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Proximity effects in obesity rates in the US: 

A Spatial Markov Chains approach 

 

Abstract 

In this paper, we investigate, by means of a Spatial Markov Chains approach, the existence of 

proximity effects at State level for US data on obesity rates in the period 1990-2011. We find that 

proximity effects do play an important role in the spatial diffusion of obesity (the obesity 

‘epidemics’), and that the actual health geography of nearby States in terms of high vs. low obesity 

rates makes an important difference as to the future evolution of the State’s own obesity rate over 

time. This means, in particular, that clusters of States characterized by uniformly high levels of 

obesity rates, as it happens for instance in the US Southern macro-region, may suffer from a 

perverse ‘geographical lock-in’ effect that calls for coordinated action across States to implement 

effective countervailing policies.  

 

Keywords 

Obesity rates; obesity epidemics; proximity effects; Spatial Markov Chain; Ergodic 

distribution. 
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1. Introduction 

In view of the rapid propagation of obesity throughout human populations at a global scale, there is 

an increasing tendency to speak not only of ‘obesity epidemics’ (Contaldo and Pasanisi, 2004, 

2005), but even of a global pandemic (Swinburn et al., 2011). Moreover, morbid obesity has been 

found to be increasing at a fast rather than moderate pace (Sturm, 2007). The projected global 

trends are particularly alarming: A recent, very large scale study with almost 20 million participants 

predicts that, according to the current trend, global obesity prevalence will amount to 18% in men 

and to more than 21% in women by 2025 (NCD-RisC, 2016), with dire prospects in terms of health 

consequences and welfare cost burden (Wang et al., 2011). The emphasis on the ‘epidemic’ 

character of obesity seems to reflect a widespread idea that the role of a variety of social and 

cultural factors in determining obesity-related habits and attitudes may be bigger than previously 

understood, and is fundamentally transmitted and stabilized through the structure of social ties 

(Christakis and Fowler, 2007), and more generally through various forms of social interaction 

(Santonja et al., 2010; Ejima et al., 2013).   

The debate on the causes of this phenomenon is still very lively. A recent review by Heymsfield and 

Wadden (2017) emphasizes the importance of the combined effect of high-calorie palatable foods 

supplied in large portions and the increased incidence of both occupational and leisurely sedentary 

activities. The role of the availability of cheap, inviting high-caloric food coupled with socially 

influenced failures of individual self-control in food choices (Elfhag and Morey, 2008; Sacco, 

2017) and physical activity habits (Sniehotta et al., 2005) seems therefore particularly relevant. This 

line of explanation is compatible in principle with those highlighting the combined role of 

evolutionary mismatch and socioeconomic inequality (Hruschka, 2012), and it seems to command 

more scholarly consensus than alternative explanations based upon food insecurity (Nettle et al., 
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2017). Although there is not a general enough consensus on basic theoretical explanations yet 

(Mullan et al., 2017), there may be some conceptual and practical advantage in studying the 

combined role of social and geographical factors in the onset and propagation of obesity in terms of 

a (pseudo-) epidemic process. 

Among the socio-geographical factors that are more invoked in the literature there is the 

phenomenon of the so called ‘food deserts’, i.e. the fact that socially deprived neighborhoods may 

be lacking delivery points of healthy affordable food, thus favoring the diffusion of bad eating 

habits in the poorer segments of the population (Jetter and Cassady, 2006; Morland and Evenson, 

2009). However, there are still many issues with the definition and operationalization of the ‘food 

desert’ notion (Walker et al., 2010), and the differences in terms of effective nudging of healthy 

food choices at delivery points in high-income vs. low-income areas seems less linked to physical 

reachability and availability of healthy choices than to in-store display and marketing choices for 

items on sale (Ghosh-Dastidar et al., 2014), and therefore, as already mentioned, to issues of self-

control (Lawrence et al., 2012). Rather than ‘food deserts’, it seems that ‘food swamps’ (i.e. 

delivery points with mostly unhealthy food options) should therefore be seen as the major threat to 

healthy eating habits (Cooksey-Stowers et al., 2017). The emphasis seems then to shift away from 

locational scarcity factors in favor of economic factors such as affordability (Inglis et al., 2009; Lin 

et al., 2014), and behavioral factors such as promotion and palatability of healthy choices vis-à-vis 

unhealthy ones (Hawkes et al., 2015). There has been a stream of literature that has tried to 

conceptualize obesity as the result of rational economic choice for certain combinations of 

resources and incentives (Chou et al., 2004). However, keeping into account the interaction between 

economic incentives and affective factors (Ruhm, 2012) or social pressure (Dragone and Savorelli, 

2012), it turns out that undesired overeating, and therefore obesity, may be far from unlikely 

outcomes also for rational decision makers.  
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Even if some elements of rational decision making may be at play in food choices, and specifically 

in the genesis of obesity, the role of social pressure and incentives seems therefore at least as strong. 

Research on adolescent behavior related to the formation of food habits clearly confirms the role of 

homophily and peer pressure in determining similar adiposity levels across friendship networks 

(Renna et al., 2008; Trogdon et al., 2008; Valente et al., 2009; Halliday and Kwak, 2009; de la 

Haye et al, 2010). Similar effects are found for obesity-relevant habits such as attitude to physical 

activity (de la Haye et al., 2011; Fitzgerald et al., 2012).  

In this paper, we attempt at reconciling the socio-geographically and socio-behaviorally inspired 

streams of literature on obesity by taking the epidemics metaphor seriously in explaining obesity 

diffusion patterns. Social diffusion is the product of the complex interaction of different 

mechanisms at different spatial scales, from social contagion to homophily (Rohilla Shalizi and 

Thomas, 2011). Explicit ‘contagion’ models for the diffusion of obesity have been developed 

(Cohen-Cole and Fletcher, 2008). At the same time, the spatially characterized differences in 

socioeconomic status in all kinds of residential environments are clearly a possible factor of 

diffusion of eating behaviors and habits (Shahar et al., 2005), and have even been tracked in their 

effects on obesity rates through a randomized social experiment (Ludwig, 2011); see Arcaya et al. 

(2016) for an up-to-date review of the research on neighborhood effects and health. This basic 

factor is further compounded with other intervening variables such as age (Baum and Ruhm, 2009), 

ethnicity (Scharoun-Lee et al., 2009), gender (Dammann and Smith, 2009), or a combination of the 

above (Zhang and Wang, 2004), as well as with local community variations in collective efficacy 

(Cohen et al., 2006), social influence (Zhang et al., 2015), or social norms (Shoham et al., 2015). 

Moreover, socioeconomic differences even influence the impact of obesity on health-related quality 

of life (Minet Kinge and Morris, 2010).    

Trying to model this complex web of social, cultural and economic influences into a comprehensive 

micro-social model is very difficult. However, as these factors all interact in determining socially 
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mediated patterns of spatial diffusion of attitudes and behaviors, it is possible to try and model their 

aggregate influence at the macro level in terms of proximity effects. The existence of proximity 

effects across neighboring States finds support in the US in the light of recent research by Nelson 

and Rae (2016), that shows how the US may be split into inter-state megaregions on the basis of 

major commuter patterns, thus defining an emergent geography of social transmission. The 

structure of such megaregions shows that mobility-driven, systematic interaction between 

neighboring States is the norm, thus providing, in principle, an empirical basis for a proximity-

based model of obesity epidemics at State level. Moreover, many health-related policies and 

regulations, such as in the case of childhood obesity measures, are defined at State level, making the 

latter a meaningful territorial level of analysis of the obesity epidemics (Dodson et al., 2009). 

To our knowledge, empirically driven research on proximity effects in social medicine is still 

lacking, and our methodological approach is novel in the field. In this paper, we explicitly model 

the obesity epidemics phenomenon in terms of a proximity effect dynamics, by means of a Spatial 

Markov Chains approach on US data at State level, 1990-2011. We find that obesity rates are 

clearly subject to proximity effects at the State level, thus suggesting that a spatial diffusion 

dynamics is at work, and that therefore the idea that obesity may be ‘socially contagious’ is 

compatible with the available evidence. To our knowledge, this is the first example of data-driven 

modeling of obesity epidemics in terms of a diffusion model. Our findings could inspire a new 

generation of obesity prevention strategies that keep into account the spatial patterns of social 

transmission mechanisms in their geographical variations. 

In section 2, we briefly introduce the Spatial Markov Chains approach. In section 3 we present the 

data and some preliminary findings. In section 4 we illustrate the main results. Section 5 briefly 

discusses them and concludes. A short technical Appendix closes the paper. 
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2. Method: The Spatial Markov Chains Approach (SMCs) 

Spatial econometrics has been a rapidly expanding area of research in the last decade (Griffith and 

Paelinck, 2007; Anselin, 2010) to study the socio-spatial dynamics of a wide variety of phenomena. 

Applications in social medicine, however, are still limited to date. In this paper, we make use of 

spatial econometric techniques to model the diffusion of obesity as a social epidemics phenomenon. 

In particular, we work with Spatial Markov Chains (SMCs), which allow us to simultaneously 

analyze the spatial and time dynamics of the process. In this paper, we make use of the classical 

SMCs methodology as developed in the seminal papers of Rey (2001) and Le Gallo (2004). Such 

methodology has been used in a variety of different fields, such as the dynamics of regional wealth 

disparities (Yue et al., 2014), the diffusion of pro-environmental behaviors (Agovino et al., 2016), 

the evolution of regional competitiveness in manufacturing (Schettini et al., 2011), and so on. On 

the other hand, to our knowledge there has been so far no research on proximity effects in obesity 

epidemic phenomena. Research on the spatial determinants of obesity has mainly concentrated on 

the relationship between location of food delivery points and eating behaviors (Davis and 

Carpenter, 2009), or between obesity and distance from recreational areas (Wolch et al., 2011). 

The main output of a SMCs model is the spatial transition matrix, which evaluates how nearby 

locations at a given scale influence each other as to the observed levels of the variables under study. 

In our specific context, the matrix measures the positive or negative influence of neighboring States 

on the transition of a given US State across different levels of health variables on a given 

measurement scale (e.g., good, fair, average, inadequate and bad). In particular, the matrix provides, 

for a given State, the probability to move upwards or downwards in the distribution in the next 

period (t+1), conditional upon the state of its neighbors in the current period (t). The transition 

matrix can therefore trace the history of the distribution of values over time. More specifically, this 

technique allows us to track whether a State characterized by an unsatisfactory (satisfactory) obesity 

rate tends to remain in that status if surrounded by other States with similarly unsatisfactory 
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(satisfactory) obesity rates, and in particular whether States with unsatisfactory obesity rates 

negatively affect their neighbors, pulling up their obesity rates, or likewise States with satisfactory 

obesity rates positively influence their neighbors, by pulling down their obesity rates. Proximity 

effects can be understood as the aggregate result of social transmission processes which have 

maximum intensity at the local scale and decay with distance (Madan and Pentland, 2009); for an 

explicit modeling of the micro-social diffusion dynamics of obesity-related attitudes and behaviors 

see Madan et al. (2010). We can therefore build a dynamic model that analyzes the evolution of 

these proximity effects over time, and test it on available observed data. 

The building of the spatial transition matrix is based upon the traditional Markov transition matrix, 

that yields the spatial transition probability. In particular, in this approach the traditional transition 

matrix is modified so that the transition probabilities of a State in the next period (t+1) are 

conditional upon the average level of the obesity rates at the current period (t) in its neighboring 

States. In other words, the SMCs spatial transition matrix expands a K-by-K traditional Markov 

transition matrix into K conditional matrices1, each of which is in turn a K-by-K matrix. In our case, 

K is equal to 5, the number of possible classes, that is, for each possible class we have a 

corresponding conditional matrix (see Table 1 below for an example).  

In formal terms, if we consider the k-th matrix among the conditional matrices, the pij(k) element of 

such a matrix represents the probability that a State located in class i in the current period (t) ends 

up in class j in the next period (t+1), knowing that the average level of the obesity rates in its 

neighboring States belongs to class k in period t. The pij(k) element of a conditional transition 

matrix is thus defined as follows:  

 �̂����� =
	
����

	
���
 

                                                           
1 A conditional matrix is a matrix in which the probability of the (health) status of a State at time (t + 1) is conditional 
upon the (health) status of its neighbors at time t. 
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where nij(k) is the number of States located in class i in period t, and in class j in period (t +1), 

conditional upon an average level of obesity rates in neighboring States belonging to class k in 

period t. ni(k) is the total number of States belonging to class i, conditional upon an average level of 

obesity rates in neighboring States belonging to class k at time t, for T=21 annual transitions2, i.e.  


���� = ∑ 
��� ���. 

The spatial Markov matrix allows us to appreciate the positive or negative influence of the 

neighbors on the transition of a State across levels of obesity rates. Indeed, the influence of spatial 

proximity effects is reflected in the differences between the unconditional3 transition values and the 

conditional ones (Le Gallo, 2004). For example, in our case with 5 classes (K=5), the first class 

groups States with the best health status (low obesity rates), the third corresponds to States with 

intermediate health status, and the fifth to States with the worst health status (high obesity rates)4. 

Consequently, if  pAB>pAB|G, the transition probability of moving ‘upwards’ (i.e. increasing its 

obesity rate) for a State with an intermediate obesity rate without proximity effects, i.e. not taking 

into account the social transmission effects associated to its neighbors’ obesity rates, is larger than 

the transition probabilities of moving ‘upwards’ for a State with an intermediate obesity rate 

conditional upon neighbors with the lowest obesity rates (notice that moving ‘upwards’ here means 

lowering the obesity rate, i.e. improving the health status, and accordingly for moving 

‘downwards’). Likewise, if we consider the probability of moving ‘upwards’ for States starting 

from different classes of obesity rates. Conversely, if pGA<pGA|B, the transition probability of 

moving ‘upwards’ for a State with a low obesity rate conditional upon neighbors with high obesity 

rates is larger than the transition probabilities of moving ‘upwards’ for a State with a low obesity 

rate in the absence of proximity effects. Table 1 summarizes the reasoning and offers a key to 

understanding the Spatial Markov Chains approach. 

                                                           
2 Our period of analysis consists of 22 years, so we have T = 21 annual transitions. 
3 For reasons of space, we do not report the values of the unconditional transition matrix. Interested readers can request 
them to the authors. 
4 We describe the 5 classes more in detail in Section 4. 
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[Insert Table 1 about here] 

If proximity effects do not matter for transition probabilities, then the conditional probabilities 

should be equal to the unconditional initial transition values (Le Gallo, 2004): 

���|� = ���|� = ⋯ = ���|� 

∀� = 1,… ,5 

∀� = 1,… ,5 

 

The relevance of the socio-spatial dimension, and therefore the importance of considering neighbors 

in determining transition probabilities, corresponds to the rejection of the null hypothesis of spatial 

stationarity tests (see Le Gallo, 2004). On the basis of our data (see below), we reject the null 

hypothesis at 5% and, consequently, the transition probability of a State does depend on the spatial 

environment, so that proximity effects matter. 

 

3. Data and preliminary results 

In this section, we introduce the obesity rates data at US State level (section 3.1), and subsequently 

we carry out a preliminary analysis (section 3.2). In particular, we check whether proximity effects 

are relevant as to the influence of the obesity rate in a given State upon the obesity rates in nearby 

ones, or on the contrary whether the obesity rate evolves independently of those in neighbor States. 

In other words, we ask whether it is possible to identify spatial dependence patterns so that a State’s 

obesity rate interacts with those of neighboring States through social transmission effects. Our 

analysis is based upon two statistical tools, the Theil index (TI), and the Moran index (MI), 

according to the conceptual framework introduced below (Section 3.2). 
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3.1 Data used and data limitations 

In our analysis, we use America's Health Rankings data for the 51 US States, over the period 1990-

2011. Presented by the United Health Foundation5, the America’s Health Rankings Annual 

Report has tracked the health of the nation for 26 years, providing a specific, comprehensive data 

environment on the evolution of the health status in the USA at State level. 

OR is the percentage of adults who are estimated to be obese, defined as having a body mass index 

(BMI) of 30.0 or higher, according to self-reported height and weight. BMI is equal to weight in 

pounds divided by height in inches squared and then multiplied by 703. The Center for Disease 

Control (CDC) has a calculator for BMI. Because of the 2011 change in BRFSS (Behavioral Risk 

Factor Surveillance System) methodology, obesity prevalence from the 2012 Edition onward cannot 

be directly compared to estimates from previous years6. 

Figure 1 is built on the basis of the regional divisions used by the United States Census Bureau (i.e., 

Northeastern, Midwestern, Southern, and Western States). As it was anticipated in the literature 

review, the evidence shows that the obesity rate follows a growing trend, both in the aggregate and 

for each region. In particular, we note that the Midwestern and Southern US are the regions with the 

highest obesity rates, exceeding national ones. On the contrary, Western and Northeastern US are 

the regions with the lowest obesity rates, much lower than the national ones. 

This result is particularly evident if we look at the quartiles maps of the obesity rates (Figure 2). In 

particular, we find a clear clustering tendency over the years. If in 1990 the obesity rate appears as a 

spatially disperse social phenomenon, looking like a fragmented patchwork on the national map, in 

the subsequent five-year intervals we notice that Southern States gradually group together, and 

emerge as those with the highest obesity rates, whereas, likewise, Western States similarly coalesce 

as the States with the lowest obesity rates. The time evolution of obesity rates at the national scale 
                                                           
5The United Health Foundation was established by UnitedHealth Group in 1999 as a not-for-profit, private foundation 
dedicated to improving health and health care (http://www.unitedhealthfoundation.org/AboutUs/Default.aspx).  
6 http://www.americashealthrankings.org/WV/Obesity 
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as it is readable from the sequence of maps in Figure 2 suggests that some social transmission 

mechanism is at work, causing a spatial diffusion process that exacerbates difference in obesity 

rates at the regional level.   

In our analysis, we use data at State and not county level. The State-level geographical scale might 

be deemed too big for the study of the social diffusion of obesity (although, as already noted, this is 

the territorial level at which most policy measures are defined). Clearly, data at county level are 

more fine-grained in their empirical modeling of the spatial element. Moreover, it is well known 

that administrative data aggregate individuals on the basis of arbitrary geographical boundaries, that 

reflect political and historical situations (see Arbia, 2005; Arcaya et al., 2012). The choice of the 

spatial aggregation unit is therefore essential, as different choices may lead to different results in the 

estimates (see Rey, 2001). Data at the State level cannot be considered as “independently 

generated” (Anselin 1988; Anselin and Bera 1998) because of spatial similarities of neighboring 

States; thus, standard estimation procedures can provide biased estimators of the parameters. 

Aggregating data at the county level would allow spatial effects, such as spatial spillovers, to be 

more properly modelled in principle (Arbia et al., 2002; Arbia, 2005; Agovino et al., 2016).  

One way to overcome this problem could have been building our analysis upon county-level data, 

as provided by the Center for Disease Control and Prevention7. Unfortunately, however, such data 

are only available for the period 2004-2013, and this would have cut our time series down by 11 

years (State level data are available for the period 1990-2011), seriously limiting the results of the 

empirical analysis conducted through the Spatial Markov Chains approach, which is substantially 

affected by the size of the historical data series (see Rey, 2001). In particular, such analysis returns 

the long-term distribution of the studied phenomenon (ergodic distribution; see Section 4), and a 

sequence of 10 years is too short to study the long-term distribution of a social phenomenon. 

Finally, the use of data at State level could weaken the spatial correlation, as larger administrative 

                                                           
7
 https://www.cdc.gov/diabetes/data/countydata/countydataindicators.html (last access July 2018). 
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units have the drawback of reducing the heterogeneity that is present in finer data (Arbia, 2005). It 

follows that an analysis of data at the county level would return a relatively stronger spatial 

correlation and clustering, with stronger spatial and temporal persistence. On the other hand, in the 

light of the above, if substantial levels of spatial correlation and clustering are already found with 

State-level data, this qualifies as strong evidence for the existence of spatial effects. 

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

3.2 Preliminary results 

In this section, we conduct a preliminary analysis by means of the joint application of a measure of 

inequality and of the degree of spatial autocorrelation. We recur to two different indexes, i.e. the 

Theil and Moran indexes, whose simultaneous use provides complementary analytic insights, which 

cannot be obtained if they are used separately (see Rey, 2001).  

Gezici and Hewings (2007) highlight the relevance of the joint use of inequality and spatial indices, 

especially in the study of socio-economic phenomena characterized by persistent spatial clustering 

processes over time. In particular, the Theil index is a measure of total inequality, and, in the 

context of our study, can be defined as: 

TI = ∑ d�
�

� � log�pd��                             (1) 

where p is the number of States, and d� = OR� ∑ OR�
�

� �
⁄  whereas ()� is OR at State level8. TI takes 

on values in the interval [0; log(p)], and is, in particular, equal to 0 in the case of a perfectly even 

spatial distribution, and to the highest value, log(p), when OR is entirely concentrated in a single 

State.  

                                                           
8We consider the logarithm of OR. 
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We also consider the Moran index (MI) as a measure of the degree of spatial autocorrelation, which 

has the following definition: 

*+ =
,-
′ .,/

,-
′ ,/

                                                 (2) 

where zk and zl indicate the standardized variables describing the phenomenon under investigation, 

as observed, respectively, in State k and in State l, and where W is the non-stochastic (NxN) spatial 

weights matrix. In our case, we use a binary spatial weights matrix. In particular, when two States 

are neighbors (i.e. they share a common border), the corresponding entry in the matrix is one, and 

zero otherwise. The elements on the main diagonal are zero by construction, since a State cannot be 

contiguous to itself9. The spatial weights matrix is row standardized, so that neighboring variables 

are weighted averages of the values in neighboring States (Anselin, 1988). MI allows us to establish 

a relationship between a phenomenon observed in a given State l, and the same phenomenon 

observed in contiguous States. Values of MI range from −1 to +1. Negative values indicate negative 

spatial autocorrelation, and positive values indicate positive spatial autocorrelation. A zero value 

indicates a random spatial pattern. 

The joint analysis of the two indeces yields information on the dynamic process at work at the State 

level. On the one hand, an increase (decrease) in spatial dependence could be due to the States in 

each cluster (i.e. each region) becoming more (less) similar in their obesity rates. On the other hand, 

an increase (decrease) in spatial dependence could also be due to newly formed, extended (reduced) 

                                                           
9 Our spatial analysis was carried out using the Queen contiguity spatial weights matrix of order 1 (Q1) (see Anselin, 
1996). In order to verify the robustness of our results, we use other contiguity matrices. Queen matrices of order 1 and 4 
were compared, whereas for k-nearest matrices, the mean of neighbors (4) was used and the standard deviation (2) was 
added one at a time, and so the orders of the k-nearest matrices were 4, 6, 8 and 10 (Anselin, 1996). The matrices of this 
type, being contiguity ones, were sequentially selected. Finally, we use as a measure of the distance between a given 
State and others the inverse of the distance, expressed in km, between the geographical centers of the two States. This 
distance matrix has an interesting meaning: the increase of distance reduces the strength of ties between a given State 
and neighboring ones.  Note that there is no significant difference between the indices calculated for the different 
contiguity matrices. In addition, the Spearman rank correlation coefficient calculated for all variables indicated a 90% 
significant correlation. As the various contiguity matrices were not statistically different, we decided to use the Q1 
matrix. We omit these results because they do not add any useful information. Interested readers are welcome to request 
these results from the authors. 
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clusters emerging during a phase of increased spatial dispersion of obesity rate levels (reduction of 

Theil Index).  

For our data, MI values are all positive and significant at 1%, with the exception of 1990 and 1991 

values, with an increase from 0.06 to 0.25 along the sample period. In particular, MI slowly 

increases, showing that obesity rate levels are related in time and space, and that the spatial 

diffusion process proceeds slowly over time. In other words, a positive MI indicates that: a high 

(low) OR observed in a particular State is associated to high (low) OR in contiguous States 

(positive spatial correlation). In this case, it is likely that unsatisfactory (satisfactory) obesity rate 

levels tend to spread across States. In addition, Figure 3 shows that MI tends to move in 

discordance with inequality as measured by TI over time, i.e. a decrease in inequality causes a 

spatial diffusion effect for obesity rates10. This effect leads to the formation of new spatial clusters 

of States characterized by more intense connection (increase in MI). The correlation between MI 

and TI is -0.55 over a 22-year sample period. In addition, since dispersion of obesity rate levels 

moves in the opposite direction of spatial autocorrelation, States with relatively satisfactory 

(unsatisfactory) obesity rates tend to be located close to others with similar obesity rate levels. Such 

spatial clusters characterized by satisfactory vs. unsatisfactory obesity rates tend to solidify over 

time (upward trend of MI). 

The default hypothesis that observed levels of obesity rates for each State can be treated as 

independent does not apply here, so that we can conjecture that some social transmission process is 

                                                           
10 In fact, if Figure 3 would imply that Theil's index is characterized by a stable trend rather than a downward one, our 
comments would not be appropriate. To check this, we implement the modified Dickey–Fuller t test (known as the DF-
GLS test) proposed by Elliott, Rothenberg, and Stock (1996). Essentially, the test  involves fitting a regression of the 
form: ∆12 = 3 + 5126� + 78 + 98

� + :�Δ126� + :�Δ126� +⋯+ :�Δ126� + <2, where y is the variable analyzed (in our 
case Theil's index), t and 8�are the linear and the quadratic trend respectively, Δ126� are the time lags of the analyzed 
variable,  and <2 is the stochastic error term. The number of time lags is determined by the AIC (Akaike information 
criterion). The DF-GLS test tests the null hypothesis of whether a unit root is present in an autoregressive model. In our 
case, as shown in the Appendix at the end of the paper, we reject the null hypothesis, and we can conclude that the 
series is not stationary. Additionally, the test returns the parameters of the estimated equation. In particular, we verify 
that the linear trend is negative and significant, while the quadratic trend is positive and not significant. This allows us 
to conclude that the series is characterized by a decreasing linear trend. 
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at work, that causes a harmonization of obesity rates across nearby territories. The policy 

implications of these findings are important. In particular, States that are adjacent to others with 

unsatisfactory obesity rates may be negatively affected even if the current obesity rate is not as bad. 

In this case, action is needed in terms of countervailing measures such as promotion of healthy 

lifestyles (e.g., healthy eating, sports activities, etc.), and especially so in border areas with the most 

critical neighbors, where mobility-driven interaction is most intense. In addition, the cluster of 

States characterized by satisfactory obesity rates can be taken as a source of good practices, and as a 

benchmark case for States with worse obesity rate levels. 

[Insert Figure 3 about here] 

 

4. Spatial Markov Chains analysis 

The transition spatial Markov matrix is calculated, as anticipated, for obesity rates at State level. 

According to this methodology, the transition of obesity rates takes place between two subsequent 

time periods. In our analysis, we have twenty-one possible transitions in the period 1990-2011 (e.g., 

1990-1991, 1991-1992, …, 2010-2011), and for each couple of years we calculate the number of 

cases for each class. Its classes (i.e., the cells of the matrix) show the transition probabilities, i.e. the 

probabilities that a State belonging to class i at time t, ends up belonging to class j in time t + 1 (Le 

Gallo, 2004, Le Gallo and Ertur, 2003). Moreover, as the Spatial Markov Chains analysis deals with 

the transition from one status to another, it is necessary to categorize the rate of obesity. The use of 

a continuous variable precludes the use of Spatial Markov Chains analysis which is, to our 

knowledge, the most analytically compelling way to study the spatial transition dynamics that we 

analyze in this paper, on the basis of the available dataset. Consequently, it is necessary to proceed 

in defining classes of obesity rates. As we have 50 US States plus the District of Columbia (n=51), 
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21 years (t-1) from 1990 to 2011, and 5 (K) classes11, it is possible to obtain, at most, 

(51*5*21)=5,355 cases of transitions12. 

Our analysis is preceded by a linear trend control of the obesity rates series of individual US states 

through the modified Dickey–Fuller t test (for more details see footnote 8). The modified Dickey-

Fuller Test is a test to verify the stationarity of the obesity rates. Obesity rates are stationary if they 

do not have trend or seasonal effects. In other words, summary statistics calculated on the obesity 

rates are consistent over time, like the mean or the variance of the observations. The modified 

Dickey-Fuller test can be used with serial correlation. This test can handle more complex models 

than the standard Dickey-Fuller test, and it is also more powerful. The hypotheses for the test are 

the following: 1) The null hypothesis is that there is no stationarity. 2) The alternate hypothesis 

differs slightly according to which equation we are using. The basic alternative is that obesity rates 

are stationary (or trend-stationary). In our case, we could come to wrong results if trends in obesity 

in the US were not linear throughout the period of analysis. If obesity patterns were characterized 

by periods of sudden outbursts and others of relative stability, the coefficients of transition might 

not be stable over time. The modified Dickey–Fuller t test rejects the null hypothesis, and we can 

conclude that the series is not stationary. In particular, we verify that the linear trend is positive and 

significant for all series’, whereas the quadratic trend is not significant (see Table A in Appendix). 

This allows us to conclude that the series is characterized by a positive linear trend, and not by more 

complex dynamic patterns; in other words, the quadratic trend term is not statistically significant. 

Therefore, our analysis is consistent with the structure of the data.  

The analysis is conducted using various contiguity matrices, as described in footnote 7. As for the 

Moran index, also for the Spatial Markov Chains analysis the findings are equivalent, and 

                                                           
11 The number of classes (= 5) is given by default by the software STARS (Space-Time Analysis of Regional Systems) 
(Rey and Janikas, 2006), and it is not editable. 
12 With n States, K states and t years, there are (t-1)*K*n possible cases of transitions. 
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consequently we only present the results obtained using the Queen contiguity spatial weights matrix 

of order 1 (Q1)13.  

We report the SMCs results as in Rey (2001). In particular, we define five feasible classes (K=5) 

based upon the observed values of the state variable (obesity rate), with respect to the mean (M) 

(Schettini et al., 2011). We can accordingly define the following classes: 

 Good obesity rate (G), with a characteristic value of the obesity rate lying below the mean 

up to ¾ of a standard deviation (0.860); 

 Fair obesity rate (F), with a characteristic value of the obesity rate lying below the mean 

between ¾ and ¼ of a standard deviation (0.968); 

 Average obesity rate (A), with a characteristic value of the obesity rate equal to 1.058 (the 

average sample value) plus/minus ¼ of a standard deviation; 

 Inadequate obesity rate (I), with a characteristic value of the obesity rate lying above the 

mean between ¼ and one standard deviation (1.153); 

 Bad obesity rate (B), with a characteristic value of the obesity rate lying above the mean 

between one and 1½ standard deviation (1.406). 

Therefore, the five classes can be ordered as follows, from best to worst: G<F<A<I<B. The 

ascending order reflects the increase in the obesity rates as we move from class to class. 

The results of conditioning the transition probabilities on the spatial lag14 of a given State are 

reported in Table 2, where column 4 lists the number of cases in each situation. For example, line 8 

indicates the transition probability of a State that starts in t with an Average level of obesity rate, to 

                                                           
13

 We omit these results because they do not add any significant information. Interested readers are welcome to request 
them from the authors. 

 
14 The spatial lag is the average obesity rate of neighboring States. Specifically, the spatial lag is a weighted average, 
where the weights are represented by the elements of the contiguity matrix. 
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move to a different obesity rate class in the following year (t+1), given that it is surrounded by Fair 

neighbors. If we consider pairs of consecutive years, there are 80 cases (line 8 column 4) of States 

in that situation.  

Lines 1-5 represent States sitting in neighborhoods with Good obesity rates (G); lines 6-10 

represent States sitting in neighborhoods with Fair obesity rates (F); lines 11-15 represent States 

sitting in neighborhoods with Average obesity rates (A); lines 16-20 represent States sitting in 

neighborhoods with Inadequate obesity rates (I); finally, lines 21-25 represent States sitting in 

neighborhoods with Bad obesity rates (B). It is interesting to note that the shaded cells generally 

deploy the highest values for each line, and as such cells denote the main diagonal, this reveals the 

presence of inertia: the probability of a State to remain in the same obesity rate class from year to 

year is relatively high, and in some cases such probability reaches 0.80. For the sake of conciseness, 

in the remainder of the paper we will use the shorthand expressions “Good (Fair, Average, etc.) 

States”, to denote those States that are categorized as belonging to the G (F, A, etc.) class in a given 

year, and accordingly for their possible transitions from one class to another, with the respective 

probabilities as determined by the spatial Markov matrix. 

If we focus on States with satisfactory obesity rates (Good or Fair), we observe that the probability 

of remaining in the favorable condition is: 

 high for Fair States sitting in neighborhoods with Good obesity rates. In particular, it is 

equal to 0.895 (sum of the cells up to F, line 2). The same probability is equal to 0.929 for 

the Good States (sum of the cells up to F, line 1). Moreover, Fair States have a probability of 

0.184 of improving if they are surrounded by Good States (the cell in correspondence of  G, 

line 2); 

 high for both Good and Fair States sitting in neighborhoods with Fair obesity rates: 0.979 

for Good States (sum of the cells up to F, line 6) and 0.719 for Fair States (sum of the cells 
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up to F, line 7). In particular, Good States have a probability of 0.274 of worsening their 

status if they are surrounded by Fair States (the cell in correspondence of F, line 6); 

  high for both Good and Fair States sitting in neighborhoods with Average obesity rates (A): 

0.844 for Good States (sum of the cells up to F, line 11) and 0.684 for Fair States (sum of 

the cells up to F, line 12). Good States have a probability of 0.125 (0.156) of worsening their 

status if they are surrounded by Fair (Average) States (the cell in correspondence of  F (A), 

line 11). Also, Fair States have a probability of 0.217 of worsening their status if they are 

surrounded by Average States (the cell in correspondence of  A, line 12); 

 finally, it is interesting to note that, in the case of neighborhoods characterized by 

unsatisfactory obesity rates (Inadequate or Bad), both Good and Fair States have a high 

probability of worsening their status. In particular, in the case of neighborhoods with 

Inadequate obesity rates (I), Good States have a probability of 0.5 (0.1) of worsening their 

status (the cell in correspondence of  F (B), line 16). Moreover, Fair States have a 

probability of 0.58 of worsening their status (the cell in correspondence of  A, line 17). In 

the case of neighborhoods with Bad obesity rates (B), Good (Fair) States have a probability 

of 0.2 (1) of worsening their status (the cell in correspondence of F (A), line 21 (22)). 

We now consider States starting off with Inadequate or Bad obesity rates (in the year t), that is, 

States with above-average obesity rates (Inadequate or Bad), but sitting in neighborhoods with 

Good or Fair obesity rates (lines 4, 5, 9, 10). In this case, we can determine the probability of 

obesity rates to remain above average or to fall below average in the subsequent period. In 

particular, we note that Good States have a positive effect on Inadequate and Bad States: the 

probability that the States with Inadequate obesity rates pass into an Average obesity rate class is 

equal to 1 (the cell in correspondence of A, line 4). Also, Bad States have a probability of 0.25 of 

improving their status (the cells in correspondence of I and F, line 5). Moreover, Fair States have a 

positive effect on Inadequate and Bad States: the probability that States with Inadequate obesity 
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rates pass into an Average (Fair) obesity rate class is equal to 0.314 (0.143) (the cell in 

correspondence of A (F), line 9). And Bad States have a probability of 0.33 (0.44) of improving 

their status (the cells in correspondence of I (F), line 10). 

When States starting with Inadequate or Bad obesity rates are surrounded by States with similar 

obesity rates (Inadequate and Bad States, respectively) (lines 19, 20, 24 and 25), we observe that: 

 Inadequate States, if surrounded by other Inadequate States, have a higher probability to 

worsen their obesity rate (0.207, in correspondence of B) than to improve it (0.107, in 

correspondence of A) (line 19). Bad States surrounded by Inadequate States have a 

probability of 0.25 to improve into Inadequate States, and of 0.03 to improve into Average 

States, respectively (in correspondence of I and A, line 20).  

 Inadequate States, if surrounded by Bad States, have a probability of 0.333 (0.111) to 

worsen (improve) their obesity rate (in correspondence of B (A), line 24). On the contrary, 

Bad States surrounded by other Bad States have a 0.242 probability to improve their obesity 

rate (in correspondence of I, line 25). 

Finally, if Inadequate and Bad States are surrounded by Average States, we observe that: 

Inadequate States have a probability of about 0.129 (0.271 and 0.035) to worsen (improve) their 

obesity rate (in correspondence of B (A and F, respectively), line 14), whereas Bad States have a 

probability of 0.029 to improve their obesity rate (in correspondence of A, line 15). 

To sum up, we observe that States with satisfactory obesity rates (Good or Fair) are closely linked 

in terms of proximity effects: Good States affect Fair States and vice versa, and this influence is 

positive because it reciprocally improves obesity rates. In addition, these States (Good and Fair), if 

surrounded by Average States, worsen their obesity rates to a limited amount. Moreover, Good and 

Fair States are negatively affected by States with Inadequate or Bad obesity rates. Finally, 

Inadequate and Bad States are positively affected by Good and Fair States.  
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We now also consider the ergodic distribution15 that can be interpreted as the long-run distribution 

of obesity rates at State level. Additional insights about the relationship between a State’s transition 

probabilities and the obesity rate class of its spatial lag can be gained by considering the ergodic 

distributions implied by each of the conditional transition matrices from Table 2. Five different 

ergodic state vectors are reported in Table 3.  

Like the initial distributions, the long-run distributions are biased. Indeed, when States are 

surrounded by neighbors with above-average obesity rates (Inadequate or Bad), the final 

distribution is more and more skewed upwards: the probability to maintain an unsatisfactory obesity 

rate in the long run is high (Table 3, columns I and B). Alternatively, when States are surrounded by 

neighbors with under-average obesity rates (Good or Fair), the ergodic distribution is more and 

more negatively skewed: the probability to maintain a satisfactory obesity rate in the long run is 

very high (Table 3, columns G and F). 

[Insert Table 2 about here] 

[Insert Table 3 about here] 

In Tables 4 and 5, we report the information extracted from the results presented in Table 2. In 

particular, Table 4 shows the probability of a State to stay in the same class of obesity rates, 

independently of its neighborhood (Schettini et al., 2011). In this case, we observe that such 

probability is high for Good, Average, and Bad classes, and respectively equal to 0.6106, 0.5016 

and 0.5806; less high for the Inadequate class (0.4472), while the lowest probability is registered for 

the Fair class (0.4064). 

[Insert Table 4 about here] 

                                                           
15 “The ergodic distribution should be viewed as a “thought experiment” that illustrates how space may influence 
transition dynamics, rather than as a guide to what would transpire in reality” (Rey, 2011). The ergodic distribution 
delivered by the software is computed for each of the five transition matrices. For more details on the ergodic 
distribution concept, see Rey (2001) and Le Gallo (2004). 
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Following Schettini et al. (2011), we count in Table 5 all the cases of States whose neighbors sit in 

better obesity rate classes (Table 5, first row, column X) and, among these, we count the cases of 

States that improve their class (Table5, first row, column Y). At this point, we calculate the 

probability of moving to better obesity rate classes, given that the State is surrounded by neighbors 

with better obesity rate levels (first row, column Y/X in Table 5). The same method is applied to the 

cases of worsening obesity rate class in the second row of the matrix. 

The calculations reported in Table 5 show that: 1) if a State is surrounded by neighbors with better 

(worse) obesity rates, it has a probability of about 0.5754 (0.6526) to improve (worsen) its obesity 

rate; 2) the probability of improving the obesity rate is lower than that of worsening it. We can thus 

conclude that the pull effect (i.e., the positive impact of neighbors with satisfactory obesity rates 

upon the improvement of a State’s obesity rate) is lower than the drag effect (i.e., the negative 

impact of neighbors with unsatisfactory obesity rates upon the worsening of a State’s obesity rate) 

(see Schettini et al., 2011). 

 

[Insert Table 5 about here] 

 

5. Discussion 

In this paper, we have found that, in the case of US data at State level for the period 1990-2011, the 

dynamics of obesity rates are subject to quite significant proximity effects, and are therefore 

compatible with the hypothesis of social transmission processes that influence obesity-related 

attitudes and choices to an extent that yields a traceable aggregate impact. In lack of an explicit 

micro modeling of such processes and of its empirical validation, one cannot currently go beyond 

the assessment of the compatibility of the evidence with the stated hypothesis, but it is difficult to 
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think of an alternative causal mechanism, also in view of the strength of the reported effects at 

work. This is clearly a strong motive to start looking more closely into this heavily under-

researched, yet very policy-relevant area.  

Our analysis therefore illustrates how the idea of an ‘obesity epidemics’ is not just a powerful 

metaphor, but may be a worrisome reality, and that the ‘infectious’ agent is in this case not a viral 

one, but most likely a complex bundle of transmissible social cues, part of which already singled 

out in the literature cited in the introduction, that has studied in detail the insurgence of obesity in 

specific social environments such as adolescent groups. Developing a more precise and detailed 

understanding of such cues, and possibly even a taxonomy of their complementary or antagonistic 

functioning, proves to be vital to design effective countervailing actions and policies. Research is 

still at an early stage, and far from systematic. However, the fact that the spatial element turns out to 

be crucial for social transmission should be considered more carefully, and more effectively 

accounted for in the design of such policies.   

The analysis of the US case shows a nuanced, complex picture. For instance, States characterized 

by low obesity rates have good chances to preserve their satisfactory condition. However, for States 

with fair but not optimally low levels of obesity rates, being surrounded by States with considerably 

higher obesity rates could be disruptive to some extent. As States with high obesity rates tend to 

cluster together at a spatial level, the risk of a perverse lock-in situation becomes substantial, and a 

real improvement can only be obtained through a joint effort at inter-State level rather than through 

an isolated initiative by a single State. This could be achieved, in particular, through coordinated 

inter-State design of anti-obesity policy measures for particularly sensitive target groups such as 

children, youths, and socio-economically deprived categories. These are merely a couple examples 

of the insights that derive from our analysis.  

There are many possible directions in which this preliminary analysis can be extended. In the first 

place, it would be of interest to extend the analysis on US data to an analysis of other countries 
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characterized by similar levels of socio-economic development, by means of data at a comparable 

level of spatial aggregation. In case the size and structure of the proximity effects would be 

different for other countries, this could give us some hints on the nature of the social transmission 

effects at work in either case.  

In this paper, we have tested a proximity effects model in its simplest form, disregarding the action 

of other intervening variables that could influence social transmission across States, as a necessary 

first step to assess the relevance of the proximity factor. This is at the same time the strength and the 

main limitation of our study. Clearly, there could be several variables of interest to consider in a 

generalized model where proximity interacts with the geographical distribution of factors such as 

income, educational level or political orientation, to name a few obvious ones. Likewise, we 

considered a simple proximity criterion in terms of geographical contiguity, without taking into 

account the strength of interaction between neighboring States (as measured, for instance, by the 

size of inter-State commuter flows). These are examples of further promising directions along 

which the analysis presented in our paper could be extended in future research. 

Another interesting direction of development would be a micro-foundation of our analysis on the 

basis of a specific, explicit micro-model of the social transmission dynamics that reproduces the 

aggregate dynamics found in our analysis. Consequently, it would be very interesting to compare 

the aggregate dynamics generated by alternative micro-mechanisms of social transmission, to select 

the one which provides a better replication.  

Finally, the possibility of working with more fine-grained data (for instance at county level, even if 

for a sub-national or regional universe) would probably provide an even better insight on how the 

proximity effects actually function, the main issue being the availability of long enough time series 

at county/province level. We hope that all these promising lines of research will be pursued in the 

near future, in the interest of a more effective, socially beneficial tackling of the obesity epidemics. 
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Appendix 

[Insert Table A about here] 
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Table 1. A Spatial Markov matrix 

status at time (t+1) 

status at time t status of the neighbors G F A I B 

G 

G 

���|� ���|� ���|� ���|� ���|� 

F ���|� ���|� ���|� ���|� ���|� 

A ���|� ���|� ���|� ���|� ���|� 

I ���|� ���|� ���|� ���|� ���|� 

B ���|� ���|� ���|� ���|� ���|� 

G 

F 

���|� ���|� ���|� ���|� ���|� 

F ���|� ���|� ���|� ���|� ���|� 

A ���|� ���|� ���|� ���|� ���|� 

I ���|� ���|� ���|� ���|� ���|� 

B ���|� ���|� ���|� ���|� ���|� 

G 

A 

���|� ���|� ���|� ���|� ���|� 

F ���|� ���|� ���|� ���|� ���|� 

A ���|� ���|� ���|� ���|� ���|� 

I ���|� ���|� ���|� ���|� ���|� 

B ���|� ���|� ���|� ���|� ���|� 

G 

I 

���|� ���|� ���|� ���|� ���|� 

F ���|� ���|� ���|� ���|� ���|� 

A ���|� ���|� ���|� ���|� ���|� 

I ���|� ���|� ���|� ���|� ���|� 

B ���|� ���|� ���|� ���|� ���|� 

G 

B 

���|� ���|� ���|� ���|� ���|� 

F ���|� ���|� ���|� ���|� ���|� 

A ���|� ���|� ���|� ���|� ���|� 

I ���|� ���|� ���|� ���|� ���|� 

B ���|� ���|� ���|� ���|� ���|� 
 

Notes: G is a good health status; F is a fair health status; A is an average health status; I is an inadequate health 

status; B is a bad health status. Finally, p is the transition probability. 

 

Table 2. SMCs matrix 

  t   (t+1) 

Line neighborhood condition num. cases G F A I B 

1 G G 14 0.429  0.500 0.071 0 0 
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2 F  38 0.184  0.711   0.079  0.026   0 

3 A  12 0 0.333    0.583  0.083  0 

4 I  1 0 0 1.000   0 0 

5 B  4 0 0.250  0 0.250  0.500 

6 G F 95 0.705 0.274 0.011 0.011 0 

7 F  135 0.200 0.519    0.267    0.015   0 

8 A  80 0.037 0.450    0.362    0.150    0 

9 I  35 0.029    0.143    0.314    0.429    0.086 

10 B  9 0 0 0.444    0.333    0.222 

11 G A 32 0.719    0.125 0.156    0 0 

12 F  60 0.117 0.567 0.217 0.083   0.017 

13 A  107 0 0.206 0.551    0.224    0.019 

14 I  85 0 0.035 0.271    0.565    0.129 

15 B  34 0 0 0.029 0.265    0.706 

16 G I 10 0.400    0.500    0 0 0.100 

17 F  17 0.118    0.235    0.588    0.059    0 

18 A  41 0.024    0.122    0.512    0.220    0.122 

19 I  121 0 0 0.107    0.686    0.207 

20 B  99 0 0 0.030    0.253    0.717 

21 G B 5 0.800 0.200    0 0 0 

22 F  1 0 0 1.000    0 0 

23 A  6 0 0.167    0.500    0     0.333 

24 I  28 0 0 0.111    0.556    0.333 
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25 B  32 0 0 0 0.242    0.758 

Note: the largest value in each row is presented in boldface. Shaded cells indicate permanence in the same class across 

years. 

 

Table 3. Ergodic health status (obesity rates) distributions 

Lag G F A I B 

G 0.218     0.566     0.183     0.033     0 

F 0,331 0,645 0,024 0 0 

A 0.078     0.187     0.298     0.283     0.154 

I 0.013     0.033     0.156     0.419     0.378 

B 0 0.017     0.103     0.310     0.569 

 

 

Table 4. Probability of staying in the same health status class 

probability G F A I B 

  0.6106 0.4064 0.5016 0.4472 0.5806 

 

 

Table 5. Summary of SMCs analysis 

  Cases of States with better 

neighbors 

Cases of States with better neighbors 

and that got better 

Probability of getting better with 

better neighbors 

Getting X Y Y/X 
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better 

  179 103 0.5754 

  Cases of States with 

worse  neighbors 

Cases of States with worse neighbors 

and that got worse 

Probability of getting  worse  with  

worse neighbors 

Getting 

worse 

X Y Y/X 

  190 124 0.6526 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A. Dickey–Fuller t test by State 

macro-area Federal States linear trend (t) quadratic trend (t2) AR order+ t-test++ 

coefficients 

Midwestern United States Illinois 1.67841*** −0.0110393 1 -0.672 

Midwestern United States Indiana 0.919493*** −0.00407325 1 -1.56394 

Midwestern United States Iowa 1.18482*** −0.00730314 1 -0.27354 
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Midwestern United States Kansas 0.409764*** 0.00658264 1 -1.78021 

Midwestern United States Michigan 0.697166*** 0.000937602 1 -1.53066 

Midwestern United States Minnesota 0.473519* −0.00645977 1 -2.09466 

Midwestern United States Missouri 0.680966*** −0.00381120 1 -0.43215 

Midwestern United States Nebraska 1.13167*** −0.00876694 1 -1.65956 

Midwestern United States North Dakota 1.16795*** −0.00602061 1 -1.2365 

Midwestern United States Ohio 1.30019*** −0.000150514 1 -1.00231 

Midwestern United States South Dakota 0.833933*** 0.0150225 2 -1.09058 

Midwestern United States Wisconsin 0.80166*** 0.000197465 2 -1.45466 

Northeastern United States Connecticut 1.2703*** −0.0250174 3 0.10692 

Northeastern United States Maine 0.757472*** 0.00661722 1 -2.63349 

Northeastern United States Massachusetts 0.8171*** 0.00561197 1 -1.15637 

Northeastern United States New Hampshire 0.598118*** 0.0113037 1 -1.98293 

Northeastern United States New Jersey 0.953746*** −0.0104614 1 -2.48693 

Northeastern United States New York 0.600833*** −0.00179717 1 -2.68689 

Northeastern United States Pennsylvania 0.937093*** 0.00155553 1 -2.06039 

Northeastern United States Rhode Island 0.494385*** 0.0106762 2 -1.00453 

Northeastern United States Vermont 0.856386*** −0.00270456 2 -0.14741 

Southern United States Alabama 1.32308*** −0.0150436 2 -0.40362 

Southern United States Arkansas 2.37016*** −0.00263765 1 -2.91242 

Southern United States Delaware 0.338284*** 0.0483232 2 -0.79607 

Southern United States District of Columbia 0.643378*** −0.0125798 1 -1.23401 

Southern United States Florida 0.939014* 0.0109273 1 2.3412 

Southern United States Georgia 1.02445*** −0.0079124 1 -2.26507 

Southern United States Kentucky 1.30142*** −0.00699187 1 -0.34456 

Southern United States Louisiana 1.32664*** 0.00142481 1 -2.13671 

Southern United States Maryland 0.856098*** −0.00344264 1 -1.21905 

Southern United States Mississippi 0.85334*** 0.00426413 1 -0.35395 

Southern United States North Carolina 0.833153*** −0.00480519 2 -0.34567 

Southern United States Oklahoma 0.849306*** 0.0141826 1 -0.34567 

Southern United States South Carolina 0.854728*** 0.00958182 2 -2.90506 

Southern United States Tennessee 1.2683*** 0.00648778 1 1.14466 
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Southern United States Texas 0.809638*** −0.00719547 1 -1.2249 

Southern United States Virginia 1.4968*** −0.0214447 2 1.25369 

Southern United States West Virginia 0.925102*** −0.00728584 1 -1.4462 

Western United States Alaska 1.2422*** −0.0255245 2 -1.75123 

Western United States Arizona 0.616149 0.0279536 1 0.051538 

Western United States California 1.57395*** −0.0240875 2 0.404792 

Western United States Colorado 1.17439*** −0.00813276 2 -2.49871 

Western United States Hawaii 0.399789*** 0.00317707 1 -2.212 

Western United States Idaho 1.07581*** −0.00126886 1 -1.34678 

Western United States Montana 0.732644*** −0.00227221 1 -2.94811 

Western United States Nevada 0.480952*** −0.00427519 1 -1.05287 

Western United States New Mexico 0.819933*** −0.00727706 1 -2.7627 

Western United States Oregon 1.07318*** −0.0160441 1 -2.83707 

Western United States Utah 0.759531*** −0.00923329 1 -1.57117 

Western United States Washington 1.3748*** −0.00793776 1 -2.00065 

Western United States Wyoming 0.220328* 0.00654693 2 -0.2317 

Note: +The number of time lags is determined by the AIC (Akaike information criterion); ++t-test never rejects the null 
hypothesis of unit root; *** - significant at 1%, ** - significant at 5%, * - significant at 10%.. 
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Figure 1. Trend of obesity rate by regional  divisions, 1990-2011  

 

Source: our elaboration on America's Health Rankings data. 

Note: Northeastern United States (namely, Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New 

York, Pennsylvania, Rhode Island, Vermont) ; Midwestern  United States (namely, Illinois, Indiana, Iowa, Kansas, 

Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin); Southern United States 

(namely, Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, 

Mississippi, North Carolina , Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia); Western United 

States(namely, Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico,  Oregon, Utah, 

Washington, Wyoming). 
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Figure 2. Quartile maps of obesity rates, 1990, 1995, 2000, 2011 

 

Source: our elaboration on America's Health Rankings data. 
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Figure 3. Total inequality and spatial autocorrelation, 1990-2011 

 

Source: our elaboration on America's Health Rankings data. 
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• We study the presence of spatial proximity effects in US State-level obesity data 

• We propose a spatial approach based on combining Moran and Theil indexes 

• We find that the evidence is consistent with an assumption of social contagion 

• It may be appropriate to speak of a socially transmitted ‘obesity epidemics’ 


