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Abstract
In polymatrix coordination games, each player x is
a node of a graph and must select an action in her
strategy set. Nodes are playing separate bimatrix
games with their neighbors in the graph. Namely,
the utility of x is given by the preference she has for
her action plus, for each neighbor y, a payoff which
strictly depends on the mutual actions played by x
and y.
We propose the new class of distance polymatrix
coordination games, properly generalizing polyma-
trix coordination games, in which the overall utility
of player x further depends on the payoffs arising
from mutual actions of players v, z that are the end-
points of edges at any distance h < d from x, for a
fixed threshold value d ≤ n. In particular, the over-
all utility of player x is the sum of all the above
payoffs, where each payoff is proportionally dis-
counted by a factor depending on the distance h of
the corresponding edge.
Under the above framework, which is a natural gen-
eralization that is well-suited for capturing positive
community interactions, we study the social ineffi-
ciency of equilibria resorting to standard measures
of Price of Anarchy and Price of Stability. Namely,
we provide suitable upper and lower bounds for
the aforementioned quantities, both for bounded-
degree and general graphs.

1 Introduction
Polymatrix games [Yanovskaya, 1968] are a well-known uni-
versal framework for modeling multi-agent games, which
takes into account only pairwise interactions and thus allows
a succinct representation. Despite the constraint of consid-
ering only pairwise interactions, its formulation is general
enough to capture a number of settings, both of theoretical
and practical interest. In polymatrix games each player plays
a separate bimatrix game with every other player. In the re-
stricted version named polymatrix coordination games [Rahn
and Schäfer, 2015], an outcome of a bimatrix game gives the
same payoff w{x,y}(σx, σy) to the two players x and y in-
volved in it. Moreover, every player gets also an additional
payoff px(σx) that only depends on the strategy she chooses.

In this paper, we generalize polymatrix coordination
games, by allowing players to receive further payoff from the
interactions they are not personally involved in. The idea
here is that each player benefits not only from good rela-
tions with her immediate neighbors, but also from the pos-
itive environment stemming from good relations between her
immediate neighbors and their respective immediate neigh-
bors. A further generalization of this thought brings us to
a model in which the utility is computed as the sum of the
payoffs from the whole connected component of the inter-
action graph, up to a certain maximal distance d, where d
is a parameter of the model. Furthermore, it seems reason-
able to discount the amount of payoff received from non-
neighboring edges by a factor between zero and one, and to
make such factors decrease with the distance of the corre-
sponding edge/interaction. In other words, an agent x gets
also the payoff αh+1 · w{v,z}(σv, σz) for every edge {v, z}
at distance h < d from x, where αh+1 is the relative dis-
count factor. We call the arising model, that generalizes poly-
matrix coordination games, distance polymatrix coordination
games.

Distance polymatrix coordination games are able to cap-
ture many types of interactions in the real world. In fact,
several kinds of positive community effects easily fall within
their scope. For instance, members of a scientific community
obviously benefit from successful collaborations with their
colleagues (while at the same time having personal prefer-
ences of what they would like to work on). However, any
individual also benefits, albeit to a smaller degree, when his
close colleagues have successful collaborations that he is not
personally a part of. This is quite obvious when thinking
about the student–advisor relationship, but also noticeable for
researchers working at the same university or institution. A
further example comes from politics, where a person who be-
longs to a party profits not only from her direct contacts, but
also from the contacts of her contacts, etc. At the same time, it
is also common that the benefit obtained by relations at sec-
ond or higher distance level generate less payoff, which is
taken into account by our discount factors.

In the setting described above, we will be focusing on the
efficiency of the system. Our reference point for stability will
be k-strong Nash equilibria, which are action profiles from
which no group of up to k agents can simultaneously deviate
such that all of them profit from the deviation. Such a defini-
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tion also includes the standard notion of Nash equilibria for
k = 1. However, we will see that only for k ≥ 2 the ineffi-
ciency can be suitably bounded. This fact is not a real draw-
back, as some degree of communication between the agents
is to be expected in real-world scenarios, and especially in
the ones modeled by means of these games, which assume a
positive coordination effect among close agents. Our analysis
provides bounds which depend on k and on the discounting
factors for the part of the utility of the agents coming from
non-first-hand interactions.

1.1 Related Work
Polymatrix games were introduced several decades ago
[Yanovskaya, 1968] and have been thoroughly studied since,
both in some classical works [Howson, 1972; Eaves, 1973;
Howson and Rosenthal, 1974; Miller and Zucker, 1991] and
also more recently with a special focus on equilibria [Rahn
and Schäfer, 2015; Cai et al., 2016; Deligkas et al., 2017;
Deligkas et al., 2020].

Polymatrix coordination games [Rahn and Schäfer, 2015],
in which the bimatrix games have symmetrical payoffs and
players have individual preferences, are the basis of our
model. Indeed, they are encompassed by our model by setting
d = 1. Polymatrix coordination games are in turn an exten-
sion of a previously introduced model that did not include
individual preferences [Cai and Daskalakis, 2011].

Our model is also related to the so-called social context
games [Ashlagi et al., 2008], where the players’ utilities are
computed from the payoffs based on the underlying neighbor-
hood graph and an aggregation function. We consider more
than just the neighborhood of an agent, and we account the
player’s preference only for her own utility.

Related to our work are also (symmetric) additively separa-
ble hedonic games [Drèze and Greenberg, 1980] and hyper-
graph hedonic games [Aloisio et al., 2020], where the players
are embedded in a weighted graph and the utility is computed
as the sum of the edges or hyperedges towards members of the
same coalition. The difference from our model, however, is
that in hedonic games in general every coalition is a feasible
choice for every player, there are no individual preferences,
and the weights in each bimatrix are all equal to either 0 or to
a fixed value w.

Another model related to our work is the group activity se-
lection problem [Darmann et al., 2012; Darmann and Lang,
2017; Bilò et al., 2019], standing between polymatrix coordi-
nation games and hedonic games. Also here, in each bimatrix
all the weights are either 0 or a fixed value w, but there are
also individual preferences that depend on the chosen activity.

A generalization of polymatrix coordination games to hy-
pergraphs is called synchronization games [Simon and Wo-
jtczak, 2017], for which the existence and computability of
pure and strong Nash equilibria have been studied, without
investigating the degradation of social welfare.

Some negative results for our problem can be inherited
from additively separable hedonic games. For instance, com-
puting a Nash stable outcome is PLS-complete [Gairing and
Savani, 2010], while computing an optimal outcome and de-
termining the existence of a core stable, strict core stable,
Nash stable, or individually stable outcome are all NP-hard

problems [Aziz et al., 2011]. It has also been proven that
finding a pure Nash equilibrium in a polymatrix coordination
game is PLS-complete [Cai and Daskalakis, 2011].

The idea of obtaining utility from non-neighboring players
has been explored recently for a variant of hedonic games,
called distance hedonic games, that are not additively sepa-
rable, since the coalition size also plays a role in determining
the payoffs [Flammini et al., 2020]. They generalize frac-
tional hedonic games [Aziz et al., 2019; Elkind et al., 2020;
Monaco et al., 2020; Carosi et al., 2019; Bilò et al., 2018]
similarly as our model does with polymatrix games.

1.2 Our Contribution
We study the inefficiency of k-stable Nash equilibria of d-
distance polymatrix coordination games and provide suitable
bounds on both the Price of Anarchy and the Price of Sta-
bility. To the best of our knowledge, there are no previous
results of this kind in the literature that would apply to our
model. In Section 3, we give upper and lower bounds for
bounded-degree graphs, with the gap being reasonably small,
and in Section 4, a tight bound on the Price of Anarchy for
general graphs. Finally, in Section 5, we show that in general
graphs the Price of Stability is asymptotically equal to the
Price of Anarchy, meaning that the ineffieciency of k-strong
equilibria is fully characterized. The related proof technique
is in our opinion of independent interest and a valuable con-
tribution in itself, as it provides a general approach that can
potentially be used in other contexts.

We remark that our results apply also to the subclass of the
classical polymatrix coordination games, for which in turn we
get the first upper and lower bounds on the Price of Anarchy
for bounded-degree graphs, and the first asymptotically tight
lower bound on the Price of Stability for general graphs.

Our results are summarized in Table 1. Due to space con-
straints, some of the proofs are only sketched, while all the
details are deferred to the full version.

bounded-degree general

PoAk(LB)

PoAk(UB)

∑
h∈[d] αh∆(∆−1)h−1∑
h∈[d] αh(∆−1)bh/2c

2
∑
h∈[d] αh∆(∆− 1)h−1

(2+α2·(n−2))·(n−1)
k−1

PoSk(UB)

PoSk(LB)

↓
←

↓
2n−3 + α2(n−2)(n−3/2)

(1+α2)k

Table 1: Summary of our results, where UB and LB stands for upper
and lower bound, respectively. Furthermore, ∆ denotes the maximal
vertex degree in the bounded-degree case and αh, h ∈ [d], is the
discounting factor for edges at distance h − 1. The arrows denote
that a result follows from an adjacent result in the table.

2 Model and Definitions
Distance Polymatrix Coordination Games. Given an in-
teger d ≥ 1, a d-distance polymatrix coordination game

G = (G, (Σx)x∈V , (we)e∈E , (px)x∈V , (αh)h∈[d])
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is a tuple defined as follows:

• G = (V,E) is an undirected graph, where V is the set
of players and E the set of edges between players.

• For any x ∈ V , Σx is a finite set of strategies of player x.
A strategy profile σ = (σ1, . . . , σn) is a configuration in
which each player x ∈ V plays strategy σx ∈ Σx.

• For any edge {v, z} ∈ E, let w{v,z} : Σv × Σz →
R≥0 be the weight function that assigns, to each pair of
strategies σv, σz played respectively by v and z, a weight
w{v,z}(σv, σz) ≥ 0.

• For any x ∈ V , let px : Σx → R≥0 be the player-
preference function that assigns, to each strategy profile
σx played by player x, a non-negative real value px(σx),
called player-preference.

• Let (αh)h∈[d] be the distance-factors sequence of the
game, that is a non-negative sequence of real parame-
ters, called distance-factors, such that 1 = α1 ≥ α2 ≥
. . . ≥ αd ≥ 0.

In what follows, for the sake of brevity, given any strategy
profile σ, we will often denote w{v,z}(σv, σz) and px(σx)
simply as w{v,z}(σ) and px(σ), respectively.

For any h ∈ [d], let Eh(x) be the set of edges {v, z} such
that the minimum distance between x and one of the players
v and z is exactly h − 1. Then, for any x ∈ V , the utility
function ux : ×x∈V Σx → R of player x, for any strategy
profile σ is defined as

ux(σ) := px(σ) +
∑
h∈[d]

αh
∑

e∈Eh(x)

we(σ).

Remark 1. We observe that, if d = 1, we obtain the classical
polymatrix coordination games, where the overall utility of
player x only depends on payoffs we(σ) for e for which x is
an endpoint. Instead, if d > 1, the overall utility of player x
further depends on the discounted payoffs αh+1 · w{v,z}(σ)
arising by mutual actions of players v, z that are the endpoints
of edges at any distance h < d from x.

Given a strategy profile σ, the social welfare of σ is de-
fined as SW(σ) =

∑
x∈V ux(σ). A social optimum of game

G is a strategy profile σ∗ that maximizes the social welfare.
We denote by OPT(G) = SW(σ∗) the corresponding value.

k-strong Nash equilibrium. Given two strategy profiles
σ = (σ1, . . . , σn) and σ∗ = (σ∗1 , . . . , σ

∗
n), and a subset

Z ⊆ V , let σ Z→ σ∗ be the strategy profile σ′ = (σ′1, . . . , σ
′
n)

such that σ′x = σ∗x if x ∈ Z, and σ′x = σx otherwise. Given
k ≥ 1, a strategy profile σ is a k-strong Nash equilibrium of
G if, for any strategy profile σ∗ and any Z ⊆ V such that
|Z| ≤ k, there exists x ∈ Z such that ux(σ) ≥ ux(σ

Z→ σ∗).
Informally, σ is a k-strong Nash equilibrium if, for any coali-
tion of at most k players deviating, there exists at least one
player in the coalition that has no benefit. We denote the (pos-
sibly empty) set of k-strong Nash equilibria of G by NEk(G).

k-strong Price of Anarchy (PoA) and Price of Stability
(PoS). The k-strong Price of Anarchy of a game G is de-
fined as PoAk(G) := maxσ∈NEk(G)

OPT(G)
SW(σ) , i.e., it is the
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Figure 1: The underlying graph of the d-distance polymatrix coordi-
nation game from Example 1 for n = 8, where the weight function
has already been evaluated. In particular, the nodes playing strategy
s are depicted as squares, and the ones playing s∗ as hexagons.

worst-case ratio between the optimal social welfare and the
social welfare of a k-strong Nash equilibrium. The k-strong
Price of Stability of game G is defined as PoSk(G) :=

minσ∈NEk(G)
OPT(G)
SW(σ) , i.e., it is the best-case ratio between the

optimal social welfare and the social welfare of a k-strong
Nash equilibrium. Clearly, PoSk(G) ≤ PoAk(G), whereas
both quantities are not defined if NEk(G) = ∅.
Example 1. Consider a d-distance polymatrix coordination
game with n = 8 players whose underlying graph is a star
(shown in Figure 1 for n = 8). Let Σx = {s, s∗} for every
x ∈ [n], w{x,y}(σ) = 1 iff σx = σy = s∗ and 0 otherwise.
Furthermore, let p1(σ) = 1 iff σ1 = s and 0 otherwise, while
all other player-preference functions are constant and equal
to zero. Then, the strategy profile in which all players play s∗
is a k-strong Nash equilibrium for any k. The utility of player
1 for this strategy profile is n− 1, while for all other players
it is 1 for d = 1 and 1 + (n− 2)α2 for d ≥ 2.

3 k-strong PoA of Bounded-Degree Graphs
In this section we compute upper and lower bounds on the
k-strong Price of Anarchy of bounded-degree graphs. More
formally, a game G is ∆-bounded-degree if the degree of each
node/player x ∈ V in graph G is at most ∆.
Remark 2. For k = 1, d ≥ 1, and ∆ = 1, there exists
a simple ∆-bounded-degree d-distance polymatrix coordina-
tion game G such that PoAk(G) = ∞ [Rahn and Schäfer,
2015]. For sake of completeness, we present this example in
the full version. Thus, as it is not possible to bound the k-
strong PoA for k = 1, not even for bounded-degree graphs
and not even when ∆ = 1, in the rest of the paper we will
only focus on the estimation of the k-strong PoA for k ≥ 2.
Furthermore, if ∆ = 1, w.l.o.g. we can assume that the graph
consists of 2 agents and an edge between them. This special
case is encompassed by Section 4, so here we will assume
that ∆ ≥ 2.
Theorem 1. For any integer k ≥ 2 and any ∆-bounded-
degree d-distance polymatrix coordination game G having a
distance-factors sequence (αh)h∈[d], it holds that

PoAk(G) ≤ 2
∑
h∈[d]

αh ·∆ · (∆− 1)h−1. (1)

Remark 3. From Eq. (1), notice that the k-strong price of an-
archy of ∆-bounded-degree d-distance polymatrix coordina-
tion games, as a function of d, grows at most asO((∆−1)d).
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Before proving the theorem, we provide a lemma that gives
an upper bound on the social welfare of any strategy profile.
Lemma 1. For any strategy profile σ, it holds that SW(σ) ≤∑
x∈V px(σ) + 2

∑
h∈[d] αh · (∆− 1)h−1 ·

∑
e∈E we(σ).

Proof. For any e ∈ E and h ∈ [d], let nh(e) := |{x ∈ V :
e ∈ Eh(x)}|, i.e., nh(e) denotes how many players x ∈ V
have distance equal to h− 1 from e. We can see that∑

x∈V

∑
e∈Eh(i)

we(σ) =
∑
e∈E

nh(e) · we(σ). (2)

Furthermore, the number of players having distance h− 1 to
an edge e = {v, z} is at most equal to the number of simple
paths starting from either v or z and having length h−1. This
number is upper bounded by 2 · (∆− 1)h−1. Therefore,

nh(e) ≤ 2 · (∆− 1)h−1. (3)

By using (2) and (3), we get

SW(σ) =
∑
x∈V

px(σ) +
∑
h∈[d]

αh
∑
x∈V

∑
e∈Eh(x)

we(σ)

=
∑
x∈V

px(σ) +
∑
h∈[d]

αh
∑
e∈E

nh(e) · we(σ)

=
∑
x∈V

px(σ) +
∑
e∈E

∑
h∈[d]

αh · nh(e) · we(σ)

≤
∑
x∈V

px(σ) +
∑
e∈E

∑
h∈[d]

αh · 2 · (∆− 1)h−1we(σ)

=
∑
x∈V

px(σ) + 2
∑
h∈[d]

αh · (∆− 1)h−1
∑
e∈E

we(σ),

thus showing the claim.

Proof of Theorem 1. Fix k ≥ 2. Let σ and σ∗ be a worst-
case k-strong Nash equilibrium and a social optimum of G,
respectively. As k ≥ 2, σ is in particular also a 2-strong
Nash equilibrium. Thus, for any edge e ∈ E, we know that
there exists a player ve ∈ e, such that

uve(σ) ≥ uve(σ
e→ σ∗) ≥ pve(σ∗) + we(σ

∗). (4)

For any e ∈ E, let ze denote the player in e \ {ve}. As σ is
also a 1-strong Nash equilibrium, we have that

uze(σ) ≥ uze(σ
{ze}→ σ∗) ≥ pze(σ∗). (5)

By using (4) and (5), we get∑
e∈E

(uve(σ) + uze(σ))

≥
∑
e∈E

(pve(σ
∗) + pze(σ

∗) + we(σ
∗))

≥
∑
e∈E

we(σ
∗) +

∑
x∈V

px(σ∗)

≥

2
∑
h∈[d]

αh · (∆− 1)h−1

−1

· SW(σ∗) (6)

where (6) comes from Lemma 1. Furthermore, we get∑
e∈E

(uve(σ) + uze(σ)) ≤
∑
x∈V

∆·ux(σ) = ∆·SW(σ), (7)

since, in the left-hand part of (7), the utility of each player
is counted at most ∆ times. By putting together (6) and
(7), we get SW(σ) ≥ ∆−1 ·

∑
e∈E (uve(σ) + uze(σ)) ≥

∆−1 ·
(

2
∑
h∈[d] αh · (∆− 1)h−1

)−1

·SW(σ∗). This shows

the claim, since we get PoAk(G) = SW(σ∗)
SW(σ) ≤ 2

∑
h∈[d] αh ·

∆ · (∆− 1)h−1.

In the following theorem we provide a lower bound on
the k-strong Price of Anarchy, relying on a nice construction
from graph theory.

Theorem 2. For any k ≥ 2, ∆ ≥ 2, d ≥ 1, and any distance-
factors sequence (αh)h∈[d], there exists a ∆-bounded-degree
d-distance polymatrix coordination game G such that

PoAk(G) ≥
∑
h∈[d] αh ·∆ · (∆− 1)h−1∑
h∈[d] αh(∆− 1)bh/2c

. (8)

Remark 4. Notice that, if all the distance-factors are not
lower than a constant c > 0, from Eq. (8) we can conclude
that the k-strong price of anarchy of ∆-bounded-degree d-
distance polymatrix coordination games, as a function of d,
can grow as Ω((∆ − 1)d/2) (the formal proof of this remark
is deferred to the full version).

Proof of Theorem 2. Fix k ≥ 2, ∆ ≥ 2, d ≥ 1, and a
distance-factors sequence (αh)h∈[d]. By [Sachs, 1963], there
exists an undirected graph G = (V,E) such that G is ∆-
regular (i.e., every node in V has degree ∆), and the girth1

of G is at least max{2d+ 1, k + 1}. Let G be a ∆-bounded-
degree d-distance polymatrix coordination game such that:
(i) G is its underlying graph; (ii) (αh)h∈[d] is its distance-
factors sequence; (iii) each player x has two strategies, s and
s∗; (iv) for every edge e = {v, z} ∈ E and strategy profile
σ, we(σ) = 1 if both v and z play s∗ in σ, and 0 otherwise;
(v) for every x ∈ V , px(σ) =

∑
h∈[d] αh(∆ − 1)bh/2c if x

plays s in σ, otherwise px(σ) = 0. Let σ and σ∗ be the
strategy profiles in which all players play strategy s and s∗,
respectively. We present two technical lemmas, which use the
above defined properties of graph G.

Lemma 2. σ is a k-strong Nash equilibrium.

Proof sketch. We prove the claim by assuming that σ is not
a k-strong Nash equilibrium, i.e., there exists a coalition Z
with |Z| ≤ k such that all the players of Z get a benefit when
deviating simultaneously to their strategy in σ∗. As there
exists no simple cycle with ≤ k edges in G, we have that
the subgraph G′ induced by Z is a forest. We consider an
arbitrary tree T of G′ and we fix a root r of T . Then, we
consider a player y corresponding to one of the deepest leaves
of rooted tree T , and we assume w.l.o.g. that T is a complete
tree of height d whose root has ∆ children and each other
non-leaf node has ∆−1 children (see Figure 2 for a clarifying
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y r

T ′

Figure 2: The utility of a leaf node y in T , with root r, for ∆ = 4
and d = 4. Here, T ′ denotes a perfect 3-ary tree of height 4.

example). Finally, we show that player y does not get any
benefit from the deviation, thus reaching a contradiction.

Lemma 3. ux(σ∗) =
∑
h∈[d] αh · ∆ · (∆ − 1)h−1 for any

x ∈ V .

Proof sketch. As graphG is ∆-regular and the girth ofG is at
least 2d+1, we necessarily have that |Eh(x)| = ∆(∆−1)h−1

for every h ∈ [d]. To show the above equality, we observe that
the subgraph of G made of all the edges at distance at most
d − 1 from x (i.e., all the edges in ∪h∈[d]Eh(x)) is a perfect
tree of depth d rooted in x such that each non-leaf node has
degree ∆.

By using the above equality, for every x ∈ V it holds that
ux(σ∗) =

∑
h∈[d] αh|Eh(x)| =

∑
h∈[d] αh∆(∆ − 1)h−1.

From Lemma 2 and 3, we get PoAk(G) ≥
∑
x∈V ux(σ∗)∑
x∈V ux(σ) ≥∑

h∈[d] αh·∆·(∆−1)h−1∑
h∈[d] αh(∆−1)bh/2c

.

4 k-strong PoA of General Graphs
In this section, we provide tight bounds on the k-strong Price
of Anarchy when there is no particular assumption on the un-
derlying graph of the considered game. Such bounds depend
on k, on the number of players n, and on the value α2 of the
distance-factors sequence.
Theorem 3. For any integer k ≥ 2 and any d-distance poly-
matrix coordination game G having a distance-factors se-
quence (αh)h∈[d], we have PoAk(G) ≤ (2+α2·(n−2))·(n−1)

k−1 .

Before proving the theorem, we provide a lemma that, sim-
ilarly to Lemma 1, gives an upper bound on the social welfare
of any strategy profile.
Lemma 4. For any strategy profile σ, it holds that SW(σ) ≤∑
x∈V px(σ) + (2 + α2 · (n− 2)) ·

∑
e∈E we(σ).

Proof sketch. We define nh(e) as in the proof of Lemma 1,
and know that Eq. (2) holds. Furthermore, one can eas-
ily show that, for any e ∈ E, |n1(e)| = 2, and therefore∑d
h=2 nh(e) =

∑d
h=1 nh(e)− n1(e) ≤ n− n1(e) = n− 2.

From here, by using Eq. (2), and the fact that α1 = 1 and
α2 ≥ αh for any h ∈ [d] \ {1}, we get the claim.

Proof of Theorem 3. Fix k ≥ 2. Let σ and σ∗ be a worst-
case k-strong Nash equilibrium and a social optimum of G,
respectively. As σ is a k-strong Nash equilibrium, we have
that, for any Z ⊆ V with |Z| = k, there exists a player

1the length of a shortest cycle contained in the graph

z1(Z) ∈ Z such that uz1(Z)(σ) ≥ uz1(Z)(σ
Z→ σ∗). Fur-

thermore, there also exists a player z2(Z) ∈ Z(2) := Z\{z1}
such that uz2(Z)(σ) ≥ uz2(Z)(σ

Z(2)→ σ∗). If we proceed it-
eratively, we have that, for any i ∈ [k], there exists a player
zi(Z) ∈ Z(i) := Z \ {z1(Z), . . . , zi−1(Z)} such that

uzi(Z)(σ) ≥ uzi(Z)(σ
Z(i)→ σ∗). (9)

Before continuing the proof, we present two technical lem-
mas below.

Lemma 5.
(
n−1
k−1

)
· SW(σ) =

∑
Z⊆V
|Z|=k

∑
i∈[k] uzi(Z)(σ).

Lemma 6. It holds that∑
Z⊆V
|Z|=k

∑
i∈[k]

uzx(Z)(σ
Z(x)→ σ∗)

≥
(
n− 1

k − 1

)∑
x∈V

px(σ∗) +

(
n− 2

k − 2

)∑
e∈E

we(σ
∗).

Proof of Theorem 3 (cont.). By putting together the auxiliary
lemmas, we get(

n− 1

k − 1

)
· SW(σ) =

∑
Z⊆V :|Z|=k

∑
i∈[k]

uzi(Z)(σ) (10)

≥
∑

Z⊆V :|Z|=k

∑
i∈[k]

uzi(Z)(σ
Z(i)→ σ∗) (11)

≥
(
n− 1

k − 1

)∑
x∈V

px(σ∗) +

(
n− 2

k − 2

)∑
e∈E

we(σ
∗) (12)

≥
(
n− 2

k − 2

)(∑
x∈V

px(σ∗) +
∑
e∈E

we(σ
∗)

)

≥
(
n− 2

k − 2

)
· (2 + α2 · (n− 2))−1 · SW(σ∗), (13)

where (10), (11), (12), and (13), follow by Lemma 5, Eq. (9),
Lemma 6, and Lemma 4, respectively. By exploiting (13), we

get PoAk(G) ≤ (n−1
k−1)·(2+α2·(n−2))

(n−2
k−2)

= (2+α2·(n−2))·(n−1)
k−1 ,

thus showing the claim.

In the following theorem, we provide a tight lower bound.
Theorem 4. For any k ≥ 2, d ≥ 1, n ≥ 2, and any distance-
factors sequence (αh)h∈[d], there is a d-distance polymatrix
coordination game G with PoAk(G) ≥ (2+α2·(n−2))·(n−1)

k−1 .

Proof sketch. Fix d ≥ 1, k ≥ 2, n ≥ 2, and a distance-factors
sequence (αh)h∈[d]. Let G be the d-distance polymatrix co-
ordination game of Example 1, having n players, (αh)h∈[d]

as distance-factors sequence, and defined as follows: (i) the
underlying graph G is a star in which all the players x ≥ 2
are only connected to player 1; (ii) each player can play two
strategies s, s∗ only; (iii) we(σ) = 1 if all the players in e
play strategy s∗ under strategy profile σ, and we(σ) = 0 oth-
erwise; (iv) p1(σ) = k − 1 if player 1 plays strategy s under
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strategy profile σ, and p1(σ) = 0 otherwise; (v) px(σ) = 0
for any strategy profile σ and x ≥ 2. Let σ and σ∗ be the
strategy profiles in which all players play strategy s and s∗,
respectively. We can show that σ is a k-strong Nash equilib-
rium and that PoAk(G) ≥ SW(σ∗)

SW(σ) = (2+α2·(n−2))·(n−1)
k−1 .

5 The k-strong PoS of General Graphs
In this section we show that there exists a d-distance poly-
matrix coordination game G such that PoSk(G) is asymptoti-
cally equal to the upper bound on PoAk shown in Theorem 3,
thus we completely characterize the inefficiency of d-distance
polymatrix coordination games for general graphs.

The modus operandi that we use to create the lower bound
for PoSk is to start from the lower bound instance on PoAk
provided in the proof of Theorem 4, in which the optimal
outcome is a k-strong Nash equilibrium, and to suitably trans-
form it in such a way that all the outcomes with social welfare
close to the optimum, which we call set of almost optimal out-
comes, cannot be stable. This is accomplished by inserting a
cycle of improvement steps involving these solutions, that ba-
sically do not influence the social welfare.

This technique is of independent interest, as it provides a
general approach that can be potentially used in other con-
texts. Thus, we believe it is a valuable contribution in itself.

Theorem 5. For any n ≥ 6, there exists a d-distance
polymatrix coordination game G such that PoSk(G) =
2n−3 + α2(n−2)(n−3/2)

(1+α2)k .

Proof. Let G be defined as follows. The underlying graph G
has n nodes and 2n− 3 edges, where

E = {{1, h}, {2, `} : h ∈ {2, . . . , n}, ` ∈ {3, . . . , n}}

(see Figure 3), and Σx = {1, 2, 3} for any x ∈ [n], i.e.,
each player can play the same three strategies. We call bot-
tom layer, medium layer, and top layer the strategy profile in
which every player plays strategy 3, 2, and 1, respectively.
We also shortly refer to strategies 3, 2, and 1 by bottom,
medium, and top, respectively.

We now define for each layer the player-preference and
weight functions, where each entry that is not mentioned, we
assume to be null. At the bottom layer p1(3) = p2(3) =
(1 + α2)(1 + ε). At the medium layer, w{1,2}(2, 2) =

w{1,h}(2, 2) = w{2,h}(2, 2) = 1+ε
k , where 3 ≤ h ≤ n.

At the top layer p1(1) = p2(1) = 1
k , w{1,h}(1, 1) =

w{2,h}(1, 1) = 1+ε
k , where 3 ≤ h ≤ n. Non-null edges

between the layers are w{1,2}(1, 2) = 2ε
k , w{1,h}(1, 2) =

w{1,h}(2, 1) = w{2,h}(1, 2) = w{2,h}(2, 1) = 1+ε
k , where

3 ≤ h ≤ n.

1 2

3 4 5 6 7

Figure 3: Graph G from the proof of Theorem 5 for n = 7.

player 1

player 2
top medium

top 1
k ,

1
k

1+2ε
k , 2ε

k

medium 0, 1
k

1+ε
k , 1+ε

k

Table 2: The part of the utility of player 1 and 2 coming from the
player-preference and the weightw{1,2}(σ) for σ1, σ2 ∈ {1, 2}. No
strategy profile is stable, as always at least one player can improve
her utility by deviating.

Lemma 7. The bottom layer is a k-strong equilibrium with
social welfare 2(1 + α2)(1 + ε).

Lemma 8. All the k-strong equilibria have the same social
welfare 2(1 + α2)(1 + ε).

Proof sketch. If there exists an equilibrium where both play-
ers 1 and 2 are at the bottom, then the social welfare is
2(1 + α2)(1 + ε), and we do not investigate further. If one of
the players 1 and 2 is not at the bottom, then all the players
will move to medium or top, starting from the ones different
from 1 and 2. Finally, if both are not at the bottom, then at
least one of the players 1 and 2 will always move. This is
so, because each of them gets a constant utility from the re-
maining players, so they move just according to their bimatrix
game, whose values are reported in Table 2.

The following lemma concludes the theorem.

Lemma 9. The ratio between the optimum social wel-
fare and the social welfare given by one of the k-strong
Nash stable strategy profiles, e.g., the bottom layer, is
2n−3 + α2(n−2)(n−3/2)

(1+α2)k , giving the PoSk(G).

6 Conclusion
In this work, we have introduced the class of d-distance poly-
matrix coordination games, and studied their performance
(by means of the k-strong Price of Anarchy and Stability).
Some open problems left by our work are that of closing
the gap between the upper and lower bound on the strong
Price of Anarchy for bounded-degree graphs, and provid-
ing better bounds on the strong Price of Stability specifically
for the case of bounded-degree graphs. Another interesting
research direction is extending the idea of obtaining utili-
ties from non-neighboring players (as in [Flammini et al.,
2020] and our work) to other graphical games [Kearns, 2007;
Bilò et al., 2010], and then studying the social performance
of their equilibria in general graphs or specific topologies.
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