
Doctoral Thesis

Automated Replication of Tuple Spaces
via Static Analysis and Transformation

of Go Programs

PhD Program in Computer Science: XXXII cycle

Author:

Aline Uwimbabazi

aline.uwimbabazi@gssi.it

Supervisors:

Prof. Rocco De Nicola

rocco.denicola@imtlucca.it

Dr. Omar Inverso

omar.inverso@gssi.it

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy at the

GSSI Gran Sasso Science Institute
Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

mailto:aline.uwimbabazi@gssi.infn.it
mailto:rocco.denicola@imtlucca.it
mailto:omar.inverso@gssi.it
http://www.gssi.infn.it
https://goo.gl/maps/9Cj77

i

Declaration of Authorship

I, Aline Uwimbabazi, declare that this thesis entitled «Automated Replication of Tuple

Spaces via Static Analysis and Transformation of Go Programs» and the work presented

in it are my own.

I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� This thesis has been composed by myself and the presented work is my own under

the guidance of my supervisors Prof. Rocco De Nicola and Dr. Omar Inverso for

a research degree at Gran Sasso Science Institute.

� Chapters 3, 4 and 5 are based on [1] Aline Uwimbabazi, Omar Inverso and Rocco

De Nicola. Automated Replication of Tuple Spaces via Static Analysis. In Proc.

of the International Conference on Fundamentals of Software Engineering, pages

21-36, 2021. This paper received the Best Research Paper Award at FSEN 2021.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

Signed:

Date: July 2022

ii

Abstract

Coordination languages for the tuple spaces can offer significant advantages in the spec-

ification and implementation of distributed systems. Replication can further improve the

performance or robustness of these systems. A possible approach has been proposed to

extend the coordination languages with replica-aware primitives. However, this ap-

proach relies on the ability of the programmer to specify and coordinate the replication

of tuple spaces in order to preserve the desired consistency. Manual exploitation of the

offered replication primitives is expensive and extremely hard. We present a technique

that combines static analysis and program transformation for automated replication of

tuple spaces.

As a starting point, we take goSpace coordination language, an implementation of

Klaim in Go programming language, and extend it with the replica-aware tuple ma-

nipulation primitives to obtain what we call RepligoSpaces. We also present how a Go

program that uses goSpace can be transformed into a program that uses RepligoSpaces

while preserving the desired consistency level. This transformation is optimized by

statically analysing the data access patterns. Custom static analyses may be plugged in

relatively easily in our prototype implementation. We see this as a first step towards

developing an integrated framework to experiment with data replication in distributed

systems with tuple spaces. Thus, supporting designers for quick prototyping and evalu-

ation of replication schemes. A series of experiments are performed on a case study to

show how our approach can be used to design and test replication schemes.

Keywords: Coordination Languages, Tuple Spaces, Static Analysis, Automated Repli-

cation, Program Transformation, Golang.

iii

Acknowledgements

The research work presented in this thesis would not have been possible without the

guidance, patience, and support of my supervisors, Prof. Rocco De Nicola and Dr.

Omar Inverso, who advised me throughout the course of my Ph.D. studies. Thank you.

There are people who live for helping in the most painful, desperate, and terrible situa-

tions, among them Dr. Catia Trubiani and F. Tryphon Kalimira. For that, I am grateful.

I would like to thank the dissertation committee members for having agreed to examine

my research work. I am indebted to Prof. Willem Visser (Stellenbosch University, SA)

for contributing immensely to my academic path. I am grateful to African Institute for

Mathematical Sciences (AIMS-Rwanda) for giving me a chance to give back as a tutor.

Special thanks go to my family. My mother, father and siblings regularly encouraged

me throughout my studies. I love you all. May God bless and protect you.

To all my friends, thanks for the support, for checking on me from time to time. Thank

you for listening to me when things did not go according to plan. May God bless you.

My gratitude goes to Luca Di Stefano, Alessandro, Noah, Patrizia Pulsoni, and to the

members of the Department of Computer Science and the administration at Gran Sasso

Science Institute for their support and help. May God bless you.

None of what I accomplished matters without acknowledging Almighty God, who

grants me all that I have. Without Him, life is nothing. All praise to you God.

iv

Dedication

To my Almighty God for the gift of life and patience. All praise to you God.

To my lovely parents and person who will make a photo with me. May God bless you.

Contents

Abstract ii

Acknowledgements iii

Dedication iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Context and Approach . 1
1.2 Contributions . 4
1.3 Structure of the Thesis . 5

2 Background and Related Works 6
2.1 Introduction to Coordination . 6
2.2 The Linda Coordination Model . 7

2.2.1 Operations . 8
2.2.2 Example . 9

2.3 The Klaim Coordination Language . 10
2.3.1 Klaim Syntax . 11
2.3.2 Operational Semantics of Klaim 14
2.3.3 Example . 17

2.4 Data Replication . 18
2.5 The RepliKlaim Coordination Language 20

2.5.1 RepliKlaim Syntax . 20
2.5.2 Operational Semantics of RepliKlaim 23
2.5.3 Example . 24

2.6 Related Work on Coordination Languages
with Replication . 25

2.7 Programming with Spaces (pSpaces) 28
2.7.1 pSpaces Syntax . 29
2.7.2 GoSpace Syntax . 30

2.8 The Go Programming Language . 32

v

vi

2.8.1 Concurrency . 32
2.8.2 Examples . 33

2.9 Replication Models and Techniques 35
2.9.1 Replication models . 35
2.9.2 Replication Techniques . 36

2.10 Consistency Levels for Replicated Data 37
2.11 Concepts of Static Program Analysis 38

2.11.1 Static Analysis Techniques . 40
2.11.2 Abstract Syntax Trees . 42
2.11.3 Related Work on Static Analysis 45

2.12 Program Transformation . 47
2.12.1 Related Work on Program Transformation 48

3 RepligoSpaces: goSpace with Replicas 50
3.1 Tuples and Templates . 50
3.2 RepligoSpaces Syntax . 51
3.3 Informal Semantics of RepligoSpaces 53
3.4 Prototype Implementation . 54

4 Static Analysis and Program Transformation for Replication 60
4.1 Automated Replication of Tuple Spaces 61

4.1.1 Structures of Input and Output Programs 62
4.1.2 Overapproximating the Sets of Target Spaces 65
4.1.3 Program Transformation . 67

4.2 Illustrative Example . 73

5 Evaluation of Implementation 78
5.1 Case study . 78
5.2 Experimental Setup . 79
5.3 Experimental Results . 80

6 Conclusions and Future Work 84
6.1 Conclusions . 84
6.2 Future Work . 85

List of Figures

1.1 Our overall approach to automated replication of tuple spaces 3

2.1 An example of tuple space . 10
2.2 An example of tuple spaces expressed in Klaim 17
2.3 The phases of a functional replication model [2] 19
2.4 An example of tuple space expressed in RepliKlaim 25
2.5 An example of abstract syntax tree . 44
2.6 An example of AST for the source code in Listing 2.7 45

4.1 Static analysis and source transformation for automated replication . . . 61
4.2 Example of transformation of global variables in Listing 4.4 72
4.3 No replication . 76
4.4 Example replication strategies . 76

5.1 Non-local read or write operations with and without replication 82
5.2 Execution times (ms) of non-local read or write operations with and

without replication . 83

6.1 Program transformation for the code shown in Listing 6.2 88

vii

List of Tables

2.1 Syntax of Klaim. Adapted from [3] . 13
2.2 Tuple Evaluation Function. Adapted from [3] 13
2.3 Pattern-matching predicates of Klaim [3, 4] 15
2.4 Structural operational semantics rules of Klaim. Adapted from [5] . . . 16
2.5 Syntax of RepliKlaim. Adapted from [6] 21
2.6 Basic operations on tuple spaces in Klaim and RepliKlaim 22
2.7 Operational semantics rules of RepliKlaim [6] 23
2.8 Syntax of goSpace [7] . 31

3.1 Basic operations on tuple spaces in goSpace and RepligoSpaces 52

4.1 Transformation Rules from goSpace to RepligoSpaces 69

5.1 Configuration of the system for non-local read or write operations . . . 79
5.2 Configuration of the system for computing execution times of non-local

read or write operations . 80

viii

ix

Chapter 1

Introduction

1.1 Context and Approach

Coordination is essential in distributed systems and in managing the interactions and

dependencies between the entities of systems. When designing a distributed system,

adopting a suitable coordination model can be of fundamental importance. The use of

coordination models started in the mid-1985s specifically with the use of the tuple-space

model, also known as Linda [8]. The Linda coordination model was originally proposed

for implementing parallel applications. Multiple, and distributed tuple spaces systems1

have been introduced later [9–11] to improve performance and scalability. Known im-

plementations of tuple-spaces based coordination models and languages can be seen in

the industry (e.g., IBM’s TSpaces [12] and Sun Microsystems’ JavaSpaces [13]); and in

several academic projects (e.g., Klaim [3], PageSpace [14], Lime [15, 16], MARS [17],

TuCSoN [18], and TOTA [19]). Recent research works have extended Klaim [20] to

practically program Klaim-based applications and to improve the efficiency of tuple

spaces implementations [21]. Moreover, tuple spaces implementations have been used

to develop the chemical-inspired models that can mimick chemical systems in terms

of reactions and diffusion rules [22]. Thus, a distributed shared space for supporting

pervasive service ecosystems has been implemented. The discussion in this thesis is

specifically based on the concepts of coordination languages extended from Linda with

the notion of location (e.g., Klaim) and enriched with the replica-aware coordination

primitives (e.g., RepliKlaim [6]).

1Systems in which the tuples of the same space can be stored on different servers.

1

Introduction 2

As we mentioned, we focused on tuple spaces, an associative shared memory imple-

menting the Linda coordination model, which is extended with the notion of localities

for accessing data and enriched with the replica-aware coordination primitives for repli-

cating data. A tuple space is a collection (formally a multiset) of tuples or data items.

To facilitate the specification of inter-process communication patterns, some coordina-

tion models and languages provide explicit data access primitives. Those coordination

models and languages which were made for coordinating and synchronizing agents (or

processes) activities, have evolved into the designing and implementations of parallel

and distributed systems. In Linda coordination model, processes can concurrently ac-

cess an associative data store referred to as tuple space, where tuples, i.e., sequences of

typed data atoms, can be stored or fetched from. Tuples can be picked up from tuple

spaces by means of a pattern-matching mechanism. Processes synchronize and com-

municate in this way. Klaim [3] coordination language extends (Linda) this approach to

multiple tuple spaces with explicit localities for greater flexibility.

On large data-intensive distributed systems, techniques to optimise data distribution

and locality may significantly improve performance. One such technique, replication,

fits very well within the coordination languages framework. The idea is quite simple:

on a store operation, tuples are deployed to a set of target spaces rather than just to a

single one. This increases locality, and thus reduces access latency, but brings along the

problem of consistency: once a specific copy of a given tuple is modified, how are the

remaining copies to be affected?

RepliKlaim [6] addresses such tension between performance and consistency by ex-

tending Klaim’s operational semantics with replica-aware data manipulation primitives.

The programmer can use these primitives to control the distribution of the data as well

as the consistency levels. Yet, doing so requires programming ingenuity to specify and

coordinate the replicas. Such manual reasoning can be particularly cumbersome be-

cause of process interleaving, and hardly feasible in the presence of a large number

of complex processes. For the same reasons, evaluating different replication strategies

with respect to the intended performance-reliability trade-off can be rather tricky.

In this thesis, we address the above shortcomings by proposing an experimental ap-

proach to support the design of replication policies in distributed systems that use tuple

spaces for process coordination and data storage.

Introduction 3

More concretely, we present an automated technique to transform the specifications of

a given distributed system into an equivalent version where the tuples are replicated.

The overall approach is sketched in Figure 1.1.

Input
system

goSpace

Static
Analysis

Program
Transformation

Output
system

repligoSpaces

Figure 1.1: Our overall approach to automated replication of tuple spaces

The initial system of interest is modelled as a concurrent Go [23] program. The choice

of using Go programming language has been motivated by the need to use its con-

currency model developed based on the traditional process calculi, such as Milner’s

Calculus of Communicating Systems [24] and Hoare’s Communicating Sequential Pro-

cesses [25]. We only consider closed systems, i.e., systems where the number of pro-

cesses is fixed upfront. The behavior of each system component of the system is defined

by a separate thread of the program. Coordination takes place via the goSpace coordi-

nation language [26], a recent Go implementation of Klaim, specifically designed to

program distributed applications with tuple spaces.

To attain automated replication, we work (1) at the programming interface level, by im-

plementing extended primitives for replica-aware manipulation of tuples, and (2) at the

source code level, by combining static analysis and program transformation to trans-

form the initial model into replicated version.

We are specifically interested in exploiting replication to improve the performance of

distributed systems. Taking inspiration from the way Klaim’s operational semantics

rules were extended in RepliKlaim coordination language, we have extended goSpace’s

coordination primitives with replica-aware coordination primitives to obtain what we

call RepligoSpaces. The extended primitives make it possible to target multiple tu-

ple spaces for a single store operation. In addition, an embedded tracking mechanism

allows to consistently remove the replicated data as needed. At this point one could im-

mediately obtain full consistency by naively using the extended primitives to replicate

Introduction 4

every tuple to every shared space in the system. This could be automatically obtained

via program transformation, by replacing the tuple manipulation operations with their

replica-aware versions, but would likely result in unnecessary replication overhead.

For this reason, we work at the source code level; between the replica-aware data-

handling layer and the program transformation part, we introduce a lightweight static

analysis pass to refine the target spaces for each store operation. The key idea of our

lightweight static analysis technique consists in determining the set of processes that

can potentially perform a subsequent read operation on a stored tuple. We identify such

processes by looking at the patterns used in the input operations occurring in the cor-

responding process specification functions, approximating the actual pattern matching

mechanism of the normal tuple manipulation routines. In practice, given on the one

hand an output operation and on the other hand an input operation, we check for a

potential match between the tuple being stored and the given search pattern.

This simple workflow is easily extensible, given the modularity between the data-handling

layer, the program transformation schema, and the static analysis procedure. Different

static analysis techniques may be plugged in with a relatively limited effort. At the same

time, alternative consistency models can be quickly prototyped by altering the existing

replica-aware primitives. We see this as a first step towards developing an integrated

framework to experiment with data replication in distributed systems with tuple spaces.

This would allow, for instance, to evaluate under different consistency levels many in-

teresting classes of systems, such as models of hardware cache or complex interaction

models, where replication is heavily used and performance is particularly sensitive to

variations in the data distribution policy. An experimental evaluation that shows how

our approach can be used to design and test the replication mechanisms is performed

on a scenario of a distributed lookup case study. In fact, our results include a number

of experiments aimed at providing some performance related criteria for the improved

latency, and exhibited good results that improved performance of distributed systems.

1.2 Contributions

The contributions of this research work are the following:

1. RepligoSpaces, a replica-aware extension to goSpace based on RepliKlaim’s op-

erational semantics rules.

Introduction 5

2. A prototype framework that integrates static analysis and program transformation

for automatically replicating tuple spaces. In particular, we have developed

• a static analyzer that targets the data access patterns for precisely defining

the sets of target spaces for replication;

• a prototype replicator that transforms the initial model into the equivalent

replicated version by using the target spaces computed via static analysis.

3. An experimental evaluation that shows how our approach can be used to design

and test the replication mechanisms.

Our tool has been released as an open-source prototype, free for the community to use.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 provides background knowledge related to the research pursued in this

thesis, including a brief review of research work related to ours. We also provide

some concepts of Go.

• Chapter 3 presents our first contribution, the tuple spaces-based coordination lan-

guage, called RepligoSpaces, which extends goSpace with replica-aware coordi-

nation primitives. Specifically, it presents the syntax, operations, prototype imple-

mentations of the extended primitives, and informal semantics of RepligoSpaces.

• Chapter 4 presents our second contribution, our prototype framework for the au-

tomated replication of tuple spaces, that integrates the tuple spaces-based coor-

dination languages, static analysis, and program transformation to improve the

performance of a given distributed system that uses tuple spaces for data storage.

• Chapter 5 presents a usage scenario of our technique on a case study used for

evaluating our implementations.

• Chapter 6 contains some concluding remarks and reflects on possible directions

for future work.

Chapter 2

Background and Related Works

This chapter presents the concepts that are at the foundation of our research work and

will serve in subsequent chapters. More specifically, it presents the main coordination

languages used throughout the thesis, and a brief description of the Go programming

language used to implement our prototypes. Furthermore, it describes data replica-

tion approaches and techniques as well as the consistency levels for replicated data. It

proceeds with the description of some basic concepts of static analysis techniques and

program transformation. It also presents a brief review of research work related to ours.

2.1 Introduction to Coordination

The term «coordination» has an instinctive meaning in our life, it can be defined as the

process of managing activities and assuring that all of them progress in the good ways.

Research in the coordination domain has 3 decades of history and from that period, sev-

eral techniques and systems have been proposed and implemented. Omicini et al. [27]

defines the term coordination in the context of distributed computing as:«the manage-

ment of interactions and dependencies between the computational entities of a system.»

Gelertner and Carriero [11] defines coordination in the context of coordination models

and languages:«the coordination model is the glue that binds the separate activities into

an ensemble.»

6

Background and Related Works 7

The history of coordination model and language started in the 1985
′

s when Gelern-

ter and Carriero introduced Linda [8] as coordination language for implementing dis-

tributed applications. Since then, there has been growing interests in the implementa-

tions of several coordination languages. In this chapter, however, we only introduce the

main coordination languages that are relevant to the work presented in this thesis.

2.2 The Linda Coordination Model

Linda [8, 9] is a coordination language for implementing the parallel and distributed sys-

tems. It provides a generative communication mechanism based on a logically shared

memory space, called tuple space. Linda coordination model consists of: tuples, tuple

space, agents (or processes) and communication primitives (or operations).

A tuple space is a collection of tuples that represent data items and are concurrently

accessed from the processes. A tuple is a finite sequence of actual fields (e.g., expres-

sions, values, processes) or formal fields (i.e.,variables). Tuples that contain variables

are called templates (or patterns). The formal fields define the patterns in the form

of variables and their values are not known. The tuples to be added in a tuple space

can only have actual fields, whereas templates are similar to a tuple, but can con-

tain both actual and formal fields. ("Journalist","Sport",2018) is an example

of the tuple, while ("Journalist",!category,!year) is a template with two vari-

ables category and year. The variables category and year are denoted by a leading

symbol !.

In Linda and its variants, the processes are like the threads of execution and they can

act as consumer or a producer of tuples. Communication primitives consist of the oper-

ations performed by such processes, such as writing, reading and removing tuples from

a tuple space. Such primitives allow processes to share data by placing (out) tuples to

a tuple space, reading (rd) and consuming them (in) from a tuple space. The tuples

are accessed by their content rather than their address via pattern matching algorithm,

by using templates or patterns.

The pattern matching algorithm matches the tuple t and template P if:

• P and t have the same number of fields and all the pairs of fields at the same

position in P and t also do match;

Background and Related Works 8

• Corresponding fields of P and t have the same types;

• When comparing t and P, the values of the two fields are exactly the same.

Consider the following examples that illustrate the above pattern matching algorithm.

• ("Journalist",category,year)matches ("Journalist","sports",2020).

Because the two tuples have the same number of fields and all pairs of fields at

the same positions also do match.

• ("Journalist",category,21) does not match ("Journalist","sports",20).

Although the two tuples have the same types and number of fields, their values

are not exactly the same (i.e., 21 vs 20).

• ("Journalist","status") does not much ("Journalist",2020).

Although the two tuples have the same number of fields, the types of their last

fields are not the same (i.e., string vs integer).

2.2.1 Operations

Linda provides several operations, described as follows:

• out(tuple) - inserts a tuple into the tuple space.

• in(template) - selects and removes a tuple matching the given template from

the tuple space. If a tuple cannot be found, the process that executes the operation

blocks.

• rd(template) - reads a copy of a matching tuple from a tuple space, blocks if

the tuple cannot be found.

• eval(tuple) - spawns a new process to evaluate the tuple and inserts the result

of the evaluation into a tuple space.

Two of them (in(template) and rd(template)) consume the tuples and are block-

ing operations as they keep waiting for a tuple until it is found in a tuple space. The out

and eval operations are non-blocking operations.

Background and Related Works 9

Note that operation eval(tuple) differs from out(tuple) operation because it first

adds a tuple to a tuple space, then creates a new concurrent process for evaluating that

tuple.

In addition to the above operations, Linda coordination model has been extended [28]

to other versions that presented some forms of non-blocking versions of remove op-

erations, called inp and readp. They behave like in and read operations, but, if no

matching tuple is found, they directly return false (or null) if no matching tuples are

present into a space instead of suspending the execution of a process. For example,

the readp operation is used to check whether a tuple is stored in a tuple space or not.

Despite Linda has a desirable simplicity and is a powerful model for implementing par-

allel applications, it has some weaknesses. For example, the original Linda model only

coordinated activities of processes on a single tuple space and does not scale well to

the large systems [29]. Moreover, the original Linda coordination primitives were not

completely adequate for programming distributed systems [3, 20]. Many researchers

starting from the basic constructs of Linda have extended it and have implemented sev-

eral models and languages based on it [15, 30–34].

2.2.2 Example

In this example, we consider a tuple space that contains different structured values and

processes performing some operations. Tuples to be written in the tuple space can only

have actual fields, whereas templates can contain both actual and formal fields. For

example, tuples 〈"journalist","sport",2020〉 and 〈"journalist",id,27.3"〉

are produced by out("journalist","sport",2020) and out("journalist",id,

27.3) operations, and they can be read by rd("journalist","category",year)

operation after pattern-matching. As shown in Figure 2.1, the given pattern contains

one actual field and two formal fields.

The reading process can check all tuples in the tuple space consisting of three elements

containing the strings “journalist” and “category” in the first two fields and as-

signs the third value of one of the matching tuples to variable year which is assigned

to 2020 tuple’s field. However, the tuple ("journalist",id, 27.3) does not match

the given template, although they have the same number of fields, the types of their last

fields are different (i.e., int vs string).

Background and Related Works 10

The withdrawing process performs in("journalist","sport",2021) operation to

remove tuples that have the two fields of type string ("journalist","sport"). In

this case, the tuple ("journalist","sport",2021) is not removed from the tuple

space as the last fields are not exactly the same. A new process can be spawned with an

operation eval(...). Figure 2.1 presents an example of a tuple space.

Figure 2.1: An example of tuple space

2.3 The Klaim Coordination Language

Klaim (Kernel Language for Agents Interaction and Mobility) [3, 20] is a coordination

language that is used to describe distributed systems where both data and processes can

be moved from one computing environment to another.

Background and Related Works 11

The coordination primitives and operational semantics rules of Klaim are designed and

implemented based on how Linda’s operations [8, 9] and the concepts of process al-

gebra [24, 25] are designed and implemented. To this end, Klaim extended Linda by

allowing the manipulation of tuples on multiple tuple spaces and by offering communi-

cation primitives with explicit localities. In Klaim, the processes and tuple spaces can

be located on different nodes, and localities represent unique identifiers for such nodes.

Klaim processes can run concurrently, at the same node or at different nodes.

Explicit localities allow to distribute and retrieve data to and from the localities, and to

structure the tuple space. In fact, the data manipulation operations of Klaim are based

on the standard Linda primitives for tuple spaces but, in addition, they explicitly indicate

the target tuple space as a reference (@`) to the intended locality. In Klaim, processes

like any other data items, can be transferred from one locality to another and can be

executed at any locality.

Motivated by the success and popularity that Klaim coordination language gained, many

researchers starting from the constructs of Klaim coordination language have extended

it with enriched coordination primitives and control flow constructs to implement X-

Klaim (eXtended Klaim) [20, 35, 36]. X-Klaim is a coordination language developed

to program distributed applications which consist of software components interacting

through multiple distributed tuple spaces. Other models and languages based on Klaim

are developed [4, 37–44].

2.3.1 Klaim Syntax

Klaim consists of a core Linda with multiple tuple spaces and operators for building

processes. Klaim’s specification is a network N, i.e., a possibly empty set of nodes or

components. In Klaim, a component L::[K, P] consists of a locality name denoted

by `, a data repository K (i.e., set of data items) and multiple processes P. A locality

is a computational entity (sometimes referred to as sites or nodes of a network) where

components or processes reside or are being executed. In Klaim, each node has both the

physical and logical locality, which are linked by the allocation environment. It enables

a (partial) mapping from logical to physical localities, i.e., by enabling processes from

one node to access only the nodes included in its allocation environment. In this case,

each node in a network has a single and unique locality that is known to all other nodes.

Processes are built by means of operators that are borrowed from Milner’s calculus

Background and Related Works 12

of communicating systems [24]. The syntax of Klaim is reported in Table 2.1 and

described as follows [3]:

• nil represents a process that cannot perform any action.

• A.P represents a process that first executes the action a and then behaves like P.

• P1 + P2 represents the non-deterministic choice of processes P1 and P2.

• P1 | P2 represents the parallel composition of two processes.

• X is a process variable.

In the definition of process invocation A 〈 P̃, ˜̀, ẽ 〉, A denotes a process name; P̃,
˜̀ and ẽ represent a list of processes, a list of localities and a list of expressions which

are passed when invoking the process (in the same way that parameters are used when

calling a function). Process variables play an important role during the communication.

More specifically, when a process is moved from one locality to another for the purpose

of execution, the variables can dynamically be assigned to the processes. Assume that a

process is added to a tuple space when it is selected; the process variable is also assigned

to this process for execution. The arguments associated to the tuples and templates are

defined as follows.

• The set of localities L, is ranged over by L = {`1,`2, `3, . . . },

• The set of basic values µ = {u, v,w, . . . },

• The set of value variables !ν = {!x,!y,!z,. . . },

• τ ⊆ (µ ∪ ν)∗ is a set of tuples ranged over by τ = {t, t
′

, . . .},

• Exp(e) is the category of value expressions, which are built from the values and

value variables by using a set of operators.

Background and Related Works 13

NF 0 | `::[K,P] | N || N (networks)

KF 0 | et | K,K (repositories)

PF nil (null process)

| A.P (action prefixing)

| P1 + P2 (choice)

| P1 | P2 (parallel composition)

| X (process variable)

| A 〈 P̃, ˜̀, ẽ 〉 (process invocation)

tF e | P | ` | !u | t1, t2 (tuples)

TF e | P | ` | !x | !X | T1,T2 (templates)

AF out(t)@` | in(T)@` (actions)

| read(T)@` | eval(P)@`

Table 2.1: Syntax of Klaim. Adapted from [3]

A data repository K is a collection of evaluated tuples according to the tuple evaluation

function mechanism τ[[]]ρ reported in Table 2.2. For example, if t is a tuple and ρ an

environment, the evaluation of t within ρ is defined as τ[[t]]ρ, the ε[[e]] is applied to

the expressions, where e ∈ ε (i.e., ε is the set of expressions) as shown in Table 2.2.

τ [[e]]ρ = ε [[e]] τ [[P]]ρ = P{ρ}

τ [[`]]ρ = ρ{`} τ [[!x]]ρ = !x

τ [[t, t
′

]]ρ = τ[[t]]ρ, τ[[t
′

]]ρ

Table 2.2: Tuple Evaluation Function. Adapted from [3]

In Klaim, the processes interact directly with tuple spaces to store tuples to or retrieve

tuples from the localities. Klaim provides four basic primitives to manipulate tuple

spaces. Two (non-blocking) operations out(t)@` and eval(t)@` permit tuples to be

Background and Related Works 14

added to a tuple space. Two (blocking) operations in(T)@` and read(T)@` are used

to access and modify a tuple space. These operations are described as follows [3]:

• out(t)@`: non-blocking operation that adds a tuple t to the tuple space located

at location `.

• read(T)@`: selects via the pattern matching one of the tuples at locality ` that

matches template T; this operation blocks until a tuple matching T is found.

• in(T)@`: removes a tuple matching the pattern T from the location `. The

process executing the in(T) operation blocks until a tuple matching the pattern T

is found.

• eval(P)@`: offers the possibility of code mobility by spawning a process P at

locality ` where it will be evaluated.

Note that the argument T is often called a pattern or template, and its fields contain

either actual or formal fields. In the rest of this work, we will use T to indicate a pattern

(or a template) and t to indicate a tuple.

2.3.2 Operational Semantics of Klaim

The operational semantics of Klaim provides the guidelines of its implementation. They

explicitly associate the pattern matching predicates (see Table 2.3) with each piece of

semantics in a formal way. More specifically, they define the computational steps to

be performed: the evaluation of tuples, the pattern matching rules for retrieving a tuple

from a tuple space, the operations useful for processes interactions.

The pattern matching rules of Klaim presented in Table 2.3 are used to select a tuple

that matches any given pattern from a tuple space. These rules are also exploited in the

operational semantics when the processes perform in and rd operations. The pattern

matching rules work if: an evaluated tuple matches against an evaluated pattern if both

have the same number of fields and their corresponding fields also do match; the corre-

sponding processes, two values (localities) are identical; the locations or processes have

the same types, while the formal field !x and the corresponding values (names) have

also the same types.

Background and Related Works 15

The rules for defining the pattern matching function are given in Table 2.3 and the tuple

evaluation function is reported in Table 2.2.

A pattern matching function, match(.,.), is used to verify a compliance of a tuple

with respect a template and to associate values (i.e. names and processes) to variables

bound by the template. Intuitively, an evaluated tuple matches against a template if both

have the same number of fields, and corresponding fields match (where a bound name

matches any value, while two names match only if they are identical).

We assume that "◦" denotes a substitution composition and "ε" denotes an empty substi-

tution. A successful matching returns a substitution function associating the variables

that are contained in the formal fields of the given template with the values that are

contained in the corresponding actual fields of the located tuple.

We used a notation Pσ where σ = match(T, et), to indicate the substitution of T for et

in P. Moreover, we assume that Pσ yields a process written according to the operational

semantic rules reported in Table 2.4. Klaim’s pattern matching predicates differs from

Linda’s original one in that it does not allow the tuples to contain formal fields [45].

The definition of function match is given by the following laws:

match(υ, υ) = ε match(!x, υ) = [υ/x]

match(`, `) = ε match(!u, `) = [`/u]

match(!X, P) = [P/X]
match(Ti, eti) = σi (i = 1, 2)

match(T1,T2, et1, et2) = σ1 ◦ σ2

match(T1, et1) = σ1 match(T2, et2) = σ2

match(T1,T2, et1, et2) = σ1 ◦ σ2

Table 2.3: Pattern-matching predicates of Klaim [3, 4]

The structural operational semantics rules of Klaim are reported in Table 2.4.

Background and Related Works 16

(ACTP):
A.P

A
−→ P

(PARALLEL):
P

A
−→ P′

P|Q
A
−→ P′ |Q

(CHOICE):
P

A
−→ P′

P + Q
A
−→ P′

(OUT):
P

out(t)@`
′

−−−−−−→ P′ et = τ[[t]]
N ||` :: [K, P]||`′ :: [K`

′ , P`
′] −→ N||` :: [K, P′]||`′ :: [(K`

′ , et,)P`
′]

(IN):
P

in(T)@`
′

−−−−−−→ P′ σ = match(T, et)
N ||` :: [K, P]||`′ :: [(K`

′ , et), P`
′] −→ N||` :: [K, P′σ]||`′ :: [(K`

′ , P`
′]

(READ):
P

read(T)@`
′

−−−−−−−−→ P′ σ = match(T, et)
N||` :: [K, P]||`′ :: [(K`

′ , et), P`
′] −→ N ||` :: [K, P′σ]||`′ :: [(K`

′ , et), P`
′]

(EVAL):
P

eval(Q)@`
′

−−−−−−−−→ P′

N||` :: [K, P]||`′ :: [(K`
′ , P`

′] −→ N||` :: [K, P′]||`′ :: [K`
′ , P`

′ |Q]

Table 2.4: Structural operational semantics rules of Klaim. Adapted from [5]

We describe the structural operational semantics rules of Klaim as follows:

The rule (ACTP) expresses a prefixing action. Here a process performs an A action and

becomes P.

The rule (PARALLEL) expresses that if the process P does an action and becomes P
′

.

Then nothing changed when parallel processes are involved.

The rule (CHOICE) expresses that if the process P does an action and becomes P
′

. Then

nothing changed when another process is involved.

The rule (OUT) expresses that a process performing the output operation, can insert a

tuple resulting from the evaluation of t to the tuple space at a component `
′

.

Background and Related Works 17

The rule (IN) expresses that a process is willing to perform an input operation if T

is evaluated and the pattern matching succeeds, the evaluated tuple et is therefore re-

moved from the tuple space and a substitution that is returned is used to the continuation

of a process executing the operation.

The similar rule (READ) is used to model a process that performs an input operation,

but differs from the IN rule because the accessed tuple remains in the tuple space, thus

the tuple space is not modified.

The rule (EVAL) expresses that if there is process P that can spawn new process Q

at location `
′

and becomes P
′

. Therefore, there is a node that contains locations and

evolves the new created process Q at a locality `
′

which has process P.

An implementation of Klaim coordination language is available online at the link:

https://github.com/LorenzoBettini/xklaim.

2.3.3 Example

In this example, we consider a network of nodes, where processes and tuple spaces are

allocated.

Figure 2.2: An example of tuple spaces expressed in Klaim

It illustrates a network of two nodes expressed in Klaim, characterized by the locali-

ties ` and `
′

, used by processes to manipulate the tuple spaces. Processes use self

to refer to their execution nodes. In other words, self is a distinguished locality

which points to the local tuple space. The distribution of tuples in the tuple spaces

is performed via the out operation, e.g. out("journalist","sport",20)@` puts the

tuple to the node with location `. The removal operation of tuples is performed via

the in operation, e.g. in("journalist","sport",21)@`
′

after pattern-matching. In

Background and Related Works 18

this case, the template, ("journalist","sport",!v) consists of two defined fields

("journalist","sport") which will be used to find a matching tuple and a variable v

denoted by a leading symbol !, used to indicate variables. The third field can have

any value of type integer. As a result, both tuples ("journalist","sport",21) and

("journalist","sport",20)matches the template ("journalist","sport",!v).

However, only one of them will be nodeterministically selected.

Figure 2.2 shows a network of tuple spaces and processes communication expressed in

Klaim coordination language.

2.4 Data Replication

Replication [46] is a technique that creates or keeps multiple copies of the same data in

an application, called replicas, and stores them at several locations (e.g., servers, sites,

etc), so that it can be used even when some of the copies are not available due to sites

failures. This technique has been widely applied to implement systems consisting of

different components including the replicas over which operations are performed. Two

operations on the data, write (update) and read are supported by a replication control

mechanism. The communication between different system components (clients and

replicas) takes place by exchanging messages [2].

A replication model executes a sequence of events when a client requests operations to

be performed, and they can be executed in the following five stages [2, 47], (see Figure

2.3):

• Request: an operation to one or more replicas is sent by the user.

• Coordination: coordination is achieved by servers coordinating with each other to

consistently synchronise the execution of the different operations or the requests

by clients.

• Execution: the replica server performs the requests and stores the results and

operations are executed on the replica servers.

• Agreement: the replica server agrees on the results obtained from the execution.

• Response: the results from the performed operation are sent back to a client. In

some cases, the response is sent to a user by one replica server, while in other

Background and Related Works 19

cases, the front end gets the results from the collection of replica servers and

chooses a single result and sends it back to the user.

Figure 2.3: The phases of a functional replication model [2]

Replication can be classified into two main strategies according to the way in which the

replicas are determined.

• Static strategy in which the number of replicas and host servers or locations for

replication are constant and fixed, it means that they are pre-established during

the design phase.

• Dynamic strategy in which replicas are determined and removed based on users’

access pattern algorithms or on storage capacity available at different locations.

In this case the locations for replication can be selected at run-time.

Looking at the ways replicas can be stored, static and dynamic replication strategies can

be exploited in the following systems:

• Centralized systems in which all data are stored on the same server.

• Distributed systems in which the data can be stored on different servers.

This thesis focuses on the strategies and issues of replication in distributed systems

within the tuple space paradigm. A distributed system is a software system in which

the components or programs located on a network communicate and coordinate their

activities by exchanging messages.

Replication is widely used and to enhance performances while reducing access latency

and to guarantee fault tolerance and high data availability.

Background and Related Works 20

Enhancing performance and reducing access latency: When data are stored on a sin-

gle location or server and too many requests from various users need to be served

at the same time, the whole system is slowed down and access latency increases.

Replication helps in improving the performance by increasing data locality for

replication. When data are stored at multiple locations or sites, users can get the

data closest to their sites or servers, response time is thus reduced.

Guaranteeing data availability and fault tolerance: When data are stored on a single

location or server, and this location or server fails to respond due to crashes or

other sorts of failures, the stored data cannot be accessed. With the use of repli-

cations and by storing data at multiple servers or locations if one of the servers or

locations fails the system still continues to operate using the replicated data.

One of the key challenges when implementing replication is how to guarantee the con-

sistency of replicas. As replica is not just an ordinary copy of the original data item,

when one copy of replica is changed, the remaining copies of data items are also af-

fected, thus a fully equivalent copy should be created for keeping identical replicas.

Consistency is guaranteed by using synchronization mechanisms and ensuring that all

replicas have the same data values.

2.5 The RepliKlaim Coordination Language

This section describes the tuple-based coordination language, called RepliKlaim, which

enriches Klaim with primitives for replica-aware coordination. We start the description

with the syntax followed by the communication primitives and operational semantics.

RepliKlaim is a coordination language that adds to Klaim (Section 2.3) new features for

dealing with replication. It relies on the programmer’s ability to decide where to store

data and RepliKlaim is responsible for maintaining the tuple spaces consistent. Two

levels of consistency are considered: weak and strong.

2.5.1 RepliKlaim Syntax

The syntax of RepliKlaim is similar to Klaim but, its communication primitives are ex-

tended for replica-aware programming. The main differences from Klaim in practice

Background and Related Works 21

are its features to deal with multiple localities instead of a single one, as well as the

absence of features to deal with the process mobility (i.e., eval action). The syntax of

RepliKlaim consists of the descriptions of the networks, repositories, processes, opera-

tions, localities, tuples and templates. It specifies the networks of nodes or components.

Each component is identified by a unique locality `, a data repository K and parallel

processes P. Table 2.5 presents the syntax of RepliKlaim.

NF `::[K,P] | N || N (networks)

KF ∅ | 〈eti, L〉 | K,K (repositories)

PF nil | A.P | P+P | P | P (processes)

LF ε | ` | L • L (locations)

TF e | P | ` | !x | T, T
′

(templates)

tF e | P | ` | t, t
′

(tuples)

AF outs(ti)@L | ins(Tτ)@` | read(Tτ)@` (strong actions)

| outw(ti)@L | inw(Tτ)@` (weak actions)

Table 2.5: Syntax of RepliKlaim. Adapted from [6]

A repository is a set of data items specified by a pair of (〈eti, L〉), where eti stands for an

indexed tuple and L represents the localities in which replicas of tuple eti are stored. We

let i denote a unique identifier of the tuple. To better represent data items such as the

variables that can be produced and updated, identifier-indexed tuples are used instead

of ordinary anonymous tuples.

Processes are created from a nil process that does not do any action, the constructs for

the parallel processes P | P, the non-deterministic choice P + P and from the action

prefixing A.P where a process performs the action A and becomes P. Moreover, they

can be executed either at different localities or at the same locality.

The syntax of RepliKlaim is also defined by a set of localities L = {`1, `2, . . . , `n}, a set

of basic values µ = {u, v,w, . . . }, a set of variables ν = {!x, !y, !z, . . . }, a set of tuple

identifiers I = {i, i
′

, . . . }, a set of indexed evaluated tuples ετ = {eti, et
′

i , . . . }, a set of

indexed tuples t = {ti, t
′

i , . . . }, and a set of templates T = {Tı,T ′ı , . . . }.

Background and Related Works 22

It is worth noting that in Repliklaim, a locality ` in L can appear as ` or as ` (For

example, see the rules OUTw and INw in Table 2.7). Notation ` is used to indicate

ownership of the tuple. In fact, each replica should exactly have one owner, i.e., every

occurrence of L has at most one owner location `. This approach is used to prevent data

inconsistencies due to concurrent weak operations, i.e, read or removal of a replicated

tuple. Note that, we used the subscripts letters w and s in the names of operations to

indicate whether operations preserve weak or strong consistency.

Similarly to Klaim, RepliKlaim provides a set of blocking and non-blocking operations

that add, search and remove the tuples from or to the tuple spaces. The tuples in Rep-

liKlaim, i.e., replicated tuples, have the same format as Klaim’s tuples.

Possible operations to manipulate tuple spaces in RepliKlaim coordination language

along with the corresponding Klaim versions are shown in Table 2.6. Blocking opera-

tions are marked with the symbol (*).

Description Klaim RepliKlaim

Put a tuple node.out(t)@` node.outα(t,`1...`n)

Read a tuple∗ node.read(T)@` node.read(T,`)

Search and remove a tuple∗ node.in(T)@` node.ins(T,`)

Search and remove a tuple n/a node.inw(T,`)

Table 2.6: Basic operations on tuple spaces in Klaim and RepliKlaim

The operations of RepliKlaim are described as follows.

The non-blocking output operation outα(t,`1 . . . `n) permits to add the tuple t to the

data repositories located at all localities `εL (L = `1 . . . `n) atomically (when strong

consistency is required) or asynchronously (in case of weak consistency) (respectively

for α = s or α = w). Thus, the shared tuple is replicated to every locality in L.

The input operation read(T,`) reads from a tuple space. It uses the pattern T to find

a matching tuple (if any) from locality `, but it does not remove the matching tuple. In

case, no matching tuple is found, the operation blocks until a matching tuple becomes

available.

The blocking operation ins(T,`) searches for a tuple matching the pattern T at ` and

atomically removes all replicas of that tuple, thus preserving strong consistency.

Background and Related Works 23

Operation inw(T,`) can also be performed on tuple spaces asynchronously in order to

remove all replicas of a tuple that match T. This operation only preserves weak consis-

tency. In short, given a pattern T , inw removes a matching tuple and all its copies, but

if there is no tuple matching a given pattern, it returns false instead of blocking.

The forms of code mobility based on sending the actual code through the operation

eval(�)@` is not implemented in RepliKlaim coordination language.

2.5.2 Operational Semantics of RepliKlaim

The structural operational semantics of RepliKlaim coordination language are useful

for designing its implementation. They are presented in Table 2.7 and described below.

(ACT P):
A.P

A
−→ P

(PAR):
P

A
−→ P′

P|Q
A
−→ P′ |Q

(CHOICE):
P

A
−→ P′

P + Q
A
−→ P′

(OUTs):
P

outs(ti)@L
−−−−−−−−→ P′ ∀`

′
∈ L.@et

′
, L
′
.〈et

′

i , L
′
〉 ∈ K`

′ eti = τ[[ti]]

N||` :: [K, P]||Π`
′
∈L`

′ :: [(K`
′ , P`′] −→ N||` :: [K, P′]||Π`

′
∈L`

′ :: [K`
′ , 〈eti, L〉), P`′]

(INs):
P

ins(Tι)@`
′′

−−−−−−−−−→ P′ `
′′
∈ L σ = match(Tι, eti)

N||` :: [K, P]||Π`
′
∈L`

′ :: [(K`
′ , 〈eti, L〉), P`′] −→ N||` :: [K, P′σ]||Π`

′
∈L`

′ :: [K`
′ , P`′]

(READ):
P

read(Tι)@`
′

−−−−−−−−−→ P′ σ = match(Tι, eti)
N||` :: [K, P]||`′ :: [(K`

′ , 〈eti, L〉), P`′] −→ N ||` :: [K, P′σ]||`′ :: [(K`
′ , 〈eti, L〉), P`′]

(OUTw):
P

outw(ti)@L
−−−−−−−−→ P′ `

′′
∈ L @et

′
, L
′
.〈et

′

i , L
′
〉 ∈ K`

′′ eti = τ[[ti]]

N ||` :: [K, P]||`′′ :: [K`
′′ , P`′′] −→ N||` :: [K, P′]||`′′ :: [(K`

′′ , 〈eti, L〉), P`′′ |Π`
′
∈(Lr`′′)eval(outu(eti, L)@`

′]

(INw):
P

inw(Tι)@`
′′

−−−−−−−−−→ P′ `
′′
∈ L `

′′
∈ L σ = match(Tι, eti)

N||` :: [K, P]||`′ :: [(K`
′ , 〈eti, L〉), P`′] −→ N||` :: [K, P′σ]||`′ :: [(K`

′ , P`′ |Π`
′′′
∈(Lr`′)eval(inu(eti, L)@`

′′′]

Table 2.7: Operational semantics rules of RepliKlaim [6]

Background and Related Works 24

The rule ACTP expresses a process that is willing to perform action A and behaves like

P. The rule CHOICE expresses a process that executes an action and behaves like P
′

and

nothing changes when another process is involved. The rule PAR models the process P

that executes an action and behaves like P
′

, and nothing changes when parallel processes

are involved.

The rule (OUTS) models the behaviour of a process P executing a strong output opera-

tion outs(ti)@L that places an evaluated tuple eti in all locations in L and behaves like P
′

.

Therefore, a network N replicates the tuple eti in all locations within L. However, this

can be done only if a version of the same data item et
′

that is going to be added, does

not exist in the repository of the owner of et
′

(i.e., `
′′

).

The rule (OUTW) models the behaviour of a process that executes a weak output action

of the form outwti@L by enforcing the absence of a version of data item i. The dif-

ference with respect to the strong output action is in the creation of the process that is

responsible of placing the evaluated tuple < eti, L > at all locations within L except in

itself (i.e., `′′).

The rule (INS) models the behaviour of a process executing an input operation that

deals with the removal of a copy of tuple that matches a given pattern from location `

and from all locations in the set L.

The rule (INW) removes an evaluated tuple eti from an owner `′ of a tuple that has a

replica in the target location `.

The rule (READ) supports process to read tuples from location `′ and behaves like P
′

but stays at its initial locality `′.

2.5.3 Example

The example shown in Figure 2.4 consists of a network of localities loc1 and loc2,

used by processes to manipulate the tuple spaces. It illustrates concurrent read and

strong output operations. The idea is that component loc1 can put a tuple with replicas

in loc1 in a strong manner, while loc2 is reading the tuple from loc1. The read

operation can happen only after all replicas are created.

Background and Related Works 25

Figure 2.4: An example of tuple space expressed in RepliKlaim

2.6 Related Work on Coordination Languages

with Replication

In this section, we relate our work to the state of the art techniques and systems for tuple

spaces based coordination languages, which exploited replication techniques. Replica-

tion and consistency are studied in distributed systems. In particular, they are applied in

the tuple spaces coordination languages, and have maintained the consistency levels.

In addition to the pSpaces family of implementations, tuple space systems have been

proposed in different programming languages. Java implementations include Klava [48]

for Klaim, and jRESP1 for SCEL [49] (Java Run-time Environment for SCEL Pro-

grams), a Java framework that provides programmers with a set of APIs that simplify

design, development and coordination of distributed systems. jSpace, the implementa-

tion of pSpaces in Java, was initially based on a fork of jRESP. We chose to work on

top of pSpaces because it is actively maintained.

RepliKlaim [6] is a tuple-based coordination language that builds on Klaim language

and enriches it with replica-aware coordination primitives. In particular, it relies on

the programmers to decide themselves where to place specific copies of tuples and is

responsible for preserving the strong and weak consistency views of tuple spaces.

1http://jresp.sourceforge.net/

Background and Related Works 26

Beside RepliKlaim coordination language, tuple replication is also implemented in X10,

a general-purpose and object-oriented programming language for large-scale distributed

systems [50, 51]. However, the proposed approach introduces primitives for data shar-

ing based on a centralized data location which is avoided in our approach, and the

responsibility to control replication of tuples across the places is left to the programmer.

Lime (Linda In Mobile Environment) [52] is a distributed tuple space for ad-hoc mobile

networks. As far as we know, it did not consider tuple replication aspects. A version

of Lime, proposed by Murphy et al. [16], is a replication based tuple space model that

improves data availability. Our research work, however, focuses on improving the per-

formance of distributed systems that use tuple spaces, and can additionally guarantee

data availability. It uses replication profiles to define which tuples and how copies of

tuples should be replicated among the gathered devices. In other words, it exploits the

predefined replication policies to determine how replicas should be created and updated.

A replication-based tuple distribution is proposed in [53] to improve the performance

of tuple access. Russello et al. [54] proposed an approach which relies on replication of

tuples and self adaptation for optimizing replica placement and improving performance

and data availability. The self adaptation paradigm relies on the numbers of reads and

writes performed by certain nodes. To this end, they have applied different replication

strategies such as full replication that replicates tuples at all available nodes, the replica-

tion policies that replicate tuples to a certain number of nodes (a group of n nodes) and

other policies which replicate tuples to the nodes that produce and consume tuples of

the same data types. The mechanisms that preserve consistency have to be considered.

In [55], various replica placement strategies are integrated into the Linda coordination

model for sharing data, guaranteeing data availability, and decreasing the access latency.

Consistency levels (strong and weak) are considered but at the level of data items instead

of the operations as in our approach.

All the above-mentioned approaches are similar to RepliKlaim coordination language

in that the responsibility to control replication is left to programmers.

Alternative distribution mechanisms for tuple spaces based on the concept of ghost tu-

ples have been proposed in [56, 57], where it is the system that may decide not to

eliminate tuples for using them later. In the attempt to limit the activity on the tuple

space and increase scalability, a hierarchical tuple space model that supports partial

replication has been proposed in [58]. Our approach, however, is a fully-automated

replication, and improves the performance of distributed systems.

Background and Related Works 27

Spatial distribution of tuples is a rather different approach to ours where tuples con-

tain both content and replication rules [59]; in this model the propagation of the tuples

is asynchronous and thus strong consistency has to be explicitly considered and pro-

grammed. Consistency models for replicated data are covered in [60]. TOTAM [61]

is another tuple space based coordination model. It uses replication approach and con-

sistent framework to support the implementation of mobile context-aware applications.

However, it suffers from the limitations of relying on the programmer to control over

which tuples present in the tuple space should be accessed by the applications and which

one should be deleted.

Harnie et al. [62] introduced a tuple based model that use replication and distributed

removal of tuples approaches to support the programming of urban area applications

where public transportation can be exploited [62]. In particular, the replication has been

used to increase data availability in a highly disconnected environment as it enables

intermediary nodes to carry out information to and from their eventual destination. The

distributed removal concept relies on the programmers to delete the tuple from its tuple

space manually or based on the expiration dates.

Bakken et al. [63] propose FT-Linda, a variant of Linda that exploits replication to ad-

dress fault tolerance, but they did not consider any consistency level of tuple space.

A replica tuple-space based coordination models that focus on fault tolerance and se-

curity have been proposed [64, 65]. The authors have applied Byzantine fault-tolerant

state machine replication and Byzantine quorum systems replication techniques in order

to control the access mechanisms.

Casadei et al. [66] introduced a dynamic matching approach that is based on only group-

ing the tuples of the same type in specific spaces so that they can be quickly located.

However, the authors did not consider any consistent view of tuple space, when a tuple

is removed from its space among other spaces. Russello et al. [67] propose a tech-

nique that dynamically uses replication policies to handle availability in the shared data

space systems and to improve performance. The proposed technique differs from our

approach because it relies on the programmers abilities to coordinate the replication of

tuples. Dynamic replication has also been considered in [68].

Background and Related Works 28

2.7 Programming with Spaces (pSpaces)

pSpaces2 is a coordination model that supports the development of distributed appli-

cations with tuple spaces in different modern development platforms. Existing imple-

mentations of pSpaces are available in Go, Java, and Swift, and are based on the formal

operational semantic rules of Klaim (Section 2.3.2).

The difference between Klaim and goSpace is in the way the reading operations: in

Klaim, when a matching tuple is found, a substitution is generated and applied to

the process executing the action, while in goSpace (according to the descriptions of

goSpace’s operations given in Section 2.7.2) the found tuple is returned. Another differ-

ence between them is the lack of a mechanism to support process and code mobility. In

Klaim, mobility provides a suitable primitive (i.e., eval action) that spawns processes,

which can be moved from one locality to another and be remotely executed. Note that

in this thesis, we do not consider process spawning as it is not currently implemented in

goSpace, and it is not relevant for our analysis.

Similarly to Klaim and Linda coordination languages, pSpaces handles data in forms

of tuples. We recall that a tuple is a finite ordered lists of elements that can be used

to represent the messages or data items and can consist of several structured values. In

pSpaces, a space is a collection of tuples. Spaces can be either local or remote, in the

sense that they can be located on another device. A remote space supports the same

operations as for local spaces, but it needs slightly different operations to be created

and connected with. Every space is associated with a unique uniform resource identifier

(URI) encoded as a string, i.e., the space identifier.

In this thesis, we make no explicit distinction between local and remote spaces: each

component manipulating the tuple spaces is also associated its own URI, which makes

it possible to figure out whether a space is local or not.

Note that pSpaces and Klaim are the same in the sense of supplying the same coordi-

nation primitives, such as write, read and remove (with the exception of code mobility

in Klaim that enables processes to exchange pieces of code through the communication

primitive eval) with the main differences of being syntactically different and supporting

the implementation of distributed applications in different platforms (for pSpaces).

2//github.com/pSpaces/

Background and Related Works 29

2.7.1 pSpaces Syntax

pSpace allows multiple applications. Each application is implemented by using a spe-

cific programming language (e.g., Go, Java, etc). Moreover, it contains a memory M

and concurrent processes P executing operations. Memory M represents a map of the

variables into values. Among those values we can mention Spaces. Parallel composition

of applications use the operator ||.

A process can be either an inactive process or nil, a prefixing process A.P, or a parallel

composition of two components C||C. Hence, behaviours of a component are modelled

by a process P executing actions. The actions of a process mainly consist of creating a

local space and remote space. Tuples are indicated by non-empty lists of expressions e,

while a template is shown by non-empty lists of expressions e or types τ.

pSpace provides operations for creating local and remote spaces, described as follows:

• Station:= NewSpace("tcp://localhost:31419/space") - creates a space

named Station,

• Server:= NewRemoteSpace("tcp://serverhost:3115/room12") - creates

a remote space named Server at the given uri.

Server is the name of space, tcp is the communication protocol, serverhost is

the address of a server, 3115 is the port number and room12 is the space identifier.

pSpace relies on communication primitives similar to those of Klaim, essentially a set

of blocking and non-blocking actions to add, search, and remove tuples to or from a

space. Moreover, tuples are content-addressable based on the pattern matching mech-

anisms. Non-deterministic mechanism is implemented in the pSpaces communication

primitives. When one needs to retrieve a tuple with a pattern T, and there is more than

one tuple that match the given pattern.

pSpaces provides input operations (Get and GetP) for removing the tuple t that matches

the given pattern T. The input operations (Query and QueryP) are used for searching

and reading tuples that match the given pattern T, and output operation (Put) for adding

a tuple to a space. The pattern matching mechanism of pSpaces is similar to Klaim’s

one described in Section 2.2 and in Table 2.3.

In most pSpaces implementations, the formal fields used to select a tuple that matches

a given template are specified by associating data types to names or value lists. The

Background and Related Works 30

reader interested in programming with Spaces (pSpaces) is referred to [7] for additional

details.

The software package goSpace3 is an implementation of pSpaces in Go that supports the

development of concurrent and distributed applications with Spaces. Similar to Klaim,

goSpace is a tuple space coordination model in which tuples are shared on a network-

based memory, called Space. The space serves as both tuples storage and their exchange

location, where the tuples can be concurrently accessed from the processes through the

distributed communication primitives.

2.7.2 GoSpace Syntax

The syntax of goSpace is defined by the grammar shown in Table 2.8. It consists of the

system S that represents a multiset of applications. The process P represents the con-

current processes executing operations. Processes can be created from the nil process

that does not perform any action, a process prefixed with an action to be executed, the

parallel composition (P1 | P2, which enables the computation in processes P1 and P2 to

proceed simultaneously), and choice between actions (P1 + P2, either proceed with P1

or P2). The communication primitives of goSpace enable a process to write (Put)

the tuples to a space, read and remove (Query/QueryP/Get/GetP) the tuples from a

space based on the pattern-matching rules.

The pattern-matching rules of goSpace are similar to the ones of Klaim (see Sec-

tion 2.3.2). However, in the implementation of goSpace, the formal fields are specified

with pointer values (e.g., &v, where v is the name of a variable). For example, the pat-

tern for retrieving the number of packages of tea would be ("tea",&numberpackages).

We assume a tuple is denoted by the non-empty lists of expressions e or a sequence of

the tuples. Templates are represented either by a template of the type τ or types τ or the

non-empty lists of expressions e.

3https://github.com/pSpaces/goSpace

Background and Related Works 31

SF ∅ | S || S | App(host, M, P) (system)

PF 0 (null process)

| A.P (action prefixing)

| P1 + P2 (choice)

| P1 | P2 (parallel composition)

tF e | e,t (tuples)

TF e | τ | e,T | τ, T (templates)

AF space.Put(t) (operations)

| space.Query(T) | space.QueryP(T)

| space.Get(T) | space.GetP(T)

Table 2.8: Syntax of goSpace [7]

The implementation of goSpace relies on the communication primitives similar to those

of Klaim. GoSpace provides a set of blocking and non-blocking operations that add,

retrieve and remove tuples from or to spaces. The pattern matching rules for retrieving

the tuples work in similar way to the one of Klaim. More specifically, the templates

(formal fields) and tuples (actual fields) must have the same number of elements, the

same type for each corresponding element of both tuples and templates, and the values

of fields are same. The possible operations of the goSpace are described as follows:

• s.Put(t) - is a non-blocking operation that places the tuple t to the space s.

• s.Query(T) - scans the space s to look for a tuple that satisfies the pattern T,

blocks until a tuple is found. It returns the matched tuple, if any, but does not

remove it from the space.

• s.QueryP(T) - is a non-blocking version of Query operation. It looks for a tuple

matching the given pattern in the space and returns the found tuple (if any). In ad-

dition, it returns a boolean value indicating whether the operation was successful

or not.

• s.Get(T) - removes from the space s, a tuple matching the given pattern while

keeping note of the matched values. If there is no matching tuple, the process that

executes the operation blocks until such a tuple is found.

Background and Related Works 32

• s.GetP(T) - is a non-blocking version of Get operation. It removes from the

space s, a tuple matching the pattern T, and eventually returns a boolean value to

indicate whether the operation was successful.

2.8 The Go Programming Language

Go, also known as Golang [23, 69] is an open source, object-oriented and concurrent

programming language developed at Google by Griesemer, Pike and Thompson. The

first stable version Go1 has been released in March 2012 and the current version Go1.17

has been released in August 2021 [70]. It has gained rapid attraction over the past few

years by several research works published, and is now being adopted in the implemen-

tation of software and real world applications. In contrast to other object-oriented pro-

gramming languages like C++ and Java, Go language does not support the inheritance

and does not have some concepts related to object-oriented programming language,

such as polymorphism and function overloading. Instead, it provides the interface types

and functions as the means of representing collection of methods and perform the poly-

morphism. Instead of having the header files like in C++ programming language, it

carries with it the packages systems and builds in tools for implementing the Go code.

2.8.1 Concurrency

Go is mainly designed with the aim of improving the traditional multi-threaded pro-

gramming languages by strengthening and providing the easiest concurrent program-

ming languages. To this end, its strength lies on its high-level concurrency mechanisms

such as, the thread model and its synchronization mechanisms. Go’s multi-threads mod-

els are designed using two principles [71]: 1) make threads (goroutines) lightweight and

easy to create and 2) use explicit messaging (channel) to communicate among threads.

Go supports concurrency through so-called goroutines. They are lightweight functions

which can execute concurrently with other goroutines in the same addresses space (ob-

tained from the Go programming language specification) and communicate through the

channels. More concretely, goroutines permit users to execute programs simultaneously

because a program can be asynchronous, and can exhibit different behaviors. A gorou-

tine behaves similarly to a thread in other programming languages. It is created by

adding the keyword "go" before a function call.

Background and Related Works 33

Go supports different traditional synchronization primitives such as lock and unlock

(for mutexes). The native inter-thread synchronisation mechanisms in Go differ from

more traditional synchronisation mechanisms over shared memory by promoting the

slogan:"don’t communicate by sharing memory; instead, share memory by communi-

cating [69]", and encouraging the communication via channels [72]. Therefore, infor-

mation is mainly exchanged via channels rather than shared memory.

Channels in Go allow goroutines to communicate. The use of channel ensures that

only one goroutine has an access to the data at a time, thus helping to develop sim-

pler and higher quality concurrent applications. Go supports two types of channels

[71]: buffered and unbuffered.

Unbuffered channel is a channel that has initially no capacity of storing the messages

into it. It therefore requires the user to insert a message in order to have the goroutine

process unblocked by a channel. It basically blocks a goroutine whenever the channel is

empty and waits to be filled up. Sending data to (or receiving data from) an unbuffered

channel will block a goroutine until another one removes data from or sends data to the

channel.

Buffered channel offers the possibility of storing messages inside it. It could be filled

up to its defined capacity, not with just one message. Sending data to a buffered channel

will block only when the buffer is full, while like before receiving will block when the

buffer is empty.

2.8.2 Examples

Go program consists of packages (i.e., folders) which contain .go files. Each program

begins with a package declaration, a list of imports, several functions, type declarations

and variables. A program starts running in the package main, and using the package

with import path "fmt" as well as other necessary ones. Consider the simple examples

in Listings 2.1 and 2.3 that present how to spawn threads (goroutines) and how to use

channels. Listing 2.1 shows how to spawn a goroutine. In the line 12, go say() starts a

new goroutine. Now say() function runs concurrently along with the main() function.

We used a Sleep of the time package at line 13 to make the main() wait for the say()

goroutine to terminate.

Background and Related Works 34

1 package main

2 import (

3 "fmt"

4 "time"

5)

6 func say(s string) {

7 for i := 0; i < 2; i++ {

8 fmt.Println(s)

9 }

10 }

11 func main() {

12 go say("Greetings")

13 time.Sleep(50 * time.Millisecond)

14 say("Hello world!")

15 }

Listing 2.1: A concurrent Go program spawning a goroutine

1 Greetings

2 Greetings

3 Hello world!

4 Hello world!

Listing 2.2: Output for the program shown in Listing 2.1

(Listing 2.3) presents two goroutines (writer and reader) communicating and synchro-

nizing their activities through the channels.

Background and Related Works 35

1 package main

2 import "fmt"

3
4 func writer(msg chan string, done chan bool) {

5 fmt.Println("Writing a message...")

6 //sending message to a channel msg.

7 msg <- "acknowledge the message"

8 //sign of termination.

9 done <- true

10 }

11
12 func reader(msg chan string, done chan bool) {

13 // read from channel msg.

14 msgvar := <-msg

15 fmt.Printf("Reading message.: %s\n", msgvar)

16 done <- true

17 }

18
19 func main() {

20 // create channels.

21 done := make(chan bool)

22 a := make(chan string)

23 //start to asynchronize goroutines.

24 go writer(a, done)

25 go reader(a, done)

26 //wait for receiving the message.

27 <-done

28 <-done

29 fmt.Println(" All goroutines are successfully done!")

30 }

Listing 2.3: Example of communication of goroutines and channels

1 Writing a message...

2 Reading message.: acknowledge the message

3 All goroutines are successfully done!

Listing 2.4: Output for the program shown in Listing 2.3

2.9 Replication Models and Techniques

2.9.1 Replication models

In distributed system, there exist various ways where a single data replica can be up-

dated. It requires some update synchronization mechanisms to guarantee a consistent

level whenever a read or write operation is executed. The replica updates synchroniza-

tions can be done in two ways: synchronous and asynchronous models [73].

A synchronous replication (also known as eager replication) requires the update (write)

operation on all replicas of the same data items to be done immediately whenever some

Background and Related Works 36

changes are made. More specifically, all replicas are locked such that a write action can

be executed on all data replicas simultaneously, and these replicas are synchronized.

Consequently, all replicas have the same data values, and it can only be completed if

replicas have successfully acknowledged the update (write) operation.

An asynchronous replication (also known as lazy replication) involves an update of

only one replica and propagates the changes to other replicas after the update (write)

operations are completed on that single replica.

2.9.2 Replication Techniques

Based on the synchronization replication models described (Section 2.9), we describe

some important techniques for data replication as follows [2, 47, 73].

• Primary-copy: this technique only relies on the primary copy to execute the up-

date. At any time, there is only one single primary replica manager and one or

more secondary replica managers (or slaves). A primary copy of a data refers to

as an original data that is created first. In this technique, a write request is submit-

ted to a secondary replica manager, the same request is forwarded to a primary

replica manager that will update (or write) and propagate the changes to the rest

of all secondary replica managers. All secondary replicas managers are therefore

used for read-only queries. The most important thing to consider is that, there

should be only one primary copy in the whole system executing the transaction.

• Update anywhere (also known as Group): Any site containing a replica of the

data can update it. It is the most used replication method and it uses the locking

mechanisms in which the clients are allowed to update the replica anywhere in

distributed systems. Note that if an efficient design is not taken into consideration,

this method may affect the performance more than the primary copy.

• Read-one write-all (ROWA): requires a read operation to be executed from any

replica of data item, while a write operation has to be performed on all replicas.

It uses synchronization mechanism of the write operations and in this manner

they are written simultaneously. As all replicas are expected to remain in the

synchronized mode all the time, it maintains the consistency by reading one copy

of data item and writing all copies. One of the issues of this technique is that the

write operations are expensive and sensitive due to a single replica failure.

Background and Related Works 37

2.10 Consistency Levels for Replicated Data

Consistency is a formal description that presents how the copies from the same data vary

through the write and read operations within the same replicated systems. It basically

describes the access rules to any copy of data, and thus ordering distributed memory up-

dates. The data consistency issue deals with the implementation of either a synchronous

or an asynchronous models for replicated system that assist its exploration.

In the synchronous model, all replicas are synchronously updated at once, any process

can use a local replica and change it. Once an update is completed, all replicas are

synchronized. In the asynchronous model, one replica is updated immediately while

and the others are asynchronously updated at a certain moment in time.

Possible approaches for guaranteeing consistency level when implementing data repli-

cation are the following [74] based on whether the system sends the data update to:

1. all replicas at the same time: all of them updated at once;

2. an agreed-upon master node first that resolves all requests to update the data item:

the order chosen to perform these updates determines the order in which all repli-

cas perform the updates. After the master node resolves updates, it replicates

them to all replica locations;

3. a single (arbitrary) node first: the system performs the updates at that location and

then propagates them to the other replicas.

The degree of consistency of replicas relies on the chosen approach and can have dif-

ferent forms described as follows [60, 75]:

Strong consistency: Strong consistency is a property to define consistency models and

requires all replicas to receive the information in the same order. After the update

is completed, any successive access action can return the updated values. There-

fore, users cannot notice that the data are replicated. This approach is identified as

easier to reason about and as guaranteeing software and applications to be more

trustworthy. It is the most expensive in terms of synchronization but increases

the level of data availability. For example, distributed services such as booking a

flight and withdrawing money from a bank account demand a strong consistency

level.

Background and Related Works 38

Weak consistency: is a another type of consistency that relies on some conditions or

period of times for synchronizing the updates. The system does not guarantee

that the subsequent accesses will return the updated values. The weak consis-

tency model is not always sufficient for applications because it might lead to data

inconsistency but it has the advantage of reducing the cost of synchronization and

of machine latency. For example, weak consistency level may be required when

reading temperatures from several sensors at different locations.

Eventual consistency: This is a variant of weak consistency; the storage system guar-

antees that if no new updates are made to the object, eventually all accesses will

return the last updated value. Simply, if there are no new write operations invoked

on the object, eventually all reads will return the same value. This model is eas-

ier to implement and simplifies the design and operation of distributed services.

Moreover, it prioritizes high availability over strong consistency and improves

performances. For example, the domain name system (DNS) implements even-

tual consistency, where an update to a name is distributed based on the configured

pattern and in combination with the time controlled caches; eventually all clients

can see the updates [76].

2.11 Concepts of Static Program Analysis

Static program analysis aims at automatically analyzing a given program for determin-

ing whether that program satisfies some particular properties. This is a significant re-

search topic because it addresses an important problem that is recognized to be undecid-

able (Rice’s theorem). Informally, Rice’s theorem states that any non-trivial semantic

property of a program is undecidable [77]: in other words, it is not possible to design

a static analysis approach that can prove any non-trivial property on a given program

both automatically and exactly. A semantic property can be concerned with the pro-

gram’s behavior (for example, does the given program terminate for all inputs), unlike

a syntactic property (for example, does the given program contain an if-then-else state-

ment). Some undecidable properties such as a program that never divides by zero, or a

program never dereferences a null pointer have motivated several researchers to design

and implement some approximations analyses. For example, Model-checking [78] is

among the proposed techniques, and it shows sequences of states occurring during a

program’s execution and decides whether these states satisfy a safety property. Hence,

Background and Related Works 39

it is deemed semi-decidable and precise of an abstract model of a program whereas,

data flow analysis is considered terminating [79].

Static analysis procedure supports computing over-approximations and under approx-

imations analyses of program behaviors. We here provide a brief overview of static

analysis. We will not go into details but, we want to introduce some basic concepts and

static analysis techniques [80–82].

Static program analysis (also known as source code analysis) [81] is a technique that

automatically reasons about the behaviors of a computer program without having to ex-

ecute the programs. It is mostly conducted on the source code and by using effective

approximations, it can check all the possible executions of a given program, generate

results after inspecting the structure of its source code, the sequences of statements, and

the way the variable values are refined over several function calls. In static analysis,

the programs are not executed but are analyzed by a static analyzer to generate useful

information for the program development process in order provide good quality of soft-

ware. A static analyzer is a program that can take other programs as input and indicate

whether they satisfy the properties of interest or not.

Static program analysis usually requires soundness. Soundness analysis provides guar-

antees that the information obtained from the analysis holds on all possible program

executions, whereas unsound analysis makes no such guarantees. The main advantage

of static analysis is that all the code is analyzed. This differs from dynamic program

analysis where portions of source code will be considered only under some specific

conditions that could never be met during the analysis phase [83].

We distinguish between over-approximation and under-approximation analyses:

• Over-approximation designates techniques that explore a set of all possible exe-

cutions of the input program. It estimates the program behaviors that may occur

along all the execution paths of the same program. Over-approximation can spot

all bugs in the analyzed program and may produce false negatives. Abstract In-

terpretation [84–87] is usually presented for over-approximation analysis. It aims

at computing an over-approximation of the set of states that is reachable in a pro-

gram. More concretely, it detects invariants of a specific shape (called an abstract

domain) at each location of such a program and enables one to check the prop-

erties of interest. Abstract interpretation has been used for designing Polyspace

Background and Related Works 40

Bug Finder4, a static analyzer whose purpose was to prove that a program under

analysis satisfies some properties such as, a program never divides by zero, in or-

der to prove absence of run-time errors under all possible control and data flows

in the source code for the C and C++ programming languages.

• Under-approximation analysis assists in capturing a subset of all possible be-

haviors of a given program. It basically estimates the program behaviors that

must occur along all its execution paths. Under-approximation analysis may miss

some bugs and result in false positives, i.e., a non-terminating program is consid-

ered to unconditionally terminate, or an unsafe program may be considered safe.

A program unconditionally terminates if all of its executions are of finite length.

Bounded Model-Checking (BMC) [88–90] is designed for under-approximation

analysis. It is a symbolic technique for program analysis where only subsets

of feasible program behaviors are explored. Given a program, a property and a

bound k, it checks whether the property (that typically represents the negated form

of some error condition) can be violated within k execution steps [91]. For exam-

ple, Bounded Model Checking is used to find errors in concurrent software [92].

Static program analysis is used for many purposes such as optimizing compilers and se-

mantic based program manipulation tools (e.g., error detection, program understanding

tool). It provides approximations formalized via specific techniques (e.g., abstract inter-

pretation) and can offer the best trade-off between the precision information extracted

from a given input program and the efficiency of algorithms used to extract information

from the program text [93].

Several techniques can be used to perform static program analysis. They explore the

program’s behaviors for all possible inputs and the possible states that a given pro-

gram can reach: Data Flow Analysis and Control Flow Analysis [81], Syntactic Pattern

Matching [94], Constraint Based Analysis [81], and Abstract Interpretation [84] are

among the most popular. We now briefly describe some of the static analysis tech-

niques.

2.11.1 Static Analysis Techniques

Syntactic Pattern Matching [94] is a technique that inspects a program by relying on

the parser to analyze its syntax. The parser takes as input the source code of a

4http://www.mathworks.fr/products/polyspace-bug-finder/

Background and Related Works 41

given program and produces as output a data structure in the form of an abstract

syntax tree. An abstract syntax tree is a tree representation of a syntactic structure

of a source code written in a programming language. The nodes of such a tree

show the constructs (e.g., statements, expressions, etc.) that occur in the source

code of a program. Additional comments are reported in section 2.11.2.

Data Flow Analysis [79, 83, 95–97] is a technique that predicts the flow of information

through the locations of a given program. In fact, it can be used to provide infor-

mation about the program’s behavior without running it. For example, data flow

analysis can be used to predict the set of possible arithmetic expressions that have

been evaluated at a program location, or the set of variables that have constant

values in the program. There are two classes of flow of information analysis [97]:

They can be computed either backward or forward.

For the first class problem (i.e., Forward flow), given a point P in the program,

it shows what happens before control reaches P (i.e., which definitions can affect

computations at that point). For example, in the reaching definition problem, one

wants to know which definitions (e.g., statements such as int x = 3) is reachable

at the point P. The variable is said to be defined at the point P in the flow graph, if

it appears at the left side of an assignment (i.e., if its value is changed).

For the second class problem (i.e., Backward flow), given a point in the program,

it shows what happens after control leaves that point (i.e., what can be affected

by computations from that point). For example, in the live variables problem,

one wants to know the live variables, with a variable a being considered live at

a point P in the flow graph, if the value of a at P will be used afterward in some

path starting in p.

One of the uses of the data flow analysis technique has been on verifying a prop-

erty of a concurrent program as a pattern of selected program events and asks the

analysis to verify if all program executions satisfy the given property or not [98].

Control Flow Analysis [99] is a technique that inspects the given program and presents

how the flow of control are hierarchically sequenced. The key observation is

that it makes all possible execution paths of a given program to be analyzed.

Usually, the sensitive and flow-insensitive analyses take place; a flow-sensitive

analysis respects the order of statements, whereas a flow-insensitive analysis does

not respect it. The sequences of control are expressed as a control-flow graph

where nodes represent the basic blocks of code (e.g., statements, expressions),

while the directed edges indicate the possible flow of control between the nodes.

Background and Related Works 42

2.11.2 Abstract Syntax Trees

An abstract syntax tree is a data structure that consists of program terms (e.g., expres-

sions and statements) that represent a computation. It is used in the construction of

compilers. It has a form of a tree and consists of program terms (e.g., expressions and

statements) that represent its syntactic structure or computation.

An AST consists of two main components namely, the source code and the tokens. The

construction of an AST in GO programming language is performed into three phases:

1. Lexical Analysis or Tokenization - the compiler scans the given input program file

or expressions and generates the tokens. In Go, this happens by using the pack-

ages go/scanner and go/token. Each of the generated tokens correspond to a

construct in the input program such as statements, identifiers, literals, keywords,

etc. Hence, the tree will be composed of tokens generated from statements and

expressions of a program. For example, consider the code fragment that creates

the space "Store" like this: var Store = NewSpace("store") The tokens

that represent the above statement (from left to right) are: token.Var, token.Ident,

token.Assign, token.Ident, token.Lparen, token.String and token.Rparen.

2. Parsing - the tokens generated from an input program are fed to a parser package

in the Go’s standard library, namely go/parser. This parser package checks the

syntactic structure of the parsed input program file and presents it in a form of a

tree, which contains all information of the input program.

3. Presentation - the parsed input program file is printed in the form of an abstract

syntax tree by using the go packages, namely: go/ast and go/printer.

We consider a simple example of Go program that increments the given integer value

by 5; it is shown in Listing 2.5.

Background and Related Works 43

1 package main

2 import "fmt"

3
4 func main() {

5 a := 10

6 incr := func(x int) int {

7 fmt.Printf("increments %d by five : ", x)

8 return x + 5

9 }

10 b := incr(a)

11 fmt.Println(b)

12 }

Listing 2.5: An example Go program

The first step is to parse the program file into an AST. For this purpose, the go/parser

package is used (see Listing 2.6). The fset variable holds tokenisation information

about the files being parsed. The file variable is the root node of the AST. The final line

of the code prints an AST to the standard output.

1 fset := token.NewFileSet()

2 node, err := parser.ParseFile(fset, "program1.go", nil, parser.ParseComments)

3 if err != nil {

4 log.Fatal(err)

5 ast.Fprint(os.Stdout, fset, node, nil)

6 }

Listing 2.6: Parsing a given Go program

Line 1 uses the package go/token to create a new FileSet that represents the file of

a source code parsed to generate an abstract syntax tree. The parser.ParseFile with

the parameter parser.ParseComments at line 2 parses a given program.

program1.go is the file name which is opened when the src is nil. If there is no error

in the parsed source file, then an *ast.File is returned.

The second step is to print the AST nodes from the parsed input program file, which is

performed at line 5. The AST of the code fragment in Listing 2.5 is shown in Figure 2.5.

Background and Related Works 44

Figure 2.5: An example of abstract syntax tree

The goSpace program presented in Listing 2.7 gives the AST shown in Figure 2.6.

1 package main

2 import (

3 . "github.com/pspaces/gospace"

4)

5 func main() {

6 store := NewSpace("tcp://host:123/store")

7 go process(&store)

8 }

9 func process(store *Space) {

10 store.Put("bicycle", 200)

11 }

Listing 2.7: A Go Program using goSpace

Background and Related Works 45

Figure 2.6: An example of AST for the source code in Listing 2.7

2.11.3 Related Work on Static Analysis

In this section, we shall discuss the research works integrating static analysis techniques

with the coordination languages and highlight other research area. Some of the follow-

ing research works directly inspired ours. Static analysis is used in many coordination

contexts. In [100], Obreiter et al. exploit the static analysis and propose a tuple-space

based coordination model that achieves scalability. They also suggest an approach based

on mapping the tuples to frequency; they are used in the write and read operations in

order to distribute the tuples on several servers.

Background and Related Works 46

Static analysis techniques are used in Klaim based coordination languages [101–103].

Our static analyzer is implemented in Go and is used to analyze Go programs written in

goSpace coordination language. The purpose was to control the kind of operations that

processes can perform at different localities, to preserve secure access to tuple spaces

and safe process migration. Our focus, however, is on improving the performance of

distributed systems that use tuple spaces, and reducing access latency.

Static analysis approach for Klaim language is also proposed to solve the licence confor-

mance problem [104], and to validate that the client code conforms to the security pol-

icy. Bodei et al. [105] proposed a control flow analysis technique that over-approximates

the behaviors of Klaim processes to track the propagation of tuples and identify their

possible trajectories within a Klaim network. More specifically, the technique makes

it possible to detect a priori, how the tuples can move in the Klaim network and when

they can safely traverse a path or their move to a specific node may be dangerous. Fur-

thermore, it supported reasoning about the transformations applied to a selected datum

along those paths. In our work, we focused on computing the over-approximated lo-

cations for replication of tuples by checking the matches of write operations with the

read and remove operations. In [106, 107], the static control and data-flow analyses

have been exploited in Klaim language for enforcing security policies (e.g., prevents

processes running on another node from sending a fake message) in distributed tuple

space systems. However, they rely on the users ability to enforce the security policies,

by specifying the access controls that static analysis cannot accomplish. Therefore, by

applying the dual static-dynamic checks, type checking can provide guarantees about

the processes allowed to proceed.

IoT-LySa [108] is a language based on a process calculus with a control flow analysis to

show which data items a node can receive and from which nodes. The underlying ideas

are to track and predict possible trajectories of data communicated in an IoT system, and

check whether sensitive data can move via possibly unsafe nodes. Our static analyser,

however, checks tuples operations, the number of its arguments and data types to track

which tuples to replicate and where to replicate them.

Diwan et al. [109] proposed and evaluated three versions of alias analyses based on

programming language types to disambiguate memory references. Two of these ver-

sions determined the aliases by relying on the declarations of types and field names,

thus supporting the refinement of the types of objects that an access path may refer to

access the memory locations. The other version has improved the analyses by using the

Background and Related Works 47

flow insensitive algorithm to include the effects of variable assignments and references.

They statically and dynamically evaluated the proposed alias analyses with respect to

redundant load elimination. Our work mainly differs from their work with respect to the

target programming languages, redundancy elimination, dynamic analysis metrics and

optimization of read-write access for replication.

Another area of related work involves verification to augment the techniques or the

tools. Static verification of concurrent Go programs for bounded liveness and safety

has been considered in [110–112]. Static verification approach that uses some form of

regular expressions is proposed [113] for detecting deadlocks in Go programs. Like

our research work, they considered a fixed number of processes and synchronous com-

munications. Bounded analysis of concurrent programs for safe replication has been

proposed [114], and maintained various forms of weak consistency levels, but did not

guarantee all replicas to have a strong consistency level.

2.12 Program Transformation

This section briefly describes program transformation as it plays a key role in the re-

search work presented in this thesis.

Source-to-source transformation, sometimes also referred to as code refactoring, has

been introduced four decades ago (i.e., in 1977) for improving the maintenance of

source code in a given input program [115].

Program transformation is the action of changing one program into another program.

This action involves designing and implementing a set of modification rules that a com-

puter performs on one or more constructs in the source code of an input program into

one or more constructs of a target program. The source and target languages, respec-

tively, are the languages in which the transformed program and its resulting output lan-

guage are written. The transformation systems can be divided into three classes [116]:

1. Manual: The user is responsible for each and every stage of the transformation

process. More specifically, the user should select a transformation rule that he

wants to apply to a system from a set of available ones.

Background and Related Works 48

2. Fully automatic: aims at fully automating the transformation systems completely

without relying on the user’s ingenuity. It is possible to fully automate the trans-

formation of a specification into another one that can be effectively executed on a

computer once it is written and formalized.

3. Semi-automatic: aims at simplifying as much of the transformation process as

possible while still allowing programs to be transformed within the paradigm.

Program transformation can be classified into two categories: rephrasing and transla-

tion. In the first category, that is the rephrasing, an input program is changed into a

different output program in the same language, i.e., source and target programs or lan-

guages are the same. For the second category, that is the translation, an input program is

changed into an output program in different target language, i.e., source and target pro-

grams are different. Their use in software development activities and static analysis that

revolve around changing the source codes and analyzing their behaviors are justified by

works that have shown that software performances and quality can be achieved [117–

119]. In this thesis, we only apply translation as our research work fits into that category.

A reader interested in the strategies of program transformation is referred to [120, 121]

for more details.

2.12.1 Related Work on Program Transformation

There have been research works aiming at applying source code transformation ap-

proaches in the area of coordination languages and other several contexts.

The combination of tuple space-based computing and transformation is explored and is

at the core of the Linda coordination model. It has effectively improved the performance

of concurrent systems [122]. GrGen.NET [123] is a tool for the graph transformations,

it allows users to work with declarative pattern matching and rewriting rules, and facil-

itates the modification of graph-based representation. Our focus, however, is on auto-

mated transformations of Abstract Syntax Tree, and optimized by statically analysing

the data access patterns of the given programs.

Different source code transformation techniques have been proposed in several con-

texts, including example-based [124] or rule-based [125, 126] transformations. Im-

plementations of rule-based transformations are available in Haskell [127] and Strate-

go/XT [128]. Our research work, however, introduces a pattern-based transformations

approach restricted to Go.

Background and Related Works 49

Several source transformation frameworks for different languages are available. A pop-

ular source framework for C and C++ is ROSE [129]. Transformation tools developed

within the ROSE framework are based on directly modifying the syntax tree and then

un-parsing it to obtain the modified program. Another transformation framework for C

and C++ programming languages, widely adopted for software verification, is the Clang

compiler framework [130]. Source transformation in Clang is obtained by directly al-

tering the relevant fragments of the initial source code, because modifying the abstract

syntax tree of the program is not allowed. In addition, Clang provides libraries with the

features that support the source code rewriting transformation (like refactoring) [131].

Other authors proposed transformation tools [132, 133] which build an abstract syntax

tree of the source code of programs and use the predefined rewrite rules to manipulate

the Abstract syntax tree. The Proteus system [134] uses an abstract syntax tree approach

to perform transformations on the large C/C++ systems. The rule based and phasing

based mechanisms for program transformation are proposed [135]. The transformation

process uses abstract syntax trees organized in a set of phases and each phase consist of

a set of rules that are executed by the transformation engine to perform a certain task.

Various transformation tools applicable to multiple programming languages have been

proposed. TXL [136] relies on the user’s ability to specify the grammar and transforma-

tion rules in the TXL programming language. In [137], Van Tonder and Le Goues pro-

pose Comby, a rule based transformation framework applicable to multiple languages.

It requires users to write the transformation templates and changes the code in multiple

languages. Our approach differs from these approaches in terms of relying on users abil-

ity to specify and write the transformation rules. In other words, the pattern matching

mechanism used in the source code differs from ours; it does not consider data access

patterns but it relies on user-specified match templates.

In [138], Koppel et al. propose Cubix, a source code transformations tool applicable

to multiple languages. The proposed approach relies on the ability of users to define

and write the transformation patterns once, which can be applied to programs written in

many programming languages. Our approach, however, does not require users to define

and write transformations patterns. We focus on the transformation of Go programs

written in goSpace coordination language.

Chapter 3

RepligoSpaces: goSpace with
Replicas

In this chapter, we present our tuple-based coordination language RepligoSpaces, which

enriches goSpace with the primitives for replica-aware coordination. The extended co-

ordination primitives can be used to automatically replicate tuple spaces and guarantee

strong consistency level. It borrows the concepts of spaces (i.e., pSpaces) or localities

like in Klaim styles.

This chapter is structured as follows. Section 3.1 describes some concepts of tuples

and templates. Section 3.2 presents the syntax of RepligoSpaces. Section 3.3 presents

the informal semantics of RepligoSpaces. Section 3.4 presents how the replica-aware

coordination primitives of RepligoSpaces are implemented.

3.1 Tuples and Templates

Tuples and Templates (or patterns) are fundamental elements adopted by many tu-

ple spaces-based coordination languages. The definitions of tuples and templates in

RepligoSpaces are similar to the ones of goSpace (Klaim) coordination language. We

recall that the concept of spaces used in RepligoSpaces is similar to the one of locations

used in RepliKlaim. Both spaces and locations are used to store tuples.

The components of tuples are expressions. The tuples are finite sequences of information

items of (only) actual fields that are used to elaborate data items and exchange the

50

RepligoSpaces: goSpace with Replicas 51

information. Tuples can also contain the variables and are called templates (or patterns).

In fact, pattern T can contain both actual and formal fields, and are used to select tuples

from the spaces.

An example of tuple is ("Hello",2021), a sequence of two actual fields of types string

and integer, whereas examples of patters are (!string,!int) and (!int,value).

Templates are used to select the tuples, and this process is done via the pattern matching

mechanism. This mechanism is defined by the pattern-matching predicates similar to

the one of the Klaim coordination language presented in Table 2.3 of Chapter 2.

3.2 RepligoSpaces Syntax

This section focuses on the syntactic features of RepligoSpaces. RepligoSpaces is based

on the notion of space and relies on the Klaim-like coordination language. The syntax

of RepligoSpaces provides replica-aware programming routines.

The space can be S, a set of target spaces (ranged over s1, s2, . . . , sn), where replicas

of tuples are stored, or s, one of the elements of the spaces, where tuples can also be

stored. In other words, S is used to denote the set of spaces and (s1, s2, . . . , sn) to denote

its elements. The elements of the set of spaces (S = s1, s2, ..., sn) may represent the set

of target spaces for replicating tuples. An illustrative example of replication strategies

of the tuples over the spaces and additional details will be provided in the next chapter.

Actions performed by processes permit to write tuples to the set of target spaces S

via MPut action, read the tuple matching the given patterns via the MQueryP and MQuery

operations, and remove the tuples and its replicas from the spaces via MGetP operation.

In concordance, expressions denoted by e represents the constant c, the basic program

variables x and values v. Tuples t are the sequences of actual fields, i.e., values or

expressions. Templates (patterns) are the formal fields, which means that certain values

of these fields are not known. Hence, the formal fields are used to build templates.

Tuples to be placed in the tuple spaces can only have actual fields, whereas templates

can contain both actual fields and formal fields.

RepligoSpaces: goSpace with Replicas 52

RepligoSpaces consists of operations that extend goSpace’s operations (Section 2.7.2)

with replica-aware tuple manipulation primitives. In fact, these operations are imple-

mented to support the replication of tuples across multiple spaces. RepligoSpaces ac-

tions can be used to add tuples to the spaces, and to retrieve and remove tuples from

them. The functionality of each RepligoSpaces primitives is described as follows:

• The MPut(t,s1...sn) is the non-blocking operation that adds a tuple to a set of

spaces. When multiple spaces are provided as the target destinations, the tuple is

replicated in all of them.

• The MQuery(T,s) operation searches from the space s, a tuple that matches the

given pattern T . If the matching tuple does not exist, the operation blocks until a

tuple is found.

• The MQueryP(T,s) operation queries a specific space s for tuples matching the

pattern T . It returns the found tuple, if any and an empty tuple when none is

found.

• The MGetP(T,s) operation searches for a tuple that matches pattern T and re-

moves it from its space and from any other space where it was previously repli-

cated.

RepligoSpaces operations and their goSpace counterparts are shown in Table 3.1.

Blocking operations are marked with the symbol (*).

Description goSpace RepligoSpaces
Add a tuple s.Put(t) MPut(t,s1...sn)

Search and read a tuple∗ s.Query(T) MQuery(T,s)

Search and read a tuple s.QueryP(T) MQueryP(T,s)

Search and remove a tuple s.GetP(T) MGetP(T,s)

Table 3.1: Basic operations on tuple spaces in goSpace and RepligoSpaces

Note that we have not considered Get primitive (i.e., a blocking operation to remove the

tuples from the spaces) in RepligoSpaces like in goSpace (see Table 2.8); this design

choice was considered in order to avoid deadlocks. Assume that a process gets a lock;

in case there is no tuple matching the given template, the process will not release that

RepligoSpaces: goSpace with Replicas 53

lock. Hence, other processes are blocked and cannot do any action. Therefore, we have

not considered the Get primitive to avoid deadlocks. However, the lack of Get primitive

does not affect the expressiveness of the language.

3.3 Informal Semantics of RepligoSpaces

This section describes the semantics of the coordination primitives of RepligoSpaces in

an informal way.

In RepligoSpaces, the system is formed by an ordered sequence of processes and spaces.

Every space has an index or an identifier for each process. We chose to have an ordered

sequence of spaces because in this way every space can have a specific identification

index. Processes can be executed in an interleaving fashion. RepligoSpaces provides

coordination primitives that enable processes to add tuples (MPut) to the spaces, read

(MQuery and MQueryP) and remove (MGetP) tuples from the spaces using the templates.

Tuple and templates have to be evaluated before they are used to remove or read the

tuple from the spaces. The read and remove operations are based on a mechanism that

requires matching tuples with template. A template matches a tuple if:

1. Both the tuple and the template have the same number of fields, and all pairs of

fields at the corresponding positions do match;

2. The fields of tuple and the corresponding pattern have the same types;

Note that, the read and remove operations only succeed if the tuples match the given

templates in the given spaces. Otherwise, if the matching of tuple with the template

does not succeed, a nil tuple is returned to the process executing an action.

MPut deals with a strong output action MPut(t)@S and is used to add a tuple in every

space of the set of all target spaces. As a result, every space in the set of spaces will

contain a replica of the tuple.

MGetP deals with the strong input action MGetP(T,s) and is used to remove a matching

tuple from its own space, and from all spaces containing its replica. If a copy of a

matched tuple is found in one local space, it is removed from that space and from all

spaces that contain its replica. However, if the tuple is not found in any of the considered

spaces, a nil tuple is returned to the process willing to remove the evaluated tuple.

RepligoSpaces: goSpace with Replicas 54

MQueryP deals with the non-destructive read action MQueryP(T,s). It reads a tuple

that matches the given template from its own space within the set of all spaces. If a

process does not find any tuple matching a given pattern in any space (i.e., the matching

of tuple with pattern does not succeed). The process that is willing to read the evaluated

tuple gets a nil (or empty) tuple. When the matched tuple is accessed and retrieved, it is

left in its own local space (differently from the operation MGetP).

Finally, MQuery is used to read the tuple that matches the given pattern from its own

space within the set of all spaces. Once the tuple is found and accessed, it is not removed

from its own space. Note that the space may not react to the searching of tuple (i.e.,

when the tuple is not found); in this case the process that is willing to read the tuple

from the space would be blocked.

3.4 Prototype Implementation

In this section, we present RepligoSpaces implementation, our extension of goSpace [26]

to replica-aware programming. The choice of using goSpace is motivated by the rich set

of features of the host programming language Go.

Both pSpaces and goSpace (Section 2.7) allow one to manipulate tuples within a single

space. With RepligoSpaces, we instead are able to manipulate tuples across multiple

spaces transparently. Our extension follows the same approach of RepliKlaim with

Klaim (see Sections 2.3 and 2.5, respectively). The differences between RepliKlaim

and RepligoSpaces are that, in RepliKlaim, we can specify the level of consistency for

the operations, while in RepligoSpaces, we have opted for a specific consistency model

(strong consistency). Moreover in/get operations take a list of locations as parameters,

not just one. Indeed, we considered Repliklaim’s approach with respect to Klaim for

automatically replicating tuples by using RepligoSpaces, but our linguistic approach

relies on an implementation based on goSpace differently from that of RepliKlaim,

implemented in Java. Moreover we have used a lightweight static analysis technique,

and the two coordination languages are slightly syntactically different. We can only say

that Repliklaim relates to Klaim just like our RepligoSpaces relates to goSpace.

In what follows, we will provide a detailed description of the way RepligoSpaces oper-

ations are implemented. They are instrumental to support the manipulation of tuples on

RepligoSpaces: goSpace with Replicas 55

multiple spaces. More concretely, goSpace as described in Section 2.7 of Chapter 2, al-

lows one to manipulate tuples within a single space. Here we extended it to manipulate

tuples within multiple spaces while preserving the strong consistency level.

The MPut action shown in Listing 1 writes a tuple to a set of spaces. It takes as input a

tuple t and a set S of space identifiers, in the form of strings that encode their URIs.

1 func MPut(t Tuple, Sp Replispace , S []string) Tuple {

2 Sp.mux.Lock()

3
4 // create tuple t’ = {t,S}

5 var data []interface{}

6 data = append(data, t.Fields...)

7 data = append(data, S)

8 var t1 Tuple = CreateTuple(data...)

9
10 // add t’ to each space in S

11 for i := 0; i < len(S); i++ {

12 Sp.Sp[S[i]].Put(t1.Fields...)

13 }

14
15 Sp.mux.Unlock()

16 return CreateTuple(t1)

17 }

Listing 1: The MPut operation replicates a tuple over a set of spaces

The idea is then to simply perform a normal goSpace Put operation for every space

in S (lines 10–13). To do so, we need a reference to the space object identified by

the URI at any given position of the set S. To this purpose, we use a global map Sp

from URIs to references to space objects. Note that this is not a limiting factor as our

source transformation procedure will automatically populate Sp for us (Section 4.1.3).

Please notice also that the actual tuple being stored is not t, but an extended tuple

obtained by appending S to t (lines 4–7). This avoids centralized tracking of the storage

locations [6] and simplifies the implementation. We are interested in strong consistency,

thus the sequence of Put operations is enclosed in a critical section (lines 2 and 15) to

enforce atomicity.

Note that the data items or tuples to be used in the given spaces, may have different data

types, repligoSpaces struct is defined with two fields: Mux and Sp[...]. In accordance

with this, all fields of different types are combined and associated to a specific data type

(e.g., Space, etc). Therefore, these fields can be accessed along the created goroutines.

For the same reason, we used Sp.Sp[...] (see line 12 of Listing 1) to ensure that all

elements (or fields) are selected, including the spaces list added for indicating where

tuples are stored (as the tuple is extended by appending the spaces list to the original

tuple).

RepligoSpaces: goSpace with Replicas 56

1 type Replispace struct {

2 mux sync.Mutex

3 Sp map[string]*Space

4 }

The MQueryP operation illustrated in Listing 3.2 searches the given space for tuples

matching the given pattern. It takes as input a tuple p (i.e., a pattern) and a space

identifier s, and returns as output a tuple, if any. As a result of the previous MPut

operation as described above, every stored tuple is extended with an extra field that

contains the set of target spaces. Therefore, our search pattern p will need to be adapted

accordingly by appending to p an extra field to be used as a placeholder to match the set

of targeted spaces in the last field of any stored tuple (line 5 and lines 6–9). The modified

pattern p1 so obtained is used instead of p to retrieve matching tuples at space s (line

12). On a successful search (lines 14–19), the last field of the returned tuple is removed

as no longer relevant (line 16), and the tuple originally stored is returned. Otherwise,

an empty tuple is returned (line 22).

1 func MQueryP(p Tuple, Sp Replispace , s Space) Tuple {

2 Sp.mux.Lock()

3
4 // create template p’ = {t,S}

5 var y []string // <--- extra field to match the space list S

6 var data []interface{}

7 data = append(data, p.Fields...)

8 data = append(data, &y)

9 var p1 Tuple = CreateTuple(data...)

10
11 // query a tuple via a pattern matching from a specific space

12 t1, e := s.QueryP(p1.Fields...)

13
14 if e == nil {

15 // no error: return the matching tuple without the last field

16 var u = CreateTuple(t1.Fields[:len(t1.Fields)-1]...)

17 Sp.mux.Unlock()

18 return u

19 }

20
21 Sp.mux.Unlock()

22 return CreateTuple() // returns an empty tuple when no tuple is available

23 }

Listing 3.2: The MQueryP operation to search for a replicated tuple

The MQuery operation illustrated in Listing 3.3 is similar to the implementation of MQueryP

operation, except that it blocks until a tuple is found. More specifically, it searches the

given space for tuples that match the given pattern, and blocks if the tuple is not found

(line 22). As a result of the previous MPut operation as described above, every stored

tuple is extended with an extra field that contains the set of target spaces. Therefore, our

search pattern p will need to be adapted accordingly by appending to p an extra field to

RepligoSpaces: goSpace with Replicas 57

be used as a placeholder to match the set of targeted spaces in the last field of any stored

tuple (line 5 and lines 6–9). The modified pattern p1 so obtained is used instead of p to

retrieve matching tuples at space s (line 12). On a successful search (lines 14–19), the

last field of the returned tuple is removed as no longer relevant (line 16), and the tuple

originally stored is returned. Otherwise, it blocks until the tuple is found (line 22).

Note that we have relied as much as possible on the functions of goSpace (Section 3.2).

The difference between the blocking and non-blocking operations is at the level of

replica-aware routines. Our RepligoSpaces blocking operation (like MQuery) will in-

voke the blocking version (like Query) of the corresponding function in goSpace. There-

fore, we didn’t have to implement the notification of a waiting mechanism for the Query

operation.

1 func Query(p Tuple, Sp Replispace , s Space) Tuple {

2 Sp.mux.Lock()

3
4 // create template p’ = {t,S}

5 var y []string // <--- extra field to match the space list S

6 var data []interface{}

7 data = append(data, p.Fields...)

8 data = append(data, &y)

9 var p1 Tuple = CreateTuple(data...)

10
11 // query a tuple via a pattern matching from a specific space

12 t1, e := s.Query(p1.Fields...)

13
14 if e == nil {

15 // no error: return the matching tuple without the last field

16 var t2 = CreateTuple(t1.Fields[:len(t1.Fields)-1]...)

17 Sp.mux.Unlock()

18 return t2

19 }

20 // blocks until the tuple is found

21 Sp.mux.Unlock()

22 return CreateTuple()

23 }

Listing 3.3: The MQuery blocking operation for searching a replicated tuple

The MGetP operation illustrated in Listing 3.4 uses a pattern p to search and remove a

matching tuple from space s and any other space where it was replicated. It returns as

output the tuple, if any. As for the other operations, the pattern p needs to be adapted

with an extra placeholder to match the set of target spaces appended to the stored tuples

by the MPut operation. We can then use the modified pattern p1 to scan space s for

matching tuples (line 12). On a successful search (lines 14–35), we extract from the

matched tuple, the set S of spaces holding a replica of the tuple (line 16). To perform a

standard goSpace MGetP operation on every space in S, we use the map Sp to retrieve

RepligoSpaces: goSpace with Replicas 58

a reference to the relevant space object identified by the URI in S, similarly to the pro-

cedure used to implement the MPut operation. Thus, upon searching for the matching

tuples from space s (line 12), the list S of all spaces containing a replica of the matching

tuple is extracted and transformed in the form of strings of spaces identifiers (lines 16–

19). The loop (lines 22–34) performs a GetP operation for every space in the set S of

space identifiers (line 24) using the map Sp and the modified pattern p1. On a success-

ful search (lines 26–34), at the last iteration, the tuple is stripped from the extra field

containing the target URIs and returned. Note that, since we are assuming only strong

operations, it should not be possible for the search to be unsuccessful after passing the

first check (line 14). Eventually the operation returns an empty tuple in case none is

found (line 38).

1 func MGetP(p Tuple, Sp Replispace , s Space) Tuple {

2 Sp.mux.Lock()

3
4 // create template p’ = {t,S}

5 var y []string // <--- extra field to match the space list S

6 var data []interface{}

7 data = append(data, p.Fields...)

8 data = append(data, &y)

9 var p1 Tuple = CreateTuple(data...)

10
11 // search the tuple from space s

12 t1, e := s.QueryP(p1.Fields...)

13
14 if e == nil {

15 // extract the list of all spaces

16 var S = (t1.Fields[len(t1.Fields)-1])

17 // transform the interface type of spaces into the string type

18 var v []string

19 v = S.([]string)

20
21 // for each space in the set S of space identifiers

22 for s := range v {

23 // remove the tuple from the relevant spaces

24 u, e1 := Sp.Sp[v[s]].GetP(p1.Fields...)

25
26 if e1 == nil {

27 if s == len(v)-1 {

28 // no error: tuple successfully removed from the space

29 u = CreateTuple(u.Fields[:len(u.Fields)-1]...)

30 Sp.mux.Unlock()

31 return u

32 }

33 }

34 }

35 }

36
37 Sp.mux.Unlock()

38 return CreateTuple() // returns an empty tuple when no tuple is available

39 }

Listing 3.4: The MGetP operation for removing a replicated tuple

RepligoSpaces: goSpace with Replicas 59

Note that, to ensure that the MGetP operation (Listing 3.4) deletes the right tuple and

its replicas, we do not first perform the removal of tuples. In fact, we first search for a

tuple (via MQueryP) matching a given pattern (line 12) and, when it is found, we use the

returned tuple as a search key (as a pattern) to find other spaces where it is placed (line

16). In fact, when we store the tuple and its replicas, we also keep track (as part of the

tuple) of the spaces where they are copied. At the end of this process, we remove the

tuple and the replicas from their spaces (lines 22–34). In this way, we ensure that when

there are multiple matching patterns, our prototype tool still removes the right tuples

from different spaces and avoid compromising consistency.

Since, we do not know exactly how many elements or data items can be in a tuple in a

space, to avoid loosing all fields of a tuple, we use a function t.Fields (or p.Fields

for a pattern). For an example, see line 6 of Listing 1 or line 7 of Listing 3.2) where

we accommodate any number of elements (or fields) of a tuple t that is being parsed.

In fact, in Go it is possible to create a function with a variable number of parameters.

In our case, the created function allows us to include a parameter (see line 7) which

is in essence a tuple that can have many fields within a space (see lines (lines 5–9) in

Listings 3.2, 3.3 and 3.4). For this reason, instead of parsing a tuple t as a tuple in all

RepligoSpaces operations, we used the one (i.e., t1) that can also contains many fields

of tuples (see line 12 of Listings 1, 3.2, 3.3, and 3.4).

Furthermore, the communication primitives in RepligoSpaces only support replications

that require a global lock because we wanted to achieve strong consistency level.

Chapter 4

Static Analysis and Program
Transformation for Replication

Existing coordination languages for tuple spaces require manual programming effort to

specify and coordinate replicas in order to enhance the performances of distributed sys-

tems while ensuring the desired consistency properties. These tasks are very expensive

and time-consuming, motivating research to find the appropriate solutions to handle au-

tomated data replication. In Chapter 3, we presented our first contribution, a linguistic

approach, that is, the replica-aware implementation of Klaim coordination language in

the Go programming language, built on top of goSpace that we call RepligoSpaces.

In this chapter, we present the automated replication technique based on static analysis

and program transformation and discuss how RepligoSpaces, described in Chapter 3,

fits within a fully-mechanisable procedure for automated replication of programs over

tuple spaces that relies on combining static analysis and program transformation. We

rely on a lightweight static analysis pass on the initial program to compute the sets of tar-

get spaces for replication, in order to replace the standard tuple manipulation operations

with their replica-aware versions. The combined approach preserves strong consistency,

thanks to a tracking mechanism embedded in the tuple manipulation operations and to

the fact that set of target spaces is safely over-approximated.

60

Static Analysis and Program Transformation for Replication 61

4.1 Automated Replication of Tuple Spaces

In this section, we describe in details the overall procedure that leads to automatically

replicating the tuple spaces and the way we have to developed the source-to source code

transformations. Figure 4.1 shows the overall workflow of our approach.

P syntax
tree

symbol
table

access
table

static
analysis

program
transf.

P′

Figure 4.1: Static analysis and source transformation for automated replication

Our technique automatically transforms an initial (or input) Go program (P) that uses

goSpace for data manipulation into an equivalent output program (P
′

) (or Replicated

version) where the communication primitives are transformed into the RepligoSpaces

primitives. We consider two programs as equivalent when they compute the same func-

tions even though they are syntactically different.

The first step deals with parsing the initial (or input) program P to generate an Abstract

Syntax Tree (AST, for short). The syntax tree is recursively visited to generate the symbol

table. Symbol tables maintain information about the identifiers of a program. This

information is inserted when declarations of variables are analyzed. During the process

of collecting information in the symbol table, we start visiting the body of the process

definition functions, and then recursively nested blocks. As we go along, we assign

unique identifiers to blocks so that as soon as a new variable declaration occurs in the

syntax tree, that variable is added to the set of symbols for the current block; types of

variables are also extracted from the syntax tree and stored in the symbol table.

The second step consists in building an access table by extracting information from the

syntax tree and the symbol table. In particular, we visit the syntax tree again to detect

all the operations on tuples (see Table 3.1 of Chapter 3). At the same time, we perform

the symbol table lookups to figure out a type of fields for each tuple occurring as an

argument for any of such operations. At the end of this process, we obtain for each

tuple operation an actual tuple along with the type of each field of the tuple.

Static Analysis and Program Transformation for Replication 62

The third step consists in performing a static analysis by visiting the syntax tree a third

time and combining information from the symbol table and the access table in order to

over-approximate the set of target spaces for replication. At the end of the process, we

obtain a modified program P
′

by un-parsing a modified syntax tree.

The final step consists in performing a program transformation. It takes as input, the ini-

tial program and data-access tables built via the static analysis passes described above,

and generates a program where each tuple is replicated as indicated by the correspond-

ing access lists. This can be done by parsing an input program into an abstract syntax

tree, and then performing a series of pattern-based transformations on (parts of) this

tree. It is worth observing that the input program may represent an abstract model of a

more complex system whose computations that do not directly involve tuples are simply

abstracted away.

In the processes definition functions p1, . . . , pn every call to a goSpace routine is trans-

formed into a call to the corresponding extended primitive (Section 3.2) to achieve repli-

cation accordingly. For MPut operations, the set of target spaces for replication is added

as an argument (e.g., cf. line 21 of Listing 4.1 and Listing 4.2). Each such set is over-

approximated by the procedure described in the following section. Any other access

operation, such as GetP, Query or QueryP (lines 31 and 40 of Listing 4.1) is instead

changed to always refer to the local space.

4.1.1 Structures of Input and Output Programs

We provide a description of structures for the input and output programs.

Structure of an input program. Our automated replication approach starts with a

step of defining an initial (input) program P. The input program is a Go program used

in goSpace and represents the model for a distributed system. Each function except

the main corresponds to a process. The output program is divided into four blocks of

source code: declarations of import packages, declarations of global variables, main(

) function, and function definition. Specifically, we restrict our attention to the Go

program used in goSpace and satisfies the following assumptions:

1. Any input program should contain the main function.

2. Any thread is spawned from the main function.

3. The number of spaces and threads are the same.

Static Analysis and Program Transformation for Replication 63

4. All spaces are created inside the main function.

Note that the above assumptions do not imply any loss of generality of the proposed

replication approach. We have used them to simplify the implementation of our proto-

types and to be able to perform program transformation.

The skeleton of an input program P is shown in Listing 4.1.

1 import (

2 . "github.com/pspaces/gospace"

3 ...

4)

5
6
7
8
9

10 func main() {

11 s1 := NewSpace("tcp://localhost:123/s1")

12 go Process1(&s1)

13 ...

14 }

15
16
17
18 func process1() {

19 ...

20 s1.Put("Sport",2022)

21 ...

22
23 }

24
25
26 func process2() {

27 ...

28 var choice bool

29 var description string

30 s1.GetP(&description ,&choice)

31 ...

32 }

33
34

Listing 4.1: Input program

An input program is thus composed of a set P of n parallel processes performing con-

current computations over a set S of n shared tuple spaces.

We assume that each process is defined by a separate and a unique process definition

function, and that all such functions are collected into the input program.

We denote the process definition functions with P = p1, . . . , pn. We also assume that

the input program additionally contains a main section where all the shared tuple spaces

Static Analysis and Program Transformation for Replication 64

are created beforehand and associated to unique space identifiers, and that all processes

are spawned as separate threads.

We denote with S = s1, . . . , sn, the set of spaces shared among the processes, and

associate to each process pi a local tuple space si. We consider every tuple manipulation

operation performed by a process to be a local operation if it refers to that space, and

a remote operation otherwise.

Structure of an output program. The output program contains the declarations of

global variables, the main function containing the spaces created, and the function dec-

larations modelling the actions of processes. In addition, the output program contains

the auxiliary data structures required by the RepligoSpaces replica-aware routines of

Chapter 3, and in particular:

• var uri = make(map[space]string): tracks the space created with a uni-

form resource identifier (uri), maps the uri from the spaces objects to their iden-

tifiers, and the space created is encoded as a string;

• var sp = make(map[string]*Space): maps the space created and encoded

as string to the relevant space object having as data type, a Space.

The output program (see Listing 4.2) retains the same structure as the input program

(see Listing 4.1). The global section of the initial (input) program is extended with

auxiliary data structures, such as the map sp from space identifiers to concrete refer-

ences to space objects (line 12) and the map uri from space objects to space identifiers

(line 13) (used for example in Listing 4.2). An additional package with the definitions

of the extended (or replica-aware) tuple manipulation routines (Listings 1, 3.2, etc.) is

added to the import section at the beginning of the output program (line 3) shown in

Listing 4.2.

In the process definition functions p1, . . . , pn every call to a goSpace routine is trans-

formed into a call to the corresponding extended primitive (Section 3.2) to achieve repli-

cation accordingly, and obtain an output program P′ like the one shown in Listing 4.2.

Static Analysis and Program Transformation for Replication 65

1 import (

2 . "github.com/pspaces/gospace"

3 . "repligospaces"

4 ...

5)

6
7 var uri = make(map[space]string)

8 var sp = make(map[string]*Space)

9
10 func main() {

11 s1 := NewSpace("tcp://localhost:123/s1")

12 sp["tcp://localhost:123/s1"] = &s1

13 uri[s1] = "tcp://localhost:123/s1"

14 go Process1()

15 ...

16 }

17
18 func process1() {

19 var choice bool

20 ...

21 MPut("Sport",2022,targets0)

22 ...

23
24 }

25
26 func process2() {

27 ...

28 var choice bool

29 var description string

30 MGetP(&description ,&choice,uri[s3])

31 ...

32 }

33
34 ...

Listing 4.2: Output program

4.1.2 Overapproximating the Sets of Target Spaces

In this section, we describe our static analysis technique, which over-approximates the

sets of target spaces for replication of tuple spaces by checking the possible matches

with the read and remove operations in the program. The static analyzer is entirely

implemented in Go.

We aim at reducing unnecessary overhead by automatically inspecting the program to

refine the set of target spaces. To that end, static analysis is used to extract from the

initial program that uses goSpace coordination model, the data access patterns, and

then use this information during a program transformation phase.

It is worth noticing that the extended tuple manipulation routines (Section 3.2) are in-

dependent from the specific technique used for reducing the set of target spaces for

Static Analysis and Program Transformation for Replication 66

data replication. In the following, we simply describe a lightweight static analysis tech-

nique for over-approximating such sets of target spaces. The goal of our static analysis

procedure is to work out a refined set of target spaces, i.e., the data-access tables, for

replicating the tuples while preserving strong consistency.

Let us consider a tuple t and a process pi performing an output operation of t into a

specific space s j. The key idea of our approach consists in determining the set of pro-

cesses P′ ⊆ P that can potentially perform a subsequent read operation on that tuple. We

identify such processes by looking at the patterns used in the input operations within the

corresponding definition functions, approximating the actual pattern matching mecha-

nism of the normal tuple manipulation routines. In practice, when given on one hand

an output operation and on the other hand an input operation, we check for a potential

match between the tuple being stored and the given search tuple or template. We re-

peat this for every process except pi and for every input operation in the corresponding

process definition function, and we obtain P′ by progressively excluding from P any

process that is definitely not involved in an input operation that matches the tuple t.

Eventually, the data-access table for replicating t will be the set S ′ ⊆ S induced by P′

on S .

For simplicity, let us assume that a field of a tuple t given as input to an MPut opera-

tion can be either a constant or a variable identifier, while a field of a pattern p taken

by MGetP or MQueryP can be either a constant value or a formal field, namely the typed

variable reference. We can provide an informal description of the used procedure.

The matching mechanism initially compares the number of fields of t and p: if they

are different, then certainly there is no match; otherwise, there is still a possibility for t

and p to match. The matching is then refined based on the actual fields of the tuple and

the pattern, ignoring any formal fields or placeholders. A difference of any actual field

at the same position of t and p indicates a mismatch. The matching is eventually refined

again by taking into account the type of the formal fields of p. A type mismatch between

the actual field of t (either a constant or a variable) and the corresponding formal field

of p again means no match. It is worth noticing that combining the matching mechanism

described above with the replica-aware routines from Section 3.2 preserves consistency,

because

1. the matching algorithm only avoids replication for those spaces where a tuple is

definitely never going to be accessed (i.e., no matching input operation for that

tuple exists in the whole process definition function corresponding to that space),

Static Analysis and Program Transformation for Replication 67

and therefore the algorithm safely over-approximates the set of target spaces for

replication;

2. the tracking mechanism embedded within the replica-aware tuple manipulation

routines guarantees that when one copy of a tuple is removed all its replicas are

atomically removed as well.

4.1.3 Program Transformation

In this section, we explain in detail our program transformation approach. More specif-

ically, we present the transformation rules and the functionality of each of them, and

some examples of how the proposed program transformation rules work. We released

the open-source code of our replicator prototype, which is available online at the link:

https://github.com/Uwimbabazi/Replication/releases/tag/v1.

The use of our program transformation approach can be summarised in three main steps:

1. Building an Abstract Syntax Tree: a given input program (i.e., non-replicated) is

parsed to generate its abstract syntax tree (AST).

2. Transforming the AST: based on our transformation rules, the series of pattern-

based transformations on the (part of) generated AST are performed. Therefore,

the AST of a given non-replicated input program is transformed into its corre-

sponding replicated version, where typically coordination primitives of goSpace

are transformed into RepligoSpaces coordination primitives.

3. Providing the outcome: the transformed output program (RepligoSpaces pro-

gram) is provided.

The replicator prototype tool that we propose in this section consists in splitting the

above steps into simple ones implemented as a single module.

In general, every program transformation process is composed of either one or a com-

bination of two important actions like removing the terms from or adding the terms to

the programs. In the context of this research work, we focus on the additive program

transformation instead of the removal ones. More concretely, we consider program

transformation primarily as a targeted mechanism for replicating tuples while relying

https://github.com/Uwimbabazi/Replication/releases/tag/v1

Static Analysis and Program Transformation for Replication 68

on the target spaces refined by the static analysis.

Below we explain in detail our program transformation approach.

Suppose we have a grammar parser for the Go programming language that produces

the types used to represent abstract syntax trees for the Go programs1. Our program

transformation approach consists of automatically parsing an initial (input) program

that uses goSpace to build its AST, and then visiting the generated AST to un-parse it

back and generate the transformed input program P, which is the output program P
′

(i.e.,

RepligoSpaces program). In fact, the transformed program is obtained by modifying the

behaviours of AST visiting process in a such way to produce the output program.

In the first step, the input Go program that uses goSpace P is specified. We used

the go/parser2 and go/token3 packages to automatically parse the given input pro-

gram and generate its abstract syntax tree.

In the second step, the generated AST of the given input program is visited, and a

series of pattern-based transformations are applied to this tree, then un-parsed it back to

generate its transformed output program. This mechanism is performed by overriding

the Go parser’s AST-based pretty-printer.

In the final step, the transformed output program (i.e., RepligoSpaces program) is pro-

vided. This is accomplished by using the go/printer4 package.

In the following, we describe our program transformation rules that allow us to build a

complete replicator prototype, thus supporting an automated replication of tuple spaces.

The program transformation rules are shown in Table 4.1, and have guided in the im-

plementation of our replicator prototype that replicates tuples spaces by transforming

goSpace programs into RepligoSpaces programs.

1https://golang.org/pkg/go/ast/
2https://golang.org/pkg/go/parser/
3https://golang.org/pkg/go/token/
4https://pkg.go.dev/go/printer

Static Analysis and Program Transformation for Replication 69

go
Sp

ac
e

R
ep

lig
oS

pa
ce

s
(1

)s
p
a
c
e
.
P
u
t
(
T
u
p
l
e
)

M
P
u
t
(
T
u
p
l
e
,
s
p
a
c
e

1.
.
.
,
s
p
a
c
e

n)

(2
)s

p
a
c
e
.
Q
u
e
r
y
(
T
)

M
Q
u
e
r
y
(
T
e
m
p
l
a
t
e
,
u
r
i
[
s
p
a
c
e
]
)

(3
)s

p
a
c
e
.
Q
u
e
r
y
P
(
T
e
m
p
l
a
t
e
)

M
Q
u
e
r
y
P
(
T
e
m
p
l
a
t
e
,
u
r
i
[
s
p
a
c
e
]
)

(4
)s

p
a
c
e
.
G
e
t
P
(
T
e
m
p
l
a
t
e
)

M
G
e
t
P
(
T
e
m
p
l
a
t
e
,
u
r
i
[
s
p
a
c
e
]
)

(5
)i

m
p
o
r
t
(
.
"
g
o
s
p
a
c
e
"
)

i
m
p
o
r
t
(
.
"
g
o
s
p
a
c
e
"
,
.
"
r
e
p
l
i
g
o
s
p
a
c
e
s
"
)

(6
)v

a
r
s
p
a
c
e
S
p
a
c
e

v
a
r
u
r
i
=
m
a
k
e
(
m
a
p
[
S
p
a
c
e
]
s
t
r
i
n
g

v
a
r
s
p
=
m
a
k
e
(
m
a
p
[
s
t
r
i
n
g
]
*
S
p
a
c
e

(7
)s

p
a
c
e
:
=
N
e
w
S
p
a
c
e
(
"
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
:
1
2
3
/
s
p
a
c
e
"
)

s
p
a
c
e
:
=
N
e
w
S
p
a
c
e
(
"
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
:
1
2
3
/
s
p
a
c
e
"
)

s
p
[
"
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
:
1
2
3
/
s
p
a
c
e
"
]
=
&
s
p
a
c
e

u
r
i
[
s
p
a
c
e
]
=
"
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
:
1
2
3
/
s
p
a
c
e
"

Ta
b
le

4.
1:

Tr
an

sf
or

m
at

io
n

R
ul

es
fr

om
go

Sp
ac

e
to

R
ep

lig
oS

pa
ce

s

Static Analysis and Program Transformation for Replication 70

Rule (1) space.Put(Tuple)→ MPut(Tuple, space1..., spacen) is used to model

the behaviour of processes that replicate the tuples to the set of all target spaces.

Rule (2) space.Query(T)→ MQuery(Template, uri[space]) is applicable when

transforming the read operation, where MQuery is a method name, T is a pattern and

uri[space] is the specific space identifier that contains the matching tuple.

Rule (3) space.QueryP(Template)→ MQueryP(Template, uri[space]) is quite

similar to the previous one (rule 2), but the actions of processes that read the tuples that

match the given pattern T are non-blocking. It says that a non-blocking action QueryP

is transformed into the new non-blocking MQueryP action. MQueryP is a method name

which contains arguments: T as a pattern and uri[space] as the specific space identi-

fier that stores the tuple found via pattern matching.

Rule (4) space.GetP(Template)→ MGetP(Template, uri[space]) specifies the

transformation of a non-blocking removal of a tuple from its local space, where GetP is

translated into the new non-blocking removal action MGetP.

Rule (5) uses the keyword "import" for importing a Go package, the command

import(."gospace") → import(."gospace",."repligospaces") has a single

import declaration for gospace package which is transformed into another import with

two importspecs (i.e., gospace and repligospaces packages). As we built our approach

on top of the RepligoSpaces, "repligospaces" package is imported to be used with the

gospace’s package. This transformation rule ensures that a combination of gospace and

repligospaces packages can be used.

Rule (6) is applicable when transforming global declarations for auxiliary data struc-

tures of the created spaces. The built in make function is used to initialize a map. The

space object identified by a unique uniform resource identifier (uri) is encoded as a

string and associates the spaces to their specific URIs, and it maps uri to references

to space object. The transformation process is performed by first preparing the required

AST for the global variables (i.e., uri and sp) as written above, then iterated over

the FuncDecl node that represents types of function declaration for the global vari-

ables. Finally, it appends the prepared sub-ast of the declarations of global variables to

the list of existing one.

Rule (7) is applicable when transforming the NewSpace invocation into auxiliary data

structures (see Section 4.1.1). A space can be created by using the method NewSpace.

Each space is characterized by a logical address identified by a unique uniform resource

Static Analysis and Program Transformation for Replication 71

identifier (URI) encoded as a string and the name of the created space represents its

logical address.

A simple example of program transformation

We now present a small example of source code transformation that replaces statements

in the function declarations or the global variable declaration part of the program (shown

in Listing 4.2). The program transformation is implemented by overriding the visit of

function declarations that generates the source code from the AST-subtree representing

declarations. In short, after building an AST-subtree for the given declarations of vari-

ables (lines 2–16), the body of the function declaration is visited in order to append the

AST-sub tree for the variable to the list of declared variables. This transformation pro-

cess for the source code in Listings 4.3 and 4.4 is shown in the source code fragments

presented in Figure 4.2.

1 var s Space

Listing 4.3: Before transforma-
tion

1 var uri = make(map[space]string)

2 var sp = make(map[string]*Space)

Listing 4.4: After transformation

Static Analysis and Program Transformation for Replication 72

1 // AST for: var uri = make(map[space]string)

2 exmaptype2 := &ast.MapType{Key: identspace , Value: identstring}

3 expr := &ast.CallExpr{Fun: identmake , Args: []ast.Expr{exmaptype2}}

4 dec := &ast.ValueSpec{Names: []*ast.Ident{identurl}, Values: []ast.Expr{expr}}

5 gendecl = &ast.GenDecl{Tok: token.VAR, Specs: []ast.Spec{dec}}

6 // Sub-AST for: var uri = make(map[string]*Space)

7 value2 := &ast.StarExpr{X: identspace1}

8 // map[string]*Space

9 maptype := &ast.MapType{Key: identstring , Value: value2}

10 // make(map[string]*Space)

11 excallexpr := &ast.CallExpr{Fun: identmake , Args: []ast.Expr{maptype}}

12 // Sp = make(map[string]*Space)

13 dec21 := &ast.ValueSpec{Names: []*ast.Ident{identm}, Values: []ast.Expr{

excallexpr}}

14 // var Sp = make(map[string]*Space)

15 gendecl1 = &ast.GenDecl{Tok: token.VAR, Specs: []ast.Spec{dec21}}

16 for _, f := range node.Decls {

17 list1 = append(list, f)

18 _, ok := f.(*ast.FuncDecl)

19 if ok {

20 continue

21 }

22 if !done {

23 list = append(list, gendecl,gendecl1)

24 done = true

25 }

26 }

27 node.Decls = list

Figure 4.2: Example of transformation of global variables in Listing 4.4

In the first step, we describe how to build the AST for the declarations of global variables

presented in Listing 4.4. More specifically, in Figure 4.2, lines 2–5 specify how to build

and transform the AST for the statement (line 1) in Listing 4.4.

In line 2, the MapType node represents a map type. It says that Map of the key space

is associated to its value of type string, and generates as a result "[space]string".

Line 3 presents the node of type CallExpr (represents an expression followed by a

list of arguments) that starts with the function expression make, followed by arguments

having the map type with a key space and a value of string type (line 2), and it gives

as results the expression "make([space]string)".

Line 4 presents the ValueSpec node that represents a variable declaration. It starts with

identifier name uri followed by its values of type CallExpr (line 3) and then generates

as results "uri = make(map[space]string)".

Static Analysis and Program Transformation for Replication 73

Line 5 shows the GenDecl(generic declaration) node that can either represent a con-

stant, a type or variable declaration. It combines statements (lines 3–4) and starts with

the token var followed by Specs which contains variable declarations from line 4, and

then generates as results the declaration "var uri = make (map[space]string)".

Line 7 represents an expression Space of a pointer type and generates as results the

sub-ast with the statement "*Space".

Line 9 shows an expression Space of map type which is associated to the string and

generates as results the sub-ast with the statement "map[string]*Space".

Line 11 combines the results from lines 7–9. It starts with the function expression make,

followed by the function arguments of a map type (line 9), and generates the sub-ast

with the statement "make(map[string]*Space)".

Line 13 specifies a node of type ValueSpec and starts with Names that contains iden-

tifier Sp, followed by all expressions extracted from line 11 and provides as result, the

sub-ast with the statement "Sp = make(map[string]*Space)"

Line 15 presents a node of type GenDecl (generic declaration) and starts with the to-

ken var, followed by a Specs that contains the ValueSpec (representing variable dec-

laration or VarSpec) from line 13 and provides the final declaration of variable like "var

Sp = make(map[string]*Space)"

Lastly, the loop (lines 16–27) arranges and appends all variable declarations (lines 5, 13

and 15) to a list of declarations in order to get the transformed output source code (lines

1–2) presented in Listing 4.4.

4.2 Illustrative Example

Listings 4.5 and 4.6 present the example of goSpace (i.e., non-replicated) and RepligoSpaces

programs snippets which will serve to illustrate how some of the program transforma-

tion rules work. In fact, we transform an initial program to automatically achieve repli-

cation of tuple spaces, by converting all the operations of goSpace into calls to the new

RepligoSpaces routines introduced in Section 3.2 of Chapter 3.

To see how pattern-based syntax tree transformations work, let us now consider a simple

example with the function call at line 21 of Listing 4.5, where process1 performs a Put

Static Analysis and Program Transformation for Replication 74

operation of the tuple ("A",10) into the local tuple space s1. This fragment of code

will trigger transformation because the referenced object (s1) is a tuple space (which

is detected via a symbol table lookup) and the Put method is among the relevant ones

(see Table 3.1). In the syntax tree, the corresponding subtree for the whole expression

is therefore changed into a call to MPut (see Listing 1 of Section 3.4); new child nodes

are appended to the function call node in the syntax tree for the extra parameters as

shown in Listing 4.6. Un-parsing the syntax tree modified in this way will produce the

transformed program.

Note that in our illustrative examples, we used &desc instead of &string because

patterns can contain both the actual and formal fields. In fact, &desc is a template

and &string is its type. In order to simplify the presentation and ensure that our

approach works efficiently, we assume that the number of processes is equal to the one

of spaces. Furthermore, all considered processes run in parallel.

As an example, we show how the procedure described above leads from the goSpace

program of Listing 4.5 to the RepligoSpaces one shown in Listing 4.6.

The graphs that represent the data distribution for the initial program (see Listing 4.5)

is shown in Figure 4.3 and the transformed program (see Listing 4.6) are shown in

Figures 4.4a and 4.4b, respectively. Figure 4.4a represents universal replication and is

included for comparison. In the figures, arrows from left to right indicate write opera-

tions; arrows from right to left indicate read operations.

Let us consider the tuple ("A",10) stored by process1 at line 21. The GetP operation

at line 31 process2 uses as the pattern a string constant and a formal field of integer

type. Therefore the local tuple space s2 is included in the set of spaces for replication

of ("A",10). Note that the analysis is control-flow insensitive because the branch

condition at line 29 is ignored.

Now let us consider process3. The size of the pattern given at line 40 and that of the

tuple ("A",10) under consideration match. The types of the last fields respectively of

the tuple and of the pattern do not match (bool vs integer). Therefore, the tuple is

not replicated to s3.

We now focus on the second tuple (choice,10) stored by process1 at line 23. The

type of the first field of the tuple is known, but its value depends on previous compu-

tations. The pattern used in the input operation in process2 at line 31 does not match

this type. The tuple is thus not replicated at s2 or at s3.

Static Analysis and Program Transformation for Replication 75

Indeed, in the transformed program (Figure 4.4b), the only replicated tuple is ("A",10)

which is replicated to s2 as it can potentially be accessed by process2. Note that

there is no need to store this tuple to s1 as no subsequent matching read operation

within process1 occurs. Note that, in general, this program transformation does not

depend on the specific static analysis technique used to work out the set of target loca-

tions (i.e., shown as targets0 and targets1 in Figure 4.4b). The example of replica-

tion strategies is shown in Figures 4.4a–4.4b. Listing 4.5 presents the source code of an

input program.

1 import (

2 . "github.com/pspaces/gospace"

3 ...

4)

5
6
7
8
9

10 func main() {

11 s1 := NewSpace("tcp://localhost:123/s1")

12 go Process1(&s1)

13 ...

14 }

15
16
17
18 func process1() {

19 var choice bool

20 ...

21 s1.Put("A",10)

22 ...

23 s1.Put(choice ,10)

24 ...

25 }

26
27 func process2() {

28 ...

29 if check {

30 var key int

31 s1.GetP("A",&key)

32 }

33 ...

34 }

35
36 func process3() {

37 ...

38 var choice bool

39 var desc string

40 s1.GetP(&desc,&choice)

41 ...

42 }

43 ...

Listing 4.5: Input program (Non-replicated)

The graph that represents data distribution in the input program (i.e., non-replicated

program) is shown in Figure 4.3.

Static Analysis and Program Transformation for Replication 76

P1

P2

P3

S 1

S 2

S 3

("A",10)

(choice,10)

("A", &int)

(&desc,&bool)

Figure 4.3: No replication

The graphs that represent the data distribution for replication strategies are shown in

Figures 4.4a and 4.4b.

P1

("A",10)

(choice,10)

P2

P3

S 1

S 2

S 3

("A", &int)

(&desc,&bool)

(a) Universal replication

P1

P2

P3

S 1

S 2

S 3

(b) Static analysis of targets

Figure 4.4: Example replication strategies

Static Analysis and Program Transformation for Replication 77

The transformed program for the graph shown in Figure 4.4b is presented in Listing 4.6.

1 import (

2 . "github.com/pspaces/gospace"

3 . "repligospaces"

4 ...

5)

6
7 var uri = make(map[space]string)

8 var sp = make(map[string]*Space)

9
10 func main() {

11 s1 := NewSpace("tcp://localhost:123/s1")

12 sp["tcp://localhost:123/s1"] = &s1

13 uri[s1] = "tcp://localhost:123/s1"

14 go Process1()

15 ...

16 }

17
18 func process1() {

19 var choice bool

20 ...

21 MPut("A",10,targets0)

22 ...

23 MPut(choice ,10,targets1)

24 ...

25 }

26
27 func process2() {

28 ...

29 if check {

30 var key int

31 MGetP("A",&key,uri[s2])

32 }

33 ...

34 }

35
36 func process3() {

37 ...

38 var choice bool

39 var desc string

40 MGetP(&desc,&choice,uri[s3])

41 ...

42 }

43 ...

Listing 4.6: Output program

Chapter 5

Evaluation of Implementation

This chapter presents an evaluation of our prototype implementations. More specifi-

cally, we describe the considered case study and how we conducted the experiments.

We also present the experimental results obtained from conducting the experiments us-

ing the replication approach described in the previous chapters. The considered case

study should help in understanding the effect of replication on distributed systems.

5.1 Case study

We considered a distributed system composed of n computational nodes, each executing

a separate program, and interacting through a decentralized data store containing up to m

elements. Following a similar schema to those used in distributed lookup protocols (e.g.,

Chord [139]), memory entries are represented as key-value pairs, with a partitioned

address space among the nodes. Each node is responsible for storing m/n memory

entries. A node reads from and writes to either its own local memory, or to that of

another node, depending on the source or target memory address. Each node performs

o operations, with p denoting the expected percentage of write operations.

For such a system, one might consider adopting a replication schema in the attempt to

reduce non-local access (at the cost of additional local storage, plus some overhead for

replication to non-local storage). To experiment with this idea, we model the nodes

as separate processes, and the local memory of a node as the local tuple space of the

corresponding process, with tuples (address, value) representing values held at different

memory addresses.

78

Evaluation of Implementation 79

5.2 Experimental Setup

• Computing environment. We conducted the experiments on a standard com-

puter with macOS High Sierra 10.13, Intel Core i5 with 2 cores, running at 2.7

GHz with 8 GB.

• Parameters used in the case study. To evaluate the effect of replication on the

system, we conducted different experiments with respect to the values shown in

Tables 5.1 and 5.2. We denote by n, m, o and p the number of processes for each

system, the overall memory size, the total number of (read and write) operations

per each process and the expected percentage of write operations, respectively.

System Identification Scenario Parameters
n m o p

1 1 4 32 16 {10, 20, ..., 90}
2 4 64 16 {10, 20, ..., 90}

2 3 16 128 16 {10, 20, ..., 90}
4 16 256 16 {10, 20, ..., 90}

3 5 32 256 16 {10, 20, ..., 90}
6 32 512 16 {10, 20, ..., 90}

4 7 64 512 16 {10, 20, ..., 90}
8 64 1024 16 {10, 20, ..., 90}

Table 5.1: Configuration of the system for non-local read or write operations

For each scenario of a system, we have considered 9 different configurations. For each

combination of the chosen values for n, m, and p, we have generated 10 test cases (i.e.,

programs) with random data access patterns. We did run each test case 10 times. This

led to a round of 100 runs for each configuration. We repeated each such round twice:

once on the initial program, and once on the replicated program obtained with our tool,

for an overall number of 1800 runs. We computed and compared the average values of

remote accesses (read/write) of processes. Moreover, we considered all read operations

to be QueryP and write operations to be Put.

The second test we have conducted on our implementation is calculating its latency

(or execution time). More specifically, we focused on computing execution times of

non-local read or write operations of processes. Similar to what we have described

before, we again considered 9 configurations for each system, and all experiments were

parameterized with respect to the values shown in Table 5.2.

Evaluation of Implementation 80

System Identification Scenario Parameters
n m o p

1 1 4 32 16 {10, 20, ..., 90}
2 4 64 16 {10, 20, ..., 90}
3 4 128 16 {10, 20, ..., 90}

2 4 32 256 16 {10, 20, ..., 90}
5 32 512 16 {10, 20, ..., 90}
6 32 1024 16 {10, 20, ..., 90}

3 7 64 1024 16 {10, 20, ..., 90}

Table 5.2: Configuration of the system for computing execution times
of non-local read or write operations

We conducted additional experiments on our prototype implementation where we com-

puted execution times (in seconds) of non-local accesses (read/remove) of processes

with and without replication. We considered all write operations to be Put, read opera-

tions to be QueryP and remove operations to be GetP.

For this set of experiments, we have again considered 9 different configurations. For

each configuration, we generated 10 test cases (or programs) with random data access

patterns, then ran each test case 10 times that led to rounds of 100 runs each. We

repeated each round twice: once on the initial program, and once on the replicated

program obtained with our prototype implementation, for an overall number of 1800

runs for each of the four considered systems.

We fixed the number of processes where n ∈ {4, 16, 32, 64}, but varied overall memory

size where m ∈ {64, 128, 256, 512}. For all these systems, we set the number of op-

erations per process, o = 16 while varying the expected percentage of Put operations,

where p = {10, 20, . . . , 90}.

5.3 Experimental Results

In this section, we investigate the effectiveness of our replication approach by analyzing,

and commenting our experiments, aiming at demonstrating the conditions under which

the use of replicas can provide significant performance advantages.

The experimental results are summarised in Figures 5.1a–5.1h where we compare the

average count of non-local memory accesses with and without replication, for each con-

figuration. Without replication, both read and write access can be non-local, depending

Evaluation of Implementation 81

on the address being accessed. With replication, read operations are always local, be-

cause tuples are always replicated where they can be potentially accessed. However,

this comes at the cost of extra non-local write access to replicate the data. If the system

tends to read from the shared memory more often than writing to it, our approach can

be beneficial. In Figures 5.1a–5.1h, the number of non-local accesses with replication is

maximised when the read and write operations occur with the same probability. Repli-

cation seems to be more beneficial with larger memory size (from 32 to 64, or from 128

to 256, or from 256 to 512, or from 512 to 1024).

The x-axes of Figures 5.1a–5.1h represent the ratio of expected percentage of Put

operations, the y-axes of Figures 5.1a–5.1h represent the average counts of non-local

accesses (read/write) with and without replication, for each configuration.

The experimental results where we computed execution times of non-local accesses

(read or write operations) of processes with and without replication, for all configura-

tions are presented in Figures 5.2a, 5.2b, 5.2c, 5.2d, 5.2e 5.2f, and 5.2g.

We found that memory latency is reduced when the system tends to read from the shared

memory more often than writing to it, and when such a system has a large memory

size, our replication approach seems to be beneficial. By latency, we mean the time

required to accomplish a tuple space operation. In other words, by considering the

small system with small size memory, the execution times for replication tend to be

increased instead of being reduced; whereas by using the large system with large size

memory, the execution times for replication are instead reduced. This is an interesting

feature of our replication approach, and it shows how much we can learn when choosing

a system with a memory of a large size with respect to the number of processes.

It is worth remarking that the fine-grained use of locks in the replicated system as op-

posed to the non-replicated version (where concurrent reads are instrumented through a

global lock) may have facilitated the improved latency observed in the replicated sys-

tem.

Evaluation of Implementation 82

10 20 30 40 50 60 70 80 90

16

32

64

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

(a) n = 4,m = 32, o = 16

10 20 30 40 50 60 70 80 90

16

32

64

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

no replication

replication

(b) n = 4,m = 64, o = 16

10 20 30 40 50 60 70 80 90

16
32
64

128

256

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

(c) n = 16,m = 128, o = 16

10 20 30 40 50 60 70 80 90

16
32
64

128

256

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

no replication

replication

(d) n = 16,m = 256, o = 16

10 20 30 40 50 60 70 80 90
32
64

128

256

512

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

(e) n = 32,m = 256, o = 16

10 20 30 40 50 60 70 80 90
32
64

128

256

512

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

no replication

replication

(f) n = 32,m = 512, o = 16

10 20 30 40 50 60 70 80 90
50

300

600

900

1100

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

(g) n = 64,m = 512, o = 16

10 20 30 40 50 60 70 80 90
50

300

600

900

1100

expected percentage p of Put operations

no
.n

on
-l

oc
al

ac
ce

ss
es

no replication

replication

(h) n = 64,m = 1024, o = 16

Figure 5.1: Non-local read or write operations with and without replication

Evaluation of Implementation 83

1 2 3 4 5 6 7 8 91 · 105

1.05 · 105

1.1 · 105

1.15 · 105

1.2 · 105

1.25 · 105

1.3 · 105

Configurations

Ti
m

e
(m

s)

(a) n = 4,m = 32, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.05 · 105

1.1 · 105

1.15 · 105

1.2 · 105

1.25 · 105

1.3 · 105

Configurations

Ti
m

e
(m

s)

no replication

replication

(b) n = 4,m = 64, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.05 · 105

1.1 · 105

1.15 · 105

1.2 · 105

1.25 · 105

1.3 · 105

Configurations

Ti
m

e
(m

s)

no replication

replication

(c) n = 4,m = 128, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.7 · 105

2.4 · 105

3.1 · 105

Configurations

Ti
m

e
(m

s)

(d) n = 32,m = 256, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.7 · 105

2.4 · 105

3.1 · 105

Configurations

Ti
m

e
(m

s)

no replication

replication

(e) n = 32,m = 512, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.7 · 105

2.4 · 105

3.1 · 105

Configurations

Ti
m

e
(m

s)

(f) n = 32,m = 1024, o = 16

1 2 3 4 5 6 7 8 91 · 105

1.7 · 105

2.4 · 105

3.1 · 105

Configurations

Ti
m

e
(m

s)

no replication

replication

(g) n = 64,m = 1024, o = 16

Figure 5.2: Execution times (ms) of non-local read or write operations
with and without replication

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have provided the background knowledge related to the research pursued in this

thesis, including a brief review of research work related to ours. We have also presented

some concepts of Go, the host programming language of our prototypes framework

implementations.

We have then introduced RepligoSpaces, a replica-aware extension of goSpace, an im-

plementation of Klaim (pSpaces) in Go programming language. The extended coordina-

tion primitives of the new language embed a tracking mechanism for the target spaces of

all store actions to consistently remove the replicated data at need. Moreover, we have

discussed how RepligoSpaces coordination language fits within a fully-mechanisable

procedure for automated replication of programs over tuple space that relies on com-

bining static analysis and program transformation.

We have then described a static analyzer and a prototype replicator that we have devel-

oped to transform the initial model written in goSpace into the equivalent replicated ver-

sion written in RepligoSpaces. A lightweight static analysis pass on the initial program

computes the sets of target spaces for replication, so that the standard tuple manipu-

lation routines can be replaced by equivalent replica-aware versions. The combined

approach preserves strong consistency, thanks to a tracking mechanism embedded in

the tuple manipulation routines and to the fact that the set of target spaces is safely

over-approximated.

84

Conclusions and Future Work 85

Our workflow is simple and easily extensible, given the modularity between the data-

handling layer, the program transformation schema, and the static analysis procedure.

Different static analysis techniques may be plugged in with a relatively limited effort.

To evaluate our prototype framework, we conducted experiments on a scenario of a case

study considering a system consisting of different computational nodes, each executing

a separate program, and interacting through a decentralised data store. For our exper-

iments, we used a standard laptop. The open-source code of our prototype framework

and implementation of a case study are publicly released, free for the community to use.

6.2 Future Work

We consider our contribution to be a first step towards developing an integrated frame-

work to experiment with data replication in distributed systems with tuple spaces. We

aim to provide different analyses and consistency models to choose from; in order to

appreciate the effect of different consistency levels on many interesting classes of more

or less complex distributed systems where data replication is used. This would allow us,

for instance, to evaluate many interesting classes of systems such as models of hardware

cache or complex interaction models, where replication is heavily used and performance

is particularly sensitive to variations in the data distribution.

In the near future, we plan to consider further scenarios where the replication technique

has successfully been applied to other contexts, such as database systems [140, 141],

cloud computing [142–146], and mobile ad-hoc network databases [147], as well as

other consistency models for replicated data beyond strong consistency [60, 148, 149].

Further possible directions of future work also include alternative implementations of

our replica-aware language extension to, for instance, preserve other forms of consis-

tency levels. We also plan further research on the static analysis procedure to improve

the accuracy of the over-approximation in the presence of formal fields, i.e., placehold-

ers in the pattern or variables in the tuple to be stored. We plan to initially focus on

simple and efficient techniques to complement the existing analysis with limited effort.

To name a few, constant propagation [150] can reduce the overall number of formal

fields, or at least restrict the possible values of a given formal field collecting them over

different branching paths, for instance; abstract interpretation [151] can overapproxi-

mate the interval ranges of the integer variables used as formal fields.

Appendix A
Example of program
transformation

We provide an example of a program where the tuple spaces are actually used. We aim

at providing some insights on program transformation from a Get operation (goSpace)

into an MGetP operation (RepligoSpaces).

1 space.GetP(Template)

Listing 6.1: Before transfor-
mation

1 MGetP(Template,uri [space])

Listing 6.2: After transfor-
mation

As shown in Figure 6.1, first, we created a function that tracks where all get opera-

tions (Line 3) block identifications (block id) occur in the given program. Then, we

visited the blocks of all statements (lines 6–59), such as loop statements, for state-

ments, switch statements, select statements, if statements, range statements, labelled

statements. When visiting the blocks of statements, the reflect method is used to exam-

ine types and values of each of the visited block of statements.

For example, lines 61–62 inspect the program via reflect method and examine expres-

sion statements(i.e., ExprStmt) in the program having types of selector expressions

(i.e., SelectorExpr). Line 64 checks the call function where the name is "GetP". We

then transformed the calls from goSpace routines (lines 66–90), i.e., transform the Get

operation into the replica-aware MGetP operation for removing the tuples that match the

given templates (lines 92–101).

86

Conclusions and Future Work 87

1 // Scan the program to populate blockget[] and getid[] maps,

2 // to keep track of where get operations occur in the program.

3 func scanblockget(fset *token.FileSet, node *ast.BlockStmt , blockid string) {

4 count := 0 // block identifier

5

6 // Visit blocks of loop statements

7 for _, n := range node.List {

8 if reflect.TypeOf(n).String() == "*ast.BlockStmt" {

9 scanblockget(fset, n.(*ast.BlockStmt), blockid+":"+strconv.Itoa(count))

10 count += 1

11 }

12 //Visit blocks of for statements

13 if reflect.TypeOf(n).String() == "*ast.ForStmt" {

14 scanblockget(fset, n.(*ast.ForStmt).Body, blockid+":"+strconv.Itoa(count))

15 count += 1

16 }

17 // Visit blocks of switch statements

18 if reflect.TypeOf(n).String() == "*ast.SwitchStmt" {

19 scanblockget(fset, n.(*ast.SwitchStmt).Body, blockid+":"+strconv.Itoa(count))

20 count += 1

21 }

22 // Visit blocks of select statements

23 if reflect.TypeOf(n).String() == "*ast.SelectStmt" {

24 scanblockget(fset, n.(*ast.SelectStmt).Body, blockid+":"+strconv.Itoa(count))

25 count += 1

26 }

27 // Visit blocks of range statements

28 if reflect.TypeOf(n).String() == "*ast.RangeStmt" {

29 scanblockget(fset, n.(*ast.RangeStmt).Body, blockid+":"+strconv.Itoa(count))

30 count += 1

31 }

32 // Visit blocks of if statements

33 if reflect.TypeOf(n).String() == "*ast.IfStmt" {

34 scanblockget(fset, n.(*ast.IfStmt).Body, blockid+":"+strconv.Itoa(count))

35 count += 1

36 t, ok := (n.(*ast.IfStmt).Else).(*ast.BlockStmt)

37 if ok {

38 scanblockget(fset, t, blockid+":"+strconv.Itoa(count))

39 count += 1

40 }

41 }

42 // Visit blocks of switch statements

43 if reflect.TypeOf(n).String() == "*ast.TypeSwitchStmt" {

44 scanblockget(fset, n.(*ast.TypeSwitchStmt).Body, blockid+":"+strconv.Itoa(

count))

45 count += 1

46 r, ok := (n.(*ast.TypeSwitchStmt).Assign).(*ast.BlockStmt)

47 if ok {

48 scanblockget(fset, r, blockid+":"+strconv.Itoa(count))

49 count += 1

50 }

51 }

52 // Visit blocks of labeled statements

53 if reflect.TypeOf(n).String() == "*ast.LabeledStmt" {

Conclusions and Future Work 88

54 l, ok := (n.(*ast.LabeledStmt).Stmt).(*ast.BlockStmt)

55 if ok {

56 scanblockget(fset, l, blockid+":"+strconv.Itoa(count))

57 count += 1

58 }

59 }

60 // Transform calls from GoSpace routines

61 if reflect.TypeOf(n).String() == "*ast.ExprStmt" {

62 fn1, ok := n.(*ast.ExprStmt)

63 if ok && reflect.TypeOf(fn1.X.(*ast.CallExpr).Fun).String() == "*ast.SelectorExpr

" {

64 if fn1.X.(*ast.CallExpr).Fun.(*ast.SelectorExpr).Sel.Name == "GetP" {

65 info("transformer: transforming call GetP block (%s)", blockid)

66 newArgs := make([]ast.Expr, len(fn1.X.(*ast.CallExpr).Args))

67 copy(newArgs, fn1.X.(*ast.CallExpr).Args)

68 var spaceidd string

69 if strings.IndexByte(blockid, ’:’) != -1 {

70 spaceidd = blockid[:strings.IndexByte(blockid, ’:’)]

71 } else {

72 spaceidd = blockid

73 }

74 spaceidd = "s" + spaceidd

75 expr2 := ast.NewIdent(spaceidd)

76 identcreatetuple2 := ast.NewIdent("CreateTuple")

77 identrsp2 := ast.NewIdent("rsp")

78 callexpr02 := &ast.CallExpr{Fun: identcreatetuple2 , Args: newArgs}

79 //newArgs = append(newArgs, indexpr02)

80 newArgs = append(newArgs, expr2)

81

82 // Generate: GetP(Template , uri[spaceid])

83 var expr ast.Expr

84 expr = &ast.CallExpr{Fun:fn1.X.(*ast.CallExpr).Fun.(*ast.SelectorExpr).Sel,

85 Args: []ast.Expr{callexpr02 , identrsp2 , expr2}}

86 if expr != nil {

87 fn1.X = expr

88 }

89 }

90 }

91 // transform get operations into replica-aware operations

92 func transformgetoperations(fset *token.FileSet, node *ast.File) {

93 count := 0

94 for _, node := range node.Decls {

95 fn, ok := node.(*ast.FuncDecl)

96 if !ok {

97 continue

98 }

99 scanbloc2(fset, fn.Body, strconv.Itoa(count), fn.Body)

100 count++

101 }

Figure 6.1: Program transformation for the code shown in Listing 6.2

Additional illustrative examples

We provide an additional illustrative example aimed at showing the impact of the pro-

posed approach and implementation aspects in practical scenarios. In particular, we

show an input program that consists of structured processes performing several write

and read operations. The source code for the input program is shown in Listing 6.3.

In this example, we describe how different operations for an input program are trans-

formed into their replicated operations versions. For example, the coordination primi-

tives shown in lines 72, 80 and 88 (see Listing 6.3) are transformed into their replicated

operations shown in lines 89, 97, and 105 (see Listing 6.4), respectively. In the continua-

tion of program transformation, the spaces (s1,s2,s3,s4) (lines 45–48 of Listing 6.3)

are also transformed into their replicated versions (lines 47–58 of Listing 6.4).

1 package main

2
3 import (

4 "os"

5 "fmt"

6 "sync"

7 "time"

8 "math/rand"

9 . "github.com/pspaces/gospace"

10)

11
12 var debug bool

13 var l sync.Mutex

14
15 var writes_local int

16 var writes_remote int

17 var reads_local int

18 var reads_remote int

19 var writes_replicated int

20 var writestotal int

21 var reads_success int

22 var reads_insuccess int

23 var writes_extra int

24 var wg sync.WaitGroup

25
26 var s1 Space

27 var s2 Space

28 var s3 Space

29 var s4 Space

89

Conclusions and Future Work 90

30
31
32 func main() {

33 debug = false

34 writes_local = 0

35 writes_remote = 0

36 reads_local = 0

37 reads_remote = 0

38 writes_replicated = 0

39 reads_success = 0

40 reads_insuccess = 0

41 rand.Seed(time.Now().UTC().UnixNano())

42
43 wg.Add(4)

44
45 s1 = NewSpace("tcp://localhost:34001/s1")

46 s2 = NewSpace("tcp://localhost:34002/s2")

47 s3 = NewSpace("tcp://localhost:34003/s3")

48 s4 = NewSpace("tcp://localhost:34004/s4")

49
50
51 go p1()

52 go p2()

53 go p3()

54 go p4()

55
56
57 wg.Wait()

58
59 writes_replicated = 0 // these include the normal put too

60
61 fmt.Println(" loc w, rem w, repl w, loc r, rem r, tot w, succ r, fail

r")

62 fmt.Printf (" %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", writes_local , writes_remote ,

writes_replicated , reads_local , reads_remote , writestotal , reads_success , reads_insuccess)

63 }

64
65 func p1() {

66 defer wg.Done()

67 var value int

68
69 delay()

70 l.Lock()

71 value = -1

72 s1.QueryP(8,&value)

73 log("p1 r:%d", value)

74 countreads(value ,1,1)

75 l.Unlock()

76
77 delay()

78 l.Lock()

79 value = -1

80 s1.QueryP(8,&value)

81 log("p1 r:%d", value)

82 countreads(value ,1,1)

83 l.Unlock()

84
85 delay()

86 l.Lock()

87 value = 2

88 s2.Put(15,value)

89 log("p1 w:%d", value)

90 countwrites(value ,1,2)

91 l.Unlock()

92

Conclusions and Future Work 91

93 delay()

94 l.Lock()

95 value = -1

96 s1.QueryP(3,&value)

97 log("p1 r:%d", value)

98 countreads(value ,1,1)

99 l.Unlock()

100
101 delay()

102 l.Lock()

103 value = -1

104 s3.QueryP(21,&value)

105 log("p1 r:%d", value)

106 countreads(value ,1,3)

107 l.Unlock()

108
109 delay()

110 l.Lock()

111 value = -1

112 s2.QueryP(15,&value)

113 log("p1 r:%d", value)

114 countreads(value ,1,2)

115 l.Unlock()

116
117 delay()

118 l.Lock()

119 value = -1

120 s1.QueryP(4,&value)

121 log("p1 r:%d", value)

122 countreads(value ,1,1)

123 l.Unlock()

124
125 delay()

126 l.Lock()

127 value = -1

128 s1.QueryP(6,&value)

129 log("p1 r:%d", value)

130 countreads(value ,1,1)

131 l.Unlock()

132
133 delay()

134 l.Lock()

135 value = -1

136 s4.QueryP(26,&value)

137 log("p1 r:%d", value)

138 countreads(value ,1,4)

139 l.Unlock()

140
141 delay()

142 l.Lock()

143 value = -1

144 s1.QueryP(1,&value)

145 log("p1 r:%d", value)

146 countreads(value ,1,1)

147 l.Unlock()

148
149 delay()

150 l.Lock()

151 value = -1

152 s1.QueryP(2,&value)

153 log("p1 r:%d", value)

154 countreads(value ,1,1)

155 l.Unlock()

156
157 delay()

Conclusions and Future Work 92

158 l.Lock()

159 value = 4

160 s4.Put(30,value)

161 log("p1 w:%d", value)

162 countwrites(value ,1,4)

163 l.Unlock()

164
165 delay()

166 l.Lock()

167 value = 4

168 s4.Put(26,value)

169 log("p1 w:%d", value)

170 countwrites(value ,1,4)

171 l.Unlock()

172
173 delay()

174 l.Lock()

175 value = -1

176 s2.QueryP(9,&value)

177 log("p1 r:%d", value)

178 countreads(value ,1,2)

179 l.Unlock()

180
181 delay()

182 l.Lock()

183 value = -1

184 s1.QueryP(3,&value)

185 log("p1 r:%d", value)

186 countreads(value ,1,1)

187 l.Unlock()

188
189 delay()

190 l.Lock()

191 value = -1

192 s1.QueryP(1,&value)

193 log("p1 r:%d", value)

194 countreads(value ,1,1)

195 l.Unlock()

196 }

197
198 func p2() {

199 defer wg.Done()

200 var value int

201
202 delay()

203 l.Lock()

204 value = -1

205 s4.QueryP(32,&value)

206 log("p2 r:%d", value)

207 countreads(value ,2,4)

208 l.Unlock()

209
210 delay()

211 l.Lock()

212 value = -1

213 s3.QueryP(22,&value)

214 log("p2 r:%d", value)

215 countreads(value ,2,3)

216 l.Unlock()

217
218 delay()

219 l.Lock()

220 value = -1

221 s4.QueryP(25,&value)

222 log("p2 r:%d", value)

Conclusions and Future Work 93

223 countreads(value ,2,4)

224 l.Unlock()

225
226 delay()

227 l.Lock()

228 value = -1

229 s1.QueryP(4,&value)

230 log("p2 r:%d", value)

231 countreads(value ,2,1)

232 l.Unlock()

233
234 delay()

235 l.Lock()

236 value = -1

237 s2.QueryP(10,&value)

238 log("p2 r:%d", value)

239 countreads(value ,2,2)

240 l.Unlock()

241
242 delay()

243 l.Lock()

244 value = -1

245 s2.QueryP(12,&value)

246 log("p2 r:%d", value)

247 countreads(value ,2,2)

248 l.Unlock()

249
250 delay()

251 l.Lock()

252 value = -1

253 s2.QueryP(12,&value)

254 log("p2 r:%d", value)

255 countreads(value ,2,2)

256 l.Unlock()

257
258 delay()

259 l.Lock()

260 value = 4

261 s4.Put(28,value)

262 log("p2 w:%d", value)

263 countwrites(value ,2,4)

264 l.Unlock()

265
266 delay()

267 l.Lock()

268 value = -1

269 s2.QueryP(15,&value)

270 log("p2 r:%d", value)

271 countreads(value ,2,2)

272 l.Unlock()

273
274 delay()

275 l.Lock()

276 value = -1

277 s2.QueryP(10,&value)

278 log("p2 r:%d", value)

279 countreads(value ,2,2)

280 l.Unlock()

281
282 delay()

283 l.Lock()

284 value = -1

285 s1.QueryP(7,&value)

286 log("p2 r:%d", value)

287 countreads(value ,2,1)

Conclusions and Future Work 94

288 l.Unlock()

289
290 delay()

291 l.Lock()

292 value = -1

293 s3.QueryP(21,&value)

294 log("p2 r:%d", value)

295 countreads(value ,2,3)

296 l.Unlock()

297
298 delay()

299 l.Lock()

300 value = -1

301 s1.QueryP(7,&value)

302 log("p2 r:%d", value)

303 countreads(value ,2,1)

304 l.Unlock()

305
306 delay()

307 l.Lock()

308 value = -1

309 s2.QueryP(13,&value)

310 log("p2 r:%d", value)

311 countreads(value ,2,2)

312 l.Unlock()

313
314 delay()

315 l.Lock()

316 value = -1

317 s1.QueryP(8,&value)

318 log("p2 r:%d", value)

319 countreads(value ,2,1)

320 l.Unlock()

321
322 delay()

323 l.Lock()

324 value = -1

325 s4.QueryP(25,&value)

326 log("p2 r:%d", value)

327 countreads(value ,2,4)

328 l.Unlock()

329 }

330
331 func p3() {

332 defer wg.Done()

333 var value int

334
335 delay()

336 l.Lock()

337 value = -1

338 s1.QueryP(3,&value)

339 log("p3 r:%d", value)

340 countreads(value ,3,1)

341 l.Unlock()

342
343 delay()

344 l.Lock()

345 value = -1

346 s3.QueryP(17,&value)

347 log("p3 r:%d", value)

348 countreads(value ,3,3)

349 l.Unlock()

350
351 delay()

352 l.Lock()

Conclusions and Future Work 95

353 value = -1

354 s2.QueryP(10,&value)

355 log("p3 r:%d", value)

356 countreads(value ,3,2)

357 l.Unlock()

358
359 delay()

360 l.Lock()

361 value = -1

362 s1.QueryP(5,&value)

363 log("p3 r:%d", value)

364 countreads(value ,3,1)

365 l.Unlock()

366
367 delay()

368 l.Lock()

369 value = -1

370 s3.QueryP(21,&value)

371 log("p3 r:%d", value)

372 countreads(value ,3,3)

373 l.Unlock()

374
375 delay()

376 l.Lock()

377 value = -1

378 s2.QueryP(13,&value)

379 log("p3 r:%d", value)

380 countreads(value ,3,2)

381 l.Unlock()

382
383 delay()

384 l.Lock()

385 value = -1

386 s3.QueryP(20,&value)

387 log("p3 r:%d", value)

388 countreads(value ,3,3)

389 l.Unlock()

390
391 delay()

392 l.Lock()

393 value = 1

394 s1.Put(2,value)

395 log("p3 w:%d", value)

396 countwrites(value ,3,1)

397 l.Unlock()

398
399 delay()

400 l.Lock()

401 value = -1

402 s3.QueryP(23,&value)

403 log("p3 r:%d", value)

404 countreads(value ,3,3)

405 l.Unlock()

406
407 delay()

408 l.Lock()

409 value = -1

410 s4.QueryP(31,&value)

411 log("p3 r:%d", value)

412 countreads(value ,3,4)

413 l.Unlock()

414
415 delay()

416 l.Lock()

417 value = -1

Conclusions and Future Work 96

418 s2.QueryP(12,&value)

419 log("p3 r:%d", value)

420 countreads(value ,3,2)

421 l.Unlock()

422
423 delay()

424 l.Lock()

425 value = -1

426 s4.QueryP(28,&value)

427 log("p3 r:%d", value)

428 countreads(value ,3,4)

429 l.Unlock()

430
431 delay()

432 l.Lock()

433 value = -1

434 s1.QueryP(1,&value)

435 log("p3 r:%d", value)

436 countreads(value ,3,1)

437 l.Unlock()

438
439 delay()

440 l.Lock()

441 value = -1

442 s2.QueryP(12,&value)

443 log("p3 r:%d", value)

444 countreads(value ,3,2)

445 l.Unlock()

446
447 delay()

448 l.Lock()

449 value = -1

450 s4.QueryP(30,&value)

451 log("p3 r:%d", value)

452 countreads(value ,3,4)

453 l.Unlock()

454
455 delay()

456 l.Lock()

457 value = 4

458 s4.Put(27,value)

459 log("p3 w:%d", value)

460 countwrites(value ,3,4)

461 l.Unlock()

462 }

463
464 func p4() {

465 defer wg.Done()

466 var value int

467
468 delay()

469 l.Lock()

470 value = -1

471 s4.QueryP(28,&value)

472 log("p4 r:%d", value)

473 countreads(value ,4,4)

474 l.Unlock()

475
476 delay()

477 l.Lock()

478 value = -1

479 s4.QueryP(26,&value)

480 log("p4 r:%d", value)

481 countreads(value ,4,4)

482 l.Unlock()

Conclusions and Future Work 97

483
484 delay()

485 l.Lock()

486 value = -1

487 s1.QueryP(5,&value)

488 log("p4 r:%d", value)

489 countreads(value ,4,1)

490 l.Unlock()

491
492 delay()

493 l.Lock()

494 value = -1

495 s2.QueryP(12,&value)

496 log("p4 r:%d", value)

497 countreads(value ,4,2)

498 l.Unlock()

499
500 delay()

501 l.Lock()

502 value = -1

503 s2.QueryP(15,&value)

504 log("p4 r:%d", value)

505 countreads(value ,4,2)

506 l.Unlock()

507
508 delay()

509 l.Lock()

510 value = 3

511 s3.Put(24,value)

512 log("p4 w:%d", value)

513 countwrites(value ,4,3)

514 l.Unlock()

515
516 delay()

517 l.Lock()

518 value = -1

519 s2.QueryP(11,&value)

520 log("p4 r:%d", value)

521 countreads(value ,4,2)

522 l.Unlock()

523
524 delay()

525 l.Lock()

526 value = -1

527 s4.QueryP(29,&value)

528 log("p4 r:%d", value)

529 countreads(value ,4,4)

530 l.Unlock()

531
532 delay()

533 l.Lock()

534 value = -1

535 s3.QueryP(18,&value)

536 log("p4 r:%d", value)

537 countreads(value ,4,3)

538 l.Unlock()

539
540 delay()

541 l.Lock()

542 value = -1

543 s4.QueryP(27,&value)

544 log("p4 r:%d", value)

545 countreads(value ,4,4)

546 l.Unlock()

547

Conclusions and Future Work 98

548 delay()

549 l.Lock()

550 value = -1

551 s2.QueryP(13,&value)

552 log("p4 r:%d", value)

553 countreads(value ,4,2)

554 l.Unlock()

555
556 delay()

557 l.Lock()

558 value = -1

559 s1.QueryP(1,&value)

560 log("p4 r:%d", value)

561 countreads(value ,4,1)

562 l.Unlock()

563
564 delay()

565 l.Lock()

566 value = -1

567 s1.QueryP(2,&value)

568 log("p4 r:%d", value)

569 countreads(value ,4,1)

570 l.Unlock()

571
572 delay()

573 l.Lock()

574 value = -1

575 s1.QueryP(8,&value)

576 log("p4 r:%d", value)

577 countreads(value ,4,1)

578 l.Unlock()

579
580 delay()

581 l.Lock()

582 value = -1

583 s1.QueryP(2,&value)

584 log("p4 r:%d", value)

585 countreads(value ,4,1)

586 l.Unlock()

587
588 delay()

589 l.Lock()

590 value = -1

591 s1.QueryP(4,&value)

592 log("p4 r:%d", value)

593 countreads(value ,4,1)

594 l.Unlock()

595 }

596
597
598 func log(format string, a ...interface{}) {

599 if debug {

600 fmt.Fprintf(os.Stdout, format+"\n", a ...)

601 }

602 }

603
604 func delay() {

605 time.Sleep(time.Duration(rand.Int63n(75))*time.Millisecond)

606 }

607
608 func countreads(value int, localspace int, targetspace int) {

609 if value == -1 {

610 reads_insuccess+=1

611 } else {

612 reads_success+=1

Conclusions and Future Work 99

613 }

614
615 if localspace == targetspace {

616 reads_local+=1

617 } else {

618 reads_remote+=1

619 }

620 }

621
622 func countwrites(value int, localspace int, targetspace int) {

623 writestotal+=1

624
625 if localspace == targetspace {

626 writes_local+=1

627 } else {

628 writes_remote+=1

629 }

630 }

Listing 6.3: Example of input program (Non-replicated)

A replicated program for the input program given in Listing 6.3 is shown in Listing 6.4.

1 package main

2 import (

3 "os"

4 "fmt"

5 "sync"

6 "time"

7 "math/rand"

8 . "github.com/pspaces/gospace"

9 . "github.com/repligospaces"

10)

11
12 var uri = make(map[Space]string)

13 var Sp = make(map[string]*Space)

14 var rsp Replispace = Replispace{Sp: Sp}

15
16 var debug bool

17 var l sync.Mutex

18 var writes_local int

19 var writes_remote int

20 var reads_local int

21 var reads_remote int

22 var writes_replicated int

23 var writestotal int

24 var reads_success int

25 var reads_insuccess int

26 var writes_extra int

27 var wg sync.WaitGroup

28
29 var s1 Space

30 var s2 Space

31 var s3 Space

32 var s4 Space

33
34 func main() {

35 debug = false

36 writes_local = 0

37 writes_remote = 0

38 reads_local = 0

39 reads_remote = 0

40 writes_replicated = Getwcount()-writes_local

Conclusions and Future Work 100

41 reads_success = 0

42 reads_insuccess = 0

43 rand.Seed(time.Now().UTC().UnixNano())

44
45 wg.Add(4)

46
47 s1 = NewSpace("tcp://localhost:34001/s1")

48 Sp["tcp://localhost:34001/s1"] = &s1

49 uri[s1] = "tcp://localhost:34001/s1"

50 s2 = NewSpace("tcp://localhost:34002/s2")

51 Sp["tcp://localhost:34002/s2"] = &s2

52 uri[s2] = "tcp://localhost:34002/s2"

53 s3 = NewSpace("tcp://localhost:34003/s3")

54 Sp["tcp://localhost:34003/s3"] = &s3

55 uri[s3] = "tcp://localhost:34003/s3"

56 s4 = NewSpace("tcp://localhost:34004/s4")

57 Sp["tcp://localhost:34004/s4"] = &s4

58 uri[s4] = "tcp://localhost:34004/s4"

59
60 go p1()

61 go p2()

62 go p3()

63 go p4()

64
65 wg.Wait()

66
67 writes_replicated = Getwcount()-writes_local // these include the normal put too

68
69 fmt.Println(" loc w, rem w, repl w, loc r, rem r, tot w, succ r, fail

r")

70 fmt.Printf(" %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", writes_local , writes_remote ,

writes_replicated , reads_local , reads_remote , writestotal , reads_success , reads_insuccess)

71 }

72
73 func p1() {

74 targets2 := make([]string, 2)

75 targets2[1] = uri[s4]

76 targets2[0] = uri[s1]

77 targets1 := make([]string, 1)

78 targets1[0] = uri[s3]

79 targets0 := make([]string, 3)

80 targets0[2] = uri[s4]

81 targets0[1] = uri[s2]

82 targets0[0] = uri[s1]

83
84 defer wg.Done()

85 var value int

86 delay()

87 l.Lock()

88 value = -1

89 QueryP(CreateTuple(8, &value), rsp, s1)

90 log("p1 r:%d", value)

91 countreads(value, 1, 1)

92 l.Unlock()

93
94 delay()

95 l.Lock()

96 value = -1

97 QueryP(CreateTuple(8, &value), rsp, s1)

98 log("p1 r:%d", value)

99 countreads(value, 1, 1)

100 l.Unlock()

101
102 delay()

103 l.Lock()

Conclusions and Future Work 101

104 value = 2

105 Put(CreateTuple(15, value), rsp, targets0)

106 log("p1 w:%d", value)

107 countwrites(value, 1, 2)

108 l.Unlock()

109
110 delay()

111 l.Lock()

112 value = -1

113 QueryP(CreateTuple(3, &value), rsp, s1)

114 log("p1 r:%d", value)

115 countreads(value, 1, 1)

116 l.Unlock()

117
118 delay()

119 l.Lock()

120 value = -1

121 QueryP(CreateTuple(21, &value), rsp, s1)

122 log("p1 r:%d", value)

123 countreads(value, 1, 3)

124 l.Unlock()

125
126 delay()

127 l.Lock()

128 value = -1

129 QueryP(CreateTuple(15, &value), rsp, s1)

130 log("p1 r:%d", value)

131 countreads(value, 1, 2)

132 l.Unlock()

133
134 delay()

135 l.Lock()

136 value = -1

137 QueryP(CreateTuple(4, &value), rsp, s1)

138 log("p1 r:%d", value)

139 countreads(value, 1, 1)

140 l.Unlock()

141
142 delay()

143 l.Lock()

144 value = -1

145 QueryP(CreateTuple(6, &value), rsp, s1)

146 log("p1 r:%d", value)

147 countreads(value, 1, 1)

148 l.Unlock()

149
150 delay()

151 l.Lock()

152 value = -1

153 QueryP(CreateTuple(26, &value), rsp, s1)

154 log("p1 r:%d", value)

155 countreads(value, 1, 4)

156 l.Unlock()

157
158 delay()

159 l.Lock()

160 value = -1

161 QueryP(CreateTuple(1, &value), rsp, s1)

162 log("p1 r:%d", value)

163 countreads(value, 1, 1)

164 l.Unlock()

165
166 delay()

167 l.Lock()

168 value = -1

Conclusions and Future Work 102

169 QueryP(CreateTuple(2, &value), rsp, s1)

170 log("p1 r:%d", value)

171 countreads(value, 1, 1)

172 l.Unlock()

173
174 delay()

175 l.Lock()

176 value = 4

177 Put(CreateTuple(30, value), rsp, targets1)

178 log("p1 w:%d", value)

179 countwrites(value, 1, 4)

180 l.Unlock()

181
182 delay()

183 l.Lock()

184 value = 4

185 Put(CreateTuple(26, value), rsp, targets2)

186 log("p1 w:%d", value)

187 countwrites(value, 1, 4)

188 l.Unlock()

189
190 delay()

191 l.Lock()

192 value = -1

193 QueryP(CreateTuple(9, &value), rsp, s1)

194 log("p1 r:%d", value)

195 countreads(value, 1, 2)

196 l.Unlock()

197
198 delay()

199 l.Lock()

200 value = -1

201 QueryP(CreateTuple(3, &value), rsp, s1)

202 log("p1 r:%d", value)

203 countreads(value, 1, 1)

204 l.Unlock()

205
206 delay()

207 l.Lock()

208 value = -1

209 QueryP(CreateTuple(1, &value), rsp, s1)

210 log("p1 r:%d", value)

211 countreads(value, 1, 1)

212 l.Unlock()

213 }

214
215 func p2() {

216 targets0 := make([]string, 2)

217 targets0[1] = uri[s4]

218 targets0[0] = uri[s3]

219
220 defer wg.Done()

221 var value int

222
223 delay()

224 l.Lock()

225 value = -1

226 QueryP(CreateTuple(32, &value), rsp, s2)

227 log("p2 r:%d", value)

228 countreads(value, 2, 4)

229 l.Unlock()

230
231 delay()

232 l.Lock()

233 value = -1

Conclusions and Future Work 103

234 QueryP(CreateTuple(22, &value), rsp, s2)

235 log("p2 r:%d", value)

236 countreads(value, 2, 3)

237 l.Unlock()

238
239 delay()

240 l.Lock()

241 value = -1

242 QueryP(CreateTuple(25, &value), rsp, s2)

243 log("p2 r:%d", value)

244 countreads(value, 2, 4)

245 l.Unlock()

246
247 delay()

248 l.Lock()

249 value = -1

250 QueryP(CreateTuple(4, &value), rsp, s2)

251 log("p2 r:%d", value)

252 countreads(value, 2, 1)

253 l.Unlock()

254
255 delay()

256 l.Lock()

257 value = -1

258 QueryP(CreateTuple(10, &value), rsp, s2)

259 log("p2 r:%d", value)

260 countreads(value, 2, 2)

261 l.Unlock()

262
263 delay()

264 l.Lock()

265 value = -1

266 QueryP(CreateTuple(12, &value), rsp, s2)

267 log("p2 r:%d", value)

268 countreads(value, 2, 2)

269 l.Unlock()

270
271 delay()

272 l.Lock()

273 value = -1

274 QueryP(CreateTuple(12, &value), rsp, s2)

275 log("p2 r:%d", value)

276 countreads(value, 2, 2)

277 l.Unlock()

278
279 delay()

280 l.Lock()

281 value = 4

282 Put(CreateTuple(28, value), rsp, targets0)

283 log("p2 w:%d", value)

284 countwrites(value, 2, 4)

285 l.Unlock()

286
287 delay()

288 l.Lock()

289 value = -1

290 QueryP(CreateTuple(15, &value), rsp, s2)

291 log("p2 r:%d", value)

292 countreads(value, 2, 2)

293 l.Unlock()

294
295 delay()

296 l.Lock()

297 value = -1

298 QueryP(CreateTuple(10, &value), rsp, s2)

Conclusions and Future Work 104

299 log("p2 r:%d", value)

300 countreads(value, 2, 2)

301 l.Unlock()

302
303 delay()

304 l.Lock()

305 value = -1

306 QueryP(CreateTuple(7, &value), rsp, s2)

307 log("p2 r:%d", value)

308 countreads(value, 2, 1)

309 l.Unlock()

310
311 delay()

312 l.Lock()

313 value = -1

314 QueryP(CreateTuple(21, &value), rsp, s2)

315 log("p2 r:%d", value)

316 countreads(value, 2, 3)

317 l.Unlock()

318
319 delay()

320 l.Lock()

321 value = -1

322 QueryP(CreateTuple(7, &value), rsp, s2)

323 log("p2 r:%d", value)

324 countreads(value, 2, 1)

325 l.Unlock()

326
327 delay()

328 l.Lock()

329 value = -1

330 QueryP(CreateTuple(13, &value), rsp, s2)

331 log("p2 r:%d", value)

332 countreads(value, 2, 2)

333 l.Unlock()

334
335 delay()

336 l.Lock()

337 value = -1

338 QueryP(CreateTuple(8, &value), rsp, s2)

339 log("p2 r:%d", value)

340 countreads(value, 2, 1)

341 l.Unlock()

342
343 delay()

344 l.Lock()

345 value = -1

346 QueryP(CreateTuple(25, &value), rsp, s2)

347 log("p2 r:%d", value)

348 countreads(value, 2, 4)

349 l.Unlock()

350 }

351
352 func p3() {

353 targets1 := make([]string, 1)

354 targets1[0] = uri[s4]

355 targets0 := make([]string, 3)

356 targets0[2] = uri[s4]

357 targets0[1] = uri[s4]

358 targets0[0] = uri[s1]

359
360 defer wg.Done()

361 var value int

362
363 delay()

Conclusions and Future Work 105

364 l.Lock()

365 value = -1

366 QueryP(CreateTuple(3, &value), rsp, s3)

367 log("p3 r:%d", value)

368 countreads(value, 3, 1)

369 l.Unlock()

370
371 delay()

372 l.Lock()

373 value = -1

374 QueryP(CreateTuple(17, &value), rsp, s3)

375 log("p3 r:%d", value)

376 countreads(value, 3, 3)

377 l.Unlock()

378
379 delay()

380 l.Lock()

381 value = -1

382 QueryP(CreateTuple(10, &value), rsp, s3)

383 log("p3 r:%d", value)

384 countreads(value, 3, 2)

385 l.Unlock()

386
387 delay()

388 l.Lock()

389 value = -1

390 QueryP(CreateTuple(5, &value), rsp, s3)

391 log("p3 r:%d", value)

392 countreads(value, 3, 1)

393 l.Unlock()

394
395 delay()

396 l.Lock()

397 value = -1

398 QueryP(CreateTuple(21, &value), rsp, s3)

399 log("p3 r:%d", value)

400 countreads(value, 3, 3)

401 l.Unlock()

402
403 delay()

404 l.Lock()

405 value = -1

406 QueryP(CreateTuple(13, &value), rsp, s3)

407 log("p3 r:%d", value)

408 countreads(value, 3, 2)

409 l.Unlock()

410
411 delay()

412 l.Lock()

413 value = -1

414 QueryP(CreateTuple(20, &value), rsp, s3)

415 log("p3 r:%d", value)

416 countreads(value, 3, 3)

417 l.Unlock()

418
419 delay()

420 l.Lock()

421 value = 1

422 Put(CreateTuple(2, value), rsp, targets0)

423 log("p3 w:%d", value)

424 countwrites(value, 3, 1)

425 l.Unlock()

426
427 delay()

428 l.Lock()

Conclusions and Future Work 106

429 value = -1

430 QueryP(CreateTuple(23, &value), rsp, s3)

431 log("p3 r:%d", value)

432 countreads(value, 3, 3)

433 l.Unlock()

434
435 delay()

436 l.Lock()

437 value = -1

438 QueryP(CreateTuple(31, &value), rsp, s3)

439 log("p3 r:%d", value)

440 countreads(value, 3, 4)

441 l.Unlock()

442
443 delay()

444 l.Lock()

445 value = -1

446 QueryP(CreateTuple(12, &value), rsp, s3)

447 log("p3 r:%d", value)

448 countreads(value, 3, 2)

449 l.Unlock()

450
451 delay()

452 l.Lock()

453 value = -1

454 QueryP(CreateTuple(28, &value), rsp, s3)

455 log("p3 r:%d", value)

456 countreads(value, 3, 4)

457 l.Unlock()

458
459 delay()

460 l.Lock()

461 value = -1

462 QueryP(CreateTuple(1, &value), rsp, s3)

463 log("p3 r:%d", value)

464 countreads(value, 3, 1)

465 l.Unlock()

466
467 delay()

468 l.Lock()

469 value = -1

470 QueryP(CreateTuple(12, &value), rsp, s3)

471 log("p3 r:%d", value)

472 countreads(value, 3, 2)

473 l.Unlock()

474
475 delay()

476 l.Lock()

477 value = -1

478 QueryP(CreateTuple(30, &value), rsp, s3)

479 log("p3 r:%d", value)

480 countreads(value, 3, 4)

481 l.Unlock()

482
483 delay()

484 l.Lock()

485 value = 4

486 Put(CreateTuple(27, value), rsp, targets1)

487 log("p3 w:%d", value)

488 countwrites(value, 3, 4)

489 l.Unlock()

490 }

491
492 func p4() {

493 targets0 := make([]string, 0)

Conclusions and Future Work 107

494 defer wg.Done()

495 var value int

496
497 delay()

498 l.Lock()

499 value = -1

500 QueryP(CreateTuple(28, &value), rsp, s4)

501 log("p4 r:%d", value)

502 countreads(value, 4, 4)

503 l.Unlock()

504
505 delay()

506 l.Lock()

507 value = -1

508 QueryP(CreateTuple(26, &value), rsp, s4)

509 log("p4 r:%d", value)

510 countreads(value, 4, 4)

511 l.Unlock()

512
513 delay()

514 l.Lock()

515 value = -1

516 QueryP(CreateTuple(5, &value), rsp, s4)

517 log("p4 r:%d", value)

518 countreads(value, 4, 1)

519 l.Unlock()

520
521 delay()

522 l.Lock()

523 value = -1

524 QueryP(CreateTuple(12, &value), rsp, s4)

525 log("p4 r:%d", value)

526 countreads(value, 4, 2)

527 l.Unlock()

528
529 delay()

530 l.Lock()

531 value = -1

532 QueryP(CreateTuple(15, &value), rsp, s4)

533 log("p4 r:%d", value)

534 countreads(value, 4, 2)

535 l.Unlock()

536
537 delay()

538 l.Lock()

539 value = 3

540 Put(CreateTuple(24, value), rsp, targets0)

541 log("p4 w:%d", value)

542 countwrites(value, 4, 3)

543 l.Unlock()

544
545 delay()

546 l.Lock()

547 value = -1

548 QueryP(CreateTuple(11, &value), rsp, s4)

549 log("p4 r:%d", value)

550 countreads(value, 4, 2)

551 l.Unlock()

552
553 delay()

554 l.Lock()

555 value = -1

556 QueryP(CreateTuple(29, &value), rsp, s4)

557 log("p4 r:%d", value)

558 countreads(value, 4, 4)

Conclusions and Future Work 108

559 l.Unlock()

560
561 delay()

562 l.Lock()

563 value = -1

564 QueryP(CreateTuple(18, &value), rsp, s4)

565 log("p4 r:%d", value)

566 countreads(value, 4, 3)

567 l.Unlock()

568
569 delay()

570 l.Lock()

571 value = -1

572 QueryP(CreateTuple(27, &value), rsp, s4)

573 log("p4 r:%d", value)

574 countreads(value, 4, 4)

575 l.Unlock()

576
577 delay()

578 l.Lock()

579 value = -1

580 QueryP(CreateTuple(13, &value), rsp, s4)

581 log("p4 r:%d", value)

582 countreads(value, 4, 2)

583 l.Unlock()

584
585 delay()

586 l.Lock()

587 value = -1

588 QueryP(CreateTuple(1, &value), rsp, s4)

589 log("p4 r:%d", value)

590 countreads(value, 4, 1)

591 l.Unlock()

592
593 delay()

594 l.Lock()

595 value = -1

596 QueryP(CreateTuple(2, &value), rsp, s4)

597 log("p4 r:%d", value)

598 countreads(value, 4, 1)

599 l.Unlock()

600
601 delay()

602 l.Lock()

603 value = -1

604 QueryP(CreateTuple(8, &value), rsp, s4)

605 log("p4 r:%d", value)

606 countreads(value, 4, 1)

607 l.Unlock()

608
609 delay()

610 l.Lock()

611 value = -1

612 QueryP(CreateTuple(2, &value), rsp, s4)

613 log("p4 r:%d", value)

614 countreads(value, 4, 1)

615 l.Unlock()

616
617 delay()

618 l.Lock()

619 value = -1

620 QueryP(CreateTuple(4, &value), rsp, s4)

621 log("p4 r:%d", value)

622 countreads(value, 4, 1)

623 l.Unlock()

Conclusions and Future Work 109

624 }

625
626 func log(format string, a ...interface{}) {

627 if debug {

628 fmt.Fprintf(os.Stdout, format+"\n", a...)

629 }

630 }

631
632 func delay() {

633 time.Sleep(time.Duration(rand.Int63n(75)) * time.Millisecond)

634 }

635
636 func countreads(value int, localspace int, targetspace int) {

637 if value == -1 {

638 reads_insuccess += 1

639 } else {

640 reads_success += 1

641 }

642
643 if localspace == targetspace {

644 reads_local += 1

645 } else {

646 reads_remote += 1

647 }

648 }

649
650 func countwrites(value int, localspace int, targetspace int) {

651 writestotal += 1

652
653 if localspace == targetspace {

654 writes_local += 1

655 } else {

656 writes_remote += 1

657 }

658 }

Listing 6.4: Example of replicated program for the code shown in Listing 6.3

Bibliography

[1] Aline Uwimbabazi, Omar Inverso, and Rocco De Nicola. Automated replica-

tion of tuple spaces via static analysis. In Hossein Hojjat and Mieke Massink,

editors, Fundamentals of Software Engineering - 9th International Conference,

FSEN 2021, Virtual Event, May 19-21, 2021, Revised Selected Papers, vol-

ume 12818 of Lecture Notes in Computer Science, pages 18–34. Springer,

2021. doi: 10.1007/978-3-030-89247-0_2. URL https://doi.org/10.

1007/978-3-030-89247-0_2.

[2] Fernando Pedone, Matthias Wiesmann, André Schiper, Bettina Kemme, and

Gustavo Alonso. Understanding replication in databases and distributed sys-

tems. In Proceedings of the 20th International Conference on Distributed

Computing Systems, Taipei, Taiwan, April 10-13, 2000, pages 464–474. IEEE

Computer Society, 2000. doi: 10.1109/ICDCS.2000.840959. URL https:

//doi.org/10.1109/ICDCS.2000.840959.

[3] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A kernel

language for agents interaction and mobility. IEEE Trans. Software Eng., 24(5):

315–330, 1998. doi: 10.1109/32.685256. URL https://doi.org/10.1109/

32.685256.

[4] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. On the expressive power

of Klaim-based calculi. Theor. Comput. Sci., 356(3):387–421, 2006. doi: 10.

1016/j.tcs.2006.02.007. URL https://doi.org/10.1016/j.tcs.2006.02.

007.

[5] Marina Andrić. Programming Abstractions for Data Sharing in Distributed

Spaces. PhD thesis, IMT School of advanced Studies, Italy, 2017.

110

https://doi.org/10.1007/978-3-030-89247-0_2
https://doi.org/10.1007/978-3-030-89247-0_2
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1109/32.685256
https://doi.org/10.1109/32.685256
https://doi.org/10.1016/j.tcs.2006.02.007
https://doi.org/10.1016/j.tcs.2006.02.007

Bibliography 111

[6] Marina Andrić, Rocco De Nicola, and Alberto Lluch-Lafuente. Replica-based

high-performance tuple space computing. In Coordination Models and Lan-

guages - 17th IFIP WG 6.1 International Conference, COORDINATION 2015,

pages 3–18, 2015.

[7] The pSpaces Authors. Programming with Spaces. URL https://github.com/

pSpaces/.

[8] David Gelernter. Generative Communication in Linda. ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985. doi: 10.1145/2363.2433. URL https://doi.

org/10.1145/2363.2433.

[9] Nicholas Carriero and David Gelernter. Linda in Context. Commun. ACM, 32

(4):444–458, 1989. doi: 10.1145/63334.63337. URL https://doi.org/10.

1145/63334.63337.

[10] David Gelernter. Multiple Tuple Spaces in Linda. In Eddy Odijk, Martin Rem,

and Jean-Claude Syre, editors, PARLE ’89: Parallel Architectures and Lan-

guages Europe, Volume II: Parallel Languages, Eindhoven, The Netherlands,

June 12-16, 1989, Proceedings, volume 366 of Lecture Notes in Computer Sci-

ence, pages 20–27. Springer, 1989. doi: 10.1007/3-540-51285-3_30. URL

https://doi.org/10.1007/3-540-51285-3_30.

[11] David Gelernter and Nicholas Carriero. Coordination languages and their sig-

nificance. Commun. ACM, 35(2):96–107, 1992. doi: 10.1145/129630.376083.

URL https://doi.org/10.1145/129630.376083.

[12] Peter Wyckoff, Stephen W. McLaughry, Tobin J. Lehman, and Daniel Alexander

Ford. T spaces. IBM Syst. J., 37(3):454–474, 1998. doi: 10.1147/sj.373.0454.

URL https://doi.org/10.1147/sj.373.0454.

[13] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles, Pat-

terns, and Practice. Addison-Wesley Longman Ltd., GBR, 1st edition, 1999.

ISBN 0201309556.

[14] Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali, Davide Rossi, and Andreas

Knoche. Coordinating Multiagent Applications on the WWW: A reference ar-

chitecture. IEEE Trans. Software Eng., 24(5):362–375, 1998. doi: 10.1109/32.

685259. URL https://doi.org/10.1109/32.685259.

https://github.com/pSpaces/
https://github.com/pSpaces/
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/63334.63337
https://doi.org/10.1145/63334.63337
https://doi.org/10.1007/3-540-51285-3_30
https://doi.org/10.1145/129630.376083
https://doi.org/10.1147/sj.373.0454
https://doi.org/10.1109/32.685259

Bibliography 112

[15] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda

Meets Mobility. In Barry W. Boehm, David Garlan, and Jeff Kramer, edi-

tors, Proceedings of the 1999 International Conference on Software Engineering,

ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, pages 368–377. ACM, 1999.

doi: 10.1145/302405.302659. URL https://doi.org/10.1145/302405.

302659.

[16] Amy L. Murphy and Gian Pietro Picco. Using Lime to support replication for

availability in mobile ad hoc networks. In Paolo Ciancarini and Herbert Wiklicky,

editors, Coordination Models and Languages, 8th International Conference, CO-

ORDINATION 2006, Bologna, Italy, June 14-16, 2006, Proceedings, volume

4038 of Lecture Notes in Computer Science, pages 194–211. Springer, 2006. doi:

10.1007/11767954_13. URL https://doi.org/10.1007/11767954_13.

[17] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Auction-based agent

negotiation via programmable tuple spaces. In Matthias Klusch and Larry Ker-

schberg, editors, Cooperative Information Agents IV, The Future of Information

Agents in Cyberspace, 4th International Workshop, CIA 2000, Boston, MA, USA,

July 7-9, 2000, Proceedings, volume 1860 of Lecture Notes in Computer Sci-

ence, pages 83–94. Springer, 2000. doi: 10.1007/978-3-540-45012-2_9. URL

https://doi.org/10.1007/978-3-540-45012-2_9.

[18] Andrea Omicini and Franco Zambonelli. Coordination for internet ap-

plication development. Auton. Agents Multi Agent Syst., 2(3):251–269,

1999. doi: 10.1023/A:1010060322135. URL https://doi.org/10.1023/A:

1010060322135.

[19] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile com-

puting applications: The TOTA approach. ACM Trans. Softw. Eng. Methodol.,

18(4):15:1–15:56, 2009. doi: 10.1145/1538942.1538945. URL https://doi.

org/10.1145/1538942.1538945.

[20] Lorenzo Bettini, Emanuela Merelli, and Francesco Tiezzi. X-Klaim is Back.

In Michele Boreale, Flavio Corradini, Michele Loreti, and Rosario Pugliese,

editors, Models, Languages, and Tools for Concurrent and Distributed Pro-

gramming - Essays Dedicated to Rocco De Nicola on the Occasion of His

65th Birthday, volume 11665 of Lecture Notes in Computer Science, pages

115–135. Springer, 2019. doi: 10.1007/978-3-030-21485-2_8. URL https:

//doi.org/10.1007/978-3-030-21485-2_8.

https://doi.org/10.1145/302405.302659
https://doi.org/10.1145/302405.302659
https://doi.org/10.1007/11767954_13
https://doi.org/10.1007/978-3-540-45012-2_9
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1007/978-3-030-21485-2_8
https://doi.org/10.1007/978-3-030-21485-2_8

Bibliography 113

[21] Vitaly Buravlev, Rocco De Nicola, and Claudio Antares Mezzina. Tuple spaces

implementations and their efficiency. In Alberto Lluch-Lafuente and José

Proença, editors, Coordination Models and Languages - 18th IFIP WG 6.1 In-

ternational Conference, COORDINATION 2016, Held as Part of the 11th In-

ternational Federated Conference on Distributed Computing Techniques, Dis-

CoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, vol-

ume 9686 of Lecture Notes in Computer Science, pages 51–66. Springer,

2016. doi: 10.1007/978-3-319-39519-7_4. URL https://doi.org/10.

1007/978-3-319-39519-7_4.

[22] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spa-

tial coordination of pervasive services through chemical-inspired tuple spaces.

ACM Trans. Auton. Adapt. Syst., 6(2):14:1–14:24, 2011. doi: 10.1145/1968513.

1968517. URL https://doi.org/10.1145/1968513.1968517.

[23] Rob Pike. Go at google. In Gary T. Leavens, editor, Conference on Systems,

Programming, and Applications: Software for Humanity, SPLASH ’12, Tucson,

AZ, USA, October 21-25, 2012, pages 5–6. ACM, 2012. doi: 10.1145/2384716.

2384720. URL https://doi.org/10.1145/2384716.2384720.

[24] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980. ISBN 3-540-10235-3. doi: 10.

1007/3-540-10235-3. URL https://doi.org/10.1007/3-540-10235-3.

[25] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

ISBN 0-13-153271-5.

[26] Linas Kaminskas and Alberto Lluch-Lafuente. Aggregation policies for tuple

spaces. In Giovanna Di Marzo Serugendo and Michele Loreti, editors, Coor-

dination Models and Languages - 20th IFIP WG 6.1 International Conference,

COORDINATION 2018, Held as Part of the 13th International Federated Con-

ference on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain,

June 18-21, 2018. Proceedings, volume 10852 of Lecture Notes in Computer

Science, pages 181–199. Springer, 2018. doi: 10.1007/978-3-319-92408-3_8.

URL https://doi.org/10.1007/978-3-319-92408-3_8.

[27] Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf, ed-

itors. Coordination of Internet Agents: Models, Technologies, and Applications.

Springer, 2001. ISBN 3-540-41613-7.

https://doi.org/10.1007/978-3-319-39519-7_4
https://doi.org/10.1007/978-3-319-39519-7_4
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1145/2384716.2384720
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-92408-3_8

Bibliography 114

[28] Nicholas Carriero and David Gelernter. How to write parallel programs: A guide

to the perplexed. ACM Comput. Surv., 21(3):323–357, 1989. doi: 10.1145/72551.

72553. URL https://doi.org/10.1145/72551.72553.

[29] Iain Merrick and Alan Wood. Coordination with scopes. In Barrett R. Bryant,

Janice H. Carroll, Ernesto Damiani, Hisham Haddad, and Dave Oppenheim, ed-

itors, Applied Computing 2000, Proceedings of the 2000 ACM Symposium on

Applied Computing, Villa Olmo, Via Cantoni 1, 22100 Como, Italy, March 19-

21, 2000. Volume 1, pages 210–217. ACM, 2000. doi: 10.1145/335603.335747.

URL https://doi.org/10.1145/335603.335747.

[30] Jerrold Sol Leichter. Shared Tuple Memories, Shared Memories, Buses and

Lan’s–Linda Implementations across the Spectrum of Connectivity. PhD thesis,

Yale University, USA, 1989.

[31] Susanne Hupfer, David Kaminsky, Nicholas Carriero, and David Gelernter. Co-

ordination Applications of Linda. In Jean-Pierre Banâtre and Daniel Le Métayer,

editors, Research Directions in High-Level Parallel Programming Languages,

Mont Saint-Michel, France, June 17-19, 1991, Procedings, volume 574 of Lec-

ture Notes in Computer Science, pages 187–194. Springer, 1991. doi: 10.1007/

3-540-55160-3_43. URL https://doi.org/10.1007/3-540-55160-3_43.

[32] Naftaly H. Minsky and Jerrold Leichter. Law-Governed Linda as a Coordina-

tion Model. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, edi-

tors, Object-Based Models and Languages for Concurrent Systems, ECOOP’94

Workshop on Models and Languages for Coordination of Parallelism and Dis-

tribution, Bologna, Italy, July 5, 1994, Selected Papers, volume 924 of Lec-

ture Notes in Computer Science, pages 125–146. Springer, 1994. doi: 10.1007/

3-540-59450-7_8. URL https://doi.org/10.1007/3-540-59450-7_8.

[33] David Gelernter and Lenore D. Zuck. On What Linda Is: Formal description

of Linda as a reactive system. In David Garlan and Daniel Le Métayer, ed-

itors, Coordination Languages and Models, Second International Conference,

COORDINATION ’97, Berlin, Germany, September 1-3, 1997, Proceedings,

volume 1282 of Lecture Notes in Computer Science, pages 187–204. Springer,

1997. doi: 10.1007/3-540-63383-9_81. URL https://doi.org/10.1007/

3-540-63383-9_81.

https://doi.org/10.1145/72551.72553
https://doi.org/10.1145/335603.335747
https://doi.org/10.1007/3-540-55160-3_43
https://doi.org/10.1007/3-540-59450-7_8
https://doi.org/10.1007/3-540-63383-9_81
https://doi.org/10.1007/3-540-63383-9_81

Bibliography 115

[34] Nur Izura Udzir. Capability-based coordination for open distributed systems.

PhD thesis, University of York, UK, 2006. URL http://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.434161.

[35] Lorenzo Bettini and Rocco De Nicola. Mobile Distributed Programming in X-

Klaim. In Marco Bernardo and Alessandro Bogliolo, editors, Formal Methods for

Mobile Computing, 5th International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM-Moby 2005, Berti-

noro, Italy, April 26-30, 2005, Advanced Lectures, volume 3465 of Lecture Notes

in Computer Science, pages 29–68. Springer, 2005. doi: 10.1007/11419822_2.

URL https://doi.org/10.1007/11419822_2.

[36] Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese, and Gian Luigi Ferrari.

Interactive Mobile Agents in X-Klaim. In 7th Workshop on Enabling Technolo-

gies (WETICE ’98), Infrastructure for Collaborative Enterprises, June 17-19,

1998, Palo Alto, CAUSA, Proceedings, pages 110–117. IEEE Computer Society,

1998. doi: 10.1109/ENABL.1998.725680. URL https://doi.org/10.1109/

ENABL.1998.725680.

[37] Lorenzo Bettini, Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese.

Mobile Applications in X-Klaim. In Antonio Corradi, Andrea Omicini,

and Agostino Poggi, editors, WOA 2000: Dagli Oggetti agli Agenti. 1st

AI*IA/TABOO Joint Workshop "From Objects to Agents": Evolutive Trends of

Software Systems, 29-30 May 2000, Parma, Italy, pages 1–6. Pitagora Editrice

Bologna, 2000.

[38] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Programming ac-

cess control: The KLAIM experience. In Catuscia Palamidessi, editor, CONCUR

2000 - Concurrency Theory, 11th International Conference, University Park, PA,

USA, August 22-25, 2000, Proceedings, volume 1877 of Lecture Notes in Com-

puter Science, pages 48–65. Springer, 2000. doi: 10.1007/3-540-44618-4_5.

URL https://doi.org/10.1007/3-540-44618-4_5.

[39] Lorenzo Bettini, Michele Loreti, and Rosario Pugliese. Structured Nets in Klaim.

In Barrett R. Bryant, Janice H. Carroll, Ernesto Damiani, Hisham Haddad, and

Dave Oppenheim, editors, Applied Computing 2000, Proceedings of the 2000

ACM Symposium on Applied Computing, Villa Olmo, Via Cantoni 1, 22100

Como, Italy, March 19-21, 2000. Volume 1, pages 174–180. ACM, 2000. doi:

10.1145/335603.335736. URL https://doi.org/10.1145/335603.335736.

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434161
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434161
https://doi.org/10.1007/11419822_2
https://doi.org/10.1109/ENABL.1998.725680
https://doi.org/10.1109/ENABL.1998.725680
https://doi.org/10.1007/3-540-44618-4_5
https://doi.org/10.1145/335603.335736

Bibliography 116

[40] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. XKlaim and Klava:

Programming Mobile Code. Electron. Notes Theor. Comput. Sci., 62:24–37,

2001. doi: 10.1016/S1571-0661(04)00317-2. URL https://doi.org/10.

1016/S1571-0661(04)00317-2.

[41] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a Java package

for distributed and mobile applications. Softw. Pract. Exp., 32(14):1365–1394,

2002. doi: 10.1002/spe.486. URL https://doi.org/10.1002/spe.486.

[42] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gian Luigi Ferrari, Daniele

Gorla, Michele Loreti, Eugenio Moggi, Rosario Pugliese, Emilio Tuosto, and

Betti Venneri. The Klaim project: Theory and practice. In Corrado Priami, ed-

itor, Global Computing. Programming Environments, Languages, Security, and

Analysis of Systems, IST/FET International Workshop, GC 2003, Rovereto, Italy,

February 9-14, 2003, Revised Papers, volume 2874 of Lecture Notes in Com-

puter Science, pages 88–150. Springer, 2003. doi: 10.1007/978-3-540-40042-4\

_4. URL https://doi.org/10.1007/978-3-540-40042-4_4.

[43] Rocco De Nicola, Diego Latella, and Mieke Massink. Formal modeling and

quantitative analysis of KLAIM-based mobile systems. In Hisham Haddad, Lo-

rie M. Liebrock, Andrea Omicini, and Roger L. Wainwright, editors, Proceed-

ings of the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe, New

Mexico, USA, March 13-17, 2005, pages 428–435. ACM, 2005. doi: 10.1145/

1066677.1066777. URL https://doi.org/10.1145/1066677.1066777.

[44] Xi Wu, Ximeng Li, Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis

Nielson. Klaim-DB: A modeling language for distributed database applica-

tions. In Tom Holvoet and Mirko Viroli, editors, Coordination Models and

Languages - 17th IFIP WG 6.1 International Conference, COORDINATION

2015, Held as Part of the 10th International Federated Conference on Dis-

tributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-

4, 2015, Proceedings, volume 9037 of Lecture Notes in Computer Science,

pages 197–212. Springer, 2015. doi: 10.1007/978-3-319-19282-6_13. URL

https://doi.org/10.1007/978-3-319-19282-6_13.

[45] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Pattern matching over

a dynamic network of tuple spaces. In Martin Steffen and Gianluigi Zavattaro,

editors, Formal Methods for Open Object-Based Distributed Systems, 7th IFIP

WG 6.1 International Conference, FMOODS 2005, Athens, Greece, June 15-17,

https://doi.org/10.1016/S1571-0661(04)00317-2
https://doi.org/10.1016/S1571-0661(04)00317-2
https://doi.org/10.1002/spe.486
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1145/1066677.1066777
https://doi.org/10.1007/978-3-319-19282-6_13

Bibliography 117

2005, Proceedings, volume 3535 of Lecture Notes in Computer Science, pages

1–14. Springer, 2005. doi: 10.1007/11494881_1. URL https://doi.org/

10.1007/11494881_1.

[46] Sang Hyuk Son. Synchronization of replicated data in distributed systems. Inf.

Syst., 12(2):191–202, 1987. doi: 10.1016/0306-4379(87)90043-3. URL https:

//doi.org/10.1016/0306-4379(87)90043-3.

[47] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems -

concepts and design (2. ed.). International computer science series. Addison-

Wesley, 1994. ISBN 978-0-201-62433-5.

[48] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a Java package

for distributed and mobile applications. Softw. Pract. Exp., 32(14):1365–1394,

2002.

[49] Rocco De Nicola, Diego Latella, Alberto Lluch-Lafuente, Michele Loreti, An-

drea Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese, Francesco

Tiezzi, and Andrea Vandin. The SCEL language: Design, implementation, verifi-

cation. In The ASCENS Approach, volume 8998 of LNCS, pages 3–71. Springer,

2015.

[50] Marina Andrić, Rocco De Nicola, and Alberto Lluch-Lafuente. Replicating

data for better performances in X10. In Christian W. Probst, Chris Hankin,

and René Rydhof Hansen, editors, Semantics, Logics, and Calculi - Essays

Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion of

Their 60th Birthdays, volume 9560 of Lecture Notes in Computer Science,

pages 236–251. Springer, 2016. doi: 10.1007/978-3-319-27810-0_12. URL

https://doi.org/10.1007/978-3-319-27810-0_12.

[51] Vijay A. Saraswat and Radha Jagadeesan. Concurrent clustered programming. In

Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory,

16th International Conference, CONCUR 2005, San Francisco, CA, USA, August

23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science,

pages 353–367. Springer, 2005.

[52] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME: A coordi-

nation model and middleware supporting mobility of hosts and agents. ACM

Trans. Softw. Eng. Methodol., 15(3):279–328, 2006. doi: 10.1145/1151695.

1151698. URL https://doi.org/10.1145/1151695.1151698.

https://doi.org/10.1007/11494881_1
https://doi.org/10.1007/11494881_1
https://doi.org/10.1016/0306-4379(87)90043-3
https://doi.org/10.1016/0306-4379(87)90043-3
https://doi.org/10.1007/978-3-319-27810-0_12
https://doi.org/10.1145/1151695.1151698

Bibliography 118

[53] Jiankuan Xing, Zheng Qin, and Jinxue Zhang. A replication-based distribution

approach for tuple space-based collaboration of heterogeneous agents. Research

Journal of Information Technology, 2:201–214, 04 2010. doi: 10.3923/rjit.2010.

201.214.

[54] Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen. Exploit-

ing differentiated tuple distribution in shared data spaces. In Marco Danelutto,

Marco Vanneschi, and Domenico Laforenza, editors, Euro-Par 2004 Parallel

Processing, 10th International Euro-Par Conference, Pisa, Italy, August 31-

September 3, 2004, Proceedings, volume 3149 of Lecture Notes in Computer

Science, pages 579–586. Springer, 2004. doi: 10.1007/978-3-540-27866-5_76.

URL https://doi.org/10.1007/978-3-540-27866-5_76.

[55] Vitaly Buravlev, Rocco De Nicola, Alberto Lluch-Lafuente, and Claudio Antares

Mezzina. Improving availability in distributed tuple spaces via sharing ab-

stractions and replication strategies. In Ivan Merelli, Pietro Liò, and Igor V.

Kotenko, editors, 26th Euromicro International Conference on Parallel, Dis-

tributed and Network-based Processing, PDP 2018, Cambridge, United King-

dom, March 21-23, 2018, pages 302–305. IEEE Computer Society, 2018. doi:

10.1109/PDP2018.2018.00052. URL https://doi.org/10.1109/PDP2018.

2018.00052.

[56] Rocco De Nicola, Rosario Pugliese, and Antony I. T. Rowstron. Proving the

correctness of optimising destructive and non-destructive reads over tuple spaces.

In António Porto and Gruia-Catalin Roman, editors, Coordination Languages

and Models, 4th International Conference, COORDINATION 2000, Limassol,

Cyprus, September 11-13, 2000, Proceedings, volume 1906 of Lecture Notes in

Computer Science, pages 66–80. Springer, 2000.

[57] Antony I. T. Rowstron and Alan Wood. An efficient distributed tuple space

implementation for networks of workstations. In Luc Bougé, Pierre Fraigni-

aud, Anne Mignotte, and Yves Robert, editors, Euro-Par ’96 Parallel Process-

ing, Second International Euro-Par Conference, Lyon, France, August 26-29,

1996, Proceedings, Volume I, volume 1123 of Lecture Notes in Computer Sci-

ence, pages 510–513. Springer, 1996. doi: 10.1007/3-540-61626-8_69. URL

https://doi.org/10.1007/3-540-61626-8_69.

https://doi.org/10.1007/978-3-540-27866-5_76
https://doi.org/10.1109/PDP2018.2018.00052
https://doi.org/10.1109/PDP2018.2018.00052
https://doi.org/10.1007/3-540-61626-8_69

Bibliography 119

[58] Antonio Corradi, Letizia Leonardi, and Franco Zambonelli. Distributed tuple

spaces in highly parallel systems. Technical report, DEISLIA-96-005, UNIBO

(Italy), 1996. LIA Series, 1996.

[59] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples On The Air:

a middleware for context-aware multiagent systems. In Flavio De Paoli, Sara

Manzoni, and Agostino Poggi, editors, WOA 2002: Dagli Oggetti agli Agenti.

3rd AI*IA/TABOO Joint Workshop "From Objects to Agents": From Information

to Knowledge, 18-19 November 2002, Milano, Italy, pages 108–116. Pitagora

Editrice Bologna, 2002.

[60] Alan David Fekete and Krithi Ramamritham. Consistency models for replicated

data. In Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors,

Replication: Theory and Practice, volume 5959 of Lecture Notes in Computer

Science, pages 1–17. Springer, 2010. doi: 10.1007/978-3-642-11294-2_1. URL

https://doi.org/10.1007/978-3-642-11294-2_1.

[61] Elisa Gonzalez Boix, Christophe Scholliers, Wolfgang De Meuter, and Theo

D’Hondt. Programming mobile context-aware applications with TOTAM. J.

Syst. Softw., 92:3–19, 2014. doi: 10.1016/j.jss.2013.07.031. URL https:

//doi.org/10.1016/j.jss.2013.07.031.

[62] Dries Harnie, Elisa Gonzalez Boix, Theo D’Hondt, and Wolfgang De Meuter.

Programming urban-area applications by exploiting public transportation. ACM

Trans. Auton. Adapt. Syst., 9(2):8:1–8:20, 2014. doi: 10.1145/2619999. URL

https://doi.org/10.1145/2619999.

[63] David E. Bakken and Richard D. Schlichting. Supporting fault-tolerant parallel

programming in Linda. IEEE Trans. Parallel Distrib. Syst., 6(3):287–302, 1995.

doi: 10.1109/71.372777. URL https://doi.org/10.1109/71.372777.

[64] Alysson Neves Bessani, Eduardo Adílio Pelinson Alchieri, Miguel Correia, and

Joni da Silva Fraga. Depspace: a byzantine fault-tolerant coordination service.

In Joseph S. Sventek and Steven Hand, editors, Proceedings of the 2008 EuroSys

Conference, Glasgow, Scotland, UK, April 1-4, 2008, pages 163–176. ACM,

2008. doi: 10.1145/1352592.1352610. URL https://doi.org/10.1145/

1352592.1352610.

[65] Alysson Neves Bessani, Miguel Correia, Joni da Silva Fraga, and Lau Cheuk

Lung. An efficient byzantine-resilient tuple space. IEEE Trans. Computers, 58

https://doi.org/10.1007/978-3-642-11294-2_1
https://doi.org/10.1016/j.jss.2013.07.031
https://doi.org/10.1016/j.jss.2013.07.031
https://doi.org/10.1145/2619999
https://doi.org/10.1109/71.372777
https://doi.org/10.1145/1352592.1352610
https://doi.org/10.1145/1352592.1352610

Bibliography 120

(8):1080–1094, 2009. doi: 10.1109/TC.2009.71. URL https://doi.org/10.

1109/TC.2009.71.

[66] Matteo Casadei, Mirko Viroli, and Luca Gardelli. On the collective sort problem

for distributed tuple spaces. Sci. Comput. Program., 74(9):702–722, 2009. doi:

10.1016/j.scico.2008.09.018. URL https://doi.org/10.1016/j.scico.

2008.09.018.

[67] Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen. Dynami-

cally adapting tuple replication for managing availability in a shared data space.

In Jean-Marie Jacquet and Gian Pietro Picco, editors, Coordination Models and

Languages, 7th International Conference, COORDINATION 2005, Namur, Bel-

gium, April 20-23, 2005, Proceedings, volume 3454 of Lecture Notes in Com-

puter Science, pages 109–124. Springer, 2005. doi: 10.1007/11417019_8. URL

https://doi.org/10.1007/11417019_8.

[68] Danilo Pianini, Sascia Virruso, Ronaldo Menezes, Andrea Omicini, and Mirko

Viroli. Self organization in coordination systems using a wordnet-based ontol-

ogy. In 2010 Fourth IEEE International Conference on Self-Adaptive and Self-

Organizing Systems, pages 114–123. IEEE, 2010.

[69] Alan AA Donovan and Brian W Kernighan. The Go programming language.

Addison-Wesley Professional, 2015.

[70] The Go Authors. Go release history. . URL https://golang.org/project/.

[71] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-

world concurrency bugs in Go. In Iris Bahar, Maurice Herlihy, Emmett Witchel,

and Alvin R. Lebeck, editors, Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages 865–

878. ACM, 2019. doi: 10.1145/3297858.3304069. URL https://doi.org/

10.1145/3297858.3304069.

[72] Nicolas Dilley and Julien Lange. An empirical study of messaging passing con-

currency in Go projects. In Xinyu Wang, David Lo, and Emad Shihab, edi-

tors, 26th IEEE International Conference on Software Analysis, Evolution and

Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, pages

377–387. IEEE, 2019. doi: 10.1109/SANER.2019.8668036. URL https:

//doi.org/10.1109/SANER.2019.8668036.

https://doi.org/10.1109/TC.2009.71
https://doi.org/10.1109/TC.2009.71
https://doi.org/10.1016/j.scico.2008.09.018
https://doi.org/10.1016/j.scico.2008.09.018
https://doi.org/10.1007/11417019_8
https://golang.org/project/
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1109/SANER.2019.8668036
https://doi.org/10.1109/SANER.2019.8668036

Bibliography 121

[73] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis E. Shasha. The dangers

of replication and a solution. In H. V. Jagadish and Inderpal Singh Mumick,

editors, Proceedings of the 1996 ACM SIGMOD International Conference on

Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 173–

182. ACM Press, 1996. doi: 10.1145/233269.233330. URL https://doi.

org/10.1145/233269.233330.

[74] Daniel Abadi. Consistency tradeoffs in modern distributed database system de-

sign: CAP is only part of the story. IEEE Computer, 45(2):37–42, 2012. doi:

10.1109/MC.2012.33. URL https://doi.org/10.1109/MC.2012.33.

[75] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

doi: 10.1145/1435417.1435432. URL https://doi.org/10.1145/1435417.

1435432.

[76] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, exten-

sions, and beyond. Commun. ACM, 56(5):55–63, 2013. doi: 10.1145/2447976.

2447992. URL https://doi.org/10.1145/2447976.2447992.

[77] H. G. Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society, 74:358–366, 1953.

[78] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and

Flavio Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232,

2003. doi: 10.1023/A:1022920129859. URL https://doi.org/10.1023/A:

1022920129859.

[79] Dirk Beyer, Sumit Gulwani, and David A. Schmidt. Combining model checking

and data-flow analysis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut

Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 493–

540. Springer, 2018. doi: 10.1007/978-3-319-10575-8_16. URL https://

doi.org/10.1007/978-3-319-10575-8_16.

[80] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, tech-

niques and tools. 1986.

[81] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-

ples of program analysis. Springer, 1999. ISBN 978-3-540-65410-

0. doi: 10.1007/978-3-662-03811-6. URL https://doi.org/10.1007/

978-3-662-03811-6.

https://doi.org/10.1145/233269.233330
https://doi.org/10.1145/233269.233330
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6

Bibliography 122

[82] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,

Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. A

few billion lines of code later: using static analysis to find bugs in the real

world. Commun. ACM, 53(2):66–75, 2010. doi: 10.1145/1646353.1646374.

URL https://doi.org/10.1145/1646353.1646374.

[83] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of

android apps: A systematic literature review. Inf. Softw. Technol., 88:67–95,

2017. doi: 10.1016/j.infsof.2017.04.001. URL https://doi.org/10.1016/

j.infsof.2017.04.001.

[84] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors,

Conference Record of the Fourth ACM Symposium on Principles of Program-

ming Languages, Los Angeles, California, USA, January 1977, pages 238–252.

ACM, 1977. doi: 10.1145/512950.512973. URL https://doi.org/10.1145/

512950.512973.

[85] Patrick Cousot. Abstract interpretation based static analysis parameterized by

semantics. In Pascal Van Hentenryck, editor, Static Analysis, 4th International

Symposium, SAS ’97, Paris, France, September 8-10, 1997, Proceedings, volume

1302 of Lecture Notes in Computer Science, pages 388–394. Springer, 1997. doi:

10.1007/BFb0032759. URL https://doi.org/10.1007/BFb0032759.

[86] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log.

Comput., 2(4):511–547, 1992. doi: 10.1093/logcom/2.4.511. URL https://

doi.org/10.1093/logcom/2.4.511.

[87] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present and

future. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the

Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and

the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 2:1–2:10.

ACM, 2014. doi: 10.1145/2603088.2603165. URL https://doi.org/10.

1145/2603088.2603165.

[88] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/BFb0032759
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1145/2603088.2603165
https://doi.org/10.1145/2603088.2603165

Bibliography 123

Frontiers in Artificial Intelligence and Applications, pages 457–481. IOS Press,

2009. doi: 10.3233/978-1-58603-929-5-457. URL https://doi.org/10.

3233/978-1-58603-929-5-457.

[89] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties

using induction and a sat-solver. In Warren A. Hunt Jr. and Steven D. Johnson,

editors, Formal Methods in Computer-Aided Design, Third International Con-

ference, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000, Proceedings,

volume 1954 of Lecture Notes in Computer Science, pages 108–125. Springer,

2000. doi: 10.1007/3-540-40922-X_8. URL https://doi.org/10.1007/

3-540-40922-X_8.

[90] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and Yun-

shan Zhu. Symbolic model checking using SAT procedures instead of bdds.

In Mary Jane Irwin, editor, Proceedings of the 36th Conference on Design Au-

tomation, New Orleans, LA, USA, June 21-25, 1999, pages 317–320. ACM

Press, 1999. doi: 10.1145/309847.309942. URL https://doi.org/10.1145/

309847.309942.

[91] Omar Inverso. Bounded model checking of multi-threaded programs via se-

quentialization. PhD thesis, University of Southampton, UK, 2015. URL

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678178.

[92] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and

Gennaro Parlato. Bounded model checking of multi-threaded C programs via

lazy sequentialization. In Armin Biere and Roderick Bloem, editors, Com-

puter Aided Verification - 26th International Conference, CAV 2014, Held as

Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-

22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,

pages 585–602. Springer, 2014. doi: 10.1007/978-3-319-08867-9_39. URL

https://doi.org/10.1007/978-3-319-08867-9_39.

[93] Patrick Cousot and Radhia Cousot. Modular static program analysis. In R. Nigel

Horspool, editor, Compiler Construction, 11th International Conference, CC

2002, Held as Part of the Joint European Conferences on Theory and Prac-

tice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,

volume 2304 of Lecture Notes in Computer Science, pages 159–178. Springer,

2002. doi: 10.1007/3-540-45937-5_13. URL https://doi.org/10.1007/

3-540-45937-5_13.

https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1145/309847.309942
https://doi.org/10.1145/309847.309942
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678178
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13

Bibliography 124

[94] Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques and

tools. In Intelligent Computing and Applications, pages 581–591. Springer, 2015.

[95] Matthew B Dwyer and Lori A Clarke. Data flow analysis frameworks for con-

current programs. KSU CIS TR, pages 97–6, 1995.

[96] Uday P. Khedker, Amitabha Sanyal, and Bageshri Sathe. Data Flow Analysis

- Theory and Practice. CRC Press, 2009. ISBN 978-0-8493-2880-0. URL

http://www.crcpress.com/product/isbn/9780849328800.

[97] Ken Kennedy. A survey of data flow analysis techniques. IBM Thomas J. Watson

Research Division, 1979.

[98] Matthew B. Dwyer and Lori A. Clarke. Data flow analysis for verifying prop-

erties of concurrent programs. In David S. Wile, editor, SIGSOFT ’94, Pro-

ceedings of the Second ACM SIGSOFT Symposium on Foundations of Software

Engineering, New Orleans, Louisiana, USA, December 6-9, 1994, pages 62–75.

ACM, 1994. doi: 10.1145/193173.195295. URL https://doi.org/10.1145/

193173.195295.

[99] Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian

Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and Anja

Feldmann. Static program analysis as a fuzzing aid. In Marc Dacier,

Michael Bailey, Michalis Polychronakis, and Manos Antonakakis, editors, Re-

search in Attacks, Intrusions, and Defenses - 20th International Symposium,

RAID 2017, Atlanta, GA, USA, September 18-20, 2017, Proceedings, vol-

ume 10453 of Lecture Notes in Computer Science, pages 26–47. Springer,

2017. doi: 10.1007/978-3-319-66332-6_2. URL https://doi.org/10.

1007/978-3-319-66332-6_2.

[100] Philipp Obreiter and Guntram Gräf. Towards scalability in tuple spaces. In

Gary B. Lamont, Hisham Haddad, George A. Papadopoulos, and Brajendra

Panda, editors, Proceedings of the 2002 ACM Symposium on Applied Comput-

ing (SAC), March 10-14, 2002, Madrid, Spain, pages 344–350. ACM, 2002. doi:

10.1145/508791.508858. URL https://doi.org/10.1145/508791.508858.

[101] Ximeng Li, Xi Wu, Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis

Nielson. A coordination language for databases. Log. Methods Comput. Sci., 13

(1), 2016. doi: 10.23638/LMCS-13(1:10)2017. URL https://doi.org/10.

23638/LMCS-13(1:10)2017.

http://www.crcpress.com/product/isbn/9780849328800
https://doi.org/10.1145/193173.195295
https://doi.org/10.1145/193173.195295
https://doi.org/10.1007/978-3-319-66332-6_2
https://doi.org/10.1007/978-3-319-66332-6_2
https://doi.org/10.1145/508791.508858
https://doi.org/10.23638/LMCS-13(1:10)2017
https://doi.org/10.23638/LMCS-13(1:10)2017

Bibliography 125

[102] Rocco De Nicola, Daniele Gorla, René Rydhof Hansen, Flemming Nielson,

Hanne Riis Nielson, Christian W. Probst, and Rosario Pugliese. From flow

logic to static type systems for coordination languages. Sci. Comput. Pro-

gram., 75(6):376–397, 2010. doi: 10.1016/j.scico.2009.07.009. URL https:

//doi.org/10.1016/j.scico.2009.07.009.

[103] Rocco De Nicola, Gian Luigi Ferrari, Rosario Pugliese, and Betti Ven-

neri. Types for access control. Theor. Comput. Sci., 240(1):215–254, 2000.

doi: 10.1016/S0304-3975(99)00232-7. URL https://doi.org/10.1016/

S0304-3975(99)00232-7.

[104] René Rydhof Hansen, Flemming Nielson, Hanne Riis Nielson, and Christian W.

Probst. Static validation of licence conformance policies. In Proceedings of

the The Third International Conference on Availability, Reliability and Security,

ARES 2008, March 4-7, 2008, Technical University of Catalonia, Barcelona ,

Spain, pages 1104–1111. IEEE Computer Society, 2008. doi: 10.1109/ARES.

2008.162. URL https://doi.org/10.1109/ARES.2008.162.

[105] Chiara Bodei, Pierpaolo Degano, Gian Luigi Ferrari, and Letterio Galletta.

Revealing the trajectories of KLAIM tuples, statically. In Michele Boreale,

Flavio Corradini, Michele Loreti, and Rosario Pugliese, editors, Models, Lan-

guages, and Tools for Concurrent and Distributed Programming - Essays Ded-

icated to Rocco De Nicola on the Occasion of His 65th Birthday, volume

11665 of Lecture Notes in Computer Science, pages 437–454. Springer, 2019.

doi: 10.1007/978-3-030-21485-2_24. URL https://doi.org/10.1007/

978-3-030-21485-2_24.

[106] Chiara Bodei, Pierpaolo Degano, Letterio Galletta, and Francesco Salvatori.

Context-aware security: Linguistic mechanisms and static analysis. J. Com-

put. Secur., 24(4):427–477, 2016. doi: 10.3233/JCS-160551. URL https:

//doi.org/10.3233/JCS-160551.

[107] Fan Yang, Tomoyuki Aotani, Hidehiko Masuhara, Flemming Nielson, and

Hanne Riis Nielson. Combining static analysis and runtime checking in secu-

rity aspects for distributed tuple spaces. In Wolfgang De Meuter and Gruia-

Catalin Roman, editors, Coordination Models and Languages - 13th Interna-

tional Conference, COORDINATION 2011, Reykjavik, Iceland, June 6-9, 2011.

https://doi.org/10.1016/j.scico.2009.07.009
https://doi.org/10.1016/j.scico.2009.07.009
https://doi.org/10.1016/S0304-3975(99)00232-7
https://doi.org/10.1016/S0304-3975(99)00232-7
https://doi.org/10.1109/ARES.2008.162
https://doi.org/10.1007/978-3-030-21485-2_24
https://doi.org/10.1007/978-3-030-21485-2_24
https://doi.org/10.3233/JCS-160551
https://doi.org/10.3233/JCS-160551

Bibliography 126

Proceedings, volume 6721 of Lecture Notes in Computer Science, pages 202–

218. Springer, 2011. doi: 10.1007/978-3-642-21464-6_14. URL https:

//doi.org/10.1007/978-3-642-21464-6_14.

[108] Chiara Bodei, Pierpaolo Degano, Gian Luigi Ferrari, and Letterio Galletta. Trac-

ing where iot data are collected and aggregated. Log. Methods Comput. Sci., 13

(3), 2017. doi: 10.23638/LMCS-13(3:5)2017. URL https://doi.org/10.

23638/LMCS-13(3:5)2017.

[109] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias

analysis. In Jack W. Davidson, Keith D. Cooper, and A. Michael Berman, editors,

Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language

Design and Implementation (PLDI), Montreal, Canada, June 17-19, 1998, pages

106–117. ACM, 1998. doi: 10.1145/277650.277670. URL https://doi.org/

10.1145/277650.277670.

[110] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing

off Go: liveness and safety for channel-based programming. In Proceedings of

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017, pages 748–761, 2017.

[111] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static

verification framework for message passing in Go using behavioural types. In

Proceedings of the 40th International Conference on Software Engineering, ICSE

2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 1137–1148, 2018.

[112] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent Go

by global session graph synthesis. In Ayal Zaks and Manuel V. Hermenegildo,

editors, Proceedings of the 25th International Conference on Compiler Construc-

tion, CC 2016, Barcelona, Spain, March 12-18, 2016, pages 174–184. ACM,

2016. doi: 10.1145/2892208.2892232. URL https://doi.org/10.1145/

2892208.2892232.

[113] Kai Stadtmüller, Martin Sulzmann, and Peter Thiemann. Static trace-based dead-

lock analysis for synchronous Mini-Go. In Atsushi Igarashi, editor, Programming

Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,

November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Com-

puter Science, pages 116–136, 2016. doi: 10.1007/978-3-319-47958-3_7. URL

https://doi.org/10.1007/978-3-319-47958-3_7.

https://doi.org/10.1007/978-3-642-21464-6_14
https://doi.org/10.1007/978-3-642-21464-6_14
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1007/978-3-319-47958-3_7

Bibliography 127

[114] Gowtham Kaki, Kapil Earanky, K. C. Sivaramakrishnan, and Suresh Jagan-

nathan. Safe replication through bounded concurrency verification. PACMPL,

2(OOPSLA):164:1–164:27, 2018. doi: 10.1145/3276534. URL https://doi.

org/10.1145/3276534.

[115] Rod M. Burstall and John Darlington. A transformation system for developing

recursive programs. J. ACM, 24(1):44–67, 1977. doi: 10.1145/321992.321996.

URL https://doi.org/10.1145/321992.321996.

[116] Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems. ACM

Comput. Surv., 15(3):199–236, 1983. doi: 10.1145/356914.356917. URL

https://doi.org/10.1145/356914.356917.

[117] Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ java

programs. In Raymond Lister and Alison Young, editors, Sixth Australasian

Computing Education Conference (ACE 2004), Dunedin, New Zealand, January

18-22, 2004, volume 30 of CRPIT, pages 317–325. Australian Computer Soci-

ety, 2004. URL http://crpit.scem.westernsydney.edu.au/abstracts/

CRPITV30Truong.html.

[118] Yong-Yi Fanjiang and Jong Yih Kuo. A pattern-based model transformation

approach to enhance design quality. In 9th Joint International Conference on

Information Sciences (JCIS-06). Atlantis Press, 2006.

[119] Rijnard van Tonder and Claire Le Goues. Tailoring programs for static analysis

via program transformation. In Gregg Rothermel and Doo-Hwan Bae, editors,

ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South

Korea, 27 June - 19 July, 2020, pages 824–834. ACM, 2020. doi: 10.1145/

3377811.3380343. URL https://doi.org/10.1145/3377811.3380343.

[120] Eelco Visser. A survey of strategies in program transformation systems. Electron.

Notes Theor. Comput. Sci., 57:109–143, 2001. doi: 10.1016/S1571-0661(04)

00270-1. URL https://doi.org/10.1016/S1571-0661(04)00270-1.

[121] Sesha Kalyur and GS Nagaraja. A taxonomy of methods and models used in pro-

gram transformation and parallelization. In International Conference on Ubiqui-

tous Communications and Network Computing, pages 233–249. Springer, 2019.

[122] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. On

the concurrent execution of model transformations with Linda. In Davide Di

https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534
https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/356914.356917
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV30Truong.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV30Truong.html
https://doi.org/10.1145/3377811.3380343
https://doi.org/10.1016/S1571-0661(04)00270-1

Bibliography 128

Ruscio, Dimitris S. Kolovos, and Nicholas Matragkas, editors, Proceedings of

the Workshop on Scalability in Model Driven Engineering, Budapest, Hungary,

June 17, 2013, page 3. ACM, 2013. doi: 10.1145/2487766.2487770. URL

https://doi.org/10.1145/2487766.2487770.

[123] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. Grgen.net - the ex-

pressive, convenient and fast graph rewrite system. Int. J. Softw. Tools Tech-

nol. Transf., 12(3-4):263–271, 2010. doi: 10.1007/s10009-010-0148-8. URL

https://doi.org/10.1007/s10009-010-0148-8.

[124] Romain Robbes and Michele Lanza. Example-based program transformation.

In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus

Völter, editors, Model Driven Engineering Languages and Systems, 11th Inter-

national Conference, MoDELS 2008, Toulouse, France, September 28 - Octo-

ber 3, 2008. Proceedings, volume 5301 of Lecture Notes in Computer Science,

pages 174–188. Springer, 2008. doi: 10.1007/978-3-540-87875-9_13. URL

https://doi.org/10.1007/978-3-540-87875-9_13.

[125] Eelco Visser. A survey of strategies in rule-based program transformation sys-

tems. J. Symb. Comput., 40(1):831–873, 2005. doi: 10.1016/j.jsc.2004.12.011.

URL https://doi.org/10.1016/j.jsc.2004.12.011.

[126] Alberto Pettorossi and Maurizio Proietti. Transformation of logic pro-

grams: Foundations and techniques. J. Log. Program., 19/20:261–320, 1994.

doi: 10.1016/0743-1066(94)90028-0. URL https://doi.org/10.1016/

0743-1066(94)90028-0.

[127] Salvador Tamarit, Guillermo Vigueras, Manuel Carro, and Julio Mariño. A

haskell implementation of a rule-based program transformation for C programs.

In Enrico Pontelli and Tran Cao Son, editors, Practical Aspects of Declarative

Languages - 17th International Symposium, PADL 2015, Portland, OR, USA,

June 18-19, 2015. Proceedings, volume 9131 of Lecture Notes in Computer

Science, pages 105–114. Springer, 2015. doi: 10.1007/978-3-319-19686-2_8.

URL https://doi.org/10.1007/978-3-319-19686-2_8.

[128] Eelco Visser. Program transformation with stratego/xt: Rules, strategies, tools,

and systems in stratego/xt 0.9. In Christian Lengauer, Don S. Batory, Charles

Consel, and Martin Odersky, editors, Domain-Specific Program Generation, In-

ternational Seminar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised

https://doi.org/10.1145/2487766.2487770
https://doi.org/10.1007/s10009-010-0148-8
https://doi.org/10.1007/978-3-540-87875-9_13
https://doi.org/10.1016/j.jsc.2004.12.011
https://doi.org/10.1016/0743-1066(94)90028-0
https://doi.org/10.1016/0743-1066(94)90028-0
https://doi.org/10.1007/978-3-319-19686-2_8

Bibliography 129

Papers, volume 3016 of Lecture Notes in Computer Science, pages 216–238.

Springer, 2003. doi: 10.1007/978-3-540-25935-0_13. URL https://doi.

org/10.1007/978-3-540-25935-0_13.

[129] Dan Quinlan and Chunhua Liao. The ROSE Source-to-Source Compiler Infras-

tructure. In Cetus Users and Compiler Infrastructure Workshop, in conjunction

with PACT 2011, October 2011.

[130] Chris Lattner. LLVM and Clang: Next generation compiler technology. In The

BSD Conference, 2008.

[131] The Clang Authors. Clang-Features and Goals. . URL https://clang.llvm.

org/features.html.

[132] Ira D. Baxter, Christopher W. Pidgeon, and Michael Mehlich. Dms®: Program

transformations for practical scalable software evolution. In Anthony Finkelstein,

Jacky Estublier, and David S. Rosenblum, editors, 26th International Confer-

ence on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United

Kingdom, pages 625–634. IEEE Computer Society, 2004. doi: 10.1109/ICSE.

2004.1317484. URL https://doi.org/10.1109/ICSE.2004.1317484.

[133] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.

CIL: intermediate language and tools for analysis and transformation of C pro-

grams. In R. Nigel Horspool, editor, Compiler Construction, 11th Interna-

tional Conference, CC 2002, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April

8-12, 2002, Proceedings, volume 2304 of Lecture Notes in Computer Sci-

ence, pages 213–228. Springer, 2002. doi: 10.1007/3-540-45937-5_16. URL

https://doi.org/10.1007/3-540-45937-5_16.

[134] Dan G. Waddington and Bin Yao. High-fidelity C/C++ code transformation. Sci.

Comput. Program., 68(2):64–78, 2007. doi: 10.1016/j.scico.2006.04.010. URL

https://doi.org/10.1016/j.scico.2006.04.010.

[135] Jesús Sánchez Cuadrado and Jesús García Molina. A phasing mechanism for

model transformation languages. In Yookun Cho, Roger L. Wainwright, Hisham

Haddad, Sung Y. Shin, and Yong Wan Koo, editors, Proceedings of the 2007

ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15,

2007, pages 1020–1024. ACM, 2007. doi: 10.1145/1244002.1244223. URL

https://doi.org/10.1145/1244002.1244223.

https://doi.org/10.1007/978-3-540-25935-0_13
https://doi.org/10.1007/978-3-540-25935-0_13
https://clang.llvm.org/features.html
https://clang.llvm.org/features.html
https://doi.org/10.1109/ICSE.2004.1317484
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1016/j.scico.2006.04.010
https://doi.org/10.1145/1244002.1244223

Bibliography 130

[136] James R. Cordy. The TXL source transformation language. Sci. Comput. Pro-

gram., 61(3):190–210, 2006. doi: 10.1016/j.scico.2006.04.002. URL https:

//doi.org/10.1016/j.scico.2006.04.002.

[137] Rijnard van Tonder and Claire Le Goues. Lightweight multi-language syntax

transformation with parser parser combinators. In Kathryn S. McKinley and

Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,

USA, June 22-26, 2019, pages 363–378. ACM, 2019. doi: 10.1145/3314221.

3314589. URL https://doi.org/10.1145/3314221.3314589.

[138] James Koppel, Varot Premtoon, and Armando Solar-Lezama. One tool, many

languages: language-parametric transformation with incremental parametric syn-

tax. Proc. ACM Program. Lang., 2(OOPSLA):122:1–122:28, 2018. doi:

10.1145/3276492. URL https://doi.org/10.1145/3276492.

[139] Ion Stoica, Robert Tappan Morris, David Liben-Nowell, David R. Karger,

M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:a scalable peer-

to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw., 11(1):

17–32, 2003. doi: 10.1109/TNET.2002.808407. URL https://doi.org/10.

1109/TNET.2002.808407.

[140] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent:postgres-

r, A New Way to Implement database replication. In Amr El Abbadi,

Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel,

Gunter Schlageter, and Kyu-Young Whang, editors, VLDB 2000, Proceedings

of 26th International Conference on Very Large Data Bases, September 10-14,

2000, Cairo, Egypt, pages 134–143. Morgan Kaufmann, 2000. URL http:

//www.vldb.org/conf/2000/P134.pdf.

[141] Sameh Elnikety, Steven G. Dropsho, and Willy Zwaenepoel. Tashkent+:

Memory-aware load balancing and update filtering in replicated databases. In

Paulo Ferreira, Thomas R. Gross, and Luís Veiga, editors, Proceedings of the

2007 EuroSys Conference, Lisbon, Portugal, March 21-23, 2007, pages 399–

412. ACM, 2007. doi: 10.1145/1272996.1273037. URL https://doi.org/

10.1145/1272996.1273037.

[142] Sérgio Esteves, João Nuno de Oliveira e Silva, and Luís Veiga. Quality-

of-service for consistency of data geo-replication in cloud computing. In

https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/3276492
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407
http://www.vldb.org/conf/2000/P134.pdf
http://www.vldb.org/conf/2000/P134.pdf
https://doi.org/10.1145/1272996.1273037
https://doi.org/10.1145/1272996.1273037

Bibliography 131

Christos Kaklamanis, Theodore S. Papatheodorou, and Paul G. Spirakis, edi-

tors, Euro-Par 2012 Parallel Processing - 18th International Conference, Euro-

Par 2012, Rhodes Island, Greece, August 27-31, 2012. Proceedings, volume

7484 of Lecture Notes in Computer Science, pages 285–297. Springer, 2012.

doi: 10.1007/978-3-642-32820-6_29. URL https://doi.org/10.1007/

978-3-642-32820-6_29.

[143] Rashmi R Karandikar and MB Gudadhe. Comparative analysis of dynamic repli-

cation strategies in cloud. International Journal of Computer Applications, pages

26–32, 2016.

[144] Cristina L. Abad, Yi Lu, and Roy H. Campbell. DARE: Adaptive data replica-

tion for efficient cluster scheduling. In 2011 IEEE International Conference on

Cluster Computing (CLUSTER), Austin, TX, USA, September 26-30, 2011, pages

159–168. IEEE Computer Society, 2011. doi: 10.1109/CLUSTER.2011.26.

URL https://doi.org/10.1109/CLUSTER.2011.26.

[145] Najme Mansouri. Adaptive data replication strategy in cloud comput-

ing for performance improvement. Frontiers Comput. Sci., 10(5):925–935,

2016. doi: 10.1007/s11704-016-5182-6. URL https://doi.org/10.1007/

s11704-016-5182-6.

[146] Bahareh Alami Milani and Nima Jafari Navimipour. A comprehensive review

of the data replication techniques in the cloud environments: Major trends and

future directions. Journal of Network and Computer Applications, 64:229–238,

2016.

[147] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed Atiquz-

zaman. A survey of data replication techniques for mobile ad hoc network

databases. VLDB J., 17(5):1143–1164, 2008. doi: 10.1007/s00778-007-0055-0.

URL https://doi.org/10.1007/s00778-007-0055-0.

[148] Doug Terry. Replicated data consistency explained through Baseball. Com-

munications of the ACM, 56(12):82–89, 2013. doi: 10.1145/2500500. URL

https://doi.org/10.1145/2500500.

[149] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc

Shapiro. ’Cause i’m strong enough: reasoning about consistency choices in dis-

tributed systems. In Rastislav Bodík and Rupak Majumdar, editors, Proceed-

ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

https://doi.org/10.1007/978-3-642-32820-6_29
https://doi.org/10.1007/978-3-642-32820-6_29
https://doi.org/10.1109/CLUSTER.2011.26
https://doi.org/10.1007/s11704-016-5182-6
https://doi.org/10.1007/s11704-016-5182-6
https://doi.org/10.1007/s00778-007-0055-0
https://doi.org/10.1145/2500500

Bibliography 132

Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -

22, 2016, pages 371–384. ACM, 2016. doi: 10.1145/2837614.2837625. URL

https://doi.org/10.1145/2837614.2837625.

[150] Mark N. Wegman and Frank Kenneth Zadeck. Constant propagation with con-

ditional branches. In Proceedings of the 12th ACM SIGACT-SIGPLAN Sym-

posium on Principles of Programming Languages, POPL ’85, pages 291–299,

1985. ISBN 0-89791-147-4.

[151] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints

among variables of a program. In Alfred V. Aho, Stephen N. Zilles, and

Thomas G. Szymanski, editors, Conference Record of the Fifth Annual ACM

Symposium on Principles of Programming Languages, Tucson, Arizona, USA,

January 1978, pages 84–96. ACM Press, 1978.

https://doi.org/10.1145/2837614.2837625

	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Approach
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Background and Related Works
	2.1 Introduction to Coordination
	2.2 The Linda Coordination Model
	2.2.1 Operations
	2.2.2 Example

	2.3 The Klaim Coordination Language
	2.3.1 Klaim Syntax
	2.3.2 Operational Semantics of Klaim
	2.3.3 Example

	2.4 Data Replication
	2.5 The RepliKlaim Coordination Language
	2.5.1 RepliKlaim Syntax
	2.5.2 Operational Semantics of RepliKlaim
	2.5.3 Example

	2.6 Related Work on Coordination Languages with Replication
	2.7 Programming with Spaces (pSpaces)
	2.7.1 pSpaces Syntax
	2.7.2 GoSpace Syntax

	2.8 The Go Programming Language
	2.8.1 Concurrency
	2.8.2 Examples

	2.9 Replication Models and Techniques
	2.9.1 Replication models
	2.9.2 Replication Techniques

	2.10 Consistency Levels for Replicated Data
	2.11 Concepts of Static Program Analysis
	2.11.1 Static Analysis Techniques
	2.11.2 Abstract Syntax Trees
	2.11.3 Related Work on Static Analysis

	2.12 Program Transformation
	2.12.1 Related Work on Program Transformation

	3 RepligoSpaces: goSpace with Replicas
	3.1 Tuples and Templates
	3.2 RepligoSpaces Syntax
	3.3 Informal Semantics of RepligoSpaces
	3.4 Prototype Implementation

	4 Static Analysis and Program Transformation for Replication
	4.1 Automated Replication of Tuple Spaces
	4.1.1 Structures of Input and Output Programs
	4.1.2 Overapproximating the Sets of Target Spaces
	4.1.3 Program Transformation

	4.2 Illustrative Example

	5 Evaluation of Implementation
	5.1 Case study
	5.2 Experimental Setup
	5.3 Experimental Results

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

