categories on GitHub.

We report the distribution of such commits, also analyzing how do they vary across

app categories. Then, using the card sorting approach, we produce a taxonomy of

performance related concerns, and qualitatively describe some examples of commits

belonging to these concerns. With respect to work such as the one of Liu et al. [83],

our study has been conducted in the large, featuring the analysis of commits from 2,443

open source Android apps. Of such commits, 457 of them, belonging to 180 apps,

turned out to be documented, performance-related commits. They generally affected

any kinds of apps, although categories in which user experience was very important—

e.g., health and fitness, or photography—were slightly more affected than others. The

card sorting categorization revealed how the most frequent kinds of performance-related

commits were about GUI-related changes, (performance-affecting) code smells removal,

and network or memory-related problems.

26
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In summary, the main contributions of this chapter can be summarized as: (i) an

investigation on performance-related commits in 180 open source Android apps; (ii)

a taxonomy of the main kinds of performance-related problems, obtained by applying

card sorting [107]; and (iii) a replication package, featuring a dataset of categorized

performance-related commits1.

4.1 Study Design

The goal of this study is to investigate performance-related commits in Android apps,

with the purpose of understanding their nature and their relationship with projects’

characteristics, such as project domain or size. The study context consists of 2,443

open-source apps and their evolution history. The study aims at addressing the first

high-level research question (RQ1) of this dissertation (described in section 1.3): To

address this, we formulate the following sub-research questions.

� RQ1.1: To what extent developers consider performance issues of Android apps?

� RQ1.2: What are the concerns that developers have when dealing with perfor-

mance issues of Android apps?

More specifically, RQ1.1 aims at assessing the frequency in which app developers consider

performance issues of the app, whereas RQ1.2 aims at classifying the specific concerns

that developers have when considering the performance issues of the app being developed

(e.g., fast access to file system, reactivity of the user interface, etc.)

The context of our study consists of a set of open-source Android apps distributed in the

Google Play store. We decided to analyze mobile apps in the Google Play Store because

of its large market share in terms of both distributed apps and sold smartphones with

respect to other platforms such as Apple iOS, Windows Phone, BlackBerry [47, 79]. Since

we are targeting mobile apps that have been designed and developed as real projects

with real users and we also aim at accessing the performance concerns managed by their

developers, the objects of our study are Android apps that (i) are freely distributed in

the Google Play Store; and (ii) have their versioning history hosted on GitHub.

Fig. 4.1 presents the process we followed for identifying our target population, together

with the number of apps considered at each step. Basically, (i) we mined the well-known

FDroid open source apps repository for extracting all those Android apps in which the

description page contains both a link to a GitHub repository and a link to a Google Play

1https://github.com/teerath91/ReplicationPackageICSME2016

https://github.com/teerath91/ReplicationPackageICSME2016
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Figure 4.1: Apps identification process.

page; (ii) we performed a custom search on GitHub by targeting all the repositories in

which the readme.md file contains a link to a Google Play page; and (iii) we collected

all the apps enlisted in the community-maintained list of free and open-source Android

apps on Wikipedia2. After a merging and duplicates removal activities we obtained 4,287

mobile apps. At this point we filtered out (i) all those apps whose GitHub repository

does not contain an Android manifest file as they clearly do not refer to real Android

apps, (ii) all those apps for which the corresponding Google Play page is not existing

anymore (i.e., they have been removed from the store for some reason), and (iii) all those

apps in which the Android file is not in the root directory of an Android app (those cases

happen when the manifest file actually refers to an Android library, to the binaries of

some other app, etc.). The final population resulting from this process is a set of 2,443

mobile apps, each of them represented by its GitHub and Google Play identifiers.

The variables considered to address RQ1.1 are the (i) pCommits, the number of perfor-

mance -related commits in the GitHub repository of the app, as compared to the overall

number of commits, and (ii) the app category on Google Play. As for RQ1.2, we con-

sidered the different kinds of performance concerns being dealt in performance-related

commits.

We extracted the commits and pCommits using a script that considers only the folder

containing the source code and resources of the mobile app, excluding backend, docu-

mentation, test, and mockups. In each repository we identified the folder of the app

by the presence of an Android manifest file. The mining script identifies a commit as

performance-related if it matches at least one of the following keywords: wait, slow,

fast, lag, tim, minor, stuck, instant, respons, react, speed, latenc, perform, throughput,

hang, memory, leak. Those keywords have been identified by considering, analyzing,

2http://wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

http://wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
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and combining mining strategies from previous empirical studies on software perfor-

mance existing in literature (both mobile and not mobile-specific) [65, 85, 104, 120].

The mining script considers all the possible combinations of both lower and upper cases

of each keyword. By applying pattern matching, we identified a set of 535 candidate

performance-related commits. Such commits were manually analyzed, and 78 of them

were identified as false positives. This produced a final set of 457 performance-related

commits.

We extracted the category variable by mining the web page of the Google Play store

of each app. Then, we identified the concerns by applying the open card sorting tech-

nique [107] to categorize performance-related commits into relevant groups; we per-

formed card sorting in two phases: in the first phase we tag each commit with its rep-

resentative keywords (e.g., read from file system, swipe lag) while in the second phase

we group commits into meaningful groups with a descriptive title (e.g., UI issues, file

system issues). To minimize bias, this activity has been performed by two researchers

and the results have been checked by a third researcher; this activity resulted in a set

of 10 categories (see Section 4.2).

4.2 Results

In this section we answer each research question by presenting the results of the study

described in Section 4.1

4.2.1 RQ1.1 - To what extent developers consider performance issues

of Android apps?

To answer this question, we count the frequency of performance-related commits (see the

pCommits variable) with respect to all the commits of our dataset. Firstly, we can ob-

serve that 7.5% of the apps in our dataset have at least one performance-related commit

(180 distinct apps over a total of 2,443). Among them, we identified 457 performance-

related commits for this study.

Table 4.1 shows the distribution apps, and performance-related commits across cate-

gories (percentage represents the ratio of pCommits over Commits in each app cat-

egory). Performance-related commits are more frequent in some categories [50]; for

example, the category with the highest percentage of performance-related commits is

Comics (2.31%), that primarily contains apps with an immersive user experience and

long usage sessions, followed by the Customization (1.58%) and the Weather (1.48%)
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Table 4.1: Distribution of performance-related commits across categories

Category #Apps #pCommits
Comics 4 5 (2.31%)
Customization 85 18 (1.58%)
Weather 21 15 (1.48%)
Health and Fitness 69 14 (1.21%)
Photography 36 67 (1.21%)
Tools 573 97 (0.85%)
News & Magazines 43 36 (0.83%)
Communication 91 21 (0.80%)
Productivity 216 28 (0.71%)
Games 350 39 (0.68%)
Shopping 13 3 (0.66%)
Libraries & Demo 70 4 (0.63%)
Travel & Local 71 16 (0.55%)
Media & Video 49 7 (0.52%)
Music and audio 62 6 (0.49%)
Social 69 37 (0.47%)
Medicine 8 3 (0.43%)
Finance 57 4 (0.36%)
Business 35 4 (0.34%)
Education 200 18 (0.33%)
Entertainment 128 8 (0.26%)
Transportation 70 4 (0.21%)
Books & Reference 41 2 (0.12%)
Lifestyle 82 1 (0.07%)

Table 4.2: Apps with the highest number of performance-related commits
Google Play ID (GitHub) Category #pCommits
com.almalence.opencam (alma-
lence/OpenCamera)

Photography 31 (8.7%)

com.gopro.smarty
(M66B/XPrivacy)

Photography 24 (2.5%)

com.newsblur (samuelclay/News-
Blur)

News 18 (13.56%)

ca.cumulonimbus.barometernetwork
(Cbsoftware/pressureNET)

Weather 14 (7.27%)

org.wordpress.android
(wordpress-mobile/WordPress-
Android)

Social 13 (4.75%)

net.usikkert.kouchat.android
(blurpy/kouchat-android)

Communication 11 (4.72%)

com.pacoapp.paco (google/paco) Health 10 (13.20%)
com.eleybourn.bookcatalogue
(eleybourn/Book-Catalogue)

Productivity 10 (1.9%)

org.qii.weiciyuan (makings/mst) Social 9 (4.57%)
org.quantumbadger.redreader
(bamptonm/RedReader)

News 9 (8.87%)

categories, that primarily contain utility, task-based apps with very short usage sessions,

etc. This observation may be an indication that performance issues are somehow orthog-

onal across apps, independently of their specific application context and user experience

requirements.

Nevertheless, it is interesting to note that in our dataset there are some apps with a

relatively high number of performance-related commits, the top-10 being listed in Ta-

ble 4.2. Note that we considered the absolute number of performance-related commits
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instead of percentages (also reported), as we want to focus on the absolute number of

performance-related tasks. As one can notice, these apps are not tied to some very spe-

cific categories. We manually analyzed the commit messages of the app with the highest

number of performance-related commits (i.e., com.almalence.opencam), it has 17 com-

mits concerning memory consumption, 9 commits about user interface responsiveness,

4 commits about images optimization, and other mixed types of commits; being it a

photography app, the nature of those commits is aligned with the features provided by

the app. We also manually analyzed all the other top-10 apps and we found that the

types of their performance-related commits vary without exhibiting any specific pattern.

4.2.2 RQ1.2 - What are the concerns that developers have when deal-

ing with performance issues of Android apps?

Table 4.3 shows the 10 categories resulting from card sorting, together with an example

of representative commit messages for each category (we randomly took it from our

dataset), the frequency and the percentage of commits belonging to each category. It is

important to note that the sum of all frequencies (586) is higher than the total number of

identified commits because each commit message can belong to more than one category.

More specifically, there are 422 commits with 1 category, 62 commits with 2 categories,

and 2 commits with 3 categories. In general, Android developers primarily focus on

addressing one performance-related concern at a time (422 times over 486), rather than

addressing more than one in combination (64 times over 486). In the following we discuss

each identified category of concerns. All together, those categories give an indication

about what are the main concerns that developers perceive, consider, and address when

dealing with mobile apps performance.

The most frequent concern that developers have when dealing with performance issues

of Android apps is the responsiveness of the user interface, e.g., in terms of swipe lags,

screen layout drawing, lists scrolling responsiveness (27.35% of commits). This is an

indication of the fact that developers know that end users perception of app performance

is of paramount importance and that end users just expect mobile apps to properly work

(e.g., without delays, with few bugs, with a natural user experience), independently of

the implemented technical solutions, used tools or libraries [50]. Examples of UI concerns

include: use of Android’s recycler views instead of plain list views3, render images in

slices, prefer Android’s asynchronous tasks.

Another recurrent target of app developers is to fix existing performance-related code

smells (22.53% of commits), i.e., symptoms of poor design and implementation choices,

3https://developer.android.com/training/material/lists-cards.html
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Table 4.3: Categories of identified concerns.

Category Representative commit message #pCommits
User interface N FIX layouts for better rendering perfor-

mance
125 (27.35%)

Code smells N fixed String concatenation performance is-
sue

103 (22.53%)

Generic concerns N Performance and error handling improve-
ments

99 (21.66%)

Networking N Use a socket connection when scanning
for hosts instead of isReachable. Set perfor-
mance options to prefer fast connection. En-
able TCP NODELAY

59 (12.91%)

Memory N Fixed major memory leak; should improve
responsiveness on older devices

50 (10.94%)

Loading time N Made initial load WAY faster 34 (7.43%)
Images N Draw all static objects on one image in an-

droid to optimize performance
20 (4.37%)

Local database N Added indexes for posts.postid and
posts.blogID to improve performance of
several lookups

12 (2.62%)

File system N Separate file loading and vault initialization
to enhance performance

10 (2.18%)

Sensors N Performance fix: Closing GPS service as
soon as lat/long has been determined.

5 (1.09%)

mainly due to time constraints of the project [52]. Examples of fixed code smells include

inefficient usage of regular expressions, recurrent computations of constant data, usage

of deprecated decryption algorithms.

In a relatively large number of commits (21.66%) developers mention only generic con-

cerns about app performance, without detailing what the problem is and how it has

been potentially fixed. This is a clear behavioral anti-pattern because generic commit

messages make very difficult to know the nature of a performed change (e.g., it may fix

a bug, implement a new feature, improve code quality, etc.), its effects, to find when a

bug has been introduced, etc.

Networking is one of the area in which performance-related commits occur a lot in

mobile apps. For example, making HTTP requests is one of the most energy consuming

operations in Android [80]. Our analysis shows that app developers take special care of

networking operations (12.91% of commits) in their apps and refine their code in order

to mitigate the impact of networking operations on the overall performance of the app.

Examples of implemented solutions include: reduce as much as possible the frequency

of calls when doing long polling, avoid making multiple requests in parallel, check the

status of the connection before making a request to a server.

Keeping small the memory footprint of a mobile app is one of the key solutions for
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improving its performance4, specially for low-end devices. Developers are aware of this

interaction between memory usage and performance (10.94% of commits) and apply

solutions like stopping auxiliary services when available memory gets low, avoiding to

load potentially unused data, etc.

Loading time of app screens is of paramount importance for its success, specially when

considering the startup screen of the app. Developers are focusing on this key aspect of

their apps (7.43% of commits) and apply solutions like reducing the information to be

parsed when starting an activity, caching methods requiring a restart, etc.

Concerns with a frequency lower than 5% are: images management (4.37%), interaction

with local databases (2.62%), file system access (2.18%), and interaction with device

sensors (1.09%). Those concerns have been less targeted by app developers; never-

theless, they are representative examples of potentially relevant aspects to verify when

considering the performance of an Android app. Examples of implemented solutions

include:

� Images: load images directly in the required size, render images one at a time;

� Local databases: perform queries in an asynchronous task, add indexes to specific

fields;

� File system: separate file loading from other activities, use buffered streams for

file decryption;

� Sensors: filter sensor data, limit the use of the GPS service.

4.3 Threats to Validity

Threats to construct validity are mainly related to the use of pattern matching to identify

performance-related commits. Under this perspective, we are assuming that if a commit

message contains specific keywords is describing a change in the source code of the

app related to its performance. Therefore, we are aware that such approach may miss

undocumented performance-related commits. False positives have been instead avoided

by performing a manual analysis of the identified commits.

Reliability validity threats concern the possibility of replicating this study. We mitigated

this possible threat by making the replication package with all extracted data, mining,

and analysis scripts available to interested researchers.

4https://developer.android.com/training/best-performance.html
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Threats to external validity mainly concern the generalization of our results that relate

to the representativeness of the apps considered in this work. We reduced this threat

by considering a relatively large data set (i.e., 2,443 apps) and by selecting apps that

have been developed in the context of real projects (i.e., all selected apps have been

distributed in the Google Play store and available to the public). Another potential

threat to external validity is that fact that we consider only freely available apps; this is

an acceptable bias because free apps represent more than 75% of all Google Play store

apps and they are downloaded more often [53]. Also, we analyzed only commit messages

written in the English language; this potential bias can be considered as acceptable as

English is the dominant language used by Android developers.

4.4 Conclusion

This chapter reported a preliminary study aimed at identifying documented performance-

related commits in Android apps. The proposed investigation is carried out to answer

the first high-level research question of this dissertation (mentioned in section 1.3), i.e.,

RQ1 - Which are the most recurrent types of performance-related issues observed in the

developers commits for Android apps?

By analyzing commits of 2,443 apps, we discovered a total of 457 performance-related

commits spread across 180 apps. We performed a qualitative analysis of such commits

using card sorting, and identified a total of 10 commit categories. Overall, performance

commits mainly related to issues found in the app user interfaces. Other than that, we

also found frequent commits aimed at removing some code bad smells or at improving

some part of the app logic and, finally, dealing with lags in the networking connec-

tion. Last, but not least, we found improvements related to I/O towards file system or

databases, and related to the access to sensors.

As a preliminary result, the categories we identified can be used as a checklist by de-

velopers in order to see if they are considering all major performance-related aspects of

their mobile app.



Chapter 5

Characterizing the evolution of

statically-detectable performance

issues of Android apps

The goal of this chapter is to empirically investigate the evolution of (potential) perfor-

mance issues reported by static analysis tools and the extent to which such issues are

actually resolved by developers. More specifically, the study analyzes the occurrence

and resolution of seven kinds of performance issues identified by Android Lint in 316

open source Android apps hosted on GitHub (among 724 apps we analyzed in total). We

have chosen Android Lint as static analyzer, because it is integrated in Android Studio

and also available as an Eclipse plugin, therefore it is likely to be used by many Android

developers.

First, we identify and report the occurrence of likely performance issues across the an-

alyzed apps. Then, we trace the detected performance issues across the apps’ evolution

history, and determine whether they have been detected and to what extent they survive

in the app. The study has the purpose of determining whether there are some kinds

of issues that tend to be resolved quickly whereas others are more likely to be ignored

by developers. Finally, we analyze the extent to which the resolution of the detected

performance issues is also acknowledged by developers and documented in commit mes-

sages.

So far, performance issues have been investigated in Web applications [32], heteroge-

neous environments [51], or large-scale applications [86]. Also, Zaman et al. conducted

a qualitative study of performance bugs [120]. To the best of our knowledge, the most

recent work concerning performance bugs of mobile apps is the one by Liu et al. [83]

35
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who analyses 70 real bugs, in which GUI lagging (53/70) found to be more recurrent

followed by energy leaks (10/70), and memory bloat (8/70).

5.1 Study Design

This study has been carried out by following the guidelines for designing, conducting,

and reporting empirical experiments in software engineering [105, 119]. In this section

we focus on the design of our study, specifically we present its goal and research questions

(Section 5.1.1), context selection (Section 5.1.2) and data extraction (Section 5.1.3).

A complete replication package is publicly available1 to allow researchers to indepen-

dently replicate and verify our study. The replication package includes the Python and

shell scripts for identifying the targeted Android apps, the list of all considered GitHub

repositories, the mined Google Play metadata, the raw data extracted from each GitHub

repository, the Python and Shell scripts for extracting the raw data, and the R scripts

we developed for data exploration, analysis, and visualization.

5.1.1 Goal and Research Questions

We formulate the goal of this study by using the Goal-Question-Metric perspectives [37].

Table 5.1 shows the result of our goal formulation.

Table 5.1: Goal of this study

Analyze the change history of Android mobile applications
for the purpose of characterizing their evolution
with respect to statically detectable performance issues
from the viewpoint of developers and researchers
in the context of open source Android applications

In the following, we present and discuss the research questions we derived from the above

mentioned overall goal in order to answer the second high-level (main) research question

(RQ2.2) of this dissertation (as described in section 1.3).

RQ2.0 – To what extent does Android Lint identify performance issues in the ana-

lyzed apps?

1https://github.com/S2-group/AndroidPerformanceIssues

https://github.com/S2-group/AndroidPerformanceIssues
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As already introduced, in this study we leverage Android Lint for identifying performance-

related issues of Android apps. This research question is exploratory in nature and aims

at characterizing the number, frequency, and distribution of performance issues identified

by Android Lint across the versioning history of all apps. By answering RQ2.0, we assess

whether the context of our study (i.e., the apps dataset we built – see Section 5.1.2) and

Android Lint provide enough data points for answering the remaining research questions.

Moreover, by answering RQ2.0 we identify the most recurrent statically-detectable per-

formance issues during the evolution of Android apps, providing empirical evidence to

developers and researchers for getting a better understanding of Android-specific per-

formance issues.

RQ2.1 – How does the number of statically-detectable performance issues of Android

apps vary over time?

The main objective of RQ2.1 is to investigate whether the evolution of statically-detectable

performance issues across different Android apps exhibits identifiable patterns. The

identified patterns can be used by researchers as a foundation for investigating the re-

lationships between apps exhibiting the same or different patterns. Also, the emerging

patterns can guide developers in identifying potentially dangerous patterns in their own

apps, e.g., a sudden increase of performance issues without any subsequent decrease.

RQ2.2 – Which types of statically-detectable performance issues tend to remain in

Android apps across their lifetime?

By answering RQ2.2, we provide insights about how each type of Android performance

issues tend to remain in Android apps over time. A long survival time of a performance

issue can have two completely different explanations. On the one hand, it can indicate

that the issue does not seriously affect the app’s performance, and therefore it has been

ignored by developers. On the contrary, if it is a harmful issue, remaining in the app for

a long time would mean potentially affecting multiple releases.

RQ2.3 – What is the lifetime of statically-detectable performance issues of Android

apps?
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With the term lifetime we mean the interval between the introduction and the resolution

of a performance issue along the versioning history of the app. The underlying intuition

behind RQ2.3 is that different types of statically-detectable performance issues have

significantly different life spans. The results of RQ2.3 can highlight whether particular

kinds of performance issues tend to be resolved quicker than others, either because they

are easier to spot, or because they are deemed to be more dangerous. Furthermore,

we also characterize whether the lifetimes of different types of performance issues fol-

low known probability distributions. This can help developers in knowing how likely

a specific performance issue in their app will be resolved from the code base. More-

over, having this information will help developers in understanding how likely other app

developers are fixing the issues and which ones are considered and ignored.

RQ2.4 – To what extent the resolution of statically-detectable performance issues

of Android apps have been documented by developers?

This research question aims at (i) assessing whether developers document in their com-

mit messages the resolution of performance issues and if yes, how many such resolutions

commits were considered for each type of performance issues) and (ii) providing a mini-

mal catalog of representative solutions, one for each type of Android performance issue.

The results of RQ2.4 provide empirical evidence about whether developers consciously

document their activities related to the resolution of performance issues. Researchers

can use such evidence as a foundation for further studies on the relationship between

documented and not-documented activities related to statically-detectable performance

issues of Android apps. Finally, developers can use the catalog of solutions for standing

on other developers’ shoulders and use it as a reference for solving the issues raised by

their instance of Android Lint.

The research questions discussed above drive the whole study, ranging from the selec-

tion of Android Lint as analysis tool, to the activities related to apps selection, data

extraction, and analysis.

5.1.2 Context Selection

This study focuses on real-world Android apps for which we can execute the Android

lint analysis tool across different versions of their source code. More specifically, the

context of this study consists of a set of Android apps that (i) have their versioning

history hosted on GitHub and (ii) are distributed in the Google Play store. We chose

GitHub as target of source code repositories because (i) it is extremely popular among



The evolution of performance issues of Android apps 39

developers (as of June 2018, it has a community of 24 million developers2), (ii) it hosts

a huge amount of metadata that can be accessed through its API3, and (iii) there is

a variety of available tools for mining and processing data and metrics from GitHub

repositories (e.g., the git log and git diff tools). We focus on apps distributed on

the Google Play Store because it is the official distribution channel of Android apps.

In the remainder of this section, a detailed overview of the process for building the

dataset of Android apps is given. Identifying the required target dataset of Android

apps for this research requires applying several filtering steps, which are documented

alongside the respective numbers of apps resulting from each filtering step. The dataset

building process of this study is similar to the one proposed in [48] and its 10 steps are

shown in Fig. 5.1. The initial collection of those apps originates from three different

sources, namely: FDroid, GitHub, and Wikipedia. The reason why we chose them is

because we wanted to achieve a diverse set of sources, including the most popular host

for open source (GitHub), a store of open source Android apps (FDroid), and finally an

online-compiled catalog (Wikipedia, which was included for the sake of completeness,

because as explained below it contributed with a fairly limited number of apps).

Figure 5.1: The dataset creation process.

The first source for our dataset is FDroid [29], a well-known online catalog of free and

open-source Android projects (step 1 ). From this catalog, a search is applied that

locates apps that contain: a) a link to the respective GitHub repository, and b) a link

to the respective Google Play store page. Mining the FDroid repository resulted in 350

potentially relevant GitHub repositories4.

2https://github.com/features
3https://developer.github.com/v3/
4At the time of conducting this study (June 2018) the search functionality on FDroid appears to

be broken or not working. Furthermore, the https://f-droid.org/forums/search/ endpoint that was
used in the mining script does not exist anymore.

https://github.com/features
https://developer.github.com/v3/
https://f-droid.org/forums/search/
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From Github (step 2 ), a custom search targeting all the repositories containing a link

to a Google Play Store app page in their readme files is performed. In order to do not

occur into the GitHub limit of 1,000 results per search, we stratify our search queries

by date range so that each search results in less than 1,000 results. The whole set of

considered dates ranges from the creation of GitHub (i.e., Jan 1, 2001) to the day in

which the searches were performed (i.e., Feb 15, 2016). This search resulted in a total

of 4,788 potentially relevant GitHub repositories.

The third source for our dataset is a Wikipedia [30] page containing a maintained list

of free and open-source Android apps (step 3 ). We manually screened this list of apps

to select the ones that, again, contain a link to the respective GitHub repository and

are published on the Google Play Store. This step results in a total of 35 potentially

relevant GitHub repositories.

In step 4 , each repository coming from three data sources is uniquely identified by

its < repository owner , repository name > pair and all duplicates are merged. The

execution of this step results in a total of 4,287 unique GitHub repositories.

In the next filtering step (step 5 ), we identify those repositories which potentially

contain the source code of an Android app. This filtering step is done by considering

only the repositories containing the mandatory Android Manifest.xml file. Indeed,

as mentioned on the official Android developers website5, an Android app shall always

come with an Android manifest file. The manifest of an Android app contains all the

essential information supplied to the Android system, allowing it to run the actual app.

For example, the manifest file is in charge of naming the Java package for the app,

which serves as an unique identifier of each app. Information contained in the Android

manifest file includes the main components of the app, its required permissions, the

minimum required API level for the app, the third-party libraries used by the app, etc.

In step 6 we filter out all those repositories containing apps that are not published in the

Google Play store. In the context of this process, this may occur if (i) the considered

GitHub repository is a simple demo or toy example, which has been developed for

personal or internal usage only, (ii) developers removed the app from the Google Play

store, or (iii) Google deliberately took down the app because it was violating some of

its distribution policies. This step has been done by extracting the package name of

the app from its manifest file, and performing a network request to the URL where the

Google Play page of the app should be present6.

5 https://developer.android.com/guide/topics/manifest/manifest-intro.html
6This check is sound since the web page of an app in the Google Play store follows a fixed pattern,

i.e., https://play.google.com/store/apps/details?id=[app package name].
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Step 7 involves the identification of the app’s root folder containing its source code.

The rationale for this step is that the folder containing the Android manifest file should

also contain the complete source code for the app. Indeed, in this step we need to exclude

those repositories where the manifest file actually refers to an Android library, to the

binaries of some other apps, etc. This step is realized by checking if the folder containing

the Android manifest file follows the structure mandated by the Android platform7.

Step 8 involves the identification and filtering of inactive GitHub repositories. Indeed,

it is well known that mining GitHub repositories brings the risk of considering inactive

or unmaintained repositories, thus adding noise to the results of the study[71]. For each

repository, we extract (i) the app development lifetime and (ii) the number of commits.

The app development lifetime is defined as the range between the first and last commits,

whereas the number of commits is defined as the count of all the commits performed in

the repository. In order to avoid inactive or unmaintained repositories [71], we considered

only the apps having a lifetime span of at least 4 weeks and with at least 10 commits.

Step 9 involves the filtering of all those apps which cannot be properly analyzed by

the Android Lint tool. It is important to note that Android Lint requires that the

app under analysis is fully built. Building arbitrary software mined from third-party

GitHub repositories is notoriously difficult, mainly due to missing dependencies (e.g.,

the server hosting a dependency is no longer reachable), Java compilation errors (e.g.,

undefined symbols, missing packages), and project-specific build commands (e.g., non-

default Gradle tasks) [59, 108]. In this step we managed to cover many recurrent non-

standard cases by iteratively running the Android Lint tool on all repositories and (i)

manually refining its configuration and (ii) adding preprocessing steps for making the app

and its Gradle configuration more Lint-friendly (see step 2 in Section 5.1.3). Excluded

repositories include apps with very peculiar Gradle configurations, Kotlin-based apps

(we focus on Java-specific issues), apps heavily based on the Native Development Toolkit

(NDK8), unbuildable apps due to missing keystore information.

Finally, in step 10 we locally clone all the selected GitHub repositories. After this

process, our final dataset is composed of 724 GitHub repositories containing open,

published, and actively maintained Android apps, for which an analyzable

commit history is available. Out of them, a large majority is from Github(630),

followed by FDroid (88) and Wikipedia (6).

As shown in Figure 5.2, the dataset is quite heterogeneous in terms of both lines of

Java code (median = 2083, mean = 5325, IQR = 4299) and number of Java files per

7Step 5 and Step 7 are redundant, we deliberately decided to keep both of them because during the
execution of the dataset creation process we had to experiment with different heuristics in Step 7 and
having it as a stand-alone step within the pipeline helped us in easily run it in isolation.

8http://developer.android.com/ndk
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app (median = 14, mean = 29.38, IQR = 25.0). Moreover, the dataset also covers 24

different Google Play categories (see Figure 5.3) and all downloads ranges (see Figure

5.4).
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Figure 5.4: Google Play download ranges of the apps in our dataset

5.1.3 Data Extraction

Starting from the 724 GitHub repositories, we designed and implemented a tool chain for

extracting the data for answering our research questions. As shown in Fig. 5.5, the tool

chain is composed of five main steps, which have been implemented as a combination

of Python scripts, shell scripts, and third-party tools. Each step will be discussed in

details in the following.

Figure 5.5: Data extraction process.

Step 1 – Commits metadata extraction. The first step of our tool chain clones

all 724 repositories locally in a dedicated machine. Then, for each cloned repository,
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we extract th change log, which contains SHA-1 hash, author, commit message, and

timestamp. The extracted data is composed of 96,265 unique items (one for each commit

within all GitHub repositories).

Step 2 – issue identification. In this step the tool chain iteratively (i) checks out

each cloned GitHub repository at each of the 96,265 commits of our dataset and (ii)

runs Android Lint on the each commit (as identified in Section 5.1.2) after each check

out operation. This results in 96,265 runs of the Android Lint tool, which took a

total of around 336 hours of uninterrupted execution time (∼2 weeks) on a machine

equipped with an Intel i7 processor with 1.80GHz of frequency and 8Gb of memory.

It is important to note that Android apps can target different versions of the Android

Software Development Kit (SDK). The target SDK of each app must be known in order

to properly resolve calls to the Android APIs. Therefore, before executing the Android

Lint tool, we manually download all Android SDKs used in the apps of our dataset (from

API levels 17 to 24) and locally stored them in a known location. Before each execution

of the Android Lint tool, some preliminary action is necessary to be able to run Android

Lint on arbitrary-developed Android apps. Firstly, our tool looks for the the app’s Lint

configuration file (i.e., the lint.xml file which may be in the folder containing the the

app source code), checks if the Lint configuration file has the abortOnError set to true

and removes it; this check is needed for allowing us to always fully run Android Lint,

instead of stopping at the first error. Secondly, it removes all statements in the Lint

configuration file for disabling any specific check; this check is needed because in some

projects the developer may decide to explicitly disable some checks related to Android

performance-related issues. Finally, our tool runs Android Lint by (i) resolving calls to

the Android APIs by referring to the locally-downloaded SDK with the same version

as the one specified in the Android manifest file of the current app and (ii) ignoring all

calls to external libraries, as we are interested in performance-related issues specific to

the apps in our dataset. Starting from the 96,265 commits, Android Lint failed 2,520

times (2.61%) because of internal errors of the Android Lint tool (mainly due to peculiar

configurations of the Android project). In these cases, the tool discards the considered

commit and proceeds with the next one along the versioning history of the current app.

This leads to the final set of 93,745 Lint reports, each of them stored as a separate

HTML file.

Step 3 – Performance issues selection. In this step our we consider all Lint reports

produced in step 2 and extract performance-related issues, as identified by Android Lint.

To this aim, we developed a parser that takes as input the HTML file of a Lint report

and automatically extracts the information we need about each identified issue contained

in it. Specifically, the extracted information includes the following data items: (i) the
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category of the issue as defined in Android Lint9, (ii) the path to the source code file

where the identified issue is located, (iii) the line number in the source code file where

the issue is located, and (iv) the raw contents of the warning/error message. Finally,

since we are interested in performance-related issues, we filter out all identified issues

whose category is different from performance. The obtained dataset is composed of

36,190 performance-related issues found in 316 out of 724 apps.

Step 4 – Cross-commit performance issues tracing. After step 3 our set of

performance-related issues contains a large number of duplicates. This is expected since

an issue remaining in the code base for more than one commit appears multiple times

among our set of 36,190 issues; more specifically, it appears exactly once for each commit

where it is present. The main goal of this step is to remove those duplicates in order

to have a set of unique Android performance-related issues, where each of them can

possibly span more than one commit. A naive solution to this problem could have been

to simply merge issues reported in subsequent commits which appear in the same Java

file and in the same line number. However, a line of code can move during the lifetime

of a GitHub project, both across different files (e.g., when a file is renamed or moved

within the repository) and within the same file (e.g., some lines of code are added before

the considered line of code). In order to correctly match potentially moving lines of

code, we exploit the git diff tool and the LHDiff technique [34, 35] in combination.

Specifically, we use git diff for building the chain of versions of each file containing

at least one performance-related issue, even when it is renamed or moved within the

file system. We use git diff because it is accurate in identifying the renamed files

in GitHub repositories and it is easy to integrate into our tool chain. We use LHDiff

for tracking source code lines across two versions of the same file [34]. This tool (i) is

language-independent, thus applicable to Java source code files, (ii) has been empirically

evaluated and it its mapping process proved to be highly accurate, (iii) is publicly

available10, and (iv) is distributed as a command-line tool, making it easy to integrate

into our tool chain. Having a fully reconstructed tracing information about how each

issue moves across and within source code files across commits allows our tool to identify

those commits which are relevant for our study. Specifically, given an issue ia of type

a (e.g., UseSparseArrays) and Cia = {c1, . . . , cn} the set of commits in which ia is

present (i.e., still detected by the tool), we call c1 the introducing commit and cn

the pre-resolution commit, The output of this step is composed of 2,408 unique

performance-related issues. Each issue contains is represented by all the data items

9We take advantage of the fact that issues in Android Lint reports are tagged with a fixed set of
categories (http://tools.android.com/tips/lint-checks) like performance, correctness, accessibility,
usability, etc.

10https://muhammad-asaduzzaman.com/research

http://tools.android.com/tips/lint-checks
https://muhammad-asaduzzaman.com/research
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described in step 3 and the SHA-1 hash, message and timestamp of its introducing and

pre-resolution commits.

Step 5 – Issues resolution metadata extraction. In this step we collect the meta-

data (i.e., SHA-1 hash, message, timestamp, and number of changed Java lines of code)

related to the commit in which each performance-related issue has been resolved by

developers (we called them resolution commits). In this context, by issue resolution

commit we mean the commit immediately after the pre-resolution commit (i.e., the

cn+1 commit in the discussion above). Moreover, if cn is the last commit in the whole

versioning history of the GitHub repository, it means that we reached the end of the

lifetime of the project and the issue has never been resolved; in those cases, the issue is

considered as unresolved, otherwise it is considered as resolved and we keep track of

its resolution commit.

Table 5.2: Extracted data for each Android Lint performance-related issue type.

Attribute Type Description
ID String the unique ID of the issue
repository String identifier of the GitHub repository of the issue in the form

author/repositoryName

issueType factor type of the performance-related issue as identified by An-
droid Lint (e.g., UseSparseArray, UseValueOf)

LintMessage String the warning/error message provided by Android Lint
introHash SHA-1 hash SHA-1 hash of the issue-introducing commit
introMessage String message of the issue-introducing commit
introTs Integer timestamp of the issue-introducing commit
preResHash SHA-1 hash SHA-1 hash of the issue pre-resolution commit
preResMessage String message of the issue pre-resolution commit
preResTs Integer timestamp of the issue pre-resolution commit
isResolved Boolean true if the issue is resolved, false otherwise
resHash SHA-1 hash SHA-1 hash of the issue-resolution commit
resMessage String message of the issue-resolution commit
resTs Integer timestamp of the issue-resolution commit
resLOC Integer number of Java LOCs changed in the issue-resolution com-

mit

In Table 5.2 we summarize the data extracted for each Android performance-related

issue. It will be used across the whole study and will be the base for the data analysis

phase.
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5.2 RQ2.0 Results – Performance issues identified by An-

droid Lint

5.2.1 Data Analysis (RQ2.0)

For answering RQ2.0, we present and discuss (i) the number of performance issues iden-

tified by Android Lint across all apps, (ii) the frequency and distribution of each type of

performance issue across all apps, and (iii) the distribution of the number of occurrences

of each type of performance issues per app. Moreover, in order to better characterize

statically-detectable Android performance issues, for each type of performance issue we

provide and discuss an example of Java code exhibiting the issue. At the time of the

experiment execution, Android Lint supports 9 types of performance issues11, they are

presented in Table 5.3. Finally, to provide an overview of the apps’ popularity, we use

bar plots to show the range of number of downloaded apps from Google Play Store for

each types of identified performance issue.

Table 5.3: The types of performance issues considered in this study.

Issue name (pri-
ority)

Description

DrawAllocation
(9/10)

It generally occurs due to allocating memory in a method that is invoked
frequently to draw UI elements on the display. Allocating memory can be
avoided by allocating the memory upfront, which leads to increased perfor-
mance, thus potentially leading to a smoother user experience.

FloatMath (3/10) It deals with the FloatMath data type; specifically, on modern devices the
FloatMath Java object is slower than using java.lang.Math due to the way
the JIT optimizes java.lang.Math objects.

HandlerLeak
(4/10)

It is due to handler using the Looper or MessageQueue of the main thread.
If the handler is not static, then the Android activity or service cannot be
garbage collected, even after being destroyed. This may lead to memory leaks.

Recycle (7/10) It occurs with the lack of calls to the recycle() method, when dealing with
recyclable objects, such as TypedArray, VelocityTracker, etc. Calls to the
recycle() method should be done after one of the above mentioned objects
have been used, in order to make it reusable in the future.

UseSparseArrays
(4/10)

It is mainly due to the use of HashMap instead of SparseArray. The Android
framework promotes the usage of SparseArray over HashMap since it is as-
sumed that sparse arrays are more memory efficient than HashMap, while not
exhibiting large performance differences when dealing with hundred of items.

UseValueOf (4/10) It is mainly due to direct calls to the constructor of wrapper classes (e.g.,
new Integer(42)), as opposed to calling the valueOf factory method (e.g.,
Integer.valueOf(42)). Calling factory methods is typically more memory
efficient since common integers such as 0 and 1 share a single instance at
run-time.

ViewHolder (5/10) It occurs in the context of ListViews. When implementing a view Adapter,
developers should avoid unconditionally inflating a new layout; if an available
item is passed in for reuse, developers should try to use that one instead.

ViewTag (6/10) Before the Android 4.0 version, View.setTag(int, Object) implementation
stored the objects in a static map, where the values were strongly referenced.
This implies that if the object references its calling context, the leak will
happen from the context (which potentially may point to a large number of
other objects within the app).

Wakelock (9/10) It is due to failing to release a WakeLock properly, thus keeping the mobile
device in high power mode, which decreases the lifetime of battery.

11http://tools.android.com/tips/lint-checks

http://tools.android.com/tips/lint-checks
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We anticipate that in the remainder of this study we will not consider the ViewTag and

Wakelock issues since they both occur only 3 times each within the whole dataset.

5.2.2 Results (RQ2.0)

A total of 2,408 performance issues have been detected by Android Lint. Among them,

316 (43.64%) over 724 distinct apps suffered from at least one statically-detectable per-

formance issue along their lifetime. Fig. 5.6 presents the frequency of different types of

performance issues in our dataset.
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Figure 5.6: Frequency of performance issue belonging to different categories.

First, we can immediately notice how Recycle performance issues occur more frequently

(550, 22.84%) than others. In order to optimize performance, collections such as Type-

dArray, VelocityTracker, Parcel or MotionEvent should be recycled after use, instead

re-created again and also database cursor should be freed up after use. For example, as

shown in Listing 5.1, TypedArray preset vals should be recycled by a recycle() call (i.e.,

preset vals.recycle()) for further reuse. The lack of a recycle could noticeably degrade

the performance of the app.

protected void presetClicked(int i) {

Log.i(TAG, "presetClicked "+i);

TypedArray preset_vals = mContext.getResources().obtainTypedArray(

mContext.getResources().getIdentifier(

"presets"+mFnId+"_"+i, "array", mContext.getPackageName()));

for(int j=0; j<mSliders.size(); j++) {

float val = preset_vals.getFloat(j, 0);
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Log.i(TAG, "slider["+j+"]="+val);

mSliders.get(j).setValue(val);

}

}

Listing 5.1: Example of occurrences of the Recycle issue (dstahlke/rdn-wallpaper

- src/org/stahlke/rdnwallpaper/PresetsBox.java).

Also UseValueOf issues type are quite frequent in our dataset (549, 22.79%). Since

issues of type UseValueOf primarily deal with primitive types, we can conjecture that

developers deem as negligible the potential performance improvement when resolving

this kind of issues. Nevertheless, developers should take care of those issues since after a

manual analysis we noticed that they may occur in the burst (Listing 5.2 for an example

obtained from our dataset), thus potentially impacting the performance of the app in a

noticeable manner.

//The Special Key Codes

mSpecialCodes = new Hashtable<Integer, String>();

mSpecialCodes.put(new Integer(-900), "++");

mSpecialCodes.put(new Integer(-901), "--");

mSpecialCodes.put(new Integer(-902), "&&");

mSpecialCodes.put(new Integer(-903), "||");

mSpecialCodes.put(new Integer(-904), "\\\\");

mSpecialCodes.put(new Integer(-905), "//");

mSpecialCodes.put(new Integer(-906), "==");

mSpecialCodes.put(new Integer(-907), "<=");

mSpecialCodes.put(new Integer(-908), ">=");

mSpecialCodes.put(new Integer(-909), "!=");

mSpecialCodes.put(new Integer(-910), ">>");

Listing 5.2: Example of bursty occurrences of the UseValueOf issue (dyne/ZShaolin

- termapk/src/com/spartacusrex/spartacuside/keyboard/TerminalKeyboard.java).

UseSparseArrays (376, 15.61%) type of issues are third most common occurrence in

our dataset. As discussed in Table 5.3, a performance degradation may occur when

developers use a HashMap and the maps grows in an unpredicted manner. Listing 5.3

provides an example of HashMap Usage.

private void randomizeOptions(){

HashMap<Integer, Word> optionsMap = new HashMap<Integer, Word>();

for(int i = 0 ; i < optionsList.size() ; i++){

while(true){

int rand = (int)((Math.random() * 10) % 5);

if(optionsMap.containsKey(rand)){

continue;

}else{

optionsMap.put(rand, optionsList.get(i));
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break;

}

}

}

Listing 5.3: Example of occurrences of the UseSparseArrays issue (ric03uec/cramit

- src/com/dev/cramit/models/Problem.java).

Then, there are potential HandlerLeak issues (320, 13.28%) in our dataset. The main

consequences of this type of issue are memory leaks in the projects. To avoid this issue,

developers should declare the handler as static. From the manual analysis in our dataset,

we observed that in few cases developers intentionally resolved this issues, for example

in Listing 5.4, developers mentioned in their comment (in the Java source code file) to

declare static handler and for that, in the very next commit, they declared handler as

static to get rid from potential memory leak issues. There are also many projects present

in our dataset where developers do not declare the handler as static, which may lead to

suffering from potential memory leaks as shown in Listing 5.5.

// TODO make this Handler static to prevent memory leaks

private Handler communicatorServiceHandler = new Handler() {

/**

* Needs to know which parameters are passed back in which predefined

* fields of the {@link Message}. </p>

* <ul>

* <li><code>what</code> - hash of the related

* {@link IntentAction.WebService} constant</li>

* <li><code>arg1</code> - one of the constants declared in

* {@link WSConstants.Result}</li>

* <li><code>obj</code> - the returned {@link Bitmap}</li>

* </ul>

*/

Listing 5.4: Example of occurrences of the HandlerLeak issue

(mobiRic/StackFlairWidget - src/com/mobiric/stackflairwidget/service/

FlairWidgetService.java).

private final Handler mHandler = new Handler() {

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case MESSAGE_UPDATE_HARDWARE_PARAMETERS:

updatedHardwareSettingsValues();

break;

}

}

};
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Listing 5.5: Example of occurrences of the HandlerLeak issue

(alistairdickie/BlueFlyVario Android - src/com/bfv/hardware/

HardwareListActivity.java).

Also there are issues of type DrawAllocation (237, 9.84%), can be found in various

projects in our dataset. This is mainly due to allocation of memory when draw or

layout operation is frequently invoked in a method. Thus it causes assigning memory

each time whenever the function is called. From the manual analysis, we can presume

that there are few projects where developers resolved these issues but still many projects

suffering from these type of issues. For example, there are several new objects such as

new ArrayList (at line 4 and 12) and new pie (500) (at line 18), are allocated in

onDraw() (i.e., allocating objects during a draw operation), heavily lead to UI lag as

shown in Listing 5.6.

protected void onDraw(Canvas canvas) {

List<Double> numbers = new ArrayList<Double>();

Employee employee = new Employee(_hoursWorked, _this);

//numbers.add(Double.parseDouble(employee.gross()));

numbers.add(employee.payeDouble());

numbers.add(employee.studentLoanDouble());

numbers.add(employee.kiwiSaverDouble());

numbers.add(employee.nettDouble());

double total = employee.grossDouble();

List<Integer> colours = new ArrayList<Integer>();

colours.add(Color.BLUE);

colours.add(Color.GREEN);

colours.add(Color.RED);

colours.add(Color.MAGENTA);

colours.add(Color.YELLOW);

Pie p = new Pie(500);

Paint wallpaint;

Listing 5.6: Example of occurrences of the DrawAllocation issue

(kurtmc/MyEarnings - src/com/mcalpinedevelopment/calculatepay/

CalculateActivity.java).

There are (188, 7.80%) issues of type FloatMath in our dataset. Listing 5.7 shows an

example of this type of performance issue.

In previous versions of Android, when working on floats, android.util.FloatMath

was referred to ensure for performance reasons. However, on the latest hardware the

performance achieved when using floats is equal than when using doubles (though they

take more memory), and on the current Android versions, FloatMath is slower than

using java.lang.Math [2] .
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// if values before left of decimal are the same -> need to show float decimals

if (android.util.FloatMath.floor(min) == android.util.FloatMath.floor(max))

{

minS = Float.toString(min);

maxS = Float.toString(max);

// show same length decimals!

if (minS.length() > maxS.length())

{

minY.setText(minS.substring(0, maxS.length()));

maxY.setText(maxS);

}

else

{

minY.setText(minS);

maxY.setText(maxS.substring(0, minS.length()));

}

}

else // otherwise only show integers

{

minY.setText(Integer.toString((int)(min)));

maxY.setText(Integer.toString((int)(max)));

}

Listing 5.7: Example of occurrences of the FloatMath issue (dirktrossen/AIRS -

src/com/airs/TimelineActivity.java).

Issues of type ViewHolder (180, 7.47%) are more recurrent in our dataset after Float-

Math. This type of issue primarily deals with the smoother scrolling of ListView. To

show the ListView items, system has to draw each item separately. To reduce the num-

ber of findViewById() calls every time (when a list object has to draw), data from last

drawn object can be reused (i.e., mainly by creating ViewHolder patterns). As shown

in Listing 5.8, in getView() function every time a new object is draw (at line 5) followed

by calling of findViewById() (at line 8) each time which may degrade the performance

of app i.e., lag in smoother ListView scrolling. However, there are also certain cases in

our dataset where developers specially implemented ViewHolder pattern class to avoid

this issue.

@Override

public View getView(int position, View view, ViewGroup parent) {

LayoutInflater inflater = (LayoutInflater)

getContext().getSystemService(Context.LAYOUT_INFLATER_SERVICE);

view = inflater.inflate(R.layout.text_with_delete, parent, false);

final String textItem = getItem(position);

TextView textView = (TextView) view.findViewById(android.R.id.text1);
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textView.setText(textItem);

// add listener to the delete button

Button button = (Button) view.findViewById(android.R.id.button1);

button.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

//delete button clicked

onDeleteListener.onDelete(textItem);

}

});

return view;

}

Listing 5.8:

Example of occurrences of the ViewHolder issue (asksven/BetterWifiOnOff -

BetterWifiOnOff/src/com/asksven/betterwifionoff/CreditsAdapter.java).

ViewTag (5, 0.20%) are issues type that can be found very rarely in our dataset. These

issues are related to the implementation of View.setTag(int, Object) and occurred in

prior to Android 4.0. The consequences of this issue are leaks in the apps.

WakeLock (3, 0.12%) type of issues which are very less recurrent in our dataset. The

WakeLock happened due to the failure to release a WakeLock properly that could keep

the mobile device in high power mode and reduces the lifetime of the battery. There

are many reasons of this phenomenon, such as failing to call release () in all possible

code paths containing acquire(), releasing the WakeLock in onDestroy() instead of in

onPause(), and so on and so forth. Since this, it is a very crucial performance issue

and developers do take care about the lifetime of battery while developing the app (i.e.,

releasing the wakelock properly), and thus it may be one of the reasons why we have

less WakeLock issues in our dataset.

Moreover, Table 5.4 reports the descriptive statistics for the number of statically- de-

tectable performance issues per app. It can be clearly seen from Table 5.4, that Recycle

issues occur quite frequently in our dataset (mean = 1.741 issues per app) followed by

UseValueOf issues (mean = 1.737 issues per app) with higher standard deviation.

Also, issues of type UseSparseArrays and HandlerLeak are quite widespread in the ana-

lyzed apps, with an average 1.190 and 1.013 issues per app, respectively. Instead, issues

of type DrawAllocation and FloatMath are relatively less frequent in our dataset, with

0.750 and 0.594 issues in each app respectively. ViewHolder issues are less frequent in

our dataset (i.e., Mean = 0.569 issues). These issue type have also the lowest coefficient

of variation than other issues.
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Table 5.4: Descriptive statistics for the number of statically-detectable performance
issues per app (SD = standard deviation, CV = coefficient of variation).

Issue type Max. Mean SD CV

DrawAllocation 28 0.750 2.543 3.39
FloatMath 61 0.594 4.404 7.402
HandlerLeak 42 1.013 3.855 3.807
Recycle 75 1.741 6.114 3.513
UseSparseArrays 84 1.190 5.394 4.533
UseValueOf 171 1.737 10.478 6.031
ViewHolder 17 0.569 1.655 2.906

Regarding the relationship between issue occurrence and popularity of apps in terms of

number of downloads, issues of type UseValueOf were found 244 times in apps down-

loaded 10,000-50,000 times from Google Play Store; issues of type UseSparseArrays

occurred 129 times in highly-downloaded apps (1M-5M times). Fig. 5.7 provides an

overview of the different types of performance issue identified in apps having varying

download ranges. One thing that immediately leaps to the readers’ eyes is that, for

apps having a very high number of downloads (greater than 5M) the issue frequency

suddenly decreases. Although we do not have evidence of that, it is possible that such

very popular apps undergo a more accurate quality check (e.g., code review), which may

explain such a drop. We can also notice a very high frequency of UseValueOf issues

for apps having a medium (1k-5k) number of downloads. Although this issue (calling

constructors of wrapper classes instead of factory methods) may result is a waste of

memory, we cannot tell why it happens for apps in that specific range of downloads.

Summary − RQ2.0 – A total of 2,408 performance-related issues has been de-

tected by Android Lint. Recycle issues are the most recurrent ones in our dataset

(550, 22.84%), whereas WakeLock are the least recurrent ones (3, 0.12%).

5.3 RQ2.1 Results – Evolution of the Number of Android

Performance Issues over Time

5.3.1 Data Analysis (RQ2.1)

We answer RQ2.1 by analyzing each of the 316 apps with at least one performance-

related issue. For each app, we firstly reconstruct its versioning history by considering

the sequence of all commits in its GitHub repository; then, for each commit we count

the occurrences of any type of performance issue. The final result of this activity is a
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Figure 5.7: RQ0: Relationship between performance issue types and number of apps’
downloads.

set of 316 plots, showing the evolution of the number of performance issues over the

lifetime of each app, as well as the app size evolution in terms of LOC. The reason why

we observe these two variables is because the former represents the main factor being

investigated in this study, and the latter is a factor we need to control. This is because

the growth of performance issues could be considered more problematic when it happens

more rapidly than size increase. Examples of generated plots are shown in Section 5.3.2.

In order to characterize how performance issues evolve in Android apps, we perform

a qualitative study on the plots and manually categorize them into relevant groups by

applying the open card sorting technique [107]. We perform the card sorting in two

phases. First, we manually tag each plot with considerations about the presence of

relevant evolution patterns, e.g., presence a spike, plateaus, sudden drops, etc. Then, we

cluster identified patterns into meaningful groups with a descriptive title; each plot can

exhibit more than one issue evolution pattern, i.e., it can belong to more than one group.

To minimize bias, three researchers have been involved in the card sorting activity.

Specifically, we randomly selected 100 apps from the dataset and the main author of

this study categorized them. Then, the same 100 apps have been randomly assigned

to the other two researchers involved in this study (50 apps each), who categorized

them independently. The three emerging sets of categories were slightly different (see

our replication package for their specific items) and have been collaboratively discussed
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and merged in order to agree on a final set of categories of evolution trends of Android

performance issues.

Finally, the main author of this study categorized the 316 plots into the different possible

evolution patterns, and the task was repeated by the second author for the first 158 apps

and by the third author for the last 158 apps, so that for each app there were at least

two taggers performing the classification. In order to further reduce bias, the other two

researchers re-applied the final set of categories to their initially assigned 50 apps and

the level of agreement between each researcher and the first one has been assessed by

means of the Cohen-Kappa statistics [42].

After the application of the open card sorting technique, we report and analyze the fre-

quency of performance issue evolution patterns across all 316 apps. Moreover, from our

analysis it also emerged that a large number of apps contain a combination of different

categories of issue evolution patterns. In order to better investigate this aspect, we sta-

tistically assess their correlation by building a contingency table with rows and columns

representing each issue evolution pattern and computing its Cramer’s V coefficient [102].

The Cramer’s V coefficient is a well-known measure of association applicable to contin-

gency tables involving two categorical variables and it is defined within the [0, 1] range,

where 0 indicates no correlation and a value of 1 indicates perfect correlation.

5.3.2 Results (RQ2.1)

To answer RQ1, we analyzed the evolution of the number of performance issues through-

out the lifetime of each GitHub repository. The analysis of the 316 repositories of our

dataset via the open card sorting technique described in Section 5.3.1 resulted in the

identification of five different evolution patterns. Table 5.5 reports the emerging pat-

terns12.

As discussed in Section 5.3.1, three researchers have been involved in the identification

of the categories of issue evolution patterns iteratively and collaboratively. For each

evolution pattern category, the Cohen Kappa index between the first author and the

second and between the first author and the third is calculated. In all cases the Cohen

Kappa is > 0.6, hence indicating a strong agreement.

Fig. 5.8 reports the distribution of the issue evolution patterns across the 316 apps

containing at least one occurrence of each performance issue. We can observe that

STICK (209) and REF (124) are the most frequent performance issue evolution patterns,

followed by BEG (111), INJREM (69), and GRAD (41). In the following, we discuss in

detail about these evolution patterns.
12In the remainder of the study we will refer to performance issues as P and to lines of code as LOC.
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Table 5.5: Categories of evolution patterns of Android performance issues, where
P = the number of performance issues, LOC = lines of code, ∼ = irrelevant for the

identification of the evolution pattern.

Pattern Description P LOC
STICK Sticky issues, i.e., issues are injected abruptly

and they remain in the app across several com-
mits

step ↑ ∼

REF Refactoring of performance-related issues step ↓ ∼
BEG Issues since the beginning of the project stable != 0 ∼
INJREM Injection and removal, i.e., a relatively large

number of issues is injected in the project, fol-
lowed by a sudden removal

spike ∼

GRAD Gradual, i.e.,, performance issues gradually
occur during the app development process
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Figure 5.8: Occurrences of performance issue evolution patterns across apps.

STICK (Sticky issue). This pattern refers to issues which are introduced and remain

in the project for several commits. In such a case, either the issue was not considered

a serious concern (or even it was a tool’s false positive), or developers had other priori-

ties but resolving the performance issue. Fig. 5.9 show the example of STICK patterns

found in the analyzed apps. As it can be seen from Fig. 5.9, one issue (i.e., Handler-

Leak) is introduced in the alistairdickie/BlueFlyVario Android project and continue to

remain in the system for many commits. As the project development progress further,

another issue (i.e., HandlerLeak) is injected with the addition of new lines of code and

then both these issues are stick to project for several commits (till the end of the project).

REF (Refactoring). This type of pattern indicates a possible refactoring action in the

evolution of projects i.e., performance issues are resolved from the project with the

increase or decrease of lines of code. In REF patterns, the number of performance issues

dropped consistently, regardless of whether the overall LOC increased or decreased.
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Figure 5.9: alistairdickie/BlueFlyVario Android - An example of STICK Evolution
Pattern.
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Figure 5.10: xperia64/timidity-ae - An example of REF Evolution Pattern.

From the manual analysis, we noticed that intentional refactoring done twice in the

project xperia64/timidity-ae (as shown in the Fig. 5.10). Initially one UseSparseArrays

issue was resolved by using SparseIntArray instead of HashMap<Integer, Integer>,

whereas in the second refactoring ViewHolder Pattern was implemented inorder to re-

solved the ViewHolder issue.

vspace-10mm

BEG (issues since the Beginning). This pattern refers to cases in which performance

issues which are present in the project since the beginning i.e., when the project was

created. As it can be seen from Fig. 5.11, related to the offbye/ChinaTVGuide app, this
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Figure 5.11: offbye/ChinaTVGuide - An example of BEG Evolution Pattern.

app contained 25 performance issues since the project’s creation on GitHub, and they

remained unaltered till the end of our observation period.
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Figure 5.12: mi9rom/achartengine - An example of INJREM Evolution Pattern.

INJREM (Injection and removal). We identify the INJREM evolution patterns when a

relatively large number of issues are injected in the project followed by a quick removal.

We consider the resolution of a performance issue to be quick if it happens within two

days from the introduction. Fig. 5.12 show the example of INJREM pattern from our

dataset. From Fig. 5.12 (pattern shown by the black arrow), it can be noted that in the

app mi9rom/achartengine three issues were introduced (i.e., UseSparseArrays) and in

the very short time interval, these issues were suddenly resolved. By manually inspecting

the documented commit, we observed that the resolution was not done with intention

of improving the performance of the app (i.e., the resolution was accidental).
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Figure 5.13: AlbertoCejas/GermanLearningUCA - An example of GRAD Evolution
Pattern.

GRAD (Gradual issues). In GRAD evolution pattern, performance issues gradually

increase with the LOC or vice versa. In this type of evolution patterns, performance

issues and lines of code grow or decrease altogether. In other words performance issues

are an integral part of the app development process. As shown in Fig. 5.13, performance

issues in the app AlbertoCejas/GermanLearningUCA (an example from our dataset)

grow with the same rate of LOC. In other words, performance issues increase gradually

with the gradual increase of lines of code.

From the analysis of evolution patterns, we observed that many apps in our dataset

which contain performance issues follow multiple co-occurrence patterns throughout the

lifetime of their projects. To provide a quantitative indication of the association strength

among patterns, we compute the Cramer’s V coefficient, which measures the strength of

association — varying between 0 to 1 — between two nominal variables. In our study,

the computed Cramer’s V coefficient value is 0.319 (which is low) meaning that there is

a low association between the categories of emerging patterns.

Summary − RQ2.1 – Five different evolution patterns emerged from the card

sorting technique. STICK is the most frequent pattern in our dataset (209 occur-

rences), meaning that for 209 over 316 apps, issues tend to remain in the source

code for several commits after their introduction. Moreover, while many patterns

in our dataset co-occur, we did not find any pair of patterns exhibiting a high level

of association.
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5.4 RQ2.2 – Performance Issues remaining in Android Apps

over Time

5.4.1 Data Analysis (RQ2.2)

To answer RQ2.2, we introduce two variables: RSi
a and USi

a. RSi
a is defined as the

number of resolved issues of type i (e.g., DrawAllocation) across the whole lifetime of

app a. As discussed in Section 5.1.3, in this study a resolved issue is an issue which is

present in the GitHub repository (for any number of commits up to commit cj) and it

is not present in the repository from commit cj+1 ( in this case commit cj+1 is called

the issue-resolution commit). Conversely, USi
a is defined as the number of unresolved

issues of type i within the lifetime of app a. Clearly, the sum of RSi
a and USi

a is equal

to the total number of issues of type i for app a.

Given its exploratory nature, we answer RQ2.2 by extracting and discussing the following

information for each app a within our dataset and for each type of performance issue i:

the ratio between the total number of performance issues of type i in a and its unresolved

issue (resolved and unresolved issue are complementary to each other, therefore we only

keep the unresolved ones).

Finally, we depict with bar plots the relationship between the type unresolved issue

frequency and number of apps’ downloads.

5.4.2 Results (RQ2.2)

Table 5.6: Total number of Android performance issues and their subset of unresolved
issues

Category All Unresolved (%)
ViewHolder 180 101 (56.11%)
UseSparseArrays 376 196 (52.13%)
DrawAllocation 237 119 (50.21%)
HandlerLeak 320 160 (49.00%)
Recycle 550 240 (43.64%)
UseValueOf 549 218 (39.71%)
FloatMath 188 52 (27.66%)
Total 2,400 1,086 (45.25%)

As shown in Table 5.6, ViewHolder issues tend to remain more than other types of

performance issues across all apps in our dataset (101/180, 56.11%). Since ViewHolder

issues primarily deal with the smoother scrolling of ListView items in Android apps,

they can be more problematic in terms of end users’ experience. These issues tend to

arise in the apps either due to lack of declaring a ViewHolder pattern, or not reusing
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the previously drawn items i.e., by reducing the number of calls to the findViewById()

method.

Similarly, UseSparseArrays issues (196/376, 52.13%) tend to remain unresolved in our

dataset. For the purpose of efficient memory usage and less garbage collection, the

Android platform promotes the use of SparseArrays instead of HashMaps for maps

that contain up to a hundred values. From manual inspection, we assume that these

issues remain unresolved due to unnoticeable memory improvements in terms of amount

of memory (in bytes) allocated in the heap of the Java Virtual Machine.

The DrawAllocation issues (119/241, 50.21%) are the third less frequent issue type re-

maining unresolved in our dataset. Since draw operations are quite sensitive in terms

of user-perceived performance, it is a bad programming practice to allocate memory

(i.e., by declaring new instances) during draw or layout operations. This is one of the

troublesome issue type that continues to remain alive in the apps.

The consequence of having HandlerLeak (160/320, 50.00%) issues is to have a memory

leaks in the app, potentially leading to the usage of unneeded memory over long usage

sessions. This type of issues can be resolved by declaring the handler as static. Finally,

we analyzed that FloatMath (52/188, 27.66%) issue type, which is resolved more fre-

quently in our dataset as compared to other types of performance issues. Similar to

UseValueOf issues, they also mainly deal with primitive data types and are resolvable

in a relatively straightforward manner.

Concerning the relationship between of unresolved issues and apps’ downloads, results

shown in Fig. 5.14, highlight how UseSparseArrays issues remained unresolved 69 times

in apps downloaded in the range of 1M-5M. Similarly to what found in RQ0, also in this

case we notice a difference (drop in the frequency of unresolved issues) for apps having

a high number of downloads, above 5M. At the same time, it is also interesting to

notice how UseSparseArray issues (see the orange bar) tend to exhibit a relatively high

frequency also for apps with a high number of downloads. This kind of issue suggests

the use of SparseArrays instead of HashMaps, but it is possible that developers do not

consider such an optimization as important given the size of the data they have to deal

with in their apps.

Summary − RQ2.2 – Overall, 45.25% of performance issues remain unresolved.

ViewHolder issues are the ones remaining more in the app, even though they can

be problematic in terms of end users experience since they primarily deal with

a smoother scrolling of ListView items. FloatMath issues are the most resolved

performance issues (52/188, 27.66%).
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Figure 5.14: RQ2: Relationship between types of unresolved issues and number of
apps’ downloads.

5.5 RQ2.3 Results – The Lifetime of Android Performance

issues

5.5.1 Data Analysis (RQ2.3)

We define the lifetime of an Android performance issue as the number of days between

its issue-introducing commit and its issue pre-resolution commit. Intuitively, such a

lifetime represents the time interval in which the issue is present in the source code of

an app.

We answer RQ2.3 in two phases. In the first phase we perform an initial exploration

of the obtained lifetimes across all apps and report the summary statistics (together

with box plots). In this phase, we order all issues according to their lifetime and trim

outliers by removing the top 1% of all issues so to avoid potential issues related to

repositories which have not been actively maintained in the last months13. In order to

compare the different duration distributions, we apply the Kruskal-Wallis test [75] for

each type of performance-related issue, followed by a Dunn post-hoc analysis [49]. Since

we are applying multiple statistical tests, in order to reduce the chance of Type-I error

we correct the obtained p-values via the Holm p-value adjustment procedure [64]. The

13It is important to note that we performed the statistical analysis for RQ2.3 both with and without
outliers and the conclusions did not change
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procedure sorts the n p-values obtained by the multiple comparisons in increasing order,

and multiplies the smallest one by n, the second-smallest by n−1, and so on (the largest

one is left unchanged).

In the second phase, we aim at understanding whether Android performance issues

exhibit some recurrent patterns in terms of resolution time. Specifically, we firstly re-

construct the cumulative distribution function (CDF) of the lifetime of each type of per-

formance issues across all apps, then we plot it on a day-scale, and finally we investigate

on whether each built CDF can be modeled using known statistical distributions. Specif-

ically, we consider six known statistical distributions – Cauchy, Exponential, Gamma,

Lognormal, Normal and Weibull – and assess to what extent each type of Android

performance issues fits each of them. In total, we obtained 42 pairs (i.e., 6 statistical

distributions × 7 types of Android performance issues) and assessed their fits. When fit-

ting the CDFs to the known statistical distributions we follow a procedure similar to the

one applied in [97], i.e., we (i) visually inspect each of the 42 plots showing together the

CDF and known distribution in combination and (ii) statistically test how the known

statistical distributions fit the CDFs by applying the Kolmogorov-Smirnov (KS) test

to each pair. Specifically, we firstly estimate the distribution parameters of each CDF

using the method of Maximum Likelihood, which maximizes the likelihood that the set

of data used for the estimation can be obtained from the statistical distribution mod-

eled with the estimated parameters. Then, we apply the Kolmogorov-Smirnov (KS), a

non-parametric test that checks whether a distribution fits a given data (H0 – there is

no significant difference between the theoretical distribution and the actual data distri-

bution). This means that every time the p-value of the applied KS test is greater than

σ = 0.05, then the CDF fits the distribution. In subsection 5.5 we report all CDFs with

the best fitting known statistical distribution, all the obtained p-values, and a discussion

of the obtained results. Finally, we use bar plots to depict the relationship between the

type of frequently-resolved issues and the apps’ number of downloads.

5.5.2 Results (RQ2.3)

As discussed in section 5.5.1, we answer RQ3 by analyzing the lifetime of each type of

Android performance issue. As an initial exploration of the obtained results, Fig. 5.15

and Table 5.7 present the distributions and descriptive statistics of the lifetime of each

type of performance issue across all apps.

We can notice that the medians of lifetimes across issues types range from about 1.5 days

(UseSparseArrays) to about 56 days (FloatMath), with very high standard deviations,

which range from about 130 days (UseValueOf ) to about 324 days (FloatMath). Having
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Figure 5.15: Lifetime of each type of performance issues (outliers are not shown to
help readability).

high standard deviations provides an indication that the lifetime of statically-detectable

performance issues can vary across apps and projects.

Table 5.7: Descriptive statistics for the lifetime (in days) of each type of performance
issues per app (SD = standard deviation, CV = coefficient of variation).

Issue type Min. Max. Median Mean SD CV

DrawAllocation 0.0008 865 12 139 204 147
FloatMath 0.0009 737 56 294 324 110
HandlerLeak 0.0001 1221 45 169 289 171
Recycle 0.0001 961 20 106 183 173
UseSparseArrays 0.0008 1147 1 96 220 230
UseValueOf 0.0011 882 8 50 131 263
ViewHolder 0.0022 833 3 107 209 195

Results of the pairwise comparisons performed by the Dunn’s procedure are reported

in Table 5.8. Performance issues of type DrawAllocation, FloatMath, HandlerLeak, and

Recycle have significantly longer lifetimes with respect to both UseSparseArrays and

UseValueOf. Moreover, in our dataset HandlerLeak issues also have significantly longer

lifetimes with respect to ViewHolder issues.

Table 5.9 reports the fitted distributions, their parameters, and the p-values of the KS

test for each type of considered Android performance issue. The bold values represent

the case when there is a possible distribution fitting (i.e., p-values > 0.05). As shown

in Table 5.9, HandlerLeak issues follow a weibull and gamma distribution with p-value
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Table 5.8: Results of the Dunn’s post-hoc analysis for comparing duration distribu-
tions (p-values are in parenthesis, statistically significant p-values are shown in bold

and marked with *).

Col Mean-
Row Mean DrawAlloc. FloatM. HandlerLeak Recycle UseSparseA. UseValueOf
FloatMath -1.064105

(0.5746)
HandlerLeak -1.661472 -0.588860

(0.4348) (0.8339)
Recycle 0.110759 1.431713 2.214711

(0.4559) (0.4567) (0.1473)
UseSparseA. 3.374780 4.729559 5.558179 4.159201

(0.0052*) (0.0000*) (0.0000*) (0.0003*)
UseValueOf 3.983202 5.572733 6.594601 5.317560 0.267410

(0.0005**) (0.0000*) (0.0000*) (0.0000*) (0.7892)
ViewHolder 1.624728 2.636551 3.209208 1.790917 -1.248851 -1.555902

(0.4169) ( 0.0503) (0.0087*) (0.3665) (0.5293) (0.4191)

> 0.05, whereas ViewHolder issues fit the weibull and lognormal distribution. Further-

more, DrawAllocation issues fits the gamma distribution, Recycle issues fit the weibull

distribution and UseSparseArrays issues fit a lognormal distribution. FloatMath and

UseValueOf performance issues do not fit any considered distribution.

Table 5.9: Results (p-values) of the KS test fitting the lifetime of different types of
Android performance issue to different distribution models.

Issue type Norm Exp Weibull Gamma LognormCauchy

DrawAllocation < 0.05 < 0.05 < 0.05 0.17 < 0.05 < 0.05
FloatMath < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
HandlerLeak < 0.05 < 0.05 0.33 0.13 < 0.05 < 0.05
Recycle < 0.05 < 0.05 0.13 < 0.05 < 0.05 < 0.05
UseSparseArrays < 0.05 < 0.05 < 0.05 < 0.05 0.23 < 0.05
UseValueOf < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
ViewHolder < 0.05 < 0.05 0.28 < 0.05 0.29 < 0.05

Fig. 5.17 highlights the Cumulative Distribution Function (CDF) of few types of per-

formance issues, in which the actual CDF is represented through a red line and the

theoretical CDF is shown as a blue line. Fig. 5.17 reports that the actual CDF for

HandlerLeak issues follows the Weibull distribution. Instead, UseSparseArrays best fits

the lognormal distribution and DrawAllocation fits a Gamma distribution. These plots

indicate that those three types of issues tend to be resolved either (i) immediately (in

all cases there is at least a 50% probability of resolving them within few days) or (ii)

very late during the lifespan of the project (e.g., approximately 30% of DrawAllocation

issues are resolved after 200 days).

We also analyzed the relationship between the type of issues frequently resolved and

the apps’ number of downloads. Results are shown in Fig. 5.16, and indicate that

UseValueOf issues exhibit a high number of resolutions in apps having a relatively

medium number of downloads. While, as we discussed in RQ0 (Section 5.5) we noticed
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Figure 5.16: RQ3: Relationship between types of resolved issues and number of apps’
downloads.

a high number of issues of this type being introduced, we can also see that they are

removed after a while.

Summary − RQ2.3 – Statically-detectable Android performance issues tend to

remain in the project for a relatively long period. On average (median) they are re-

solved after more than 137 (21) days during the lifetime of the whole project. When

resolved, there is a 50% probability that a statically-detectable Android performance

issue is resolved before 2 months after its introduction in the app’s repository.

5.6 RQ2.4 Results – Documented Resolutions of Android

Performance Issues

5.6.1 Data Analysis (RQ2.4)

RQ2.4 is about documented resolutions of Android performance issues. In this context, a

documented resolution of a performance issue is a special type of issue resolution where

the developer performing the resolution is consciously improving the performance of the

app. The starting point of our analysis is the set of issue-resolution commits, which we

collected during the data extraction.
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Figure 5.17: Empirical and theoretical CDFs.

In this phase, we consider GitHub commit messages as indicators of the actual docu-

mented intention of the developer. Then, for each type of Android performance issue,

we define a dedicated set of terms for identifying which commit messages are dealing

with that issue. Clearly, the identification of the sets of terms is a key factor for the

success of this phase. We follow a semi-systematic approach for the identification of the

terms related to each Android performance issue: (i) we extract an initial set of terms

based on the name of each performance issue (e.g., DrawAllocation is composed of the

keywords draw and allocation) and (ii) we manually extract relevant terms from the

description of each type of performance issue in the official Android Lint web page. For

example, the description provided by Android Lint DrawAllocation is provided below

and it leads to the identification of the following terms: < Draw,Allocate, Layout, User

Interface, UI,Memory >.

You should avoid allocating objects during a drawing or layout operation.
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Table 5.10: Regular expressions for identifying documented Android performance
issues.

Type of issue Keywords
DrawAllocation [Dd]raw*, [Aa]lloca*, [Ll]ayout, UI, [Mm]emory
Recycle [Cc]ursor*, [Rr]ecycle*, [Tt]ypedArray*,

[Vv]elocityTrack*
ViewHolder [Vv]iewHolder*, [Aa]dapter*, [Ll]istView, [Ss]crol*
HandlerLeak [Hh]andler*, [Ww]eakReferenc*, [Mm]essageQueue*,

[Ll]eak*
UseSparseArrays [Ss]parseArray*, [Hh]ashMap*
UseValueOf [Vv]alue*, [Dd]ouble, [Ll]ong
FloatMath [Ff]loatMath
Miscellaneous [Ll]int, [Ww]arn*, [Pp]erf*

These are called frequently, so a smooth UI can be interrupted by garbage

collection pauses caused by the object allocations. The way this is generally

handled is to allocate the needed objects up front and to reuse them for each

drawing operation. Some methods allocate memory on your behalf (such as

Bitmap.create), and these should be handled in the same way.

By applying the afore mentioned procedure to each type of Android performance issue,

we identify the regular expressions shown in Table 5.10. It can also be noted from

Table 5.10 that in last row of the table, we define an additional set of regular expres-

sions containing few more general performance-related terms. We add this set of regular

expressions in order to cover also those cases where the developers are addressing per-

formance issues, but are not referring to any specific Android Lint check.

To answer RQ2.4, we present and discuss (i) the frequency of documented resolutions of

Android performance issues within the whole dataset of Android apps, (ii) the distribu-

tion of documented resolutions of performance issues across the seven types of Android

performance issues, and (iii) the distribution of the code churns associated to each of

the 1,314 PRI14-resolving commits across each type of Android performance issue. Code

churns refer to the total number of changed lines of code in a commit (either added, re-

moved or updated) [90]. In this study, we rely on code churns because (i) it is one of the

most used metrics for representing the change volume between two versions of the same

system [90], (ii) it can be considered as a relatively good estimator for the development

effort devoted to a GitHub commit, and (iii) it can be extracted automatically with low

computational effort, and (iv) the git log command can compute it out of the box15.

Also, to better explain the results, we provide an example of solution for each type

of Android performance issue. This allows us to build a minimal catalog of reusable

14PRI is an acronym for Performance-Related Issue
15https://git-scm.com/docs/git-log

https://git-scm.com/docs/git-log
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solutions, which can be used by Android developers for better understanding how to

resolve Android Lint warnings in their projects. We select the solutions in two steps.

First of all, we randomly select five commits for each type of Android performance

issue, where a developer documented a performance-related change. Then, we manually

inspect the changes in the Java source code in each identified commit and select the most

recurrent and representative one (also based on the description of the corresponding

Android Lint check). We present and discuss in details all the representative solutions

we identified during manual inspection. We believe that developers can exploit this

emerging collective knowledge for solving the performance issues of their mobile apps in

a more effective manner.

5.6.2 Results (RQ2.4)

Starting from the 1,314 commits where performance issues have been resolved (either

intentionally or not), we identified the subset of commits whose commit message men-

tions Lint-related performance issues via the keyword-based strategy described in Sec-

tion 5.1.3. For each type of Android performance issue, Table 5.11 reports the number

of commits in which (i) developers explicitly document the resolution of a given type

of Android performance issue (second column) and (ii) developers just generically men-

tion that they resolved a performance issue (third column). We add this Miscellaneous

set of keywords in order to cover also those cases where the developers are address-

ing performance issues, but are not referring to any specific Android Lint check (these

Miscellaneous set of keywords are shown in the last line of Table 5.10).

Table 5.11: Number of documented performance issue resolutions.

Issue type #Commits #MiscellaneousCommits Total

DrawAllocation 12 (8.4%) 1 (0.7%) 13 (9.1%)
FloatMath 20 (13.9%) 2 (1.4%) 22 (15.3%)
HandlerLeak 17 (11.9%) 1 (0.7%) 18 (12.6%)
Recycle 48 (33.6%) 9 (6.3%) 57 (39.9%)
UseSparseArrays 2 (1.4%) 4 (2.8%) 6 (4.2%)
UseValueOf 1 (0.7%) 9 (6.3%) 10 (7.0%)
ViewHolder 16 (11.1%) 1 (0.7%) 17 (11.9%)

Total 116 27 143

Firstly, we observe that the resolution of every type of performance issue has been ex-

plicitly documented at least more than once, summing up to a total of 143 (10.88%)

commits out of 1,314. Table 5.11 indicates that Recycle issues are more often docu-

mented (i.e., 48 times), followed by FloatMath (20 times), HanderLeak (17 times), and

ViewHolder (16 times). This may be considered as an indications of the extent to which
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developers are aware of issues, which could be possibly related to the actual usage of

static analysis tools like Android Lint.

There are 27 commits notes identified after applying the miscellaneous regular expres-

sions (see Table 5.10). Among them, 9 commits are related to Recycle and UseValueOf

issues, respectively.

In Table 5.12 we provide an example of commit for each type of performance issue

and three examples of commits matching the generic regular expression. We also check

how many of the 143 commits are exclusively related to the resolution of performance

issues, and how many are tangled commits also related to other changes (e.g., the

implementation of a feature, etc.). It is interesting to note that many of such commits

refer only to performance issues resolution (i.e., 117 out of 143 commits). This suggests

that, when documenting Lint-related resolutions in their commit messages, Android

developers tend to do dedicated ”issue resolution sessions”, which are 100% focused on

resolving Lint-related performance issues.

Table 5.12: Examples of commits with documented performance issue resolution.

Category Repository Commit
ID

Commit message

DrawAllocation mchow01/FingerDoodle 15c6432 N Fixed NullPointerException
at FingerDoodleView.java line
67 edu.cs.tufts.mchow. Fin-
gerDoodleView.onDraw

FloatMath almalence/OpenCamera b232324 N Partially fixed issue with
preview on Android 6 in cam-
era2 mode. Fixed nexus nam-
ing in CC. Changed depricated
FloatMath to Math.

HandlerLeak stdev293/battery-
waster-android

7212e95 N static handler to avoid po-
tential memory leak

Recycle uberspot/AnagramSolver be502aa N close cursors after using
them.

UseSparseArrays pocmo/Yaaic fb90f72 N Use SparseArray instead
of HashMap for in-memory
server storage.

UseValueOf AmrutSai/sikuna 696873b N Made changes based on rec-
ommendations from the lint
tool...

ViewHolder chaosbastler/opentraining3052768 N Implemented ViewHolder-
Pattern for ExerciseImageLis-
tAdapter (used for CreateEx-
erciseActivity). Awesome per-
formance improvements.

Other(UseValueOf) Anasthase/TintBrowser d6f86cd N Correct lint warnings.
Other(Recycle) shlusiak/Freebloks-

Android
ec65540 N fix lint warnings

Other(ViewHolder) LukeStonehm/LogicalDefence9312039 N FIXED: #re-use view if al-
ready exists, this will increase
performance a little

When looking at the minimum number of lines of code to resolve issues (see Table 5.13),

the amount of code to be written to resolve some performance issues is fairly limited.

For example, Recycle, UseValueOf, FloatMath, and UseSparseArrays can be resolved by

changing a limited number of lines of code (i.e., up to 5 in 14.68% of cases). This is



The evolution of performance issues of Android apps 72

because these kinds of problems mainly deal with the usage of primitives data types

and thus their resolution can be performed with a very limited number of changes.

For example, a Recycle issue can be resolved by closing a cursor c by invoking the

c.close() or through recycling a TypedArray t i.e., by invoking the t.recycle() method.

Moreover, issues such as UseValueOf can be resolved by calling the valueOf factory

method instead of directly calling the constructor of a wrapper class like Integer(int).

With a minimum number of 16 and 33 changed LOCs, DrawAllocation and HanderLeak

issues seem to be not trivially resolvable. For example, resolving an HandlerLeak usually

implies the creation of a new static handler and setting a weak reference to it.

Table 5.13: Descriptive statistics for the LOCs for resolving each type of performance
issue (SD = standard deviation, CV = coefficient of variation).

Issue type Min. Max. Median Mean SD CV

DrawAllocation 16 170 170 138.8 59.9 0.4
FloatMath 2 25 21 19.4 7.5 0.4
HandlerLeak 33 936 810 639.8 303.5 0.4
Recycle 1 598 578 328.2 277.5 0.8
UseSparseArrays 5 1,313 21 446.3 671.4 1.5
UseValueOf 2 148 4 53.3 65.6 1.2
ViewHolder 3 126 54 49.4 29.5 0.6

In addition, we provide a catalog of solutions (given later in this RQ) that will surely

help developers to quickly fix the issue and save their time.

Figure 5.18: Example of resolving of the Recycle issue.
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Figure 5.19: Example2 of resolving of the Recycle issue.

Recycle. It can be seen in code snippet (Fig. 5.18) that developers use cursor.close()

at the end (at line 174) to close the database query cursor properly and this changes

in source code led to resolution of Recycle issues from the file. Whereas, in other

(Recycle) category, Recycle issue was solved in the project shlusiak/Freebloks-Android

by recycling the resource, i.e., by calling the p.recycle() method (see lines 540 and 569

in Fig. 5.19)

Figure 5.20: Example of resolving of the ViewHolder issue.



The evolution of performance issues of Android apps 74

ViewHolder. To resolve this issue developers should implement ViewHolder pattern

in getView() callbacks. For example, it can be noted from the manual observation that

developers specially implemented ViewHolder Pattern for ExerciseImageListAdapter to

resolve the ViewHolder issue as shown in Fig. 5.20 (an example from our dataset). The

idea is to reuse earlier recycled list items. It prevents the inflation of list items layout

when there are recycled items available for reuse (Lines 99-100). When the list of items

is created for the first time, the references to inner view object are identified and stored

in a particular data structure for reuse (Lines 95-96). The main advantages of using the

ViewHolder pattern are that (1) it can save computation for inflation of list items layout

by reducing findViewById() calls and also invokes less inner view retrieval computations,

and (2) it is memory efficient for building new list items. Furthermore, to reduce the

impact of frequently invoked callbacks in getView() implementation, developers should

use this kind of efficient design.

Figure 5.21: Example of resolving of the HandlerLeak issue.

HandlerLeak. To resolve the HandlerLeak type of issues, developers declared the

handler as static class. It can be clearly shown from Fig. 5.21 (an example from our

dataset), that developers create a new static class for the handler to avoid the potential
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memory leaks. Moreover, developers also used a WeakReference to outer class and pass

the object to instantiate a handler.

Figure 5.22: Example of resolving of the UseSparseArrays issue.

UseSparseArrays. We manually analyzed the source code of several projects to know

how the UseSparseArrays issue type is resolved, we observed that for better perfor-

mance of memory server storage, developer removed HashMaps and used UseSparseArrays

instead. One of the sample documented example can be shown in the Fig. 5.22(from

our dataset) where the UseSparseArrays type of issue is resolved from the project.

However, UseSparseArrays are assumed to be more memory efficient and trigger less

garbage collection as compared to its counterpart HashMaps with no key impact on oper-

ations performance of maps. Moreover, SparseArrays allocate less memory as compared

to HashMaps [22].

DrawAllocation. Related to DrawAllocation issue category, we consider the code

snippet as shown in Fig. 5.23 (an example from our dataset) to analyze the solution.

From our manual analysis, we observed that developer removed the Paint object from

onDraw() function (i.e., a background Paint object is created each time when the draw

operation takes place and memory is allocate every time) as shown in Fig. 5.23. To

resolve this issue, developer pre-allocate the background Paint (at line 18) upfront (i.e.,

outside from onDraw() function) and reuse it instead, which will prevent from the UI

lag since memory will not allocate at each time when onDraw() or Layout()function is

called. Therefore, it is a good suggestion for developers to allocate new object before

the draw or layout operation [3].
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Figure 5.23: Example of resolving of the DrawAllocation issue.

Figure 5.24: Example of resolving of the FloatMath issue.
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FloatMath. For the FloatMath issue type, instead of FloatMath declaration, develop-

ers should use Math in the source code to resolve this issue. It can be noted from the

Fig. 5.24, that after depreciated from FloatMath to Math (as developer wrote in commit

note), the FloatMath issue is resolved. In the following we report the commit message

provided by the developer when resolving this issue.

“Partially fixed issue with preview on Android 6 in camera2 mode. Fixed nexus naming

in CC. Changed deprecated FloatMath to Math.” This issue type focuses on the prim-

itives data types, so developers can get rid of this issue by using Math in the source

code.

Figure 5.25: Example of resolving of the UseValueOf issue.

UseValueOf. Regarding the UseValueOf type of issues, following is the commit mes-

sage developer wrote after resolving the issue of Fig. 5.25 (an example from our dataset).

“Made changes based on recommendations from the lint tool... and removed unused

strings. Preferences have been renamed to Settings. This also no longer appears in the

ActionBar on Honeycomb and above... following recommendations at the Android de-

sign site. Changed Settings display based on these recommendations also. Made plenty of

changes in BusStopDatabase and SettingsDatabase to follow good practices and possible

performance enhancements.”

As shown in Fig. 5.25, the developer used a call to valueOf (at line 310) to resolve this

issue.

Summary − RQ2.4 – A total of 143 (10.88%) commits out of 1,314 document

the resolution of PRIs. Out of those 143 commits, the resolution of Recycle issues

is the most documented (57, 39.9%) and the resolution of UseSparseArrays issues

is the least documented (6, 4.2%). A catalog of manually-extracted resolutions of

performance-related issues is also provided.
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5.7 Discussion

In the following, we firstly provide a detailed analysis about how the results of the

research questions of this study are linked together (Section 5.7.1). Then, we discuss

the implications that the results of our study have for developers (Section 5.7.2) and

researchers (Section 5.7.3).

5.7.1 Summary of the study results

Table 5.14 presents an overview of the main results discussed in the previous sections.

Specifically, for each type of considered performance issue (first column) we report: its

priority as reported in the Android Lint documentation (second column), its frequency

in our dataset (third column), the portion of resolved issues (fourth column), its median

lifetime (fifth column), the median of the lines of code for resolving it (sixth column),

and median of documented resolutions (seventh column).

Table 5.14: Combination of the obtained results.

Issue type Linter
priority

Frequency
(%)

Resolutions
(%)

Lifetime
(median)

LOCs
(median)

Documented
(%)

DrawAllocation 9/10 237 (9.84%) 118 (4.90%) 12.2779 170 13 (9.1%)
Recycle 7/10 550 (22.84%) 310 (12.87%) 20.5430 578 57 (39.9%)
ViewHolder 5/10 180 (7.47%) 79 (3.28%) 2.5965 54 17 (11.9%)
UseValueOf 4/10 549 (22.79%) 331 (13.74%) 7.8848 4 10 (7.0%)
UseSparseArrays 4/10 376 (15.61%) 180 (7.47%) 1.4995 21 6 (4.2%)
HandlerLeak 4/10 320 (13.28%) 160 (6.64%) 45.0079 810 18 (12.6%)
FloatMath 3/10 188 (7.80%) 136 (5.64%) 56.1576 21 22 (15.3%)

By looking at the combined results we can draw a number of interesting insights. Firstly,

DrawAllocation has the highest priority among the considered performance issues, but

it is resolved in roughly half of its occurrences (similarly to the resolutions of the other

types of issues). We argue that this phenomenon can be explained by the relatively high

number of lines of code needed for resolving it (170) and by the fact that it is difficult

for developers to precisely assess when drawing or layout operations are taking place at

run-time. DrawAllocation issues may be an impactful scientific target for researchers

working on automatic refactoring tools because of the high priority of this type of issue,

which can be considered as a proxy of the severity of the impact that this type of issues

can have on the performance of the app.

Recycle is the most frequent type of performance issue (550 occurrences) and they are

resolved in more than half of the cases (310). In principles, resolving this type of issue

mean changing only one line of code, i.e., adding a call to the recycle() method of the

resource being used; however, the median number of lines of code for resolving Recycle
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issues is much higher (578 LOCs). At the time of writing, we do not have a precise

explanation of this phenomenon and further investigation is needed.

We can observe that UseValueOf issues are resolved in a relatively short period (about 8

days) compared to other types of issues. This phenomenon may be explained by the fact

that the median number of lines of code for resolving those issues is only 4. Indeed, by

checking the official documentation of Android Lint, UseValueOf issues can be resolved

simply by calling the valueOf() method of wrapper classes (e.g., Integer) instead of

directly calling their constructor. Nevertheless, UseValueOf is the most recurrent type of

performance issues in our dataset (549 occurrences) and their resolution is documented

only in 10 cases. We argue that since UseValueOf issues are mostly about wrapper

classes of primitive types, developers perceive this type of issues as not impactful with

respect to the overall performance of the app.

While resolving FloatMath issues requires a relatively small effort in terms of lines of

code (median = 21), their lifetime is the highest across all performance issues (median

= 56 days). One possible reason for this type of issue to remain for such long periods is

that Android Lint rates it with a very low priority (3/10), therefore developers tend to

defer their resolutions more than they do for other types of issues.

Finally, we notice that, in general, the considered performance issues tend to be unre-

solved and persist for long periods. We argue that this phenomenon can be explained by

two facts: (i) in general the priority of the considered issues is quite low (only DrawAllo-

cation and Recycle have 9/10 and 7/10 as priorities, respectively, while the others have a

priority level lower or equal to 5/10) and (ii) Android Lint only raises a warning when it

detects one of the issues in the source code, leaving to the developer the choice to either

solve or ignore the detected issue without blocking his/her development flow. Under this

perspective, as we will also discuss in Section 5.7.3, it will be fundamental to empirically

characterize the actual impact of Android Lint issues on the overall performance of the

app. The results of such an assessment will help developers in taking better informed

decisions about whether and when Android Lint performance issues should be managed

or can be safely ignored to have Android apps with good-enough performance levels.

5.7.2 Implications for Developers

Based on the obtained results, in the following we summarize how such results could

guide developers in better handling Android performance issues.

D1 – Developers are generally aware of performance issues detected by An-

droid Lint, but there is space for improvement. The results of R0 are revealing
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that in general developers are not injecting an extremely high number of performance

issues in their apps (min = 0, max = 171 issues per app). Nevertheless, within the

limits of the Android Lint accuracy, the 2,408 performance issues we identified in this

study can be seen as missed chances for improving the performance of Android apps.

Some of the detected issues are not only about performance, but are indicators of (i) poor

programming practices (e.g., UseSparseArrays), which may hinder the overall maintain-

ability of the app and (ii) memory leaks (e.g., HandlerLeak), which may potentially lead

to the OS forcefully closing the app to recollect all the (mis-)used resources. Those are

risks that today’s Android developers cannot afford in a crowded and fiercely competitive

market as the Google Play store.

D2 – Do not treat all types of Android performance issues equally, but

(re)use previous experience to prioritize and fix them. Indeed, Android Lint

checks are organized in different levels of priority and severity in order to guide the

developer in prioritizing them. Also, when answering RQ2.4 it emerged that resolving

Android performance issues demands different levels of effort. For example, a Recycle

issue can be simply resolved by a call to the recycle() method of the used recyclable

resources (e.g., TypedArray); such a call can heavily improve the performance of the

app, since it frees the potentially large resource before the execution of the garbage

collectors. Differently, the resolution of a HandlerLeak issue is usually implemented by

(i) creating a static inner class for the handler, (ii) having a weak reference in the outer

class pointing to the outer class, and (iii) always using the weak reference when referring

to the outer class.

One possibility, to support developers, is that researchers (see Section 5.7.3) develop

linters that prioritize warnings based on some knowledge. At the same time, as a lesson

for developers, this chapter attempted to distill and discuss a catalog of solutions for the

various kinds of issues, based on what developers have done in the studied apps. Such

a catalog is discussed in our RQ4 (Section 5.6).

Generally speaking, we advice developers to establish different priority levels to different

performance issues depending on app’s users’ needs, project characteristics, and avail-

able resources and to build a prioritization model according to them. In this context,

variations of the Weighted Shortest Job First (WSJF [77]) model may be a good starting

point (WSJF model is utilize to sequence jobs such as capabilities, features and Epics

to maximize the economic benefit. It is computed as the ratio between Cost of Delay

(CoD) to job size). At the same time, developers should, (once again, possibly with the

help of environments developed by researchers) build a knowledge base of previously

adopted solutions, in order to apply them when appropriate.
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D3 – Performance issues may be harmless when they occur in isolation,

while they can be particularly concerning when they occur in combination.

If we look at each Android performance issue in isolation, its overhead at run-time

may be minimal in terms of computational resources demanded by the app. However,

in this study we also observed that (i) in many cases issues tend to accumulate over

time (e.g., STICK is the most recurrent evolution pattern) and (ii) apps can exhibit

many performance issues at the same time (e.g., the app ChinaTVGuide exhibited 25

performance issues for more than 4 years).

Developers can alleviate these risks by continuously monitoring the number and types of

Android performance issues in their code base during the whole project. This practice

can also help in mitigating the well-known problem that developers are less likely to fix

linter warnings on legacy code [36, 56]. Indeed, if the monitoring (and corresponding

resolution) of performance issues is performed continuously along other development

activities, then it will be unlikely that the code base will accumulate a high number of

issues, thus avoiding the need to fix them on previously developed code. In this context,

one concrete possibility is to configure linters (e.g., in a Continuous Integration pipeline)

so that they warn developers, by failing a build, when too many potential performance

issues have been introduced in a commit, or in a sequence of consecutive commits. Last,

but not least, it can be advisable to complement linters with performance regression

tests.

The identified evolution patterns can be used by Android developers as a common, shared,

and aggregated viewpoint for guiding maintenance activities and keeping under control

the health of their apps from the perspective of performance issues. The integration of

the tool chain discussed in Section 5.1.3 and visual dashboards may be a vital instrument

for developers for early identifying dangerous evolution patterns (e.g., issue-rich feature)

and immediately fix them.

5.7.3 Implications for Researchers

In the following, we phrase the implications for researchers as perspective Research

Questions, labeled as PRQ — which can be addressed in future research work.

PRQ1 – Why some performance issues tend to remain in Android apps? In our

study, Android performance issues tend to remain for many days within the repository;

the average duration ranges from 53.95 days for UseValueOf to 293.9 days for FloatMath

issues. We suspect that those long durations are due to the fact that performance issues

raised by Android Lint are deemed to be not dangerous by developers.
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We still do not have evidence about whether this perception is true or not, but objectively

investigating how developers perceive the issues raised by Android Lint is a relevant

research direction. An initial investigation is reported in [56], where the main causes

for developers not to use Android Lint have been empirically extracted via interviews.

There, the top three beliefs against the use of Android Lint for performance purposes

are: (i) the performance issues should be handled soon (i.e., before user’s complains),

(ii) the static analysis is not suitable to detect performance issues, and (iii) the warnings

provided by Android Linter are irrelevant.

In addition to the common wisdom mentioned above, other factors strictly related to

the tool itself may influence the lack of resolutions of Android performance issues. For

example, given its static nature, sometimes Android Lint can produce false positives (i.e.,

raising warnings when actually there is no issue), thus negatively impacting developers’

trust in it [38]. The comprehensibility of the warnings may affect the tool’s adoption: if

developers find the error messages as confusing, then they deem the raised error as false

[38]. Finally, developers may tend to perceive the resolution of Android performance

issues time consuming with respect to the obtained gain.

The obtained results suggest that, not all warnings are considered by developers, and

many of them are either false positives, or irrelevant for a given development context.

While this is not entirely surprising, as it confirms findings coming from studies on

general-purpose linters [43, 73, 106, 118], it suggests that, more advanced recommenders

are needed. For example, as previously done for bug fixes [111], it could be interesting

to learn from past changes to prioritize warning resolution.

PRQ2 – To what extent it is possible to automatically refactor performance

issues in Android apps? Almost half of the apps in our dataset (43.64%) exhibit at

least one statically-detectable performance issue in their lifetime. Under this perspec-

tive, supporting developers with methods and techniques for automatically resolving

performance issues is a valuable contribution. Despite the relative straightforwardness

of manual resolutions of statically-detectable performance issues, the automatic resolu-

tion of some of them is far from being technically trivial. For example, the automatic

resolution of HandlerLeaks involves extensive refactoring, where the resulting code is

heavily based on weak references and object-oriented reachability. Initial steps in this

direction are being already performed in the context of Android-specific energy-efficiency

optimizations [45].

In this context, a relatively high number of apps (124) exhibit the refactoring evolution

pattern, meaning that at some point of the app’s lifetime the number of statically-

detectable performance issues has a strong decrease, independently of the amount of

changes in the source code. As researchers, we can closely investigate what is happening
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during the occurrences of a refactoring pattern in order to learn how developers are

actually resolving statically-detectable performance issues. The results of this analysis

can be used as drivers for the design of methods and techniques for (semi-) automatically

resolving Android performance issues in the future.

Finally, in the context of this specific study, having an automated refactoring technique

will allows us to (i) automatically resolve all the unresolved issues we identified in RQ3,

(ii) submit their resolutions as pull requests in the original GitHub repositories, and (iii)

measure the percentage of pull requests that are merged by app developers. All together,

those activities will bring a better understanding about how Android developers consider

detected and resolved performance issues in real industrial contexts.

PRQ3 – What is the actual impact of Android performance issues at run-

time? Being able to automatically resolve detected issues (see PRQ2) opens also for

the empirical assessment and measurement of the impact in the resolution of statically-

detectable Android performance issues in terms of, e.g., CPU usage, memory consump-

tion, app’s frame rate, etc.

At the time of writing, this line of research has not been explored yet and it can likely

lead to an impactful contribution to the body of knowledge in the field of mobile soft-

ware engineering. Indeed, recently it empirically emerged that a number of Android

developers are indifferent to performance issues and they challenge their relevance and

impact [56]. Clearly, providing empirical evidence about the actual impact of perfor-

mance issues will help in the overall adoption of static analysis tools like Android Lint,

promoting a more careful treatment of performance-related aspects of apps, and thus

potentially leading to improving the apps’ quality.

PRQ4 – Are some performance issues more difficult to be resolved? As dis-

cussed when answering RQ2.3 and RQ2.4, some performance issues seem to be more

difficult to be resolved, either in terms of code churn or days before the resolution. In

order to better understand why this phenomenon is happening, we perform a preliminary

analysis targeting specific subsets of issue-resolution commits in our dataset. Specifi-

cally, we firstly rank all 1,314 commits with resolved issues based on their code churn

and then we select the top-10 commits in terms of LOCs for each type of performance

issue. This leads to a set of 70 issue-resolving commits (10 for each type of performance

issue) with very high code churn (average = 368.7, median = 249.5). At this point,

we consider GitHub commit messages and conduct a content analysis session [82] on

all 70 commit messages. Specifically, we categorize them according to the taxonomy of

self-reported activities of Android developers proposed and empirically validated by Pas-

carella et al. [94]. The taxonomy entails a wide variety of different activities at different

levels of abstraction (e.g., bug fixes, functionality implementation, release management,
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access to sensors, etc.). The taxonomy is composed of two levels, where the first layer (9

items) groups together activities with similar overall purpose (e.g., app enhancement,

bug fixing, API management), whereas the subcategories (49 items) in the lower level

provide a finer-grained categorization [94]. In this study we focus on the top 9 level-

categories only and we assigned one or more categories of development activities to each

commit.

Fig. 5.26(a) and 5.26(b) present how frequently each category of Android developers’

activities appears in all commits with high code churn in general and across the 7

types of performance-related issues, respectively.

It does not come as a surprise that code re-organization, app enhancement, bug fixing,

and user experience improvement are the most recurrent types of development activities

co-occurring with issue resolutions involving long code churn; indeed, they are also the

most recurrent activities in the original study in [94], which did not focus on any specific

type of commit. Similarly, the most recurrent activity co-occurring with issue resolutions

with high code churn is code re-organization (for both HandlerLeak and V iewHolder),

which includes activities like refactoring, and code cleanup. Also this result is quite

expected since resolving those two types of issues can be considered as special cases of

code refactoring or cleanup.

We consider also the cases requiring low code churn and analyze the resulting data

with the same procedure we applied before and focusing on the issue-resolving commits

with the lowest code churn. The resulting subset is composed of 70 commits (10 for

each type of performance-related issue) and has an average of 22.61 and a median of

10.50 LOCs per commit. As shown in Figures 5.27(a) and 5.27(b), also when considering

commits with low code churn we did not get patterns extremely different from what we

observed in commits with high code churn. Overall, in many cases we could observe that

the resolution of performance issues occurs together with other potentially unrelated de-

velopment activities (e.g., app enhancement or bug fixing). This may be an indication

that Android Lint is commonly used as part of everyday development activities, poten-

tially thanks to its default integration to the Android Studio IDE. This finding is also

confirmed in [56], where many Android developers reported that they prefer to (i) use

Android Lint from the project startup and (ii) try to keep the code as clean as possible

by frequently considering Android Lint in their development workflow.

We performed the analyses described above in order to get an initial indication about

what developers are doing contextually to the resolution of performance issues. In many

cases we could observe that the resolution of performance issues occurs together with

other potentially unrelated development activities (e.g., app enhancement or bug fixing).
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(b) Frequency of development activities across types of performance issues.

Figure 5.26: Development activities performed in issue-resolving commits with high
code churn.

This may be an indication that Android Lint is commonly used as part of everyday de-

velopment activities, potentially thanks to its default integration to the Android Studio

IDE. This finding is also confirmed in [56], where many Android developers reported

that they prefer to (i) use Android Lint from the project startup and (ii) try to keep

the code clean by frequently considering Android Lint checks.
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(b) Frequency of development activities across types of performance issues.

Figure 5.27: Development activities performed in issue-resolving commits with low
code churn.

With only 280 data points, we are aware that the performed analyses have low statistical

power. Nevertheless, a more in-depth analysis about the root causes of low-high code

churns and number of days before resolution is surely a worthwhile future research

direction. For the interested researchers, the raw data we manually collected so far is

available in the replication package of this study.
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We also noted that some issues have a very short resolution time (even less than one

day in some cases). We performed an additional analysis similar to the one about code

churn with a focus on the top-10 commits in terms of issue resolution time for each

type of performance issue. Figure 5.28 presents those developers’ activities co-occurring

with issue-resolution commits with extremely low (average = 2.62, median = 0.22) or

high (average = 582, 568, median = 236) resolution times in days. Similarly to what we

observe also for code churn, the most recurring development activities tend to co-occur

with issues with both extremely high and low resolution times.
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Figure 5.28: Development activities performed in issue-resolving commits with min
and max resolution time

Finally, only in about 10% of issue resolution commits developers explicitly mention that

they resolved a performance issue. This phenomenon can be seen as an indication of the

fact that the resolution of statically-detectable performance issues is embedded into other

activities when developing Android apps. One explanation of this phenomenon may be

the integration of Android Lint into Android Studio, where the results of the analysis

are directly integrated into the development environment, without context switches,

tool configuration, etc. The same trend has been confirmed also in a recent industrial

study at Google, where the results of static analyses are taken more into consideration

when they are integrated into the development workflow, executed at compile time, and

enabled by default for everyone [103].



The evolution of performance issues of Android apps 88

5.8 Threats to Validity

This section discusses the main threats to the validity of our study and the countermea-

sures we applied for mitigating them.

Construct validity threats are related to the relationship between theoretical knowl-

edge and actual observations. We detected performance issues by using only one static

analysis tool, i.e., Android Lint. This decision involves the risk of having a mono-method

bias in our study [119] since the results of the whole study are based exclusively on the

types of issues supported by the current implementation of Android Lint. This means

that other types of performance issues may be present in the analyzed apps, but are

not considered in our study because they may not be supported by Android Lint. As

discussed in Chapter 2, there is a number of other static analysis tools which are appli-

cable to Android apps, such as FindBugs, PMD, PerfChecker, Paprika, aDoctor. Those

tools could have been used in combination with Android Lint, in order to complement

and cross-check its results and have a better coverage of statically-detectable Android

performance issues. However, at the time of writing, Android Lint is the only static

analysis tool which (i) is dedicated to Android-specific issues at the source code level

and (ii) has a specific category for performance-related issues. We decided to use only

Android Lint in order to do not confound the results of the study by considering is-

sues outside the scope of the experiment (i.e., statically-detectable performance issues

in Android apps), such as maintainability smells, bugs, security vulnerabilities, etc.

Moreover, in this study we put ourselves in the same conditions as the developers, who

generally use Android Lint because it is integrated and activated by default in Android

Studio. As confirmed also by other studies, having a linter integrated in the common

development workflow makes it more trustable by developers [56, 103]. This makes us

reasonably confident about the representativeness of the results of our study, especially

when dealing with the resolution and lifetime of the performance issues identified by

Android Lint. We do not have empirical evidence about the adoption in practice of

linters developed in academia, e.g., Paprika.

Nevertheless, the usage of Android Lint allows us to cover a relatively large set of

performance-related issues, ranging from low-level issues (e.g., UseValueOf ) to more

encompassing ones (e.g., HandlerLeak).

When executing the experiment, Android Lint was supporting 9 performance-related

checks, whereas its current latest version supports 36 performance checks (as of June

2019). In order to better understand which Android Lint checks could have been in-

cluded in our study by considering the latest version of Android Lint, we analyzed the

current implementation and documentation of Android Lint and found out that we could
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support 4 additional performance checks, namely: WakelockTimeout, StaticFieldLeak,

LogConditional, and SyntheticAccessor. However, at the time of the computation this

was not considered and will be a matter of future investigation. As a way to mitigate this

potential threat to validity, we make the data about all 36 performance-related checks

in Android Lint publicly available in the replication package of the study.

As many other static analysis tools, Android Lint can suffer from the presence of false

negatives, i.e., performance issue not detected. Nevertheless, the number of performance

issues detected by Android Lint is relatively large, making us reasonably confident about

the considerations we give when analyzing their evolution over time. Indeed, it is out

of the scope of our study to precisely identify all performance issues of Android apps,

whereas our main objective is to characterize how statically-detectable ones evolve over

the lifetime of Android apps, how much time they remain in the code base, and how

developers actually resolve them. Moreover, our study may potentially suffer from the

presence of false negatives, i.e., performance issues actually present in the app but are not

detected by Android Lint. This potential bias is mainly due to (i) the fact that we rely

on the heuristics and checks implemented in Android Lint and (ii) that we exclusively

rely on Android Lint for the detection of performance issues. As previously discussed, we

decided to focus exclusively on Android Lint in order to keep the experiment as focused

and realistic as possible (in terms of developers’ conditions) and because Android Lint

currently is the only static analysis tool which has a dedicated category of checks related

to performance and it is specific for Android. As future work, as more static analysis

tools for Android performance issues will possibly emerge, we will replicate this study

and complement our results with those obtained from other tools.

As a way to complement the findings emerging from this study, in future work we will

assess the actual impact of the detected issues by dynamically analyzing the considered

apps. This can be useful to gain evidence-based insights about the practical consequences

of the performance issues detected by Android Lint.

It is important that the toolchain for extracting the performance issues across all com-

mits is implemented and configured correctly. We mitigated this potential threat to

validity by carefully designing the whole toolchain (see Section 5.1.3), by testing each

component of the toolchain in isolation via repositories for which we knew already the

expected outcomes of each data extraction step, and by making the implementation

of the toolchain publicly available for independent verification and replication (see the

replication package of this study).

Another threat is related to the degree to which the selected apps are representative

of the target population (i.e., Android apps published in the Google Play store). We

mitigated this threat by considering a relatively large initial set of Android apps (4,287)
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and by performing an in-depth data quality assurance and filtering process (see Section

5.1.2).

When considering issue resolutions, there might have been cases of ”accidental“ per-

formance issue resolutions, when a source code fragment was deleted for other reasons.

Nevertheless, those cases are not jeopardizing the results of the study since our aim is to

establish the lifetime of performance issues, independently of whether the resolution of

the issues is conscious or not. In order to better characterize to what extent developers

are consciously resolving performance issues, in RQ2.4 we report on the documented

resolutions of issues only. Also, for RQ2.1, RQ2.2, and RQ2.3 we partially mitigated

this potential source of bias through a line-based tracking of the issues over time via the

LHDiff tool (see Section 5.1.3).

When answering RQ2.3, we consider the CDFs globally with respect to each type of

performance issue, instead of considering them on a per-app basis. This may be a

threat to validity since the lifetime of performance issues may vary depending on the

potentially different maintenance strategies of each individual app. In this context,

app-specific factors may influence the obtained distributions, potentially missing the

opportunity to make a more fine-grained analysis. However, we decided to analyze

the CDFs globally with respect to each type of performance issue due to the relatively

limited number of data points we could have obtained when considering each app in

isolation.

When answering RQ2.4, we are assuming that if a commit message contains specific

keywords, it is describing the resolution of a performance issue. We are aware that

such an approach may miss commits where the resolution of the performance issue is

not documented. Also, we did not manually evaluated the results of 143 documented

commits obtained by regular expressions. However, False positives have been avoided

by performing a manual analysis of all identified issue-resolution commits.

Conclusion validity is about the relationship between treatment and outcomes of the

study. We carefully took into consideration the assumptions of each applied statistical

test. We minimized the possibility of misleading results by relying on non-parametric

tests, such as the KS test.

The qualitative analysis we performed when answering RQ2.1 is based on the manual

categorization of issue evolution plots, potentially leading to the subjective interpretation

of evolution patterns. We mitigated this potential threat to validity by (i) carefully

following the open card sorting methodology [107], (ii) involving three researchers, who

worked both independently and collaboratively across the various analysis phases, and
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(iii) statistically assessing the level of agreement between the involved researchers via

the Cohen-Kappa statistics [42].

We mitigated the above mentioned potential threats to validity by preparing a full

replication package of the study containing the raw data and statistical data analysis

scripts, thus making the data analysis phase of this study fully reproducible.

Finally, in the preliminary analysis presented in Section 5.7.3 (implication R4), we use

both code churn and issue resolution time as proxies of the difficulty of resolving issues.

However, as it also emerged from that preliminary analysis, massive code churn and

long issue resolution times may be due to developers performing other activities that are

not related to performance issues (e.g., resolving bugs or implementing new features).

As a future work we will mitigate this potential threat to validity by (i) identifying

the subset of commits in which developers are working exclusively on the resolution of

performance-related issues and (ii) carrying out a more in-depth analysis only on those

commits commits.

Internal validity is related to factors internal to our study that can influence our

results. During the dataset building phase, we noticed that many potentially-relevant

GitHub repositories were actually not containing apps (e.g., repositories hosting only

Android libraries). As discussed in Section 5.1.2, we discarded those types of repos-

itories from our dataset. Moreover, despite all considered repositories are about the

implementation of Android apps, their structure can heavily differ in terms of folders

and files organization. This means that it is possible to obtain false results by con-

sidering non-app related source code in the static analysis (e.g., third-party libraries,

code implementing the back-end of the apps, code developed for other platforms). We

mitigated this potential threat to validity by identifying, for each repository, the app’s

root folder containing its source code.

External validity is related to the generalizability of the obtained findings. Due to

our requirement of having access to the full versioning history of the apps, this study

considers exclusively Android apps whose source code is available in GitHub, which

may be not representative of the population of all Android apps. However, as we study

how apps evolve over time, we need access to the previous versions of the app. Mining

GitHub grants access to fine-grained snapshots of each app, whereas in Google Play

developers publish only the official releases of their apps. Moreover, we are interested

in how performance issues are introduced and resolved by developers in the Java code

of their apps; in Google Play only the binary code of the app is available, which may be

structurally different from the source code produced by developers e.g., because of code

obfuscation. Nevertheless, the built dataset has a high heterogeneity, both in terms of

apps size, number of contributors, lifetime, and categories. Moreover, in order to further
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mitigate this potential threat to validity, we ensured that all considered apps are also

distributed in the Google Play Store, meaning that they are real apps being actually

used, and not on-time demos or toy examples.

5.9 Conclusions

This study mainly focused on the analyzing the evolution of performance issues detected

by Android Lint. This empirical study is carried out to answer the second high-level

research question (RQ2) of this dissertation (section 1.3), i.e.,

RQ2 - How do performance issues identified by Android Lint evolve in Android apps?

In this chapter we investigate how performance problems — detected by a static analysis

tools, i.e., Android Lint [5] — occur, evolve and eventually disappear in Android apps.

More specifically, we analyze a set of 724 popular open source Android apps, and we

found performance issues in 316 of them.

The results of the study indicate that:

1. Issues due to the lack of recycling data collections and other resources such as

database cursors are the most frequently occurring ones, while Android Lint found

very few instances of ViewTag and WakeLock issues.

2. Performance issues in general tend to appear suddenly in a file rather than being

gradually introduced, and remain in the system for a long time (and number of

commits).

3. Some issues, primarily related to the user interface and to memory management,

are either resolved (in our observation period) or tend to remain in the app for

a longer time, while other issues (primarily of algorithmic nature) tend to be

resolved quickly (when they are resolved), possibly because there are well-known,

easy solutions for them.

4. Performance issue resolutions are documented in commit messages in 10% of the

cases. This may either indicate that in other cases they were (accidentally) resolved

along with other changes, or that in any case their resolution was not considered

as the primary goal of the commit.



Chapter 6

Automatic resolution of

statically-detectable performance

issues in Android apps

Due to the tremendous rise in the number of Android apps in the recent past, managing

performance-related issues remains a potential challenge. The apps that trigger perfor-

mance issues are seldom taken into attention by the developers’ in-depth due to various

reasons mentioned as follows; (i) lack of knowledge about the resolution of issues, (ii)

some issues require a lot of time and effort, especially in changing the lines of codes to

resolve such as HandlerLeak and ViewHolder and (iii) The presence of certain types of

issues do not affect on the overall working of the app, but if they are manifested further,

it could cause severe performance degradation.

Many studies have been done in the past with emphasis on the detection and categoriza-

tion of performance issues in mobile apps [55][57][83][101]. Also, few studies proposed

tool-based solutions such as Paprika [63], PerfChecker [83] and a catalogue tool aDoc-

tor [92] which have been used to identify different types of code smells including the

performance-related bad practices. Moreover, there is an Android-specific linter An-

droid Lint [5] (which is officially integrated into Android studio) is utilized to detect

and provide suggestions to manually resolve performance problems.

There are many state-of-the-art tools available to detect performance issues, but none

of them resolve such issues automatically. However, some auto-refactoring tools such

as asWalkmod1, Facebook pf 2 and Kadabra3, auto-resolve various types of code smells.

1WalkMod. http://walkmod.com/
2Facebook pf. https://github.com/facebookarchive/pfff
3Kadabra. http://specs.fe.up.pt/tools/kadabra/
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AutoRefactor4, an open-source Eclipse plugin, automatically remove bad code smells.

Cruz et al. [45] proposed an extension of AutoRefactor named Leafactor to automatically

resolve performance issues triggered by Android Lint. The main advantages of using

auto-refactoring tools are: (i) developers do not require the need to spend more time on

manual correction of the source code, (ii) it provides with best possible performance-

related practices, and (iii) reduce the cost of development effectively.

In this chapter, we propose an auto-refactoring tool named ALPAR5–Android Lint

Performance issues Auto Resolver– for Android Lint performance issues in Android

apps written in Java. We extended the Leafactor tool by implementing three new rules,

extending two existing rules, and adopting two rules as they are (i.e., one from Leafactor

and one from AutoRefactor). In total, seven types of Android Lint performance issues

can be automatically refactored using the proposed plugin. The fixes are based on the

guidelines provided by the official Lint documentation6 and catalog of manual resolutions

presented in Chapter 5.

6.1 The Proposed Tool

To automatically resolve the Android-related performance issues identified in Chapter 5,

we implement a tool–ALPAR. We combined the static code analysis and the automatic

refactoring approach to target the performance-oriented issues in Android apps (as dis-

cussed in [45]). Fig. 6.1 represents the architecture adopted from Leafactor) diagram of

the proposed plugin in which refactoring engine is responsible for refactoring the input

Java files. The ALPAR takes a single file or a complete Android project as input, then

it parses all the Java files, and automatically refactor each instance of Android-specific

performance issues.

ALPAR is based on AutoRefactor and Leafactor. Autorefactor is an open-source plugin

with a list of common code practices which allow developers to automatically optimize

their code. The code enhancement mechanism can be in the form of smaller unused

code cleanups as well as by replacing the piece of code with an efficient one.

The backend of AutoRefactor uses different API’s to exploit Java Abstract Syntax Trees

(ASTs) [45]. Autorefactor is officially available in the Eclipse Marketplace7 and can

4AutoRefactor - Eclipse plugin to automatically refactor Java codebases. https://github.com/

JnRouvignac/AutoRefactor
5https://github.com/teerath91/ALPAR
6We take advantage of the fact that issues in Android Lint reports are tagged with a fixed set of

categories (http://tools.android.com/tips/lint-checks) like performance, correctness, accessibility,
usability, etc.

7Eclipse Marketplace. https://marketplace.eclipse.org/

https://github.com/JnRouvignac/AutoRefactor
https://github.com/JnRouvignac/AutoRefactor
https://github.com/teerath91/ALPAR
http://tools.android.com/tips/lint-checks
https://marketplace.eclipse.org/
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Figure 6.1: Overview of Automatic refactoring architecture [45].

Figure 6.2: Screenshot about choosing the “Automatic refactoring” option.

be easily integrated into the Eclipse IDE. Fig. 6.2 shows a screenshot, in which de-

velopers can select the Autorefactor option and apply different types of refactoring.

Likewise, Leafactor is used to resolve five types of performance issues of Android Lint.

We extended the Leafactor [45] by adding the rules described in the next section (i.e.,

Section 6.2).
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6.2 Performance Refactoring Rules

Here, we present and discuss the rules implemented in the proposed plugin (ALPAR),

which are designed from the catalog discussed in Chapter 5 and the recommendations

provided by the Android Lint documentation [3]. To better understand about how this

refactoring occurs, we report two listing examples for each type of issue (i.e., before and

after refactoring). Finally, we discuss some corner cases8 for each rule that will not be

considered by the our tool. The seven types of performance issues9 supported by the

developed Eclipse plugin are briefly explained below.

6.2.1 DrawAllocation: Allocations within drawing code

Performance of any application is directly inclined to its draw or layout operations.

According to Android Lint documentation [3], the developer should not allocate the

objects while drawing or during layout operations; but they should be declared upfront

in the onDraw/onLayout method [10] to improve the app performance (e.g., achieving a

smoother UI). However, this operation could activate the garbage collector during the

drawing activity.

In the following are the two code snippets of DrawAllocation rule representing two

versions of the code (i.e., before and after refactoring).

@Override

protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

Paint paint = new Paint(); ¶

paint.setColor(Color.WHITE);

paint.setTextSize(16);

canvas.drawText("" + soundGenerators.get(0).getOscillator().getFrequency(),

getWidth() / 2, getHeight() / 2, paint);

}

Listing 6.1: Example of the DrawAllocation issue (Before Refactoring)

(marcopar/SliderSynth -

app/src/main/java/eu/flatworld/android/slider/KeyboardView.java).

8corner cases generally referred to the issues, that occur very rarely and therefore require relatively
more research work to explore their potential solutions such as dynamic allocation cases of DrawAlloca-
tion issues.

9http://tools.android.com/tips/lint-checks

http://tools.android.com/tips/lint-checks
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Paint paint = new Paint(); ·

@Override

protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

paint.setColor(Color.WHITE);

paint.setTextSize(16);

canvas.drawText("" + soundGenerators.get(0).getOscillator().getFrequency(),

getWidth() / 2, getHeight() / 2, paint);

}

Listing 6.2: Example of the DrawAllocation issue (After Refactoring)

(marcopar/SliderSynth -

app/src/main/java/eu/flatworld/android/slider/KeyboardView.java).

¶. In Listing 6.1, the object paint will be allocated every time when onDraw method

is called, thus injecting a DrawAllocation issue.

·. Listing 6.2 shows the refactored version obtained by declaring the object paint

upfront i.e., before the onDraw method.

We extend this rule of Leafactor tool [45] by applying some minor changes: (i) this rule

was originally checked the object allocation only in the onDraw method, but we extended

it to analyze onLayout and onMeasure methods as well; (ii) we support additional sub-

classes such as android.view.View, android.widget.SeekBar, android.widget.EditText and

android.view.SurfaceView ; finally, (iii) we, further improved the rule for Rect objects.

For instance, the following allocation inside onDraw method introduces a DrawAllocation

issue.

Rect r = new Rect((thing.x-1) * cellWidth, (thing.y) * cellHeight + 2, thing.x

* cellWidth, (thing.y + 1) * cellHeight + 2);

To automatically resolve such type of case, initially, we declare the object Rect r outside

from the onDraw method.

Rect r = new Rect();

Then, we defined all the points of the rectangle object inside the onDraw() method:

r.bottom = (thing.y + 1) * cellHeight + 2;

r.right = thing.x * cellWidth;

r.top = (thing.y) * cellHeight + 2;

r.left = (thing.x-1) * cellWidth;
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Finally, to draw the Rect, we used the following command.

canvas.drawRect(r, robotBg);

The above solution is adopted from the catalog of developer resolution10 discussed in

Chapter 5 which will lead to resolution of the DrawAllocation issue.

Corner cases: As per our understanding, two types of cases are not considered for this

rule; (i) BitmapFactory allocation cases, and (ii) dynamic allocation or the declarations

inside the loop (i.e., for, while), because those allocations needed to update in every

iteration inside the onDraw method.

6.2.2 FloatMath: Using FloatMath instead of Math

In the latest Android Version, Math java.lang.Math is faster than the FloatMath

(android.util.FloatMath) [3] because the JIT [60] compiler has a better approach

to optimize it (java.lang.Math). However, in the older versions of Android, it was

preferred to use android.util.FloatMath with the intent to enhance the performance.

In our proposed Eclipse plugin, we automatically refactor the FloatMath performance

issue by transforming FloatMath to Math. As an example for FloatMath rule, Listing 6.3

and Listing 6.4 report before and after refactoring versions of the code respectively.

private static void getRotationVectorFromGyro(final float[] gyroValues, final float[]

deltaRotationVector,

final float timeFactor)

{

float[] normValues = new float[3];

// Calculate the angular speed of the sample

float omegaMagnitude = FloatMath.sqrt(gyroValues[0] * gyroValues[0] + gyroValues[1] *

gyroValues[1]

+ gyroValues[2] * gyroValues[2]); ¶

// Normalize the rotation vector if it’s big enough to get the axis

if (omegaMagnitude != 0.0f)

{

normValues[0] = gyroValues[0] / omegaMagnitude;

normValues[1] = gyroValues[1] / omegaMagnitude;

normValues[2] = gyroValues[2] / omegaMagnitude;

}

// Integrate around this axis with the angular speed by the timestep

// in order to get a delta rotation from this sample over the timestep

// We will convert this axis-angle representation of the delta rotation

// into a quaternion before turning it into the rotation matrix.

float thetaOverTwo = omegaMagnitude * timeFactor;

10https://github.com/xxv/robotfindskitten/commit/611fc371c841b86fc7d8517e2f53b9b01d6e34e2

https://github.com/xxv/robotfindskitten/commit/611fc371c841b86fc7d8517e2f53b9b01d6e34e2
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float sinThetaOverTwo = FloatMath.sin(thetaOverTwo); ·

float cosThetaOverTwo = FloatMath.cos(thetaOverTwo); ¸

deltaRotationVector[0] = sinThetaOverTwo * normValues[0];

deltaRotationVector[1] = sinThetaOverTwo * normValues[1];

deltaRotationVector[2] = sinThetaOverTwo * normValues[2];

deltaRotationVector[3] = cosThetaOverTwo;

}

Listing 6.3: Example of the FloatMath issue (Before Refactoring)

(almalence/OpenCamera - src/com/almalence/plugins/capture/panoramaaugment-

ed/AugmentedRotationListener.java).

private static void getRotationVectorFromGyro(final float[] gyroValues, final float[]

deltaRotationVector,

final float timeFactor)

{

float[] normValues = new float[3];

// Calculate the angular speed of the sample

float omegaMagnitude = (float) Math.sqrt(gyroValues[0] * gyroValues[0] +

gyroValues[1] * gyroValues[1]

+ gyroValues[2] * gyroValues[2]); ¹

// Normalize the rotation vector if it’s big enough to get the axis

if (omegaMagnitude != 0.0f)

{

normValues[0] = gyroValues[0] / omegaMagnitude;

normValues[1] = gyroValues[1] / omegaMagnitude;

normValues[2] = gyroValues[2] / omegaMagnitude;

}

// Integrate around this axis with the angular speed by the timestep

// in order to get a delta rotation from this sample over the timestep

// We will convert this axis-angle representation of the delta rotation

// into a quaternion before turning it into the rotation matrix.

float thetaOverTwo = omegaMagnitude * timeFactor;

float sinThetaOverTwo = (float) Math.sin(thetaOverTwo); º

float cosThetaOverTwo = (float) Math.cos(thetaOverTwo); »

deltaRotationVector[0] = sinThetaOverTwo * normValues[0];

deltaRotationVector[1] = sinThetaOverTwo * normValues[1];

deltaRotationVector[2] = sinThetaOverTwo * normValues[2];

deltaRotationVector[3] = cosThetaOverTwo;

}

Listing 6.4: Example of the FloatMath issue (After Refactoring)

(almalence/OpenCamera - src/com/almalence/plugins/capture/panoramaaugment-

ed/AugmentedRotationListener.java).

¶ · ¸. It can be seen in Listing 6.3 that FloatMath issue was detected due to the use

of android.util.FloatMath.
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¹ º ». In the refactored version of the code (Listing 6.4) the issue was resolved by

utilizing java.lang.Math.

Corner cases: To the best of our knowledge, there is no corner cases left for this issue.

6.2.3 HandlerLeak: Handler reference leaks

In Java, non-static class holds an implicit reference to its outer class, which can lead to

memory leaks problems in the apps [14].

In the proposed plugin, we implemented the HandlerLeak rule to resolve this issue

automatically. The following three steps are required to fix the Handler declaration,

that solve the HandlerLeak performance issue.

1. Declare the Handler as a static class;

2. Instantiate a WeakReference to the outer class and pass this object to the Handler

when instantiating it;

3. Add all references to the members of the outer class using the WeakReference

object.

Listing 6.5 (before refactoring) and Listing 6.6 (after refactoring) represent an example

of HandlerLeak issue.

private Handler mHandler = new Handler() { ¶

public void handleMessage(Message msg) {

switch (msg.what) {

case MSG_SUCCESS:

mAdapter.notifyDataSetChanged();

stopLoadingAnim();

break;

case MSG_FAILURE:

showLoadingAnim();

break;

}

}

};

Listing 6.5: Example of the HandlerLeak issue (Before Refactoring)

(XunMengWinter/Now -

app/src/main/java/top/wefor/now/fragment/ZcoolFragment.java).
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private static class mHandler1 extends Handler { ·

private final WeakReference<ZcoolFragment> mActivity;

public mHandler1(ZcoolFragment activity) { ¸

mActivity = new WeakReference<ZcoolFragment>(activity);

}

public void handleMessage(Message msg) {

ZcoolFragment activity = mActivity.get(); ¹

if (activity != null) {

switch (msg.what) {

case MSG_SUCCESS:

mAdapter.notifyDataSetChanged();

stopLoadingAnim();

break;

case MSG_FAILURE:

showLoadingAnim();

break;

}

}

}

}

private mHandler1 mHandler = new mHandler1(this);

Listing 6.6: Example of the HandlerLeak issue (After Refactoring)

(XunMengWinter/Now -

app/src/main/java/top/wefor/now/fragment/ZcoolFragment.java).

¶. It can be observed in Listing 6.5 that HandlerLeak issue was detected due to the use

of non-static handler.

· ¸ ¹. In Listing 6.6, the refactored code transformation was obtained by implementing

the three steps as described above.

Corner cases: We only covered the non-static handler class cases. However, there are

other cases (i.e., anonymous classes) that we did not included but could lead to potential

memory leaks in the apps.

6.2.4 Recycle: Missing recycle() calls

Generally, in Java, data is automatically destroyed by Garbage collector (GC), once it is

used. However, there are some resources such as TypedArrays and VelocityTrackers

that are different since these resources have other internal data which should be recycled



Automatic resolution of performance issues in Android apps 102

by a direct call to the recycle() method. This is also true for various other classes

such as Parcel, MotionEvent and DatabaseCursor (database cursor should be freed by

close() call).

We take this rule from the Leafactor with the addition of a conditional statement to check

the resource before recycling and when closing the cursor to ensure that the resource

is already null. For some instances, we also analyzed the case11, where the resource is

used on the return statement, and we recycled such resource by calling recycle().

Listing 6.7 and Listing 6.8 are two examples coming from our dataset and show how the

Recycle issue can be automatically resolved by ALPAR.

@Override

public void onStartTracking(MotionEvent event) {

MotionEvent motionEvent = MotionEvent.obtain(event);

motionEvent.setAction(MotionEvent.ACTION_CANCEL); ¶

SubjectCard.super.onTouchEvent(event);

}

Listing 6.7: Example of the Recycle issue (Before Refactoring)

(marcioapaiva/mocos-controlator -

src/com/marcioapf/mocos/view/SubjectCard.java).

@Override

public void onStartTracking(MotionEvent event) {

MotionEvent motionEvent = MotionEvent.obtain(event);

motionEvent.setAction(MotionEvent.ACTION_CANCEL);

if (motionEvent != null) { ·

motionEvent.recycle(); ¸

}

SubjectCard.super.onTouchEvent(event);

}

Listing 6.8: Example of the Recycle issue (After Refactoring)

(marcioapaiva/mocos-controlator -

src/com/marcioapf/mocos/view/SubjectCard.java).

¶. It can be noted from Listing 6.7 that the MotionEvent resource should be recycled

so that other similar types of resource reuse them in the future.

· ¸. The refactored version is reported in Listing 6.8, where we initially check if the

resource MotionEvent is not already null and then we recycle it by calling recycle().

Corner cases: As per our knowledge, there are not any corner cases left for this type

of issue.

11https://github.com/SunyataZero/KindMind/commit/b85c68

https://github.com/SunyataZero/KindMind/commit/b85c68
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6.2.5 UseSparseArrays: HashMap can be replaced with SparseArray

The mapping from an integer to an object using the HashMap data structure is rela-

tively slow in practice [3]. According to Android Lint documentation, this data struc-

ture should be replaced by an alternative efficient data structure such as SparseArray.

Hence, if the key is a primitive type, then SparseArray can be used instead of HashMap

[22].

We implement this rule by considering the recommendations specified in the documen-

tation of Android Lint and the examples emerging from our dataset where developers

resolved this issue. Thus, we implement the SparseArrays rule to automatically resolve

these type of performance issue. Moreover, in this rule we also consider various types

of HashMap to SparseArray case scenarios with having different types of key values.

Table 6.1 reports such HashMap to SparseArray cases considered in the rule.

Table 6.1: HashMap to SparseArray code transformation

HashMap SparseArray
HashMap<Integer, V> SparseArray<V>
HashMap<Integer, Boolean> SparseBooleanArray
HashMap<Integer, Integer> SparseIntArray
HashMap<Integer, Long> SparseLongArray
HashMap<Long, V> LongSparseArray<V>
HashMap<Long, Long> LongSparseLongArray

As an example from our dataset, Listing 6.9 and Listing 6.10 report two versions of the

same code, before and after automatic resolution via ALPAR, respectively.

public class Yaaic

{

public static Yaaic instance;

private HashMap<Integer, Server> servers; ¶

private boolean serversLoaded = false;

private Yaaic()

{

servers = new HashMap<Integer, Server>(); ·

}

public void loadServers(Context context)

{

if (!serversLoaded) {

Database db = new Database(context);

servers = db.getServers();

db.close();

// context.sendBroadcast(new Intent(Broadcast.SERVER_UPDATE));



Automatic resolution of performance issues in Android apps 104

serversLoaded = true;

}

}

}

Listing 6.9: Example of the UseSparseArrays issue (Before Refactoring)

(pocmo/Yaaic - src/org/yaaic/Yaaic.java).

public class Yaaic

{

public static Yaaic instance;

private SparseArray<Server> servers; ¸

private boolean serversLoaded = false;

private Yaaic()

{

servers = new SparseArray<Server>(); ¹

}

public void loadServers(Context context)

{

if (!serversLoaded) {

Database db = new Database(context);

servers = db.getServers();

db.close();

// context.sendBroadcast(new Intent(Broadcast.SERVER_UPDATE));

serversLoaded = true;

}

}

}

Listing 6.10: Example of the UseSparseArrays issue (After Refactoring)

(pocmo/Yaaic - src/org/yaaic/Yaaic.java).

¶ ·. It can be seen in Listing 6.9, the UseSparseArrays issue is detected while using

HashMap data structure with primitive data values i.e., HashMap<Integer, Server>.

¸ ¹. The issue is automatically refactored by using SparseArray<Server> as shown

in the Listing 6.10.

Corner cases: As per our understanding, the following corner case is not supported

by this rule.

public static SparseArray <Integer>providerMap = new SparseArray

<Integer>();
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Till now, we mostly covered the HashMap to SparseArray cases for auto-refactoring.

However, the above-explained case12 occur rarely and thus have minimal knowledge to

resolve it and yet to be explored.

6.2.6 UseValueOf: Should use valueOf instead of new

This rule is primarily used to deal with primitive data types. Calling the construc-

tor for wrapper classes directly is not a good programming practice i.e., new Integer()

as recommended in the official Lint documentation. Instead as an alternative the factory

method valueOf() should be called. In other words, it is better to use Integer.valueof()

instead of new Integer(). The reason is because a new Integer instantiates a new ob-

ject each time, where as Integer.valueOf retrieves the cached values (Integer.valueOf

implements a cache for the values between -128 to +127) [18]. Hence, Integer.valueOf

is more memory friendly with respect to new Integer.

We derived the UseValueOf refactoring rule from an existing rule13 of AutoRefactor

emphasis on automatically converting the new Integer into Integer.valueOf. The

cases considered for this rule are provided in Table 6.2.

Table 6.2: UseValueOf code transformation

Original code Transformed code
new Byte() Byte.valueOf()
new Character() Character.valueOf()
new Double() Double.valueOf()
new Float() Float.valueOf()
new Integer() Integer.valueOf()
new Long() Long.valueOf()
new Short() Short.valueOf()

In the following, we report the code snippet from our dataset (Listing 6.11 and List-

ing 6.12) to explain the auto-refactoring of the UseValueOf issue.

private static void initNullValues() {

_nullValues = new Hashtable4();

_nullValues.put(boolean.class, Boolean.FALSE);

_nullValues.put(byte.class, new Byte((byte)0)); ¶

_nullValues.put(short.class, new Short((short)0)); ·

_nullValues.put(char.class, new Character((char)0)); ¸

_nullValues.put(int.class, new Integer(0)); ¹

_nullValues.put(float.class, new Float(0.0)); º

_nullValues.put(long.class, new Long(0)); »

_nullValues.put(double.class, new Double(0.0)); ¼

12https://github.com/hwki/SimpleBitcoinWidget/commit/986b95688a1adf442fef56371e273efc506deb9b
13https://github.com/luiscruz/AutoRefactor/blob/master/plugin/src/main/java/org/

autorefactor/refactoring/rules/PrimitiveWrapperCreationRefactoring.java

https://github.com/hwki/SimpleBitcoinWidget/commit/986b95688a1adf442fef56371e273efc506deb9b
https://github.com/luiscruz/AutoRefactor/blob/master/plugin/src/main/java/org/autorefactor/refactoring/rules/PrimitiveWrapperCreationRefactoring.java
https://github.com/luiscruz/AutoRefactor/blob/master/plugin/src/main/java/org/autorefactor/refactoring/rules/PrimitiveWrapperCreationRefactoring.java
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}

Listing 6.11: Example of the UseValueOf issue (Before Refactoring)

(bjerva/tsp-lexikon- android - tsp-lexikon-android/src/com/db4o/

internal/Platform4.java).

private static void initNullValues() {

_nullValues = new Hashtable4();

_nullValues.put(boolean.class, Boolean.FALSE);

_nullValues.put(byte.class, Byte.valueOf((byte)0)); ¶

_nullValues.put(short.class, Short.valueOf((short)0)); ·

_nullValues.put(char.class, Character.valueOf((char)0)); ¸

_nullValues.put(int.class, Integer.valueOf(0)); ¹

_nullValues.put(float.class, Float.valueOf((float) 0.0)); º

_nullValues.put(long.class, Long.valueOf(0)); »

_nullValues.put(double.class, Double.valueOf(0.0)); ¼

}

Listing 6.12: Example of the UseValueOf issue (After Refactoring)

(bjerva/tsp-lexikon- android - tsp-lexikon-android/src/com/db4o/

internal/Platform4.java).

¶ · ¸ ¹ º » ¼. As shown in Listing 6.11 the UseValueOf issue was spotted with an

instantiate new object e.g., new Byte, new Short, new Character, and new Integer.

¶ · ¸ ¹ » » ¼. Listing 6.12 shows the refactored version of code obtained after using

the factory method valueOf.

Corner cases: As per our understanding, there is no corner case for this issue.

6.2.7 ViewHolder: View Holder Candidates

While scrolling the list view items, the getview() method may frequently invoke the

FindViewById() to draw the data on the screen, which is an inefficient method and

may degrade the performance of the app. As per the recommendation of the official Lint

document [3] at the time of creating adapter class, it is a lousy practice to unconditionally

inflate new layout. instead, developers should reuse an existing layout, if available. This

can be achieved by creating a ViewHolder pattern, which will reuse the data from already

drawn items. This approach will reduce the number of invocations to FindViewById()

method leading to smoother scrolling.

We adopted this rule as in the Leafactor. Listing 6.13 and Listing 6.14 report an example

of occurrence of the ViewHolder issue, before and after its resolution, respectively.
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import android.app.Activity;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.BaseAdapter;

import android.widget.SpinnerAdapter;

import android.widget.TextView;

import com.example.lexinproject.R;

public class LanguagesAdapter extends BaseAdapter implements SpinnerAdapter{

private Activity activity;

private Language[] list_bsl;

public LanguagesAdapter(Activity activity, Language[] list_bsl){

this.activity = activity;

this.list_bsl = list_bsl;

}

public int getCount() {

return list_bsl.length;

}

public Object getItem(int position) {

return list_bsl[position];

}

/* public String getItemId(int position) {

return list_bsl.get(position).getName();

}*/

@Override

public View getView(int position, View convertView, ViewGroup parent) {

LayoutInflater inflater = activity.getLayoutInflater();

View spinView = inflater.inflate(R.layout.spin_layout, null); ¶

//TextView t1 = (TextView) spinView.findViewById(R.id.field1);

TextView t2 = (TextView) spinView.findViewById(R.id.field2); ·

//t1.setText(String.valueOf(list_bsl[position].getName()));

t2.setText(list_bsl[position].getName());

return spinView;

}

@Override

public long getItemId(int position) {

// TODO Auto-generated method stub

return 0;

}

}

Listing 6.13: Example of the ViewHolder issue (Before Refactoring) (cmykola/Lexin

- src/com/example/lexinproject/data/LanguagesAdapter.java).
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import android.app.Activity;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.BaseAdapter;

import android.widget.SpinnerAdapter;

import android.widget.TextView;

import com.example.lexinproject.R;

public class LanguagesAdapter extends BaseAdapter implements SpinnerAdapter{

private Activity activity;

private Language[] list_bsl;

public LanguagesAdapter(Activity activity, Language[] list_bsl){

this.activity = activity;

this.list_bsl = list_bsl;

}

public int getCount() {

return list_bsl.length;

}

public Object getItem(int position) {

return list_bsl[position];

}

static class ViewHolderItem { ¸

TextView t2;

}

/* public String getItemId(int position) {

return list_bsl.get(position).getName();

}*/

@Override

public View getView(int position, View convertView, ViewGroup parent) {

ViewHolderItem viewHolderItem;

LayoutInflater inflater = activity.getLayoutInflater();

if (convertView == null) { ¹

convertView = inflater.inflate(R.layout.spin_layout, null);

viewHolderItem = new ViewHolderItem();

viewHolderItem.t2 = (TextView) convertView.findViewById(R.id.field2);

convertView.setTag(viewHolderItem);

} else {

viewHolderItem = (ViewHolderItem) convertView.getTag();

}

View spinView = convertView;

//TextView t1 = (TextView) spinView.findViewById(R.id.field1);

TextView t2 = viewHolderItem.t2; º

//t1.setText(String.valueOf(list_bsl[position].getName()));

t2.setText(list_bsl[position].getName());

return spinView;
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}

@Override

public long getItemId(int position) {

// TODO Auto-generated method stub

return 0;

}

}

Listing 6.14: Example of the ViewHolder issue (After Refactoring) (cmykola/Lexin

- src/com/example/lexinproject/data/LanguagesAdapter.java).

¶ ·. As it can be seen in Listing 6.13, a new LayoutInflater object is instantiated

for each iteration when the getview() method, which overwrites the parametric con-

tent of convertView method. Further, in each iteration, a view is retrieved using the

findviewbyid() method which depicts the text of each list item TextView object.

¸ ¹ º. Listing 6.14 shows that when a list item is built the references regarding

its objects in the inner view (i.e., TextView object) are recognized and stored in a

specific data structure. This module will be executed for the first item of the list, while

the next iterations will receive the convertView from the parameters. Therefore the

FindViewById() method invocation will not require to fetch the TextView object every

time. By implementing this pattern, the computations of new LayoutInflater list

items as well as the fetching the inner views is avoided. Hence reducing the memory

needed to build new items of the list.

Corner cases: As far as we know, there are no unmanaged corner cases for this type

of issue.

6.3 Evaluation

We evaluated ALPAR with two main goals, namely: (i) to assess the developers’ per-

ception of the code refactored by ALPAR and (ii) to evaluate the impact of the resolved

performance issues on the overall performance achieved at run time by Android apps.

The above mentioned goals can be refined into the following sub-research questions which

aim to address the third main (high-level) research question (RQ3) of this dissertation.

RQ3.1 – How do developers perceive the code automatically refactored by ALPAR?

This research question focuses on understanding the auto-refactoring code from develop-

ers point of view. This research question can be further divided into two sub-questions.
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� RQ3.1.1 – What is the perceived performance of the code automatically refactored

by ALPAR?

� RQ3.1.2 – What is the perceived understandability of the code automatically refac-

tored by ALPAR?

To answer those research questions, we performed a survey-based experiment described

in section 6.3.1.

RQ3.2– What is the impact of statically-detectable Android performance issues during

run-time?

The aim of this research question is to quantify the run-time performance impact on

Android apps and whether the performance can be improved by resolving related issues

in the apps. To examine this aspect, we performed a preliminarily study by conduct-

ing a measurement-based experiment targeting a physical Android device and a set of

synthetically-defined mobile apps. The details of the experiment are provided in sec-

tion 6.3.2.

The replication package of both of the experimental studies is publicly available14 for

independent verification. The replication package includes raw data, the source code of

the mobile apps, R scripts used for data analysis, and the plots used for exploring and

analysing the results of the evaluation.

6.3.1 Experiment 1 - Survey-based study

Design – The goal of the study is to analyze the code refactoring proposed by ALPAR

with the purpose of understanding developers’ perceptions with respect to code perfor-

mance and comprehensibility from the viewpoint of developers in the context of Android

apps.

This online survey-based study involves a total of 21 Android developers to investigate

the developer’s perception on the code refactored by ALPAR (in terms of code perfor-

mance and comprehensibility). All the participants have been sampled by convenience

among the direct contacts of the author and supervisors of this dissertation. The par-

ticipants of this experiment are diverse with respect to experience i.e., number of apps

developed, number of years associated with Android development and the number of

employees in the organization. The minimum number of apps developed by a partici-

pant is at least two. The demographics show that 31.8% of participants developed more

14Replication Package https://github.com/teerath91/PerformanceRefactoringStudies/

https://github.com/teerath91/PerformanceRefactoringStudies/
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than 10 apps and the same amount of participants lies in the range of 6-10 apps. More-

over, 81.8% of participants have 1 to 5 years of association with Android development

and about 16.7% of participants have been involved for more than 10 years. Further-

more, nearly 45.5% of participants work in organizations with more than 50 employees.

The overall demographics suggest that the considered participants for the survey study

have a fair and close background, experience, and working environment of Android app

development.

Figure 6.3: Logical diagram of one level of JSON file.

In the following, we discuss the design of the experiment that is composed of three

batches, each of them involving an online questionnaire. Each questionnaire is composed

of seven levels (i.e., one level for each of the seven types of issue). Each batch is composed

of seven participants. The rationale behind such allocation of the three batches is: (i) to

reduce the number of questions per participant, thus promoting his/her ability to focus

and (ii) to cover a wide range of refactoring cases for each type of performance issues.

Each questionnaire has the following structure:

� seven levels, one level for each type of performance issue;

� each of the seven levels contains two different steps (see Figure 6.3), one for each

instance of the current Android performance issue (e.g., DrawAllocation);

� every step shows either non-refactored code (the code with performance issue/be-

fore refactoring) or refactored code (the code after automatically resolving a pre-

viously existing issue using ALPAR);
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� every snippet is accompanied by a clarification URL which points to the GitHub

page for accessing the Java code of the whole file where the snippet belongs to

(this is used to provide context to the question);

� for each snippet we show two questions, one about the perceived performance and

another about the perceived understandability;

� for each snippet we provide an optional comment field where participants can

provide any feedback.

Each questionnaire has a total of 14 steps (see figure 6.4 for a screenshot of a level of

the questionniare) Moreover, to mitigate biases in the experiment, we take the following

steps:

� The order of the levels is fully randomize across different instances of the ques-

tionnaire. For instance, in the first questionnaire, the DrawAllocation level may

be in level 1, while the DrawAllocation level might be at level 5 for the second

questionnaire, etc.

� In each of the 14 steps, we randomly provided the position of the non-refactored

code and the refactored code. For example, in some steps, non-refactored code

is located to the left side of the snippet, whereas, for other instances, it may be

placed on the right side.

Furthermore, for each instance of the issue, the coding interface will ask two questions

from developers. The text of the questions will always be the following:

Q1 – The snippet of code to the Left executes faster than the snippet of code to

the right?

As already discussed, given the random position of the snippets in each JSON file, this

question evaluates how developers perceive the two versions of snippets (non-refactored

vs. refactored code) in terms of execution time.

Q2 – The snippet of code to the Left is more comprehensible than the snippet of

code to the right?
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Figure 6.4: One level of Coding game interface.

Similarly to Q1 as the code snippets are randomly distributed, this question is dedicated

to analyzing the code understandability of non-refactored and refactored code versions.

The possible responses follow a Likert scale15 with the following structure:

15https://github.com/jbryer/likert

https://github.com/jbryer/likert
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� Strongly agree

� Agree

� Neither agree nor disagree

� Don’t know

� Disagree

� Strongly disagree

The online questionnaire has been defined by reusing an open-source project called The

coding game16 interface because; (i) the structure is designed in a way that is suited to

our experiment i.e., levels and steps, and (ii) it supports diff17 (code difference between

two files) as shown in Fig. 6.4.

Data Analysis – To analyze the results, we collected the survey responses obtained

from 21 Android developers and reported them using Likert plots. For each of the two

questions (Q1, Q2) asked to the developers (section 6.3.1), we analyzed the responses in

terms of refactored vs non-refactored code separately for Q1 and Q2. For instance, in the

case of a particular type of issue, we checked the percentage of participants responding in

support of refactored and how many preferred non-refactored code. In addition to this,

we also briefly described some of the developer’s comments given during the analysis of

the code snippets.

Results – A total of 21 developers answered all given questions of the survey. Fig. 6.5

and Fig. 6.6 summarizes the distribution of the responses obtained from the developers

for Q1 and Q2, respectively.

It can be observed from the Fig. 6.5 that regarding DrawAllocation types of issues, 72%

participants were clearly acknowledged that non-refactored code will not execute faster

than the refactored one, while on the other hand, nearly 64% participants agreed with

the fact that refactoring code executes faster than non-refactoring code. This may be

due to the allocation of the object during drawing or layout operation is quite sensitive

for the app performance and developer may be aware of this phenomenon.

Then, there are code snippets of UseSparseArrays type, where participants can clearly

distinguish the faster snippet. About 53% of the participants were in favour of us-

ing refactoring code over non-refactoring code for performance reasons. On the other

hand, according to the 60% participants, non-refactored code will not run faster than

its refactored code version.
16https://github.com/S2-group/TheCodingGame
17diff. https://en.wikipedia.org/wiki/Diff

https://github.com/S2-group/TheCodingGame
https://en.wikipedia.org/wiki/Diff


Automatic resolution of performance issues in Android apps 115

27%

25%

21%

30%

31%

33%

30%

37%

27%

67%

43%

53%

60%

72%

64%

58%

53%

50%

46%

44%

40%

37%

32%

25%

21%

21%

20%

16%

9%

17%

26%

20%

23%

22%

30%

26%

41%

8%

36%

26%

20%

12%

ViewHolderRefactored

ViewHolderNonRefactored

UsevalueOfRefactored

UsevalueOfNonRefactored

UseSparseArraysRefactored

UseSparseArraysNonRefactored

RecycleRefactored

RecycleNonRefactored

HandlerLeakRefactored

HandlerLeakNonRefactored

FloatMathRefactored

FloatMathNonRefactored

DrawAllocationRefactored

DrawAllocationNonRefactored

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 6.5: Code Execution Response (Q1).

It is also interesting to note that for some types of performance issues, developers re-

mained neutral in their response regarding code execution. For instance, 30% were

neither agree nor disagree in the HandlerLeak issue type. Also, 40% were neutral re-

garding the usage of non-refactoring code over refactoring one. This shows that for

certain types of issues, it is difficult for participants to clearly distinguish between code

with/without performance performance problems and this explains the importance and

need of having automated tools like Android Lint and ALPAR for doing these kinds of

tasks.

In the case of Recycle type of issues, 67% of developers were not in the support of using

refactoring code snippets over non-refactoring in terms of execution. Since developers

can not differentiate the refactoring version, this is one of the potential reason why we

have the highest number of Recycle issues identified in Chapter 5.

Fig. 6.6 depicts the participants’ responses regarding the code comprehension (Q2) of

refactored vs non-refactored code snippets. 53% of developers feel UseSparseArrays

refactoring code snippets are more understandable than non-refactoring code. Other

than this, a large number of participants (about 50%) agreed that refactoring code

version is more readable than its non-refactoring for the DrawAllocation type of issues.
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It is reasonable to say that refactoring of code does not intend to make the code more

understandable, rather it is more focus on the performance aspect.

For ViewHolder issue type, 60% of participants think that non-refactoring code is not

comprehensive than its refactoring code version, while in case of Recycle type of issue,

nearly 42% of participants were not convinced that non refactored is more understand-

able than the refactored one. The most difficult source code to comprehend by develop-

ers was about FloatMath issues, where 60% of the participants think that the refactored

code is not more comprehensible than the non-refactored code.

18%

17%

40%

40%

30%

38%

19%

37%

55%

50%

60%

32%

36%

42%

53%

50%

44%

40%

39%

38%

37%

37%

30%

30%

25%

24%

21%

17%

29%

33%

16%

20%

30%

24%

44%

26%

15%

20%

15%

44%

43%

42%

ViewHolderRefactored

ViewHolderNonRefactored

UsevalueOfRefactored

UsevalueOfNonRefactored

UseSparseArraysRefactored

UseSparseArraysNonRefactored

RecycleRefactored

RecycleNonRefactored

HandlerLeakRefactored

HandlerLeakNonRefactored

FloatMathRefactored

FloatMathNonRefactored

DrawAllocationRefactored

DrawAllocationNonRefactored

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 6.6: Code Comprehension Response (Q2).

Furthermore, in the comments field, some participants confirmed the usage of refactoring

code version as more efficient. For instance one participant gave the following feedback

regarding the UseSparseArrays issue:

”SparseArray is intended to be more memory efficient than using a HashMap to map

Integers to Objects, both because it avoids auto-boxing keys and its data structure doesn’t

rely on an extra entry object for each mapping.”

For the HandlerLeak type of issues, one participant provided comment regarding how

to resolve this issue and what may be the consequences of this issue:
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”Its not about code performance the performance addition of right side where we have a

Weak Reference to activity and null check should be minimal. It’s actually about memory

leak.”

This depicts that HandlerLeak issue can be avoided by adding the weak reference to the

activity, as done in ALPAR.

About UseValueOf issue type, one of the developer given the following comment:

”As per Java documentation, Long.valueOf should be preferred to new Long(long) al-

though in normal apps won’t make any noticeable difference.”

Summary−RQ3.1 – The summary of this research question is divided into two

parts.

Summary − RQ3.1.1 – For Q1 (code execution), the overall trend shows that

for various types of performance issues (DrawAllocation, FloatMath and UseS-

parseArrays), more than 50% participants think that the refactoring versions of

code (through ALPAR) are faster with respect to their non-refactored versions and

for some issue types (i.e., UseValueOf and ViewHolder), this ratio is close to 50%.

It is interesting to observe that in HandlerLeak issue type, the developers could not

distinguish between the two versions and thus opted to remain neutral.

Summary − RQ3.1.2 – Regarding the Q2 (code comprehension), the responses

depicted a mix trend. For DrawAllocation and UseSparseArrays, around 50% and

53% participants (respectively) agreed that refactored code version is more compre-

hensive. On the other hand, about 60% of participants were convinced that non-

refactored code version of ViewHolder is more readable than the refactored version.

Finally, for Recycle and UseValueOf, a large chunk of participants preferred to be

neutral.

Threats to Validity – In the following, we describe the threats to validity for this

experiment and the actions we adopted to avoid them.

Transferability threats are the level to which the findings of qualitative research can

be transferred or generalized to other contexts. One of the possible potential threats

regarding generalisability is the sample size we considered in this study. Since the

sample size of participants is not large in number, it is reasonably fair to say that it is

not representing the majority of the Android developers. To mitigate this threat, we
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considered the Android developers that have varied years of experience, nationalities

and actively working in some organizations. However, choosing very highly professional

developers may also inject new biases to our study. This is because the visualization

and analysis of code snippets vary from junior to senior developers. Thus, it is always

good to include more participants for the survey to decrease the biasness but this will

increase workload and consume more time e.g., contacting the developer whether he/she

is willing to participate for the survey, wait for the participants to fill and submit the

survey. Moreover, few other similar studies as our topic regarding the sample size

characteristic have been done by Habchi et al. [56] which included 14 participants and

Tomasdottir et al. [109] (considered 15 participants) provided good literature motivation

for having sample size of 21 participants is sufficient for the study.

Another possible threat could be that we contacted the developers may use different

types of Lint checks including performance checks and they may manually resolve them

(i.e., those who have an idea about the Lint performance issues). There may be par-

ticipants who did not perform manual performance refactoring (or lack of knowledge

in performance refactoring) and participated in the survey to give their opinion on two

snippets of code. To alleviate this threat, we are giving a reference to study which con-

firmed that 97% of participants who chose linters to check issues are dependent on the

Android Lint [23]. This is because Lint is by default integrated with official Android

Studio and thus many developers are using it for developing the apps. Besides, Lint can

provide the feature of dedicated performance categories. Therefore, we presume that

Android developers have sufficient knowledge about Lint performance issues.

Credibility is about the trustworthiness of results that can affect the study. One of

the most likely threat is the credibility of the obtained results. Since we surveyed the

Android developers who are working in this area (i.e., Android apps development), but

we are not fully sure whether the answer given by their own experience or intuition or

knowledge gathered from some other source. To address this threat, we always asked

at the end of the survey regarding some details about the participant him/herself, such

as the number of years of development experience, how many Android apps developed,

and the number of employees working in the company etc. to understand the nature

of work. Moreover, at the beginning of the survey, we also told participants that their

identity will be kept anonymous and the survey is not aimed to judge the participants.

Confirmability in qualitative research referred to as the level at which results of our

study can be confirmed or validated by other researchers. One confirmability threat may

be analyzing and confirming the response independently obtained from developers. To

avoid this threat, we use coding game interface to conduct an online survey. The results

of the study are stored in a JSON file and anyone can check it independently.
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6.3.2 Experiment 2 - Measurement-based study

Design – The goal of this study is to analyze the performance issues identified by

ALPAR with the purpose of measuring the run-time impact with respect to CPU uti-

lization and memory consumption from the viewpoint of developers and researchers in

the context of Android apps.

To answer the second research question of this chapter defined in section 6.3, we con-

ducted an experiment by following three steps:

1. Creating synthetic apps with performance issue (Non-Refactored Apps):

We implemented six simple Android apps, one for each type of performance issue

except FloatMath18 issue. In each of the six self-developed apps, we have intro-

duced one of each type of performance issues. Listing 6.15 reports an example of

such app with DrawAllocation performance issue (i.e., at line 26). At the end of

this step, we had six apps with their performance issues.

2. Creating synthetic apps with refactored performance issues (Refactored

Apps): Similarly to the first step, we obtained six apps without performance-

related issues. As an example, Listing 6.16 represents an app without DrawAl-

location. At the end of this step, we have refactored versions of the previously

mentioned six apps.

3. Running Android runner to measure the performance: We ran all the

synthetic apps (obtained from step 1 and step 2) 1 million times to clearly analyze

the performance impact. We leverage Android runner19 tool to measure the per-

formance in terms of CPU utilization and memory consumption for all the total

12 apps (APKs). Android runner exploits; (i) Monkey Runner for replaying all

the executions, and (ii) Android Debug Bridge (ADB)20 to the dumpsys tool and

gathered data about CPU utilization and memory consumption for each app.

package nl.vu.cs.appdrawallocation;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.util.Log;

import android.view.View;

18Since we built all the apps using API level 26, FloatMath issue was deprecated in that version, so
to avoid the biasness, we preferred not to include it in this experiment.

19Android Runner - Automated experiment execution on Android devices. https://github.com/

S2-group/android-runner
20https://developer.android.com/studio/command-line/adb.html

https://github.com/S2-group/android-runner
https://github.com/S2-group/android-runner
https://developer.android.com/studio/command-line/adb.html
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public class MyView extends View

{

Paint paint = null;

public MyView(Context context)

{

super(context);

}

@Override

protected void onDraw(Canvas canvas)

{

Log.d("Draw method","called");

super.onDraw(canvas);

int x = getWidth();

int y = getHeight();

int radius;

radius = 100;

Paint p = new Paint();

}

}

Listing 6.15: Example of the DrawAllocation app with performance issue.

package nl.vu.cs.appafterdrawallocation;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.util.Log;

import android.view.View;

public class MyView extends View

{

Paint paint = null;

public MyView(Context context)

{

super(context);

}

Paint p = new Paint();

@Override

protected void onDraw(Canvas canvas)

{

Log.d("Draw method","called");

super.onDraw(canvas);

int x = getWidth();

int y = getHeight();

int radius;

radius = 100;;
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}

}

Listing 6.16: Example of the DrawAllocation app without performance issue.

The experiment was conducted on HP Laptop (i7 CPU at 2.5 GHz and 8 GB of memory),

Whereas the apps were running on Galaxy A5 mobile device (64bit Octa Core Processor

and 32 GB of memory) running API level 26 and Android 8.0.0. Each run of the

experiment was repeated 20 times for each APK.

Data Analysis – To analyze the results; we report the statistics summary for both

the CPU utilization and memory consumption across all the selected apps (along with

box plots). Furthermore, to compare the distributions of different runs (refactored and

non-refactored app), we apply the Wilcoxon rank-sum test [119] followed by Cliff delta

with 95% of confidence intervals. [21].
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Figure 6.7: CPU utilization of selected apps. (in percentage)

Results – As it can be seen from Table 6.3 and Fig. 6.7, the CPU utilization for six

types of performance issues have been evaluated using the descriptive statistics summary

and box plots respectively. The results reveal that there were slight differences between

the means of two versions of apps (i.e., refactored vs. non-refactored). However, in most

of the cases, CPU utilization of refactored apps were not significantly improved than

their non-refactored versions. Moreover, we compared the distribution runs of CPU
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Table 6.3: Descriptive statistics for the CPU utilization ((in percentage) of each type
of selected apps (SD = standard deviation, CV = coefficient of variation).

Synthetic apps Min. Max. Median Mean SD CV

DrawAllocationNonRef 0.10 57.00 23.00 20.41 15.21 74.53
DrawAllocationRef 0.10 57.00 23.00 20.26 15.91 78.54
HandlerLeakNonRef 0.10 40.00 20.00 17.53 12.76 72.79
HandlerLeakRef 0.10 41.00 20.00 16.91 13.25 78.32
RecycleNonRef 0.10 57.00 24.00 20.43 15.95 78.06
RecycleRef 0.10 57.00 23.00 20.23 15.96 78.88
UseSparseArraysNonRef 0.10 57.00 23.00 19.31 15.94 82.54
UseSparseArraysRef 0.10 57.00 21.50 18.37 15.90 86.50
UseValueOfNonRef 0.10 57.00 21.00 17.44 15.84 90.82
UseValueOfRef 0.10 57.00 20.00 16.81 15.79 93.92
ViewHolderNonRef 0.10 57.00 20.00 16.76 15.62 93.21
ViewHolderRef 0.10 57.00 20.00 16.68 15.69 94.05

Table 6.4: Results of the Cliff Delta analysis (CPU utilization) for comparing the
amount of difference between two distributions (non-refactored vs. refactored app ver-

sion) across the six performance issues.

Distributions Delta estimate Lower Bound Upper Bound
DrawAllocationNonRef VS. -0.008735773 -0.10353159 0.08621732
DrawAllocationRef (negligible)
HandlerLeakNonRef VS. 0.01819155 -0.1247598 0.1604030
HandlerLeakRef (negligible)
RecycleNonRef VS. 0.004071171 -0.07362021 0.08171343
RecycleRef (negligible)
UseSparseArraysNonRef VS. 0.03148089 -0.03600335 0.09867931
UseSparseArraysRef (negligible)
UseValueOfNonRef VS. 0.02214067 -0.03808772 0.08220878
UseValueOfRef (negligible)
ViewHolderNonRef VS. 0.001344259 -0.05302900 0.05570957
ViewHolderRef (negligible)

utilization for both the versions (across all types of issues) using two-tailed Wilcoxon

rank-sum test. In all the cases, we obtained p-values much greater than 0.05 (p-values

are insignificant), meaning there is a very high probability that the differences between

the medians of two versions are not significant. Further, we calculated the Cliff delta

to quantify the amount of difference between the two distributions. Since the Wilcoxon

test is not significant, so the cliff delta values are not significant, that is also confirmed

in Table 6.6 that the difference was negligible between two versions of apps across each

issue types.

Regarding the memory consumption, it can be visualized from Table 6.5 and Fig. 6.8

that there are no noticeable differences between the medians and means of two versions

of the app (refactored vs. non-refactored) across all six types of issues. Moreover, for

certain types of issues, non-refactored versions of the app consume a little more memory

than their refactored versions (with respect to mean). Further, Wilcoxon rank-sum test
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Figure 6.8: Memory consumption of selected apps (in Mb).

Table 6.5: Descriptive statistics for the memory consumptions (in Mb) of each type
of selected apps (SD = standard deviation, CV = coefficient of variation).

Synthetic apps Min. Max. Median Mean SD CV

DrawAllocationNonRef 10.31 48.54 15.27 18.30 7.49 40.92
DrawAllocationRef 10.31 51.59 15.49 20.51 9.02 43.97
HandlerLeakNonRef 10.68 20.39 15.17 15.31 2.76 18.03
HandlerLeakRef 10.31 20.71 15.15 15.18 2.73 17.98
RecycleNonRef 10.31 51.59 16.61 20.47 8.64 42.20
RecycleRef 10.31 51.59 18.93 21.17 8.86 41.87
UseSparseArraysNonRef 10.31 51.59 19.57 22.10 9.83 44.49
UseSparseArraysRef 10.25 51.59 20.02 22.73 10.38 45.68
UseValueOfNonRef 10.25 51.59 21.52 23.34 10.85 46.48
UseValueOfRef 10.25 51.59 23.71 23.77 11.10 46.69
ViewHolderNonRef 10.25 184.21 24.79 27.57 22.60 81.96
ViewHolderRef 9.74 184.21 24.25 27.41 22.16 80.86

indicates that there is considerably less difference between the median of two versions of

all types of issues. Finally, Table 6.5 shows the Cliff Delta estimation on the difference

of two distribution. In each case, we have negligible amount of difference between the

distributions. With these simple analyses. effect sizes are really negligible, however, if

one tries to compose many smells, the performance degradation may not be negligible

anymore.



Automatic resolution of performance issues in Android apps 124

Table 6.6: Results of the Cliff Delta analysis (Memory Consumption) for comparing
the amount of difference between two distributions (non-refactored vs. refactored app

version) across the six performance issues.

Distributions Delta estimate Lower Bound Upper Bound
DrawAllocationNonRef VS. -0.1028614 -0.197011408 -0.006831514
DrawAllocationRef (negligible)
HandlerLeakNonRef VS. -0.007490637 -0.1554826 0.1408302
HandlerLeakRef (negligible)
RecycleNonRef VS. -0.03521593 -0.11397668 0.04398471
RecycleRef (negligible)
UseSparseArraysNonRef VS. -0.02678459 -0.09570758 0.04239400
UseSparseArraysRef (negligible)
UseValueOfNonRef VS. -0.02065733 -0.08302316 0.04186969
UseValueOfRef (negligible)
ViewHolderNonRef VS. 0.002224764 -0.05436961 0.05880489
ViewHolderRef (negligible)

Summary−RQ3.2 –The results of the experiment showed that there is no signifi-

cant trend in terms of differences, both for the CPU usage and memory consumption

across all types of considered performance issues. This may be due to the fact that

the context of this study is relatively small and simple (as they are not real world

apps but instead self-developed)

Threats to Validity – In the following, we report the threats to validity related for

the experiment and the adopted precautions we took to avoid them.

External validity. One of the possible threat could be selecting the real apps from

Google Play Store, that include six types of performance issues. Thus, this possibly

restricts us to generalize the results of our experiment to represent all the set of real

Android apps. However, at the same time, the impact of smaller issue types in real

apps may not be noticeable when the size of the code file or project is large. Therefore,

to avoid this threat, we created synthetic apps for each type of performance issues and

executed 1 million times inside each app to clearly observe the impact of performance

issues.

Construct validity. In this experiment, we did not consider FloatMath issue type

due to its depreciation, which limit us to analyze the run time impact of remaining six

types of performance-related issues. We took such a decision to reduce the bias of the

experiment and maintain the same configurations across all the apps in terms of API

level and Android version.

Conclusion validity. The experiment setup can be affected by random events such as

Android OS scheduling, and background tasks that can affect the measurements of the

apps. To mitigate this threat, we took the following proactive measures: (i) performed
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the experiment on brand new Android phone (Galaxy A5) and double-checked that no

task was running in background, (ii) to reduce the chance of random events, we repeated

the experiment with the same treatments of twenty runs for each considered APKs.

6.4 Discussion

ALPAR can be used by developers to resolve seven types of Android performance-

related issues. Since Android Lint is the de facto static analysis tool for Android stu-

dio, so developers can make most of this plugin by resolving the issues to ensure the

error-prone app development process (i.e., can improve the performance of their apps).

Moreover, this plugin can provide a base (direction) for developers to implement the

rules for various other types of potential performance issues identified from the tools

mentioned in the state-of-the-art (Chapter 3).

From the survey-based study, the majority of the participants (64%) can easily recognize

the refactoring code version of DrawAllocation, meaning that developers have sufficient

knowledge about this issue. This confirms the results achieved by Cruz et al. [45],

where DrawAllocation was not found throughout the evaluation of their study on 140

open-source Android apps which shows developers may tend to pro-actively resolve the

issue at the time of app development.

Refactored version of Recycle issue type, were not recognized by the majority of devel-

opers. Our extensive study conducted in Chapter 5 shows that Recycle (550, 22.84%) is

the most frequently identified issues. Hence, the results from the survey about different

types of performance issues can be used as base to resolve such issues which were not

received the due attention from developers’ e.g., Recycle and UseValueOf issue types.

About code understandability, notice that here we are not aiming to make the code

more comprehensible, rather the goal of refactoring is mainly performance improvement.

However, the results of the survey clearly indicate that some refactored solutions such as

UseSparseArrays and DrawAllocation are more comprehensible. Therefore, refactoring

is not detrimental for code comprehensibility.

The measurement-based experiment showed that there is a very small difference in terms

of CPU utilization and memory consumptions between original and refactored code for

all types of performance issues. This demonstrates that at least refactoring does not

hinder the performance. Though the context of this empirical study is not representative

of real open-source and industrial apps, therefore, considering it only a preliminary study,

developers can explore the run-time performance on real world apps.
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6.5 Conclusions

As the mobile apps are becoming more and more popular, developers and researchers are

coming with new tools to address the performance concerns in Android apps, especially

in the domain of detecting the performance issues. However, there are a few tools

available which focus on providing a solution to automatically resolve those issues.

This chapter emphasizes on presenting possible automatic solution for performance

smells and investigating performance-related code auto-refactoring for Android apps.

The proposed study is carried out to answer the third high-level research question of

this dissertation (mentioned in section 1.3), i.e.,

RQ3 - Is it possible to automatically resolve statically-detectable performance issues in

Android apps?

In this chapter, we introduced an Eclipse plugin –ALPAR– to auto-refactor the perfo-

rmance-related problems discussed in Chapter 5. By building on the Leafactor, a total

of seven types of issues can be auto-resolved by our proposed tool. These issue types

include: DrawAllocation, FloatMath, HandlerLeak, Recycle, UseValueOf, UseSparseAr-

rays, and ViewHolder.

Further, we took a step forward to understand the developer’s mindset on the refactoring

and non-refactoring code by conducting a survey-based experimental study. According

to obtained responses, refactoring versions of DrawAllocation and UseSparseArrays code

snippets were seen to execute faster than their non-refactored code snippets. The overall

trend showed that in various issue types about (near to or above) 50% of participants

inclined towards the usage of refactoring code over non-refactoribg in terms of code

execution.

Regarding the comprehensibility of the code, a majority of developers (53%) feel that

refactored version of UseSparseArrays code is more understandable than its non-refact-

ored one, whereas 60% of participants disagree that non-refactored code is more readable

than refactored code version for ViewHolder issue type. Finally, in issue types such

as Recycle and UseValueOf, a large number of participants remained neutral. This

represents a mix trend for the code comprehensibility.

Finally, we performed a measurement-based study to investigate the run time perfor-

mance impact of the apps with/without performance issues. The findings of the prelim-

inarily study for CPU utilization depicted that there was very less difference between

various versions of the refactored and non-refactored apps . However, for some issues

types, CPU utilization for refactored apps were very slightly improved as compared to
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its non-refactored versions, such as UseSparseArrays. While, in terms of memory con-

sumption, we have not found much difference between the two versions of apps across

all issue types. Only refactored app of HandlerLeak consumes relatively less memory

than its non-refactored app version.



Chapter 7

Conclusions

This section summarizes the main contributions of the dissertation, in the light of the

research questions formulated in the thesis. In addition to presenting the contributions,

we also reviewed the future prospects related to our research work.

7.1 Main Contributions

The main goal of this thesis is to investigate the performance-related issues in Android

apps and provide an in-depth understanding to Android researchers and developers.

Thus, the essence of this thesis would provide added value to the researcher community

in terms of identification, evolution and resolution of various performance issues at the

time of development.

The main contributions of this thesis are summarized explicitly with the obtained results

in each main (high-level) research questions of this dissertation defined in Chapter 1.

RQ1 Which are the most recurrent types of performance-related issues observed in the

developers commits for Android apps?

In Chapter 4, a preliminary study is conducted to qualitatively and quantitatively

analyze the performance-related commits in the Android apps. The work is aimed

to add the following contributions:

1. An investigation on a total of 457 commits distributed over 180 open-source

Android apps. As per our knowledge, this is the first study to evaluate

performance issue.

128
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2. A taxonomy of main types of performance issues consists of 10 different cat-

egories obtained using card sorting technique is provided. [107]. The most

recurrent performance issues observed in commits is about the app user in-

terface (UI). We also found frequent commits pointing the issues related to

code smells, app logic, network connection, file system, and local databases

etc.. This study provides to developers a checklist to discover all potential

performance issues during app development.

RQ2 How do performance issues identified by Android Lint evolve in Android apps?

In Chapter 5, an empirically study was conducted with the aim of highlighting the

occurrence of performance issues in 316 Android apps by running Android Lint.

This analysis resulted in the identification of total 2,408 performance issues. The

major outcomes of this research question are briefly described below:

1. According to our findings, Recycle issues are very frequent in our dataset

(550, 22.84%), they occurred due to lack of recycling data collections and

other resources such as database cursors and TypedArrays. While WakeLock

issues were very uncommon ones (3, 0.12%).

2. Then, we traced the evolution patterns of identified issues by considering

the apps’ evolution history. Five different evolution patterns emerged by

analyzing their frequency by using open card sorting. The STICK evolution

pattern is the most immediate one in our dataset i.e., 209 times in 316 apps

showing that the issue injected in the app tends to remain for several commits.

Finally, a taxonomy is drawn based on these evolution patterns.

3. Furthermore, the empirical research of this work examines to what extent

Android developers do not resolve performance issues. The findings showed

that there are a total 45.25% of identified issues that remained unresolved in

our dataset. ViewHolder (101/180, 56.11%) type of issues were not resolved

in the huge amount, which can profoundly impact the performance aspect

because this issue is mainly deal with smoother scrolling of the ListView

items. most of the FloatMath issues were resolved (52/188, 27.66%).

4. Our investigation analyzed the survival time for different types of identified

performance issues as well. We did such analysis to know whether certain

types of issues tend to resolved immediately or some of them did not get

much attention by developers. Results of this study showed that the issues

can be able to survive relatively longer in the Android apps (with an average

of 137 days and a median of 21 days) during the whole span of the projects.

5. We also investigated the extent to which developers acknowledge the reso-

lution of the detected performance issues and documented in their commit
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messages. We observed that overall 143 commits out of 1,314 (10.88%) were

documented by developers. Among these 143 issue resolution commits, Re-

cycle issues are frequently documented (57, 39.9%), while UseSparseArrays

(6, 4.2%) issues are rarely documented by developers. Finally, a catalog of

manual corrections for all types of performance-related issues is provided to

support early fixing.

RQ3 Is it possible to automatically resolve statically-detectable performance issues in

Android apps?

1. We proposed an Eclipse plugin named ALPAR to automatically resolve

seven types of Android-specific performance issues discussed in Chapter 5.

We extended Leafactor [45] with three new rules, modifying two existing rules

and utilizing one rule as it was. While, one rule we derived from AutoRefactor

tool. The issue types covered by the proposed plugin includes: DrawAlloca-

tion, FloatMath, HandlerLeak, Recycle, UseValueOf, UseSparseArrays, and

ViewHolder.

2. Moreover, we performed a survey-based experiment to understand the self-

accessed performance refactoring from the developers’ perspective. This study

provides an overview of how developers can perceive the refactoring in terms

of code execution and readability. According to obtained results, DrawAl-

location and UseSparseArrays refactoring code executed faster as compared

to their non-refactoring code. The overall trend for various types of perfor-

mance issues like DrawAllocation, FloatMath and UseSparseArrays showed

that majority of participants (more than 50%) were inclined towards usage

of refactored code over non-refactored one in terms of execution. While, in

case of some issue types such as UseValueOf and ViewHolder, this number

was even close to 50%.

3. Regarding code comprehensibility, the overall trend seemed to be mixed i.e.,

for certain types of performance issues like DrawAllocation and UseSparseAr-

rays, the majority of participants felt that refactored versions of code are

more comprehensive than their non-refactored code versions. Whereas for

some other types of issues such as ViewHolder, a large group of participants

agreed that non-refactored code versions are more readable than refactored

ones. For some issues such as UseValueOf and Recycle, the participants opted

to remain neutral.

4. Finally, as a preliminarily study, we conducted an measurement-based exper-

iment to observe the run-time performance improvements in the refactored
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and non-refactored version of code. Results showed that there were no notice-

able difference in terms of CPU utilization and memory consumption across

all types of performance issues.

7.2 Future Research Directions

There are various future research directions that can be pursued starting from this

dissertation. We describe them as follows.

� Identifying and analyzing performance issue through self-admitted com-

ments – Future work is needed to analyze the performance issues from different

aspects, such as investigating self-admitted performance comments in the source

code, to understand what types of performance issues are considered by develop-

ers. More analysis of source code are needed to understand performance regression.

Investigating the phenomena observed in Chapter 4 on other mobile platforms like

Apple iOS or the Web is interesting as well.

� Exploring other types of potential performance issues through static

analysis tools – We investigated the occurrence and evolution of performance

issues using Android Lint. Future research is needed to replicate this study using

other popular static analysis tools such as FindBugs and PerfChecker and compare

the evolution of performance issues identified by Android Lint and other static

analysis tools. Analyzing performance issues from other static analysis tools could

help to discover other performance issues which can be potentially threat the app.

Moreover, an extensive qualitative study is required to understand the evolution

patterns emerged in this thesis. This investigation includes studying the rationale

of the patterns which can heavily decrease app performance. A more fine-grained

analysis is required to analyze the solutions recommended to developers in terms

of understandability, effort, and change impact.

� Extending the auto-refactoring tool by implementing rules for other

types of potential performance issue – The refactoring tool presented in

this dissertation is able to detect seven types of performance issues. Future work

will extend the tool to fix other performance issues already listed in the official

Lint document [3]. This includes rules for both Java and XML files. Future efforts

should implement automatic refactoring rules for the performance smells obtained

from other tools that could potentially threat the app performance.
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� Analyzing and Measuring the run-time performance in real-world An-

droid apps – In this dissertation, we conducted a survey-based study to under-

stand the performance and readability of code snippets affected by performance

smells with respect to their refactored counterparts. However, future work should

analyze the ALPAR more in details by providing it to industrial developers.

Finally, we conducted a preliminarily study to investigate the impact of statically-

detectable performance issues on both CPU usage and memory consumption. It

would be interesting to replicate the experiment in the wild, while considering

mobile apps developed by third-party developers and with a real user base.
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