Exploiting Traceability Uncertainty between Software
Architectural Models and Extra-Functional Results

Catia Trubiani®, Achraf Ghabi®, Alexander Egyed®

®Gran Sasso Science Institute, L’Aquila, Italy
beelum GmbH, Linz, Austria
¢Johannes Kepler University, Linz, Austria

Abstract

Deriving extra-functional properties (e.g., performance, security, reliability)
from software architectural models is the cornerstone of software develop-
ment as it supports the designers with quantitative predictions of system
qualities. However, the problem of interpreting results from quantitative
analysis of extra-functional properties is still challenging because it is hard
to understand how the analysis results (e.g., response time, data confidential-
ity, mean time to failure) trace back to the architectural model elements (i.e.,
software components, interactions among components, deployment nodes).

The goal of this paper is to automate the traceability between software
architectural models and extra-functional results, such as performance and
security, by investigating the uncertainty while bridging these two domains.
Our approach makes use of extra-functional patterns and antipatterns, such
as performance antipatterns and security patterns, to deduce the logical con-
sequences between the architectural elements and analysis results and auto-
matically build a graph of traces, thus to identify the most critical causes of
extra-functional flaws. We developed a tool that jointly considers SOftware
and Extra-Functional concepts (SoEfTraceAnalyzer), and it automatically
builds model-to-results traceability links. This paper demonstrates the effec-
tiveness of our automated and tool supported approach on three case studies,
i.e., two academic research projects and one industrial system.
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1. Introduction

In the software development domain there is a very high interest in the
early validation of extra-functional requirements because this ability avoids
late and expensive repairs to consolidated software artifacts [1]. One of the
proper ways to manage software quality is to systematically predict the extra-
functional properties of the software system throughout the development
process. It is thus possible to make informed choices among architectural
and design alternatives; and knowing in advance if the software will meet its
extra-functional objectives [2].

Advanced Model-Driven Engineering (MDE) techniques have successfully
been used in the last few years to introduce automation in software quality
modeling and analysis [3]. Nevertheless, the problem of interpreting extra-
functional results is still quite challenging. A large gap exists between the
representation of extra-functional analysis results and the software architec-
tural model provided by the engineers. In fact, the former usually contains
numbers (e.g., throughput variance, vulnerability level, mean time to fail-
ure, etc.), whereas the latter embeds architectural choices (e.g., software
components, interaction among components, deployment nodes). Today, the
interpretation of extra-functional results is mostly based on the analysts’ ex-
perience and therefore its effectiveness often suffers from lack of automation
[4].

In [5] we proposed a language capable of capturing model-to-code trace-
ability while considering typical uncertainties in its domain. For example, the
engineer knows that some given piece of code may implement an architectural
element; however, not whether this piece of code also implements other archi-
tectural elements; or whether this architectural element is also implemented
elsewhere (other code). This paper adapts this language to provide model-
to-results traceability links while considering typical uncertainties from the
extra-functional analysis domain. We presume that engineers know when a
given extra-functional result is affected by an architectural element. How-
ever, they may not know whether this extra-functional result is also affected
by other architectural elements or whether other extra-functional results are
also affected by this architectural element.

Further knowledge can be considered to better understand the relation-
ship between architectural elements and extra-functional results, in particular



extra-functional patterns and antipatterns [6, 7] represent best and bad prac-
tices in architectural models affecting extra-functional properties. A pattern
specification [6] includes solutions to commonly occurring problems, e.g., se-
curity patterns [8] encapsulate knowledge and expertise to improve security
properties such as confidentiality, integrity, etc. An antipattern definition
[7] includes the description of bad practices occurring in the architectural
model along with the solution that can be applied to avoid negative conse-
quences, e.g., performance antipatterns [9] collect domain-expert knowledge
to react against performance flaws such as low response time, high network
utilization, etc.

This paper is an extension of [10] where we focused on performance anal-
ysis results and we used sofware performance antipatterns to reduce model-
to-results traceability uncertainties. The contribution of this paper is to
provide support in the process of identifying the architectural model ele-
ments that most likely contribute to the violation of multiple extra-functional
requirements by jointly considering knowledge from engineers and extra-
functional patterns and antipatterns. To this end, we developed a tool,
namely SoEfTraceAnalyzer [11], that jointly considers Software and Extra-
Functional concepts: it takes as input a set of statements specifying the
relationships between software elements and extra-functional properties, and
provides as output model-to-results traceability links. The language defined
in [5] is extended by adding a weighting methodology that quantifies the
extra-functional requirements’ violation, thus to highlight the criticality of
model elements despite extra-functional properties. The key feature of our
tool is that the knowledge of extra-functional patterns and antipatterns can
be embedded in the specification of uncertainties to deduce the logical con-
sequences between architectural elements and analysis results, thus to dis-
ambiguate the limited knowledge of engineers.

Our approach is not limited, in principle, to specific extra-functional prop-
erties. However, to investigate the effectiveness of traceability links, in this
paper we decided to focus on performance and security, and we make use of
security patterns [8] and performance antipatterns [9] to reduce traceability
uncertainty. This choice is driven by the fact that security has a ”direct”
overhead on performance, whereas other extra-functional properties may not.
For example, it is well known that introducing security mechanisms, such
as encryption of data, inevitably consume system resources influencing the
system performance, even affecting its full operability. On the contrary, in-
creasing system reliability may mean to create copies of software components



off-line without any impact on the system performance.

The paper is organized as follows: Section 2 describes an illustrative
example; Section 3 discusses the relationships between sofware development
artifacts and extra-functional properties; Section 4 describes our approach;
Section 5 illustrates the validation of the approach on three case studies
(i.e., two academic research projects and one industrial system); Section 6
discusses the threats to validity of the approach; Section 7 presents related
work; Section 8 concludes the paper.

2. Illustrative Example

In this section we illustrate the DesignSpace, an academic research project
aimed at building an engineering infrastructure to integrate diverse develop-
ment artifacts and their relations [12]. It is an engineering platform for the
exchange, linking, and validation of the knowledge across different artifacts.
It supports distributed collaboration, a wide range of tools and develop-
ment, maintenance, and evolution of services including incremental consis-
tency checking and transformation. There are three main challenges: (i)
how the knowledge created and manipulated by engineers in their respec-
tive single-user tools is being made available to other engineers; (ii) how this
knowledge is interconnected to express cross-tool dependencies; (iii) how en-
gineers benefit from analysis and transformation techniques.

Figure 1 provides a high-level overview of the DesignSpace system [12]
to illustrate some examples of the involved artifacts and their traceability,
thus to demonstrate the need of our approach. Figure la provides a high-
level representation of the users and artifacts involved in a system. There
are five engineers: Alice is an architect and collaborates with Bob on the
modeling of a subpart of the system reported in the software architectural
model my. Bob is also an analyst and checks if the extra-functional results
ro of this subsystem are fulfilling the stated requirements. Similarly, Carol
is an architect and collaborates with David on the modeling of an other sub-
part of the system reported in the model ms3. David is also an analyst and
checks the results r4 of this last subsystem. Finally, Paul is a project man-
ager and manages the software architectural model ms modeling the whole
system, and the global extra-functional results r4. Examples of both func-
tional and extra-functional requirements are reported in Figure 1b: R; is a
functional requirement through which the architectural models are updated,
e.g., changes to model m; require modifications to ms but not to ms; Rs
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Figure 1: DesignSpace system.

is a performance requirement requesting a maximum delay of three seconds
when loading the models; R3 is a security requirement regulating the users
access to models under authorization, e.g., Alice can access to model m; only,
David can access to model ms and results r,, whereas Paul can access to all
artifacts, i.e., all models and extra-functional results.

As stated in [13], when analyzing trade-offs among these requirements,
the developer must understand how the requirements affect each other. The
goal of our approach is to trace extra-functional results to architectural model
artifacts thus to support software designers in the task of identifying the most
suitable model elements responsible for bad properties, if any.




3. Software Architectural Models and Extra-functional Properties

Common practice for software engineers is to document architectural de-
scriptions, however it is less common to document how such architectural
elements (e.g., software components, dynamic scenarios, deployment nodes,
etc.) are related to extra-functional properties (e.g., performance, security).
Knowing about traceability is important to understand what are the archi-
tectural elements contributing to extra-functional properties and deriving the
most suitable refactoring actions to improve such properties. The goal of this
work is to support software designers in the task of identifying the relation-
ships between software architectural models and extra-functional results.

We refer to specific software architectural elements where the granular-
ity of an architectural element is entirely user-definable. An architectural
element could be a software component, a service built on top of several
components, or any other logical grouping (e.g., a hardware device hosting
several software components). We will discuss the implications of different
granularity choices later.

We refer to specific extra-functional properties, such as performance (e.g.,
response time, throughput, utilization) and security (e.g., security level /risk).
Here also the granularity is arbitrary user definable. For example, we could
trace all the stated software components to system extra-functional proper-
ties or we could trace its individual model elements and their corresponding
extra-functional properties.

The relationship between architectural elements and extra-functional prop-
erties is bidirectional. We expect that a single model element is contributing
in multiple extra-functional properties (one-to-many mapping), for example a
software component may affect the response time of a service and the utiliza-
tion of its hosting hardware device. Similarly, an extra-functional property
is affected by multiple model elements, but it may happen that the architec-
tural specification is incomplete either by choice or by omission. For example,
system response time and/or security level are two properties that may span
the entire system, and they can be affected by parts of the system architec-
ture that are not included as modelling artifacts. Consequently, it becomes
very difficult to select specific model elements, besides others, that are not
contributing to system properties.



4. Our approach

Figure 2 illustrates the process we envisage to automate the traceabil-
ity between architectural model elements and extra-functional results. Ovals
in the figure represent operational steps whereas square boxes represent in-
put/output data. Four main phases are identified in the process.

Phase (): Requirements. We assume that a set of extra-functional re-
quirements is defined. Some examples of performance requirements are as
follows: the response time of a service has to be less than 3 seconds, the
throughput of a service has to be greater than 10 requests/second, the utili-
sation of a hardware device shall not be higher than 80%, etc. Some examples
of security requirements are: a message exchanged between two components
might require encryption depending on whether the communication channel
between the components is a wireless one or not, the completion of a certain
software operation needs to be verified by a certification authority, etc. All
extra-functional (e.g., performance and security) requirements will be used
to build the software architectural model and interpret the results obtained
from the model-based analysis [14].

Phase (2): Modeling. In the modeling phase, an annotated' software
architectural model is built. Such model embeds the stated extra-functional
requirements, e.g., to enable reliability properties some software components
need to be duplicated, or to achieve a certain security level some software
services have to be protected (e.g., a software component requiring a certain
service must be authenticated before allowing its usage).

Phase 3): Analysis. In the analysis phase, extra-functional model(s) are
obtained through model transformation, and such models (e.g., queuing net-
works for performance [15], and fault-trees for reliability [16]) are solved to
obtain the results of interest. Some extra-functional requirements (e.g., se-
curity) consist in the addition of appropriate mechanisms implementing the
corresponding requirement in the software architectural model. As an exam-
ple, if a security requirement specifies that data integrity must be guaranteed
for a certain service, an additional pattern with the steps needed for the data
integrity mechanism must be introduced in the architectural model wherever
the service is invoked. All these additions are included into extra-functional
model(s), thus to get results reflecting them.

! Annotations are aimed at specifying information to execute performance analysis such
as the incoming workload, service demands, hardware characteristics, etc.



@Analysis

Extra-Functional

@ Modeling Model(s)

Extra-Functional
Results

(Annotated) Software
Architectural Model >,

Model2Model
Transformation

Model
Solution

@ Requiréments

Extra-Functional
Requirements

Extra-Functional
Patterns/Antipatterns

Automatic
Uncertainty Reduction

Automatic
Trace Generation

@ ¢ Weighted Footprint Graph Weighted Footprint Graph
after (Anti)Pattern-based Rules from Input Tracing Model Elements
vs Analysis Results
LEGEND: [ Jinput/output artifact (D operational step (@ Feedback
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Phase @): Feedback. The focus of this paper is on the feedback phase
where the extra-functional requirements must be interpreted in order to de-
tect, if any, extra-functional flaws?. Such flaws may be of different nature
and several refactoring actions can be introduced to improve the correspond-
ing violated property. For example, to increase the reliability of a software
component the number of its replications can vary, or to increase the security
of a software service the key size of the encryption algorithm can be mod-
ified. This leads to a trade-off analysis that is conducted by implementing
the available refactorings as new software architectural models that undergo
the same process shown in Figure 2.

The goal of our approach is to trace architectural model elements vs
extra-functional results (see shaded boxes of Figure 2), thus to highlight the
architectural model elements contributing to extra-functional flaws. It starts
with an automatic trace generation operational step that provides as output
a weighted footprint graph (from input), i.e., a graph containing a node for
every result element (called RE nodes) and a node for each model element
(called ME nodes). The connections between these nodes describe the cer-
tainties of the input (trace or no-trace), and are refined with an automatic
uncertainty reduction operational step aimed at generating a weighted foot
print graph, i.e., after (anti)pattern-based rules. This latter step is supported
by extra-functional patterns/antipatterns, because they suitably fit with our
goal. In [10] we used performance antipatterns [9] to deduce the logical con-
sequences of the uncertainties, and we found that they nicely contribute to
automatically generate traces joining architectural elements and performance
results. In this paper we further consider security patterns [17] to enable a
trade-off analysis among these two extra-functional properties.

4.1. Automatic Trace Generation

The automatic trace generation operational step (see Figure 2) takes as
input: (i) extra-functional requirements, (ii) annotated software architectural
model, and (iii) extra-functional results. It provides as output a weighted
footprint graph.

Extra-functional requirements are classified on the basis of the property
(e.g., performance, security) they address and the level of abstraction they

2A flaw originates from a set of unfulfilled requirement(s), such as “the estimated
average response time of a service is higher than the required one”, or “the achieved
security level of a service is lower than the required one”.
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apply. In general, it is very challenging to quantify security-related prop-
erties, hence we leave to engineers the decision of associating pre-defined
security levels (SEC), i.e., low, medium, and high. For performance we con-
sider the requirements that refer to the following performance indices[18]:
Response time (RT) is defined as the time interval between a user request
of a service and the response of the system; Throughput (TH) is defined as
the rate at which requests can be handled by a system, and is measured in
requests per unit of time; Utilization (U) is defined as the ratio of busy time
of a resource and the total elapsed time of the measurement period; Queue
length (QL) is defined as the number of users waiting for a resource; Wait-
ing time (WT) is defined as the time interval required to access to a resource
starting from when the resource is required up to when it is accessed.

Usually, RT requirements are upper bounds defined in “business” re-
quirements by the end users of the system. TH requirements can be both
“business” and “system” requirements, they can represent either an upper
or a lower bound. U, QL and WT requirements are upper bounds defined in
“system” requirements by system engineers on the basis of their experience,
scalability issues, or constraints from other concurrent software systems.

Various levels of abstraction can be defined for a requirement: system,
processor, etc. However, we do not consider all possible combinations of
indices and levels of abstraction, we focus on the most common ones that
are: SEC, RT, and TH of services, U, QL, and WT of hardware devices.

Extra-functional results represent the analysis values of the indices we
consider for traceability. Note that such values are affected by a set of fea-
tures such as system workload and operation profile that represent how the
software system is used [18].

Annotated software architectural models may be constituted by elements
belonging to different views [19]: Static/Software View (SW) includes the
software elements, e.g., operations (SWop), components (SWcomp), services,
and the static relationships among them; Dynamic/Interaction View (DY)
includes the specification of the interaction, e.g., messages (DYmsg), that
occurs between the software components to provide services; Deploymen-
t/Hardware View (HW) includes the hardware devices, e.g., processing nodes
(HWnode), and communication networks (HWnet), and the mapping of soft-
ware components and iteractions onto hardware devices. Summarizing, SWop,
SWcomp, DYmsg, HWnode, and HWnet represent the architectural elements we
consider for traceability.

10



4.1.1. Language for expressing traceability

This paper adapts the language for model-to-code traceability introduced
in [5] and extends it to express model-to-results traceability considering some
of the unique aspects of this domain. The main benefit of our approach is
that our language allows the engineer to express uncertainty constructs to the
level of detail she or he is comfortable with. As drawback, neither correctness
nor completeness are guaranteed.

Each construct is defined as {m*} relationship {r*} where {m*} is the set
of model elements and {r*} is the set of results elements. The star symbol
(*) expresses multiplicity in that m* stands for multiple model elements and
r* for multiple results elements. The relationship term declares how the first
set is related to the second one.

We distinguish between three major relationships: affectAtLeast, affec-
tAtMost, affectExactly.

1) AffectAtLeast Construct: the input {m*} affectAtLeast {r*} defines
that the model elements in {m*} affect all of the result elements in {r*} and
possibly more. This input has a correctness constraint ensuring that every
model element in {m*} individually must be affecting a subset of {r*}. One
example of this relationship is provided by the software components SWcomp
and the subset of operations SWop involved in a service S that affect at least
the security level (SEC), the response time (RT) and the throughput (TH)
of the service S.

Input: {SWop*, SWcomp*} affectAtLeast {SEC, RT, TH}

2) AffectAtMost Construct: the input {m*} affectAtMost {r*} defines
that the model elements in {m*} affect some of the result elements in {r*}
but certainly not more. This input expresses the certainty that every other
model element not in {m*} must not affect any result element in {r*}. One
example of this relationship is provided by the software components SW comp
and the subset of operations SWop involved in a service S as well as the
deployment nodes HWnode where the SWcomp components are deployed
that affect at most the security level (SEC), the response time (RT) and the
throughput (TH) of the service S.

Input: {SWop™, SWcomp™, HWnode*} affectAtMost {SEC, RT, TH}

3) AffectEzxactly Construct: the input {m*} affectExactly {r*} defines
that every model element in {m*} affects one or more result elements in
{r*} and that the results elements in {r*} are not affected in any other
model element not in {m*}. This input defines no-trace between each result

11



element in {r*} and each model element in the remaining M-{m*} (where
M is the set of all input model elements), since each model element in {m*}
affects only a subset of {r*}. However, this does not mean that these result
elements could not be affected by other model elements in M-{m*}. One
example of this relationship is provided by an hardware device HW node and
the performed operations SWop that affect exactly its utilization (U).
Input: {SWopx, HWnode} affectExactly {U}

4.1.2. Weighted footprint graph

The language we provided to express the uncertainty constructs between
a set of architectural model elements and a set of analysis results elements
is very flexible. Listing 1 reports one abstract example for the specification
of the input. For example, the hardware devices HWinode and HWnet affect
exactly the performance indices related to them, i.e., utilization (U), queue
length (QL), and waiting time (WT). As another example, the software com-
ponents SWecomp and the subset of operations SWop involved in a service
S affect at least the security level (SEC), the response time (RT) and the
throughput (TH) of the service S.

{HWnode , HWnet} affectExactly {U, QL, WT};
{SWop, SWcomp} affectAtLeast {SEC, RT, TH};
{SWop, DYmsg} affectAtMost {SEC, RT, TH, QL};
{SWcomp, DYmsg} affectAtMost {SEC, RT, TH, QL};

Listing 1: Input to trace generation.

The goal of our SoEfTraceAnalyzer tool [11] is to interpret these trace-
ability expressions and automatically build (certainties and uncertainties) in
a graph structure, which we call the weighted footprint graph (from input).

Figure 3 reports one abstract example of this graph and it refers to the
input specified in Listing 1. The graph contains a node for every result el-
ement (called RE nodes) and a node for each model element (called ME
nodes). RE nodes are: response time (RT), throughput (TH), utilization (U),
queue length (QL), waiting time (WT), and security level (SEC). ME nodes
are: software operations (SWop), software components (SWcomp), dynamic in-
teractions (DYmsg), hardware nodes (HWnode), and communication networks
(HWnet).

The connections between RE nodes and ME nodes describe the certain-
ties of the input (trace or no-trace) which are generated out of the logical
consequences of the uncertainties. A trace (m, r) is depicted by a bold line
between the ME node of m and the RE node of r. In figure 3 no such lines

12
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Figure 3: Weighted Footprint Graph, from Input.

are depicted because the logical interpretation of the input did not yield any
traces. On the contrary, no-traces are depicted by dashed lines. Furthermore,
the graph contains nodes to capture model element groups (MEG nodes) and
results element groups (REG nodes). These two kinds of nodes describe the
uncertainties of the input.

Note that each result element node RE has a weight (w) that represents
a value indicating how much the requirement is far from the analysed index,
whereas each model element node ME has a weight that is a function (>
F(w)) indicating how much the architectural element is critical for the vi-
olated requirements. Our language allows to set the weights for RE nodes
and their guilt estimates vs ME nodes, thus to quantify how much extra-
functional results are affected by architectural elements. Listing 2 reports
a simple example for the specification of weight and guilt estimates: the
response time (RT) and security (SEC) results are violated by 0.5 and 0.33,
respectively; the software component (SWcomp) participates to both results
with different guilt estimates, i.e., 0.42 and 0.15 for RT and SEC, respectively.
The numerical values provided as weight estimates come from the evalua-
tion of stated extra-functional requirements, e.g., if the response time of a
service is required to be not larger than 8 sec, but the performance analysis
reveals that the actual value is 12 sec, then 0.5 represents the percentage of
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requirement’ violation. For security results it is indeed challenging to pro-
vide weights expressing requirement’ violation, hence we assume that security
concerns can be discretized in a set of samples on the basis of their severity
and numerical values are associated to these samples (e.g., security levels
may be: high — 0.75, medium — 0.5, and low — 0.25). In this way, simi-
larly to performance, we can report the estimation of requirement’ violation
expressed as percentage among the specified values.

set weight : RT = 0.5;

set weight : SEC = 0.33;

set guilt : RT -> SWcomp = 0.42;
set guilt : SEC -> SWcomp = 0.15;

Listing 2: Specification of weight and guilt estimates.

Guilt estimates for performance results are assigned by using the guilt-
based approach we validated in our previous work [20]. In particular, each
model element is ranked on the basis of how much it contributes to the per-
formance index under analysis: we calculate the index of the corresponding
model element and we estimate how much it is contributing. For security re-
sults it is indeed challenging to provide guilt estimates, hence we assume that
security concerns can be associated to a set of model elements and numerical
values are associated by ranking them, similarly to performance.

Figure 4 shows the weighted footprint graph that is generated from input
(see Listing 1) augmented with weight and guilt estimates specification re-
ported in Listing 2. Note that the weights for RE nodes are directly derived
from their specification, whereas weights for ME nodes are calculated while
taking into account traceability information. If there exists a trace (m, r)
then we assume that m fully participates to the weight of r, whereas if there
is an uncertain trace then guilt estimates are used to scale the weight of r.
Weights of model elements are obtained by summing up all traces and un-
certain ones. In our example the SWcomp node is weighted by the following
calculation: 0.5 * 0.42 + 0.33 * 0.15 = 0.26, in fact that node is involved
with uncertain traces in both SEC and RT results.

Different heuristics (w) and functions (> F(w)) can be used to weight
RE and ME nodes in footprint graphs. Furthermore, the human intervention
of engineers may help to add priorities to extra-functional properties and to
specify legacy constraints for architectural elements.

14
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Figure 4: Weighted Footprint Graph, from Input, weight and guilt estimates.

4.2. Automatic Uncertainty Reduction

The weighted footprint graph is the foundation for automatic trace gen-
eration, and several propagation rules can be introduced to reduce the initial
uncertainty. Our approach makes use of performance antipatterns [21] and
security patterns [22] to deduce the logical consequences between architec-
tural elements and analysis results.

(Anti)patterns represent a well-known technique to express domain-inde-
pendent knowledge and expertise in a reusable way. Architectural and design
patterns constitute solid solutions that can be employed in order to solve
known and recurrent problems. (Anti)patterns provide the main advantage
of including benefits and drawbacks in their specification, and they can be
taken into account while sketching their solution.

4.2.1. Performance Antipatterns

Performance antipatterns deal with the performance issues of software
systems. In literature, the main source of performance antipatterns is the
work done across years by Smith and Williams [9] that have ultimately de-
fined a number of 14 notation- and technology- independent antipatterns.
The benefit of using these antipatterns is that they offer solutions in forms
of alternative architectures to performance flaws, and several works recently
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have demonstrated their usefulness [23, 24, 25, 26].

In our previous work [27] we provided a logic-based representation of
performance antipatterns that supports the specification of further input to
trace generation. Listing 3 reports the traceability rules while considering
the specification of some performance antipatterns, i.e., Concurrent Process-
ing Systems (CPS), Pipe & Filter (P&F), God Class/Component (BLOB),
Extensive Processing (EP), Empty Semi Trucks (EST), One-Lane Bridge
(OLB), and The Ramp (TR), respectively.

CPS: {HWnode} affectExactly {QL, U};

BLOB: {SWop, DYmsg} affectAtLeast {U};

P&F: {SWop, DYmsg} affectAtLeast {TH, U};

EP: {SWop, DYmsg} affectAtLeast {RT, U};

EST: {DYmsg} affectAtLeast {RT, U};

OLB: {SWcomp, SWop, DYmsg} affectAtMost {RT, WT};
TR: {SWopl} affectExactly {RT, TH};

Listing 3: Performance Antipattern-based rules to reduce model-to-results uncertainty.

For example, detecting a CPS antipattern indicates that HWnode affects
exactly QL and U. This rule comes from the logic-based formula of the CPS
antipattern that has been defined in [27], and an excerpt is reported in Equa-
tion (1) where P represents the set of all the hardware devices.

ElP:C cP | FmaxQL(Px) Z Thma:cQL/\
FmawaUtil(Px) 2 Thma;tUtil

(1)

CPS is an antipattern that occurs when processes cannot make effective
use of available hardware devices to a non-balanced assignment of tasks. The
over-utilized hardware devices are detected by checking if the queue length
and the utilization overcome pre-defined thresholds?.

4.2.2. Security Patterns

Security patterns deal with the security properties of software systems. In
literature, security patterns have gained significant attention by the research
community after the seminal work in [17] that have defined a catalog of 7 pat-
terns collaborating to provide the necessary security within an application.

3A specific characteristic of performance antipatterns is that they contain numerical
parameters representing thresholds (e.g., high utilization, excessive number of messages).
For further details refer to [27].
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The benefit of using these patterns is that software systems should result in
a ‘more secure’ design, i.e., they should expose fewer security flaws at the
design level, and several works recently have demonstrated their usefulness
28, 29, 8].

Listing 4 reports the traceability rules while considering the specification
of some security patterns [17], i.e., Authorization (AUTH), Role-based Access
Control (RBAC), Limited View (LV), and Session (SES), respectively. These
rules come from our understanding of the pattern specification in [17]. In
particular, for each pattern we defined the model elements (i.e., SWcomp,
SWop, DYmsg, HWnode) that most likely affect their security level (SEC). To
further extend their specification we also consider the performance indices
related to that specific element (i.e., RT, TH, U, QL, WT).

AUTH: {DYmsgl} affectAtLeast {SEC, RT, TH};

RBAC: {SWop, DYmsgl} affectAtLeast {SEC, RT, TH};

LV: {SWcomp, SWop, DYmsg} affectAtLeast {SEC, RT, TH};
SES: {HWnodel} affectAtMost {SEC, U, QL, WT};

Listing 4: Security Pattern-based rules to reduce model-to-results uncertainty.

For example, introducing a Session (SES) pattern indicates that HWnode
needs to verify system accesses thus to prevent malicious users, hence it
affects at most its security level (i.e., SEC) and all performance indices related
to that specific model element (i.e., U, QL, and WT). In all the traceability
rules we do not use the affectExactly construct, since we assume that model
elements involved in security properties may affect other result elements. In
this way we do not restrict model elements in their involvement to further
extra-functional properties.

Figure 5 reports the weighted footprint graph, after introducing perfor-
mance and security (anti)pattern-based rules. For figure readability, it is
built considering: (i) CPS and TR performance antipattern-based rules (see
Listing 3); (ii) AUTH and SES security pattern-based rules (see Listing 4).
The inclusion of these performance antipatterns and security patterns gen-
erates nine additional traces (bold lines) and three no-traces (dashed lines)
between MEs and REs. In fact, the weighted footprint graph from input
(see Figure 3) shows 0 traces (T'), 12 no-traces (IV), and 18 uncertain traces
(T'N), whereas the weighted footprint graph, after (anti)pattern-based rules
(see Figure 5), shows 9 traces (7'), 15 no-traces (N), and 6 uncertain traces
(T'N). Note that the newly generated traceability information triggers the
modification of weights associated to model elements. Figure 6 shows the
weighted footprint graph that is obtained after antipattern-based rules aug-
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Figure 5: Weighted Footprint Graph, after (Anti)pattern-based Rules.

mented with weight and guilt estimates reported in Listing 2, where weights
of RE nodes are modified accordingly. For example, the SWcomp node is here
weighted by the following calculation: 0.5 * 0.42 + 0.33 * 1 = 0.54, in fact
this node is involved in the (SWcomp, SEC) trace. Further nodes are weighted:
the (SWop, RT) trace leads to assign the weight equal to 0.5 to the SWop node;
the (DYmsg, RT) and (DYmsg, SEC) traces produce a weight equal to 0.5 +
0.33 = 0.83 for the DYmsg node.

Note that the specification of performance and security (anti)pattern-
based rules may also keep unchanged or even increase the overall uncertainty
of the system since no logical consequences can be deduced while considering
the addition of these further constructs.

5. Validation

Our approach enables the specification of traceability between architec-
tural model elements and extra-functional results. In the following we report
the experimental results on three different case studies, i.e., two academic
research projects (i.e., ECCO and DesignSpace) and one production system
(i.e., PermissionSystem). All the case studies share the same experimental
setting, as discussed hereafter.
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Figure 6: Weighted Footprint Graph, after (Anti)pattern-based Rules, weight and guilt
estimates.

5.1. Experimental Setting

Our approach is implemented in a tool called SoEfTraceAnalyzer [11] that
is built on the Eclipse platform to improve its usability. Figure 7 shows the
screenshot of the tool used to model our DesignSpace illustrative example
(see Section 2). It highlights four different input views:

(1) the textual input view includes the specification of perspectives along
with its constituent elements, and dependencies (i.e., affectAtLeast, af-
fectAtMost, and affectAtMost) among the elements that are regulated
with our language for expressing traceability;

(2) the outline view lists source (i.e., SW.accessModels, SW.selectModels,
and SW.loadModels) and target (i.e., RT.loadModels, and SEC.access-
Models) artifacts. Note that target artifacts match the Ry and Rj
extra-functional properties reported in Table 1b as performance and
security requirements, respectively;

(8) the footprint graph view depicts the source and target artifacts in the
middle of the graph as nodes, dependencies are reported as arcs where
bold lines denote traces and dashed lines indicate no-traces;
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Figure 7: Screenshot of the SoEfTraceAnalyzer tool.

(4) the trace matrix view reports source and target artifacts; an entry
(7, j) of the matrix indicates the relationship between the i-th source
elements vs the j-th target element, where labels T, N, T'N mean
‘trace’, 'no-trace’, and 'uncertain trace’, respectively.

Our experimentation is conducted by using the input provided by engi-
neers, and adding further knowledge about patterns and antipatterns. Specif-
ically, security patterns are explicitly stated in the system specification,
whereas detection of performance antipatterns is performed by means of our
rule-based engine [27]. Both security patterns and performance antipatterns
are translated with our traceability language and may contribute to reduce
uncertainty. As anticipated in Section 4.1.2, two further properties can be
defined for this goal, i.e., weight and guilt estimates that allow to quantify
violations of extra-functional results and how much architectural elements
contribute to requirements’ violations, respectively.

To investigate the effectiveness of traceability links, provided as output by
our tool, we conducted the following experimentation. If a performance/se-
curity flaw is identified we apply a set of refactoring actions (e.g., substitute
a software component with a faster/lower one, re-deploy a certain software
component) to quantify the impact of such heuristics on performance/secu-
rity results. Specifically, without traces we verify the impact of the refac-
toring by modifying all architectural elements contributing to that perfor-
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mance/security flaw one-by-one. On the contrary, with traces we restrict
the refactoring to the subset of model elements indicated by the traceabil-
ity links. This leads to quantify the effectiveness of our output graph as
support to software designers since it provides guidelines to modify specific
architectural elements with the goal to fulfill extra-functional requirements.

5.2. Selection of extra-functional properties

As stated in Section 1, our approach is not limited, in principle, to spe-
cific extra-functional properties. However, to investigate the effectiveness of
traceability links we decided to focus on performance and security since this
latter property has a "direct” overhead on the former. Besides this, per-
formance and security trade-offs have been considered in our previous work
(30, 31] where we introduced a framework to support the analysis of perfor-
mance degradation due to the introduction of different security mechanisms.
Such framework is able to quantify the system performance degradation while
varying the adopted security strategies. Hence, we used this framework to
translate (annotated) software architectural models, enriched with security
annotations, to obtain a performance model, i.e., a Queueing Network (QN)
[15], that embeds the stated security requirements.

As drawback, QN models only provide performance results, and they do
not allow to estimate the achieved security level. In fact, it is very challenging
to estimate the security of a software component, service, a hardware device,
a firewall, etc. To this end, we leave to engineers the decision of associat-
ing architectural model elements with pre-defined security levels, i.e., low,
medium, and high. To increase/decrease such levels we expect that the cor-
responding operation has a larger/lower demand in terms of computational
resources and we reflect this change into the performance model.

The performance analysis has been conducted by solving the QN model
with two well-assessed techniques [18], i.e., mean value analysis (MVA) and
simulation. Both solution techniques are supported by Java Modeling Tools
(JMT) [32].

5.3. Case Study 1: ECCO

ECCO is an academic research project that aims to reuse existing soft-
ware and customize it to meet customer-specific needs [33, 34]. The name
stands for Extraction and Composition for Clone-and-Own, and it is a frame-
work enabling the automated systematic reuse of existing arbitrary develop-
ment artifacts. The workflow consists of three main operational steps: (i)
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extraction that locates and extracts desired reusable artifacts (e.g., code)
from existing variants; (ii) composition where the selected artifacts are past-
ed/edited to create the new product; (iii) completion where the new product
variant is adapted to account for needs that did not exist previously.

Figure 8 reports an excerpt of the ECCO software architectural model.
It is constituted by 17 software components (i.e., SC;, with i € [1,...,17])
among which 2 components have been intentionally added to model the secu-
rity patterns that are AUTH and RBAC. Software components are labelled
with the stereotype artifact since they are deployed on five different hard-
ware machines labelled with the stereotype GaEzrecHost meaning the exe-
cution hosts. Hardware platforms communicate through different networks,
i.e., wide and local area networks, labelled with the stereotype GaCommHost
that indicates communication hosts.

«artifact» 0O F

SC6:dependencyResolution

«artifact» 0
| «deploy» | SC12:serealization

«artifact» 0 «deploy» I
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Figure 8: An excerpt of the ECCO software architectural model.

The system workload is assumed to be closed with a population of 1500
users and an average thinking time of 1 second. The performance require-
ments that we consider, under the stated workload, are: (i) RT: the average
response time of the composition service has to be less than 5 ms; (ii) TH:
the throughput of the extraction service has to be greater than 0.3 request-
s/ms. Security requirements indicate that there is a critical service (i.e.,
addProduct) that require a high security level (SL).
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Figure 9: An excerpt of the ECCO Weighted Footprint Graph after (anti)pattern-based
rules.

While solving the QN built for ECCO we found that all the requirements
are not fulfilled. In particular, the average response time (RT') of the com-
position service has been estimated to be 10.09 ms, the throughput of the
extraction service has been evaluated to be 0.16 requests/ms. Also the secu-
rity requirement is not fulfilled since the addProduct service is annotated in
the software architectural model with the medium security level.

Performance antipatterns have been detected by means of our rule-based
engine [27], and we found the following two instances: (i) The Ramp (TR)
antipattern, i.e., the response time of the composition service is quite un-
stable along simulation time; (ii) Pipe & Filter (P&F) antipattern, i.e., the
throughput of the extraction service suffers from the consistencyCheck and
dependencyResolution slow filters.

Figure 9 reports an excerpt of the ECCO Weighted Footprint Graph after
(anti)pattern-based rules, where we can notice that the response time (RT')
of the composition service shows traces with SC3, SC5, and SCy software
components. In particular, the weight reported on the RT'composition result
element represents the observed requirement violation (0.5), i.e., the overhead
of the predicted value (10.09 ms) with respect to the requirement (5 ms). The
guiltness values associated to the software components indicate that they
contribute to that specific performance flaw at a certain extent, specifically
with the following estimates: SC3 (0.6), SC5 (0.26), and SCs (0.49).

Figure 10 depicts the response time of the composition service, where the
horizontal bold line indicates the performance requirement. The leftmost
side of the figure reports the initial system and we can see that the service is
provided in 10.09 ms. The middle part of the figure reports the response times
observed while refactoring the software components one-by-one, without the
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support of traces. In this case software components are replaced with ones
two times faster to understand at which extent response times may improve.
In the figure we can notice that there are few results showing a reasonable
improvement whereas all other predicted values are very similar to the initial
system. In particular, the refactorings associated to the software components
suggested by our weighted footprint graph (see Figure 9) show a certain
improvement for the software system, in fact modifying SC3, SC5 and SCj
we get 6.48 ms, 8.31 ms, and 7.43 ms, respectively. It is worth to notice that
guilt estimates are also reflected in the experimental results: SC3 shows the
highest guilt value (0.6, see Figure 9) and its refactoring actually improves the
response time of the composition service (from 10.09 ms to 6.48 ms), whereas
SC5 shows the lowest guilt value (0.26, see Figure 9) and the performance
improvement is lower (from 10.09 ms to 8.41 ms). The rightmost side of the
figure shows the response time obtained while jointly refactoring SCj5, SCj,
and SCy software components. This leads to a response time equal to 2.81
ms, thus allowing the fulfillment of the stated requirement.
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Figure 10: Response time of the composition service.

Figure 11 depicts the throughput of the extraction service. Similarly to
Figure 10, the horizontal bold line indicates the performance requirement.
The leftmost side of the figure reports the initial system and we can see that
0.16 reqs/ms are served. The middle part of the figure reports the through-
puts observed while modifying the software components one-by-one, without
the support of traces. Also in this case software components are replaced
with ones two times faster to understand at which extent throughputs may
improve. We can notice that the best improvement makes the system to
serve 0.25 reqs/ms. The rightmost side of the figure shows the throughput
obtained while using the traces, i.e., the SCy, SCq, SC7, and SCg software
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components are jointly refactored. This leads to a throughput equal to 0.33
reqs/ms, thus allowing the fulfillment of the stated requirement.
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Figure 11: Throughput of the extraction service.

To increase the security level (SL) of the addProduct service from medium
to high we modify the ECCO system by replacing the software component
providing the associated security mechanism (i.e., SCg) with one component
two times slower to understand at which extent performance may degrade.
In this case traceability information is used to refactor all the other soft-
ware components contributing to that service that are not providing security
strategies (i.e., SCy, SCip). These last components are replaced with ones
two times faster to quantify their impact on the overall service provisioning.

Performance Analysis Improve-
Extra-Functional Requirements initial system | without traces | with traces ment (%)
RT(SW.composition) < 5 ms 10.09 ms 6.48 ms 2.81 ms 56.6
TH(SW.extraction) > 0.3 reqs/ms | 0.16 regs/ms 0.25 reqs/ms | 0.33 regs/ms 24.2
SL(addProduct) = high medium high high
RT(addProduct) 2.06 ms 2.95 ms 2.47 ms 16.27

Table 1: Performance improvement gained with the model-to-results traces in the ECCO
case study.

Table 1 compares the experimental results with and without the traceabil-
ity information. The first column reports the stated requirements, the second
column shows the results from the analysis of the initial system, the third
column reports the results without traces, and the fourth column shows the
results obtained while using the traceability information. In the last column
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of the table we report the percentage of improvement gained with traceabil-
ity links vs without such information. For example, in the first row of the
table we can see that the RT of the composition service improves from 10.09
ms to 6.48 ms (without traces) up to 2.81 ms (with traces). Hence, with
traceability links, an improvement of 56.6% is achieved. Last row of table
reports the security requirement and the refactoring enables to increase the
security level from medium to high. In this case the RT of the addProduct
service degrades from 2.06 ms to 2.95 ms, hence traceability links lead to get
2.47 ms, i.e., 16.27% of improvement.

5.4. Case Study 2: DesignSpace

DesignSpace is an academic research project [12] that has been illus-
trated in Section 2. It implements two security patterns. First, the Limited
View (LV) allows to restrict the visibility of artifacts under development to
a restricted number of users belonging to some ad-hoc groups. Second, the
Role-based Access Control (RBAC) enables permissions of adding, modify-
ing, and deleting artifacts on the basis of user roles, such as programmers,
project managers, etc.

We omit the graphical representation of the software architectural model,
however it includes eighteen software components (SC, ..., SCg) and one
hardware device (HW.propertyM anagement).

The system workload is assumed to be closed with a population of 1800
users and an average thinking time of 1 second. The performance require-
ments that we consider, under the stated workload, are: (i) TH: the through-
put of the createArtifact service has to be greater than 0.5 requests/ms; (ii)
U: the utilization of the HW.propertyManagement hardware device has to
be lower than 70%. Security requirements indicate that there is a critical
service (i.e., commit) that require a medium security level (SL).

While solving the QN built for the DesignSpace we found that all the per-
formance requirements are not fulfilled. In particular, the average throughput
(TH) of the createArtifact service has been estimated to be 0.1 reqs/ms, and
the HW.propertyManagement hardware device has an utilization equal to
81%. Also the security requirement is not fulfilled since the commit service
is annotated with low security level.

Detection of performance antipatterns provides as output the following
three instances: (i) Blob antipattern, i.e., the get Workspace software compo-
nent is managing most of the application’s business logics; (ii) Extensive Pro-
cessing (EP) antipattern, i.e., the demand of the showArtifactDetails service
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is much larger than createArtifact service; (iii) Empty Semi Trucks (EST) an-
tipattern, i.e., the software components startValidation and showValidation
communicate with a large number of messages of low size.

Figure 12 depicts the throughput of the createArtifact service, where the
horizontal bold line indicates the performance requirement. The leftmost
side of the figure reports the initial system and we can see that 0.1 reqs/ms
are served. The middle part of the figure reports the throughputs observed
while modifying the software components one-by-one, without the support
of traces. In this case software components are replaced with ones ten times
faster to understand at which extent performance may improve. We report
all values in the figure and we can notice that the best improvement makes
the system to serve 0.38 reqs/ms. The rightmost side of the figure shows the
throughput obtained while using the traces, i.e., the SC%7, SCy, SCis, and
SC'3 software components are jointly refactored. This leads to a throughput
equal to 0.52 reqs/ms, thus allowing the fulfillment of the stated requirement.
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Figure 12: Throughput of the createArtifact service.

Figure 13 depicts the utilization of the propertyManagement hardware
device, where the horizontal bold line indicates the performance requirement.
The leftmost side of the figure reports the initial system and we can see that
the utilization is 0.81 %. The middle part of the figure reports the utilization
values while modifying the software components one-by-one, without the
support of traces. In this case software components are replaced with ones
ten times faster to understand at which extent utilization may improve. We
can see in the figure that the best value is achieved while refactoring the SC;
component that leads to an utilization of 0.71 %. The rightmost side of the
figure shows the utilization obtained while using the traces, i.e., the SC7 and
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S software components are jointly refactored. This leads to an utilization
equal to 0.61%, thus allowing the fulfillment of the stated requirement.
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Figure 13: Utilization of the propertyManagement hardware device.

To increase the security level (SL) of the commit service from low to
medium we modify the DesignSpace system by replacing the software com-
ponent providing the associated security mechanism (i.e., SCg) with one two
times slower to understand at which extent performance may degrade. In this
case traceability information is used to refactor all the other software compo-
nents contributing to that service that are not providing security strategies
(i.e., SC5, SC7, SCy). These last components are replaced with ones two
times faster to quantify their impact on the overall service provisioning.

Similarly to Table 1, Table 2 summarizes the experimental results with
and without the traceability information. For example, in the first row of the
table we can see that the TH of the createArtifact service improves from 0.1
reqs/ms to 0.38 reqs/ms (without traces) up to 0.52 reqs/ms (with traces).
Last row of table reports the security requirement and the refactoring in-
creases the security level from low to medium. In this case the RT of the
commit service inevitably degrades, in particular it goes from 0.82 ms to
1.63 ms. Traceability information leads to get 1.46 ms, i.e., 9.81% of im-
provement. We also report the percentage of improvement while comparing
the results with and without the traceability information, and we can notice
an improvement up to 26.92% among all requirements.

5.5. Case Study 3: PermissionSystem

PermissionSystem is an industrial system developed to manage security
permissions in a content management system. It is designed to meet multiple
security patterns on content and users at the same time. In its actual version
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Performance Analysis Improve-
Extra-Functional Requirements initial system | without traces [ with traces | ment (%)
TH(SW.createArtifact) > 0.5 reqs/ms 0.1 reqs/ms 0.38 reqs/ms 0.52 reqs/ms 26.92
U(HW.propertyManagement) < 0.7 0.81 0.71 0.61 14.08
SL(commit) = medium low medium medium
RT (commit) 0.82 ms 1.63 ms 1.46 ms 9.81

Table 2: Performance improvement gained with the model-to-results traces in the De-
signSpace case study.

the PermissionSystem implements three security patterns. First, it provides
direct permissions (authorization pattern) assigned to content entities and /or
users. For instance the administrator of a software product may mark an
entity as visible for all users. In such case the entity will be visible for
every user regardless of his/her account in the system. The administrator
may also assign the permission to a user account, allowing it to view all
entities under a given structure. Second, the PermissionSystem implements
the session security pattern, which is mostly needed to store permissions
assigned to user accounts at runtime. This is also a performance optimization
as it allows for faster evaluation of user permissions. Third, a role based
access control (RBAC) pattern is implemented to support more sophisticated
permissions. In this pattern, a mapping between user accounts groups and
their respective permissions are created. This feature allows the integration of
PermissionSystem with other heterogeneous systems (e.g., active directory).

We omit the graphical representation of the software architectural model,
however it includes eight software components (SCY, ..., SCg) and two hard-
ware devices (HW.permissions, HW.accesses).

The system workload is assumed to be closed with a population of 80 users
and an average thinking time of 1 second. The performance requirements that
we consider, under the stated workload, are: (i) RT: the average response
time of the permissionOnEntities service has to be less than 5 ms; (ii) U:
the utilization of the HW.permissions hardware device has to be lower than
90%. Security requirements indicate that there are some critical services
(i.e., accessPermission and checkPermission) that require a high security
level (SL).

While solving the QN built for the PermissionSystem we found that all
the performance requirements are not fulfilled. In particular, the average
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response time (RT) of the permissionOnFEntities service has been estimated
to be 15.72 ms, and the HW.permissions hardware device has an utilization
equal to 100%. Also the security requirements are not fulfilled since the
checkPermission is annotated with medium security level.

Detection of performance antipatterns provides as output the follow-
ing two instances: (i) Concurrent Processing System (CPS) antipattern,
i.e., HW.permissions hardware device is over-utilized; (ii) One-Lane Bridge
(OLB) antipattern, i.e., the response time of the permissionOnEntities ser-
vice suffers from the low multi-threading enabled in the database while ver-
ifying permissions.

20

15.72 15.81 15.72

15

10

RT-SW.permissionOnEntities(ms)

initial with
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without traces

Figure 14: Response time of the permissionOnFEntities service.

Figure 14 depicts the response time of the permissionOnFEntities service,
where the horizontal bold line indicates the performance requirement. The
leftmost side of the figure reports the initial system and we can see that the
service is provided in 15.72 ms. The middle part of the figure reports the RT'
observed while modifying the software components one-by-one, without the
support of traces. In this case software components are replaced with ones
ten times faster to understand at which extent performance may improve.
The best value is obtained while refactoring the SC, software component,
in fact the response time slows down to 7.06 ms. The rightmost side of the
figure shows the response time obtained while using the traces, i.e., the SC}
and SCj5 software components are jointly refactored. This leads to a response
time equal to 4.98 ms, thus allowing the fulfillment of the stated requirement.

Figure 15 depicts the utilization of the two hardware devices (i.e., HW.per-
missions, HW.accesses), where the horizontal bold line indicates the perfor-
mance requirement. The leftmost side of the figure reports the initial sys-
tem and we can see that the utilization of HW.permissions device is 100%,
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whereas the utilization of HW.accesses device is 39%. The middle part of
the figure reports the utilization values while redeploying the software com-
ponents one-by-one, without the support of traces. We can see in the figure
that the best value is achieved while moving the SCg component that leads to
an utilization of 26% for the HW.accesses device. The rightmost side of the
figure shows the utilization obtained while using the traces, i.e., the SC5, SC5
and SCy software components are jointly redeployed from HW.permissions
to HW.accesses. This leads to an utilization equal to 81% for HW.permis-
sions device, but the hosting node shows an increasing utilization (from 39%
to 84%). However, both devices fulfill the stated requirement.
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1 -

0.8

0.6 -

U-HW.nodes

0.4

0.2 -

0 -

initial with
system traces
without traces

Figure 15: Utilization of HW.permissions and HW.accesses hardware devices.

To increase the security level (SL) of the checkPermission service from
medium to high we modify the PermissionSystem by replacing the software
component providing the associated security mechanism (i.e., SC7) with one
ten times slower to understand at which extent performance may degrade. In
this case traceability information is used to refactor the software components
contributing to that service that are not providing security strategies (i.e.,
SCq, SCy, SC3). These last components are replaced with ones ten times
faster to quantify their impact on the overall service provisioning.

Similarly to Table 2, Table 3 summarizes the experimental results with
and without the traceability information. For example, in the first row of the
table we can see that the RT of the permissionOnEntities service improves
from 15.72 ms to 7.06 ms (without traces) up to 4.98 ms (with traces), i.e.,
29.49% of improvement. Last row of table reports the security requirement
and the refactoring enables the security level to increase from medium to
high. In this case we report the RT of the checkPermission service that
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Performance Analysis Improve-
Extra-Functional Requirements initial system | without traces [ with traces | ment (%)
RT (permissionOnEntities) < 5 ms 15.72 ms 7.06 ms 4.98 ms 29.46
U(HW.permissions) < 0.9 1.0 1.0 0.81 19
SL(checkPermission) = high medium high high
RT(checkPermission) 1.86 ms 3.45 ms 3.05 ms 11.59

Table 3: Performance improvement gained with the model-to-results traces in the Permis-
sionSystem case study.

degrades from 1.86 ms to 3.45 ms. Traceability information indicates refac-
torings leading to 3.05 ms, i.e., 11.59% of improvement. While comparing
the results with and without the traceability information, we can observe an
improvement up to 29.46% among the three requirements.

5.6. Users feedback

To investigate the usefulness of our approach, we conducted an experi-
ment with users to collect their feedback, with the goal to answer the follow-
ing two research questions:

RQ4: Do trace uncertainties for architectural models vs extra-functional
results exist and are relevant in practice?

R@Q)s: Do security patterns and performance antipatterns help in the re-
duction of uncertainty?

Our experiment was performed by contacting the 3 owners of the pre-
sented case studies, plus 9 PhD students involved in the Computer Science
program at the Gran Sasso Science Institute (GSSI), Italy. All the PhD
students had been exposed to software architecture modelling and extra-
functional analysis topics in their courses. Hence, the subjects involved in
the experiment were 12 users aware of the domain.

The outcome of our user study is that: 100% of the subjects confirmed
that there are uncertainties while bridging architectural model elements with
extra-functional results by answering the R(); question positively, and this
high percentage confirms our claim that uncertainties exist and are relevant in
practice; 83% of the subjects expressed a positive opinion on the addition of
patterns and antipatterns knowledge, however 2 users over 12 were skeptical
for the R(Q)o question, and they provided the following motivations:
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- patterns and antipatterns are application-dependent, i.e., their useful-
ness might be strongly related to the case study under analysis, hence
they might not lead to a better interpretation of results in some cases;

- patterns and antipatterns are granularity-related, i.e., their usefulness
is affected by the granularity used in the specification of architectural
model elements and extra-functional results, hence if they are expressed
on different levels of granularity they become useless.

We agree with these motivations and we think that, even if the usefulness of
patterns and antipatterns cannot be always guaranteed, in our case studies
their usage resulted to provide a consistent uncertainty reduction. To further
investigate this point, we asked all users to provide their own traceability links
for the three case studies under analysis, and we quantified their outputs by
evaluating the average percentage of uncertainty reduction (see Table 4).
Further discussion on this experimentation is reported in Section 5.7.

Besides this, we also asked for further comments on the approach and
on the used tool, thus to understand the difficulties of users in the assigned
tasks. One user pointed out that it could be useful to identify architectural
elements and extra functional properties that share the same names and
automatically produce their traceability links, leaving the opportunity to the
user to modify or delete such links afterwards. Another user complained
about the typing of the uncertainties, it may take too much time and it may
be an error-prone task, i.e., a smarter code completion and a GUI could be
helpful. Both these points represent our future work.

5.7. Afterthoughts

The experimentation conducted on three different case studies supports
the idea of exploiting traceability information in the field of extra-functional
analysis. We showed that with traces we are able to get a certain performance
improvement across all the presented case studies. Specifically, our approach
allows to derive quantitative evaluations of performance and security trade-
offs, and it is suitable for decision making while refactoring software archi-
tectures. As feedback to software designers we are able to identify the root
causes of performance/security flaws and to point out the most promising
model elements for the refactoring process by means of traceability links.

Table 4 provides an overview of the presented case studies, where rows
report some system features, and columns list the three analyzed systems:
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two academic research projects (i.e., ECCO and DesignSpace) and one pro-
duction system (i.e., PermissionSystem). For each considered case study, in
the upper part of the table we report: (i) the number of architectural model
elements; (ii) the number of extra-functional properties; (iii) the size of trace
matrix that basically represents #rows *x #columns entries. In the lower
part of the table we report: (i) detected performance antipatterns; (ii) spec-
ified security patterns; (iii) the uncertainty reduction is quantified in terms
of number of traces (T), no-traces (N), and their sum (T+N) that we have
in the transition matrix before and after (anti)patterns knowledge. Uncer-
tainty reduction is reported by evaluating the traceability links provided by
the owners of the three case studies, and also calculating the average of the
traceability links specified by all the other participants involved in our user
study. These average estimations inevitably result in decimal numbers for
both the number of traces and no-traces.

ECCO DesignSpace PermissionSystem
ArchModel
Elements 43 30 16
ExtraFunc
Properties 70 94 58
Size of TM 3010 2820 928
Performance TR, BLOB, CPS,
Antipatterns P&F EP, EST OLB
Security AUTH, LV, AUTH,
Patterns RBAC RBAC SES, RBAC
owners T: 48 — 60 T: 72 — 87 T: 27 — 44
N: 713 — 781 N: 1941 — 1941 N: 252 — 420
. T+N: 761 — 841 T+N: 2013 — 2028 T+N: 279 — 464
Uncertainty
reduction other T: 29.8 — 36.8 T: 21.8 — 31.1 T: 24.4 — 34.1
participants N: 133.9 — 185.0 N: 57.9 — 57.9 N: 46.3 — 208.8
T+N: 163.7 — 221.8 T+N: 79.7 — 89 T+N: 70.7 — 242.9

Table 4: Overview of the presented case studies.

For example, in the last column of the table, we can see that for the Per-
missionSystem we have 16 architectural model elements, 58 extra-functional
properties obtaining a matrix 16 % 58 = 928 entries. While adding perfor-
mance antipatterns (i.e., CPS and OLB) and security patterns (i.e., AUTH,
SES, and RBAC) traces from the owner of the case study go from 27 to
44, whereas no-traces go from 252 to 420. Both information allowed to re-
duce the initial uncertainty (928 — 279 = 649 TN) of a considerable amount
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(928 — 464 = 464 TN), i.e., 28.5% of uncertainty reduction. From the other
participants we found that traces go from an average value of 24.4 to 34.1,
whereas no-traces go from an average value of 46.3 to 208.8. Both informa-
tion allowed to reduce the initial uncertainty (928 — 70.7 = 857.3 TN) of
a substantial amount (928 — 242.9 = 685.1 TN), i.e., 20.1% of uncertainty
reduction. It is worth to remark that even if the absolute values of traces
and no-traces from the owners is higher than the ones provided by the other
participants, our experimentation provides evidence that (anti)patterns are
helpful for the uncertainty reduction.

As stated in Section 4.2, the specification of performance and security
(anti)pattern-based rules does not guarantee to decrease the overall uncer-
tainty of the system. In fact, in Table 4 we can notice that the DesignSpace
case study shows an unchanged number of no-traces (i.e., 1941), whereas
traces rather increase (from 72 to 87) while considering the specification of
traceability links from the owners of the case study. Interestingly, looking at
the average values from the other participants we also found an unchanged
number of no-traces (i.e., 57.9). Even if the absolute value is much lower in
this last case, the experimentation shows that (anti)patterns were not use-
ful for the understanding of no-traces in this case study. In fact, for the
DesignSpace case study the initial uncertainty (2820 — 2013 = 807 TN) is
reduced of a small amount (2820 — 2028 = 792 TN), i.e., 1.9% of uncertainty
reduction. Indeed uncertainty reduction strongly depends from the initial
input provided by software engineers, however in our experimentation across
three different case studies we found that most likely (anti)pattern-based
rules lead to reduce the initial uncertainty.

As stated in Section 5.6, the usefulness of our approach has been validated
with a user study involving the 3 owners of the case studies plus 9 external
users. We found that 100% of the subjects confirmed that there are un-
certainties while bridging architectural model elements with extra-functional
results, and 83% of the subjects expressed a positive opinion on the addi-
tion of patterns and antipatterns knowledge. These high percentage values
support our claim that uncertainties are commonly encountered by software
engineers and our technique is helpful to support them in understanding the
root causes of extra-functional flaws.

The scalability of our approach for handling traceability links has been
evaluated in our previous work [5]. As the automated part of this work is in
essence an application of our previous approach, we assume that the same
scalability evaluation does apply for this work either. In [5] we assessed
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the scalability of our approach by measuring the ratio between the size of
uncertainty input and the time required to solve it. As input we used three
case study systems (i.e., Gantt, JHotDraw, and ReactOS Explorer) and we
automatically generated 597 possible inputs of different sizes and complexity.
After running our approach against all these inputs, we measured the time
required to solve the uncertainty, and each of the 597 possible inputs was
resolved in less than one second. More details on the scalability evaluation
are reported in the evaluation section 7.2 from [5].

In this paper, the scalability evaluation is conducted on tree case studies
(i.e., ECCO, DesignSpace, and PermissionSystem) of different (i) sizes, in fact
the traceability matrix varies from 928 to 3010 entries, and (ii) complexity
as the sum of traces and no-traces varies from 279 to 2028, as shown in Table
4. We measured the time required to solve the uncertainty for the provided
inputs and it is less than one second with all the different inputs. Practically
we never noticed the computation time as the tool runs almost instantly
when new input is provided.

Summarizing, the proposed technique and toolset is aimed to improve
the ability of software engineers in the identification of critical architectural
model elements and their refactorings. Differently from design space explo-
ration approaches [35, 36, 37| that look for optimal trade-offs by evaluat-
ing all feasible architectural alternatives with the risk that the design space
may be huge and its exploration may be time-consuming, our objective is
to limit the number of architectural alternatives and to quickly converge to-
wards a system configuration suitable to overcome extra-functional flaws. As
drawback, our approach builds upon heuristic evaluations (i.e., patterns and
antipatterns) hence extra-functional improvements are not guaranteed.

6. Threats to validity

Besides inheriting all limitations of the underlying software quality en-
gineering and model-driven traceability techniques [38, 39], our approach
exhibits the following threats to validity.

Correctness: input is given by the engineer that defines uncertainty con-
structs to the level of detail she or he is comfortable with. This means
that not every input combination is valid and it becomes increasingly un-
likely that the input remains consistent, especially if the input is provided
by different engineers. An important aspect of future work is to provide
correctness checks based on the consistency of the input, in fact consistency
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does not imply correctness. We can identify the input that is responsible for
incorrectness and granularity problems, and provide support to engineers for
resolving the detected issues.

Granularity: it is difficult to establish at what level of granularity traces
between model and results should be generated. Extra-functional properties
can be estimated at different levels of granularity, e.g. the response time
performance index or the security level can be evaluated at the level of a
cpu device, or at the level of a service that spans on different devices. Then,
the engineer has the choice to establish traceability between the model ele-
ments and it is unrealistic to keep under control all performance and security
properties at all levels of abstraction.

Selection of extra-functional properties: our current experimentation is
focused on performance and security flaws, but many other extra-functional
properties can be tackled as well. The rationale of selecting these two is that
there exists a trade-off relationship among them: the raising of the security
level implies a performance degradation that can be mitigated with model-
to-results traces. In the near future we plan to integrate larger set of extra-
functional properties, such as reliability, along with other methods, such as
fault-tree analysis [16], to derive further extra-functional results (e.g., mean
time to failure, mean time to repair) and deeply investigate the traceability
benefits in this domain.

Complexity of architectural refactorings: to quantify the effectiveness of
model-to-results traces we applied a set of refactoring actions (e.g., substitute
a software component with another one that is  times faster/lower, re-deploy
a certain software component) to the subset of model elements identified by
traceability links. These refactorings are used for arguments sake to explore
trade-offs and to demonstrate the usefulness of the weighted foot print graph,
in fact we found that highly weighted architectural elements are the ones that
actually contribute to higher performance benefits. However, such refactor-
ings do not guarantee performance improvements a priori, because the entire
process is based on heuristic evaluations. In fact, refactoring of architectural
models is a very complex process [40], and it may also include the addition
and deletion of other model elements that affect our footprint graph in its
structure. This last point opens an interesting direction of research that we
aim to investigate in the near future.

Complezity of security properties: it is very challenging to target security
concerns because different types of attacks may occur and a single compro-
mise can cause system failure. For sake of illustration, in our experimentation
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we considered pre-defined security levels (i.e., low, medium, and high), and
the increase/decrease of such levels is regulated by larger/lower demand of
computational resources, thus to explore security vs performance trade-offs.
However, we plan to enable interoperability among extra-functional results,
e.g., the occurrence of security flaws in architectural elements may lead to
reset the performance results traced by such elements, thus to strengthen the
security-related issues and explicitly include system reliability in the set of
considered extra-functional results.

Specification of patterns and antipatterns: to reduce model-to-results un-
certainty we use specific structures for the specification of performance an-
tipatterns and security patterns, and these structures strictly conform to
our interpretation of the literature [17, 9]. Indeed several other feasible in-
terpretations of (anti)patterns can be provided due to their wide variety
of implementation variants, which can lead to higher/lower accuracy. This
unavoidable gap is an open issue, and requires a wider investigation to con-
solidate the (anti)patterns’ specification in this domain.

Sufficiency of patterns and antipatterns: to build model-to-results traces
we exploit performance antipatterns and security patterns since they are
recognized to provide solid solutions to known and recurrent problems [41].
However, due to the complexity of real world systems their usage may not be
sufficient for the detection of extra-functional problems. As future work, we
plan to investigate further methodologies [42, 43] to catch extra-functional
issues and integrate their output in our specification.

Uncertainty reduction: the addition of security patterns and performance
antipatterns does not guarantee the uncertainty reduction a priori. As fu-
ture work, we plan to integrate other approaches to derive model-to-results
traceability links. For example, to achieve performance goals we can consider
bottleneck analysis [44] and model optimization methods [35] to improve the
uncertainty reduction.

Simulation accuracy: in our experimentation performance analysis results
are obtained by simulating the QN model with JMT [32]. In particular,
JMT performs an automatic stop of the simulation when all performance
metrics are estimated with the required accuracy. We used the default values
for the Confidence Interval Size of the solution and for the Max Relative
Error of the greatest sample error that are 0.99 and 0.03, respectively, but
they can be modified if more/less accurate results are required. Even if in
literature some approaches have been proposed to combine QN prediction
results with empirically found data to get more accurate QN-based models
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[45], for our case studies (see Section 5) the numerical results are used to
compare architectural refactorings applied to different model elements to
validate if traceability links point out the most critical ones. Hence, we think
that the considered simulation results cannot heavily affect the validation
process, but we intend to investigate this aspect in the near future.

7. Related work

The work presented in this paper relates to two main research areas and
builds upon our previous results in these areas: (i) software quality engi-
neering, and (ii) model-driven traceability. We also discuss the state-of-art
approaches in the context of uncertainty analysis and traceability research
dealing with extra-functional properties of software systems.

7.1. Software quality engineering

Software quality represents the entire collection of engineering activities
and related analyses used throughout the software development cycle, which
are directed to meet extra-functional requirements [38]. In literature there
are several approaches, surveyed in [14, 35|, that tackle the problem of ana-
lyzing and optimizing software quality at the architectural level. Two main
streams of research can be defined in this direction: (i) qualitative approaches
provide exploratory insights into the problem, e.g., several analysis methods
have been proposed in [46, 47, 48, 49]; (ii) quantitative approaches aim to
generate numerical data to quantify architectural decisions, e.g., different de-
sign alternatives are evaluated in [50, 51, 52, 53]. Our approach belongs to
quantitative approaches, in fact it aims to identify the contribution of archi-
tectural elements to extra-functional quantitative results. In literature few
related works can be found dealing with the interpretation of extra-functional
results, and most of them are based on monitoring techniques and therefore
conceived to only act after software deployment. We are instead interested in
model-based approaches that can be applied early in the software life-cycle
to support design decisions. In this direction we identified two main cate-
gories of approaches: (i) rule-based methodologies that define a set of rules
to overcome extra-functional problems [54, 55]; (ii) search-based approaches
that explore the problem space by examining options to deal with extra-
functional flaws [36, 37]. To achieve performance goals, our previous work
focused on antipatterns [21] that are very complex (as compared to other
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software patterns) because they are founded on different characteristics of
software systems related to architectural model elements (e.g., many usage
dependencies, excessive message traffic) as well as to performance results
(e.g., high, low utilization). Performance antipatterns represent effective in-
struments to tackle the issue of interpreting performance results, because
they document: (i) common bad practices leading to performance problems
and (ii) solutions in terms of architectural refactorings. Their effectiveness
has been demonstrated, among others, by our recently consolidated results:
(i) we formalized the representation of antipatterns by means of first-order
logic rules that express a set of system properties under which an antipat-
tern occurs [27]; (ii) we introduced a methodology to prioritize the detected
antipatterns and solve the most promising ones [20]. To deal with security
concerns, in our previous work [56, 30, 31] we developed a framework to
support the specification of security strategies at the architectural level and
their translation into QN performance models, thus to estimate security vs
performance trade-offs. Moreover, in [30] we also demonstrated that QN
prediction errors never exceeded 4% when compared with measurements on
the real implementation of the system, thus to assess the accuracy of QN
prediction results.

7.2. Model-driven traceability

Traceability has been defined as the ability to describe and follow the life
cycle of software artifacts [57]. The current state of research and practice
of traceability in requirements engineering and software development is dis-
cussed in [58], where model-driven techniques have been recognized of key
relevance to support traceability concerns. In literature, there are many tech-
niques exploiting the automatic recovery of different types of trace links, such
as code and models [59, 60], code and documentation [61], code and features
[62]. Results from existing empirical studies [63, 64, 65] demonstrate that
traceability information has beneficial effects on the effectiveness and effi-
ciency of understanding changes, performing requirements inspections, and
evolving software artifacts. In our previous work [66] we introduced a lan-
guage for expressing uncertainties in traceability relationships between mod-
els and code, which is the main benefit of this technique compared with
other traceability approaches. Our recent work [5] out-passes these tech-
niques by introducing a flexible methodology to express uncertainties, in fact
we proved that the same uncertainty expressions could be applied to trace
arbitrary kinds of software artifacts. Our approach makes use of this last
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achievement, in fact here we consider artifacts of different nature that are
architectural elements and extra-functional results. This leads to broaden
the scope of our research since we introduce a weighting methodology that
gives a certain semantics to the involved artifacts: architectural elements
are weighted on the basis of how much they contribute to the violation of
extra-functional requirements.

7.3. Uncertainty analysis

The problem of dealing with uncertainty in early requirements and archi-
tectural decisions has been recognized by several works in literature. In [67]
a taxonomy for classifying different types of uncertainties is provided, and
three main dimensions are outlined: location, level and nature. The location
of uncertainty refers to the place where the uncertainty manifests itself within
the software artifacts; in this paper it consists of the relationships among ar-
chitectural elements and extra-functional results. The level of uncertainty is
the spectrum of its manifestation between deterministic knowledge and total
ignorance; in this paper it is supported by our language and users specify
the uncertainty at the level they are comfortable. The nature of uncertainty
refers to whether it is due to the imperfection of the acquired knowledge or
to the inherent variability of the phenomena being described; in this paper
we consider the first nature of uncertainty, but we aim to consider the second
type as future work. In [68] a language (i.e., RELAX) has been proposed
to explicitly address uncertainty for specifying the behaviour of dynamically
adaptive systems. Our approach differs from this work in the location and
nature of uncertainty since [68] considers uncertain the system behaviour
due to inherent variability of the execution environment. In [69] a tool (i.e.,
GuideArch) has been presented to guide the exploration of the architectural
solution space under uncertainty. Our approach differs from this work in
the location and level of uncertainty since [69] employs fuzzy mathematical
methods to quantify uncertain architectural alternatives, but no levels can be
explicitly specified to express higher/lower knowledge on such alternatives.
In [70] a tool (i.e., Moda) has been introduced for multi-objective decision
analysis by means of Monte-Carlo simulation and Pareto-based optimisation
methods. Our approach differs from this work in the location and level of
uncertainty since [70] models uncertainty in parameters’ values as probability
distributions that contribute to problem-specific goals, and the level of un-
certainty is a discrete value that represents the attainment for each goal and
its impact on risk. In our previous work [71, 72] we considered uncertainty

41



in a different location (i.e., performance model parameters), and the analysis
relied on lower /upper bounds provided by software architects. Besides the
differences in the dimensions of uncertainty, all these works [68, 69, 70, 71, 72]
do not explicitly consider extra-functional properties and their traceability
with software architectural elements.

7.4. Traceability vs extra-functional properties

In literature there are some approaches that work towards the specifica-
tion of traceability links between model elements and extra-functional prop-
erties. In [73] a mechanism to annotate performance analysis results back
into the original performance models (provided by the domain experts) is
presented. On the contrary, our approach includes the software models for
traceability, and it supports the interpretation of analysis results by providing
weights on the basis of requirements’ violation. In [74] traceability links are
maintained between performance requirements and Use Case Map (UCM)
scenarios, however these links are used to build Layered Queueing Network
(LQN) models only. On the contrary, our approach maps architectural ele-
ments with analysis results, thus to support software architects in the task of
interpreting these results. In [75] traceability links are used to propagate the
results of the performance model back to the original software model, however
it applies to UML and LQN models only. In contrast to [75], our approach
aims to automatically build model-to-results traceability links to point out
the architectural elements affecting the stated requirements, with no refer-
ence to specific modelling languages. In [76] traceability links are maintained
between the software design (i.e., UMLsec models [77]) and the implemen-
tation code (i.e., Java) to develop secure and dependable software systems.
In particular, the traceability technique proposed in [76] is intended to find
vulnerability bugs in the implementation of security protocols like SSL. On
the contrary, our approach is aimed at tracing back security flaws to model
elements and applying refactorings at the architectural level. In [78] authors
extended their work by performing a run-time verification of traceability
links from the design model to its implementation, i.e., the actual system is
verified against the model while it executes. Our approach can be extended
in a similar direction by considering extra-functional results as set of values
obtained while changing run-time conditions. In [79] authors present an ap-
proach for adaptive information security in the cloud by using traceability as
a mean to reason about the relationship between security requirements and
the policies that satisfy those requirements. Traceability links are enriched
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with contextual information in order to support the adaptation of cloud ap-
plications to the environment they operate that was unknown or incomplete
at design-time. As opposite to [79], our approach builds traceability links
to make evident the architectural elements responsible for extra-functional
flaws.

Summarizing, we found that some approaches [73, 74, 75] apply on early
model abstractions like we do in our approach, whereas the remaining ones
(76, 78, 79] work late in the development process (i.e., at the code level). Our
motivation for dealing with early model abstractions is that extra-functional
flaws are cheaper to fix [80], however as drawback the amount of information
is limited and an obvious trade-off exists vs late analysis where the results
are much more accurate but several constraints have been imposed on the
structural and behavioral aspects of a software system. Concluding, to the
best of our knowledge, there are no other works in literature that provided
a tool-supported approach to derive weights for software artifacts on the
basis of traceability uncertainties vs multiple extra-functional results, thus
to support software engineers in their interpretation.

8. Conclusion

This paper presents a new approach to automate the traceability between
architectural model elements and extra-functional results, thus to support
software architects in the identification of the causes that most likely con-
tribute to the violation of extra-functional requirements. To this end, we
developed a tool (SoEfTraceAnalyzer) that is able to interpret a language
capable of interpreting uncertainties while capturing model-to-results trace-
ability links. The approach is validated by means of three different case
studies, i.e., two academic research projects and one industrial system. The
implemented tool and the case studies are publicly available for researchers
and practitioners at [11].

The benefit of the tool is that it allows to automatically visualize the de-
pendencies between modeling elements in architectural models (e.g., software
components) and extra-functional properties (e.g., security level, response
time, throughput, and utilization). As input the tool takes on the one hand
possible influences already known to the domain expert, and on the other
hand security patterns and performance antipatterns which express further
such dependencies. The specification of extra-functional (anti)patterns is
used to make the domain expert dependencies more precise, e.g., by ruling
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out certain influences.

We conducted a user study and we found that 100% of involved sub-
jects confirmed the relevance of specifying uncertainties while bridging ar-
chitectural model elements with extra-functional results, and 83% expressed
a positive opinion on the addition of patterns and antipatterns knowledge.
However, as future work we intend to further investigate the usability of
our approach by exposing the developed tool [11] to users with higher levels
of experience, such as experienced software architects and quality analysts.
This wider experimentation will allow us to deeply investigate the usefulness
of traceability links for developers in the context of mapping architectural
model elements with extra-functional results.
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