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Abstract

Context: The performance assessment of complex software systems is not a

trivial task since it depends on the design, code, and execution environment. All

these factors may affect the system quality and generate negative consequences,

such as delays and system failures. The identification of bad practices leading

to performance flaws is of key relevance to avoid expensive rework in redesign,

reimplementation, and redeployment.

Objective: The goal of this manuscript is to provide a systematic process,

based on load testing and profiling data, to identify performance issues with run-

time data. These performance issues represent an important source of knowledge

as they are used to trigger the software refactoring process. Software character-

istics and performance measurements are matched with well-known performance

antipatterns to document common performance issues and their solutions.

Method: We execute load testing based on the characteristics of collected

operational profile, thus to produce representative workloads. Performance data

from the system under test is collected using a profiler tool to create profiler

snapshots and get performance hotspot reports. From such data, performance

issues are identified and matched with the specification of antipatterns. Software

refactorings are then applied to solve these performance antipatterns.
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Results: The approach has been applied to a real-world industrial case study

and to a representative laboratory study. Experimental results demonstrate the

effectiveness of our tool-supported approach that is able to automatically detect

two performance antipatterns by exploiting the knowledge of domain experts.

In addition, the software refactoring process achieves a significant performance

gain at the operational stage in both case studies.

Conclusion: Performance antipatterns can be used to effectively support the

identification of performance issues from load testing and profiling data. The

detection process triggers an antipattern-based software refactoring that in our

two case studies results in a substantial performance improvement.

Keywords: Software Performance Engineering, Software Performance

Antipatterns, Empirical Data, Load Testing and Profiling

1. Introduction

In the software development process it is fundamental to understand if per-

formance requirements are fulfilled, since they represent what end users expect

from the software system, and their unfulfillment might produce critical con-

sequences [1, 2]. The performance assessment of complex software systems is5

not a trivial task due to many variabilities, such as workload fluctuation and

resource availability [3, 4], that may occur when the system is in operation and

they inevitably introduce flaws affecting the overall system quality [5, 6, 7].

The evaluation of the system design is of key relevance in the software devel-

opment, since the identification of bad practices and the application of software10

refactorings [8, 9, 10] aim to modify the internal structure of software systems

while preserving their behavior [11]. As consequence of these modifications, it

is necessary to continuously assess the performance of systems and put in place

a set of methodologies that allow for the detection of violations of performance

requirements, thus reporting the performance flaws to software developers [12].15

In the context of software performance engineering [13, 14], the idea of inte-

grating software development characteristics and monitored performance data
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raises new challenges: which performance data should be carried back-and-forth

between runtime and design time, which feedback should be provided to develop-

ers to support them in the diagnosis of performance results. There is an obvious20

trade-off in the performance evaluation of early model abstractions (where de-

tected problems are cheaper to fix but the amount of information is limited), and

late performance monitoring on running artifacts (where the results are more

accurate but several constraints have been added on the structural, behavioral,

and deployment aspects of a software system) [15].25

In the literature, several approaches have been proposed for the performance

modeling and analysis of software systems [16, 17, 18]. However, the mainte-

nance of running systems is still very complex due to runtime variabilities (e.g.,

workload fluctuation and resources availability) that inevitably affect the system

performance characteristics. In this setting, it is crucial to specify the expecta-30

tions on performance requirements (e.g., service response time, CPU, memory

and I/O utilizations, etc.), to monitor the system resources and to detect the

performance flaws. These flaws trigger the performance-driven software refac-

toring process that aims to apply software modifications suitable for satisfying

performance requirements. However, solving performance problems is very com-35

plex and the applicability of refactorings is not guaranteed. An initial effort in

this direction can be found in [19] where the software refactoring consists of

parallelizing the code to improve the system performance.

In this paper we deal with performance-driven software refactoring, we focus

on systems already deployed to production while acting at the source code level40

[11]. In essence, our goal is to improve the system performance by modifying

the internal structure of software methods without altering their functionali-

ties. To this end, we make use of software performance antipatterns [20, 21]

that represent effective instruments for keeping performance metrics under con-

trol. Performance antipatterns have been used to document: (i) common bad45

practices leading to performance flaws and (ii) common best practices lead-

ing to performance improvements by means of software refactorings. In our

previous work we demonstrated the effectiveness of performance antipatterns,
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specifically: (i) we formalized the representation of antipatterns by means of

first-order logic rules that express a set of system properties under which an50

antipattern occurs [22]; (ii) we introduced a methodology to prioritize the de-

tected antipatterns and solve the most promising ones [23]; (iii) we introduced

a model-driven approach to detect and solve antipatterns within architectural

description languages (ADL) [24, 25].

In this paper we move a step forward with respect to our previous work55

[22, 23, 24] since we make use of load testing and profiling data to detect and

solve performance flaws by analyzing a system’s actual runtime behavior. The

novel contributions of this paper are: (i) an approach to specify performance

antipatterns that is parameterized by application execution data derived from

load testing and profiling; (ii) an approach to detect performance antipatterns60

that is parameterized by monitoring the application execution and collecting

performance measurements that are used to identify the sources of performance

flaws; (iii) performance antipattern solution includes the application of software

refactorings aimed to improve the performance measurements under analysis;

(iv) experimentation on a real-world industrial case study where domain experts65

provided detection rules and refactoring actions that are used in a further and

representative case study based on distributed microservices [26].

The remainder of the paper is organized as follows. Section 2 provides back-

ground information on performance antipatterns and presents the specification

on a subset of them that have been detected and solved by the domain experts70

in our case studies. Section 3 describes our approach of detecting and solving

performance antipatterns, and provides some information on the developed tool

that automates the detection. The applicability of our approach is assessed by

running two case studies: (i) a real-world industrial case study is illustrated in

Section 4; (ii) a microservices laboratory study is presented in Section 5. The75

experimentation shows the threats to validity of the approach that are discussed

in Section 6. Section 7 reports the related works. Finally, Section 8 concludes

the paper and provides future research directions.
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2. Performance antipatterns

Bad smells are defined as signs of potential problems in code. Code refac-80

torings are defined as behavior-preserving code transformations that can help

to improve the system design. Specifically, code refactorings represent solu-

tions to bad smells [11]. Antipatterns describe a commonly occurring solution

to a problem that generates decidedly negative consequences [27]. Bad smells

include low-level or local problems that are usually symptoms of more global85

design smells such as antipatterns [28]. This means that bad smells might be

indicators of the possible presence of antipatterns. For instance duplicated code,

long methods, large classes, and long parameter lists represent opportunities for

refactorings. However, the applied refactorings are not guaranteed to be ben-

eficial, for example breaking a data-intensive problem to be solved in parallel90

may lead to bottlenecks [29]. Performance antipatterns, as the name suggests,

deal with the performance issues of software systems and their specification [20]

includes different aspects of a software system referring to development-related

concerns (e.g., a centralized component managing most of the application busi-

ness), and/or operational ones (e.g., a high utilization of hardware nodes or a95

low throughput of a certain service).

A systematic approach to specify bad smells has been presented in [30], where

detection metrics support the enforcement of object-oriented design heuristics.

Following the discussion in [30], we present in the sequel of the section the

specification of performance antipatterns that can be detected from profiler100

data along with possible refactorings to solve them.

In our previous work [22] we provided a static detection, i.e., a logic-based

formalization of antipatterns supporting the detection and solution applied to

architectural models. In particular, we classified development characteristics

in three main categories: static (e.g., high number of connections among soft-105

ware components), behavioral (e.g., high number of exchanged messages), and

deployment characteristics (e.g., few nodes hosting a high number of software

components). In contrast, in this paper we investigate how the development
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properties defined in [22] can be adapted while looking at running systems.

Load testing and profiling data are collected and we further analyze the perfor-110

mance measures observed while the system is running (e.g., high utilization, low

throughput, high response time). We make use of load testing and profiling data

since the conjunction of these two sources of information jointly contributes to

identify performance flaws.

In the following we provide a structured specification of selected performance115

antipatterns including problem, solution, and unbalanced forces, similarly to

[27]. Unbalanced forces identify the primal forces that are ignored, misused, or

overused in antipatterns. Such forces include the management of: (i) function-

ality (i.e., meeting the functional requirements); (ii) performance (i.e., meeting

the required execution speed), and this applies to all antipatterns considered120

in this paper; (iii) complexity (i.e., defining the abstractions); (iv) change (i.e.,

controlling the evolution of software); (v) resources (i.e., controlling the use

and implementation of artifacts); (vi) technology transfer (i.e., controlling the

technology changes) [27].

We also report the static detection rules that have been defined in [22],125

and we present the rules defined to enable the detection of antipatterns from

load testing and profiling data. We also abstract the refactoring actions that

have been applied in our case studies to provide some hints on how to solve

the detected antipatterns and actually refactor the software systems. We focus

on a subset of the performance antipatterns defined in [20], since we exploit130

the knowledge provided by domain experts who reported the detection and

solution of two performance antipatterns in our two case studies (see Sections 4

and 5). In particular, our case studies include the experimentation of these

two performance antipatterns: Circuitous Treasure Hunt (CTH) and Extensive

Processing (EP).135

Table 1 briefly reports the description of the selected performance antipat-

terns. It is structured as follows: the first column shows the antipattern names;

the second column describes the problem part, i.e., the development charac-

teristics belonging to the corresponding antipattern, and the load testing data
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Table 1: Specification of performance antipatterns in the literature [20].

Performance Problem

Antipatterns Development Performance Solution

Circuitous Treasure Occurs when An excessive number Refactor DB queries

Hunt (CTH) an object must look of DB accesses to reduce the number

in several places that lead to of DB accesses, or

to find information high utilization introduce an adapter

Extensive Occurs when a long An excessive usage Delegate asynchronous

Processing (EP) running process mono- of hardware and processing steps to

polizes a processor high execution time other processes

leading to flaws in performance measures; the third column reports the solution140

part, i.e., the refactoring actions to put in place for solving the identified bad

practice. These sources of information are exploited to detect and solve the cor-

responding antipatterns, and the system is refactored accordingly. It is worth

to remark that the specification of performance antipatterns relies on quantities

that are deliberately left vague, such as high utilization or excessive number of145

DB accesses (see Table 1), since such quantities are domain and application-

specific. However, in order to actually verify these statements, it is necessary to

set threshold values that establish a concrete quantification of these characteris-

tics. Further discussion on thresholds is presented in Section 6; some heuristics

to set their numerical values are reported in Appendix A.150

In the remainder of this section, we discuss the key features of the selected

antipatterns and how we interpreted these high-level specifications to actually

use them in the extraction of development and performance data from load

testing and profiling of systems under production. Differently from [22], the

focus of this paper is on the empirical analysis of running systems. Therefore,155

performance antipatterns are specified through formulas that are derived from

the empirical data collected by our two case studies.

2.1. Circuitous Treasure Hunt (CTH)

Problem. CTH typically occurs in database applications when the computation

requires a large number of database requests to retrieve the data. It happens160

that a software instance performs a sequence of queries to obtain some data
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and it exploits the information retrieved in a query to construct the next one,

instead of properly constructing a single, even more complex, query that gets

the required information in a faster way. The performance loss is due to the

overhead introduced by the cost of database accesses, processing of queries, and165

the transmission of all intermediate results [20].

Solution. The solution to this antipattern is to restructure or improve the queries

issued to the database. This may include rewriting queries (e.g., replacing a

join inside the application by a database join) and tuning fetch behavior of

object-relational mappers that use lazy loading in inappropriate places. Further170

information and patterns for refactoring databases can be found in [31]. Another

solution is to reduce the performance loss by introducing an adapter entity. This

consists of creating a single software instance that handles a part of the logics

needed to perform a query, and providing an interface to other objects, thus to

reduce the traffic between the objects and the database query handler [20].175

Unbalanced Forces. Management of performance, complexity, resources.

Static detection. The logic-based formalization [22] of the CTH antipattern is:

∃swEx, swEy ∈ swE, S ∈ S | swEy.isDB = true ∧

FnumDBmsgs(swEx, swEy, S) ≥ ThmaxDBmsgs ∧ FmaxHwUtil(PswEy , all) ≥

ThmaxHwUtil ∧ FmaxHwUtil(PswEy , disk) > FmaxHwUtil(PswEy , cpu)

where swE represents the set of software entity instances, and S represents

the set of services in the software system. The formula checks if the software in-

stance is a database sending a high number of database messages and generating180

a high disk utilization on the machine where the database is deployed.

Detection from runtime data. The basic idea is directly derived from the defini-

tion of the antipattern itself and the analysis of load testing and profiling data

of our case studies. In particular, besides considering database requests, we also

analyze the system implementation code and we check all the software methods185

that must look in several other ones to retrieve the needed information. CTH is

detected when the CPU or disk utilizations (here denoted as hardware utiliza-
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tion) is high due to the fact that a method calls several other methods within

its execution. To this end, for each method we store the hardware utilization

observed during its execution, and we count the number of invoked methods190

before it is entirely executed. The CTH is detected when the hardware uti-

lization and the number of calls to other methods are both larger than some

pre-defined threshold values. Differently from [22], we do not restrict the de-

tection to database requests and we do not distinguish the type of hardware

resources, both CPU(s) and disk(s) contribute to a high resource utilization.195

We formalize this interpretation by means of first-order logics, specifically

we define two basic predicates: (1) the BPdev predicate whose elements refer to

the development characteristics, and (2) the BPperf predicate whose elements

belong to the performance measurements extracted from profiling data.

BPdev — There is a software method, e.g., swMx, that has been developed200

to call an excessive number of other methods, e.g. {swM1, . . . , swMn}. To

formalize such interpretation we use the FnumCalls function that retrieves the

number of methods called by swMx. The bad development practice of calling

an excessive number of other methods can be verified by comparing the output

value of the FnumCalls function with the ThnumCalls threshold:205

FnumCalls(swMx) ≥ ThnumCalls (1)

BPperf — The method swMx shows a heavy computation during its op-

eration, that is the hardware resources exceed a certain threshold, namely

ThhwUtilization. For the formalization of this operational characteristic, we

use the FhwUtilization function that returns the maximum CPU/disk utiliza-

tion among all devices while the method is in operation, and we compare such210

value with the ThhwUtilization threshold:

FhwUtilization(swMx) ≥ ThhwUtilization (2)

Summarizing, the CTH antipattern occurs when the following predicate is

true:
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∃swMx ∈ swM | (1) ∧ (2)215

where swM represents the set of Methods in the software system. Each swMx

instance is reported to the designer for further analysis, since it is detected as

an occurrence of the CTH antipattern.

Refactoring actions. The solution proposed in [20] is to refactor DB queries220

to reduce the number of DB accesses, or introduce an adapter (see Table 1).

This includes the software refactoring of the identified methods, specifically the

number of calls to other methods needs to be reduced, thus to improve the

hardware utilization. In our industrial case study, we found an occurrence of

the CTH antipattern due to an inefficient method for lookup information in a225

large data set. The lookup consisted of two queries: a first query returned a

large result set that was the basis for the second query to gather the required

information. The refactoring action was to refine the first query to reduce the

size of extracted result set. Consequently, the second query was faster because

less data had to be analyzed.230

2.2. Extensive Processing (EP)

Problem. EP occurs when a long running process monopolizes a processor and

prevents a set of other jobs to be executed until it finishes its computation. The

processor is removed from the pool, but unlike the pipe and filter, other work

does not have to pass through this stage before proceeding. This is particularly235

problematic if the extensive processing is on the processing path that is executed

for the most frequent workload [20].

Solution. The solution to this antipattern is to identify processing steps that

may cause slowdowns and delegate those steps to processes that will not impede

the fast path. A performance gain could be achieved by delegating processing240

steps which do not need a synchronous execution to other processes [20].

Unbalanced Forces. Management of performance, change, resources.
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Static detection. The logic-based formalization [22] of the EP antipattern is:

∃OpI1, OpI2 ∈ O, S ∈ S | ∀i : FresDemand(Op1)[i] ≥ ThmaxOpResDemand[i]∧

∀i : FresDemand(Op2)[i] < ThminOpResDemand[i] ∧ FprobExec(S,OpI1) +

FprobExec(S,OpI2) = 1 ∧ (FRT (S) > ThSrtReq ∨ FmaxHwUtil(PswEx , all) ≥

ThmaxHwUtil)

where O represents the set of software operations, and S represents the set

of services in the software system. The formula checks if a software operation245

(whose resource demands are higher than the ones of an other operation alter-

natively executed) generates a high response time for the provided service or a

high hardware utilization.

Detection from runtime data. Similarly to the CTH antipattern, the main idea

is derived from the definition of the antipattern itself and the analysis of load250

testing and profiling data of our case studies. The problem arises when a long

running process monopolizes a processor. So, we first look for methods generat-

ing high computation for hardware resources. We need to identify the situation

of some blocked threads that prevent the execution of a method as fast as it

could. Therefore, EP is detected when a method has to compete for resources255

showing a high number of blocked threads. The method execution time is high

since other methods are monopolizing the CPU and delaying part of its compu-

tation. All these characteristics (i.e., the excessive number of blocked threads

and the high execution time) are regulated by some pre-defined threshold val-

ues. Differently from [22], we do not consider the resource demand of software260

operations and their probability of execution since here we focus on the actual

runs of methods. Besides this, we are interested in knowing their execution time

instead of their predicted response time, or the utilization of the device where

the software operations are deployed, as required in [22].

Similarly to the CTH antipattern, we formalize this interpretation with the265

BPdev and BPperf basic predicates.

BPdev — There is a software method, e.g., swMx, that is sharing hardware
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resources with an excessive number of blocked threads, e.g., {blockedThread1,

. . . , blockedThreadn} that are generated by m other methods, e.g., {swM1, . . . ,

swMm}. To formalize such interpretation we use the FblockedThreads function270

that retrieves the number of blocked threads within the running of a selected

method (swMx). The bad development practice of blocking an excessive number

of threads can be verified by comparing the output value of the FblockedThreads

function with the ThblockedThreads threshold:

FblockedThreads(swMx) ≥ ThblockedThreads (3)

BPperf — The identified swMx method is in operation meanwhile other meth-275

ods ({swM1, . . . , swMm}) are responsible for a high number of blocked threads,

hence its execution time is delayed and results to exceed a certain threshold,

namely ThexecT ime. We use the FmethodExecT ime function for the formalization

of this characteristic; it returns the method execution time in operation, and

we compare such value with the ThmethodExecT ime threshold:280

FmethodExecT ime(swMx) ≥ ThmethodExecT ime (4)

Summarizing, the EP antipattern occurs when the following predicate is true:

∃swMx ∈ swM | (3) ∧ (4)

where swM represents the set of Methods developed and running in the software285

system. Each swMx instance is reported to the designer for further analysis,

since it is detected as an occurrence of the EP antipattern.

Refactoring actions. The solution proposed in [20] is to delegate asynchronous

processing steps to other processes (see Table 1). This includes the software

refactoring of the methods identified as blocked threads leading to prevent its290

processing, thus to improve the corresponding method execution time. In our

case studies, we found five occurrences of the EP antipattern. Different refac-

toring actions on code and architectural level have been applied to solve them.
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As an example on code level, caching of results has been improved to avoid

re-computations of previously obtained results. On the architectural level, a295

refactoring action was the introduction of flow control, i.e., a well-known per-

formance design pattern [32] aimed at avoiding performance flaws caused by

overload. Flow control is a technique to prevent throughput degradation and

increased delay due to congestion, and it mainly consists of fair allocation of

resources among competing users. For an overview of congestion states and flow300

control approaches please refer to [32].

3. Our approach

Figure 1 provides the high-level picture of our approach. Input/output data

is represented by square boxes, operational steps are numbered and represented

by rounded boxes. Automated operational steps are denoted by cogwheels. A305

few steps are semi-automated, where some manual instrumentation is needed.

One step is manually executed.

Figure 1: Performance antipatterns detection and solution by exploiting load testing and

profiling data.
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Once the system is deployed to the production environment and accessed

by its users, the resulting workload is referred to as the production workload or

operational profile [33]. While the system is in its production use, operational310

data is automatically extracted (operational step 1 in our approach, see Fig-

ure 1). By operational data we mean the performance measurements obtained

by Application Performance Management (APM) tools [34], e.g., HTTP request

logs, application-internal execution traces, system-level measurements for CPU,

memory utilization, etc. Operational knowledge is automatically obtained from315

the collected data, including the relevant information about the system’s us-

age (e.g., arrival rates, usage patterns) and performance characteristics (e.g.,

throughput, response times, resource utilization). We use the Kieker tool [35]

to derive workload and performance measurements from web server logs.

Like in the production environment, operational data is collected during the320

load test (operational step 2 in our approach, see Figure 1). The way the data

is collected may vary. For instance, as opposed to the production environment,

it is common to use fine-grained measurement tools like profilers. This step

requires some manual intervention from performance testers that have to define

the level of granularity for measurements. In fact, performance indices can be325

estimated at different levels of granularity (e.g., the response time index can

be evaluated at the level of a CPU device, or at the level of a service that

spans on different devices) and it is unrealistic to keep all indices at all levels of

abstraction under control. After setting the granularity of measurements, load

test scripts are automatically generated from the operational knowledge.330

In this paper, the generation of load tests is based on our WESSBAS ap-

proach [36] that imports the logs of user requests captured during production

(e.g., from the HTTP request logs of web or application servers). Each entry

in the log describes an interaction of a user with the system. These logs are

processed to create a probabilistic representation of the user behavior based335

on a domain-specific language. The WESSBAS framework allows to perform

different transformations from the extracted models to load testing (LT) spec-

ifications that are executable scripts. These scripts are automatically executed
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with JMeter [37] that is the load driver used in this paper. Both WESSBAS

and JMeter represent one possible implementation of the described operational340

steps. The approach itself is not limited to this specific tooling infrastructure.

For instance, the extraction of load tests may rely on other workload character-

ization approaches that are revisited in [38], and alternative tools for running

load tests are surveyed in [39].

The running of load tests (operational step 3 in our approach, see Figure 1)345

allows to automatically produce PDF reports with load tests results. These PDF

reports are obtained by tailored scripts that process and merge the collected re-

sults of the load testing tool and the respective measurement tool (e.g., profiler).

These results are automatically compared with the workload and performance

characteristics of the production system using statistical means implemented in350

the WESSBAS framework [36]. If they are not similar, i.e., the collected data

show an error percentage larger than a pre-defined error objective (e.g., 10%),

then the load tests are refined to better approximate the production workload

measurements. If they are similar, instead, we are able to replicate the running

system and to proceed in the performance evaluation.355

A major characteristic of our approach is that we use data collected during

each load test from a profiler tool (operational step 4 in our approach, see Fig-

ure 1). Specifically, the profiler tool takes as input its agent that represents the

probe in the application to collect the profiling data, e.g., stack traces. The pro-

filer output results represent performance indicators, e.g., hotspots are methods360

that consumed the most time. In this paper, we use YourKit [40], alternative

performance profiling tools are JVM Monitor [41], Oracle JMC [42], JProfiler

[43], VisualVM [44]. The choice of YourKit is due to its capability of profiling

applications at development stages. For each run, the profiler automatically

generates a snapshot including the fine-grained profiling data results. This step365

also requires some manual intervention from performance testers that have to

define the level of granularity for measurements. Through repeated load tests

(e.g., with varying workload characteristics) and profiling we generate a set of

n snapshots that are able to reproduce the system in production.
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Table 2: Operational steps of our approach: tools, alternatives, and required expertise.

operational used input output alterna- user

step tool data data tives profile

extraction of Kieker web server wkld. and perf. APM tools

operational data [35] logs measurements [34] —

extraction of WESSBAS wkld. LT wkld. charac- perf.

load tests [36] measurements specific. terization [38] tester

running of JMeter LT LT LT tools

load tests [37] specific. results [39] —

profiling and YourKit [40], profiler agent, profiler results, [41], [42], perf.

running tests JMeter [37] LT specific. e.g., hotspots [43], [44] tester

detection of PADprof profiler PADprof

antipatterns [45] results report — —

solution of software

antipatterns — — — — developer

Our approach performs the Performance Antipattern Detection (operational370

step 5 in our approach, see Figure 1) based on prof iling data and the developed

tool (PADprof), as described in Appendix B, is publicly available [45]. It fo-

cuses on how to use such snapshots, along with the system information report,

JVM thread-dump, log files, and JMX information, to automatically detect

antipatterns, as highlighted by the shaded boxes of Figure 1. The detected375

antipatterns are then manually solved (operational step 6 in our approach, see

Figure 1) by providing refactoring actions to software developers that actually

modify the system. Such modifications to the system are then analyzed in order

to quantify the performance improvements, if any.

Table 2 provides a summary of the operational steps of our approach. In380

particular, in the table we report the used tools for the (semi-)automated steps,

input and output data, the alternative approaches or tools that can be used,

and the required profile of users for semi-automated and manual steps.

The two main activities related to the handling of performance antipatterns

are: (i) the detection, i.e., the identification of bad practices during the devel-385

opment leading to performance flaws at the operational stage; (ii) the solution,

i.e., the actual application of refactoring actions to fix bad practices thus to

get performance improvements. The process of solving antipatterns is not au-
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tomated, but the application of antipattern-based software refactorings shows a

significant performance gain at the operational stage in our two case studies.390

In the sequel of the section we describe the proposed approach to automati-

cally detect performance antipatterns using profiler data. A high-level descrip-

tion of the developed tool is reported in Appendix B.

3.1. Automated detection of Circuitous Treasure Hunt (CTH)

The pseudo-code of the CTH detection procedure is reported in Algorithm 1.395

Firstly, the algorithm calculates the average hardware utilization values consid-

ering all snapshots and the identified problematic snapshot; in both calculations

the algorithm filters all the utilization values lower than 5% (see lines 2–3 of

Algorithm 1), as explained in Appendix A.

Algorithm 1 Detection of the Circuitous Treasure Hunt (CTH)
1: procedure cthDetection(ThnumCalls, ThhwUtilization, analysisOpt)

2: avgHwUtilAllSnap← getAvgHwUtil(allData, 5%)

3: avgHwUtilProbSnap← getAvgHwUtil(probData, 5%)

4:

5: if avgHwUtilProbSnap > ThhwUtilization then

6: for all hotspotMethods do

7: avgMethodCount← getMethodCount(allData, hotspotMethod, analysisOpt)

8: probMethodCount← getMethodCount(probData, hotspotMethod, analysisOpt)

9:

10: if probMethodCount > ThnumCalls then

11: display(hotspotMethod detected as Circuitous Treasure Hunt antipattern)

12: end if

13: end for

14: end if

15: end procedure

To detect this antipattern, the algorithm checks two conditions. First, if the400

average hardware utilization of the identified problematic snapshot is higher

than ThhwUtilization (see line 5 of Algorithm 1) that in our experimentation

has been calculated as average over all snapshots plus 10% offset. If the first

condition is verified, then it is necessary to extract the hotspot methods that

might be the cause of such high hardware utilization. All hotspot methods405

are analyzed to identify the ones having a suspiciously high number of calls to
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other methods. For each hotspot method the algorithm extracts the number

of method calls and there are multiple analysis options (analysisOpt) since the

algorithm can store the maximum, the minimum, or the average counts for

all the threads belonging to the same snapshot (see lines 7–8 of Algorithm 1).410

Once selected the preferred analysis option (max, min, avg) to be performed,

the calculated values are then compared with the ThnumCalls threshold (see line

10 of Algorithm 1). In our experimentation we use the average analysis option

and the threshold has been calculated as the average value in all snapshots plus

25% offset. All methods fulfilling these two conditions are reported by our tool415

as CTH occurrences.

3.2. Automated detection of Extensive Processing (EP)

The pseudo-code of the EP detection procedure is reported in Algorithm 2.

Similarly to the CTH antipattern, the algorithm firstly calculates the average

blocked threads considering all snapshots and the identified problematic snap-420

shot (see lines 2–3 of Algorithm 2).

Algorithm 2 Detection of the Extensive Processing (EP)
1: procedure epDetection(ThblockedThreads, ThmethodExecTime)

2: blockedThreadsAllSnap← getBlockedThreads(allData)

3: blockedThreadsProbSnap← getBlockedThreads(probData)

4:

5: if blockedThreadsProb > ThblockedThreads then

6: for all hotspotMethods do

7: probMethodTime← getMethodTimeInPercent(probData, hotspotMethod)

8: avgMethodTime← getMethodTimeInPercent(allData, hotspotMethod)

9:

10: if probMethodTime > ThmethodExecTime then

11: display(hotspotMethod detected as Extensive Processing antipattern)

12: end if

13: end for

14: end if

15: end procedure

To detect this antipattern, the algorithm checks two conditions. First, the

algorithm looks at the methods showing a number of blocked threads higher

than the ThblockedThreads threshold (in our experimentation calculated as the
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average value across all snapshots plus 25% offset), see line 5 of Algorithm 2.425

Then, the algorithm checks for each hotspot method its execution time across

the different snapshots. Since the snapshots may have a different duration,

the method time is calculated in percentage looking at the complete hotspot

execution time. In this way the method time is divided by the complete time

of the profiling process, and it is not affecting the comparison across different430

snapshots (see lines 7–8 of Algorithm 2). The algorithm selects all the hotspot

methods showing an execution time higher than the ThmethodExecT ime threshold

(in our experimentation calculated as the average value across all snapshots

plus 10% offset), see line 10 of Algorithm 2. All methods fulfilling these two

conditions are reported by our tool as occurrences of the EP antipattern.435

4. Industrial case study

In this section, we report our experience on the application of the proposed

approach to a real-world industrial case study. It is worth to remark that this

experimentation represents a preparation to automate the approach, in fact we

make use of this experience to specify the antipatterns (see Section 2), and440

derive their detection algorithms (see Section 3). First, we describe the research

goals, the methodology, and the case study setting in Section 4.1. We conduct

two types of experiments and their results are presented in Sections 4.2 and 4.3.

A discussion on the obtained results is reported in Section 4.4.

4.1. Goals, methodology, and case study setting445

Our evaluation focuses on the detection and solution of well-known perfor-

mance antipatterns on the basis of profiler snapshots generated from load tests.

Particularly, we aim to answer the following research questions (RQs):

- RQ1: How can known performance antipatterns be automatically detected

from profiler data using detection rules?450

- RQ2: How effective are the software refactorings applied to solve the

performance antipatterns?
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- RQ3: What is the quality of our antipattern-based detection rules?

The investigation of these three research questions is divided into two parts

based on the following methodology:455

1. First, we conduct a series of experiments in which we re-iterate the follow-

ing steps: (i) load testing a version of the case study system; (ii) manually

analyzing the performance problem; (iii) mapping the problem to a known

performance antipattern; (iv) developing detection rules for this antipat-

tern based on the profiler data; (v) solving the problem by applying a460

refactoring action; (vi) going back to the initial step while replacing the

case study system under analysis with the refactored version. The pro-

cess terminates when all the performance requirements are satisfied and

no performance flaws are detected with the load testing.

2. Second, we assess the quality of the antipattern-based detection rules by465

applying them to profiler snapshots collected during the experiments.

The case study system is a popular and widely-used repository system pro-

vided by an innovative company operating in the open-source ecosystems do-

main. This repository system provides services to upload and download software

artifacts via an HTTP-based API. In this paper, we distinguish only between470

GET and PUT operations. The performance requirement to be analyzed during

the load tests is that the average response time for requests must not exceed the

100 milliseconds objective. The system is set up in an environment for executing

performance tests which is deployed to Amazon Web Services. Apache JMeter

[37] is used as the load driver, and YourKit [40] is used as the profiler tool.475

4.2. The five experiment series

In this section we describe a series of five experiments conducted within

this industrial case study. For each experiment we use subsequent software

versions of the repository system resulting from an experiment conducted after

the respectively previous experiment. As anticipated above, for each experiment480

we report the following steps:
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Figure 2: Industrial case study: performance results for the five experiment series.

1. Testing: execution of load tests to collect profiler snapshots and identify

a snapshot showing a performance problem;

2. Analysis: manual analysis of the performance problem by a domain expert

using the performance hotspots reported by the profiler;485

3. Mapping: the performance problem is associated to a well-known antipat-

tern by the domain expert;

4. Detection: development of a detection strategy for the mapped antipat-

tern based on the profiler data. One or more profiler snapshot(s) of the

improved system version are taken into account for this step;490

5. Solution: development of the refactoring action(s) suitable to handle the

detected performance problem by the domain expert;

6. If the performance requirements are not satisfied, repeat from step 1.

Figure 2 illustrates the normalized average response time results for each

experiment. The output of each experiment is a YourKit profiler snapshot that495

is analyzed manually by the domain expert to map the identified performance

slowdown to a known antipattern. Hereafter, we provide further details on

these five experiments and we assign a descriptive label to each experiment in

21



the respective section title, e.g., Exp1-CTH-Perm-Order for the first experiment

presented in Section 4.2.1.500

4.2.1. Experiment 1 — Exp1-CTH-Perm-Order

The experiment consists of running the baseline system.

- Testing. The average normalized performance (response time) was rated

as 100 for the two analyzed operations: GETs and PUTs.

- Analysis. This average normalized performance metric was significantly505

larger than the required average delay.

- Mapping. This performance issue was manually mapped to the Circuitous

Treasure Hunt (CTH) antipattern.

- Detection. The development of the detection strategy for the CTH an-

tipattern has been performed as follows. The hardware utilization was510

the first data set to be evaluated for the detection of this antipattern, and

values that represented no load conditions (i.e., below 5%) were filtered

out, as explained in Appendix A. We have found that for the problem

snapshot evidencing the CTH antipattern, the hardware utilization was

the highest one when compared to other snapshots, attaining an average515

hardware utilization of 95%. In fact, the other collected snapshots re-

ported hardware utilizations of 71%, 76%, and 18%. The maximum usage

observed was 100% for the CTH snapshot, while the other values were 69%

and 80%. The used threshold values are schematically reported in Table 3

where we can notice that for this antipattern the ThhwUtilization threshold520

is calculated as the average hardware utilization among all snapshots plus

an offset set to 10%. The YourKit problem snapshot shows a hardware

utilization higher than the threshold value. Therefore, the hardware uti-

lization was confirmed by the domain expert as the metric to be evaluated

for the automatic detection of the CTH antipattern.525
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Table 3: Thresholds values in the case studies.
Performance Threshold

Antipatterns Name Value

Circuitous Treasure ThnumCalls avg + 25%

Hunt (CTH) ThhwUtilization avg + 10%

Extensive ThblockedThreads avg + 25%

Processing (EP) ThmethodExecTime avg + 10%

Furthermore, the domain expert inspected the methods of the problem

snapshot that were listed in the hotspot section and evaluated the asso-

ciated method call count. We have found that for the problem snapshot

evidencing the CTH antipattern, the method call count was higher when

compared to the ThnumCalls threshold (average plus 25% offset, see Ta-530

ble 3) in the YourKit problem snapshot. Therefore, the method calls count

was also confirmed by the domain expert as the metric to be evaluated for

the automatic detection of the CTH antipattern.

- Solution. Parsing of security permission expressions produces a large ta-

ble, typically with over 5,000 rows for industrial customers, whereas user535

permissions contain a small number of expressions, usually less than 5. In

the baseline version the large table was generated first for each security

check. The action implemented to refactor the baseline version was to

invert the order of parsing expressions and checking for permissions per

user. Therefore, in the refactored version the list of user permissions is540

obtained first to create a small number of expressions parsing requests.

4.2.2. Experiment 2 — Exp2-EP-Perm-Cache

This experiment was run on the software version obtained as output from Exp1-

CTH-Perm-Order where the order between parsing of expressions and checking

for permissions has been inverted. This software refactoring has been applied545

to solve the CTH performance antipattern.

- Testing. The load test execution produced an average normalized perfor-

mance that was rated as 60.60 for GETs and 104.93 for PUTs.
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- Analysis. The GETs performance metric has improved significantly, but

PUTs performance metric became worse.550

- Mapping. This performance issue was manually mapped to the Extensive

Processing (EP) antipattern.

- Detection. The development of the detection strategy for the EP antipat-

tern has been performed as follows. The domain expert inspected the

number of blocked threads for each snapshot and this is compared to the555

ThblockedThreads threshold (calculated as the average plus 25% offset, see

Table 3). Therefore, the antipattern detection is triggered since the prob-

lem snapshot under analysis has more than 25% of blocked threads than

the baseline average. Therefore, the blocked threads were confirmed by

the domain expert as the metric to be evaluated for the automatic de-560

tection of the EP antipattern. Furthermore, the domain expert inspected

the methods execution time and we have found that for the problem snap-

shot evidencing the EP antipattern, the method execution time was higher

when compared to the ThmethodExecT ime threshold (calculated as average

value plus 10% offset, see Table 3). Therefore, the method execution time565

was also confirmed by the domain expert as the metric to be evaluated for

the detection of the EP antipattern.

- Solution. The action implemented for refactoring was a correction to a

method implementing a role-permission solver cache. No additional infor-

mation about this refactoring has been provided by the domain expert.570

4.2.3. Experiment 3 — Exp3-EP-Reference-Type

This experiment was run on the software version obtained as output from Exp2-

EP-Perm-Cache, i.e., by implementing a correction to the role-permission solver

cache method. This software refactoring has been applied to solve the EP

performance antipattern.575

- Testing. The load test execution produced an average normalized perfor-

mance that was rated as 12.70 for GETs and 12.63 for PUTs.
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- Analysis. Both the GETs and PUTs performance metrics were signifi-

cantly improving, but not satisfying the performance requirements.

- Mapping. This performance issue was mapped to the Extensive Processing580

(EP) antipattern.

- Detection. Our tool was able to automatically detect the Extensive Pro-

cessing (EP) antipattern for one method.

- Solution. The applied refactoring action was a change in a method param-

eter specification from pass by value to pass by reference, which prevented585

the repeated execution of a serialization and de-serialization algorithm.

More specifically, the method could use already-computed and cached

objects passed by reference instead of conducting a re-computation for

recurring input values.

4.2.4. Experiment 4 — Exp4-Unncessary-Method590

This experiment was run on the software version obtained by Exp3-EP-Reference-

Type, i.e., by implementing pass by reference instead of pass by value. This

software refactoring has been applied to solve the EP performance antipattern.

- Testing. The load test execution produced an average normalized perfor-

mance that was rated as 7.28 for GETs and 9.72 for PUTs.595

- Analysis. Both the GETs and PUTs performance metrics were improving.

- Mapping. The problem was classified by the domain expert as an open

ended performance issue, so we are not able to map it to any performance

antipattern.

- Solution. The action implemented for refactoring was to remove a method600

that was deemed unnecessary by the domain expert.

4.2.5. Experiment 5 — Exp5-Final-Refactored-System

This experiment was run on the software version obtained from Exp4-Unncessary-

Method, i.e., by removing software that was identified as unnecessary.
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- Testing. The execution produced an average normalized performance that605

was rated as 1.96 for GETs and 1.89 for PUTs.

- Analysis. Both the GETs and PUTs performance metrics were improving,

the performance objective is satisfied, no further experiments are needed.

In summary, we have conducted five experiments, we detected and solved

three performance issues mapping them to known antipatterns. In particular,610

we detected one occurrence of the CTH antipattern and two occurrences of the

EP antipattern. This experience of conducting the experiment series has been

of key relevance to develop the rules to automatically detect known antipatterns

based on the obtained profiler snapshots.

4.3. Analysis of the empirically derived rules615

In this section, we present an analysis of the detection rules obtained from

the case study by applying them to all snapshots obtained in the five exper-

iment series. We use in our analysis the four problem snapshots that were

used in experiments 1–4 (i.e., Exp1-CTH-Perm-Order, Exp2-EP-Perm-Cache,

Exp3-EP-Reference-Type, and Exp4-Unncessary-Method) for the mapping to620

antipatterns. Moreover, we use three additional baseline snapshots and all the

hotspot methods provided by YourKit.

For each detection rule, three scenarios are executed to investigate the qual-

ity of the developed rules. Each scenario is defined by a 3-tuple <exp-hotspots,

exp-snapshot-problem, exp-snapshot-baselines>, where exp-hotspots refers to the625

experiment from which the hotspot methods are taken; exp-snapshot-problem is

the problem snapshot evidencing a performance antipattern, and exp-snapshots-

baselines refers to a set of baseline snapshots we compare to detect performance

antipatterns.

Scenario 1 investigates if the manually identified performance antipattern is630

detected by the respective automatic detection rule. Therefore, the snapshot un-

der study, using its hotspot methods, is compared to the snapshots recorded for

earlier experiments. That is, the configuration for i is < ei, ei, {e1, . . . , ei−1} >.
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Scenario 2 investigates if the antipattern detection rule correctly detects

the antipattern by comparing the problem snapshot evidencing the antipattern635

with snapshots that were recorded at a later time. The idea is to check that

the antipattern is no longer occurring in snapshots stored for later experiments.

That is, the configuration for i is < ei, ei, {ei+1, . . . , en} >.

Scenario 3 investigates whether the detection recognizes the positive impact

on the refactoring applied to solve the performance antipattern, i.e., the same640

antipattern occurrence should not be detected in the refactored software version.

Therefore, the snapshot under study, using its hotspot methods, is compared as

the baseline to the snapshot of the refactored version that becomes the snapshot

under study. That is, the configuration for i is < ei, ei+1, ei >.

We categorize the evaluation results according to the performance antipat-645

terns that are supported by the PADprof tool (i.e., CTH and EP) and for all

the described evaluation scenarios.

Detection rules for Circuitous Treasure Hunt (CTH).

Table 4 shows the results of evaluating the detection rules of the CTH per-

formance antipattern. In Scenario 1, the snapshot from Exp1-CTH-Perm-Order650

(Section 4.2.1) is compared to the three baseline snapshots. The hotspots are

extracted from the snapshot of Exp1-CTH-Perm-Order. The PADprof output

lists Method A1 as CTH and EP antipattern. Method A is listed for the CTH

with a deviation of 31.7% in call counts and 55.08% in hardware utilization.

For the EP, the deviation is represented with 28.96% for the method time and655

56.36% for the blocked threads count. Method A is the only method that was

detected in this evaluation.

In Scenario 2, the Exp1-CTH-Perm-Order is compared to the three snapshots

recorded at a later time, i.e., Exp2-EP-Perm-Cache, Exp3-EP-Reference-Type,

and Exp4-Unncessary-Method. Two methods were detected in the analysis. The660

first is the same as in the first scenario with a deviation of 74.19% in method

1We use anonymized method names due to confidentiality reasons.
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call counts and 30.18% in hardware utilization. For the other method, the call

count deviation is 31.81% and the spike for hardware utilization is the same.

No method was detected as the EP antipattern.

In Scenario 3, the Exp2-EP-Perm-Cache snapshot is selected as the problem665

instance and the Exp1-CTH-Perm-Order snapshot is used as comparison base-

line. No method was detected as representative of any performance antipattern.

Evaluation Scenario CTH EP

1: Exp1-CTH-Perm-Order vs. Baseline Method A Method A

2: Exp1-CTH-Perm-Order vs. Exp2-EP-Perm-Cache,

Exp3-EP-Reference-Type, Exp4-Unncessary-Method

Methods A, B —

3: Exp2-EP-Perm-Cache vs. Exp1-CTH-Perm-Order — —-

Table 4: Evaluation results for the CTH detection rules.

Detection rules for Extensive Processing (EP).

Table 5 shows the results of evaluating the detection rules of the EP perfor-

mance antipattern.670

In Scenario 1, the evaluation is made by comparing the Exp2-EP-Perm-

Cache and the Exp1-CTH-Perm-Order snapshots. The hotspots are extracted

from the Exp2-EP-Perm-Cache snapshot. For the three methods categorized as

the EP antipattern, the deviation for the blocked threads count was computed

as 27.11%. The deviation does not change for the different methods, because675

the blocked thread count is a value that is dependent on the snapshot, not on

the methods. The deviations for method times of the methods C, D and E were

computed as 18.09%, 19.27% and 15.27%, respectively. Method C was assessed

to be the root cause for the performance problem under study. No method is

detected as occurrence of the CTH antipattern.680

In Scenario 2, the Exp2-EP-Perm-Cache snapshot is compared to the snap-

shots taken from the refactored software versions labeled as Exp3-EP-Reference-

Type and Exp4-Unncessary-Method. The hotspot section from the Exp2-EP-

Perm-Cache shapshot data is used. Using the CTH antipattern detection rules

nine methods are identified including the previously detected methods (i.e., C,685

D and E). Instead, using EP detection rules no methods are identified.
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In Scenario 3, the snapshot from the experiment Exp3-EP-Reference-Type

is compared to the snaphot from Exp2-EP-Perm-Cache. No method is detected

for any of the software performance antipatterns under analysis.

Evaluation Scenario CTH EP

1: Exp2-EP-Perm-Cache vs. Exp1-CTH-Perm-Order — Methods C, D,

E

2: Exp2-EP-Perm-Cache vs. Exp3-EP-Reference-Type,

Exp4-Unncessary-Method

Methods C, D,

E + 6 others

—

3: Exp3-EP-Reference-Type vs. Exp2-EP-Perm-Cache — —-

Table 5: Evaluation results for the EP detection rules.

4.4. Discussion690

In this industrial case study we conducted a series of five experiments. Each

experiment includes a load test and we collected YourKit profiler snapshots to

identify hotspots methods that indicate performance problems.

The domain expert mapped the analyzed problem to a known performance

antipattern, and we developed rules for the automated detection of the respec-695

tive antipatterns from profiler snapshots. Refactoring actions have been applied

by the domain expert, and the refactored system version is used for the sub-

sequent experiment. Moreover, we also applied the developed rules to other

profiler snapshots to evaluate their quality. With respect to our three research

questions, we can answer as follows.700

To answer RQ1, we can consider the results of experiments 1–4 where per-

formance slowdowns were identified and the domain expert mapped one of them

to the CTH antipattern and two of them to the EP antipattern. For one exper-

iment only, it was not appropriate to map it to an antipattern. This experience

allowed us to develop the detection rules presented in Section 3, thus to auto-705

matically detect these two antipatterns from profiler data.

To answer RQ2, we can consider the results of experiments 1–5 where the

average normalized response time showed an improvement of about 50 times

from Experiment 1 to Experiment 5, as shown in Figure 2. In addition, the final

refactored system analyzed in Experiment 5 showed a normalized performance710
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delay that was significantly better than the objective performance requirement.

This achieved performance gain allowed the project to proceed to the next phase

in the release process.

To answer RQ3, we can consider the evaluation results reported in Section

4.3. The manually mapped antipatterns have been automatically detected by715

PADprof, i.e., the respective method that was identified as the root cause for

the antipattern was detected for every snapshot evaluated in the respective sce-

nario (i.e., scenario 1). Moreover, the antipatterns were correctly not reported

when looking at the profiler snapshots of the refactored versions (scenarios 3).

However, we could also detect false positives (scenario 2). In the snapshot with720

the manually mapped CTH antipattern (Exp1-CTH-Perm-Order), EP has been

detected as well. This might be caused by the fact that the EP antipattern

identified in the subsequent experiment is already present. In the evaluation of

the EP rule, two other methods are assigned to this performance antipattern in

addition to the method identified as the root cause.725

To summarize, PADprof was able to automatically detect the Circuitous

Treasure Hunt and the Extensive Processing antipatterns. The results indi-

cate that performance signatures based on automated detection using hardware

utilization, blocked threads, method calls and method execution times can be

effectively applied to recommend software refactorings. However, application730

knowledge is required to judge and rank the recommendations since the results

may include false positives. Additional performance gains were achieved using

the domain expert knowledge of the detailed method implementations. These

points represent threats to validity of the approach and a more detailed discus-

sion is provided in Section 6.735

5. Laboratory case study

In this section, we present the application of our approach to a represen-

tative microservice system that is a laboratory study. Following our industrial

case study (see Section 4), we conduct a series of experiments comprising the
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following steps: load testing experiments, analysis of the resulting profiler data740

to detect antipatterns, solving the antipatterns by refactorings, and assessing

the performance impact.

Section 5.1 presents the research questions of this second case study. The

system under test is presented in Section 5.2, Section 5.3 describes the experi-

ment series, and the discussion follows in Section 5.4.745

5.1. Evaluation goals

Similarly to the industrial case study presented in Section 4, this case study

evaluates the detection and solution of antipatterns to further assess our tool-

based approach. The conducted experimentation is aimed to answer the follow-

ing research questions (RQs):750

- RQ1: How effective are the detection rules derived from the industrial

experience in this second case study?

- RQ2: How effective are the software refactorings applied to solve the

performance antipatterns in this second case study?

- RQ3: Are there additional antipatterns and other procedures to detect755

them from profiler data?

5.2. System under test

As system under test, we present the Sock Shop2 which is an open-source

application representing an e-commerce web site. It has been designed to be

a representative of a state-of-the-art distributed application based on the mi-760

croservices architectural style [26]. Microservices are an emerging architectural

style to implement large-scale distributed systems exploiting the features of

cloud computing infrastructures. A recent survey highlights the Sock Shop as a

candidate for a benchmark application for microservices [46]. Microservice ar-

chitectures impose various challenges to software performance engineering, e.g.,765

2https://microservices-demo.github.io/
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due to the rapid release cycles and targeted short times between a code change

and bringing this change into production.

The Sock Shop application includes six microservices focusing on the domain-

specific functionality, namely order, payment, user, catalogue, cart, and ship-

ping. In addition, the front-end microservice provides a UI to the application.770

Following the characteristics of microservice applications, different program-

ming languages are used and the microservices have their own database. Each

microservice is available as a Docker image, which is a state-of-the-art container-

based virtualization technique.

Due to the limitations of the YourKit profiler used by our approach, we775

can only analyze the Java microservices, i.e., order, cart, and shipping. We

have selected the cart microservice for our experiment. We have also modified

the existing Docker scripts for deploying the application to include the YourKit

profiler agent for the cart component. The other components are taken as-is

from the repository server. The load driver JMeter is used to generate workload780

to the application via the UI service. The workload script focuses on the services

involving the cart microservice, but other services are also monitored.

5.3. The three experiment series

In this section, we report on the process, refactorings, and performance re-

sults obtained for the three experiments conducted with the Sock Shop. Each785

experiment consisted of three load tests that were run with different load con-

figurations. Tables 6, 7, and 8 describe, for each experiment run, the submitted

load, the detected antipattern, the applied refactoring action, and the obtained

performance results. The collected performance measurements include the sys-

tem throughput, the cart component throughput, the cart component delay and790

the percentage of time used by the cart hotspot. In addition, for Tables 7 and 8

we also report on the hotspot method percentage of activation and degrada-

tion as compared to the experiment load test run baseline, which is run 3 of

experiment 3.

32



Run Antipattern/ Submitted System Thro. Cart Thro. Cart Delay Cart Hot-

Refactoring Load (trans/sec) (trans/sec) (ms) spot (%)

EP / 100 threads

1 no flow control per second 30 1.4 64 N/A

EP / 50 threads

2 flow control per second 51.5 1.6 186 73

EP / 100 threads

3 flow control per second 102.2 3.2 218 47.2

Table 6: Microservices case study: Exp1 performance results.

Run Antipattern/ Submitted System Thro. Cart Thro. Cart Delay Cart Hot- Degrada-

Refactoring Load (trans/sec) (trans/sec) (ms) spot (%) tion (%)

EP / 100 threads

1 flow control per second 133.7 34.2 244 49.3 17.9

EP / 50 threads

2 flow control per second 67.0 17.2 224 66.8 35.5

EP / 20 threads

3 flow control per second 27.3 7.3 395 53.5 22.13

Table 7: Microservices case study: Exp2 performance results.

Run Antipattern/ Submitted System Thro. Cart Thro. Cart Delay Cart Hot- Degrada-

Refactoring Load (trans/sec) (trans/sec) (ms) spot (%) tion (%)

EP / 100 threads

1 Hash per second 131.3 33.5 114 48.9 17.6

EP / 50 threads

2 Hash per second 66.8 16.9 188 59.3 27.9

EP / 20 threads

3 Hash per second 26.5 6.8 219 31.3 baseline

Table 8: Microservices case study: Exp3 performance results.

5.3.1. Experiment Exp1-run1795

- Testing. In experiment Exp1-run1, 100 threads were started with no over-

load control, i.e., no limitation on the submitted load. The system showed

performance degradation in both system throughput and cart throughput,

as shown in the first row of Table 6. For 100 threads with no overload

control a total throughput of 30 transactions/sec was observed.800

- Analysis. The manual analysis of the performance problem by the domain

expert detected a congestion state. In such a state, throughput degrada-
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tion occurs as load is increased. The first row of Table 6 shows that the

achieved throughput of 30 trans/sec is significantly lower than the sub-

mitted load of 100 threads/sec, i.e., a symptom of congestion. Therefore,805

a need to add a flow control mechanism was identifed [32]. In the experi-

ments that used the input rate flow control approach, the system was able

to achieve a throughput of 50 trans/sec and 100 trans/sec, as shown in

the second and third rows of Table 6.

- Mapping. This performance issue was mapped to the Excessive Processing810

(EP) antipattern.

- Detection. The detection approach used in this experiment employs the

analysis of profiler data.

- Solution. The refactoring action applied to solve this antipattern is to

adopt an input rate flow control approach [32], thus to ensure that the815

system demands are not allowed to exceed a specified rate. In this case,

the rates were set to 50 trans/sec and 100 trans/sec, respectively.

5.3.2. Experiment Exp1-run2

- Testing. In experiment Exp1-run2, 50 threads were started with flow

control. The system showed significant improvement in system and cart820

throughput, when compared to the previous experiment, as shown in the

second row of Table 6. Experiment Exp1-run2 aims to maintain a constant

offered load of one request/sec for each thread.

- Analysis. The manual analysis of the performance problem by the domain

expert was executed by using the hotspots reported by the profiler data825

of run2. The method works.weave.socks.cart.controllers.Items-

Controller.lambda$addToCart has been identified as root cause of the

performance problem.

- Mapping. This performance issue was mapped to the Excessive Processing

(EP) antipattern.830

34



- Detection. The detection approach used in this experiment was the use of

the hotspot function of the YourKit tool, which showed excessive process-

ing on the identified root cause method.

- Solution. The refactoring action applied to solve this antipattern was the

replacement of the addToCart lambda function approach with a conven-835

tional hashtable lookup.

5.3.3. Experiment Exp1-run3

- Testing. In experiment Exp1-run3, 100 threads were started with flow

control. A linear performance improvement is shown in the cart through-

put when compared to the previous experiment, as shown in the third row840

of Table 6. Experiment Exp1-run3 aims to maintain a constant offered

load of one request/sec for each thread.

- Analysis. The manual analysis of the performance problem by the domain

expert was executed by using the hotspots reported by the profiler data

of run3. The method com.sun.proxy.$Proxy106.findByCustomerId has845

been identified as root cause of the performance problem.

- Mapping. This performance issue was mapped to the Excessive Processing

(EP) antipattern.

- Detection. The detection approach used in this experiment was the use of

the hotspot function of the YourKit tool, which showed excessive process-850

ing on the identified method.

- Solution. Even though one method was detected as a hotspot, it was not

refactored by the domain expert.

In the sequel of this section, we report on two further experiments (Exp2

and Exp3) that were run to assess the performance improvement achieved by855

the addition of the flow control and the lambda method refactorings.
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5.3.4. Experiments Exp2 and Exp3

- Testing. In experiments Exp2 and Exp3, a new load test was used to

produce the results shown in Tables 7 and 8 for the original system with

flow control and the refactored system with flow control, respectively. The860

refactoring approach here employed was the replacement of the addToCart

lambda function with the conventional hastable lookup approach.

- Analysis. Experiment Exp3-run3 was designated as the baseline exper-

iment, and the manual analysis by the domain expert resulted in the

following observations:865

(a) as shown in experiment Exp2-run3 (degradation column), the flow

control method software version used 22.13% more method calls for

the hotspot method (com.sun.proxy.$Proxy106.findByCustomerId)

than the baseline version;

(b) as shown in experiment Exp2-run1 and Exp3-run1, the refactored870

software version has a similar rate of the bottleneck method activa-

tion for both the original and the refactored versions, again shown in

the degradation column;

(c) as shown in experiments Exp2-run2 and Exp3-run2 (degradation col-

umn), the refactored version shows a decrease in the hotspot method875

activation of about 7.6%;

(d) as shown in the Cart Delay column, Exp2 and Exp 3 experiments

show performance improvements for the average cart delays for the

refactored software version with respect to the original system.

5.4. Discussion880

In this laboratory case study we conducted a series of three experiments.

With respect to our three research questions, we can answer as follows.

To answer RQ1, we have observed that the developed detection rules make

use of the percentage of hotspot method activation and such rules can be effec-

tively used to guide software refactorings. Further performance metrics affecting885
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customer satisfaction (e.g., the system throughput) can be used as additional

guidance for performance-based software refactorings.

To answer RQ2, we have measured software performance antipattern refac-

toring in terms of hotspot method activation degradation (%) with respect to a

software baseline. We have experienced for the same load conditions 22.13% of890

improvement in the rate of hotspot method activation.

To answer RQ3, we have found overload as an additional antipattern that

was solved by adding a flow control method. The extensive processing (EP)

antipattern can be caused by an inefficient segment of code that needs to be

refactored, or by an overload condition due to a burst of arrivals. Therefore,895

the overload condition antipattern can be classified as a further root cause of

the excessive processing (EP) antipattern. Techniques to differentiate between

performance degradation due to an overload condition or to an intrinsic software

flaw have been presented in [4].

6. Threats to validity900

Besides inheriting all limitations of the underlying software performance en-

gineering, load testing and profiling analysis techniques [39, 47, 14], our ap-

proach exhibits the following threats to validity.

Efficiency and correctness from domain expertise. The process of detecting

performance antipatterns is driven by the domain experts that mapped perfor-905

mance problems with known antipatterns and provided refactoring actions from

their own experience. In our two case studies the manual architecture analysis

and refactoring have been both performed in less than one day, but the efficiency

of this process inevitably depends from architects’ expertise. Furthermore, the

correctness of detection and solution is not guaranteed; it becomes increasingly910

unlikely that it remains consistent, especially if other mappings/refactoring ac-

tions are provided by different domain experts. An important aspect of future

work is to extend the specification of performance antipatterns by involving

more than one domain expert for a case study, thus to further investigate the
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correctness of their knowledge. We can identify the mappings/refactoring ac-915

tions that result not consistent between different domain experts, and provide

support to collaboratively solve the detected inconsistencies.

Specification of threshold values. As discussed in [22], thresholds cannot be

avoided in the specification of performance antipatterns. In our previous work

[48] we showed that thresholds multiplicity and their estimation heavily influ-920

ence both the detection and the refactoring activities. In fact, the assignment

of concrete numerical values to thresholds is indeed a critical task, and many

application-specific factors may contribute to set such values. In this paper, we

provided some ad-hoc heuristics (see Table A.9) and we were driven by the case

studies to set the concrete thresholds values. As a topic for further research, we925

plan to develop a methodology to dynamically set thresholds values, for exam-

ple by adapting to the load found in baseline snapshots. Alternatively, we may

also consider to use machine learning techniques [49] to set threshold values by

inspecting the profiler performance data.

No guarantee of performance improvements. The detection and solution of930

one or more antipatterns does not guarantee (by itself) the absence of perfor-

mance flaws. Any refactoring action coming from removing one or more antipat-

terns, generates a new system that has to be newly monitored in order to check

whether the performance measures satisfy the stated requirements. In addition,

the snapshots employed to detect antipatterns depend on specific system execu-935

tions under specific workloads. Applying software refactorings for these specific

cases may cause performance to worsen under different workloads in other exe-

cution scenarios. In essence, the antipattern-based refactoring approach requires

a continuous process that cycles through analysis of snapshots, detection and

solution of antipatterns followed by further measurements to check performance940

improvements, if any. In some cases antipattern solutions might even degrade

the system performance, by exposing some previously unknown component in-

teraction. For example, an antipattern solution may require to split a software

method into multiple ones and execute them on different hardware platforms,

however it may happen that some of these new methods need some data, thus945
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the network can be exposed to an excessive message traffic that slowsdown the

whole system application.

Reliability of antipattern-based detection. The approach used in this paper

for antipattern-based detection relies on performance measurements that may be

difficult to calculate. For instance, in our industrial case study we experienced950

some difficulties to measure the cache utilization, and this lack of knowledge

inevitably affects the reliability in the detection of antipatterns. In the litera-

ture, some approaches have tackled the problem of measuring the cache usage

[50, 51], but they are based on heuristic evaluations. To overcome this issue,

as future work we plan to integrate these heuristics to complement our miss-955

ing knowledge. This way, we aim to provide approximate estimations on the

most difficult performance measurements with the goal of increasing the relia-

bility of the antipattern-based detection. Further experimentation is needed to

investigate this point and understand if heuristics are helpful in this domain.

Complexity of antipattern-based refactorings. The approach used in this pa-960

per makes use of long-running performance tests, and combines manual antipat-

tern detection based on expert domain knowledge with rule-based automated

antipattern detection. However, as experienced in our industrial case study (see

Section 4), the results may include false positives and the software refactoring

process is inevitably complex and largely affected by the domain experts. The965

performance gains we obtained from two case studies are promising and warrant

the investment on additional experimentation to further validate antipattern-

based software refactorings with a variety of other real-world systems.

7. Related work

Software performance antipatterns and strategies to avoid or mitigate per-970

formance flaws were first described by Smith and Williams in [21], and fur-

ther refined in their later works [20, 52]. These antipatterns are technology-

independent, hence they can be applied to many different implementation plat-

forms. Java specific antipatterns are described in [53]. Antipatterns regarding
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specific Java technologies and aspects have also been described, as for example975

Java EE [54], Enterprise Java Beans [55], and Java multithreading [56]. The key

characteristic of antipatterns is that their specification includes both the bad

practices leading to performance flaws and the common solutions to overcome

such flaws. In the following we discuss related works dealing with the identifi-

cation of performance issues (Section 7.1) and their removal (Section 7.2).980

7.1. Identification of performance flaws

Several approaches have been proposed in the literature to use static anal-

ysis to locate and fix bugs in software [57]. Static analysis tools like PMD [58]

or FindBugs [59, 60] can be used to find potential root causes for performance

antipatterns, such as resource leaks which may cause the Ramp performance985

antipattern. These tools are widely used in industrial continuous integration

setups, and are thus of high practical relevance. Nistor et al. [61] present

CARAMEL, i.e., a static analysis technique to detect performance bugs that

waste processing time due to superfluous loop iterations.

However, most of the performance issues cannot be detected statically, but990

can only be observed at runtime. As noted in a study of real-world performance

bugs analyzed from major open source systems [62], many bugs require inputs

with both special features and sufficiently large scales to surface. This result

is also supported by the findings presented in [63]. Therefore, the choice of

appropriate input is crucial to discover performance issues.995

Grechanik et al. [64] present an approach to detect performance bottlenecks

in software systems by means of feedback-directed systematic experimentation.

Their approach analyzes execution traces to generate test scripts which are

likely to provoke computationally intensive executions of the system under test,

thus allowing to proactively anticipate performance bottlenecks of the software.1000

Systematic experiments are also used [65] to detect performance antipatterns in

Java-based three-tier applications. The authors expose the system under test

to varying workloads and observe changes to specific runtime metrics, thus to

detect occurrences of performance antipatterns using a decision tree.
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There are also other approaches using data to locate performance issues.1005

Nguyen et al. [66, 67] use data from performance counters to automatically

detect performance regressions. The authors use control charts to extract the

relevant events from the performance counter data, and employ machine learn-

ing techniques to assign detected bottlenecks to possible causes. Avritzer and

Weyuker [68] measure low-level metrics like rate of process context switching1010

and the rates of several system calls to predict the performance impact of porting

an existing application to a new operating system. Similarly to our approach,

the authors rely on workloads derived from the operational use of the software

system. The diagnoseIT approach described by Heger et al. [69] relies on trace

data from application performance management (APM) tools to discover re-1015

curring performance issues including a mapping to performance antipatterns.

For this purpose, knowledge from APM experts is formalized as rules which are

applied to the trace data to locate instances of known performance issues. As

opposed to the approach described in this paper, diagnoseIT focuses on data

obtained from APM tools during production and does not consider load test-1020

ing or profiling. Parsons and Murphy [70] also describe a rule-based approach

to detect performance antipatterns from runtime traces and targets Java EE

antipatterns.

An approach to detect performance issues in distributed systems such as

web applications is presented by Sambasivan et al. [71]. The authors analyze1025

request-flow graphs derived from end-to-end traces to detect performance re-

gressions between different versions of an application. Wert et al. [72] focus on

inter-component communication to identify communication antipatterns such

as Empty Semi-Trucks and Blob, and provide a heuristic for the Circuitous

Treasure Hunt antipattern.1030

7.2. Removal of performance flaws

In the recent trend of integrating development (Dev) and operations (Ops)

teams, processes, and tools [73, 74], it is also important that the developers are

aware of the performance consequences of their development decisions. If perfor-
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mance bugs or antipatterns are detected, the developers must be enabled to fix1035

these issues. In order to increase this performance awareness, Horký et al. pro-

pose to utilize performance unit tests [75]. Recurring, automated performance

tests are also endorsed in [76]. The authors illustrate how performance bench-

marks can be incorporated into the continuous integration setups to ensure that

performance regressions can be promptly discovered and fixed.1040

In [77] performance bugs found in well-known browsers (i.e., Mozilla Firefox

and Google Chrome) are analyzed to learn how project members collaborate

to detect and fix these bugs. Four main points are outlined: (i) techniques

should be developed to improve the reproducibility of bugs; (ii) more optimized

means to identify the root cause of performance bugs should be developed; (iii)1045

collaborative root cause analysis process should be better supported; (iv) the

impact of changes on performance should be analyzed, e.g., by linking auto-

mated performance test results to commits, thus to trace software changes and

performance improvements. The approach presented in this paper is related

to the work presented in [77], as both papers explore performance load testing1050

results to understand the software refactorings that most likely contribute to

performance gains. Nistor et al. present an empirical study on three popular

code bases (i.e., Eclipse JDT, Eclipse SWT, and Mozilla) [78], which aims to in-

vestigate how performance and non-performance bugs are discovered, reported

to developers, and fixed by developers. Three main findings are reported: (i)1055

fixing performance bugs may introduce new functional bugs, similarly to fixing

non-performance bugs; (ii) fixing performance bugs is more difficult than fix-

ing non-performance bugs; (ii) unlike non-performance bugs, many performance

bugs are found by code reasoning and profiling, not through direct observation

of the bug’s negative effects (e.g., slow code).1060

The issue of introducing new bugs by refactoring code is also addressed

by [79]. The authors analyze a large number of refactoring operations, and

results show that the percentage of faults likely induced by refactorings is rela-

tively low (i.e., around 15%). However, there are some specific kinds of refactor-

ings (i.e., Pull Up Method and Extract Subclass) that are very likely to induce1065
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bug fixes, in fact the percentage of fixes likely induced by such refactorings

is around 40%. Our approach incrementally applies performance antipattern-

based refactorings that are meant to preserve the system behavior, since they do

not modify software functionalities [20]. However, as performance improvement

is not guaranteed in advance, the refactored system is re-run, new performance1070

measurements are obtained, and a new analysis is performed.

Further approaches have been proposed on refactoring for parallelism with

the goal of improving the system performance, and recently the problem of par-

allelism in web applications is tackled [80]. Dig et al. [19, 81, 82, 83] present

interactive tools to apply refactorings aimed to revise the code by converting se-1075

quential code and making use of parallel constructs that preserve the program’s

behavior. This goal is achieved by leveraging multi-core processors (e.g., con-

verting sequential loops to parallel loops) or exploiting concurrency primitives

introduced by recent Java versions. For instance, in [84] the authors present

two tools for refactoring C# applications by converting lower-level parallel ab-1080

stractions in better abstractions (e.g., from Thread-based usage to lightweight

Task) and such conversions resulted in the reduction of the code bloat by 57%.

Franklin et al. [85] present an approach to automatically refactor Java code by

using the lambda expressions introduced with Java 8. This refactoring may

improve performance as lambda expressions create further opportunities for1085

parallelism, as for example, the optimized processing of collections. In [86] the

authors propose a refactoring engine for Java programs by modifying Abstract

Syntax Trees (ASTs) referring to database changes only. Such engine results

an order of magnitude faster than comparable refactoring engines. Refactoring

for performance has been tackled by Rieger et al. [87]. The authors report1090

experimental results of refactoring C++ code with the goal to get performance

improvements. Specifically, excessive object allocation is avoided by replac-

ing wrapped primitives by native ones. Overbey et al. [88] aim to refactor

Fortran code for high-performance computing. In particular, the proposed ap-

proach consists of manually applying performance optimizations, such as loop1095

unrolling, to improve the system runtime performance.
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Most of the approaches presented in this section operate statically on the

implementation code, whereas our approach aims to identify the performance

problems at runtime. In addition, the software refactoring approach presented

in this paper focuses on fixing the software code identified as the performance1100

hotspot at runtime, without analyzing the complete system implementation.

8. Conclusion

In this work, we introduced a systematic process to integrate profiling data

derived from load testing results with the software refactorings required to alle-

viate performance flaws. The proposed approach has been applied to two case1105

studies, i.e., an industrial case study and a lab study based on microservices.

Experimental results demonstrated the effectiveness of our tool-supported ap-

proach. Performance problems were mapped, by domain experts, to two known

antipatterns, i.e., Circuitous Treasure Hunt and Extensive Processing. The

application of performance-based software refactorings driven by antipatterns’1110

solution seems promising, since it showed a significant performance gain at the

operational stage. This experience allowed us to investigate the application

of performance antipatterns based on the analysis of load testing results and

performance profiling data.

Beyond the open issues discussed as threats to validity, as future work we1115

plan to extend our approach in the following directions. First, we aim to broaden

the set of considered antipatterns, e.g., technology-specific ones [89, 90] that

point out performance limitations of the underlying running environment. Sec-

ond, we intend to study the usability of our approach by exposing the developed

tool [45] to users with different levels of expertise. Third, we propose to apply1120

our approach to other real-world case studies, thus to further investigate its

effectiveness in multiple domains. Fourth, we plan to extend the automated

antipattern detection tool with more detailed system architecture knowledge.

For example, bottom-up system architecture recovery techniques based on Java

traces [91] could be integrated into our approach to derive high-level perfor-1125
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mance models. Such models could then be used to guide automated software

refactorings to address performance antipatterns.
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Appendix A. Heuristics to set threshold numerical values

Performance antipatterns include the specification of threshold values. In

Table A.9 we report the heuristics that have been defined to assign concrete nu-

merical values. These heuristics are applied when no other sources of knowledge

are available to set these values.1405

For example, the Circuitous Treasure Hunt (CTH) antipattern includes in its

specification two thresholds: (i) ThnumCalls represents the maximum bound for

the number of calls to other methods; it can be estimated as the average number

of calls performed by considering profiling data, plus a certain percentage offset;

(ii) ThhwUtilization threshold represents the maximum bound for the hardware1410

utilization; it can be estimated as the average number of all the utilization

values with reference to profiling data, plus a certain percentage offset. These

offset values allow to refine thresholds from being pure average values, e.g., in

our experimentation we set ThnumCalls and ThhwUtilization with offsets equal

to 25% and 10%, respectively.1415

It is worth to remark that the collection of runtime data implies that there

might be irrelevant data due to the start-up of the system that invalidates some

measurements. For instance, looking at the chart showing utilization values

we found that the plots show an initial ramp-up. Therefore, while calculating

thresholds values, the average utilization values are filtered by excluding all the1420

ones below 5%. The obtained threshold value is hard-coded in the detection
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Table A.9: Thresholds specification for detecting performance antipatterns.

Performance Threshold

Antipatterns Name Description Heuristic

Circuitous

Treasure

Hunt (CTH)

ThnumCalls Maximum bound

for method calls

Average number of calls per-

formed by a method in pro-

filing data, plus a percentage

offset

ThhwUtilization Maximum bound

for hardware uti-

lization

Average utilization of hard-

ware devices in profiling data,

plus a percentage offset

Extensive

Processing

(EP)

ThblockedThreads Maximum bound

for number of

blocked threads

Average number of blocked

threads in profiling data, plus

a percentage offset

ThmethodExecTime Maximum bound

for the execution

time of methods

Average execution time of a

method in profiling data, plus

a percentage offset

tool, and it represents the filter applied to eliminate utilization irrelevant data.

In fact, utilization values lower than 5% are considered part of the system warm-

up and consequently irrelevant for the generation of performance flaws. This

does not affect our analysis because when the system is tested under load, a1425

significantly higher utilization of the system is experienced.

Appendix B. Implementation

Our antipattern detection approach is supported by a publicly available tool,

namely PADprof [45]. It takes as input the profiler results provided by YourKit

[40] that show features to profile CPU, memory, and threads3.1430

The results are presented in respective views in YourKit’s graphical user

interface (GUI). The CPU view presents the results associated with different

groupings of call trees and method lists (all threads together, by thread, etc.).

The memory view presents statistics about heap and non-heap memory, objects,

and garbage collection. The thread view shows the states (runnable, blocked,1435

sleeping, or waiting) of the threads over time. In addition, the tread view con-

3https://www.yourkit.com/java/profiler/features/
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tains, for each thread, the detailed call stack and monitors (synchronization).

YourKit already includes some analysis in the respective views, e.g., the detec-

tion of hotspots, i.e., methods with suspiciously high CPU usage, detection of

typical memory problems, and deadlocks.1440

The entire data set of a YourKit run can be stored in a so-called snapshot

file, which can then be loaded for later analyses. Selected snapshot data can

be exported from the GUI or via command line in several formats: XML, CSV,

HTML, plain text, and zip files. YourKit does not perform the mapping from

performance hotspots to known performance antipatterns.1445

PADprof reads and parses the input files, and it makes calls to the Java-

based implementations of the antipattern detection rules presented in Section 3.

PADprof is able to process XML and CSV files. After the analysis of the input

files is conducted, a report is generated. The report includes, for each detected

antipattern, statistics on the antipattern detection analysis including the sus-1450

picious methods. Further details on the PADprof implementation are publicly

available [45].
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