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AN ODE-BASED METHOD FOR COMPUTING THE DISTANCE
OF COPRIME POLYNOMIALS TO COMMON DIVISIBILITY∗

NICOLA GUGLIELMI† AND IVAN MARKOVSKY‡

Abstract. The problem of computing the distance of two real coprime polynomials to the set of
polynomials with a nontrivial greatest common divisor (GCD) appears in computer algebra, signal
processing, and control theory. It has been studied in the literature under the names approximate
common divisor, ε-GCD, and distance to uncontrollability. Existing solution methods use different
types of local optimization methods and require a user-defined initial approximation. In this paper,
we propose a new method that allows us to include constraints on the coefficients of the polynomials.
Moreover, the method proposed in the paper is more robust to the initial approximation than the
Newton-type optimization methods available in the literature. Our approach consists of two steps:
(1) reformulate the problem as a problem of determining the structured distance to singularity of
an associated Sylvester matrix, and (2) integrate a system of ODEs, which describes the gradient
associated to the functional to be minimized.
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1. Introduction. We indicate by Pk the set of polynomials of degree at most k.
Consider a pair of polynomials p ∈ Pn and q ∈ Pm (m ≤ n) which are assumed to
be coprime. An interesting problem discussed in the literature (see, e.g., [3]) is that
of determining the closest pair p̂ ∈ Pn, q̂ ∈ Pm, which admits a nontrivial greatest
common divisor (GCD). In this paper, we assume that the polynomials p, q, p̂, q̂ have
real coefficients; however, an extension to complex polynomials is straightforward.

Let p ∈ Pn and q ∈ Pm be

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0
(1.1)

and similarly p̂ and q̂ of the same degrees, respectively. Denote by

a =
(
an an−1 · · · a1 a0

)T
,

b =
(
bm bm−1 · · · b1 b0

)T
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the vectors of the coefficients of the polynomials p and q, respectively, and similarity
let â and b̂ be the vectors of the coefficients of the polynomials p̂ and q̂, respectively.
Then, we define the distance measure

dist
(
(p, q), (p̂, q̂)

)
=

√√√√ n∑
i=0

|ai − âi|2 +

m∑
j=0

|bj − b̂j |2(1.2)

that is the spectral norm of the vector (
a−â
b−b̂ ).

The considered problem is defined as follows.

Problem 1. Given a pair of coprime polynomials p ∈ Pn, q ∈ Pm, find (for the
given distance)

dCD(p, q) = inf
p̂∈Pn, q̂∈Pm

p̂ and q̂ not coprime

dist
(
(p, q), (p̂, q̂)

)
(coprimeness radius).(1.3)

The distance to common divisibility, defined by (1.3), is related to the problem
of computing an approximate common divisor [25, 8] and a closest ε-GCD [23]. The
approximate common divisor problem aims to compute a pair of polynomials (p̂, q̂)
that has a common factor of a specified degree and minimizes dist

(
(p, q), (p̂, q̂)

)
.

The closest ε-GCD problem aims to compute a pair of polynomials (p̂, q̂) such that
dist

(
(p, q), (p̂, q̂)

)
≤ ε and the degree of the GCD of (p̂, q̂) is maximized. The ap-

proximate common divisor problem and the closest ε-GCD problems are equivalent
optimization problems [46]. In the distance to common divisibility problem, we com-
pute a pair of polynomials (p̂, q̂) with a common factor of degree 1 or 2 that minimizes
dist

(
(p, q), (p̂, q̂)

)
. Therefore, we are dealing with a special case of the approximate

common divisor problem.
In many applications, coprimeness of a set of polynomials is an important prop-

erty. However, the coefficients of the polynomials are often affected by uncertainties.
A more reliable issue is that of deciding whether two polynomials remain coprime
even after perturbations of coefficients, bounded in norm by some ε. This issue is
considered, for example, in image processing, robotics, and control theory [22, 38],
where the input data are only known to a certain accuracy, or where input parameters
are affected by noise. In this sense, problem (1.3) aims to compute the value ε, which
guarantees that if the perturbations in the polynomial coefficients are smaller than ε,
the perturbed polynomials remain coprime.

By representing the polynomials p̂ and q̂ as p̂(z) = (z − λ)r(z) and b(z) = (z −
λ)s(z), where λ is the common zero and eliminating the r and s polynomials by
analytically minimizing dist

(
(p, q), (p̂, q̂)

)
over them, we obtain (by using the variable

projections principle) [12] an optimization problem equivalent to (1.3), i.e., minλ f(λ),
with

f(λ) =
|p(λ)|2

1 + |λ|2 + · · ·+ |λn|2
+

|q(λ)|2

1 + |λ|2 + · · ·+ |λm|2
.(1.4)

As pointed out by an anonymous reviewer, formula (1.4) appears in [3] but has a
longer history.

In this paper, we follow a different approach, based on the Sylvester matrix of two
polynomials, which is a fundamental tool in determining their GCD. In particular,
coprimeness is equivalent to the nonsingularity of the associated Sylvester matrix.
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As a consequence, several estimates of the distance to common divisibility of two
polynomials are based on the magnitude of the inverse of the Sylvester matrix (see,
e.g., [3]).

The aim of this article is to approximate this distance by computing suitable upper
bounds with a local optimization procedure. Such computation is not straightforward
since it concerns an optimization problem in the subvariety of polynomials having a
GCD. The method we propose returns (in general) a local minimum for the considered
distance but we cannot certify that it is a global minimum. As far as we know,
there are no methods able to guarantee in general global optimality of a computed
solution (see, e.g., [23]). Thus convergence to local optima is an unavoidable property.
However, trying different initial approximations would increase the robustness of the
method, which—in the cases of small dimensions that we are able to check—computes
the exact distance.

An introductory example from [3]. Let us consider the following example:

p(z) = zn, q(z) =
(

(1−z)
2

)n
with n = 8.

Clearly, the zeros of p and q are relatively far. However, as observed in [3], this does
not imply that the distance to common divisibility is large. In fact, using the methods
proposed in this article, we are able to compute a sharp upper bound for dCD(p, q).
We compute

dCD(p, q) ≤ 1.9798 . . . 10−4.

This is obtained by determining a pair of polynomials p̂ and q̂ having the distance
1.9798 . . . 10−4 from p and q, and having a common real zero z = 0.32495 . . .. This
is consistent with the results in [3], where a different distance (the maximum of the

1-norm of the two vectors a − â and b − b̂ replaces the 2-norm in formula (1.2))
is determined exactly for this example, which turns out to be of the same order of
magnitude. They determine, in fact, a distance 3−8 = 1.5241 . . . 10−4 and a common
zero z′ = 1/3. As observed by the authors of [3], classical estimates based on the
norm of the inverse of the Sylvester matrix associated to the polynomials p and q
fail to give sharp bounds for this example. The spirit of this paper is similar to [3],
in which the authors propose (in a slightly different setting) sharper bounds for the
distance with respect to the classical bounds proposed in the literature, based on a
clever use of the structure of the Sylvester matrix. Here the computation of optimal
(or suboptimal) bounds is also pursued by working on the structured set of Sylvester
matrices. A numerical approach is also developed that relies on the integration of a
system of ODEs that identifies with a gradient system for a functional. This functional
is minimized in conjunction with the closest pair of polynomials to p and q, which has
at least a common zero.

Overview of the contribution and organization of the paper. The prob-
lem of computing a so-called ε-GCD of a pair of polynomials p ∈ Pn and q ∈ Pm, that
is, a nearby pair of polynomials p̂ ∈ Pn, q̂ ∈ Pm having a nontrivial GCD, has been
studied in the literature, where several criteria have been used in order to specify the
nearness property (see, e.g., [3, 9, 10, 37, 47, 4, 5, 40] and the references therein). In
many cases, for given polynomials p and q and a tolerance ε, the methods aim to find
the degree of an ε-GCD, a set of perturbations δp, δq (such that p̂ = p+δp, q̂ = q+δq),
and an ε-GCD (with respect to the perturbations) without addressing the minimiza-
tion in problem (1.3) directly. Here instead we look for the pair with minimal distance
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(in the 2-norm) and allow further constraints on the coefficients of the polynomials
(see section 6).

Problem (1.3) is a nonconvex optimization problem and can be approached by
global optimization, local optimization [34, 28, 35], and convex relaxation methods
[11]. The methods based on global optimization, such as the branch and bound
method [2], are too expensive for most real-life problems.

In this paper, we consider the local optimization approach. A nonstandard feature
of the problem is that the optimization is over a Grassman manifold [1, 44]. Our main
contribution is a new method based on the integration of a gradient system of ODEs.
This system describes the gradient dynamics associated to an appropriate cost func-
tional. It is given by the modulus of the smallest eigenvalue of the Sylvester matrix.
(In principle, we may replace it by the smallest singular value and obtain a similar
system of ODEs.) The method is globally convergent to a locally optimal solution.
Our simulation results indicate that it is more robust to the initial approximation
than the Newton-type methods.

In addition, we incorporate the constraint that some of the polynomials’ coeffi-
cients p and q are known exactly, e.g.,p monic, q monic. Such constraints can not
be treated by the existing alternative methods in the literature. Another extension,
discussed in section 6, is the case of complex polynomials.

Alternative methods for solving problem (1.3) based on local optimization are de-
veloped in the structured low-rank approximation setting [29, 30], in particular, the
method of [32] which makes use of the kernel representation of the rank constraint and
the variable projections, as well as the method of [21] that uses the image representa-
tion of the rank constraint. Also, homotopy methods can be used to compute a locally
optimal solution of problem (1.3). The methods of [32, 21] can not impose arbitrary
constraints on the coefficients of the approximating polynomials p̂ and q̂, which is a
limitation of these approaches with respect to the one proposed here. In all numerical
examples, shown in section 7, where the polynomials p̂ and q̂ are unconstrained or
where only p̂ or q̂ is constrained to be monic, the proposed method finds a solution
with the same value of the cost function as found by the methods of [32, 21].

The paper is organized as follows. In section 2 we set out the problem and the
notation and give the mathematical framework. In section 3 we introduce the struc-
tured ε-pseudospectrum of a Sylvester matrix, which plays a fundamental role in our
methodology. In section 4 we obtain a gradient system for the smallest eigenvalue(s)
of a Sylvester matrix (under additive perturbations) which allows us to approximate
the distance of the structured ε-pseudospectrum to the origin. In section 5 we propose
an iterative two-level convergent method to approximate the distance to singularity
of a Sylvester matrix, which is equivalent to finding a nearby pair of polynomials
having a nontrivial GCD. In section 6 we consider some extensions of the considered
methodology to problems with additional constraints. Finally, in section 7 we present
some numerical tests.

Notation.
• Πs — set of polynomials of degree at most s.
• µ(S) — inner spectral radius of the matrix S.
• ΛSε (S) — structured ε-pseudospectrum.
• µε(S) — inner ε-pseudospectral radius of S.
• Λ(S) — spectrum of S.
• Syl(a, b) — Sylvester matrix (2.1).
• S — set of Sylvester structured matrices.
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• ‖ · ‖F — Frobenius norm.
• I — identity matrix.
• 1 = (1 1 . . . 1)

T
.

• for real matrices A,B, 〈A,B〉 = trace(ATB) — Frobenius inner product.

2. Preliminaries. Consider the polynomials (1.1) with real coefficients {ai}
and {bi} and with m ≤ n, where we may set an = 1 (p monic). Also, by setting
bm+1 = · · · = bn = 0, we can always consider the case m = n. In order to check
whether the polynomials p and q are coprime, it is natural to introduce the associated
Sylvester matrix of dimension 2n× 2n:

S = Syl(a, b) :=



an . . . am . . . . . . a1 a0 0 . . . 0
0 an . . . am . . . . . . a1 a0 . . . 0
... 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 an . . . . . . . . . . . . a1 a0

0 . . . bm . . . . . . b1 b0 0 . . . 0
0 . . . 0 bm . . . . . . b1 b0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 0 0 bm . . . . . . b1 b0


.(2.1)

Then, we have the following well-known result due to Sylvester [39].

Theorem 2.1. A pair of polynomials p, q is coprime if and only if the matrix
Syl(a, b) given by (2.1) is nonsingular.

Let

δp(z) = δasz
s + δas−1z

s−1 + · · ·+ δa1z + δa0,

δq(z) = δbmz
m + δbm−1z

m−1 + · · ·+ δb1z + δb0,
(2.2)

where s = n − 1 if p + δp is constrained to be monic and s = n otherwise, and the
vectors of their coefficients δa = (δa0 δa1 · · · δas)T

and δb = (δb0 δb1 · · · δbm)
T

.
With this notation, problem (1.3) can be restated as

dCD
(
p, q
)

= sup{ ε : (p+ δp, q + δq) is coprime for all δp ∈ Πs, δq ∈ Πm

such that dist
(
(p, q), (p+ δp, q + δq)

)
< ε}.(2.3)

We are mainly considering two different distances to common divisibility: one with p
monic and one without this constraint. Another interesting case is when only a few
coefficients of the polynomials are subject to perturbations; for an extension to this
case see section 6.

Remark 2.2. Generically, the smallest perturbations which cause a pair of poly-
nomials to have a nontrivial GCD creates either one real common root or a pair of
complex conjugate common roots. It is well known that in the first case the corank
of the associated Sylvester matrix is 1, while in the second case it is 2.

3. General framework. The problem we consider here can be cast into a more
widespread class of problems, which we briefly introduce.

3.1. Structured ε-pseudospectrum. This paper treats a special instance of a
more general problem, that is, to determine the distance to singularity (with respect
to the Frobenius norm) of a matrix having an affine structure. To be precise, for a
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given real matrix A, we look for a singular matrix B = A+X with X belonging to a
real linear manifold of matricesM such that ‖X‖ is minimal. Let us define the inner
spectral radius of a matrix B as

µ(B) = min{|λ| : λ ∈ Λ(B)},

where Λ(B) is the spectrum of B; if µ(B) = 0, then B is singular. With this notation,
the problem we aim to deal with is the following:

min
X∈M : µ(A+X)=0

‖X‖F .(3.1)

Let us write X ∈M as X = εE with E ∈M such that ‖E‖F = 1. The basic idea in
solving this problem is to introduce the structured ε-pseudospectrum of A,

ΛMε (A) = {λ ∈ Λ(A+ εE) : E ∈M, ‖E‖F ≤ 1},(3.2)

and to look for the minimal value of ε such that 0 ∈ ΛMε (A). This requires—for a given
ε—minimizing |λ| for λ ∈ ΛMε (A) (which means minimizing µ(A + εE) for E ∈ M,
‖E‖F ≤ 1) and then iterating on ε. Usually it is possible to prove that it is equivalent
to replace the inequality constraint ‖E‖F ≤ 1 by the equality constraint ‖E‖F = 1.
If such a property holds, the minimization step can be pursued by computing the
gradient of the functional Fε(E) = µ(A+ εE) for E ∈M, ‖E‖F = 1 and applying a
descent method. Indicating by G the free gradient of Fε(E) in the space of complex
matrices, which is a rank-1 matrix obtained by left and right eigenvectors of A+ εE,
the orthogonal projection of the gradient onto M, with the additional constraint
‖E‖F = 1, is simply given by

PM (G)−
〈
E,PM (G)

〉
E,

where for a pair of matrices A and B, 〈A,B〉 denotes the Frobenius inner product and
PM(G) denotes the orthogonal projection of the matrix G onto M. Understanding
the dependence of ΛMε (A) on ε usually allows one to obtain fast methods to compute
the minimal ε such that Fε(E) = 0. Naturally this approach usually provides a local
extremizer which is not guaranteed to be global.

3.2. Distance to common divisibility. The basic observation used to calcu-
late the distance to common divisibility dCD

(
p, q
)

is that (2.3) is equivalent to the
following problem:

dCD
(
p, q
)

=
1√
n

inf
{
ε : µ

(
Syl(a, b) + εE

)
> 0 for all E ∈ Sn,m, ‖E‖F ≤ 1

}
.

(3.3)

where (with m ≤ n)

Sn,m := {Syl(u, v) : u ∈ Rn+1, v ∈ Rm+1} ⊂ R2n×2n(3.4)

is the set of real Sylvester matrices (see (2.1)). For brevity in what follows we simply
denote Sn,m by S.

This is a classical matrix nearness problem of the form considered in section 3.1
(see, e.g., [19]). Denote by

ΛSε (S) = {λ ∈ Λ(S + εE) : E ∈ S, ‖E‖F ≤ 1}

the structured ε-pseudospectrum (see [41]). Note that S is a smooth linear manifold
which implies that

S + εE ∈ S if E ∈ S.
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Example. Consider the two polynomials of degree 3:

p(z) = z3 + 2z2 + 2z + 2,

q(z) = 2z3 + z − 2,

where p is constrained to be monic. Here a = (1 1 2 2)
T

and b = (2 0 1 − 2)
T

; the
corresponding Sylvester matrix is given by

Syl(a, b) =


1 2 2 2 0 0
0 1 2 2 2 0
0 0 1 2 2 2
2 0 1 −2 0 0
0 2 0 1 −2 0
0 0 2 0 1 −2

 .(3.5)

The set ΛSε (S) for ε = 1
2 is approximated by dense sampling on the set of ad-

missible perturbations and is plotted in blue in Figure 1. The black curve represents
the boundary of the corresponding unstructured ε-pseudospectrum, which means that
arbitrary complex perturbations of the norm bounded by 1

2 are considered.

Next we define µε(S), the inner ε-pseudospectral radius of S, which is the mini-
mum of the modulus of the elements of the structured ε-pseudospectrum

µε(S) = min{|λ| : λ ∈ ΛSε (S)}.(3.6)

Note that the case ε = 0 reduces µε(S) to the inner spectral radius µ(S).
With this notation, we characterize the distance to common divisibility as

dCD
(
p, q
)

=
1√
n

min{ε : µε(S) = 0}, where S = Syl(a, b).

If S is associated to a coprime pair, we have that

µε(S) > 0 ⇐⇒ dCD
(
p, q
)
> ε.

3.3. A two-level methodology. To find the distance to common divisibility
we have to solve the equation (with respect to ε) µε(S) = 0 and find the minimum
root

εopt = min{ε : µε(S) = 0}.

This is a global optimization problem, which we approach locally by introducing a
methodology which allows us to compute suitable upper bounds for εopt. The following
definition will be used often, where for δ > 0, Bδ(λ) = {z ∈ C : |z − λ| ≤ δ}.

Fig. 1. The approximated structured ε-pseudospectrum for ε = 1
2

for example (3.5) is shown in
blue; the boundary of the unstructured ε-pseudospectrum is drawn in black.
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Definition 3.1. A matrix E such that ‖E‖F ≤ 1 and S + εE has a smallest
eigenvalue z that locally minimizes the modulus of ΛSε (S), i.e., ∃δ > 0 such that

λ = arg min
{
|z| : z ∈ ΛSε (S) ∩ Bδ(λ)

}
(3.7)

is called a local extremizer. Similarly, λ is called a local minimum point of ΛSε (S).

We propose a two-level algorithm.
At the inner level, for a fixed ε we compute a (local) minimum point of ΛSε (S),

which we denote by λ(ε) ∈ ∂ΛSε (S). If λ(ε) is a global minimum point, then |λ(ε)| =
µε(S), otherwise |λ(ε)| > µε(S). The (inner) algorithm we propose finds local optima
of problem (3.7) by determining the stationary point of a system of ODEs. In general
there is no assurance that these are global minima, although this seems to be the case
in all our experiments of small dimension (where we were able to perform a statistical
investigation on a very large number of samples).

For the outer iteration, we indicate by λ(ε) a continuous branch of local minima
of ΛSε (S) (see (3.7)); the aim is to compute

ε? = min{ε : λ(ε) = 0}.

In order to compute ε?, we vary ε by an interpolation-based iteration which exploits
the knowledge of the exact derivative of λ(ε) with respect to ε and exhibits fast
convergence (a similar methodology has been exploited for different structures (see
[27]), as well as for computing the H∞ norm of a linear dynamical system [13] and
the distance to instability of real matrices (see [16])).

For ε in a left neighborhood of ε?, we generically expect the occurrence of one of
the following two situations.

(i) There is a unique real local minimum λ(ε). This means that there exists a
matrix E(ε) ∈ S of unit norm such that λ(ε) is a real simple eigenvalue of
S + εE(ε), which implies that S + ε?E(ε?) has corank equal to 1 and that
the two perturbed polynomials associated to S+ε?E(ε?) have a real common
root.

(ii) There is a unique pair of complex conjugate local minima λ(ε) and λ(ε). This
means that there exists a matrix E(ε) ∈ S of unit norm such that λ(ε), λ(ε)
is a pair of complex conjugate eigenvalues of S + εE(ε), which implies that
S + ε?E(ε?) has corank equal to 2 and that the two perturbed polynomials
associated to S + ε?E(ε?) have two complex conjugate common roots.

This means that—in contrast to the case of unstructured perturbations—we expect
that as ε −→ ε? we have to expect a nondefective coalescence of two complex conjugate
eigenvalues in zero.

4. Approximation of local minima of the structured ε-pseudospectrum.
We address here the minimization problem

λ = arg min{|z| : z ∈ ΛSε (S)}.

We will use the convention that when an eigenvalue of minimum modulus λ is not real,
which means that it appears pairwise with λ, we select the eigenvalue with positive
imaginary part.

The idea is to make use of a continuous (in time) minimization method. Let us
consider a smooth matrix-valued function S+εE(t), where E(t) ∈ S and ‖E(t)‖F ≤ 1
for all t.
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Our goal is to find an optimal direction Ė(t) = Z such that the smallest eigenvalue
λ of S + εE(t) is characterized (locally) by the maximal possible decrease.

We follow an approach which extends to structured pseudospectra some ideas
developed in [14, 15, 17] and makes use of the following standard perturbation result
for eigenvalues (see, e.g.,[26, section II.1.1]). Here and in the following, ˙ = d/dt.

Lemma 4.1. Consider the differentiable matrix-valued function C(t) for t in a
neighborhood of 0. Let λ(t) be an eigenvalue of C(t) converging to a simple eigenvalue
λ0 of C0 = C(0) as t → 0. Let y0 and x0 be left and right eigenvectors, respectively,
of C0 corresponding to λ0, that is, (C0 − λ0I)x0 = 0 and y∗0(C0 − λ0I) = 0. Then,
y∗0x0 6= 0 and λ(t) is differentiable near t = 0 with

λ̇(0) =
y∗0Ċ(0)x0

y∗0x0
.

Assume that E(t) is a smooth function and observe that for a simple eigenvalue
λ(t) = r(t)eiθ(t) of the matrix-valued function S + εE(t) (r(t) denotes the modulus
and θ(t) the phase) with associated left and right eigenvectors y(t) and x(t), respec-
tively, we have (omitting the dependence on t)

d

dt
|λ| = 1

2|λ|
d

dt
|λ|2 =

1

|λ|
Re(λλ̇) =

1

|λ|
Re

(
λ ε

y∗Ėx

y∗x

)

=
ε

|λ|
Re

(
(λy)∗Ėx

y∗x

)
= εRe

(
y∗Ėx

eiθy∗x

)
.

In the rest of the paper we shall always impose the following normalization to the
eigenvectors y and x:

‖y‖2 = ‖x‖2 = 1, y∗x = |y∗x|e−iθ,(4.1)

which makes the denominator of (4.2) real and positive (note that |y∗x| 6= 0 is a
consequence of the assumption that λ is simple). Hence we have

d

dt
|λ| = ε

|y∗x|
Re
(
y∗Ėx

)
,(4.2)

so the optimal variation Z = Ė is obtained by minimizing the function Re(y∗Ėx).
Note that for Ė ∈ S we have

Re
(
y∗Ėx

)
= Re

〈
yx∗, Ė

〉
=
〈
PS (yx∗) , Ė

〉
,

where we denote by PS(B) the orthogonal projection of a matrix B ∈ C2n,2n onto S.
The following result gives an explicit formula for PS (for Toeplitz matrices, similar
results are discussed in [36] and [7]).

Lemma 4.2. Let S ⊂ R2n×2n be the manifold of real Sylvester matrices of dimen-
sion 2n and B ∈ C2n×2n. The orthogonal projection (with respect to the Frobenius
inner product 〈·, ·〉) PS(B) of B onto S is given by

BS = PS(B) = Syl(α, β),(4.3)
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where

αn−k =
1

n

n∑
l=1

Re (Bl,l+k) , k = k0, . . . , n,

βm−k =
1

n

n∑
l=1

Re (Bn+l,n−m+l+k) , k = 0, . . . ,m,

with k0 = 1 if p is constrained to be monic, and k0 = 0 otherwise (and αn = 0).

Proof. With S a manifold of real matrices, note the obvious property PS(B) =
PS (Re(B)). We have to find BS ∈ S such that

BS = arg min
S∈S
‖B − S‖F = arg min

S∈S
‖Re(B)− S‖F .

The result follows directly from the property that, for a real vector x ∈ Rd,

ν∗ = arg min
ν∈R
‖x− ν1‖F =

1

d

d∑
i=1

Re(xi),

being 1 = (1 1 · · · 1)
T

.

The following result assures the important property PS (yx∗) 6= 0 (where x and
y are the eigenvectors of S + εE associated to the smallest eigenvalue λ), which is
considered later in Lemmas 4.4 and 4.5. In order to distinguish the case where p is
unconstrained from the case where p is constrained to be monic, we introduce the set
S∗ which is the submanifold of Sylvester matrices {Syl(u, v)} (2.1) given by un = 0.

Lemma 4.3. Let S ∈ S and either E ∈ S or E ∈ S∗ of unit Frobenius norm,
and ε > 0. If λ 6= 0 is a simple eigenvalue of S + εE, with left and right eigenvectors
y and x scaled according to (4.1), then

PS (yx∗) 6= 0.(4.4)

Proof. We analyze first the case where p is not constrained to be monic.
Let y and x be the left and right eigenvectors of S + εE associated to λ = reiθ

with r > 0. Assume by contradiction that PS (yx∗) = 0; this would imply

0 =
〈
PS (yx∗) , S + εE

〉
=
〈
yx∗, S + εE

〉
=
〈
Re(yx∗), S + εE

〉
.(4.5)

Observing that〈
Re(yx∗), S + εE

〉
= Re

〈
yx∗, S + εE

〉
= Re (y∗ (S + εE)x) = Re

(
reiθy∗x

)
,

and exploiting the normalization (4.1), we obtain〈
Re(yx∗), S + εE

〉
= r|y∗x| > 0,(4.6)

where positivity follows by the simplicity assumption for λ. This contradicts (4.5)
and consequently (4.4) holds true.

Second, we consider the case where p is constrained to be monic. If we assume
that PS∗ (yx∗) = 0, where the projection PS∗ , which is given by (4.3) by imposing
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αn = 0, is relevant to the monic case and is used here to distinguish it from PS ,
we get

PS (yx∗) =

(
βI 0
0 0

)
,(4.7)

where PS is the usual projection on the manifold S to which belongs S (which now
contains the submanifold S∗ to which belongs E) and

β =
1

n

n∑
i=1

Re (yixi) .

Now, consider the matrix C = S + εE − I, where I is the identity matrix, and
define the matrix

S̃γ := I + γC,

which preserves the structure of S and also the eigenvectors x and y associated to the
shifted eigenvalue λ.

First, by (4.7), we obtain (recall that an = 1 in (2.1))

〈
Re(yx∗), S̃γ

〉
= nβ = Re

(
n∑
i=1

yixi

)
,

which has modulus smaller than 1.
Second, exploiting 〈Re(yx∗), S̃γ〉 = Re(y∗S̃γx), we get〈

Re(yx∗), S̃γ
〉

= r̃γ ,(4.8)

where |r̃γ | can be chosen arbitrarily large if |γ| is chosen large enough.
This leads to a contradiction. As a consequence, we have that PS∗(yx

∗) 6= 0.

4.1. Minimizing on the sphere. The problem we are considering is

min
{
|λ| : λ ∈ Λ(S + εE), E ∈ S, ‖E‖F ≤ 1

}
.(4.9)

Let us show that extremizers are located on the sphere; that is, we may replace (4.9) by

min
{
|λ| : λ ∈ Λ(S + εE), E ∈ S, ‖E‖F = 1

}
.(4.10)

In order to do this, let us state the following result.

Lemma 4.4. Assume that E is a (local) extremizer for problem (4.9), where λ ∈
ΛSε (S), λ 6= 0, has (locally) minimum modulus and is simple. Then ‖E‖F = 1.

Proof. Assume by contradiction ‖E‖F < 1. Let y and x be the left and right eigen-
vectors of S+εE associated to λ. By Lemma 4.3 we have that PS (yx∗) 6= 0. Note that

d

dt
|λ| = ε

|y∗x|
〈
PS (yx∗) , Ė

〉
implies that −PS (yx∗) is a descent direction for |λ|; as a consequence, consider the
matrix Eδ = E−δPS (yx∗) and denote by λδ its eigenvalue of smallest modulus. For a
sufficiently small δ > 0, the matrix Eδ = E − δPS (yx∗) would be such that |λδ| < |λ|
and ‖Eδ‖F < 1, contradicting the optimality of E.

As a consequence, we are justified in looking for extremizers on the set

S1 = S ∩ {E ∈ R2n×2n : ‖E‖F = 1}.(4.11)
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4.2. Steepest descent direction. Let λ = reiθ 6= 0 be the eigenvalue of min-
imum modulus of S + εE. Then the optimal steepest descent direction for |λ| (see
(4.2) and (4.1)) with Z = Ė ∈ S is given by

Z∗ = arg min
Z∈S1

Re (y∗Zx)

subject to 〈E,Z〉 = 0,
(4.12)

where the constraint 〈E,Z〉 = 0 guarantees norm conservation of E, and the nor-
malization Z ∈ S1 is considered for convenience to obtain a unique solution (since Z
indeed represents a direction).

The solution to (4.12) is given in the following lemma.

Lemma 4.5. Let E ∈ S1 be a 2n × 2n real matrix of unit Frobenius norm, and
let y, x ∈ C2n be nonzero complex vectors. Assume that PS (yx∗) 6= 0 and E is not
proportional to PS (yx∗). Then the solution of the optimization problem (4.12) is
given by

νZ∗ = − PS (yx∗) +
〈
E,PS (yx∗)

〉
E,(4.13)

where ν is the Frobenius norm of the matrix on the right-hand side.

Proof. We have, for the function to be minimized,

Re (y∗Zx) = Re〈Z, yx∗〉,

which is a linear function with respect to Z. Since S and E⊥ = {Z : 〈E,Z〉 = 0}
are linear subspaces, it is direct to see, by the fact that the inner product with a
given vector is minimized over a subspace by orthogonally projecting the vector onto
that subspace, that the solution to (4.12) is given by a matrix proportional to the
orthogonal projection of the rank-1 matrix yx∗ onto the linear subspace S∩E⊥, which
we denote by PS∩E⊥ (yx∗), scaled to have unit norm (unless such a projection is zero).
Let PS(·) and PE⊥(·) denote the orthogonal projections onto S and E⊥, respectively.
By the well-known von Neumann iterative formula (see, e.g., [42]), we have that if PS
and PE⊥ commute, then

PS∩E⊥ (·) = PS (PE⊥(·)) = PE⊥ (PS(·)) .

Let B ∈ C2n×2n; then

PE⊥ (PS(B)) = PS (B) −
〈
E,PS (B)

〉
E.

On the other hand (since E ∈ S),

PS (PE⊥(·)) = PS
(
B −

〈
E,B

〉
E
)

= PS (B)−
〈
E,PS (B)

〉
E,

which proves the commutativity. Hence PS∩E⊥ (B) = PS (B)−
〈
E,PS (B)

〉
E. Since

by assumption PS (yx∗)−
〈
E,PS (yx∗)

〉
E does not vanish, we obtain the solution to

(4.12):

νZ∗ = −PS (yx∗) −
〈
E,PS (yx∗)

〉
E 6= 0,

where ν is the reciprocal of the Frobenius norm of the right-hand side.
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Optimality conditions. The application of Karush–Kuhn–Tucker local opti-
mality conditions for the optimization problem (4.10),

min
E∈S, ‖E‖F =1

|λ|,

in the case where the minimum is not zero, reads as follows:

PS (yx∗) = sE∗, s < 0,(4.14)

‖E∗‖F = 1,(4.15)

where E∗ denotes an extremizer. Naturally, s > 0 would characterize a local maxi-
mum.

4.3. The gradient system associated to the minimization problem.
Lemma 4.5 and formula (4.2) suggest considering the following differential equa-

tion on the manifold S1 (see (4.11)):

Ė = −PS (yx∗) +
〈
E,PS (yx∗)

〉
E,(4.16)

where y(t), x(t) are the left and right eigenvectors of unit norm, respectively, to a
simple eigenvalue λ(t) of S + εE(t), and with y∗x = |y∗x|e−iθ, where ε is fixed.

Remark 4.6. Indeed, Lemma 4.5 gives us the steepest descent direction and (4.16)
scales this direction in such a way that the projected gradient does not necessarily
have unit norm, but has the order of magnitude of PS (yx∗) so as to prevent a big
amplification of this vector field when this is small (close to convergence).

We are now in a position to prove the monotonic decrease of |λ(t)| along every
solution of (4.16).

Theorem 4.7. Let E(t) of unit Frobenius norm satisfy the differential equation
(4.16). If λ(t) is a simple eigenvalue of S + εE(t), then

d

dt
|λ(t)| ≤ 0.(4.17)

Proof. Note that

Re
(
y∗PS (yx∗)x

)
= Re

〈
yx∗, PS (yx∗)

〉
=
〈
PS (yx∗) , PS (yx∗)

〉
= ‖PS (yx∗) ‖2F

and (since E ∈ S)

Re (y∗Ex) = 〈E,PS (yx∗)〉 .

By the Cauchy–Schwarz inequality,

|〈E,PS (yx∗)〉| ≤ ‖E‖F ‖PS (yx∗) ‖F = ‖PS (yx∗) ‖F .

Finally, by (4.16),

Re(y∗Ėx) =
(
−‖PS (yx∗) ‖2F + 〈E,PS (yx∗)〉2

)
≤ 0,(4.18)

implying (4.17) by Lemma 4.1.

Since we are interested in minimizing |λ|, we focus our attention on the stationary
points of (4.16).
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4.4. Stationary points. Since stationary points of (4.16) are potential extrem-
izers for µε(S), we give the following result for their characterization.

Theorem 4.8. Assume λ 6= 0. The following are equivalent on solutions of
(4.16):

(1)
d

dt
|λ| = 0;

(2) Ė = 0;
(3) E is a real multiple of PS (yx∗).

Proof. The proof follows directly by combining (4.2) and Lemma 4.5.

The following result characterizes the local extremizers.

Theorem 4.9. Let E∗ ∈ S with ‖E∗‖F = 1. Let λ∗ = reiθ 6= 0 be a simple
eigenvalue of S + εE∗ with minimum modulus, with the left and right eigenvectors y
and x, respectively, both of unit norm and with the normalization y∗x = |y∗x|e−iθ.
Then the following two statements are equivalent.

(i) Every differentiable path (E(t), λ(t)) (for small t ≥ 0), such that ‖E(t)‖F ≤ 1
and λ(t) is an eigenvalue of S + εE(t) with E(0) = E∗ and λ(0) = λ∗, has

d

dt
|λ(t)|

∣∣∣
t=0
≥ 0.

(ii) E∗ is a negative multiple of PS (yx∗).

Proof. Assume that (i) does not hold true. Then there is some path E(t) through
E∗ such that d

dt |λ(t)|
∣∣
t=0

< 0; thus Lemma 4.5 together with Lemma 4.1 shows that
the solution path of (4.16) passing through E∗ is such a path. Consequently, E∗ is
not a stationary point of (4.16), and Theorem 4.8 then yields that E∗ is not a real
multiple of PS (yx∗). This also implies that (ii) does not hold true.

Vice versa, if E∗ is not a real multiple of PS (yx∗), then E∗ is not a stationary
point of (4.16), and Theorems 4.7 and 4.8 yield that d

dt |λ(t)|
∣∣
t=0

< 0 along the solution
path of (4.16). Moreover, using a similar argument to [15, Theorem 2.2], if

E∗ = γPS (yx∗) with γ > 0,

then along the path E(t) = (1− t)E∗, t ≥ 0, we have that

Re(y∗Ė(0)x) = −γ‖PS (yx∗) ‖2F < 0

and thus, by exploiting Lemma 4.1, d
dt |λ(t)|

∣∣
t=0

< 0, which contradicts (i).

As a consequence, if, in Theorem 4.8, λ 6= 0 is locally minimal (in modulus),

E = E∗ = −PS (yx∗) /‖PS (yx∗) ‖F ,

which is the projection onto S of a real matrix of either rank 1 (if λ, x, and y are real)
or rank 2 (if λ is nonreal, and consequently so are y and x).

Remark 4.10. The test E = −PS (yx∗) /‖PS (yx∗) ‖F may be useful for recogniz-
ing when a (local) extremizer has been computed, especially for algorithms other than
those presented in this article.
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4.5. The system of ODEs. We can write (4.16) in a compact form for the
coefficients {δai} and {δbi} of the polynomials δp and δq (see (2.2)), which form E:

E = Syl(δa, δb).(4.19)

This is given by

d

d t
δak = (αk − η δak) , k = 0, . . . , n− k0,

d

d t
δbk = (βk − η δbk) , k = 0, . . . ,m,

(4.20)

where k0 = 1 if p is monic (in which case δan ≡ 0) and k0 = 0 otherwise, αk and βk
are the elements of PS (yx∗),

PS (yx∗) = Syl(α, β) =



αn . . . αm . . . . . . α1 α0 0 . . . 0

0 αn . . . αm . . . . . . α1 α0 . . . 0

... 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 αn . . . . . . . . . . . . α1 α0

0 . . . βm . . . . . . β1 β0 0 . . . 0

0 . . . 0 βm . . . . . . β1 β0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 0 0 βm . . . . . . β1 β0


,

and η =
〈
E,PS (yx∗)

〉
. This means we have to solve a system of (m+1)+(n+1−k0)

ODEs.

Remark 4.11. The ODEs (4.16) and (4.20) follow the smallest eigenvalue (for a
complex conjugate pair this is the one with positive imaginary part) so that they
detect automatically whether the ε-GCD has either degree 1 or 2.

In the next section, we propose a numerical method to approximate the solution
of the ODEs (4.20) until either a stationary point is reached or the followed eigenvalue
λ goes to zero. As suggested by an anonymous referee, whom we thank, a classical
alternative to Algorithm 1 would be to use projected gradient type methods, such as
the Zoutendijk approach (see, e.g., [49]). Exploring these approaches and comparing
them to the methodology we propose would certainly be an interesting development.

4.6. Numerical integration. Given E` ≈ E(t`) of unit Frobenius norm, and
given y` and x` left and right eigenvectors of S+εE` associated with its eigenvalue λ`
of minimum modulus (if λ` is not real we choose λ` = r`e

iθ` with positive imaginary
part), with y∗`x` = |y∗`x`|e−iθ` ,

α(`) = {α(`)
k }

n−k0
k=0 , β(`) = {β(`)

k }
m
k=0,

and

δa(`) = {δa(`)
k }

n−k0
k=0 , δb(`) = {δb(`)k }

m
k=0,

we determine all numerical approximations at time t`+1 = t`+h` by applying a step of
the Euler method with stepsize h` to (4.20), which is fully described by Algorithm 1.
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Algorithm 1. Euler step applied to the ODEs (4.20) with stepsize control.

Data: α(`), β(`), λ`, y`, x`, and h̃` (stepsize predicted by the previous step), tol
(stopping tolerance).

Result: E`+1, y`+1, x`+1, λ`+1, and h̃`+1.
begin

1 Set h = h̃`.

2 Compute Z` = PS (y`x
∗
` ) := S

(
α(`), β(`)

)
and η` = 〈E`, Z`〉.

3 Compute

δa
(`+1)
k = δa

(`)
k − h

(
α

(`)
k − η`δa

(`)
k

)
, k = 0, . . . , n− k0,

δb
(`+1)
k = δb

(`)
k − h

(
β

(`)
k − η`δb

(`)
k

)
, k = 0, . . . ,m.

4 Compute σ`+1 = n

√
n∑

k=k0

(
δa

(`+1)
k

)2

+
m∑
k=0

(
δb

(`+1)
k

)2

.

5 Normalize as

δa
(`+1)
k = δa

(`+1)
k /σ`+1, δb

(`+1)
k = δb

(`+1)
k /σ`+1.

6 Set E`+1 = Syl(δa(`+1), δb(`+1)).

7 Compute the eigenvalue of minimum modulus λ̂ of S+ εE`+1, and the left and
right eigenvectors ŷ, x̂.

8 if |λ̂| ≥ |λ`| then
reject the step: reduce the stepsize as h := h/γ and repeat from 3;

else

accept the step: set h`+1 = h, λ`+1 = λ̂, y`+1 = ŷ, and x`+1 = x̂.
9 if |λ`+1 − λ`| ≤ tol or |λ`| ≤ tol then

return

10 if h`+1 = h̃` then

increase the stepsize as h̃`+1 := γh̃`;
else

set h̃`+1 = h̃`.

11 Proceed to next step.

In order to control the stepsize, we simply require that the monotonicity property
of the exact flow, that is, |λ(t`+1)| < |λ(t`)|, is preserved by the numerical solution
|λ`+1| < |λ`|. Since we are only interested in stationary points, we can neglect the
classical error control estimate on the solution; that is, we do not estimate ‖E(t`+1)−
E`+1‖.

At line 9 of Algorithm 1, we have introduced a stopping criterion which activates
either when the difference of two subsequent iterates goes under a given accuracy
tol (this is an indicator of the fact that the sequence λ` has converged) or when λ`
approaches zero to a certain tolerance tol. If |λ`| > tol, it means that it has reached a
local minimum for |λ|, λ ∈ ΛSε (S); if |λ`| ≤ tol, it indicates that the global minimum
has been reached (to the given tolerance, since the exact minimum value is zero). In
both cases, E` approximates the corresponding extremizer.
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Remark 4.12. The normalization step at lines 4 and 5 of Algorithm 1 ensures
that ‖E`‖F = 1 for all `. Since the exact solution of the ODEs (4.16) (as well as
(4.20)) preserves the norm of E, after the application of an Euler step the error on
‖E‖ is O(h2), which makes it very small if h is small (which certainly occurs close to
convergence). Hence we do not expect a significant slowing down of the algorithm (and
we do not observe this in our numerical experiments). As remarked by an anonymous
referee, whom we thank, the choice of the stepsize might be improved by suitable
line search algorithms. In the present paper, we have selected the stepsize according
to the preservation of the monotonicity of |λ`|, in agreement with the monotonicity
property of the exact flow. Investigating more efficient stepsize control strategies
would certainly be an interesting topic for a future investigation.

5. An iterative method for approximating dCD

(
p, q

)
. In this section, we

discuss the outer algorithm and make use of the following notation: all quantities
written as g(ε), such as λ(ε), E(ε), and so on, are intended to be exact and associated
to local minima/extremizers for the optimization problem (4.9).

In order to compute the distance to common divisibility, we should consider equa-
tion µε(S) = 0 and minimize its solution. As a surrogate of this problem, which is of
global optimization, we try to compute a value, say ε?, such that the boundary of the
corresponding structured ε-pseudospectrum, ∂ΛSε?(S), crosses the origin.

This would provide an upper bound for the distance; repeating such a search over
different regions of the ε-pseudospectrum would increase the probability of computing
the exact distance, and hence would improve the robustness of the method.

Remark 5.1. Let λ(ε) ∈ ∂ΛSε (S) be a branch of points of locally minimum mod-
ulus with λ(ε) 6= 0 for ε < ε? and λ(ε?) = 0 (see, e.g., Figure 2). Consider the
function

ε −→ |λ(ε)|, ε < ε?.

Its continuity is a consequence of the continuity of eigenvalues; however, in principle,
such a function does not need to be differentiable, which would prevent our arguments
from applying since they are based on its differentiability. In fact, one might switch
from one local minimum to another located in a different region of the structured
pseudospectrum, which would generically imply a jump of its derivative.

Hence we shall further assume some smoothness, more specifically, that λ(ε) is
a smooth and continuously differentiable curve of the complex plane. If λ(ε) is a
continuous curve of simple eigenvalues, then its differentiability is implied by the
simplicity. Under these assumptions we may think of approaching ε? from the left,
by a repeated integration of the ODEs (4.20), and exploiting the knowledge of the
derivative of λ(ε) with respect to ε.

To summarize, in order to proceed we indicate by

λ(ε) = arg min
λ∈ΛSε (S)

|λ|

a smooth branch of (local) minima parametrized by ε and computed by determining
the stationary point of the system of ODEs (4.16) (or equivalently (4.20)) which we
denote by E(ε), and make the following generic assumption.

Assumption 5.2. Let λ(ε) 6= 0 be a point of locally minimum modulus of ΛSε (S)
(with ε fixed), which is an eigenvalue with minimum modulus of the matrix S+εE(ε)
(where E(ε) denotes the corresponding (local) extremizer). Then λ(ε) is simple.
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Moreover, we assume that E(ε) and λ(ε) are smooth with respect to ε (at least
in a neighborhood of ε?).

Assumption 5.2 states that the eigenvalue λ(ε) of minimum modulus of S+εE(ε)
is a smooth function of ε in a left neighborhood of ε?.

5.1. A key variational formula. The following result provides us with an
explicit and easily computable expression for the derivative of |λ(ε)| (and thus also
µε(S)) with respect to ε.

Theorem 5.3. Assume the following:
1. ε ∈ (0, ε?) such that λ(ε) 6= 0;
2. λ(ε) is a smooth branch of points of (locally) minimum modulus of ΛSε (S);
3. Assumption 5.2 holds, i.e., λ(ε) and E(ε) are smooth with respect to ε, and let
y(ε) and x(ε) be corresponding left and right eigenvectors of S+εE(ε) (where
E(ε) is a local extremizer), scaled according to (4.1) with ‖E(ε)‖F = 1 for all
ε ∈ (0, ε?).

Then the following holds, with s(ε) = − ‖PS (y(ε)x(ε)∗) ‖F :

d|λ(ε)|
dε

=
s(ε)

|y(ε)∗x(ε)|
< 0 for all ε.

Proof. By Theorem 4.9, we have

PS (y(ε)x(ε)∗) = s(ε)E(ε) with s(ε) = −‖PS (y(ε)x(ε)∗) ‖F and ‖E(ε)‖ = 1,

the latter implying

0 = 〈E(ε), E′(ε)〉 =
〈
Re (y(ε)x(ε)∗) , PS (E′(ε))

〉
= Re〈y(ε)x(ε)∗, E′(ε)〉,

where ′ = d/dε. The proof follows by observing that

d

dε
|λ(ε)| = 1

|y(ε)∗x(ε)|
Re
〈
y(ε)x(ε)∗, E(ε) + εE′(ε)

〉
=

1

|y(ε)∗x(ε)|
〈
PS (y(ε)x(ε)∗) , E(ε)

〉
=

s(ε)

|y(ε)∗x(ε)|
.

Since PS (y(ε)x(ε)∗) does not vanish by Lemma 4.3, the previous equation is strictly
negative and the proof is complete.

5.2. The outer iteration. The function ε→ |λ(ε)| is smooth for ε < ε? (where
|λ(ε)| > 0), applying a Newton’s iterate yields, for εk < ε?,

εk+1 = εk +

(
‖PS (y(εk)x(εk)∗) ‖F
|y(εk)∗x(εk)|

)−1

|λ(εk)|,(5.1)

where λ(εk) is the eigenvalue of smallest modulus of S + εkE(εk), E(εk) being the
extremizer computed by the inner method, which numerically integrates the ODE
(4.16). Likely the value εk+1 will be closer to ε? than εk but might lie on the right
of ε?, where the function |λ(ε)| is identically zero; hence it needs a correction to
provide a lower bound to ε?. This would certainly occur when the function λ(ε) is
concave for ε < ε?.

An alternative, which allows one to obtain a sequence of lower bounds which
is more rapidly convergent to ε?, is that of interpolating pairs (εk−1, |λ(εk−1)|),
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Algorithm 2. Basic algorithm for computing ε?.

Data: tol > 0 and ε0, ε1, εu (such that |λ(ε0)| > |λ(ε1)| > tol, and |λ(εu)| < tol).
Result: εf (approximation of ε?).
begin

1 Set Reject = False and k = 1.
2 while |εk − εu| ≥ tol do
3 if Reject = False. then

Store εk and λ(εk) into the memory.
4 Compute the polynomial dk(ε) (see (5.2)).
5 Compute ε̃k+1 the real root of dk(ε) closest to εk.
6 if ε̃k+1 > εu then

Set ε̃k+1 = (εu + εk)/2.

else
Set ε̃k+1 = (εu + εk)/2.

7 Compute λ(ε̃k+1) by integrating (4.20) (equivalently (4.16)) with initial
datum E(εk) (i.e., the previously computed extremizer).

8 if |λ(ε̃k+1)| < tol then
Set Reject = True.
Set εu = ε̃k+1.

else
Set Reject = False.

9 Set εk+1 = ε̃k+1.

10 Order the array {εj}k+1
j=0 in ascending order, εj+1 > εj .

11 Set k = k + 1.

12 Set εf = εk.

(εk, |λ(εk)|) for values εk−1, εk < ε?, implying |λ(εk−1)|, |λ(εk)| > tol, tol being a
suitable tolerance. Setting dk(ε) as the cubic Hermite polynomial such that

dk(ε`) = |λ(ε`)|, ` = k − 1, k,

d′k(ε`) = − ‖PS (y(ε`)x(ε`)
∗) ‖F

|y(ε`)∗x(ε`)|
, ` = k − 1, k,

(5.2)

we define ε̂k+1 as the solution of dk(ε) = 0.
Then, if |λ (ε̂k+1) | > tol, we set εk+1 = ε̂k+1, otherwise a bisection technique

defines εk+1. This prevents quadratic convergence when several bisection steps are
taken by the method.

An algorithm for the approximation of ε?. Algorithm 2 is devised to ap-
proximate ε?.

It makes use of an upper bound εu such that λ(εu) = 0 and constructs a sequence
{εk} in the region where |λ(εk)| is strictly monotonically decreasing by successively
finding zeros of the polynomials dk(ε), k = 1, 2, . . . .

A natural upper bound is εu =
√
n‖a − b‖F (where a and b are the vectors of

coefficients of p and q); a natural lower bound is ε0 = σmin (Syl(a, b)), where σmin(·)
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indicates the smallest singular value, i.e., the unconstrained distance to singularity of
the Sylvester matrix Syl(a, b).

6. Possible extensions. We consider now a few natural extensions of the pro-
posed methodology to deal with a wider class of problems and related applications
the distance to uncontrollability of a controllable single-input single-output system.

6.1. An extension to constrained systems. Assume that only certain sub-
sets of the coefficients {ai}, {bj} of the polynomials p and q are allowed to be perturbed
in order to find a nearby uncontrollable pair. Then the method has the same structure
and only the projection changes. In fact, if {ai} does not vary for i 6∈ I and the same
holds for {bj} for j 6∈ J , where I ⊆ {0, 1, . . . , n} and J ⊆ {0, 1, . . . ,m} are the sets
of indices corresponding to the coefficients of the polynomials which are allowed to be
perturbed, we have simply to consider in (4.16), for B ∈ C2n×2n, the new projection
PS(I,J )(B) given by (4.3) with

αn−k =


1

n

n∑
l=1

Re (Bl,l+k) , k ∈ I,

0, k 6∈ I,

and

βm−k =


1

n

n∑
l=1

Re (Bn+l,n−m+l+k) , k ∈ J ,

0, k 6∈ J .

Note that the proof that PS(I,J ) (yx∗) 6= 0 is not obtained as a direct extension
of Lemma 4.3.

The system of ODEs we have to solve is still (4.20), but now the number of ODEs
is |I|+ |J |.

An illustrative example. We consider the following example of two monic
quadratic polynomials considered in [25]:

p(z) = z2 − 6z + 5, q(z) = z2 − 6.3z + 5.72.

(i) Applying Algorithm 2, without constraining the perturbed polynomials to be
monic, we obtain

p̂(z) = 0.985005935828721 z2 − 6.002940644075092 z + 4.999423279273879,

q̂(z) = 1.014952404182629 z2 − 6.297067526304693 z + 5.720575118346765

such that dCD(p, q) = ε?/
√

2 ≈ 0.021594147 and z ≈ 5.098904194 is the
common root. These results agree well with those in [25] and also in [40].

(ii) Applying Algorithm 2, constraining only the first polynomial to be monic, we
obtain

p̂(z) = z2 − 6.005752814118045 z + 4.998851154980102,

q̂(z) = 1.028807031186749 z2 − 6.294247195609338 z + 5.721148843077327

such that dCD(p, q) = ε?/
√

2 ≈ 0.029977897 and z ≈ 5.00747501054342 is
the common root.
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(iii) Applying Algorithm 2, constraining both polynomials to be monic (i.e., I =
{0, 1},J = {0, 1}), we obtain

p̂(z) = z2 − 6.075037558842548 z + 4.985277938401874,

q̂(z) = z2 − 6.222182433577167 z + 5.735267487695024

such that dCD(p, q) = ε?/
√

2 ≈ 0.11016371 and z ≈ 5.0969464661670 is the
common root. These results agree well with those in [40].

(iv) Applying Algorithm 2, constraining the first polynomial to be unperturbed
(i.e., I = ∅,J = {0, 1, 2}), we obtain

q̂(z) = 1.029953916904784 z2 − 6.294009215915526 z + 5.721198156957997

such that dCD(p, q) = ε?/
√

2 ≈ 0.030570610 and z = 5 is the common root.

6.2. The case of complex polynomials. If the polynomials p and q have
complex coefficients, a similar gradient system to (4.16) can be derived for the smallest
eigenvalue of the Sylvester matrix. The only difference here is that the projection PS
has to be replaced by a projection onto the set of complex-valued Sylvester matrices
(a result analogous to Lemma 4.2 holds where the coefficients {αn−k} and {βm−k}
are given by the same expressions as in Lemma 4.2 but for the real parts). In this
case, we have generically that the distance to singularity of the matrix S = Syl(a, b)
is attained by a matrix E(ε?), which is the projection of a rank-1 matrix yx∗, and
the corresponding matrix S + ε?E(ε?) has corank equal to 1. The same replacement
of PS has to be considered in Theorem 5.3.

7. Illustrative examples. In this section, we illustrate the performance of the
method proposed, although it has not yet been optimized in our implementation, on
synthetic examples and compare it with the following alternative methods:

• the uvGCD function of the Numerical Algebraic Computing Toolbox (NAClab)
for MATLAB, developed by Li and Zeng [47], and available from http://
homepages.neiu.edu/∼naclab/;

• the methods of [46], based on the structured low-rank approximation (SLRA)
toolbox, developed by Markovsky and Usevich [33], and available from https:
//arxiv.org/abs/1304.6962v1 and http://slra.github.io/.

The uvGCD method does not allow us to include constraints on the coefficients of p
and q (e.g.,pmonic or q monic). Similarly, the SLRA approach has limitations imposed
by its solution method [45, 12]. On the contrary, the ODE method allows us to
include arbitrary constraints on the coefficients. In the two considered unconstrained
examples, all methods give the same results, but the ODE method is slower. An
optimization of the implementation and the investigation of different gradient-based
optimization techniques is a plan of the authors.

In all examples we conducted a fine sampling of the parameter space (we randomly
generated 106 matrices E with Sylvester structure and unit norm and computed the
spectra of the corresponding matrices S + εE) in order to accurately approximate
the structured ε-pseudospectrum so as to assert that what we compute is indeed the
distance and not simply an upper bound. Hence the Figure 2 illustrate the effective
behavior of |λ(ε)| = µε(S) as a function of ε, and the first intersection to the horizontal
axis provides the value ε? which approximates the distance dCD(p, q).

In the case where λ(ε) is a real eigenvalue for ε→ ε?, we expect generically that
S + ε?E has a simple zero eigenvalue and hence has rank 2n − 1. This is illustrated
by the following examples.

http://homepages.neiu.edu/~naclab/
http://homepages.neiu.edu/~naclab/
https://arxiv.org/abs/1304.6962v1
https://arxiv.org/abs/1304.6962v1
http://slra.github.io/
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Table 1
Coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq in the example of section 7.1.

â5 = 1 â4 = 0.0144 â3 = 0.9729 â2 = 0.0510 â1 = 1.9039 â0 = 1.1811

b̂5 = −1.9778 b̂4 = 0.9583 b̂3 = 1.0787 b̂2 = −1.1483 b̂1 = 0.2795 b̂0 = 0.4732

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

|λ(ε)|

Fig. 2. The function ε→ |λ(ε)| for the example of section 7.1

7.1. Example (common ε-GCD of degree 1). Consider the polynomials
(1.1) of degree 5 with the coefficients

a5 = 1, a4 = 0, a3 = 1, a2 = 0, a1 = 2, a0 = 1,
b5 = −2, b4 = 1, b3 = 1, b2 = −1, b1 = 0, b0 = 1.

Note that the p polynomial is monic. This property will be preserved in the approxi-
mation p̂.

The computed matrix S+ε?E(ε?) has rank-2n−1 due to a simple zero eigenvalue.
The perturbed polynomials’ p̂ = p+ δp, q̂ = q + δq coefficients are shown (with five-
digit accuracy) in Table 1.

The common zero of p̂, q̂ is

z1 = −0.530278660.

The value ε? and the estimated distance to common divisibility are

ε? = 1.468981057767730,

dCD
(
p, q
)

= 0.656948300565638.

The function ε 7→ |λ(ε)| is shown in Figure 2.
Using two different tolerances we computed two pairs of perturbed polynomi-

als: the first pair with a common real zero z′1 = −0.579049166 and with a dis-
tance 0.721916532883628, and the second with common complex conjugate roots
z
′′

1,2 = 0.649831247 ± 0.809734098i and with a distance 1.181337128476824. Both
pairs of polynomials, although computed in an unconstrained setting, have a larger
distance from (p, q) than the one computed by the present method. Indeed, the
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Table 2
The numerical results for the example of section 7.1 show that all compared methods find the

same (locally) optimal solution; however, the computation time differs by orders of magnitude. The
most efficient is the uvGCD, function while the least efficient is the ODE method. This is partly
due to the unoptimized software implementation of the latter.

SLRA uvGCD ODE
distance dCD(p, q) 0.6569 0.65702 0.6569
computation time, sec. 0.32856 0.07814 2.1755

nonlocal optimality of the computed pairs can be checked by observing that the cor-
responding Sylvester matrix S + εE is such that E is not negatively proportional to
PS (yx∗) (see Remark 4.10). However, they both provide close (although not optimal)
pairs with a common ε-GCD in a fast way, which is certainly a commendable quality
of the method in [47].

The results obtained by the three methods—the ODE method, the SLRA method,
and the uvGCD function—are summarized in Table 2.

7.2. Example (common ε-GCD of degree 2). We consider the two polyno-
mials of degree 3 with the coefficients

a3 = 1, a2 = 2, a1 = 2, a0 = 2,
b3 = 2, b2 = 0, b1 = 1, b0 = −2.

First, we consider the fully unconstrained case. The perturbed polynomials p̂ = p+δp,
q̂ = q + δq have the coefficients

â3 = 0.7389, â2 = 2.1037, â1 = 2.1263, â0 = 1.8434,

b̂3 = 1.9539, b̂2 = −0.05119, b̂1 = 1.0663, b̂0 = −2.0063.

They are no longer coprime; in fact, they both have common zeros equal to

z1,2 = −0.4057918541± 1.0300446514i.

The value ε? and the estimated distance to common divisibility are

ε? = 0.621061904239760, dCD
(
p, q
)

= 0.358570257596247.

We also applied the code uvGCD and computed in one run the pair of polynomials

â′3 = 0.8949, â′2 = 2.1412, â′1 = 2.2491, â′0 = 1.7182,

b̂′3 = 1.9385, b̂′2 = −0.03200, b̂′1 = 1.0339, b̂′0 = −1.9863

with common complex conjugate roots z
′′

1,2 = −0.4108991889 ± 1.0263677806i and
with an estimated distance 0.422550599355414, which is slightly larger than the one
computed by the method presented in this paper. The results obtained by the three
methods—the ODE method, the SLRA method, and the uvGCD function—are sum-
marized in Table 3.

Next, we consider the case where p is constrained to be monic. The perturbed
polynomials p̂ = p+ δp, q̂ = q + δq have the coefficients

â3 = 1, â2 = 2.1680, â1 = 2.2569, â0 = 1.6991,

b̂3 = 1.9637, b̂2 = −0.1619, b̂1 = 1.1315, b̂0 = −1.9469.
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Table 3
The numerical results for the example of section 7.2 (unconstrained case) are consistent with

the ones reported in Table 2.

SLRA uvGCD ODE
distance dCD(p, q) 0.35684 0.35684 0.35689
computation time, sec. 0.13727 0.05428 26.642

Fig. 3. Approximated structured ε-pseudospectrum for ε = ε? for the example of section 7.2.
The origin lies on the boundary of ΛSε (S).

Table 4
Coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq in the example of section 7.3.

â5 = 0.9175 â4 = 0 â3 = 0.7629 â2 = 0 â1 = 1.3186 â0 = 1

b̂5 = −1.8715 b̂4 = 1 b̂3 = 1.3691 b̂2 = −1 b̂1 = 1.0607 b̂0 = 1

They are no longer coprime; in fact, they both have common zeros equal to

z1,2 = −0.373421293± 1.0276668040i.

The value ε? and the estimated distance to common divisibility are

ε? = 0.835047606282059, dCD
(
p, q
)

= 0.482114960273099.

Figure 3 illustrates that the structured ε-pseudospectrum has the origin on its
boundary, which implies that the computed value ε? truly determines the distance to
common divisibility dCD(p, q).

7.3. Example (constrained common ε-GCD). Consider again the example
of section 7.1, but now assume that the only coefficients that can be perturbed are
a1, a3, and a5 and b1, b3, and b5; this corresponds to setting I = {1, 3, 5} and J =
{1, 3, 5} in the projection PS(I,J ) considered in section 6.1.

The computed matrix S + ε?E(ε?) turns out to have rank-2n− 1 due to a simple
zero eigenvalue. The coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq
are given in Table 4.

Their common zero is

z = −0.5899110938.
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Fig. 4. The distance to common divisibility for the example of section 7.4.

The value ε? and the estimated (constrained) distance to common divisibility are

ε? = 3.004405111510952,

dCD
(
p, q
)

= 1.343610812257265.

7.4. Example of small highest degree coefficients. In this subsection, we
illustrate the behavior of the method on problems with “very small” highest degree
coefficients an and m < n. In the extreme case of an = 0, p and q have a common zero
at infinity and are therefore not coprime. In this case the method proposed correctly
yields a zero distance to common divisibility. Consider next the polynomials (1.1) of
degrees n = 3 and m = 2 with the coefficients

a3 ∈ [10−16, 1], a2 = 2, a1 = 5, a0 = 3,
b2 = 1, b1 = 3.1, b0 = 2.2.

Figure 4 shows the distance to common divisibility as a3 → 0. The method correctly
determines that the distance to common divisibility goes to zero.

8. Discussion and outlook. We considered the distance to common divisibility
of a pair of polynomials and discussed a new local optimization method for comput-
ing dCD(p, q) based on integration of a system of ODEs, which describes the gradient
associated to the cost functional. The overall methodology consists of a two-level
iteration: an inner level where we determine extremizers for the associated functional
over the set of perturbations of a given norm ε by integrating a system of differen-
tial equations up to a stationary point, and an outer level where we optimize with
respect to epsilon. The method allows specification of exactly known coefficients of
the polynomials p and q. The presented numerical examples show the robustness of
the method to the initial approximation. The method was applied to the problem of
computing the distance of a single-input single-output linear time-invariant system to
uncontrollability.

Future work will focus of generalization of the method to multiple polynomials,
computing multiple common zeros (approximate common divisor of specified degree),
multivariable polynomials, and an application of the method to systems and control
theory for computing the distance of a given system to the set of uncontrollable
systems.
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