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Abstract

We consider non cooperative games in all-optical networks where users share the
cost of the used ADM switches for realizing given communication patterns. We
show that the two fundamental cost sharing methods, Shapley and Egalitarian, in-
duce polynomial converging games with price of anarchy at most %, regardless of
the network topology. Such a bound is tight even for rings. Then, we show that if
collusion of at most k players is allowed, the Egalitarian method yields polynomi-
ally converging games with price of collusion between % and % + % This result is
very interesting and quite surprising, as the best known approximation ratio, that
is % + €, can be achieved in polynomial time by uncoordinated evolutions of collu-
sion games with coalitions of increasing size. Finally, the Shapley method does not
induce well defined collusion games, but can be exploited in the definition of lo-
cal search algorithms with local optima arbitrarily close to optimal solutions. This
would potentially generate PTAS, but unfortunately the arising algorithm might
not converge. The determination of new cost sharing methods or local search algo-
rithms reaching a compromise between Shapley and Egalitarian is thus outlined as

being a promising and worth pursuing investigating direction.
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1 Introduction

1.1  Background

All-optical networks have been largely investigated in recent years due to the
promise of data transmission rates several orders of magnitudes higher than
current networks [6,7,22,24]. Major applications are in video conferencing,
scientific visualization and real-time medical imaging, high-speed supercom-
puting and distributed computing [11,22].

The key to high speeds in all-optical networks is to maintain the signal in
optical form, thereby avoiding the prohibitive overhead of conversion to and
from the electrical form at the intermediate nodes. The high bandwidth of the
optical fiber is utilized through wavelength-division multiplering: two signals
connecting different source-destination pairs may share a link, provided they
are transmitted on carriers having different wavelengths (or colors) of light.
The optical spectrum being a scarce resource, given communication patterns
in different topologies are often designed so as to minimize the total number
of used colors, also as a comparison with the trivial lower bound provided by
maximum load, that is the maximum number of connection paths sharing a
same physical edge [3,19].

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large por-
tion of research concentrates with the total hardware cost. This is modelled
by considering the basic electronic switching units of the electronic Add-Drop
Multiplexer (ADM) and focusing on the total number of these hardware com-
ponents. Each lightpath uses two ADMs, one at each endpoint. If two non-
overlapping lightpaths are assigned the same wavelength and are incident to
the same node, then they can use the same ADM. Thus, an ADM may be
shared by at most two lightpaths. The problem of minimizing the number of
ADMs was introduced in [21] for ring networks. For such a topology it was
shown to be NP-complete [13] and an approximation algorithm with approx-
imation ratio 3/2 was presented in [9] and improved in [31,14] to 10/7 + €
and 10/7 respectively. For general topologies an algorithm with approxima-
tion ratio 8/5 is presented in [13]. For the same problem, algorithms with
approximation ratio 3/2 + ¢ were provided in [8,17].

In a distributed and decentralized environment characterizing an optical com-
munication network, besides the classical design of centralized algorithms op-
timizing the resources utilization, the analysis of the uncooperative interaction
between the network users and the design of distributed algorithms call for
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more research effort. On this respect, Game Theory and the associated concept
of Nash equilibria [28] have recently emerged as a powerful tool for modelling
and analyzing such a lack of coordination. In this setting, each communica-
tion request is handled by an agent (or player) selfishly performing moves, i.e.
changing her routing strategy in order to maximize her own benefit. A Nash
equilibrium is a solution of the game in which no agent gains by unilaterally
changing her routing strategy. If Nash equilibria are reached in a polynomial
number of selfish moves, and finding an improving user move is a problem
solvable in polynomial time, such an uncooperative process naturally defines
a distributed polynomial time algorithm. However, due to the lack of coopera-
tion among the players, Nash equilibria are known not to always optimize the
overall performance. Such a loss [10,1] has been formalized by the so-called
price of anarchy (resp. optimistic price of anarchy), defined as the ratio be-
tween the cost of the worst (resp. best) Nash equilibrium and the one of an
optimal centralized solution.

There exists a vast literature on Nash Equilibria in communication networks
[25,29]. The problem of investigating the existence and performance of Nash
equilibria in all-optical networks has been first considered [4,5] with respect
to the minimization of the number of used wavelengths. In such a setting,
a service provider has to satisfy a given set of point-to-point communication
requests, charging each of them a cost depending on its wavelength and on the
wavelengths of the other requests met along its path in the network. Each re-
quest is issued by a non-cooperative agent interested only in the minimization
of her own cost. In a similar setting [20], the authors focus on the complexity
of recognizing and computing Nash equilibria.

Even if in non-cooperative games players are usually considered to act selfishly
and independently, an interesting investigated issue is the one of collusion.
Roughly speaking, collusion allows two or more players forming a coalition
to come to an agreement in order to obtain a gain by changing at the same
time their strategies. In this framework, a Nash equilibrium is a solution in
which there exists no coalition of players having convenience in changing their
strategies. The lack of performance with respect to the optimal solution has
been measured by the price of collusion [18,23], where the authors focused
on a particular class of games, the congestion games, assuming the players
partitioned into sets of coalitions. Earlier [2,26], the authors provided other
related equilibrium concepts, such as strong or coalition-proof equilibria, en-
suring that coalitions have no incentive to form. Coalitions have also been
considered from the perspective of the algorithmic mechanism design, with
emphases on group-strategyproof mechanisms [27].



1.2  Our Contribution

Following the research direction outlined in [16], in this paper we are interested
in analyzing the non-cooperative scenario in which the users of an optical
network interact sharing the cost of the used hardware components. More
precisely, we focus on ADM switches, considering the game in which their
total cost is divided between the users according to two fundamental cost
sharing methods: the Shapley [32] method, in which the agents using an ADM
pay for it by equally splitting its cost, and the Egalitarian one, where the
whole hardware cost is equally split among all the players.

We show that without collusion the two cost sharing methods are equivalent
and induce games always convergent in polynomial time, i.e. the players al-
ways reach an equilibrium configuration within a polynomial number of selfish
moves. Moreover, we prove that the arising price of anarchy is at most % re-
gardless of the network topology, and that such a result is tight even for rings.
This result is very interesting, as it matches the performance of three different
algorithms [13,8].

Under the assumption that the collusion of at most &k players is allowed, only
the Egalitarian cost sharing method yields a well-founded definition of induced
game. We show that such a game is still convergent, and its price of collusion
is %+ % This result is quite surprising, as the best known approximation ratio
reached by a centralized algorithm [8], that is % + ¢, can be achieved in poly-
nomial time by uncoordinated evolutions of collusion games with coalitions of
increasing size. As already remarked, this has the additional appreciable effect
of yielding a polynomial time approximation algorithm of distributed nature
with the best so far achievable optimization performance.

Finally, always under the assumption of collusion, the Shapley method does
not induce well defined games, but it can be exploited in the definition of
proper neighborhoods in local search algorithms. The arising local optima
are arbitrarily close to optimal solutions, that is at most 1 + % times the
optimum, thus potentially generating distributed PTAS; unfortunately, the
arising algorithms might not converge and such local optima might even not
exist at all. However, this sheds some light on the effectiveness of local search
in improving the current approximation factors. In fact, the determination of
new cost sharing methods reaching a compromise between the Shapley and
Egalitarian ones in terms of optimization and performance is thus outlined
as a promising and worth pursuing investigating direction that will possibly
capture future research attention.

The paper is organized as follows. In the next section we give the basic notation
and definitions and show some preliminary results. In Section 3 and 4 we focus



on the ADM minimization, and we show the results concerning Nash equilibria
without and with collusion, respectively. Finally, in Section 5 we discuss the
power of local search algorithm, give some conclusive remarks and discuss
some open questions.

2 Model and Preliminary Results

An instance of the ADMs minimization problem is a pair (G, P), where G is
an undirected graph and P = {py,...,p,} is a multi-set of n simple paths in
G, also called lightpaths or requests.

A coloring (or wavelength assignment) of (G, P) is a function w : P — NT =
{1,2,...} such that w(p;) # w(p,) for any pair of paths p;, p; € P sharing an
edge in G.

Given a coloring function w, a valid cycle (resp. chain) is a cycle (resp. chain)
formed by the concatenation of distinct paths in P of the same color.

A solution s of the problem consists of a set of valid chains and cycles parti-
tioning the paths in P, expressing the particular sharing of ADMs.

More precisely, we say that two paths are adjacent if they have a common
endpoint. Each path uses two ADMs, one at each endpoint; if two adjacent
paths are assigned the same wavelength, then they can use the same ADM.
Thus, an ADM may be shared by at most two lightpaths. In this way each
valid cycle of k paths in s uses k& ADMs, because every ADM is shared by
exactly two paths. Similarly, each chain of k£ paths uses k + 1 ADMs, as the
initial and final ADMs in the chain are used only by the initial and the final
path of the chain, respectively.

We are interested in finding a solution s such that the total number of used
ADMs, denoted as ADM(s), is minimized.

Given an instance (G, P) and a solution s, we define the saving graph S =
(P, E), as the multigraph in which there is a node for each path p; € P and an
edge between two nodes if their corresponding paths share an ADM in s. The
problem of maximizing the number of savings SAV (s), i.e. the number of edges
|E| of the saving graph, is strictly related to the one of minimizing the total
number ADM (s) of used ADMs. In fact, any solution s* maximizes SAV (s*) if
and only if it minimizes ADM (s*). Moreover, the following proposition holds.

Proposition 1 Let s* be an optimal solution for (G, P), i.e. a solution min-
imizing the number of ADMs (and thus mazimizing the number of savings).



SAV(s) __
sav(s) = = L.

Then &DT% < 2 —r for any solution s such that

Proof Recalling that n is the number of paths in P, we obtain

ADM(s)  2n—SAV(s) 2n—r-SAV(s*) 2n—r-n

= = —9_

ADM(s*)  2n— SAV(s*) 2n — SAV(s*) = 2n—n "
where the last inequality holds because the function % is non-
decreasing in SAV (s*) and SAV (s*) < n. 0

We assume that every path p; € P, 1 =1,...,n, is issued and handled by a
player «;, that for the sake of simplicity in the sequel we will often identify
with p;. At every given step a single agent «;, by performing a selfish move, can
decide whether and with whom to share the cost of the ADMs at the endpoints
of p;. Hence, her strategy set is the collection of all the possible subsets of at
most two other adjacent (not overlapping) paths, one per endpoint. A given
strategy is feasible if and only if (i) the chosen paths are not already sharing
the involved ADMs with some other path and (ii) the new created chain or
ring of requests induces a valid coloring, that is no two paths have an edge in
common.

Clearly, a strategy profile (s1,...,s,) defines a solution s € § of the game. A
non-cooperative game G is defined by a tuple (G, P, f, k) where (G, P) is an
optical network instance, f is a cost sharing method inducing a cost sharing
function ¢ : S x P — R distributing the whole hardware cost among the players
and k is the maximum size of a coalition of players that can collude (notice
that if £ = 1 no collusion is allowed and thus G is a “classical” non-cooperative
game).

We consider two fundamental cost sharing methods: the Shapley [32] (f =
SHAPLEY) and the Egalitarian (f = EGALITARIAN) ones.

In the Shapley cost sharing method, the agents sharing an ADM pay for it
by equally splitting its cost. Thus, recalling that each requests needs exactly
2 ADMs, and that each ADM can be shared at most by 2 agents, the cost
¢i(s) charged to player «; in the strategy profile s can be 1 (if she shares
both her ADMs with other requests), 3 (if she shares only an ADM with
another request), or 2 (if she does not share any ADM with other requests).
The objective of a player i is to choose the strategy minimizing her own cost,
given the strategies of the other players.



In the Egalitarian cost sharing method, the whole hardware cost corresponding
to a strategy profile s is divided between all the players in an egalitarian way,

ie. ¢(s) = ADTM(S) for every i =1,...,n.

Clearly in both cases, given a strategy profile s, >-1" ; ¢;(s) = ADM(s).

If the parameter k of the game (G, P, f, k) is equal to 1, no coalition can
be constituted and each player acts independently. In such a setting, a Nash
equilibrium is a strategy profile such that no player can reduce her cost by
seceding in favor of a better strategy, given the strategies of the other players.
Denoting by N the set of all the possible Nash equilibria, the price of anarchy
(PoA) of a game G is defined as the worst case ratio among the Nash versus
optimal performance, i.e., PoA(G) = %f&m, where s* is the strategy
profile corresponding to the optimal solution. Moreover, the optimistic price
of anarchy (OPoA) of G is defined as the best case ratio among the Nash
versus the optimal performance, i.e., OPoA(G) = %fw. The following
proposition shows that, if & = 1, the games induced by the two considered
cost sharing methods have the same set N of Nash equilibria and the same
convergence behavior, and thus their prices of anarchy and convergence speeds

are also equal.

Proposition 2 Consider the games G = (G, P,SHAPLEY, 1) and Gy =
(G, P, EGALITARIAN, 1) defined on the same instance (G, P). Given a strategy
profile s, for every i = 1,...,n player p; has the same set of selfish moves to
perform in G and Gs.

Proof Given a generic player p;, we show that every selfish move of p; starting
from s in Gy is also a selfish move for p; starting from s in G,, and vice versa.

Consider the saving graph S = (P, F) relative to s and let J; the degree of
node p; in S. Clearly, the cost charged to p; according to the Shapley cost
sharing method is 2 — %.

If p; has a selfish move M according to the cost sharing method SHAPLEY,
then, by performing M, increases §; by A > 0. Thus, since the number of
edges in the saving graph increases after p; performs M, M is a selfish move
according also to the cost sharing method EGALITARIAN.

On the other hand, if p; has a selfish move M according to the cost sharing
method EGALITARIAN, she, by performing M, increases by A > 0 the number
of edges of S. The only way to obtain such an growth is by increasing her
degree ;. Thus, M is a selfish move according also to the cost sharing method
SHAPLEY. a



For the sake of clearness, we will assume in all the proofs related to the price
of anarchy determination that the cost sharing method is the Shapley one.

If the parameter k of the game (G, P, f, k) is greater than 1, a Nash equilibrium
is a strategy profile such that no coalition of k£ player can reduce its whole
cost (sum of single costs) by seceding in favor of a better strategy, given the
strategies of the other n — k players. In such a setting, denoting by N}, the set
of all the possible Nash equilibria with coalitions of size at most k, the price of

collusion (PoC') of a game G is defined as the worst case ratio among the Nash

. . maxg ADM (s .
versus optimal performance, i.e., PoCy(G) = %S*)(), where s* is the

strategy profile corresponding to the optimal solution. Moreover, the optimistic
price of collusion (OPoC') of G is defined as the best case ratio among the
Nash versus the optimal performance, i.e., OPoCy(G) = %‘W. Notice
that, since the coalitions can dynamically change, in this case the S}hapley cost
sharing method is not well defined. Thus, for £ > 1 we will focus only on the

games induced by the egalitarian cost sharing method.

Let us now present some preliminary results about the existence and con-
vergence to Nash Equilibria. In particular, we show that every game always
converges to a Nash equilibrium in a linear number of moves.

Proposition 3 In every game G = (G, P, f,k), where f € {SHAPLEY,
EGALITARIAN} and k = 1 or f = EGALITARIAN and k > 2, the social function
ADM is a potential function, i.e. if ' is the strateqy profile resulting from the
strategy profile s after the selfish moves of the colluding players o, ..., o, ,
with h <k, ADM(s") < ADM(s).

Proof Notice that by Proposition 2, for the case k = 1 it is sufficient to prove
the claim for the egalitarian cost sharing method.

By the selfishness of the moves of the colluding players, we have that

 ADM(s') _ ADM((s)

iy (8) = =0¢,(s) =

n n :Cil(s):"'zcih(s)’

and the claim easily follows. a

As a direct consequence of the previous propositions, by also considering
Proposition 2, since the social function, that is a potential function for the
game, can assume at most n + 1 different values, it holds that every game
always converges to a Nash equilibrium in at most n selfish moves.

Moreover, since the optimal solution is a minimum of the defined potential
functions, it follows that the optimal solution is also an equilibrium. Therefore,



given any game G, the optimistic price of anarchy is the best possible one, i.e.
OPoA(G) = 1, and, for every integer k > 1, the same holds for the optimistic
price of collusion, i.e. OPoCy(G) = 1. Therefore, in the remaining part of the
paper we will focus on the price of anarchy (for £ = 1) and price of collusion
(for k > 1).

3 Price of Anarchy

In this section we analyze the price of anarchy for the ADM minimization
problem on games in which no collusion between players is allowed, and thus
each selfish player acts independently. More precisely we prove that the price
of anarchy is at most g, and that such a bound is tight even for ring network
topologies.

Lemma 4 Given a game G = (G,P, f,1) with f €
{SHAPLEY, EGALITARIAN} and a Nash Equilibrium s for G, szé/(ii)) > 1,

where s* is the strategy profile corresponding to an optimal solution.

Proof Consider the saving graph S* = (P, E*) corresponding to the strategy
profile s*. Moreover, let S = (P, E) be the saving graph corresponding to the
strategy profile s. For every i = 1,...,n, let 7 and J; be the degree of node
p; in S* and S, respectively; we want to prove that

nLS 2SAV(s)
n5r . 25AV(sY)

1=1"1

1
> —.
-3

We now show two interesting properties relating .S and S*.

(1) If (pa,pp) € E*, then 6, + &, > 1.

In fact, otherwise s would not be a Nash Equilibrium because p, and
p» would have incentive to share an ADM.

(2) If (pa,pp) € E* and (py, p.) € E*, then d, + 0 + 6. > 2.

If there exists i € {a,b,c} such that §; = 2, or there exist i,j €
{a,b,c},i # j such that §; = §; = 1, the property holds. Moreover,
since by the previous property d, + 0, > 1 and d, + d. > 1 we obtain
0q + 20p + 0. > 2; thus, if 6, = 0 we also obtain the desired property. It
remains to analyze the case in which ¢, = 1 and 0, = 0. = 0. Clearly, this
case is not possible because s would not be a Nash Equilibrium; in fact,
pp would have incentive to leave her current strategy and share an ADM
with p, and another ADM with p..



Since each node of a saving graph can have degree at most two, we can par-
tition £* into h cycles E}, ..., E} and [ paths E}*, ..., E/*, and consequently
Pin Py, P,..., P, P|,..., P/, such that P, contains all the nodes having de-
gree 0 in S*, P}, for every j = 1,..., h, contains all the nodes corresponding
to E7, ie. all the nodes having at least an edge belonging to E7 incident
to them, and PJ{, for every j = 1,...,l, contains all the nodes correspond-
ing to E]’* In the remaining part of the proof, we show that for each set

05
Xe{P,...,P,P,....,P}, Z"LX& > %, thus proving the claim. The proof
p;€X i
is divided in several distinct cases.

o | X|=3m,withm=1,2,..;, X e{P,...,P,P,...,P/}
By exploiting Property 2, since in the corresponding component of the
optimal solution the sum of the degrees is at most 6m, we have that
Zpiex % 2m 1

§* = 6m ~ 3"

[ ]
]
I
w
R
_l_
Z
=
3
I
IS
S
m
~—
=
LY
——

By exploiting Property 2, since in the corresponding path of the optimal

0;
solution the sum of the degrees is exactly 6m, we have that <2< > 2m —
Z [ 6m

p;€EX

[ ]
Wl

X|=3m+2 withm=0,1,..; X e{P],..., P/}
By exploiting Property 2 for the first 3m nodes and Property 1 for the
last 2 nodes, since in the corresponding path of the optimal solution the

8
sum of the degrees is exactly 6m + 2, we have that %piex ;> 2mtl o, 1

| X|=3m+1,withm=1,2,..; X e{P,..., P}

Clearly, by Property 1 at least a node of the cycle must have degree at
least 1. By exploiting Property 2 for the remaining m nodes of the cycle,
since in the corresponding cycle of the optimal solution the sum of the
Zpiex 8 > 2mtl _ 1

degrees is exactly 6m + 2, we have that

pex 0 T 6m2 T3
| X|=3m+2, withm=0,1,..; X €{P,..., P}

First of all, we show that there must exist two consecutive nodes p, and
pp of the considered cycle such that d,+ 9, > 2. If there exists a node having
degree 2, this property is trivially verified. Otherwise, all nodes have degree
at most 1, and we want to show that it is not possible that two consecutive
nodes having degree 1 do not exist. If m = 0, it is easy to check that, since
s is an equilibrium, the sum of the degrees of the two nodes in X is at least
2. If m > 0, let p, be a node of the cycle having degree 1 (by Property 1 it
necessarily exists). If both the two adjacent nodes in the cycle of the optimal
solution have degree 0 in S, s would not be an equilibrium since p, would
change her current strategy by sharing both her ADMs with such adjacent
nodes. Therefore, letting p, be the adjacent node with degree d, > 0, we
obtain 9, + 0, > 2.

By exploiting Property 2 for the remaining m nodes of the cycle, since

10



in the corresponding cycle of the optimal solution the sum of the degrees is

p;€X 9i 2m+4-2

piEX of — 6m+4

exactly 6m + 4, we have that > %

By combining the previous lemma with Proposition 1, the following theorem

holds.

Theorem 5 For any game G = (G,P,f,1), with f € {SHAPLEY,
EGALITARIAN}, PoA(G) < 2.

Now we provide a matching lower bound, holding for a network having ring
topology. The following theorem proves that the previous upper bound is tight
even for ring networks, and thus the price of anarchy is equal to g

Theorem 6 For any e > 0, there exists an instance of the ADM minimization
game G = (G, P, f,1), where f € {SHAPLEY, EGALITARIAN} and G is a ring
network, such that PoA(G) > 2 —e.

Proof Given two generic requests « and (3, we denote by C(«, 3) the set of
their common endpoints and by I(«, 3) the set of edges in which they are
overlapping.

In order to prove the theorem, we provide an inductive construction in which
at each step ¢ = 0, 1,... three requests a;,b; and ¢; forming a cycle are added
(for i = 0 they do not form a cycle). We want to show that at each step i,
there exists a solution s} such that ADM (s}) = 5+ 3i, and there exists a Nash
equilibrium s; such that ADM (s;) = 5+ 5i; by letting ¢ go to the infinity, the
price of anarchy tends to %

Let ag,by and cg be such that C(ag,bg) # 0, C(ag,co) # O and I(co,by) # 0.
It is easy to check that there exist a solution s using 5 ADMs and being also
a Nash equilibrium; thus, so = s§ and ADM ((sg) = ADM (s;) = 5. Moreover,
let aq,b; and ¢; be 3 requests forming a cycle, such that C(ay,by) = C(ag, o),
I(ay,a9) # 0, byNI(by, co) # 0, I(c1, 8) # O for 5 € {ag, by, co} and I(by,5) # 0
for 8 € {boy, cp}. Clearly, there exists a solution s} using 8 ADMs. On the other
hand, the configuration s; in which a; and ¢y share an ADM, b; and aq share
another ADM and by and ¢; do not share any ADM is a Nash equilibrium of
cost 10.

Now we prove by induction that at each step ¢ > 2 we can add three requests
a;,b; and ¢; forming a cycle, such that the cost of the optimal solution is at most
5+ 31, and there exists a Nash equilibrium s; of cost ADM (s;) = 5+ 5i. More
precisely, we show by induction that for every ¢ > 2 there exist a;,b; and ¢; such

11



that: (1) C((Zi, bl) = C’(ai_l, Cz‘—l); (11) I(ai, a1 # @), (111) biﬂI(Ci_l, Ci_2> 7£ (Z),
(iv) I(ci, B) # 0 for B € {ai1,bi1,cia}; (v) I(bi, ) # O for B € {cia,ci1};
(vi) there exists a Nash equilibrium s; of cost ADM (s;) =2(i+1)+3(i+1) =
5 + 5i and there exists a solution s} of cost ADM (s}) =5+ 3i.

Fig. 1. (a) Solution s5 (b) Solution s2

For i = 2, the base of the induction is verified. In fact, (i) and (ii) can trivially
hold by construction; since I(cy,cq) # 0, by can be chosen such that also
(iii) holds; (iv) follows from (ii) and (iii) as by (ii) I(co,a1) # () and by (iii)
I(co,b1) # 0 and I(cg,c1) # 0; (v) follows from (iii). Moreover, it can be
checked that the configuration s, in which the couples of requests as and c;,
by and a1, ag and by share an ADM, and requests by, ¢y and ¢, share no ADM
is a Nash equilibrium of cost 15 and there exists a configuration s3, in which
the requests added at step 1 and the ones added at step 2 form two cycles,
such that ADM (s3) = 11 (see Figure 1).

Assuming the inductive claim true for any j < ¢, we now prove it for ¢ + 1.

(a) (b)

Fig. 2. (a) Solution si,; (b) Solution s;;1

Clearly, a;41, biy1 and ¢;41 can be chosen such that conditions (i) and (ii)
hold (see Figure 2); moreover, since by the condition (iv) of the inductive
hypothesis concerning step i I(c;,c;_1) # 0, bix1 can be chosen such that
biv1 N I(ci,cim1) # 0, and thus also (iii) holds. By (ii), since C'(a;11,¢41) # 0,

12



I(ciy1,a;) # 0 and by (iil) I(ci1,b:) # 0 and I(ciq1,¢;) # 0; thus (iv) holds.

(v) directly follows from (iii).

In order to prove (vi), let us first notice that since at each step having index
greater than 0 three requests forming a cycle are added, we obtain that there
exists a solution s7,; such that ADM (s}, ;) =5+ 3(i + 1).

For every j = 1,...,i+ 1, it follows from conditions (i), (ii) and (iii) of the
inductive hypothesis concerning step j that I(b;, a;—1) = 0; moreover, exploit-
ing a similar argument, it holds that I(a;;1,¢;) = 0. Consider the strategy
profile s;41 in which each couple of requests (b;,a;_q1) for j = 1,...,i+1
and the couple of request (a;;1, ¢;) share an ADM; moreover, in s;;; requests
bo, Co, - - -5 Ci—1, Ciy1 do not share any ADM. Clearly, ADM (s;41) = 5+5(i+1);

it remains to prove that s;,; is an equilibrium.

Since in s;,; there exists no couple of requests added to the instance at the
same step, all the coupled requests are in equilibrium as none of them can
share two ADMs by changing her strategy. Moreover, by cannot change her
strategy by sharing an ADM with ay because ag is coupled with by, and b; and
by are overlapping requests (I (b, b1) # 0). For every j =0,...,i—1, ¢; cannot
change her strategy by sharing an ADM neither with a; nor with b;: ¢; cannot
share an ADM with a; because a; is coupled with b;;; and by condition (v)
of the inductive hypothesis concerning step j + 1, I(bj11,¢;) # 0; ¢; cannot
share an ADM with b; because b; is coupled with a;_; and by condition (iv)
of the inductive hypothesis concerning step j, I(cj,aj—1) # 0. Finally, ¢;4
cannot change her strategy by sharing an ADM neither with a;,; nor with b; ;4
because a;,1 is coupled with ¢; and b;;, is coupled with a; and by condition

(iV), I(Cj+1, Ci) 7£ @ and ](Cj+1, CLZ‘) 7é @ O

4 Price of Collusion

In this section we analyze the price of collusion for the ADM minimization
problem on games in which coalitions of at most £ players can collude. More
precisely we prove that the price of collusion is between % and % + %, with
% + € being the approximation guaranteed by the best know approximation
algorithms [8,17] (polynomial for every e > 0) for this problem on general
network topologies. As already remarked, the evolution of such games natu-
rally defines, for every fixed k, a polynomial time approximation algorithm
for the ADM minimization problem. Thus, such games interestingly define a
distributed algorithm with the same approximation guaranteed of the best

know centralized algorithm.

In order to provide an upper bound to the price of collusion, we exploit argu-
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ments similar to the ones used in the proof of Lemma 4.

Lemma 7 For every k =2,3,..., given a game G = (G, P, EGALITARIAN, k)

and a Nash Equilibrium s for G, ;Yf“//((;*)) > % — %, where s* s the strategy

profile corresponding to an optimal solution.

Proof Consider the saving graph S* = (P, E*) corresponding to the strategy
profile s*. Moreover, let S = (P, E') be the saving graph corresponding to the
strategy profile s. For every i = 1,...,n, let 67 and 9; be the degree of node
p; in S* and S, respectively; we want to prove that

nos 2SAV(s) _ 1 1
— P —
noor T 2SAV(sY) T2k

i=1"1

A key property relating S and S* holds: for any r < k, if foreveryi =1,...,r—
1 (Pa;sPass) € E*, then Y7 64, > 7 — 1. In fact, otherwise >7_; §q, < 7 — 2
and by changing their strategy players pg,, ..., P, can remove at most r — 2
edges from E; moreover, they can change their strategy so as to add for every
i=1,...,r—1edge (pa,, Pa;,,) to E. Thus, by recalling that every player in s
is charged with a cost equal to AD]X(S) = 2”_53‘/(5), since players p,,, .- ., Pa,
by colluding could evolve in a strategy profile s’ with one more edge, i.e. with

one more saving, s would not be an equilibrium.

Since each node of a saving graph can have degree at most two, we can par-
tition £* into h cycles E}, ..., E} and [ paths E7¥, ..., E/*, and consequently
Pin By, Py,..., Py, Py|,..., P/, such that Py contains all the nodes having de-
gree 0 in S*, P}, for every j = 1,..., h, contains all the nodes corresponding
to E7, ie. all the nodes having at least an edge belonging to E} incident
to them, and P}, for every j = 1,...,l, contains all the nodes correspond-
ing to EJ. In the remaining part of the proof, we show that for each set

9 . .
X e{p,...,P,P,....,P}, ZZ:Z”GX(; > % — %, thus proving the claim. Let

|X| =m -k + q, with m and ¢ non-negative integers; the proof is divided in
three distinct cases.

em>1landg=0
We can partition the nodes in X in m sets of size k, and by exploiting the
key property, since in the corresponding component of the optimal solution

the sum of degrees is at most 2mk, we have that %:::5 > m2(:;€1) > % — %

em>landg>1
We can partition the nodes in X in m sets of size k and a set of size ¢,
and by exploiting the key property, since in the corresponding component
of the optimal solution the sum of degrees is at most 2(mk + ¢), we have
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6.
that Z:fj:a; = (zl?mlﬁiéﬁ S=5 - s 2 3
e m=20
In this case, ¢ = |X| < k and the key property can be strengthened as
follows: 37, cx 9; > ¢. In order to prove this strengthened property, it is
sufficient to apply an argument very similar to the one exploited for the key
property, by noticing that in this case if all players in X collude, they can
add to E q edges (instead of ¢ — 1).

Thus, since in the corresponding component of the optimal solution the

1
Z

6.
sum of degrees is at most 2¢, we have that Z”iex >L=2>2—1
S exd = 2 k

By combining the previous lemma with Proposition 1, the following theorem
holds.

2,3,..., any game G = (G, PEGALITARIAN, k)

Theorem 8 For every k
is such that PoCy,(G) < 2

v
The following theorem provides an almost matching lower bound.

Theorem 9 For every k = 2,3,..., there exists an instance of the ADM
minimization game G = (G, Py EGALITARIAN, k) such that PoCy(G) > %

Proof We first introduce some definitions and preliminary results needed in
the following. Let us define the labelled undirected shareability graph Gg =
(P, Eg) of an instance as the union of the saving graphs of all possible solutions
of this instance. In other words, there is an edge in the shareability graph if
and only if the corresponding two paths can be connected to share an ADM
in some node v of GG, and this edge is labelled v. Obviously, given some node
p of Gg, the label set of its incident edges has size at most two.

The conflict graph Go = (P, E¢) of an instance has an edge between two nodes
p and p’ if and only if the paths p and p’ overlap in G. Note that EsN E¢c = (),
because no solution can share an ADM between p and p’ if they overlap. For
the correspondence between instances of the ADM minimization problem and
the shareability and conflict graphs see [17].

A (k, g)-cage is a regular graph of degree k and girth g with minimal number
of vertices, and v(k, g) is its number of vertices. In [30] is shown that v(k, g)
is finite, and an upper bound is given in [15].

Instead of describing the instance claimed, we will describe its shareability
and conflict graphs.
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Fig. 3. The Graph Gg constructed from some cage H

For any integer k > 1, we choose H be a (k+ 1,k + 1)-cage with n = v(k +
1,k 4 1) nodes. For each node in H there is a ring of £ + 1 nodes and k& + 1
blue edges in Gg. Obviously, each node has exactly two blue edges incident to
it. For each edge (u,v) of H we add a red edge to Gg as follows. Choose an
arbitrary node u’ (resp. v’) from the cycle corresponding to u (resp. v) which
does not have an incident red edge. Add the red edge (u/,v") to Gg. Because
H is (k + 1)-regular, each node of G has exactly one red edge incident to it.
(g is the graph consisting of the red and blue edges. We label the red edges
with distinct labels. In order to label the blue edges we assume a direction for
each cycle. A blue edge is labelled by the label of the red edge incident to the
node in the clockwise direction. See Figure 3.

G contains all the possible edges between nodes from different rings, except
the (red) edges of Gs.

The solution s* consisting of the blue edges of G is feasible, because the blue
rings are independent sets of of G¢, and the labels of two consecutive blue
edges are distinct. Moreover, it is optimal, because its sharing graph consists
of the maximum number of edges possible, namely SAV(s*) = n(k + 1).
Therefore ADM (s*) =2n(k+1) —n(k+1) =n(k +1).

On the other hand the solution s consisting of the red edges of G is feasible
because each connected component is an edge with two nodes, and the paths

corresponding to these two nodes are not overlapping. The number of edges in

this solution is SAV (s) = @ Therefore ADM (s) = 2n(k + 1) — Lk;l) =

%n(l{: +1) and fg J‘I‘/IJ((SS*)) = % It remains to prove that s is a Nash Equilibrium.

Assume, by contradiction that there is some coalition of &’ < k nodes, that can
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improve its gain by choosing some other strategy profile implying a solution
s’ # s. Let a segment be a set of consecutive nodes in some blue ring. Let [
be the number of maximal segments in the coalition. Obviously 1 < [ < k'.
For any solution s and 1 <1 <, let e;(s") be the number of blue edges of &’
connecting nodes of segment i. For solution s we have Vi, e;(s) = 0. Let I’ <1
be the number of segments such that e;(s") > 0.

Note that, because of the way we constructed the conflict graph, a red edge
incident to some node v, chosen in solution s’ implies that the two blue edges
incident to v are not in s’. A blue ring has size k + 1, thus a segment may
not span an entire blue ring. Therefore when the coalition changes its strategy
profile so that the solution changes from s to s, the number of red edges
incident to segment s; decreases by A, ..q > €;(s’) + 1. On the other hand the
number of blue edges increases by A; pue = €;(s’). Thus the number of edges
incident to such a segment decreases by A; = A; yeg— A piue > 1. Therefore the
total number of edges incident to all segments decreases by A > I’ — x, where
x is the number of red edges connecting these I’ segments. This is because in
S A; > 1, these x edges might be counted twice.

Let {” < I' be the number of blue rings containing the I’ segments. Assume
" > 0. Consider the edges in H corresponding to the red edges connecting
these rings. They form a subgraph of H with [” nodes. But I” <1I' <[ <k <
k < k+1, and H has girth £+ 1, thus this subgraph is acyclic and contains at
most [” —1 edges. Then, x <I"—1<!U'—l,and A>U'—-z>0'—(I'-1)=1.
Namely the coalition’s gain decreases, a contradiction. Therefore [” = 0. The
number of blue rings containing the I’ segments is zero, therefore the number
of these segments " = 0. In other words, Vi, ¢;(s") = 0. Namely the edge set of
', incident to the coalition, consists of red edges only. But s already contains
all the red edges incident to the nodes of the coalition, then the gain of the
coalition may not increase: a contradiction. O

5 Local Search and Concluding Remarks

In this section we show some basic results emphasizing that local search is a
promising approach for possibly improving the achievable approximation ratio
of the ADMs minimization problem.

As already remarked, under the assumption of collusion of at most k players,
the Shapley method does not induce well defined games. This stems on the fact
that the payment of a player is not solely a function of the current strategy
profile, but is also affected by the history of the past coalitions. However,
Shapley naturally yields local search schema with the induced definition of
neighborhood of a current solution s. Namely, any solution s’ that can be
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obtained from s by modifying the strategy of at most k players is a neighbor
of s; such a solution is an improving one with respect to s and the fixed
coalition if it reduces the sum of the Shapley costs of the involved players,
that is it increases the sum of their degrees in the saving graph.

The following proposition characterizes the performance of local optima ac-
cording to such a neighborhood definition.

Proposition 10 For every k = 2,3,..., any local optimum solution s in
the schema induced by the above definition of meighborhood has total cost
ADM (s) < (1 + %) ADM((s*), where s* is an optimal solution.

Proof By Proposition 1, it suffices to show that 5;14“//((;)) >1— % Consider the
saving graph S* = (P, E*) corresponding to the optimal solution s*. Moreover,
let S = (P, E) be the saving graph corresponding to s. For every i = 1,...,n,
let 67 and d; be the degree of node p; in S* and S, respectively; we want to

prove that
"0 25AV (s) 2
= >

noor 2SAV(st) Tk

A key property relating S and S* holds: for any r» < k, if for every ¢ =
L...,r=1(Pa;s Pasy,) € E*, then Y27_, 64, > 2(r—1). In fact, otherwise players
Days - - - Pa, can change their strategy so as to add for every ¢ = 1,...,r — 1
edge (Pa;, Pa;,.) to E, thus obtaining sum of degrees equal to 2(r — 1).

Since each node of a saving graph can have degree at most two, we can par-
tition £* into h cycles E}, ..., E} and [ paths E}*, ..., E/*, and consequently
Pin By, Py,..., Py, P|,..., P/, such that Py contains all the nodes having de-
gree 0 in S*, P}, for every j = 1,..., h, contains all the nodes corresponding
to E7, ie. all the nodes having at least an edge belonging to E7 incident
to them, and P}, for every j = 1,...,[, contains all the nodes correspond-
ing to EJ*. In the remaining part of the proof, we show that for each set
X e{p,...,P,P,..., P}, Z’JZGX > 1 — £, thus proving the claim. Let

ex z
|X| =m - k+ q, with m and ¢ non-negative integers; the proof is divided in
three distinct cases.

em>1landg=0
We can partition the nodes in X in m sets of size k, and by exploiting the
key property, since in the corresponding component of the optimal solution

05 _
the sum of degrees is at most 2mk, we have that piex5* > 2””‘2(:*1) —
p;€X

1—3>1-2
em>1landqg>1
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We can partition the nodes in X in m sets of size k and a set of size ¢,
and by exploiting the key property, since in the corresponding component
of the optimal solution the sum of degrees is at most 2(mk + ¢), we have

Dpiex ¥ 2mk—1)42(q—1) me1 2
that 5 2 amhtg) - L T mbre = LTk

pieX Vi
e m=10_0

In this case, ¢ = | X| < k and the key property can be strengthened as

follows: >°,.cx ;i > 2¢. In order to prove this strengthened property, it is

sufficient to apply an argument very similar to the one exploited for the key

property, by noticing that in this case if all players in X collude, they can
add to E ¢ edges (instead of ¢ — 1).

Thus, since in the corresponding component of the optimal solution the

6F — 2¢q

05
sum of degrees is at most 2¢, we have that 2”7@( >2=1>1-2
p;e€X

Unfortunately, such a neighbor definition for increasing values of k£ does not
induce a PTAS, since the schema not only does not converge in a polynomial
number of steps, might not converge at all and local optima may even not
exist.

Proposition 11 The local search schema induced by the above definition of
neighborhood may posses no local optimum.

Proof Let G be a ring network with two nodes, and consider 3 requests
P1, P2, P3 between such nodes, such that p, and p3 collide and p; can connect
either to p, or to ps.

We now show that no solution is a local optimum.

If p; does not connect to any other request, there exists an improving step in
which p; and py (or ps3) connect each to the other.

If p; is connected to po (resp. p3), there exists an improving step in which p;
and ps (resp. pz) connect each to the other. O

The above results on local search emphasize that the determination of new
cost sharing methods reaching a compromise between the Shapley and Egal-
itarian ones in terms of optimization and performance is a promising and
worth investigating issue. To this aim we observe that a linear combination
of the two criteria is affected by the same unconvergence behavior. In fact, in
the instance shown in the proof of Proposition 11, the solutions in which two
requests connect can be involved in a cycle of improving steps and have the
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same total cost: since the Egalitarian contribution in the linear combination
is fixed, the Shapley part causes exactly the same behavior. Nevertheless, the
determination of other intermediate methods combining both the Shapley and
Egalitarian advantages is an important left open question.

Besides the above mentioned results for general topologies, it would be also
nice to determine specific collusion results for ring networks, possibly improv-
ing the related approximation ratios.

Finally, a last interesting issue is that of extending our results to the grooming
case in which up to a certain number of paths g of the same color can share
the same physical links and the same ADMs [12].
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