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Resumé

Les travaux de cette thése concernent ’analyse de systemes de jeu a champ moyen
(MFG) du premier ordre avec controle de 'accélération et I’étude du comportement en
temps moyen long de systemes de controle de type sous-riemannien.

Plus précisément, dans la premiére partie nous commencons par étudier le caractere
bien posé du systeme MFG associé a un probléeme de commande a équation linéaire en
espace et en état de commande. En particulier, nous prouvons ’existence et 1'unicité
des solutions généralisées et nous étudions également leur régularité. Ensuite, nous
nous concentrons sur le systeme MFG avec controle de I'accélération, un cas particulier
de celui décrit ci-dessus, et nous étudions le comportement en temps moyen long des
solutions en montrant la convergence vers une constante ergodique. Un tel systeme
MFG est donné par

—ouT (t, z,v) + %’DUUT(t,:B,’U)’Z — (Dyu (t, 2,v),v)

= F(x,v,m]), dans [0, 7] x T x R?
oml — (v, D,ml) — div (mtTDUuT(t,a:,v)> =0, dans [0, T] x T?¢ x R?
ul (T, x,v) = g(z,v,mL), m(z,v) =mo(z,v) dans T x R¢,

Ici, comme pour I'analyse précédente, le principal probléeme est le manque de convexité
et de coercivité stricte du Hamiltonien par rapport a la variable de quantité de mou-
vement. Cela conduit par exemple a la non-existence de solutions de viscosité continue
aux équations ergodiques de Hamilton-Jacobi et, par conséquent, ce permet pas de
définir le systeme MFG ergodique au sens classique. Nous concluons cette premiere
partie en établissant un lien entre le systeme MFG avec controle de I'accélération et
le systeme MFG classique. Pour ce faire, nous étudions le probleme de perturbation
singuliere pour le systeme d’accélération MFG, c’est-a-dire que nous analysons le com-
portement des solutions aux systémes de jeu a champ moyen dont le cotut d’accélération
devient nul. Encore une fois, nous résolvons le probleme en utilisant des techniques de
calcul des variations en raison du probleme résultant du manque de convexité et de
coercivité strictes du Hamiltonien par rapport a la variable de quantité de mouvement.

Dans la deuxieme partie, nous nous concentrons sur les systemes de controle affine
sans dérive (de type sous-riemannien), ¢’est-a-dire les dynamiques controlées de la forme

y(t) = Z u; fi(y(t))
=1

ou les f; sont m € {1,---,d} champs de vecteurs définis sur R?, et les contrdles u;
sont des fonctions mesurables sur R™. A la différence du cas de l'accélération, nous
montrons qu’il existe une constante critique et que 1’équation ergodique de Hamilton-
Jacobi associée a une telle constante qui possede des solutions de viscosité continues.
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Pour cela nous faisons appel a la géométrie sous-riemannienne sur I’espace d’état. Tou-
jours en utilisant les propriétés de cette géométrie, nous définissons le semi-groupe de
Lax-Oleinink et nous prouvons l'existence d’un point fixe de ce semi-groupe. Nous con-
cluons cette partie, et donc cette these, en étendant la célebre théorie d’Aubry-Mather
au cas du systeme de controle sous-riemannien. Nous montrons d’abord une formule
de représentation variationnelle de la constante critique et, a partir de celle-ci, nous
définissons l’ensemble de Mather et I’ensemble d’Aubry. En utilisant une approche
dynamique, nous étudions les propriétés analytiques et topologiques de tels ensembles
comme, par exemple, la différentiabilité horizontale de la solution critique en tout point
se trouvant dans 'un des deux ensembles. Enfin, nous appliquons ces résultats pour
étudier le caractere bien posé du systeme MFG ergodique associé a de tels systemes de
controle.
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Abstract

The work in this thesis concerns the analysis of first-order mean field game (MFG)
systems with control of acceleration and the study of the long time-average behavior
of control systems of sub-Riemannian type.

More precisely, in the first part we begin by studying the well-posedness of the MFG
system associated with a control problem with linear state equation. In particular, via
a relaxed approach, we prove the existence and the uniqueness of mild solutions and
we also study their regularity. Then, we focus on the MFG system with control of
the acceleration, a particular case of the one above, and we investigate the long time-
average behavior of solutions showing the convergence to the critical constant. Such
MFG system is given by

—oT (t,z,0) + 3| Dyul (t,2,0) > — (DyuT (¢, z,v),v)

= F(z,v,m}), in [0, 7] x T¢ x R?
oyml — (v, Dym]) — div (mngvuT(t, x,v)) =0, in [0, 7] x T¢ x R4
’LLT(T,:E,’U) :g(:r,v,m;:ﬁ), mg(xﬂj) :m0($,’0) in T x R

Here, as for the previous analysis, the main issues are the lack of strict convexity and
coercivity of the Hamiltonian with respect to the momentum variable. Indeed, for
instance, when studying the asymptotic behavior of the control system this lead us to
a non existence result of continuous viscosity solutions to the ergodic Hamilton-Jacobi
equation. Consequently, it does not allowed us to the define the ergodic MFG system
as one would expect. We conclude this first part establishing a connection between the
MFG system with control of acceleration and the classical one. To do so, we study the
singular perturbation problem for MFG system of acceleration, that is, we analyze the
behavior of solutions to the system when the acceleration cost goes to zero. Again, we
solve the problem by using variation techniques due to the problems arising from the
lack of strict convexity and coercivity of the Hamiltonian with respect to the momentum
variable.

In the second part, we concentrate the attention to drift-less affine control systems
(sub-Riemannian type), i.e., controlled dynamics of the form

Y(t) = uifi(y())
=1

where f; are m € {1,---,d} vector fields defined on R?, and the controls u; are mea-
surable functions on R™. Differently from the case of acceleration, we prove that there
exists a critical constant and the ergodic Hamilton-Jacobi equation associated with such
a constant has continuous viscosity solutions. This is possible appealing to the prop-
erties of the sub-Riemannian geometry on the state space. Still using the properties of

ix



this geometry we finally define the Lax-Oleinink semigroup and we prove the existence
of a fixed point of such semigroup. We conclude this part, and thus this thesis, extend-
ing the celebrated Aubry-Mather Theory to the case of sub-Riemannian control system.
We first show a variational representation formula for the critical constant and from
this we define the Aubry set. By using a dynamical approach we study the analytical
and topological properties of such sets as, for instance, horizontal differentiability of
the critical solution at any points lying in such a set.
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Introduction

Before discussing the state of the art and introducing the topics covered in this thesis,
we proceed to motivate why we get interested in these problems.

The work is divided in two parts: the first is devoted to the systematic study
of Mean Field Game (MFG) systems with control on the acceleration; in the second
we address the problem of long time-average behavior of solutions to Hamilton-Jacobi
equations associated with sub-Riemannian control systems and Aurby-Mathery Theory
for these latter. We will explain below how these two topics are related.

Let us start describing the first. In the recent years there have been an increasing
attention to the study of multi-agent systems with control on the acceleration, i.e.,
models of interacting individuals in which each player wants to control their acceleration
instead of the classical control of the velocity. For this reason in Chapter 2 we study
the well-posedness of MFG systems associated with such control problems. By using a
relaxed notion of Nash equilibrium (MFG equilibrium) we provide existence, uniqueness
and regularity results for the so-called mild solutions. We conclude by investigating the
connections between these solutions and the PDEs system. Then, the aim of Chapter 3
is to study the long time-average behavior of solutions to the MFG system studied in
Chapter 2 as the time horizon goes to infinity. The main issue for this is the lack of
small time controllability that prevents to define the associated ergodic MFG system
in the standard way. We conclude this first part addressing the problem of singular
perturbation for ”pure” control systems and for MFG with control of acceleration in
Chapter 4. In particular, solving this problem we found a relation between MFG of
acceleration and the classical system.

At this point, the difficulties in Chapter 3 lead us to the following question: are
these issues common to more general control systems than the control of acceleration?
To address this problem, we start with a general drift-less control system and in Chap-
ter 5 we address the problem of the long time behavior of solutions to Hamilton-Jacobi
equations. Note that, the case of control of acceleration does not fit into this class of sys-
tems since it has a linear non-zero drift. However, what we immediately realize is that
sub-Riemannian control systems are locally small time controllable. So, by using new
ideas which relies on the different geometry on the state space we prove the existence
of a critical constant and of a critical viscosity solution to the ergodic Hamilton-Jacobi
equation. Moreover, we study the well-posedness of the Lax-Oleinik semigroup and we
prove the existence of a fixed-point. Finally, in Chapter 6 we extend the well-known
Aubry-Mather theory for Tonelli Hamiltonian systems to the sub-Riemannian ones.

More details on the results and on the difficulties to achieve them are given in the
following sections.

xiii



Mean field games

Since MFG is the common subject of the first part of this thesis, we introduce here the
argument and describe the state of the art.

Game theory is a branch of mathematics which aims to describe the behavior of
a group of interacting agents. Fix, for instance, this number to N € N. Each player
satisfy a certain dynamics that depends on the interaction with the other agents and
they choose their strategy in order to minimize/maximize a certain cost functional.
A fundamental tool in the analysis of these models is the notion of Nash equilibria,
introduce by Nash in [62]. Roughly speaking, a strategy is called a Nash equilibrium if
each agent is not interested to be the unique who changes strategy.

However, the study of the N-players games lead to several issues as N becomes
large and, in this case, we are interested in describing the behavior of Nash equilibria
as N — oo. In order to overcame these difficulties, MFG system has been introduced
by J.M. Lasry and P.L. Lions in [54, 55, 56] and a similar analysis was also developed,
in the same years but independently, by P. Caines, M. Huang and R. Malhamé in
[47, 48]. At the macroscopic level the model turns out to be described by a systems
of PDEs: an Hamilton-Jacobi equation which describes the single agent’s strategy
and a Kolmogorov Fokker-Planck equation (continuity equation) which explains how
the distribution of players evolves in time according to the optimal strategy provided
by the first equation. Classically, the mean-field interaction term that coupled the two
equation is given by a function of space and measure and, moreover, the drift appearing
in the continuity equation depends on the value function satisfying the Hamilton-Jacobi
equation. Let H : R x R? — R be an Hamiltonian function, let F : R? x 2(R?) — R
be the coupling function describing the interaction of the agents, let o € 2(R%) be
the initial distribution of players in space and let G : R x Z(R?) — R be the terminal
costs. Then, the simplest for of this system is the following

—Owu(t,z) + H(x, Dyu(t,z)) = F(x,ms), (t,z)€[0,T] x R?

dymy — div (myDpH (z, Dyu(t,z))) =0,  (t,z) € [0,T] x R?

mo = po, w(T,z)=G(z,mr), r € R%,
Let us describe heuristically the meaning of such a system. To do so, let L : R? x
R? — R be the Lagrangian associated with the Hamiltonian H by taking the Legendre

Transform. Then, each player choose is own strategy in order to minimize the cost
functional of the form

T
| (601406 + FO(9).m0) ds+ G2 (D), me)
where the control system is of the following simple form

Y(s) = u(s), (s €[0,T]).

There is by now an extensive literature concerning MFG system of the above form
concerning problems as existence, uniqueness and regularity of solutions depending
on the assumptions on F'. For an overview on the subject we refer the reader to
[16, 35, 36, 46, 28], which is however far from being complete.

So far, most of the literature concerns the analysis of the above system describing
models in which the agents has control only of their velocity. However, in many ap-
plications, see for instance [39], one might be interested in studying systems in which
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players needs to have control on their acceleration. In this case, proceeding heuristi-
cally as before, we have that each agent choose is strategy in order to minimize a cost
functional of the form

T
/t (L(y(5),4(s),4(s)) + F(v(5),¥(s),ms)) ds + G(y(T), mr)

where the control system now has the form

Hence, the PDEs system is given by

—Ou(t, z,v) + H(x,v, Dyu(t, z,v), Dyu(t, z,v)) = F(x,v,my), (t,x,v) € [0,T] x R*
Oymy — divgy (myDpH (z, v, Dyu(t, z,v), Dyu(t, ,v))) =0, (t,z,v) € [0,T] x R*
mo = o, uw(T,z,v)=G(z,v,mr), (z,v) € R,

Note that, now the state space is not R¢ but R? x R? which takes into account not
only the position but also the dependence of the strategy on the velocity v € RY.
Consequently, we also have that for any ¢ € [0,7] the distribution m; is a probability
measure on R% x R?.

This is what motivated us at beginning of this project to analyze this problem and
it is what Chapter 2 concerns, i.e., the study of the existence, uniqueness and regularity
of solutions to the MFG system with control of acceleration. In particular, we consider
the acceleration model as embedded into a more general setting which is the case of
linear state equation linear, that is, a dynamics of the form

V() = Av(t) + Bu(t)

for some constant matrices A and B.

MFG for linear control systems

Fixed a time horizon T" > 0, we consider players having the following dynamics the
whole space R?
V() = Ay(t) + Bu(t), Vitel0,T] (1)

where A and B are real matrices and u is a measurable control function. Each player
aims to minimize a cost functional of the form

T
/0 Liy(s),u(s),ms) ds + G(v(T), mr), (2)

where, for each time ¢ € [0,7], the probability measure m; on R? represents their
distribution. In this framework the MFG system reads as

-0V (t,x) + H(x, D,V (t,x),ms) =0, (t,x) € [0,T] x RY
Oymy + div (mtDpH(as, DxV(t,x),mt)) =0, (t,v)€[0,T]xRY (3)
mo =mg, V(T,z)=G(x,mr), VzcR?
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where the Hamiltonian H : R? x R? — R defined by

H(x,p,m)= sup { — (Az + Bu,p) — L(x,u,m)}.
ucRk

One can immediately observe that if the Lagrangian L is of Tonelli type (strictly convex
and coercive w.r.t. control variable) then H fails to be Tonelli. Hence, using the
standard approach in MFG via fixed-point methods would lead us to several issues.
Therefore, in order to overcome this issue we solve the problem via the Lagrangian
approach (see, for instance, [18] and [60]). That is, we define the metric space

Iy = {7 € AC(]0,T7) : ~(t) satisfy (1), v(0) € Rd}?

endowed with uniform metric || - ||oo and we consider Borel probability measures 7
supported on I'y. Then, we restrict the attention to probability distributions on R% of
the form m; = e;fn where e; : I'r — R? denotes the evaluation map and # stands for the
push-forward operator. This correspond to consider only flow of measures concentrated
on trajectories satisfying (1).

Let us describe the results of this work. The first problem we deal with is the
definition of MFG equilibria for this class of problems. So, given an initial distribution
of players mg € 2(R%) we say that n € 2(I'r) is a MFG equilibrium if it is supported
on minimizing curves of (2), with starting point in spt(mg). Then, we prove that such
equilibria exist (Theorem 2.13) and having this at our disposal we give the definition of
mild solutions, (V,m) € C([0,T] x RY) x C([0,T]; Z(R?)), of our MFG problem. For
these, we study the existence, the uniqueness and the regularity. In particular, we show
that {en}ico,r) 18 1-Hélder continuous in time (Theorem 2.17) and, consequently,
the value function V is locally semiconcave on [0,7] x R? linearly in space and with
fractional semiconcave modulus in time (Theorem 2.18). Moreover, by standard tools
of optimal control theory we get that V' is locally Lipschitz continuous (Theorem 2.20).

Under an extra growth assumption on the Lagrangian, we also show that there exists
a MFG equilibrium such that the flow of measures {e:fin}yc[o,7) is Lipschitz continuous
in time. This yields to linear semiconcavity estimates for the value function V' both in
space and in time. In conclusion, we show that the notion of mild solution is strictly
related with the classical definition of weak solutions for the MFG system. Indeed, we
prove that they coincide, in the sense that: a mild solution is a weak solution and vice
versa (Theorem 2.30).

After this work was submitted, similar results were obtained in [1] for the special
case of mean field games with control on acceleration.

Ergodic behavior of MFG of acceleration

In this Chapter we focus the attention on a special case of system (2.21). Indeed, we
consider the case of control of acceleration which can be written as

Fol = ol Gl B L) e

xXvi



In this case, we have that the MFG system is given by

—opuT (t,2,v) + 3| DyuT (t,2,0) > — (Dyul (t,2,v),v)

= F(z,v,m{), in [0, 7] x T x R )
8tmg‘ - <'U7 Dxmg‘> —div <mg‘D’UuT(t’ x, ’U)) — 0, in [O7 T] % r]rd % Rd ( )
UT(T7 x, U) = g(l‘, v, m%), mg(x’ 'U) = mo(ﬁf, 1)) in ’]I‘d % Rd.

During the last years, the question of the long time behavior of solutions of (stan-
dard) MFG systems has attracted a lot of attention. Results describing the long-time
average of solutions were obtained in several context: see [30, 31], for second order
systems on T¢, and [29, 19, 20], for first order systems on T¢, R? and for state con-
straint case respectively. Recently, Cardaliaguet and Porretta studied the long time
behavior of solutions for the so-called Master equation associated with a second order
MFG system, see [34]. In view of the results obtained in these works one would expect
the limit of u” /T to be described by the following ergodic system

$|Dyu(z,v) > = (Dyu(z,v),v) = F(z,v,m), (z,v) € T?x R?
— (v, Dym) — div (mDvu(x,v)> =0, (z,v) € T¢ x R? (5)
Jpagga m(dz, dv) = 1.

The main issue of this work is that this ergodic system makes no sense. Indeed, as
we explain below, even for problems without mean field interaction, we cannot expect
to have a solution to the corresponding ergodic Hamilton-Jacobi equation (the first
equation in (5)). As the drift of the continuity equation (the second equation in (5)) is
given in terms of solution to the ergodic Hamilton-Jacobi equation, there is no hope to
formulate the problem in this way. As far as we know, this is the first time this kind
of problem is faced in the literature.

To overcome the issue just described, we first study the ergodic Hamilton-Jacobi
equation without mean field interaction. More precisely, in the first part we investigate
the existence of the limit, as 7" tends to infinity, of u” (0, -,-)/T, where now u! solves
the Hamilton-Jacobi equation (without mean field interaction)

—opuT (t,z,v) + 3| Dy’ (¢, z,0) > = (Dpu” (t,2z,v),v) = F(z,v), in[0,T]x T¢ x R?
u? (T, z,v) = 0in T¢ x R,

Here F : R? x R? — R is periodic in space (the first variable) and coercive in velocity
(the second one). Following the seminal paper [57], it is known that the existence of
the limit of u”' /T is related with the existence of a corrector, namely to a solution of
the ergodic Hamilton-Jacobi equation:

1
—(Dgu(x,v),v) + ileu(x,v)P = F(z,v)+¢ (z,v) € xT? x RY,

for some constant ¢. However, we stress again the fact that due to the lack of coercivity
and due to the lack of small time controllability of our model, we do not expect the
existence of a continuous viscosity solutions of the ergodic equation (see, however,
this reference [40] on this point). This problem has been overcome in several other
frameworks: we can quote for instance [63, 33, 68, 27, 13, 9, 6, 10, 17, 45, 44], for related
problems see also [5, 53] and the references therein. Following techniques developed
in [10] we prove in the first part of Theorem 3.2 that the limit of u? /T exists and is
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equal to a constant. However, this convergence result does not suffice to handle our
MFG system of acceleration: indeed, we also need to understand, when the map F' also
depends on the extra time dependent parameter {m;};>0, how this ergodic constant
depends on this. For doing so, we follow ideas from weak-KAM theory (see for instance
[41]) and characterize the ergodic constant in terms of closed probability measures:
namely, we prove in the second part of Theorem 3.2 that, for any (z,v) € T4 x RY,

T 1
lim v O.z0) inf/ (]w\2 + F(x,v)) p(dx, dv, dw)
T—+o00 T HEC JTdwRdxRE 2

where C is the set of Borel probability measures g on T¢ x R? with suitable finite
moments and which are closed in the sense that, for any test function ¢ € C2°(T¢ x R?),

/deRded <<Dx90(:n,v),v> + (Dyp(z,v), w>) n(dz, dv,dw) = 0,

(see also Definition 3.1).

We now come back to our MFG of acceleration (4). In view of the characterization of
the ergodic constant for the Hamilton-Jacobi equation without mean field interaction,
it is natural to describe an equilibrium for the ergodic MFG problem with acceleration
as a fixed-point problem on the Wasserstein space. We say that (5\, g) € RxCisa
solution of the ergodic MFG problem of acceleration if

1
A= inf/ <\w[2 —|—F(x,v,7rﬁﬂ)> wu(dz, dv, dw)
HEC JTd«Rd xR 2

1 — _
— /Td . <2!wl2+F(a:,v,7rtiu)> fi(dz, dv, dw),
XIR®X

where 7 : T*xR?xR¢ — T? xR? is the canonical projection onto the first two variables.
We show that such an ergodic MFG problem with acceleration has a solution and that
the associated ergodic constant A is unique under the following monotonicity condition
(first introduced in [54, 55]): there exists a constant Mp > 0 such that for any my,
my € P (Td X Rd)

/ (F(z,v,m1) — F(z,v,m2)) (m1(dz,dv) — ma(dz,dv))
TdxR?

> MF (F($7U>ml) —F($,U,m2))2 dl’d’U,
TdxRd

see (1) in Theorem 3.5. The main result of this Chapter is the fact that, if (ul, m7T)
solves the MFG system of acceleration (4), then u”(0,z,v)/T converges, as T tends
to infinity, to the unique ergodic constant A\ of the ergodic MFG problem, see (2) in
Theorem 3.5. The main technical step for this is to rewrite the MFG system in terms
of time-dependent closed measure (a kind of occupation measure in this set-up), see
Theorem 3.25, and to understand the long-time average of these measures.

Singular perturbation problem

Here we address the singular perturbation problem for control systems of acceleration
and of MFG systems with control on the acceleration. The main goal of this analysis
is the behavior of such MFG system when the acceleration costs goes to zero. So,

xviii



the study of the singular problem without mean-field interaction is used to understand
the expected behavior of the system. Hence, we first study the limit behavior of the
solutions to the Hamilton-Jacobi equation

—0uf + 5= | Dyuf|? — (Dguf,v) — Lo(z,v) =0, (t,z,v) € [0,T] x R*
us (T, z,v) = g(x), (z,v) € R*.

as € — 0. As already pointed out in the previous Chapters, the Hamiltonian

1
H(%U,Pz,Pv) = 27€|pv|2 - (px,’U> - Lo(ﬁ,v)

fails to be strictly convex and coercive w.r.t. momentum variables. So, also in this case,
we solve the problem by using variational technics observing that the value function u®
can be represented as

o) = it { " (EBOR + Lo(r(),3() ds+ ST}

F()=v

However, since this represents the test bench for the study of the singular perturba-
tion problem for MFG with control of acceleration we immediately focus the attention
on the latter describing it in details. The system we consider here is given by

—0puf + 5=|Dyuf|? — (Dyuf,v) — Lo(z,v,mf) =0, (t,z,v) €[0,7] x R*
Oy — (Dops, v) — Ldivy (uf Dyuf) = 0, (t,z,v) € [0,T] x R2  (6)
1o = po, u (T, z,v) = gz, m7), (z,v) € R%

where u® : [0,7] x R?? — R is the value function, u € C([0,T]; 21 (R??)) is the joint
distribution of position and velocity of a typical agent and mj = mfu; with m : R? x
R? — R? the projection map onto the first variable. MFG systems with control on the
acceleration describes in general models in which the interacting agents controls their
acceleration. Here, the systems we are interested in are those in which the acceleration
cost vanishes, as it can be easily observed from (6).

The Lagrangian Ly appearing in the system is assumed to be smooth in space and
in velocity variables and to have Tonelli type dependence on v. We refer to (M3) below
for what concern the dependence of Ly on the measure variable. One can immediately
recognize that the underlying minimization problem associated with the above PDEs
systems has the following form

inf { / " EBOR + Lo (). 59 mD) ds + g<v<T>,m€T>}
Y(t)=v

for any initial position and velocity (z,v) € R4

The singular perturbation problem has been widely studied for control problems
and, more recently, for differential games. For an overview on the subject, which is
far from being complete, we refer the reader to [10, 6, 11|, and references therein.
For these kind of problems, the general structure is to consider a classical controlled
dynamic coupled with one that depends on a small parameter € > 0. Then, as € — 0
the limit system turns out to be defined only on R? where the unperturbed system is
defined. Some type of perturbation problems in MFG have been studied, recently, in
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[29, 19, 20, 32] where the authors study the long time-average behaviour of solutions
to first order MFG system and in [37, 58] where the authors study the homogenisation
problem for second order MFG system. Note that, in homogenisation the structure of
the MFG system might be lost in the limit (as proved in [37]) which is not the case
here, as we will show in Theorem 4.3.

Indeed, going back to the MFG system (6) we prove that (u®, m®), where we recall
that m§ is the space marginal of the solution u$ for any t € [0,7], converges (up to
subsequence) to a solution (u®,m°) to the classical MFG system

(i) — Owu(t,x) + Ho(x, Dyul(t, ), mY) =0, (t,z) € [0,T] x R?
(i) &m0 — div (mtD Ho(z, Dyul(t, z), 9)) =0, (tz)e[0,T]xR¢ (7)
my = mo, u’(T,z) = g(x,mf), z € RY

where Hy : R? x R? — R is the Hamiltonian associated with the Lagrangian Lg. As
observed so far, we can see from (7) that the limit ¢ — 0 leads to the elimination of
the velocity as state variable, whose dynamics was controlled via the perturbation e.
At this point, we again want to stress the fact that the Lagrangian Lo in (6) depends
only on the space marginal of the measure u®. First, this comes from the elimination
of the velocity as state variable and so, also for in the analysis of the measure u®, the
limit does no see the behavior of the second marginal. Moreover, we are interested
in connecting the MFG system of acceleration with the classical one which we know
depends only on a flow of probability measures in space which describes the motion of
the agents.

Let us briefly explain the method of proof. We first show that u® is equibounded
and mF is tight (see Lemma 4.11 and Theorem 4.14). Thus, as a first consequence we
get that, up to a subsequence, there exists m® € C([0, T]; 21 (R%) such that m® — m°
in C([0,T); 21(R%)). Then, we proceed with the analysis of the value function u®:
we show that u®(¢,-,v) is equi-Lipschitz continuous, u®(-,z,v) is equicontinuous and
u®(t, z,-) has decreasing oscillation w.r.t. ¢ (see Lemma 4.16 and Proposition 4.17).
We finally address the locally uniform convergence of u®, showing that there exists a
subsequence &5, | 0 such that (u*,m) converges to a solution (u%,m®) of (7) (see
Theorem 4.19, Proposition 4.20 and Corollary 4.22). The main issues in proving the
above results are due to the lack of strict convexity and the lack of superlinearity of the
Hamiltonian in system (6). In particular, these and the fact that Lagrangian Lg is non-
autonomous motivated us to use a variational approach instead of a PDEs approach
since the latter creates series difficulties in estimating uniformly the gradient of u®
w.r.t. velocity variable. We recall that such gradient plays a key role in understanding

the limit state space since it capture the behaviour of the velocity as state variable in
R? x R,

Ergodic behavior of sub-Riemannian control systems

In recent years, increasing attention has been devoted to control systems of the form

= whi((#) (®)
=1

where f; are m € {1,---,d} vector fields defined on R?, with sublinear growth, and
controls u; are measurable functions on R”. The main assumption on the model is
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the so-called Chow condition (also known as Hérdmander condition in PDE), i.e., the
fact that iterated Lie brackets of fi, ..., fi, generate the whole tangent space at any
point. Indeed, this condition implies that the system is controllable, that is, given
any two points in the state space one can find a control that generates a path which
joins the two points. Such systems are naturally associated with a new metric on the
state space—the sub-Riemannian metric—which in general fails to be equivalent to the
classical Euclidean metric, see for instance [2, 38, 65, 61].

Given a Lagrangian L : R? x R™ — R, an initial position z € R¢, and a time horizon
T > 0 we consider the problem of minimizing the functional

T
u'—>/0 L(vi(s),u(s)) ds

over the space of all measurable controls u : [0,7] — R™, where ~ denotes the solution
of (11) such that v(0) = . The first part of this work is devoted to the analysis of the
long-time average behavior of the value function of the above problem as T" — oo, that
is, the existence of the limit of Vy(z)/T as T — oo where

T
Vele) =inf [ L7, u(t) d.
u
0
In particular, we prove that such a limit exists locally uniformly and is independent of
the initial position z € R, that is,

1
lim =V, =a(L). 9
lm —Vr(z) = a(D) )
Following [41], it is known that the existence of the limit in (9) is related to the
existence of a critical constant ¢ € R and of a viscosity solution y to the ergodic
Hamilton-Jacobi equation

H(z,Dx(z))=c¢ (zeR%) (10)

where

The existence of the critical constant for equation (12), in a certain sub-Riemannian
setting, was obtained in [3] by a technique based on optimal transport. The analysis in
[3] covers compact manifolds and families of 3-generating vector fields (i.e., a step—2
Lie algebra).

Our analysis, unlike [3], is performed on a noncompact state space equipped with a
general bracket-generating distribution. The lack of compactness is a major difficulty
that we overcome by condition (L3) below, which ensures the existence of a compact
attractor for all minimizing trajectories. We observe that an assumption of the same
type was used, in [19], to study the long-time behavior of first order Mean Field Games
systems on Euclidean space and, in [51], to investigate the limit behavior of discounted
Hamilton-Jacobi equations on the whole space.

By analyzing the limit behavior of the discounted Hamilton-Jacobi equation asso-
ciated with (12), we deduce that the ergodic equation admits solutions for ¢ = — a(L)
(Theorem 5.13). Then we construct a specific solution of such an equation which co-
incides with its Lax-Oleinik evolution. Our interest in such a solution is motivated by
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the fact that we need it to derive a further characterization of the ergodic constant
as the minimum of the Lagrangian action on closed measures. As we will show in the
following Chapter, this is a crucial step to investigate the related Mather and Aubry
sets, on which ergodic solutions have important regularity properties.

We recall that for Tonelli, or even more general, Hamiltonians on a compact or a
non-compact manifold, the existence of solutions to the ergodic equation (12) has a
long history going back to the seminal paper [57]. Among the many papers that have
been published on the subject, when the state space is compact and the Hamiltonian is
Tonelli we refer, for instance, to [43, 41] and references therein. If the state space fails
to be compact and the Hamiltonian is Tonelli or quasi-Tonelli we refer, for instance, to
[15], [14], [42], [50], [49], [51].

However, when the Hamiltonian is not coercive the problem of finding solutions
to (12) is open. This issue has been addressed in specific frameworks: we quote for
instance [33], [68], [27], [13], for the ergodic problem associated with the so-called G-
equation or other noncoercive Hamiltonians. Moreover, we refer to [5, 6] [53], [63] for
more on second order differential games.

We want to point out that some of the results of this work are specific to affine-
control systems without drift. Indeed, in the presence of a drift, the existence of a
continuous viscosity solution to (12) with a noncoercive Hamiltonian remains a chal-
lenging problem. We also mention systems with control on the acceleration (see, for
instance, [32]) for which it has been proved that, due to the lack of small time local
controllability, there are no continuous viscosity solutions to the associated ergodic
Hamilton-Jacobi equation.

Aubry-Mather theory for sub-Riemannian control systems

In Chapter 5, we have studied the asymptotic behaviour as T' — +oo of the value
function .

Vi) =inf [ LOAO.u0) &t (o e RY
where L is a Tonelli Lagrangian, controls u : [0,7] — R™ (1 < m < d) are square
integrable functions, 7. is the solution of the sub-Riemannian state equation

{"Y(t) =Y uwi@) fi(y(t) ae t€0,T]
7(0) ==,

and {f1,..., fm} are linearly independent smooth vector fields satisfying the so-called
Lie algebra rank condition. Observe that the above assumptions ensure that system (11)
is small time locally controllable. By using such a property and assuming the existence
of a compact attractor for the optimal trajectories of (11), we proved that Vp(x)/T
converges to a constant—a«/(L), the critical constant of L—as T — +o0o, uniformly on
all bounded subsets of R,

As is well known, the convergence of the above time averages entails the (locally
uniform) convergence as A | 0 of the Abel means {Avy} x>0, where

(0.9)
ua(z) = 1r(1€/ e ML(vE(s),u(s)) ds (z € RY).
This fact in turn allows to construct a corrector y, that is, a continuous viscosity
solution of the so-called ergodic Hamilton-Jacobi equation

a(L)+H(x,Dx(z)) =0 (z € RY), (12)

(11)
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where H is defined by

H(z,p) = sup {Z wi(pi, fi(x)) — L(JE»U)} (z,p) eRIxRL (13

uER™

The above analysis is by now classical in the Tonelli case, that is, when both L(x, v)
and H (z,p) are smooth functions, strictly convex and superlinear in v and p, respec-
tively. Moreover, in such settings, the critical constant has a powerful variational
interpretation in terms of probability measures minimizing the Lagrangian action on
the tangent bundle. This connection is well explained by the celebrated Aubry-Mather
and weak KAM theories (see, for instance, [41, 66, 59] and the references therein).

However, it is easy to see that the Hamiltonian in (13) fails to be Tonelli, in general.
So, the classical weak KAM theory does not apply to minimization problems for sub-
Riemannian control systems which are, on the other hand, quite relevant for both
theory ([2]) and applications ([52]). Introducing new ideas and techniques to make this
extension possible is the purpose of this work.

To be more precise, we point out that the underlying geometry on the state space,
namely the sub-Riemannian structure induced by the family of vector fields {f;}i=1,..m
on R? (see for instance [2, 38, 65] and references therein), plays a crucial role in our
approach. Moreover, in order to improve the natural regularity of correctors—which
would just be Hélder continuous, see [23]—we restrict the analysis to the class of sub-
Riemannian systems that admit no singular minimizing controls different from zero.
Then, owing to [25], we know that correctors are locally semiconcave, hence locally
Lipschitz, on R?. Finally, in order to deal with unbounded state and control spaces, we
assume the existence of a compact attractor for all optimal trajectories as is customary
in this kind of situations.

We now proceed to describe the main results of this Chapter. First, extending the
classical notion of closed measures on the tangent bundle (see, e.g., [43]), we introduce
the class Cr of closed probability measures adapted to the sub-Riemannian structure
and we show that the critical constant /(L) is the minimum of the Lagrangian action
on Cr (Theorem 6.8). In this context, it is worth noting that closed measures are
naturally supported on the distribution associated with {f;}i=1, . m, which in our case
reduces to R? x R™.

Then, we introduce and study the Aubry set A from a dynamical and topological
point of view, proving that A is a nonempty compact subset of R? (Theorem 6.22),
invariant for the class of calibrated curves for Peierl’s barrier (6.26) (Proposition 6.28).
Moreover, we show that any critical solution to (12) is differentiable along the range
of the vector fields {f;}i=1,..,m at any point z € A (see Theorem 6.27 establishing
horizontal differentiability).

Papers extracted: We conclude this introduction quoting the papers which has been
extracted from the work in this thesis.

1. P. Cannarsa, C. Mendico, Mild and weak solutions of mean field game problems
for linear control systems, Minimax Theory Appl. 5, No. 2, 221-250 (2020).

2. P. Cardaliaguet, C. Mendico, Ergodic behavior of control and mean field games
problems depending on acceleration, Nonlinear Anal., Theory Methods Appl., Ser.
A, Theory Methods 203, 41 p. (2021).
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3. C. Mendico, Singular perturbation problem for mean field game of acceleration,
Arxiv:2107.08479, (submitted).

4. P. Cannarsa, C. Mendico, Asymptotic analysis for Hamilton-Jacobi equations as-
sociated with sub-Riemannian control systems, Arxiv:2012.09099, (submitted).

5. P. Cannarsa, C. Mendico, On the Aubry set for sub-Riemannian control systems,
(forthcoming).
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Chapter 1

Preliminaries

In this chapter we collect some preliminary definitions and results that we are going to
use throughout this thesis. In particular, they concern:

1. Wasserstein spaces and Wasserstein distance, for which we refer to [67, 7] for
more details.

2. Sub-Riemannian geometry and sub-Riemannian control systems on RY, see [61,
65, 2.

3. Weak KAM theory for Tonelli Hamiltonian systems for which we refer to [41, 42,
66, 59].

1.1 Measure Theory

Let (X, d) be a metric space (in the work, we use X = R? or X = R? x R™). Denote by
Z(X) the Borel o-algebra on X and by (X)) the space of Borel probability measures
on X. The support of a measure u € Z(X), denoted by spt(pu), is the closed set defined
by
spt(p) == {x € X : u(Vy) > 0 for each open neighborhood V. of x}
We say that a sequence {py }reny C (X)) is weakly-* convergent to u € (X ), denoted
by pk - p, if
lim [ f@)dpala) = [ F@) (o). vF € C)

n—o0 X

There exists an interesting link between the weak-* convergence and the convergence
of the support of the measures, see [7, Proposition 5.1.8]. Indeed, if {y;}en C Z(X)
weakly-* converges to p € Z(X) then

V @ €spt(p) 3xj € spt(p;) : Jhﬁrglo xj = . (1.1)
For p € [1,+00), the Wasserstein space of order p is defined as
Py(X) = {m € P(X): /Xd(:co,x)p dm(z) < —I—oo},
for some (and thus all) zp € X. Given any two measures m and m’ in Z2,(X), define

O(m,m’) := {)\ €EP2(X xX): MAxX)=m(A), \(X x A) =m/(A), VA € B(X)}.
(1.2)



The Wasserstein distance of order p between m and m’ is defined by
) 1/p
dy,(m,m’) = inf / d(x,y)? d\(x, ) .
o) = it ([ e ae

The distance dy is also commonly called the Kantorovich-Rubinstein distance and can
be characterized by a useful duality formula (see, for instance, [67]) as follows

di(m,m’) = sup {/X f(x)dm(x) — /X flx)dm/(z) | f: X = R is 1—Lipschitz},

(1.3)
for all m, m" € 2,(X).
Let K be a subset of Z2(X). We say that the set K has uniformly integrable p-
moment with respect some (and thus any) z € X if and only if

lim d(z,z)P p(dx) =0, uniformly with respect to u € K.
e S X\Bi(7)

Remark 1.1. Notice that, if

0<p<pi, and sup/ d(z,z)P* p(dx) < +oo,
pnek J X

then IC has uniformly integrable p-moment.

Theorem 1.2 (Compactness and convergence). A set K C Zp(X) is relatively
compact if and only if it is p-uniformly integrable and tight. Moreover, for a given
sequence {p;tien C Pp(X) we have that

lim dp(pi, p) =0
1— 00
if and only if u; narrowly converge to p and {p;}ien has uniformly integral p-moment.

Theorem 1.3. Let r > p > 0 and let K C Zp(X) be such that

sup/ |z|" p(dr) < oo.
peL J X

Then the set K is tight. If, moreover, v > p then K is relatively compact for the d,
distance.

Let X1, X5 be metric spaces, let p € &(X1) and let f : X7 — X5 be a y measurable
map. Then, we denote by fiu € £ (Xs) the push-forward of p through f defined by

fEu(B) = u(fH(B)), ¥ B € B(Xa).

More generally, in integral form, it reads as

/@(f(x)) u(dw)Z/ o(y) fiu(dy).
X1

X2

We conclude this introductory section recalling the so-called disintegration theorem.



Theorem 1.4 (Disintegration Theorem). Let X and Y be Radon separable met-
ric spaces, let p be a Borel probability measure on X and let m : X — Y be Borel
map. Define v = mip € P(Y). Then there exists a p-a.e. uniquely determined Borel
measurable family of probability measures {vy}yey C P(X) such that

vy(X\7 ' (y)) =0, forp—ae yey,

| f@mtan) = [ ( L. f(:v)vy(d:v)> (dy)

for every Borel map f: X — [0, 400].

and

1.2 Sub-Riemannian control

A class of nonholonomic drift-less systems on R is a control system of the form

m

() =D fi(v(O)uilt), ¢ € [0,400) (1.4)

i=1

Such a system induces a distance on R? in the following way. First, we define the
sub-Riemannian metric to be the function g : R? x R™ — R U {oo} given by

g(z,v) = inf {Z ui v = Zfl(a;)ul} .
i=1 i=1

If v € span{fi(x),..., fm(z)} then the infimum is attained at a unique value u, € R™
and g(z,v) = |ug|?>. Then, since g(v(t),5(t)) is measurable, being the composition
of the lower semicontinuous function g with a measurable function, we can define the
length of an absolutely continuous curve « : [0,1] — R? as

1
length(y) = /0 Vet @A) dt.

In conclusion, one defines the sub-Riemannian distance as

dsr(z,y) = inf  length(y)
(’Y,U)EFg:y

where Fg?y denotes the set of all trajectory-control pairs such that u € L?(0,1;R™),

)

«y solves (1.4) for such a control u, v(0) = = and (1) = y. Following [25] it is possible
to represent the sub-Riemannian distance as follows

dsr(z,y) = inf {T >0:3 (you) €TE7Y, Ju(t)| < 1ae. t € [o,T]} (1.5)

for any z, y € R? Moreover, again from [25] the sub-Riemannian distance can be
characterised in terms of the sub-Riemannian energy: setting

1
esn(e,y) = inf /0 g(v (), 3(1)) dt,

(yu)elg

one can prove that
dsr(z,y) = Vesr(z,y) (1.6)
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(see, for instance, [25, Lemma 11}).

Among the many properties of these systems we are interested in the controllability.
For such a system, controllability can be obtained by using the Lie algebra generated
by fi, ..., fm, which is defined as follows. Set

Al =span{fi,..., fm}

and, for any integer s > 1,

AS+1 = A5+ [AI’AS]
where [Al}A%] := span{[X,Y] : X € ALY € A®}. The Lie algebra generated by
fi,..., fm is defined as

Lie(f1,..., fm) = [ A®.

s>1

We say that system (1.4) satisfies Chow’s condition if Lie(f1, ..., fm)(x) = R? for any
r € RY where Lie(f1,..., fm)(z) = {X(x) : X € Lie(f1,..., fm)}. Equivalently, for
any = € RY there exists an integer r > 1 such that A"(z) = R%. The minimum integer
with such a property is called the degree of nonholonomy at x and will be denoted
by r(x). Chow’s condition is also known as the Lie algebra rank condition (LARC) in
control theory and as the Hérmander condition in the context of PDEs.

Example 1.5. The following are two well-known examples of sub-Riemannian systems
for which Chow’s condition holds true.

(i) Heisenberg group: We consider the system in R3

O)y(t) —v(t)z(t)

In this case, the matriz of the system is given by

1 0
Alxz,y,z) =0 1
y —x

and the columns of such matrix satisfy the Hordmander condition: X1 = (1,0,y),
X5 =(0,1,—2) and [X1, X2] = (0,0,2) generate R3.

(ii) Grushin type systems: Consider a control system of the form

for a nonzero continuous function p(xz) with sub-linear growth. The classical
Grushin system in R? is obtained taking p(x) = x. Then, the dynamics is given
by the matrix

A(z,y) = B ﬂ

whose columns satisfy the Hordmander condition: X1 = (1,0) and [Xi1, Xo] =
(0,1) generates R?. O



Theorem 1.6 (Chow-Rashevsky theorem, [38, Theorem 3.1.8]). If system (1.4)
satisfies Chow’s condition, then any two points in R? can be joined by a trajectory
satisfying (1.4).

Besides controllability, another important consequence of Chow’s condition is the
well-known Ball-Box Theorem, see for instance [2, Theorem 10.67]. Of particular inter-
est to us is a corollary of such a theorem which gives Holder equivalence between the
Euclidean distance and the sub-Riemannian one. First, we observe that for any = € R?
a continuity argument ensures the existence of a neighborhood U, of = such that

AT@ () =RY, VyeU,. (1.7)

Thus, given a compact set IC there exists a finite cover given by {Uy, }i=1,..~ and a set
of integers {r(x;)}i=1,.. v such that (1.7) holds on U,, with r(x) = r(x;). Taking

r= Z:r1£1a><Nr(acZ)
we obtain
AT(y)=R? Vyek. (1.8)

We call degree of nonholonomy of K the minimum integer such that (1.8) holds true
and we denote it by r(K). Moreover, we recall that a family of vector fields {f;}i=1....m
is an equi-regular distribution on R? if there exists 79 > 1 such that A™(z) = R? for
any x € R?,

Corollary 1.7. For any compact set K C R? there exist two constants é1, ¢ > 0 such
that )
51|$—y| SdSR(xay) §52|x—y|m, \VIIE,yGIC (19)

Furthermore, we recall that the topology induced by (R? dsgr) coincides with the
topology induced by the Euclidean distance on R? ([2, Theorem 3.31]). In particular,
from this result, we obtain that a set is compact in (R, dsg) if and only if it is compact
in R? w.r.t. Euclidean distance.

We conclude this preliminary part with a brief introduction to singular controls.
Let 29 € R? and fix ¢t > 0. The end-point mapping associated with system (1.4) is the
function

E®0t: L2(0,t;R™) — RY
defined as
E™!(u) = ~(t)

where 7 is a solution of (1.4) associated with u such that v(0) = z. Under the
assumption that the vector field f; has sub-linear growth for any ¢ = 1,...m it is known
that Bt is of class C! on L?(0,¢;R™). Then, we say that a control 4 € L?(0,t;R™)
is singular for E*0! if dE®*(u4) is not surjective. Moreover, defining the function
Hy :RYxRYxR™ - R as

m

Ho(x,p,u) = uilp, fi(x))

i=1

we have the following well-known characterization of singular controls.



Theorem 1.8. A control u € L%*(0,t;R™) is singular for E*t if and only if there
exists an absolutely continuous arc p : [0,t] — RI\{0} such that

F@ = DyHo(1(s),p(s), u(s))
—p(s) = DaHo(7(s),p(s),u(s))
with v(0) = z¢ and

D, Hy(v(s),p(s),u(s)) =0, forae. se]|0,t],

that 1s,
(fi(v(5)),p(s)) =0

for any s € [0,t].

1.3 Weak-KAM Theory

Definition 1.9 (Tonelli Lagrangians). A function L : R x R — R is called a Tonelli
Lagrangian if it belongs to C? and it satisfies the following.

(i) For each (z,v) € RY x RY, the Hessian D2,L(x,v) is positive definite.
(ii) For each A > 0 there exists B(A) € R such that

L(z,v) > Alv| + B(4), VY(z,v) € R x RY,

(iii) For each R >0
A(R) :=sup {L(m,v) o] < R} < +o0.

Define the Hamiltonian H : R? x R? — R associated with L by

H(x,p) = sup {(zw} - L(l’,v)}, V(z,p) € R x R%.
vER™

It is straightforward to check that if L is a Tonelli Lagrangian, then H defined above
also satisfies (i), (i7), and (7i7) in Definition 1.9. Such a function H is called a Tonelli
Hamiltonian. Moreover, if L is a reversible Lagrangian, i.e., L(z,v) = L(z, —v) for all
(z,v) € R x RY, then H(z,p) = H(x, —p) for all (z,p) € R x RY.

Let us recall definitions of weak KAM solutions and viscosity solutions of the
Hamilton-Jacobi equation

H(z,Du) =¢, zeR% (1.10)
where ¢ is a real constant.

Definition 1.10 (Weak KAM solutions). A function u € C(R?) is called a backward
(resp. forward) weak KAM solution of equation (1.10) if the following holds.

(i) For each continuous piecewise C* curve v : [t1,t2] — R?, we have that

M%m»—mwm»s/zuw@ﬁ@»m+dm—mx

t1



(ii) For each x € R%, there exists a C curve v : (—o0,0] — R? (resp. 7 : [0, 4+00) —
RY) with v(0) = = such that

0
u(a) — u(y(t) = / Lv(s).4(s))ds — ct, ¥t <0

(resp. u(y(t)) —u(x) = fg L(v(s),%(s))ds +ct, Vt>0).

Remark 1.11. A function u on R? is said to be dominated by L + ¢, denoted by
u < L+ ¢, if u satisfies condition (i) of Definition 1.10. A curve 7 is said to be
(u, L, c)-calibrated if it satisfies condition (ii) of Definition 1.10.

Definition 1.12 (Viscosity solutions). Let V C R? be an open set.

(i) A function u : V — R is called a viscosity subsolution of equation (1.10), if for
every Ct function ¢ : V — R and every point xo € V such that u — ¢ has a local
mazimum at Tg, we have that

H(zo, Dp(xg)) < ¢;

(ii) A function u:V — R is called a viscosity supersolution of equation (1.10), if for
every Ct function 1 : V — R and every point yo € V such that u — 1 has a local
minimum at yg, we have that

H{(yo, DY (yo)) = ¢

(iii) A function u:V — R is called a viscosity solution of equation (1.10) if it is both
a viscosity subsolution and a viscosity supersolution.

Definition 1.13 (Mané critical value). The Mané critical value of a Tonelli Hamilto-
nian H is defined by

¢(H) := inf {c eR: 3 ue C(RY viscosity sol. of H(x,Du) = c} .
See [42, Theorem 1.1] for the following weak KAM theorem for noncompact state

spaces.

Theorem 1.14 (Weak KAM theorem). Let H be a Tonelli Hamiltonian. Then, there
exists a global viscosity solution of equation

H(z,Du) = c¢(H), zecR<

In [42], viscosity solutions are shown to coincide with backward weak KAM solu-
tions. Observe that, as R? can be seen as a covering of the torus T¢ Mafié’s critical
value can be characterized as follows:

c(H)= inf sup H(xz, Du(x)).
(H) = _inf = sup H(z Du(a)
We conclude this section by recalling the notion of Mather set and the role such a
set plays for the regularity of viscosity solutions. Let L be a Tonelli Lagrangian. As is
well known, the associated Euler-Lagrange equation, i.e.,

d
=D, L(x,&) = D,L(, ), (1.11)



generates a flow of diffeomorphisms ¢F : R? x R? — RY x R?, with t € R, defined by

1 (w0, v0) = (x(t), &(t)),

where z : R — R? is the maximal solution of (1.11) with initial conditions x(0) =
xg, #(0) = vg. It should be noted that, for any Tonelli Lagrangian, the flow ¢F is
complete, see for instance [42].

We recall that a Borel probability measure  on R% x R? is called ¢F-invariant, if

uW(B) = u(oH(B)), VteR, VBeBR!xRY),

or, equivalently,

/ F(6F (2, v)) p(de, dv) = / F(,v) p(d, dv), Y € C(RY x RY).
RIx R4

Rd xR
We denote by M, the class of all ¢F-invariant probability measures.

Definition 1.15 (Mather measures [59]). A probability measure p € My, is called a
Mather measure for L, if it satisfies

/ L(z,v) p(dz,dv) = inf / L(z,v) v(dz,dv).
R4 xRd veMr JrdxRrd

In [41], it was proved that

c(H)=— Vérj{flL /Rded L(z,v) v(dz,dv).

Denote by M7 the set of all Mather measures. Observe that, if L (resp. H) is a
reversible Lagrangian (resp. reversible Hamiltonian), then

—c(H) = inf L(z,0).
c(H) = inf L(a.0)

The Mather set is the subset //\/lvo C R4 x R? defined by
Mo = U spt(p).
HEMT

We call Mg = 71(Mp) C R? the projected Mather set. See [41, Theorem 4.12.3] for
the following result.

Theorem 1.16. If u is dominated by L + c(H), then it is differentiable at every point
of the projected Mather set Mgy. Moreover, if (xz,v) € My, then

Du(z) = D, L(x,v)

and the map My — R? x R?, defined by x — (x, Du(x)), is locally Lipschitz with a
Lipschitz constant which is independent of u.



Part 1

Mean field control of acceleration



Chapter 2

Mild and weak solutions of Mean
Field Games problems for linear
control systems

2.1 Setting of the Mean Field Games problem

2.1.1 Assumptions

Let us consider a Lagrangian L : R? x R* x 2(R%) — R and a function G : RY x
21 (R%) — R satisfying the following.

(L1) For any m € 2;(R%), the map (x,u) — L(x,u,m) is of class C2(R? x R¥) and
the map m — L(x,u,m), from 221 (R%) to R, is Lipschitz continuous with respect
to the d; distance, i.e.

L — L
|L(x,u,mq) (z,u,ma) < 4oo.

Qr = sup y
(x,u)ER?xRF 1(777,1, mQ)

mi, meEP (]Rd)
mi1#£me

(L2) The map (z,m) — G(x,m) is of class Cy(R? x P1(R?)) and for every m € 21 (R?)
the map = — G(z,m) belongs to C}(RY).

(L3) (i) There exist a constant Cj such that

I
d < DyuL(z,u,m) < Cold, VY (z,u,m) € RY x R* x 2, (RY).

0

(i) There exists a constant C} > 0 such that for any (z,u,m) € R¢xRFx 22, (R?)
1Dz, L@, u,m)|| < C1(1+ [u]).
(iii) There exists a constant Co > 0 such that for any (z,u, m) € RYxRFx 2 (R?)

| L(x,0,m)| + | Dz L(z,0,m)| + | Dy(z,0,m)| < Cs.

Remark 2.1. Note that, from (L3), it is not difficult to check that there exist ¢g > 0
and ¢; > 0 such that

1
colul* = ¢1 < L(z,u,m) < ¢1 + 5‘“’2 Y (z,u,m) € R x R*¥ x 22, (RY).
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Fix a time horizon T' > 0. Let A and B be real matrices, d xd and d x k, respectively,
and consider the control system defined by

4(t) = Ay(t) + Bu(t), te|0,T] (2.1)

where u : [0,T] — RF is a summable function. For all z € R? we denote by (- ;z, u)
the solution of the differential equation (2.1) such that v(0) = = and define the metric
space

I = {’y(-;x,u) czeR? we LI(O,T;R]“)} c AC([0,T];RY)
endowed with the uniform norm, denoted by || - ||oc. Moreover, set

Ir(z) ={y€Tlr:v(0) =z}

For any z € R any v € L'(0,7) and any flow of probability measures m &
C([0,T); 21 (R%)) define the functional

T
T fm}) = [ L0, u(0).m) de+ GO (T, .0, mr),
0
and the associated optimal control problem

inf  J(z,u, . 2.2
e (2, u, {mu}e) (2.2)

Notice that the restriction to controls u € L?(0,T; ]Rk) is due to the structure assump-
tions we imposed on L.

We proceed now to prove some estimates on the optimal controls and the associated
optimal trajectories.

Proposition 2.2. Assume (L1) — (L3). Then, there exists a real positive constant K
such that for any x € RY, any m € C([0,T]; 21(R?)) and any optimal control u* of
(2.2), we have that

[u"]]2 < K.

Proof. By Remark 2.1 and the optimality of u* we deduce that

T
al +|[Gllo = J(2,0,{mi}e) > J(x,u®, {ms}:) > CO/ w ()Pdt — 1T~ [|Glloc-
0

Therefore, from the above inequalities we deduce that
r 2
[ =/ [u*(t)*dt < a(clcm 1G]lo0) =: K2.
0

Thus, the proof is complete. O

Corollary 2.3. Assume (L1) — (L3). Then, there exists a constant Cy > 0 such that
for any x € R, any m € C([0,T]; 21(RY)) and any optimal control u* of (2.2) we
have that .

17" lloo < C1(1+ |2])

where v* s the trajectory associated with u*.

11



Proof. Since v* is a solution of (2.1) associated with u*, we know that

t
v (t) = e u +/ eU=DABy*(s) ds.
0

Hence,
t
I (0)] < T (m 18 [ ) ds)
0

and by Hélder’s inequality
o (0)] < ™ (Jaf + | BITE ] - O

Lemma 2.4. Assume (L1) — (L3). Then, there exists a constant Co > 0 such that for
any x € R, any m € C([0,T]; 21(R?Y)) and any u* optimal control for (2.2) we have
that B

1772 < Ca(1 + |2])

where v* is the trajectory associated with u*. Moreover, the family of minimizing tra-
jectories T (z) is uniformly Holder continuous.

Proof. From Proposition 2.2 and Corollary 2.3 there holds

. 1 1
1772 = 1AY"(8) + Bu(O)ll2 < [[A1Z [ [l2 + [1B][2 ]2

1
1 T 2 1
<JlAl} ( /0 Iy (t)th) LB K
<[|A||ZT2C (1 + |a|) + | BI|I? K.

Thus, for any ¢, s € [0, 7] such that s <t we get

=76 < [ 5ol dr
1 1 1 ~
< 57 lalt = sf2 < (JAIRTEC (1 + |al) + | BIPK )|t - 512
Which completes the proof. ]

In order to express our MFG problem in terms of the Lagrangian formulation we
are going to give a special structure to the continuous flow of probability measures
{mt}icor- Let a > 1, let mg be a Borel probability measure in Po(R?), and denote
by [mo]a the a-moment of my, i.e.,

mola = /R [ mo(dx). (2.3)

Let R be a real constant such that R > [mg], and define the following space of proba-
bility measures on I'p

Pono (I, R) = {n e P(Cr): [ 1115 n(dn) < R, eotn - mo}

where e4(y) = () is the evaluation map. Note that the sets &, (I'r, R) are compact
subsets of & (I'r) with respect to d; distance. Indeed, for any r > 0 define the following
sets

Cr={velr:O) <7 [ill2 <7},

12



which are compact by Ascoli-Arzela Theorem. Observe, also, that by definition
Cic{velr:|dlla>rfu{yelr: Y (0)]>r}.
Thus, given n € Py, (I'r, R) we have that
n({y € Iz : [7(0)| > r}) = mo(B;)

which goes to zero as r — 400. Moreover, by Bienaymé-Tchebychev inequality we
obtain

. R
n{y €lr iz >r}) < 2.
Therefore, we get

R
1(CE) < 2+ mo(BY)

which in turn yields the compactness of Z,,,(I'r, R).

Remark 2.5. There exist at least one constant R > [my]q such that the set 2, (I'r, R)
is non-empty. Indeed, fixed a Borel probability measure mg € Z,(R9), consider the
map p : R? — 't such that

x> plz](t) := ez, Vte|0,T]

and define the measure n = p[|Jfmo € Z(I'r). Note that, for any € R? the curve
etz is an admissible curve associated with the control u = 0.
Then, the following holds:

1. for any bounded continuous function f on R, we have that egfin = mg. Indeed,
[ #ta) cotntan) = [ 3(0)) nia)
R4 T'r
= [ 00 ptmala) = [ £(pla)(©)) mo(ae)
T'r R4
= | [f(z) mo(dz);
Rd
2. the a-moment of 7 is bounded:
[ 1l wt@n) = [ 1plalls mo(do)
T'r R4
< (BA1m)” [ el o) < (ale™ ) ol
Rd
Therefore, taking R > (HAHeT”A”)a [mo]a we have that n € Py, (I'r, R). O

2.1.2 Definitions and first properties

For any x € R, any u € L'(0,T) and any 1 € %, (I'r, R), define the functional

T
Jy(@,u) = /0 L(y(t, 2 u), u(t), extn) dt + G(v(T, z,u), exti)
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and the associated optimal control problem

uem(l&% 2 Jy(x,u). (2.4)

We denote by I'; () the set of curves associated with an optimal control u* (2.4), i.e.

o) = {3 o) o) = int e}

Definition 2.6 (Mean Field Games equilibrium). Given mg € Z2,(R%), we say
that n € Py (L1, R) is a Mean Field Games equilibrium for mg if

spt(n) C U [, ().

TER?
Proposition 2.7. Assume (L1) - (L3).

1. For any n € P, (I'r, R) we have that

sup / |z|* edin(de) < R. (2.5)
tel0,7] /R

Consequently, the family of measures {edn}.ejo,r) is tight.

2. For any {ni}tien C Pmo(Lr,R) and n € Py (L1, R) such that n; —* n we have
that

di(etni, erfin) — 0
for every t € [0,T].

3. For any n € Pmy(I'r, R) we have that the map t € [0,T] — eifin is continuous.

Proof. We are going to prove only the point (1), see [18, Lemma 3.2] for a proof of (2)
and (3).
Given n € P, (I'r, R) we have that

[t extntaa) = [ at@n < [l ) < 6o

I'r I'r

where the last inequality holds by definition of &, (I'r, R). So, by Theorem 1.3 the
family of measures {e;n}c(o7] is tight in &, (RY) with respect to the d; distance since
by assumption a > 1. O

Remark 2.8. Note that, in (2.5) the constant R in independent of ¢ € [0,7] and 7.
Indeed, as explained so far it is fixed a priori such that R > [mg]q.-

2.2 Mean Field Games equilibria: Existence and Unique-
ness

At this point, it is not difficult to prove that for any given o > 0 and any given initial
measure mg € Po(R?) there exists Ry > 0 such that for any R > Ry there exists at
least one Mean Field Games equilibrium n € Z,,,,(I'r, R) and that, under a classical
monotonicity assumption, such an equilibrium is unique.
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For the sake of completeness, we give below the key ideas and steps to prove the
existence of a Mean Field Games equilibrium, following the appoach in [18].

Given mo € Z,(R%) and given n € Z,,,(I'r, R) we recall that by Theorem 1.4
there exists a unique Borel measurable family of probability measures {n;},cga on I'r
such that

) = [ neld) moldo)
spt(nz) € Tp(x), mo—ae., zeRY
Define the set-valued map
E: (Pnr,R),d1) = (Pmo(Tr, R), d1)

that associates with any 1 € Py, (I'r, R) the set
E(n) = {1/ € Py (U, R) + spt(vz) C T (), mo — a.e.}.

It is easy to realize that a given n € Z,,,(I'r, R) is a Mean Field Games equilibrium
if and only if 7 is a fixed point of the above set-valued map, that is, n € E(n). There-
fore, in order to prove the existence of Mean Field Games equilibria, we appeal to
Kakutani-Fan-Glicksberg’s fixed point theorem, see for instance [4, Corollary 17.55],
which provides conditions under which the set-valued map E has a fixed point.

We check the validity of such conditions in the following Lemmas.

Lemma 2.9. Assume (L1) - (L3). Let R > [mgla. For any z; — z in R, any
ni —* n in Ppmy(U'r, R) and any v; € T} (x;) such that v; — v in I'r we have that
v € Ty(z).

Proof. Since v; € T} (x;) we know that there exists a sequence of optimal controls
u; € L2(0,T) such that v;(-) = (-, z;, u;) for every t € [0, T]. Moreover, from Proposi-
tion 2.2 we get that ||u;||2 < K. Therefore, up to a subsequence, we obtain that there
exists 4 € L?(0,T) such that u; — u in L?. Hence, we are reduced to prove that

L. ’7() = ’7('71%@);
2. Jy(z,u) < Jy(z,u) for every u € L*([0,T]),
Point 1:

By definition of v;, we know that
t
vi(t) = eta +/ A% Bu,(s) ds.
0
Let v be a vector on R?, then

t
(v, e Buy(s)) ds

/Ot
i

(0, 7%(1)) = (v, e™a) +

At

= (v, ez) + [ (A B)*v, u(s)) ds.
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Thus, letting i — oo by the weak L? convergence of u; we obtain that

t
@A) = ©yea) + [ (0,9 Ba(s)) ds.
0
This concludes the proof of point 1.
Point 2:

We now prove that
Jy(x,u) < liminf Jp, (24, u;).
11— 00

By (L2) and the convergence of ~; in I'r and that of »;, it follows that
G(vi(T), ertmi) — G(v(T), ertn).

Therefore, it suffices to prove that

T T
/ L(3(t), a(t), ecd) dt < limin / L(y(8), wilt), echs) dt.
0 0

1—00

Now,
T
(L), a(t), eetn) — L(vi(t), u(t), ec)) dt

T
(LG(E), a(t), eatn) — L), wilt), eddn) dt

. A
+/0 (LY(1), ui(t), extn) — L(yi(t), ui(t), extimi)) dt .

B

J
)

By assumption (L3) (¢i7) and Lipschitz condition (L1) we have that B — 0 as i — 0.
Thus, we have to prove now that the functional

T
Au) = /0 L), u(t), eatn) dt

is weakly lower semicontinuous with respect to the L? topology. Define, for every A € R,
X\ ={ue L*0,T): Alu) < A}

By assumption (L3) on convexity of the Lagrangian L with respect to controls, we
get that the sets X are convex. Furthermore, such sets are closed in the strong L?
topology. Indeed, if {u;};ey C X is such that u; — us in L? then u; — us a.e.
up to a subsequence. Thus, by the continuity of L we have that L(v(t),u;(t), eifin) —
L(y(t), uso(t), erfin) a.e. and by Remark 2.1 the Lagrangian L is bounded from below.
Therefore, by Fatou’s Lemma we obtain that u,, € X),. Hence, since the sets X
are convex and strongly closed it implies that they are closed also in the L? weak
topology. O

Corollary 2.10. Assume (L1) — (L3). Then, the set-valued map

¢: (RL]-) = (Tr, |- 1)
x = ()

has closed graph.
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Lemma 2.11. Assume (L1) — (L3). Then, there exists a constant R(a, [mola) > 0
such that if R > R(«, [mgla) then E(n) is non-empty. Moreover, E(n) is conver and
compact.

Proof. We, first, prove that given mg € Z,(R%) for any n € P, (I'r, R) the set E(n)
is non empty for some constant R > [mg],. Indeed, we have that by Corollary 2.10 and
21, Proposition 9.5] the set-valued map x = I'y () is measurable with closed values.
Thus, by [26, Theorem A 5.2], there exists a measurable selection 4, € I';(z), that is
¥z (t) = (t, z,u*) for some u* € L%*(0,T) solution of (2.4) associated with 7. Define,
now, the measure 7] as follows

n(A) = y 95, (A) mo(dx) for any A € B(I'r).

Thus, we need to prove that 77 € P, (I'r, R). Indeed, egfi) = mg by definition and

/ 1418 fi(dv) = / a3 molda) < / Gy (1 + [2])® mo(dz),
I'r R4 Rd

where the last inequality holds by Lemma 2.4. Therefore, we deduce that
L Wt ) < 5 ([ el motd) +1) < C5 (bmala + 1),
I'r R4

Hence, taking R > R(«a, [mo)a), where
R(a, [mola) == Cg([mo]a +1)

we obtain that 77 € £, (I'r, R). Consequently, that F(n) is non-empty. The proof
of convexity is a straightforward application of [18, Lemma 3.5]. In conclusion, for
any 17 € P, (I'r, R) the sets E(n) are compact, with respect to the d; distance, since
E(n) C Pmy(I'r, R) which is compact. O

Lemma 2.12. Assume (L1) — (L3). Then, for any R > R(a,[mola), the set-valued
map

E: (f@mo(FTa R)7 dl) = (@mo(FTa R)7 dl)
n— E(n)
has closed graph.
Proof. The proof of this Lemma is a straightforward application of [18, Lemma 3.6]. [

Theorem 2.13 (Existence of Mean Field Games equilibria). Assume (L1) -
(L3). Let R > R(«a, [mola), where R(c, [mola) is defined as in Lemma 2.11. Then, the
set-valued map E has a fixed point.

Proof. By the above lemmas the assumptions of Kakutani-Fan-Glicksberg’s fixed point
theorem (see, for instance, [4, Corollary 17.55]) are satisfied and therefore, there exists a
fixed point of the map F, that is 7 € E(77) and 7} is a Mean Field Games equilibrium. [
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At this point, for a > 1 fix mg € P,(R?) and R > R(«, [mgla), where R(a, [mgla)
is defined as in Lemma 2.11. Thus, by Theorem 2.13 we have that there exists at least
one Mean Field Games equilibrium n € &, (I'r, R).

From now on, we denote by v(s;t,z,u) the solution to the following control system

{f‘y<s> = Ay(s) + Bu(s), s€ [t,T]

t) = . (2.6)

where u : [t,T] — R* belongs to L?(t,T;R¥). Moreover, we introduce the following
notation
m? = 6ttma (27)

for any n € P, (I'r, R).
Definition 2.14 (Mild solutions of Mean Field Games problem). We say that

(V,m) € C([0,T] x RY) x C([0, T], Pa(RY)) is a mild solution for the Mean Field Games
problem if there exists a Mean Field Games equilibrium n € P, (I'r) such that

(i) my =my for allt € [0,T);

(ii) V' can be represented as the value function of the optimal control problem (2.4),
that is

V(t,x)

T
- UELZ(%}% Rk){ /t L(v(s;t,z,u), u(s), m?) ds+G(7(T;t,x,u),mg)}

(2.8)

for all (t,z) € [0,T] x R%.

Note that the above definition is well-posed since we have proved so far that there
exists at least one Mean Field Games equilibrium and the map

0, 7] = Z(RY)
t— edn

is continuous with respect to di. Moreover, for the same reasons we know that there
exists at least one mild solution of the Mean Field Games problem.

In order to study the uniqueness of mild solutions, we focus the attention on a
particular Lagrangian function, that is

L(z,u,m) = l(x,u) + F(x,m), (2.9)
where ¢ and F satisfy the assumptions (L1)—(L3).
Definition 2.15 (Monotonicity). We say that ¥ : R x 221 (RY) — R is monotone if

L (wm) = ¥ ma)) (= ma)(dz) = 0 (2.10)

for all my, my € P1(RY).
We say that W is strictly monotone if (2.10) holds true and

/Rd (w(m) — W(a.ms)) (my —mo)(dr) =0 <= Fla,my) = F(z,m)
for any x € R?,
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Theorem 2.16 (Uniqueness of mild solutions). Assume (L1) - (L3). Let F
and G be strictly monotone. Then, for any Mean Field Games equilibria n1 and ng in
Pmo (L1, R) we have that the associated functionals Jy, and Jp, are equal.

Consequently, if (Vi,m1) and (Va,me) are two mild solutions associated with the
Mean Field Games equilibria m and 192, then Vi = V.

We omit the proof of the Theorem 2.16 which is similar to the one of [18, Theorem
4.1].

2.3 Further regularity of mild solutions

Throughout this section, given a > 1 fix mg € Z(R?) and R > R(a, [mo]a), where
R(a, [mpla) in defined as in Lemma 2.11. At this point, we know that under as-
sumptions (L1)—(L3) by Theorem 2.13 there exists at least one Mean Field Games
equilibrium 7 € &, (I'r, R). Furthermore, if the Lagrangian L is of the form (2.9),
the coupling function F' and the terminal costs G satisfy the strict monotonicity as-
sumption, see Definition 2.15, then the mild solution is unique. For this reasons, from
now on we fix R > R(a, [moa)-

Now, we are going to prove that any Mean Field Games equilibrium generates
a family of probability measures {m?}te[o,T] which is %—Hélder continuous in time.
Consequently, any mild solution (V,m") is such that the value function V' is locally
Lipschitz continuous and locally fractionally semiconcave on [0, T] x R%. Moreover, we
will prove that there exists at least one Mean Field Games equilibrium n € £, (I'r, R)
such that ¢ — mj is Lipschitz continuous.

Given the control system (2.1), the Hamiltonian associated with the Lagrangian
function L is defined as

H(z,p,m) = sup { = (p, A+ Bu) - L(z,u,m)}.
u€Rk

The Hamiltonian H can be explicitly written as follows
H(x7p) m) = _<pa AJ)> - L*(l‘, _B*p7 m)? v (377]07 m) S Rd X Rk X ‘@a(Rd) (211)

where L* denotes the Legendre Transform of L, i.e.,

L*(z,p,m) = us;lﬂgc { — (p,u) — L(:L‘,u,m)}.

Moreover, it is easy to check that there exists a constant co > 0 such that for any
(z,p,m) € R? x R¥ x 22, (R%)

|DpH (,p,m)| < co(1 + || +[p]) (2.12)
and, from (7) in (L1) one can also deduce that there exists a constant ¢y > 0 such that
|DpH (z,p,m) — DpH (y,q,m)| < cu(lp —ql + |z —yl) (2.13)

for any (z,y) € R¥, (p,q) € R?*! and m € Z,(R9).
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2.3.1 Local Lipschitz continuity and local fractional semiconcavity of
the Value function

Let (V,m) a mild solution of the Mean Field Games problem associated with an equi-
librium n € &,(I'r, R). In this section, we prove that the flow of measures {m} }c(o.1]
are Holder continuous and consequently, that the associated value function is locally
semiconcave on [0, 7] x R?, linearly in space and with a fractional modulus of semi-
concavity in time. Moreover, we show that the value function V is locally Lipschitz
continuous on [0,7] x R%. We conclude this section proving that, under some extra
assumptions on the data, there exists at least one equilibrium n € Z,(I'r, R) such that
{m{}:cp0,m is Lipschitz continuous in time.
We recall that V' is defined as the value function

T
viw = it L[ L6 a.m) ds+ GGt mh b
ueL?2(0,T; R¥) t

Theorem 2.17 (Holder continuity of equilibria). Assume (L1) — (L3). Then,
given any Mean Field Games equilibrium n, the map t — m] is %—H&lder continuous
mn time.

Proof. By definition of d;, we have that

di(m!,m?) = inf / x)(my — m?)(dx
o) = _int o) = ) ()

=i @) — et < [ o) =@t

T'r

where Lip; (R?) is the set of Lipschitz continuous functions such that the Lipschitz
constant is equal to 1.

We recall that, since n is a Mean Field Games equilibrium then it is supported
on the set of all minimizing curves of problem (2.4). Therefore, by Lemma 2.4 and
recalling that x = v(0) we obtain

() < [ (o) = (o)ln(an)
T
1 1,1~ 1 1
<lt=slt [ (JAIFTHC0 + fal) + IBIFK) a(d) = r(fmola))lt = sl
T
where the constant x depends on the moment of mg which we know is bounded by

construction. Thus, the proof is complete. O

In order to prove the semiconcavity of the value function V', we need to add the
following assumption on the Lagrangian L and terminal cost G:

(L4) There exists two constants wy, > 0 and wg > 0 such that for any A\ € [0, 1], any
radius R > 0, any u € R¥, any zg, 21 € Bg, and any m € 221 (R?) such that

AL(zg,u,m) + (1 — N)L(z1,u,m) — L(Azg + (1 — N)x1,u,m)
< wpA(1 = A)|zo — x1]27

and

AG(zg,m) + (1 = N)G(x1,m) — G(Azo + (1 — X)z1,m)
< weA(1 = N)|zo — z1)?.
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Theorem 2.18 (Local fractional semiconcavity of V). Assume (L1) - (L3).
Let R be a positive radius. Then, there exists a constant A > 0 such that for any
(t,z) € [0,T] x Bg, any (h,d) € R x R such that (x + h,t +J) € [0,T] x Br and
(x — h,t —0) €[0,T] x Br we have that

V(t+6,z+h)+V(t—6bz—h)—2V(tz)< A(Ih\2+ \5|g)-

Proof. We first prove that the value function V is locally semiconcave in space uniformly
in time and then, that it is locally semiconcave in space and time.

Let R > 0 be a positive radius and fix (¢,z) € [0,7] x Bg. Let h € R? be such that
x+h,x—h € Bg and let u* € L? be an optimal control for (¢,z) € [0,T] x Bg. Then,
define the following curves

v(s) =v(s;t, 2, u”), s€[t,T]
v+ (s) =y(sit,x + hyu’), s €[t T)
v_(s) =y(s;t,x — h,u*), sclt,T)].

Thus, we have that
V(t,z+h)+ V(t,z —h) —2V(t,z)
< / ' (LG (5), w (), ml) + Ly (5), w (), ml) = 2L(x(s), u*(5),m2)) s~ (2:14)
+ G (), mip) + Gy (T),mlp) — 2G(1(T), mi).
Consider, first, the expression involving only the terminal costs:
G(v4+(T),mp) + G(y-(T),mp) — 2G(v(T), m7)
= G (). + Gl (D)) = 26 (=) )

2
1+(T) +-(T)

+2G< 5

,m%) G ((T), m).

By (L1) and (L4) we deduce that
GO ) )+ (o (7)) — 26 (=T )

< wals(0) - (026 (LT ) 06 (), )
< |Gl (T) +1-(T) = 24(T)]

From the definition of 7, 74 and 7_ we have that these curves are solutions of (2.1).
Therefore, we get that there exists a real positive constant W such that

4 (T) = 7= (T)? < WP,
[V4+(T) +7-(T) = 29(T)| < Wh/*.

Hence, we get

G (4 (T),m}) + G(y-(T),m7) = 2G((T), m7) < W (wg + [|Glloo) |h[.
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By almost similar arguments, one can prove that also the integral term in (2.14) is
bounded by a constant times |h|?. This proves that V is locally semiconcave in space
uniformly in time.

We proceed to show that V is locally semiconcave on [0,7] x R?. Fix (t,z) €
[0, T)xBg and let h € R%, § € R be such that 4+h, z—h € Bpand 0 < t—6 < t+6 < T.
Let u* be an optimal control for (¢,z) and define the control

u(s) = u’ <t+52+5>, seft—0o,t+ 4]

By the Dynamic Programming Principle we get
Vit+d,z+h)+V(t—0,z—h)—2V(tx)
< V(Et+6x+h)+V(E+6,v(t+0;t—06,x—h,u)) —2V(t+5,v(t + 0;t, z,u"))

I
t+0 t+0
+/' M%at—&x—hfxwﬁﬂﬂ)ﬁ—2/‘-M%au%M%M@%de&
t—§ t
II

Thus, by the first parte of the proof term I is bounded by a constant times |h|? + |5]2.
Now, we have to estimate term I1. Let us denote, for simplicity, by v~ the curve
(- 5t — 0,2 — h,u*). Then, by assumption (L1) we have that there exists a constant
D > 0 such that

t+9
=2 [ (L0 @s— =909l p) = D (s)u (s).mD) ds
(2.15)
t+48
< D/t <\’y*(23 —t—08) —~(s)| +di(md,_, s mg)) ds

Since n is a Mean Field Games equilibrium we know by Theorem 2.17 that {mg}te[D,T]

is %—Hélder continuous in time with respect to the d; distance. Therefore,

t+0 t+o 1 ) 3
[ asm gty ds < stimala) [ 15— a1t ds < Zumoliyolt. - 210)
t t

Now, we have to estimate the distance between the curves v_ and . For that, we recall
that since y_ and ~ are solutions of (2.1) we know that
25—t—§
7T (2s —t —68) =TI — b)) + / T Ba(T) dr,
t—9
S
v(s) =els=Ay —l—/ e(Tft)ABu*(T) dr.
t
From [26, Theorem 7.4.6], without loss of generality, we can assume that u* belongs
to L and consequently, 4 € L. Thus, we obtain that for any s € [¢,t + ¢]

Y7 (25 =t =8) = (s)|
< MAR| 4+ 25T B |00 + (s — )" 14N B | oc-

Therefore, we deduce that

t+0
[ (An]+ 25T B o + (s - 0T B ) ds
t (2.17)

< 3e™ 14| + (267140 B 1] + 4] B " o ) 7.

Hence, combining (2.16) and (2.17) with (2.15) yields the conclusion. O
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Remark 2.19. We note that Theorem 2.18 guarantees that the function x — V (¢, z)
is linearly semiconcave, locally uniformly in time.

The proof of the following theorem is given in Section 2.5.1 since the techniques we
have used to prove it are classical in optimal control theory.

Theorem 2.20. Assume (L1) - (L3). V is locally Lipschitz continuous on [0, T] x R,

2.3.2 Lipschitz regularity of Mean Field Games equilibrium

Define the following class of curves on Z,(R%)

d S
Lip(2) = A m € C([0,T); Pu(®Y) :  sup 2mems) L
t#s |t — s
t,s€[0,T

and set .
PLTe)(Pp) = {77 € P (Dr, R) :m" € Lip(%)}.

Remark 2.21. The set @Llp(‘/’“)(f‘gp) is non-empty. Following the construction we
have done in Remark 2.5, let p : R* — I'p be defined as

x> plz](t) := ez, V t € [0, T]

and define n = pgmg. Therefore, by Remark 2.5, we only need to prove that m' €

Lip(Za).
Indeed,
dl(m?l,mt2 = eslu[ilp/Rd(b dr) — mgg(dw))
= sup / — ¢(v(t2)))n(d)
¢pel—Lip JT'p
- / — 6(7(t2)))ptmo(d)
¢el—Lip JT'p
— s / )) — B (pla](t2))) mo(de)
¢cl—Lip JRA
= sup / (etry —qﬁ(eAth))mo(dx)
¢el—Lip JR4

§/ ‘eAtlx - eAth‘mo(da:).
R4

Since the function ¢ — e’z is Lipschitz continuous in any compact subintervals of R

we get the conclusion. O

Proposition 2.22. Assume (L1) - (L3). Let x € R? and n € ,@Llp(%)(l“;p). Let
u* be an optimal control for (2.4) and let v* be the minimizing curve generated by u*.
Then, there exists a real positive constant ()1 such that

17" [loo < Q1 (1 + [x]).
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Proof. From the same reasoning in [26, Theorem 7.4.6] one can prove that
[ floe < Qo(1 + |)- (2.18)
Hence, from the state equation we obtain
1" (O)lloe < AN oo + 1Bl |-

Thus, by Corollary 2.3 and by (2.18) we get

157 (t)loo < max{||A[|C1, | BlIQo}(1 + |])- m

Remark 2.23. We observe that the above result is a generalization of [24, Proposition
5.6] where we assumed that there exist two constants cs, ¢4 such that for any (x,p,m) €

R? x R* x 22, (R%)
<DxH(IE,p, m)ap> > C3|p|2 — (4.
We recall the definition of the set-valued map F given in the Section 3, that is,
E: (P, R),d1) = (Pmo (1, R), d1)

with
E(n) ={v € Pmo(I'r,R) : spt(vy) C (), mo — a.e.}.
Lemma 2.24. Assume (L1) - (L3). Then, E(@#ﬁo”(%)) C %ﬁ?(%).

Proof. Fix n € e@T,L;(? (Z2) and let i be a Borel probability measure in F(n). We need
to prove that for any ¢y, to € [0, 7], with ¢t < to

sup  Almeme)
t#s |t - S‘
t,s€[0,T
Hence
dq (mfl,mé;) = sup (x)(mfl (dz) — mﬁ(dm))

#€Lip (R4) JRY

= sup (6(v(t1)) — d(y(t2)) w(dv)

#€Lip; (R) JI'p

< / ) =2(e)] ) <~ / el ()

<|t; — ta A Q1(1 + |z[) p(dy),
T

where the last inequality follows by Proposition 2.22. Therefore, recalling that 2z = ~(0)
and p belongs to &, (I'r, R), we obtain the conclusion. O

Theorem 2.25 (Existence of Lipschitz Mean Field Games equilibria). Assume
(L1) - (L3). Then, there exist at least one Mean Field Games equilibrium such that
the associated family of measures {m{}ico.1) belongs to Lip(Pa,).
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Proof. 1t is sufficient to prove that the set-valued map E : @Llp(}a)( T) = QLlp(ja)

has a fix point and in order to prove it we want to use Kakutani’s fixed point theorem.
We recall that by Lemma 2.12 we have that the map E has closed graph and
so also the restriction of E on ﬁLlp(j“) Moreover, since &, 1p(‘/)0‘) C Py (1, R) we

have that @Llp(] o) i compact.Therefore, all the assumptions of Kakutani’s fixed point
theorem are satisfied and this concludes the proof. O

Corollary 2.26. Assume (L1) - (L3). Let n € Po(I'r, R) be a Lipschitz Mean Field
Games equilibrium and let (V, m") be a mild solution associated with n. Then, the value
function V is locally semiconcave on [0, T] x R? with a linear modulus of semiconcavity.

2.4 Mean Field Games: PDEs system

2.4.1 Optimal syntesis

In order to deduce the PDE system for our Mean Field Games problem, we have to
derive first some optimality conditions for the following problem:

T
s = nt o6+ [ Dea@.u) at}. (00)

As usual, let V' be the value function of the above (OC) problem.

Proposition 2.27. Assume (L1) - (L3). Let (tg,70) € [0,7] x Bgr and let py be a
point in DXV (to,x0). Then, there exists a pair of curves (7,D) solving the Hamiltonian
system

{ 3(t) = —DpH(t,5(8), (1)), 7(to) = o
B(t) = DL H(t,3(8),5()),  Blto) = po

such that 7 is a minimizer of V (to,xo). In particular, if V (to,-) is differentiable at xq
then 7 is the unique minimizer of V (to,xo).

Proof. Let pg be a point in DXV (tg, zo) such that (tg,zo) € [0,T] x Bg. By definition
of reachable gradient, there exists a sequence {zy }ren such that

Tk — o

—pPo = lim DQCV(to,wk).
k—oo

Let @ and 7, be, respectively, an optimal control and an optimal trajectory with
starting point (o, zx). By the maximum principle, we have that there exists an abso-
lutely continuous arc pj such that

{ j]5() A*pi(t) + Do L(t, 3(t), k(1)) (2.19)
(T) = Dg((T))-

By the maximum principle we know that

{ ?k(t) = —D,H(t,7(t ):15 k() (2.20)
Pr(t) = Dy H(t, 3k(t), pr(t

25



Since the sequence {xy }ren is convergent, by Corollary 2.3 and Proposition 2.22 we
obtain that {vx}xen is equibounded and equicontinuous.
Moreover, by (2.19) we have that for any t > g

T
pr(t) = e T4 Dg((T)) +/ A DL L (s, 71(s), Uk (s)) ds.
t
Thus, it easily follows that also the sequence of dual arcs {pg }ren is equibounded and
equicontinuous. Therefore, there exist an absolutely continuous arc p and a curve 7
such that pr — p and 73 — 7, uniformly as k — oo.
From (L3), we have that there exists a constant x > 0 such that

|D.L(t, z,u)| < k(14 |ul?).

Moreover, since x € Br we deduce by [26, Theorem 7.4.6] that there exists a constant
R > 0 such that |lug||cc < k. Consequently, we obtain that D, L(¢,Jx(t), ur(t)) weakly
converges in L2(0, T;RY) to D,L(t,%(t),u) as k — oo.

Therefore, passing to the limit in (2.19) we get that p is a solution of the limit
equation and by the maximum principle the pair (7, p) solves system (2.20). In con-
clusion, as k — oo in the value function we obtain that the curve % is a minimizer for
(to, xo)- O

2.4.2 Weak solutions

In this section, we consider the case of splitted Langrangian, that is L is of the form
(2.9).

We recall that, given the control system (2.1), the Hamiltonian associated with the
Lagrangian function L is defined as

H(xz,p) = 5;15@ { — (p, Az + Bu) —ﬂ(x,u)}.

For a > 1, let mg € Z,(R?) be a Borel probability measure and introduce the
following Mean Field Games PDEs system

-0V (t,x) + H(x, D,V (t,x)) = F
Oymy + div (mtDpH(a:, D,V (t,x))

x,my), (t,z) € [0,T] x R?
=0, (t,x) € [0,T] x R? (2.21)
z € R%,

—~

<~

mo =mg, V(T,z)=G(x,mr),

Definition 2.28 (Weak solutions). We say that (V,m) € Wh([0,T] x R9) x
C([0,T), Po(RY) is a weak solution of the Mean Field Games PDEs system if:

(i) m is a solution in the sense of distribution of the continuity equation, i.e. for any
test function o € CL([0,T) x R?) we have that

- [ ¢(0.2) mo(ar)
T
= / /d <8tg0(t,$) — <ng0(t,l’),DpH(anxV(tﬂ?)») mt(d'r)
0 R

(ii) V (t,-) is differentiable on spt(my) and V is a continuous viscosity solution of
Hamilton-Jacobi equation.
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Remark 2.29. We recall that by classical optimal control theory, see for instance [26],
the following holds:

1. from the maximum principle one can deduce that any minimizer v of problem
(2.4) has the same regularity of the data, thus in this case we obtain that v € C?;

2. given a Mean Field Games equilibrium 7 we have that for any = € spt(m;) the
value function V is differentiable since the value function of an optimal control
problem with a strictly convex Hamiltonian (with respect to p) is known to be dif-
ferentiable in the interior of any optimal trajectory, see for instance [26, Theorem
6.4.7] and [22, Proposition 4.4].

Theorem 2.30 (Equivalence between mild and weak solutions). Assume (L1)—
(L4). Fiz o > 1 and let mg € P,(R?) be an absolutely continuous with respect
the Lebesque measure and with compact support. Then, (V,m) € C(]0,T] x R?) x
C([0,T), Po(RY) is a mild solution of the Mean Field Games problem if and only if it
is a weak solution of system (2.21).

Proof. First, we show that any mild solutions (V,m") is a weak solution.

Let V' be the value function defined as in Definition 2.14, in expression (2.8). Then,
it is well-known that it is a continuous viscosity solution of the Hamilton-Jacobi equa-
tion in system (2.21) and satisfies the terminal condition. Hence, we are left to prove
that m' is a solution of the continuity equation in system (2.21) in the sense of distri-
butions.

Indeed, for any ¢ € CL([0,T) x RY), we have that

i Lot mitan) = 5 [ ote ) n)

= [ (00ett:1(0) + (Dol 1(0).5(0) nla).
T
where the last integral is well-posed by point (1) in Remark 2.29. Since n € Py, (I, R)

is a Lipschitz Mean Field Games equilibrium we know that n is supported on the
minimizers of problem (2.4). So, from the Maximum Principle we know that

7<t) = _DIJH (7(07 va(ta ’Y(t)))
Therefore,

q
dt Rd

:/F (attp(t,’y(t)) +<Dzs0(t77(t)),"y(t)>> n(dy)

p(t, ) mi (dx)

:/r (3ts0(t,'7(t)) - <D:c90(t7’7(t))7DpH(’y(t),DxV(t,'y(t))))) n(dv)
_ /R (0000t 2) — (Dap(t,), Dy H(w, D,V (1,2))) ) i (d),

where the last integral in above series of equality is well-posed by point (2) in Re-

mark 2.29. The conclusion follows by integrating the above equalities over [0, .
Now, let (V,m) be a weak solution of Mean Field Games system. Since V is a

viscosity solution of the Hamilton-Jacobi equation we know that it can be represented
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by the formula (2.8) in Definition 2.14. Hence, we only have to prove that there exists
a Mean Field Games equilibrium 7 such that m;, = e;n.

Since m is a solution of the continuity equation in the sense of distributions, by
the superposition principle [7, Theorem 8.2.1] we know that there exists a probability
measure y € (L) such that my = e fp and p-a.e. is a solution of the following
equation

3(t) = ~DyH (1), DV (1, 2(1))), € [0,T). (2.22)

As mg = eplir, by Theorem 1.4 there exists a family of Borel probability measures p,,
for any = € spt(my), such that

p(dy) = /]Rd g (dy)mo(x) dx.

Since mg is absolutely continuous with compact support and the value function V is
locally Lipschitz continuous, it follows that mg-a.e. and uz-a.e. v is a solution of (2.22)
such that v(0) = x. Therefore, by the optimal synthesis explained above, such a curve
~ is a minimizer of the underlying optimal control problem and from (2.13) it is also the
unique solution of (2.22). Hence, the measures p, are supported on minimizing curves
of the optimal control problem. Consequently, 1 is a Mean Field Games equilibrium
for my.

O

The following result is an immediate consequence of Theorem 2.30 and Theo-
rem 2.16.

Corollary 2.31. Assume (L1)—(L4). Assume that F is strictly monotone, in the
sense of definition Definition 2.15. Let m, n2 € Pmy(Lr, R) be two Lipschitz Mean
Field Games equilibria and let (Vi, m™), (Vo,m"2) be, respectively, the weak solutions
of system (2.21). Then, Vi = Vs.

2.5 Appendix

2.5.1 Proof of Theorem 2.20

We divide the proof in two steps: first, we prove that V is locally Lipschitz in space
and then, we prove that it is locally Lipschitz in both the variables.

Let R be a positive radius and denote by Bpr the ball of radius R centered in the
origin on R%. Fix z € By and h € R such that # + h € Bg. Then, given an optimal
control u* associated with (t,z) € [0,7] x Br we get that

V(t,z +h) — V(t,z)
T
< [ (Ot + bt (9)m2) = (st ) (), mD) ds (223
t
GO (Tt 3+ hyw)mih) — Gy(Ts 2, u”), mlh).

Thus, we have to estimate the distance between two admissible paths: the one starting
in (t,x) and the other one starting in (¢, + h). Recall that

v(s;t, @, u) = DAy +/ e TVABY (1) dr, Vset,T)
t
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to obtain
y(sit,x + hyu') — (st 2,0 < TR, Vs elt,T).

Therefore, by assumption (L2) we get
COUTst,a + hyu'),mi) = G(((Tst ., u”),mp) < [|Glloce™|h).

So, we just have to bound the integral term in (2.23). By assumption (L3), we have
that

T
/t (L(fy(s; t,x + hyu™),u(s),m?) — L(y(s;t,z,u”), u*(s), mg)) ds

// (DyL(A\y(s;t,x + hyu®)

+ (1= N)y(s;t,z,u”),u*(s),ml, y(s;t,x + hyu) —y(s;t,x,u")) ds
< / / | Do L(Ay(s;t, @+ hyu®) + (1= X)y(s; t,,u”)|
t ‘u*((]s), ml, y(s;t,x + h,u*) —y(s;t, x, u*)‘ ds
< /tT /01 ca(1+ [u*(s)])[v(s;t, @ + h,u*) — y(s;t, @, u*)| ds
< TeaeTMIB| + e VT ||u*||2| | = (CQTeTHAH + cQﬁK) In,
where ||u*||o < K by Proposition 2.2. Then, we conclude that
Vit,z+h)—V(tz) < (02T6T||A|| e VTK + |]G||ooeT”A”) Ih.

By similar considerations, one can easily prove that the reverse inequality also holds
true. Therefore, we have that V is locally Lipschitz in space.

We now prove that V is locally Lipschitz in space and time on [0,7] x Bg for any
R>0. Fixt€[0,T], z € Bg and let § € R be such that ¢t + J € [0,T].

We recall that, by the Dynamic Programming Principle we know that

t+9
V(t,x) = i]rlLf2 {V(t + 0, v(t+ d;t,z,u)) + / L(y(s;t,z,u),u(s), m!) ds} . (2.24)
ue t

Moreover, by [26, Theorem 7.4.6] we know that, under the assumptions (L1)—(L4), for
any 7 € Py, (I'r) and any = € R, problem (2.4) is equivalent to the following one

inf oz, ).
A C)

Thus, we can minimize over the set of bounded controls. Let the control u* € L be
optimal for V (¢, z). By (2.24) we deduce that for any € > 0

t+6
Vi(t,z)+e> / L(y(sitoa, ) (), ml) ds + V(¢ 4+ 8,4(t + 8t 2,u7)).
t
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Hence, we have that

V(t+d,z)—-V(tx)
< V(tt6,2) = V(E+87(t+ 6 b, u%)

t+6
- / L(y(si ., u), u*(s), m?) ds + e
t

< <C2T€THAH + eoVTK + ||G||ooeTHAH> |z —y(t+d;t,x,u")]

1 *
o <C1 + L uoo) ,
co

where the last inequality holds true by the first step of the proof and assumption (L3).
Moreover, since the curve 7(-;t, z,u*) is Lipschitz continuous in time, we know that
the first term of the right-hand side is bounded by a constant times §. Thus, the proof
of first estimate is complete.

On the other hand, again by (2.24) we know that taking u = 0 we have that

(2.25)

t+0
V(t.o) S V(a4 5tn.0)+ [ LO(sito,0,0,m1) ds
t
Therefore, adding and subtracting the term V(¢ + §, z) we get that
V(t,x) =V (t+0,x)

t+6
SV(@E+6,79(t+05t,2,0)) —V(t+5,$)+/ L(v(s;t,%,0),0,m]) ds.
t

Hence, by the same considerations as in (2.25) we get the result. O

30



Chapter 3

Ergodic behavior of control and
mean field games problems
depending on acceleration

3.1 Setting and assumptions of the problems

3.1.1 Calculus of variation with acceleration

In our first main result we study the large time average of an optimal control problem
of acceleration. Let L : T% x R? x R? — R be the Lagrangian function defined as

1
L(z,v,w) = 5wl + F(z,0)

where F : T4 x RY — R satisfies the following assumptions:
(F1) F is globally continuous with respect to both variables;

(F2) there exists a > 1 and there exists a constant ¢z > 1 such that for any (z,v) €
R? x R? .
Lofo = ep < Fla,0) < en(1 + 0] (3.1)
cr
and, without loss of generality, we assume F(z,v) > 0 for an (x,v) € T¢ x R%;
(F3) there exists a constant Cr > 0 such that
| Dy F(x,v)| + |DyF(x,v)] < Crp(1+ |v]|%).
Let T be the set C' curves v : [0,4+00) — T¢ (endowed with the local uniform
convergence of the curve and its derivative) and for (t,x,v) € [0,7] x T¢ x R? let

I't(z,v) be the subset of I such that vy(t) = =z and 4(¢) = v. Define the functional
JUT T - R as

T
740) = [ (GHOF + FOELA6D) ds ity e 0.1, 62

and J4T(y) = 400 if v & H%(0,T;T?), and let V' (t,z,v) denote the value function
associated with the functional J*7 i.e.

VI(t,z,v)= inf JHT(5). (3.3)
vET¢(z,v)
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Let H be the Hamiltonian associated with the Lagrangian L, that is for any
(z,v,py) € T? x R? x R?,

1
H($7U,pv) = §|pv|2 - F(.’IZ‘,’U),

where p, € R? denotes the momentum variable associated with v € R?. Then, it is
not difficult to see that the value function V7 is a continuous viscosity solution of the
following Hamilton-Jacobi equation on [0, 7] x T x R¢:
1
_atVT(t7 Z, U) - (Dl'VT(tv z, ’U), ’U> + §’DUVT<t7 z, v)‘Q = F(xa U):
VI(T,z,v) =0 inT? x R%

Our aim is to characterize the behavior of VT(O7 -,+) as T — +o0. To state the result,
we need the notion of closed measure, which requires another notation: we set

Poo(T? x R x RY)

:{ueﬁ(de]Rded):/

(jwl? + [o]*) pu(de, dv, dw) < +oo}
Td xR xR

endowed with the weak-* convergence.

Definition 3.1 (Closed measure). Let n € P, 2(T¢ x R x RY). We say that 1 is a
closed measure if for any test function ¢ € C’SO(']Td x RY) the following holds

/deRded ((DzSD(ZL‘,U)aU) + (Dyp(z, v),w)) n(dz,dv, dw) = 0.

We denote by C the set of closed measures.

Theorem 3.2 (Main result 1). Assume that F satisfies assumptions (F1) and (F2).
Then, the following limits exist:

N . . 1
7 0P = i T )

and are independent of (z,v) € T? x RY. Moreover, if F satisfies also (F3) then

1 1
lim —V7* = inf SlwP+F :
Jim TV (0, 2,v) /lirelc/ﬁrdeded (2|w\ + (a:,v)) p(dx, dv, dw)

Remark 3.3. 1. If we denote by A the above limits, the convergence of
VT(0,2,v) = AT

is a completely open problem in this context. This is related to the lack of solution
of the ergodic HJ equation.

2. The (strong) structure condition on L and the fact that the problem is periodic in
the z variable can probably be relaxed: this would require however more refined
and technical estimates and we have chosen to work in this simpler framework.
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3.1.2 Mean Field Games of acceleration

In our second main result, we consider a mean field game problem of acceleration. The
Lagrangian function L : T¢ x R? x R? x 221 (T x R%) — R now takes the form

1
L(z,v,w,m) = i\wP + F(x,v,m)

where I : T? x R? x 221 (T4 x R%) — R satisfies the following assumptions:
(F1°) F is globally continuous with respect to all the variables;

(F2’) there exists o > 1 and a constant cx > 1 such that for any (z,v,m) € R? x R? x
21 (T4 x R? x RY)

1
—|v|* —ep < F(z,v,m) < cp(1+|v|%)
CF

and, without loss of generality, we assume F'(z,v,m) > 0 for any (z,v,m) €
T?¢ x R? x 221 (T4 x R? x RY);
(F3’) there exists a constant Cr > 0 such that, for any (z,v,m) € R% x R% x 22;(T? x
R? x RY),
|D$F(:Evvvm)| + |DvF(£L',’U,’/TL)| < CF(l + |’U|a)'

We consider the time-dependent MFG system on [0, 7] x T¢ x R?

—ouT (t,z,v) — (Dyu” (¢, 2,0),v) + 5| Dyu (¢, z,0) > = F(z,v,m]),
BtmtT — (v, DxmtT> —div (mtTDyuT(t,a:, v)) =0, (3.4)

ul' (T, z,v) = g(z,v,m%), in T¢ x RY,  ml =mg e 2(T? x RY).
where the terminal condition of the Hamilton-Jacobi equation satisfies the following;:

(G1) (x,v) = g(z,v,m) belongs to CL(T? x R?) for any m € Z(T¢ x RY) (without
loss of generality we assume g(xz,v,m) > 0) and m — g¢(z,v,m) is Lipschitz
continuous with respect to the d; distance, uniformly in (z,v) € T¢ x R%.

We recall that (u?,m?) is a solution of (3.4) if u” is a viscosity solution of the first
equation and m” is a solution in the sense of distributions of the second equation.

Our aim is to understand the averaged limit of u” as T'— +o00. For this we define
the ergodic MF'G problem, inspired by the characterization of the limit in Theorem 3.2.
Let us recall that the notion of closed measure was introduced in Definition 3.1 and
that C denotes the set of closed measures.

Definition 3.4 (Solution of the ergodic MFG problem). We say that (\, i) € R x C
s a solution of the ergodic MFG problem if

_ 1
A= inf / <\w[2 + F(x,v,wﬁ,u)) p(dz, dv, dw)
pnec TdxRd x R4 2

1 — —
= /Td . (2!w|2+F(x,v,7rtiu)> fi(dz, dv, dw). (3.5)
XIREX

Theorem 3.5 (Main result 2). Assume that F and G satisfy (F1°), (F2’) and
(G1).
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1. There exists at least one solution (X, i) € R x C of the ergodic MFG problem (3.5).
Moreover, if F' satisfies the following monotonicity assumption: there exists Mp >
0 such that for my, my € 2(T¢ x RY)

/ (F(l‘, v,mi) — F(x,v, mg)) (mq(dz, dv) — ma(dx, dv))
Td xRd (36)
> MF (F(x,v,ml) —F(.Z',’U,mg))z d.de’U,
TdxRd

then the ergodic constant is unique: If (A1, fi1) and (o, fi2) are two solutions of
the ergodic MFG problem, then Ay = As.

2. Assume in addition that o = 2, that (F3’) and (3.6) hold and that the initial
distribution mq is in Po(T? x RY). Let (u’',mT) be a solution of the MFG sys-
tem (3.4) and let (\, i) be a solution of the ergodic MFG problem (3.5). Then
T=T(0,-,-) converges locally uniformly to X and we have

. 1 T —
TLHEOO T /deRd u' (0,2,v) mo(dz,dv) = A

3.2 Ergodic behavior of control of acceleration

3.2.1 Existence of the limit

Before proving the main result of this section, Proposition 3.13, we need a few prelim-
inary lemmas.

Lemma 3.6. Assume that F satisfies (F1) and (F2). Then, for any (z,v) € T¢ x Bg,
with R >0, and for any T > 0, we have

1
fVT(O,x, v) < cp(l+ RY).

Remark 3.7. The result also holds when F' = F(¢,z,v) depends also on time, provided
that F' is continuous and satisfies (F2) with a constant cp independent of ¢.

Proof. Define the curve {(t) = = + tv, for t € [0,T]. Then, by definition of the value
function V7', we have

T
VT(0,z,0) < JT(E) = / F(xz +tv,v) dt <Tecp(1+ RY).
0

O

Lemma 3.8. Assume that F satisfies (F1) and (F2). Let 0 > 1, (z9,v) and (z,v) be
in T? x Bg for some R > 1. Then, there exists a constant Cy > 0 (depending only the
constants o and cr in (F2)) and a curve o : [0,0] — R? such that o(0) = xo, ¢(0) = vg
and o(0) =z, 6(0) =v and

J (o) < Co(R*07! + R%0). (3.7)

Remark 3.9. The result also holds when F' = F(¢,z,v) depends also on time, provided
that F' is continuous and satisfies (F2) with a constant ¢y independent of t.
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Proof. Define the following parametric curve
o(t) = zo +vot + Bt> + Ct3, t€0,0].
Choosing
{ B = 3(x — xq) — fv — 200702
C = (=2(x — m0) + O(v +10))0 %,

we have that 0(0) = zg, 6(0) =vp and o(1) =z, 6(1) = v.
By definition of the functional J? we get

7o) = /09 (;]&(t)]Q + F(o(t), d(t))) dt

0
1
< / (2]23 +6CH? + cp(1+ |vo + 2tB + 3t2C|‘”)> dt
0
< Co(R*07" + R%0),
for some constant Cy depending on the constants o and cp in (F2) only. O

Lemma 3.10. Let T > 2 and (x,v) € T? x Bg, for some Ry > cé. Let v € T'(z,v)
be optimal for VT (0,z,v). Then for any X\ > 2 there exists 7 € I'(x,v) with 5(T) = x,
H(T) =v and

JTH) < T () + Cs(\’Rj + RGA°T),

where the constant Cs depends on a and cp only.

Remark 3.11. The result also holds when F' = F(t, z, v) depends also on time, provided
that F'is continuous and satisfies (F2) with a constant cp independent of ¢. In addition,
by the construction in the proof, there exists 7 > 0 such that 4 =+ on [0, 7] and

T
/ (%W(t)? +ep(L+ [()]")dt < C3(N R + RgA™°T).

Finally, the map which associates 4 and 7 to < is measurable.

Proof. Let

sup{t > 0, [§(t)| < ARo} if [v(T —1)] > ARy,
T = .
T—-1 otherwise.

If 7 >T —2, we set
o (@) for t € [0, 7],
W(t){ o(t—r71) forte[r,T],

where ¢ is the map built in Lemma 3.8 with 6 = T — 7, 0(0) = ~(1), (0) = §(7),
o(T—7)=z,6(T —7)=wv. If 7 <T — 2, then we set

v(t) fort € [0, 7],
F(t) =< o1t —71) fort e [r,7 +1],
oot —7—1) forte[r+1,T],

where o1 and oy are the map built in Lemma 3.8 with § = 1, 01(0) = ~(7), 61(0) =
(1), 01(1) = 2, 6(1) =vand 0 =T — 7 —1 and 02(0) = 02(T'— 7 — 1) = z and
02(0) = 62(T — 7 — 1) = v respectively. Note that ¥(T') = x and ¥(T') = v.
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In order to estimate J7 (%), we first show that 7 cannot be too small: namely we

claim that
T>T 1—M 1. (3.8)
E()\RO)OC —CF

Indeed, let us first recall that by Lemma 3.6 we have
JT(y) < ep(1+ RY)T.

On the other hand, by assumption (F2) and the fact that |¥(¢)| > AR on [r,T — 1]
and that F' > 0, we also have that

T
7o) = [ (G0 + e ) d

> /TT1 (;w(t)\a _ cF) dt > (T —7—1) <;()\Ro)a - CF> .

So (3.8) holds for Ry > c%/a.

We estimate J7 (%) in the case 7 < T — 2, the other case being similar and easier.
Note that |¥(7)] < ARp. By Lemma 3.8 and the fact that F' > 0, we have

T 1
76 = [ GROP+FaO.A0)a+ [ GaOF + Flo@).ao)
T—7—-1 1
s [ GIROP + P, e
0
< JT(7) + Co(ARo)* + (ARo)* + R§(T — 7 — 1) "' + R§(T — 7 — 1)).
In view of (3.8) this implies that
T3) < 70 + O3B + R§A°T),

for a constant C'5 depending on a and ¢ only. O

Next we prove that the (z,v) — V7 (0,2,v) have locally uniformly bounded oscil-
lations.

Lemma 3.12. There exists a constant M;(R) > 0 such that for any (z,v) and (zo,vo)
in T% x B we have that

VT, z,0) — VT(0,20,v0) < Mi(R).

Proof. Let v* be a minimizer for V7(0,2¢,v0) and let o : [0,1] — T¢ be such that
0(0) =z, 6(0) =v and o(1) = xp, 6(1) = vp as in Lemma 3.8 for § = 1. Define
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Then 4 € T'y(x,v) and, by Lemma 3.8 and the assumption that F' > 0, we have that
T T e .
V2(0,z,v) — V*(0,20,v9) < 5]0(75)] + F(o(t),o(t)) ) dt
0

T
+/1 (;W*(t SV POy (E— 1), 4 — 1))> dt — V1(0,z0,v0)

T-1
<26+ [ (G OP+FOT0.A0) de- VT 0,20,m)

T
1
<2t = [ (G O+ PO 0.5°0)) @ < 20
T—1
which is the claim. O

Proposition 3.13 (Existence of the limit). Assume that F satisfies (F1) and (F2).
Then, for any (z,v) € T? x R?, the following limits exist:

1 1
lim — V7 = lim — inf JT(y).
T~1>r£oo T (0, “ U) T%H}Floo T 'yel'l‘f)l(r,v) J (’Y)
In addition the convergence is locally uniform in (z,v) and the limit is independent of
(z,v).

Proof. Fix Ry > c%a such that |v| < Ry. Let {T,}nen and let {7y, }nen be a sequence
of minimizers for V" (0, x,v) such that T,, — co as n — oo and

liminf%VT(O,x,U) = lim iJT"(’yn).

T—00 n—oo T,

For A > 2, let us define 4, is in Lemma 3.10. Then we know that 3, (T) = =, 3,(T) = v

and
T () < T () + O3(A\2RE + RGATOT). (3.9)

Let us define 4, as the periodic extension of the curve 7,, i.e. 4, is T,-periodic and it
is equal to 7, on [0,T,]. Then, taking 4, as competitors for J? we obtain that

1 1
limsup inf —JT(y) < limsup fJT(%)

T—oo 7€lo(z,0) T' T—00

1 1
= T < (7T ) + COPRIT 4 BEA)).

where the equality holds true since we are taking the limit of a periodic function and
the last inequality holds by (3.9).

We get the conclusion letting n — oo and then A — oo, indeed: as n — oo we
deduce that

1 1
lim su inf —J7T < lim — JT» 4+ C3 RN
T—)oop v€To(x,v) T (7) Ton Tn (’Yn) 370

1
=liminf inf —JT(y)+ C3RIN"®
TI“IBJIrI;O'yGIl‘?(x,v) (7) 370

and then, taking the limit as A — co we get

1 1
lim su inf —J7T <liminf inf —J7(~).
T—>oop y€lo(z,v) T )= v€lo (z,v) ™)

As the (VT(0,-,-)) have locally bounded oscillation (Lemma 3.12), the above conver-
gence is locally uniform and the limit does not depend on (z,v). O
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3.2.2 Characterization of the ergodic limit

In this part we characterize the limit given in Proposition 3.13 in term of closed mea-
sures. The proof of the main result, Proposition 3.22, where this characterization is
stated, is technical and requires several steps. Here are the main ideas of the proof. By
using standard results on occupational measures, one can obtain in a relatively easy
way that

A= lim inf !

—Jgr
T—o00 'yGF() ((Eo,vo) T (,7)

1

> inf/ (\w[Q +F(:L',1))) p(dz, dv, dw),
REC JTdyrdxrd \ 2

where C denotes the set of closed probability measures (see Definition 3.1). The difficult

part of the proof is the opposite inequality. The first step for this is a min-max formula

(Theorem 3.15) which gives, by using the characterization of closed measures, that

1
inf/ <|w2—i—F(x,v)) p(dz, dv, dw)
nel TdxRe x R4 2

1
T e inf {—!Dvw(w)ﬁ — (Dol v),v) + F(m,v)} .
peC (TixRY) (@v)€TIXRE | 2

In order to exploit this inequality, one just needs to find a map ¢ € C°(T¢ x R?) for
which

—51Dup(w, )~ (Dasp(ar, v),v) + F(z,v)

is almost equal to A. This is not easy because the corrector of our ergodic problem does
not seem to exist (at least in the usual sense) because of the lack of controllability and,
if it existed, it certainly would not be smooth with a compact support. The standard
idea in this set-up is to use instead the approximate corrector, i.e., the solution Vj to

1
Vs(z,v) + ilDUV:;(x,v)\Q + (D Vs(x,v),v) = F(z,v) in T4 x R%.

However, this approximate corrector has not a compact support either (it is even co-
ercive, see Proposition 3.16) and dVs does not converge uniformly to —A\, but only
locally uniformly. We overcome these issues by an extra approximation argument
(Lemma 3.18).

Let us first explain why closed measures pop up naturally in our problem. To
see this, let (zg,vp) € T¢ x R? be an initial position and let 72‘20 v) D€ an optimal

trajectory for V7' (0, zg, vp). We define the family of Borel probability measures {ur }70
as follows: for any function ¢ € C°(T¢ x R? x R?)

/ ol v,w) u¥ (d, dv, dw)
TdxRe x R4

e : .
=7 [ POt (AT (0T (0) . (310

Lemma 3.14. Assume that F satisfies (F1) and (F2). Let the family of probability
measures {u’ Yr=o be defined by (3.10). Then, {u" }r=o is tight and there exists a
closed measure p* such that, up to a subsequence, u’ —* p* as T — 4o00.
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Proof. We first prove that {ur}r~¢ its a tight family of probability measures. Indeed,
by assumption (F2) for (zg,vp) € T¢ x R? we know that

TVT00,00) =5 [ (S s (OF + PO sy (0137 (00
T » L0, V0 _T 0 2’7(J30,’U0) ry(l'()ﬂ)o) ’/7(5507'00)

1
:/ <f|w]2+F(x,v)> pt (dz, dv, dw)
TdxRIxRE \2
1 1
> / (Shel? + ol ~ er) 1" (da, dv, dw).
TdxRIxRE \2 CF

On the other hand, by Lemma 3.6 we have that
1
TVT(Oa Zo, UO) < Cl

where C] only depends on the initial point (zg,vg). Therefore, we obtain that
1 2 1 « T
(5l + —[o]) 47 (d, dv, dw) < Cy
Td R4 xR 2 Cp

which implies that {u”}7s¢ is tight. By Prokhorov theorem there exists a measure
p* € 2(T4 x R x RY) such that up to a subsequence u? —* p* as T — +oo.

We now show that the measure p* is closed in the sense of Definition 3.1. Let
@ € CX(T? x R?) be a test function and let R > 0 be such that ¢(x,v) = 0 for any
(z,v) € T? x B%. Moreover, define

. {sup{t € [0,7): iy 0y (D < BY, i Fiag,un) (T)] > R
T, if ’/y(iﬂo,vo)(T” <R

and let o* : [7*,7* + 1] — T? be as in Lemma 3.8 such that o*(7*) = 7(7;0 vo)(T*),

o*(1*) = "yz";o UO)(T*) and o*(7* + 1) = xg, 6" (7" + 1) = vo. Moreover, define

o ’7(7;:0,110)(’5)’ t e [0, 7]
) = {U*(t), te (" +1].

Then we get
Lo (iDep(a0).0) + (Duplaio) w) du” Gz 0,0)
Tdx R4 x R4

I : .
= 7 (PO Ay ). o (0

D (1 0y (s ) () iy (1))

*

1 T +1 2 : . .
=7 /0 ((DeeGT 0,57 (), 37 @0) + (Dup(FT (0,77 (1), 57 (1) ) dt

TF+1
g [ (1D (0,670, 6°0) + (Duplo” (0.6 (1), 5 (1)) e

*

Nl =

T
[ (D00 g (0,3 10y (0 )

*

(Do () (s i) (D) Ty () )
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One can immediately observe that by construction the last integral is 0 (since ¢ has
a support in T¢ x Bg) and by the definition of 4 one also has that the first one is 0.
The behavior of the second is also immediate because, as ¢ is bounded,

‘r+1
- / Dagp(o™ (£),6(1),6° (1)) + (Dusplo™*(8), 5" (1)), 5°() ) dt

= T(w( (T4 1),6% (" + 1) — (0¥ (%), 0% (7)) = 0, as T — +oo.

The proof is thus complete. O

The next step consists in formulating in two different ways the expected limit of
Proposition 3.13.

Theorem 3.15 (Minmax formula). Assume that F satisfies (F1) and (F2). Then,
the following equality holds true:

1
inf / <|u}\2 + F(x, U)) w(dz, dv, dw)
HEC JTdyRdxRd 2

1
= sup inf {—IDvso(x, v)[* — (Dyp(,v),v) + F(x, U)} ,
©ECS (T4 xRd) (2,0) ETTXR? 2

(3.11)

Proof. By definition of a closed measure we can write

1
inf/ <|w|2+F(:E,U)> p(dz, dv, dw)
peC JTdyrdxrd \ 2

1
= inf sup / <f|w\2 + F(z,v)
HE P2,6(TIXRIXRY) e o0 (TdxRA) J Td xR xRY 2
— (Dap(a,v),v) = (Doip(a,v),w) ) plda, dv, dw).

Our aim is to use the min-max Theorem (see Theorem 3.34 below). We use for this the
notation introduced in Appendix A and set A = C°(T¢xRY), B = P, ,(T¢ x R? x R%)
and for any (p,u) € A x B

L(p, 1)

= /deRded (%|w[2 + F(z,v) — (Dyp(x,v),v) — (Dvgo(m,v),w>> p(dz, dv, dw).

Let us choose ¢*(z,v) = 0 and

1
=1+ inf sup / (f]w|2 + F(x,v)
HE P2,a(TIXRIXR) e o0 (Td xRe) JTd xR xRY 2

— (Dgp(z,v),v) — <Dvap(x,v),w)) w(dz, dv, dw).

Note that ¢* is finite (since it is bounded below by assumption (3.1) and bounded above
for p1 = 8(3,0,0) for any zo € T%). In addition, the set B* = {u € B: L(¢*, 1) < ¢}
is nonempty and tight, and thus compact, in ,@Zaﬂfd x R4 x Rd) for the weak-x
convergence. Finally, we have

1
" >1+ sup inf / (,|w|2 + F(z,v)
pEC (TdxRd) HE P2,0(TIXRIXRY) JTd x Rd x Rd 2

— (Dyp(z,v),v) — <Dv<,0(w,v),w>) p(dz, dv, dw).
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Therefore, Theorem 3.34 states that

1
inf sup / (f\w|2 + F(x,v)
HEP2,a(TAXRIXRY) L,eCoo (TdxRA) J T4 xRE xRY 2

— (Dg(x,v),v) — (Dyp(x, v),w)) p(dz, dv, dw)

1
= sup inf / <f\w]2 + F(z,v)
pEC0 (TdxRd) PEP(TxRIXRY) JTdyRdxRd \2
— (Dasp(,0),v) = (Dyp(,0),w) ) p(d, dv, duw)

1
= su inf {wa—i-Fx,v—D T,0),v
¢€C°°('JI‘%><]R4) (z,v,w) €T xR xR 2| ’ ( ) < g )

~ (Dol v),w) |

1
I inf {—|Dv¢(ﬂ?av)!2 — (Dyp(,v),v) + F(x,v)} .
peC (TdxRE) (z.0)ETIXRE [ 2

This complete the proof. O

Next we introduce and study the discounted problem associated with (3.2). For any
§ >0 and any (z,v) € T¢ x R? we define Js : T' — RU {400} as

+o0
5 = [T (GHOP + PO i

if 4 is absolutely continuous with [;™°° e~ (2 5(t)|? + [4(t))|*) dt < +oo, and Js(v) =
+oo otherwise. We define the associated value function (the approximate corrector)

Vs(z,v) = yelif)l(fz » Js(7y). (3.12)

We recall that Vj is the unique continuous viscosity solution with a polynomial growth
of the following Hamilton-Jacobi equation

oVs(z,v) + %|DvV5(a§,v)\2 + (D, Vs(x,v),v) = F(z,v). (3.13)

As the convergence of V(0 -,-)/T is locally uniform (by Lemma 3.12), we can apply
the Abelian-Tauberian Theorem of [63] and we have that for any (z,v) € T? x R?

lim 6Vs(x,v) = hm —VT(O xT,v) =: A (3.14)
6—0t T—oo T

In the proof of the main result of this section (Proposition 3.22) we will have to
smoothen the map V9. This involves some local regularity properties of V9, which is
the aim of the next result.

Proposition 3.16. Assume that F satisfies (F1) — (F3). Then, we have:
(i) {0Vs(x,v)}s=0 is locally uniformly bounded;

(ii) {Vs(x,v)}s>0 has locally uniformly bounded oscillation, i.e. there exists a constant
M(R) > 0 such that for any (xo,v0), (z,v) € T¢ x Bg

Vs(x,v) — Vs(zo,v0) < M(R).

41



(iii) there exists a constant C > 0 such that for any (x,v) € T? x RY
C~Hol|® = Co™ < Vy(x,v) < erpd™H(v|* +1); (3.15)
(iv) the map x — Vz(x,v) is locally Lipschitz continuous and there exists a constant
Cs > 0 such that for a.e. (z,v) € T? x R? the following holds:
|D,Vs(z,v)| < Cs(1+ |v]*). (3.16)
Proof. (i) Fix (x,v) € T% x Br and define a competitor v : [0, +-00] — T¢ such that
v(t) = x + tv. By definition and (3.1) we get
Valaw) <8 [ e FO0,4(0) ds < cp(1+ ) < ep(1+ R2).
0

On the other hand, we have by (F2) that F' > 0 and thus V5 > 0, which completes
the proof of (7).

(i) Let (z0,v0), (7,v) € T? x Bg be fixed points, let v* be a minimizer for Vj(xq, vo)
and let o be defined as in Lemma 3.8 such that ¢(0) = z, 6(0) = v and o(1) = xo,
5(1) = vg. We define a new curve v : [0, +00) — T¢ as follows

_)e(®), t€[0,1]
() = {'y*(t —1), te(1,4o0).

Then
V§<337 U) - ‘/;S(x(b UO)

1 1
< | eM[ZFOP + F(v(t),4(t) ) dt
/0 <2 > (3.17)

+o0o
+/1 Py (;W(t)|2 + F(’y(t)’f'y(t))> dt

—Vi (o, vo).

By a change of variable, we have that

/1+°° e (;W*(t)IQ + F(y*(t),ﬁ*@f))) dt

—et [T (G OR + PO 6.5°9)) ds = e Vian, o)

Therefore, we obtain that

+oo
[ e (R + Fa®.50) ) de = Viceow)

e % — 1’ Vs(xo,v0)
< O|Vs(xo,v0)| £ cp(1+ RY),

- (3.18)

where the last inequality holds true by (i). Moreover, by construction of o in
Lemma 3.8 we have that

/ e <1|&<t>|2+F(a<t),d<t>>> dt < J'(o) < Co(R*+R").  (3.19)
0 2

Combining together inequality (3.18) and (3.19) in (3.17) we get (ii):
Vs(x,v) — Vs(zo,v0) < cp(1 4+ R*) + Co(R? + R*) =: M(R).
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(iii)

For some constants M; and M we have that the map Z : T4 x R? — R such that
Z(z,v) = M v|® — Mas~! is a subsolution of (3.13), indeed

1
52(2,0) + 5|DuZ(x, ) + (DuZ(2,0), ) ~ Fz,0)
1
< My Hol™ — My + §M1_2a2\v]2(°‘_1) — v + cp.
As 2(a—1) < @, since a € (1,2], we get, for M; and My large enough,
1
80Z(x,v) + §\DUZ(:17,”U)]2 + (D, Z(z,v),v) — F(z,v) <0.

By comparison we obtain V5 > Z, which proves the first inequality in (3.15).

In the same way, considering the map Z(z,v) = cgd~!(|v|* 4+ 1), we have
1
0Z(x,v) + §|DUZ(x, v)|> + (D, Z(z,v),v) — F(z,v)
1
>cp(v|*+ 1)+ 5572(0Fa)2]v|2(a71) —cpv|*—cp > 0,

so that Z is a supersolution. By comparison we conclude that the second inequal-
ity in (3.15) holds.

Let 7* be optimal for Vs(z,v) and let h € R%. Then

400
Viethos [ e (;w*<t>|2+F<v*<t>+m*<t>>> dt

+o0o
= Vs(wvv)Jr/O e (F(y (1) + hA* (1) = F(y*(£).4°(1)) dt (3.20)

“+o00
< Vs(m,v)Jr/ e ep(14 [3*()|*)|h| dt,
0

where the last inequality holds true by assumption (F3). Moreover, by (3.15) we
deduce that there exists a constant Cs5 > 0 such that

+00
| R O = cr) de < Vi) < Col1+1ol?)
0
Therefore, by (3.20) we deduce that
Vs(x + h,v) = Vs(z,v) < Cs(1 + |v]*)[A],

which implies that Vj is locally Lipschitz continuous in space and proves (iv).
O

We now strengthen a little the convergence in (3.14):

Proposition 3.17. Assume that F satisfies (F1)—(F3). Then

A= lim inf  dVs(x,v),

d—0% (z,v)€TLx R4

with \ defined in (3.14).
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Proof. First we note that, by (i) in Proposition 3.16, the convergence in (3.14) is locally
uniform. Fix R > 0 such that
' RY —cp > A\ (3.21)

Then, for any £ > 0, there exists d. > 0 such that for any ¢ € (0,.) we have that

inf 1% >A—¢. 3.22
(x,v)ér'ﬂl'dXBR 6(3;’0) o ¢ ( )

Fix (z,v) € T x R? and let 7} be a minimizer for Vs(x,v). We define

75 (¢
75 (¢

~—

IA A

o {inf{t € [0,+00] : |52(t)| < R}, if {t € [0, +ox]

: |<R}#0
+00, if {t € [0,4+0o0] : |<R}=10

Vs
Vs

~—

By Dynamic Programming Principle we get

Vi) = [ (GEHOR + P05 ) de+ e Vi), 45(0)

and by assumption (3.1) and definition of 75 we deduce that
BVal,v) = (g R — ex) (1 — € ) + e T0Va(oi(ms), 36 (m). (3.23)

If 75 is finite, we have that |y} (7s)| is bounded by R and thus, by (3.21) and (3.22) we
deduce that for any ¢ € (0, ;)

SVs(z,v) > A1 —e0) 4 e 9N\ —eg) > A —¢.
By (3.21) and (3.23) the same inequality also holds if 75 = +00. Hence, we obtain that

lim inf  oVs(z,v) > A—¢.
0—07F (z,0)eTexRY

By (3.14) we infer that

A= lim 6V5(0,0) > lim inf  0Vs(z,v) > X —¢,
d—0+

T 607 (z,0)€TIxRE
which implies the desired result since € is arbitrary. 0

As Vjy is coercive, we cannot use it directly as a test function to test the fact that
a measure is closed. To overcome this issue we approximate Vg by family of Lipschitz
maps (V).

Lemma 3.18 (Approximate problem 1). Assume that F' satisfies assumption (F1)—
(F3). Let R > 0 and define Fr(x,v) = min{F(x,v), R} for any (x,v) € T¢ x R, Let
V(;R be the unique continuous and bounded viscosity solution to

SV, 0) + 3 IDVFa, 0)F + (DaVf(,0),0) = Falr,v), (,0) € TOx R (3.24)
Then, the following holds:
(i) Vit is globally Lipschitz continuous;
(i1) there are two positive constants ¢1 5 and ¢z 5 such that
SV (z,v) > & 5(1 + min{|v|*, R}) — éas (3.25)

for any (z,v) € T¢ x R%;
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(iii) there is a constant Cs > 0 such that
|D Vi (z,v)| < C’g(l + min{|v|*, R}) (3.26)
for a.e. (z,v) € T? x R%;
(iv) V5R converge, as R — 400, uniformly on compact subsets of T% x R¢ to the map
Vs defined in (3.12).

The proofs of (i) and (iv) are direct consequences of optimal control theory while
the proofs of (3.25) and (3.26) follow the same argument as for (3.15) and (3.16),
respectively and we omit these proofs.

Lemma 3.19. Assume that F satisfies (F1) — (F3). Let Fr and V{E be defined in
Lemma 3.18. Then we have that

1
inf/ (|w\2 + FR(:U,U)) p(dz, dv, dw) > inf OV (x,v).  (3.27)
Td xR x R4

nel 2 (z,0)€TE xR

Remark 3.20. Note that we can allow for a larger class of test functions in Defi-
nition 3.1, i.e. ¢ € WH®(T? x R?) N C®°(T¢ x R?Y). Indeed, let ¢ € WhH(T9 x
RY) N C®(T¢ x RY) and for R > 1 let (&g € CX(RY) be such that &g(x,v) = 1
for (z,v) € T? x Bg, &r(z,v) = 0 for (z,v) € T? x RN\Bayg, 0 < &p(x,v) < 1 for
T? x Byr\Br and there exists a constant M > 0 such that |D&g(z,v)| < MR~ for
any (z,v) € T x R, Set o = p&r. Then, we have that pr € C°(T¢ x RY), Dyp is
uniformly bounded and converges locally uniformly to Dy. For u € C we have:

/ ((Dmch(a:, v),v) + (Dypr(z,v), w>> wu(dz, dv, dw) = 0. (3.28)
TdxRd xR

Since pu € P54(T? x R? x R?), we can pass to the limit in (3.28) as R — +oco by
dominate convergence. This proves that

/deRded <<Dx()0(l','l))a’U> + <DUSO($,U),'LU>) p(dz, dv, dw) = 0

for ¢ € WH(T? x R?) N (T4 x RY). O

Proof. Let ¢ € C2°(R?) be such that spt(¢1°) € B., £15(x) > 0 and I5. ¢Le(z) doe =

1, and define V(sR’E (z,v) = V5, €1 (2, v) where the mollification only holds in 2. Then
Vy satisfies the following inequality in the viscosity sense

1
(5‘/;56('%'71}) + §’DUV;SE('%'7U)‘2 + <DIV:5E(1'7 1)),'U>
< Fpx & (2,v) < Fp(z,v) + Cpe(1 + min{[v[*, R})

where the last inequality holds true by (F3) and the definition of Fr. Now, let £%¢ €
C>®(R%) be such that spt(¢2€) C Be, £2°(v) > 0 and st €2%(v) dv = 1 and define

<p§%’5(a:, v) = £2€ %, VzgR’E(a:, v) (where the the mollification now only holds in v). Then,
by (3.26) we have that

162 %, (DL V5 (2, ), ) (v) — (Do (), 0)]
< e | DV || oo (Bo(wy) < Cse(1 4+ min{jv]®, R}),
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which implies that

1
305 (@, ) + S Du (@ 0)] + (Daigy’ (2,0),0)
1
< 8¢5 (2.0) + 5| Do (2, 0)
+ €% x, (Do Vi (@, 0),0) + Cse(1 + minf[v]*, R})

< Fr*&*(z,v) + Cse(1 +min{|v|*, R})
< Fr(z,v) + C15e(1 + min{|v|%, R})

where the last inequality holds true by assumption (F3). Thus, so far we have proved
that for any (x,v) € T? x RY

5 1 ) 5
590% (JJ,’U) + §|DUQD§—2 (.’L‘,’U)|2 + <D£BQD§% (.I‘,U),U>
< Fgr(z,v) + C5e(1+ min{|v|*, R}).

(3.29)
Moreover, in view of (3.25) we deduce that there exists a constant Cy 5 > 0 such that
for any (z,v) € T¢ x R? we have that

5g0§%6(x, v) > Cy s min{|v|*, R} — Ca. (3.30)

We claim that for € > 0 small enough, the following holds:

1
inf/ <\w2+FR(:r,v)> dp(z,v,w)
peC Jrdyrdxrd \ 2

: €,0 . . o
= (a:,v)lerﬂll‘fded <6<'0R (x,v) 01756 (1 + Hlln{|v| aR})) .

(3.31)

By Remark 3.20 above, we can test the fact that a measure is closed by smooth and
globally Lipschitz continuous maps. Let £(T? x R?) be such a set. Then

1
inf/ <|w|2+FR(:L‘,v)> p(dz, dv, dw)
peC Jrdyrdxrd \ 2

1
= inf sup / (*]w\z + Fr(z,v)
uez@a,g(TdXRdXRd)¢Eg('ﬂ*dXRd) TdxRdxRd 2
~ (Dat(a,v),v) = (Do, v), w) ) pu(da, dv, dw)
1
> sup inf / <f\w]2+FR(:r,v)
BEE(TAxRA) HEPa 2(TIXRIXRY) JTdxRAxRA \2
~ (Do, v),v) = (Do, v), w) ) pu(da, dv, dw)
> inf / <1| 2 4+ Fgr(z,v)
in —|w T,
T PEPo 2(TIXRIXRY) JTdyRdxRE \2 R
— (D23 (2, 0),v) = (Do (2,0),w) ) plda, dv, dw)
; 1 0 2 6
= it B 0 + el — (D 00 |

which proves (3.31) thanks to (3.29). Recalling (3.30), the right hand side of (3.31) is
coercive in v uniformly in ¢ for € small. As in addition go%’é converges locally uniformly
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to V(;R as € — 0, we obtain

lim  inf (6@25(33, v) — Cy5¢ (1 + min{|v|?, R}))

€0 (z,0)eTd xR
= inf  SVE(x,v).
(z,v)ETEXRE

So we can let £ — 0 in (3.31) to obtain the result. O

In the next step, we let R — 400 in (3.27):
Lemma 3.21. Assume that F satisfies (F1) — (F3). Let Vs be defined in (3.12). Then

1
inf Slwf + F de,dv,dw) >  inf 6V . 3.32
;Iéc/deRded (2|w| + (w,v)) p(dz, dv, dw) > (a:,v)ler’lﬂ‘dXRd 5(x,v) ( )

Proof. We first consider the left-hand side of (3.27), for which we obviously have, by
the definition of Fr in Lemma 3.18,

1
inf/ <|w|2—|—FR(:L‘,v)> wu(dz, dv, dw)
neC JTdwRd xR 2

1
< inf/ <lw|2+F(x,v)> p(dz, dv, dw). (3.33)
pEC JTdyRdxRd \ 2

As for the right hand side of (3.27), we note that, if (zz,vg) € T? x R? satisfies

VE(zg,vr) <  inf  Vi(z,v)+ R7Y,
J (xR UR) B (x,v)IGITITdXRd J (x U)

then, as V¥ < Vj and (3.25) holds, we have

¢1,s (1 + minflog|*, R}) — a5 < <x,v>ie%5 L Vsta) + R

This proves that vg remains bounded in R and we can find a subsequence of (zg, vg),
denoted in the same way, which converges to some (Z,7) € T? x R? as R — +00. Then
by local uniform convergence of VJR to Vs, we obtain that

inf <Vs(z,0) = i f = i inf f .
rapbbaga 20 S V00 = B Vo o) = R a0 )
(3.34)
Passing to the limit as R — 400 in (3.27) proves the Lemma thanks to (3.33) and
(3.34). 0

We are now ready to prove the main result of this section.

Proposition 3.22 (Characterization with closed measures). Assume that F sat-
isfies (F1) — (F3). For any (zo,v0) € T? x R we have that

. 1op . I
Tlgl;o TV (0, 2o, vo) —/1}%2 i <2]w\ +F(a:,v)> p(dz, dv, dw).

Proof. Let 7(7;0,1)0) be a minimum for the problem

inf  JT(y).

~v€Elo(z0,v0)
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Let us define the probability measures ur by

e : .
Lo o) T @) = 7 [ o070y 03T (00 T (1)

for any o € C°(T¢ x R? x R?). By Lemma 3.14, the (u”) converge, up to a subsequence
(T},), weak-* to a closed measure p*. Therefore

lim inf —
T— 00 v€To(x0,v0) T

. 1 Tn 71 T, 2 Ty . T,
= tim o [ (G (O + O 037 0) at

n—oo T},

JT(y)

1
= lim <2w|2 + F(azw)) ptn (dz, dv, dw)

n—=00 JTd«RdxRd

1
>/ (3o + Fa)) (o),
TdxRAxRd \ 2

Thus, taking the infimum over the set of closed measures C we obtain that

1 1
lim inf  —JT(y) > inf/ <lw|2 —|—F(£L’,U)> dp(z, v, w).
TdxRixRd \ 2

T—o00 veTg(x0,v0) T pnec

To obtain the opposite inequality, we note that, by (3.32) (which holds for any
0 > 0) and Proposition 3.17, we have

1
inf <|w\2 + F(x, v)> p(dx, dv, dw)
uec Td xR x R4 2

> lim inf 0Vs(z,v) = A,
§—07F (z,0)€TExRY

where A defined in (3.14). Then we can conclude thanks to (3.14). O

Proof of Theorem 3.2. The existence of the limit and the fact that it does not depend
on (z,v) is the main statement of Proposition 3.13 while the characterization of this
limit is given by Proposition 3.22. 0

3.3 Asymptotic behavior of MFG with acceleration

We now turn to MFG problems of acceleration. In order to study the asymptotic be-
havior of these problems, we first need to describe the expected limit: the ergodic MFG
problems of acceleration. The difficulty here is that, as explained in the previous part,
we do not expect the existence of a corrector and therefore the ergodic MFG problem
cannot be phrased in these terms. We overcome this issue by using the characterization
of the ergodic limit given by Theorem 3.2 in terms of closed measures. This suggests
the definition of equilibria for ergodic MFG of acceleration (Definition 3.4). We prove
the existence and the uniqueness of a solution in Proposition 3.23. In order to pass to
the limit in the time-dependent MFG system of acceleration, we first need to rephrase
the solution of this system in terms of closed measures (more precisely in terms of the
so-called T'—closed measures, see Definition 3.24). This is the aim of the second part
of the section (Theorem 3.25). Thanks to this characterization, we are then able to
conclude on the long time average and complete the proof of Definition 3.4.
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3.3.1 Ergodic MFG with acceleration

Following Definition 3.1 we recall that C C 2, 2(T? x R? x RY) denotes the set of closed
measures, i.e. u € C if it satisfies for any test function ¢ € C°(T? x R?) the following
condition:

/deRded (<D£90($,U>7U> + (Dyip(x, v),w)) p(dx, dv, dw) = 0.

The candidate limit problem that we are going to study is the following fixed point
problem: we look for a measure p € C such that

1
p € argmin {/ <]w|2 + F(m,v,ﬁﬁu)) n(dz, dv,dw)} (3.35)
nec TdxRdxRd 2

where 7 : T? x R? x R?, defined as 7(z,v,w) = (z,v), is the projection function.

Proposition 3.23. Assume that F satisfies (F1°) and (F2’). Then, there exists at
least one solution (A, i) € R x C of the ergodic MFG problem.

Moreover, if F satisfies the monotonicity assumption (3.6) and if (M\1,f11) and
(Ao, Ji2) are two solutions of the ergodic MFG problem, then A1 = Xa.

Proof. Let IC be the set of probability measures p € C such that
1
/ (|w]* + ¢t v|*) p(dz, dv, dw) < 2cp,
TdxRd 2

where v and cp are given by assumption (F2’). We endow K with the d; distance and
define, for any p € K, the set ¥(u) as the set of minimizers 77 € C of the map defined
on C )
n— (\w|2 + F(x,v, Wﬁu)) n(dz, dv, dw) (3.36)
TdxRixRd \ 2
We also denote by A(p) the value of this minimum. First, we show that the set-valued
map ¥ is well-defined from X into K. Indeed, if 4 € K and 7 € C is any minimum of
(3.36), we have by assumption (F2’) (setting 7 = 0(4,0,0) € C for an arbitrary point
zo € TY):

1 — —
/]l‘d R Rd(§|w|2 + e ol = cp) ii(da, dv, dw)
xR x

A

1
< [ Gl + P vt n(ds.dv,do)
TdxRIxRE 2
1
S / (*"UJP"‘F(.%’,'U,T{'ﬁ,U,)) ﬁ(da:,du,dw) S CF.
TdxRIxRE 2

So 7 belongs to K. Moreover, we observe that a solution of the ergodic MFG problem
exists if the set-valued map ¥ has a fixed-point and we prove that this is the case using
the Kakutani fixed-point theorem. Since a > 1, by the above considerations, we know
that the space K is compact with respect to the dy distance. Thus, for any p € K, the
set ¥(u) is convex and compact. It remains to check that ¥ has closed graph. Fix a
sequence {/;}jen C K and a sequence {n;}jen C K such that

py =M, my =7, and ;€ W(uy) VjEN.
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Let us show that 7 € W(u). Note that 7 € C. It remains to check that 7 minimizes
(3.36). By standard lower-semi continuity arguments and continuity of F', we have:

Lo (GleP + Plavntp) n(do, do,du)
Td xR xR . (337>
< lim.inf/ (zlwl* + F(x, v, muy)) nj(de, dv, dw).
i JTdxRixrd 2
We now check that the right-hand side is not larger that A(u). Indeed, let 77 belong to
U(p) and fix n > 0. As 7 belongs to K we can find R > 0 such that

1
/ (= |w|* + cplv|® + cp) F(dz, dv, dw) < €.
(TdxRIxRI\Br 2

As miu; converges to mp for the d; distance, we have by assumption (F1°) that, for j
large enough,

dim  sup  |F(z,v,7lp;) — F(z,v,mip)| <e.
Joteo (IE,”L))EBR

So, by optimality of 7; and the estimates above,

1
/Td R Rd(§’w|2 + F(x,v, 7)) nj(de, dv, dw) = A(p;)
xR x
1
S / (§’w|2 + F(‘/va7ﬂ-ﬁuj)) ﬁ(dﬂj, d’U,dw)
Td xR xR

1
< / (z|w]? + F(x,v, 7)) i(dz, dv, dw)
Bp 2

o,
B,

1
< [ (Gluol + Fle,o.mip) a(de,dv.du) + 26 < A + 22,
Br

1
(51wl + crlv|* + cp) i7(dz, dv, dw)

Coming back to (3.37), this shows that

1 —
/Jl‘d R Rd(5\W!2+F(x,v,7rﬁ,u)) f(dx, dv,dw) < Au),
XIR*X

and therefore that 77 belongs to W(u). Therefore, applying Kakutani fixed-point theorem
we have that there exists a fixed point 77 of ¥ and this is a solution of the ergodic MFG
problem.

Now, we prove that under the monotonicity assumption (3.6) the critical value is
unique. Let (A1, fi1) and (g, fi2) be two solutions of the ergodic MFG problem. Then,
by definition we have that, for i =1 or ¢ = 2,

- 1
\; = inf / (\w[Q + F(:L‘,U,ﬂjj/]ﬂ) p(dz, dv, dw)
pEC Jrdyrdxrd \ 2

X (3.38)
= /Td . <2lw|2+F(x,v,7rﬁui)) fi(dz, dv, dw).
X X

Thus, exchanging the role of fi; and fip as competitor for A\; and \o, respectively, we
get

_ 1
A < / <|w\2 + F(z,v, 7rjj,u1)> o (dx, dv, dw) (3.39)
TdxRIxRd \ 2
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and
- 1
fo < / <|w|2—|—F(:17,v,7Tjjﬁ2)> fix (dz, do, duw). (3.40)
TdxRIxRE \ 2

We first take the difference between (3.39) and (3.38) for i = 2 and we get
AL — Ao §/ (F(z,v, 7)) — F(z,v,74f2)) diz(dz,dv, dw).
TdxRIxRE
Taking the difference between (3.39) for i = 1 and (3.40) we get
AL — Ao 2/ (F(z,v,mii) — F(z,v,mii2)) di(dz, dv, dw).
TdxRIxRE
Thus, taking the difference of the above expressions we deduce that
0> / (F(.’L', v, Wﬁ/jl) - F(.CU, v, Wﬁﬂ?)) (lal(dx7 d’U, dw) - ﬁQ(dxv d’U, dUJ))
TdxRd xR

which implies by monotonicity assumption (3.6) that F(z,v, 7)) = F(z,v, 7ij2).
Coming back to (3.39), it follows that A\; = As. O

3.3.2 Representation of the solution of the time-dependent MFG sys-
tem

We now consider the time-dependent MFG system (3.4). We have shown in Chapter 2

that such system has a solution (u”, m”) and that the function u” can be represented
as
ul'(t,z,v)
T
. L. . _ (3.41)
=t L[ GROP + FO@.36hm)) ds+ oo (050 m) |
'YEFt(Iv'U) t 2

In order to compare the solution of this time-dependent problem with the solution of
the ergodic MFG problem, which is written in terms of closed measures, we need to
rewrite the time-dependent problem in term of flows of Borel probability measures on
T?¢ x R? x R?. The following definition mirrors the definition of closed measure in the
ergodic setting:

Definition 3.24 (T-Closed measures). Let T be a finite time horizon and let mgy €
21(T? x RY). Ifn € C([0,T]; 21 (T x R? x RY)), we say that n is a T-closed measure
associated with mq if for any test function p € C2([0,T] x T¢ x R?) the following holds

T
/ / ({8, 2, 0) + (Dasplt,2,0), 0) + (Dusplt, 2, v), w) ) me(dr,dv, duw)
0 TdxR4dxRd

= / SD(T7:1:7U) UT(dﬂfad%dw) _/ QO(O?‘T/U) mg(dx,dv).
T4 xR4x R4 TdxRIxR4
(3.42)

We denote by CT'(mg) the set of T-closed measures associated with mg € 221 (T9 x R?).
The goal of the subsection is to prove the following equality:
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Theorem 3.25. Assume that F' satisfies (F1°), (F2’) and g satisfies (G1). Let M >0
and assume that

/’er y [v|* mo(dx,dv) < M. (3.43)
X

Let (uT,m™) be a solution to (3.4). Then

T
1
inf / / < w|? 4+ F(z,v,m! > dx,dv, dw)dt
uGCT(mo){ 0 JTixRIxRd 2| | ( 1)) )

—I—/ g(x,v,m%) uT(dﬂc,dv,dw)} (3.44)
TdxR xR
:/ ul (0, z,v) mo(dz, dv).

Td xR

In addition, there exists a minimizer i’ € CT(mq) of the problem in the left-hand
side of (3.44) such that m] = wfi] , where 7w : T x R? x R — T x R? is the canonical
projection on the two first coordinates, i.e. such that w(x,v,w) = (z,v).

The proof of Theorem 3.25 follows standard arguments but is slightly technical
because the problem is stated in the whole space in velocity. The main problem is to
regularize the map u” in order to have a smooth function with a compact support which
satisfies a suitable (approximate) Hamilton-Jacobi inequality. The first step towards
this aim is the following Lemma:

Lemma 3.26 (Approximate problem 2). Let f : T x R? x [0,7] — R be a
continuous map with at most a polynomial growth and which is locally Lipschitz con-
tinuous in space locally uniformly in time and g : T x R* — R be a locally Lip-
schitz continuous map with at most a polynomial growth. Let R > 0 and let &8
be a smooth cut-off function such that €% > 0, f(z,v) = 1 if (z,v) € T? x Bg,
0 < &f(z,v) <1 if (z,v) € T¢ x Bop\Bg and £8(z,v) = 0 if (z,v) € T¢ x By. Define
fr:T¢xREx[0,7] = R and gg : T* x R* = R as fr = £8f and gr = £Pyg. Let u},
be the viscosity solution of the following problem

—opuk(t, z,v) + L Dyuk(t, 2, v)|* — (Dyuk(t, z,v),v)
= fr(t,z,v), in [0,T] x T¢ x R? (3.45)
ul (T, z,v) = gr(z,v), in T¢ x R%.

Then, the following hold:
1. u% has compact support;
2. ug 1s Lipschitz continuous in space and velocity variable;

3. u% converge, as R — +o0, locally uniformly to the solution u’ of the following
problem

—opuT (t,2,v) + 3| DyuT (¢, 2,0) > — (Dyul (t,2,v),v)
= f(t,z,v), in [0,7] x T4 x R?
ul (T, z,v) = g(x,v), in T¢ x R4,
The proof of the Lemma follows standard argument in optimal control and we omit

it. Next we prove Theorem 3.25 in the simpler case where F' and g are replaced by Fr
and gg:

52



Proposition 3.27. Assume that F' satisfies (F1’) and (F2’) and g satisfies (G1). Let
(u”,mT) be a solution of system (3./). For R >0, let €& be a smooth cut—off function
as in Lemma 3.26 and let us set Fr = £8F and gr = €Rg. Let ug be the continuous
viscosity solution of the following problem

—opuk(t, z,v) + 3 Dyuk(t, 2, v)|? — (Dyuk(t, 2,v),v)
= Fr(z,0,m]), in [0,7] x T¢ x RY (3.46)
uR(T,x,v) = gR(fv,v,m%), in T¢ x R?,

Then

inf / / ( \w|* + Fr(z,v, m] )) we(dx, dv, dw)dt
HeCT (mo) TdxRdx R4
+/ gR(xﬂ-}am%) ,LLT(d.ZU,d’U,dUI)}
TdxRd xR
:/ uh(0, z,v) mo(dz, dv).
TdxR4

Proof. We first prove that

T 1 2 T
inf - + Fr(z,v, dx,dv, dw)dt
e (L[ (Gl Fateomd)) (e, du.dv)
+ / gR(fo’m%) ,uT(d:c,dv,dw)} (347)
Td xR xR4
2/ uh(0, 2, v) mo(dz, dv).
TdxRd

We have that

inf / / ( |w|* + Fr(z,v, m] )) e (de, dv, dw)dt
TdxRIx R4

,LLECT (mo)

+ / gR(xv v, m%) MT(dxv dv, dw)}
TdxR4x R4
= inf sup / / |w|2 + Fr(z,v,ml)
peC([0,T]; 21 (T4xRIXRY)) peCoo ((0,T]x T xRY) deRded
+ Oup(t,,0) + (Daplt,,0),0) + (Dusplt, 2, ), w) ) pn(de, do, dw)dt
+ / (gR(x,v,m%) - go(T,:n,v)) pr(dz, dv, dw)
Tdx R4 x R4
+/ ©(0,z,v) mo(dz, dv)
Td xR
1
> sup inf / / (f|w|2 + Fr(z,v,m])
e ([0,T]xTdxRA) HEC(0,T];: 21 (T xRIxR)) Jo  JTdxRIxRE \2
+ Oup(t,2,0) + (Daplt, 2, 0),v) + (Duiplt,,0), w) ) u(der, dv, dw)at
+ / (gR(x,v,mg) — go(T,a:,v)) pr(dz, dv, dw)
Tdx R4 x R4

+/ ©(0,z,v) mo(dz, dv).
TdxRd

93



In the argument below, the constant cg depends on R and on the data and may
change from line to line. Let £1¥ = ¢1¢(z) be a smooth mollifier such that spt(£5°) C
B., £45(z) > 0 and fBE ¢Y¢(x) dr = 1, and define ui’R = uk x, EV5(t, z,v) (the con-
volution being in the z variable only). Let R > R be such that spt(uk), spt(Fr) and

spt(gr) are contained in B/. Then, we have that u‘i’R satisfies the following inequality
in the viscosity sense

1
— 8tu€’R t,x,v)+ = DUUE’R t,x,v)? — Dxus’R t,z,0),v) < FrxEY8(t, z,v
1 B 1 1

< FR(:I:’ v, mz) + CF5(1 + |U|a)1(m,v)€’11‘d><BR/'

Now, let £2¢ = £2¢(v) be a smooth mollifier such that spt(£2€) C B, £€2¢(v) > 0 and
st £2¢(v) dv = 1 and define uf’e = £2F %, u?’s(t,x,v) (the convolution being now in
the v variable only). Then, by the Lipschitz regularity of u% stated in Lemma 3.26 we
have that

R, R, R,
€ s (Dol (8, 2,), ) (0) — Dyl (8, 2,0),0)] < & | Dguf¥“lloc < enelypenins, -
Hence uZ’R satisfies in the viscosity sense:

1
- 8tu§’R(t, z,v) + Q\Dvug’R(t,x, v)|? — <Dmu§’R(t,m,v),v>
< Fr(z,v,ml) +cpe 1(x7v)€deBR/.
We finally regularize ug’R in time. Let &3¢ = ¢%%(t) be a smooth mollifier such that
spt(£%€) C B., £2¢(t) > 0 and st €2¢(t) dt = 1 and define u?’s = £3% ¥ u?’s(t,x,v)

convolution in time). Thus, uR’E, for any (¢,z,v) € (—oo, T — €] x T% x R, satisfies
3
(in the classical sense)

1
- 8tu§’8(t, z,v) + §|Dvu§’€(t, z,v)|* — <Dxu§’g(t, x,v),v)

< 53,5 *¢ FR(IL‘, v, mT)(t) + CRréE l(x,v)GTdXBR/ .

By Theorem 2.25 in Chapter 2 we know that m’ is Lipschitz continuous in time with

respect to the d; distance. Setting (¢, x,v) = u?’s(t —¢,1,v), 4R satisfies therefore

1 N
- 8ta§(t,x,v) + §|Dv’&§(t,l‘,1})|2 - <Dzu?(t7xav)7v> (3 48)
< FR(.’L‘, v, m?) tcCre 1(x,v)€TdXBR/ :

We note that af is smooth and has a compact support and converges uniformly to u®
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as € — 0. Using ﬂf as test function we get

sup inf / / ]”w|2 + Fp(z,v,ml)
©eC2([0,T)xTdxRd) HEC([0,T];21 (T XRIXR?) deRded

+ Oup(t,2,0) + (Dasplts 2,0), v) + (Duip(t,,0), w) ) (e, dv, dw)at

+/ (gR(m,v,m::ﬁ) — @(T,x,v)) pr(dz, dv, dw) +/ (0, z,v) mo(dz, dv)
Td xR xR4 T

dRd

T

1

> inf / / (7‘w|2 +FR(xaU7mz) +atﬂ§(taxvv)
peC([0,T); 21 (T4xRIxR)) Jo  JTdyRdxrd \2

+ (Dl (t, z,v),v) + (Dvﬂf(t,w,v),w>) pe(dz, dv, dw)dt
-I-/ (gR(Jc,v,m%) — ﬁf(T,x,v)) pr(de, dv, dw)
TdxRIxRE
+/ a0, z,v) mo(da, dv)
Tdx R4

- inf { Dy (¢, z,v) 2 + Fr(z,v,mT) — 8,ak(t, x,v)
(t,z,v)€[0,T]x T4 x R4

+(Dyal(t, 2, v),v) + gr(x,v,mb) —al (T, x v)} —i—/ a0, z,v) mo(dz, dv).
Tdx R4

By (3.48) we obtain that

1
inf {<7|Dvaf(t,x,v)|2 + Fr(z,v,mT) + a8 (t, 2,v) + (Dyal(t, x, U),v>)
(t,,0)€0,T]xTdxRd L\ 2

+ gr(z,v,mb) — 0T,z v)} +/ a0, z,v) mo(dz, dv)
TdxRd

> —cre+  inf { gr(x,v,m%) — a®(T, :E,U)} +/ 420, z,v) mo(dz, dv).
(z,0)€ETI xR TdxRd

As e = 0" we obtain (3.47).
On the other hand, since uﬂ is a continuous viscosity solution we know that it can
be represented as follows:

. (L . .
b0 =t {7 (GHOP - FaG@:30mD) it onto(D), 3.}
o(x,v
(3.49)
We define the measure v € C([0, T]; 21(T¢ x R¢ x R?)) as

/ gp((L’, v, w) Vt(dxa dv, dw) - / @(’Y(w,v) (t)a ;V(x,v) (t)a ;y(x,v) (t)) mo(dl', d’U),
Tdx R4 x R4 Tdx R4 x R4

for any ¢ € C°(T? x R? x R?) and any ¢ € [0, T], where Y(z,v) i @ measurable selection
of minimizers of problem (3.49), see Lemma 3.28. By the regularity of the minimizers
it is not difficult to prove that v € CT(mg). Moreover, integrating the equality

Tl .
ug(oa €L, U) = 7|7(z,fu) (t)’2 + FR(’Y(m,v)(t)a V(x,v)(t)a m?) dt
0 2

+ gR(V(x,v) (T)7 ;Y(:r:,v) (T)v m%)
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against the measure mg we deduce that

/ uh(0, 2, v) mo(dz, dv)

TdxR?

/ / | + FR(’Y(z v)( )a;)/(w,v) (t)vmg)) dt mo(d.ilf, d’U)
Tdx R4

[ 9 (T) ) (7). F) mod )
X

= /0 /’]I‘d o <§|w|2+FR($,v,mtT)) vi(dz, dv, dw)dt
X X

+ / gR(CL',U,m%) VT(dxad’U7dw)
TdxRIxRE

> inf / / < lw|* + Fr(z,v, m] )) pe(dz, dv, dw)dt
Tdx R4 x R4

MGCT (mo)
+ / gR(.’E,U,m%) ILLT(de,d’U,dUJ)-
Td xR xR
This completes the proof. O

Proof of Theorem 3.25. Using the notation of Proposition 3.27 we know that for any
R>0

inf / / < lw|* + Fr(z,v mtT)> we(dz, dv, dw)dt
HeCT (mo) Tdx R4 xRe

+/ gr(z, v,m7p) pr(de,dv, dw)
TdxRIx R4
:/ uh(0,z,v) mo(dz, dv).

Tdx R4

Then, on the one hand it is easy to see, by standard optimal control arguments, that
for any (z,v) € T¢ x R? we have that [u%(0,z,v)] < Ci(1 + |[v|%). By Dominated
Convergence Theorem we get

lim uh(0, 2, v) mo(dz, dv) = / ur' (0, z,v) mo(dz, dv).
R—+00 JTdy«Rd Td x Rd

On the other hand, without loss of generality we can define a cut-off function £r as in
Proposition 3.27 such that Fr and gr are non-decreasing in R. Thus

T
1
limsup inf // <]w|2+FR(x,v,mtT)> wi(dz, dv, dw)dt
R—+o00 n€CT(mo) Jo JTdxrixRrd \ 2

+ / gR(.f,’U,mg) MT(dx7dU7dw)
TdxR4x R4

r 1
< inf / / <|w|2 + F(z,v, mtT)> pi(da, dv, dw)dt
peCT(mo) Jo  JTdxRdxRd \ 2

+ / g9(z,v,mp) pr(de, dv, dw).
Td x R4 x R4
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To prove the reverse inequality, let {R;} en and {1 }ien C CT(my) be such that

T 1
liminf inf ~|w|? + Fr(z,v,m! > dx, dv, dw)dt
R—+00 pueCT (myp) A /]TdXRdXRd (2| | R( t ) Iut( )

+ / gR(xa,wm%) MT(d.’B,d’U,dUJ)
TdxRI xR

r 1
= lim  inf / / <|w|2+FRj($,U,mtT)> pe(dx, dv, dw)dt
) Jo Jrixrixrd \ 2

J—+00 peCT (mo

+/ gRj(x,v,m%) pr(dz, dv, dw)
TdxRdxRd
T
1 4

= lim // f|w|2+FR.(:z:,v,mtT) wl(dx, dv, dw)dt

j—=+o0 Jo  Jrdxrixrd \ 2 !
+/ gRj($>U7m%) M?p(d.ﬁb’,d’[},dﬂl)

T4 xRd xR

We claim that {,u{ }jen is tight. Indeed, the lower bound on F' and g, there exists a
constant C' > 0 such that

T .
sup/ / lw|* 1] (dx, dv, dw)dt < C (3.50)
j Jo JTdxRIxRE

and thus it is enough to prove that the moment with respect to v is also bounded. In
order to prove this bound, let 1 € C°(R?) with 1(0) = 0 and such that |Di(p)| < 1.
For ¢(t,x,v) = (T'—t)y(v), we have, by the definition of a T'—closed measure in (3.42),

T .
L (260 + (@ = 0(D0(0),w) (o, do, du)i
0 JTdxRIxR4 (3.51)
=1 [ () moldedo)
TdxRd

and by (3.50) and Cauchy-Schwarz inequality we get
T :
’/ / (T — t)(D(v), w) 1 (de, dv,dw)dt‘ <TCV?,
0 JTdxRd4xRe
Thus, by (3.51) we obtain that

‘/ W) u{(dz,dv,dw)dt‘ <,
Td x R4 x R4

for some new constant C. If we choose 1, such that v, (v) increases in n and converges
to |v|, we get therefore

T A
/ / |v| pl(dz,dv, dw)dt < C.
0 JTIxRIxR

This implies that {,ui }jen is tight and, up to a subsequence still denoted by ,u{ , con-
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verges to some ji € CT (mg). Then, we have that

T
1
inf / / <]w|2+F(x,v,mtT)) pi(dx, dv, dw)dt
RECT (mo) Jo  JTdxRaxRe \ 2

+/ g(ﬂz,v,mg) ,LLT(dCE,de,dU/)
TdxR4x R4

T
1
§/ / <]w|2+F(x,v,mtT)> it (dx, dv, dw)dt
0 JTdxRixrd \2

+/ g(x,v,m%) g (dx, dv, dw)
Td xR xR4
r 1 .
< lim / / ~|w|* + Fr.(z,v,ml) wl(dx, dv, dw)dt
j—=+00 Jo  JTixraxrd \ 2 !
+/ IR; (w,v,m%) u]f(dx,dv,dw)
Tdx R4 xR4

T
1
=liminf inf // (\w[2+FRj(x,v,m:;F)> p(dz, dv, dw)dt
)Jo JTixrixrae \ 2

Jj—r+o0 MECT(mo
+/ 9R; (z,v,m%) pr(de, dv, dw).
Td x R4 x R4

This completes the proof of equality (3.44).

It remain to check the existence of a minimizer u? € CT (myg) of the problem in the
left-hand side such that m] = wijf. For this, let Y(z,v) denote the measurable selection
of minimizers of u” (0, z,v) in (3.41) as in Lemma 3.28 below and define the measure

/jir = ((‘Ta U) - ('y(x,v) (t)’ ;Y(as,v) (t)’ DvuT(t’ V(z,v) (t)a ;Y(a:,v) (t)))) ﬁmO

for any ¢ € [0,7]. Note that by [1, Lemma 3.5] fi{ is well-defined since u(t,z,-) is
differentiable along the optimal trajectory 7(, ) with

;)"(z,v) (t) = DvuT(tJ’V(x,v) (t)a;y(x,v) (t))v te [OvT]

In particular, it is easy to see that i’ € C”(mg) and moreover, by [1, Proposition

4.2] we have that m{ = 7w since m{ = ((z,v) = (Y(zw)(t); Y(zw)(t))imo. By the

representation formula of the value function we have that

T
1. . .
UT(Ov z, U) = /0 (5 |r7(z,v) (t) |2 + F(ry(z,v) (t)’ Y(z,v) (t)’ m;{)) dt + g(/y(r,’u) (T)a V(zx,v) (T)v m%)

T
1 . :
N /0 (5100”1 3w0) (D e )OI + F () (0 S (sl ) ) it

+ g(’Y(:{:,U) (T) ) ;Y(x,v) (T)’ m%) :

Integrating both side against the measure mg and using the definition of fi”’, we obtain
that 717 satisfies the equality in (3.44) and therefore is optimal. O

Lemma 3.28. Assume that F satisfies (F1’) and (F2’) and g satisfies (G1). For
(z,v) € T? x R? let T*(z,v) C To(z,v) be the set of minimizers of problem (3.41) for
t = 0. Then, the set-valued map

I (TP xR [-)) = (0 )] - [loo)s (2,0) = T (@, 0)
has a measurable selection (.., i-€. (,v) = Y(z,) is measurable and, for any (v,v) €

T? x R4, V(zw) € I (7, 0).
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Proof. By using classical results from optimal control theory it is not difficult to see
that I'* has a closed graph, see for instance Lemma 2.9 in Chapter 2. Therefore, by
[21, Proposition 9.5] the set-valued map (x,v) =% I'*(x,v) is measurable with closed
values. This implies by [26, Theorem A 5.2] the existence of a measurable selection
Viaw) € I (7, ). O

3.3.3 Convergence of the solution of the time dependent MFG system

We now investigate the limit as the horizon T" — +oo of the time-dependent MFG
problem. The main result of this subsection is the following proposition:

Proposition 3.29 (Convergence of MFG solution). Assume that F' satisfies (F1°),
(F2), (F3’) with a = 2 and the monotonicity condition (3.6), that g satisfies (G1)
and that the initial distribution mq in (3.4) belongs to Po(T? x RY). Let (uT,m”) be
a solution of the MFG system (3./) and let (\, i) be the solution of the ergodic MFG
problem (3.35). Then

1

lim - r =\
Pim o /deRdu (0,2,v) mo(dz,dv) =\

Throughout the section, we assume that the assumption of Proposition 3.29 are in
force. The proof of the proposition—given at the end of the subsection—is made at
the level of the closed and T'—closed measures. For this we first need to discuss how to
manipulate them. The first lemma is a straightforward application of the definition of
T—closed measures:

Lemma 3.30 (Concatenation of T-closed measure). Let T,T' > 0, mg € Pa(T? x
RY), p1 € CT(mo) and pg € CT (my) with my = wfpy(T). Then, the measure

[y = ul(t), te [O,T}
t =
pe(t =T),  te(T,T+1T
belongs to CT+T" (my).
Next we explain how to link two measures by a T'—closed measure:

Lemma 3.31 (Linking two measures by a T-closed measure). Let m} and m3 be-

1 2
long to Po(T?xRY). Then, there exists i™~m € CT=1(m}) such that mg = whu;"°""0

and
1 1 2 2 mé—ﬂn% 1 2
(Gl ep(1+ o) T (e, do, dw)dt < Co(1+ Ma(mi) + Ma(md)),
0 JTaxR
(3.52)

where Ma(m) = [ra, ga |v]2dm(z,v) (form € P5(T¢xR?)) and where Co depends only
on « and cp.

Proof. Let (xo,v0) € spt(m{) and let (z,v) € spt(m3). Then, following the proof

of Lemma 3.8, there exists a curve U§;£}U3}O) : [0,1] — T such that Ug(,)vio)(o) — a0,
(o (©) = v0 and o) (1) =y, 63 (1) = w with
1
1 . ;L‘,’U . I,U
/O (GIoEm OF +er(L 4166 (OP)dt < Co(1 + o + wol?). (3.53)
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Moreover, by construction, o depends continuously on (xg,vg, x,v). Let A € H(mo, m%)
be a transport plan between m} and m2 (see (1.2)). We define the measure p0~™ e
C'(mg) by

/T el e do.du)
X X

- /( e P (0,600 (6),550) (8)) Mdao, dvo, de, dv)

1 2
for any ¢ € C°(T¢ x R? x R?). Then, on easily checks that m3 = ﬂ'jju;noﬁmo and that,
by (3.53):

/ / |w[2 +cr(1 4 [v?)) mo_)mo(dx,dv, dw)dt
deRQd

< (12/ / (1 + [v]* + |vol?) m"_)mo(da; dv, dw)dt
'JI‘dXRQd
= Cy(1 4 Ma(mg) + Ma(mg)).
O

Proposition 3.32 (Energy estimate). Under the notation and assumption of Propo-
sition 3.29, there exists a constant C' > 0 (independent of T') such that

0 (x,w)eTdxRd (1 + ‘U’2)2d N ’

where m = i, with w(x,v,w) = (x,v).

Proof. The proof consists in building from 7 and u” competitors in problems (3.35)
and (3.44) respectively. Let us recall that u” and ji are minimizers for these respective
problems.

We start with problem (3.44). Fix T' > 2. We define the measure i’ by

. o telo,1
i =" 0.1 (3.55)
i, te(1,T],

where ™0™ is the measure defined by Lemma 3.31. We know by Lemma 3.30 that
i" belongs to CT(myg). So we can use i’ as a competitor in problem (3.44) to get

T
1
/0 /Td . <2]w|2+F(x,v,mtT)> pd (dz, dv, dw)dt
X X

/ g(x,v,mE) ph(dz, dv, dw)
TdxR%x R4

/ /w o Rd< lw|? + F(z,v,m{ )) {7 (da, dv, dw)dt (3.56)
X X

/ /]I‘d - ( lw|* + F(z,v m?)) a(dx, dv, dw)dt
X X

/ g(z,v,m%) a(dz, dv, dw).
TdxR4x R4
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Next we build from p? a competitor for the minimization problem (3.35) for which
i is a minimizer. In view of [1, Proposition 4.2] there exists a Borel measurable maps
(%,v) = Y(z,v) such that, for each (z,v) € T x RY, V(x,) i a minimizer for u”(0,z,v)
n (3.44) and satisfies

T
/ / o(x,v,w) pl (d,dv, dw)dt
0 TdxR2d

. (3.57)
= / / (p(’Y(x,v) (t)’ ;Y(a:,v) (t)7 ;)./(z,’u) (t))dtmg(dx, dU)
TdxRd JO

for any test function ¢ € CY (T? x R?)). By Lemma 3.10 and Remark 3.11, for any
A > 2, there exist Borel measurable maps (z,v) = ¥(y,,) and (z,v) — 7(, ) such that

;?(x,v) (0) = ’?(w,v) (T) =, ’LY(x,v) (0) = }y(z,’u) (T) = v and :Y(oc,v) = V(z,w) O1 [O’T(z,v)]

(3.58)
and
Tl 2 202 2
/ (5 @) O + er(L+ Fao) ()1)dt < Cs(1+[0])* (N + A7°T). (3.59)
T(x,v)
Let us define g7 by
/ (70('1"7,0310) /lT(dl',dU,d’LU)
d 2d
o (3.60)

=T / / t 721}) (x v)( ) (x v)( ))dtmo(dx, dv)
Td xRd

for any test function ¢ € Cp(T? x R??). Note that, by (3.58), i7" belongs to C. So using
the closed measure /i as a competitor in problem (3.35) we deduce that

1
/ “|w|? + F(z,v,m) | A(dz,dv,dw)
TdxRIxRE \ 2

1 (3.61)
< / <!w\2 +F(w,v,m)> it (dx, dv, dw).
Td x R2d 2

Note that by the definition of 47 in (3.60) and by (3.58) and (3.59), we have
1
T/ < \w[2+F(xvm)) 0T (dz, dv, dw)
«R2d \ 2
= [ G OF + F (0,3 @) ANt molt, )
TdxRd
Taw) 1 ) _
< [ ([ G OF + PO O 00 m)de
TdxRd \J0

T
[ R @F +er + B OF))de) mo(da, do)

T(x,v)

T
1. . _
< / (/ (5‘7(1,1}) (t)|2 + F(ry(z,v) (t)a Y(z,w) (t)v m))dt
Td xRd 0

+ O5(1+ [)2(N2 + )\_QT)) mo(dz, dv).
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Plugging this inequality into (3.61) and using the representation of y” in (3.57) then
gives

1
/ “|w|? + F(z,v,m) | a(dz,dv,dw)
TdxRixRd \ 2

1
</ (\w[2+F(x,v,m)> i (dx, dv, dw)
TdxR2d \ 2

r 1
< T_l/o /]I‘d - <2|w|2 —I—F(:L",v,m)) pl (dzx, dv, dw)dt
X X

+ 203(1 + Mg(mo))<)\2T_1 + )\_2),

(3.62)

where Ma(mg) = [1a,ga [v]*dmo(z,v). Putting together (3.56) and (3.62) (multiplied
by T') then implies that

T
1
/0 /’JTd Rgd(§|w|2+F(xavvmtT))thT($,v,w)
X

r 1
+ / / <|w|2 + F(x,v, m)> A(dx, dv, dw)dt
0 Jrdxrzd \ 2
! 1 ,
/ / <]w|2 + F(ﬂC,?),m?)) p* 7" (dz, dv, dw)dt
0 Jrixgr2d \ 2

T 1
+ / / (|w|2 + F(z,v, mtT)) a(dz, dv, dw)dt
1 Jrdxred \ 2

+ / g, v,m¥) A(de, dv, dw) — / oz, v,m%) 15 (dz, dv, dw)
Td xR2d Td x R2d

IN

T 1
- / / (\w|2 + F(x,v, m)> pl (dz, dv, dw)dt 4+ 2C3(1 4+ My(mo))(A? + A7°T).
0 Jraxgrza \2

Using (3.52) to bound the first term in the right-hand side (note that m belongs to
Po(T? x R x RY) with o = 2, so that m € P5(T¢ x R?)) we obtain therefore

T
/0 /TdXRQd(F (@,0,m{) = F(x,0,m)) (pf (dz,dv, dw) — i(dz, dv, dw))dt
< Co(1 + My(mg) + Ma(m)) + 2||gllee + 2C5(1 + Ma(mg)) (A2 + A 72T).

We now use the strong monotonicity condition (3.6) and choose A = T4 to get

T
/ / (F(z,v,ml) — F(x,v,m))?dzdvdt < CT2
0 JTdxR2d
for a constant C' independent of T'. Recalling that F satisfies (F3’), we obtain (3.54)
by the interpolation inequality Lemma 3.35 in the Appendix. ]

Proof of Proposition 3.29. Throughout the proof, C' denotes a constant independent of
T and which may change from line to line. Let u? € CT(mg) be associated with a
solution (u”',m”) of the MFG system (3.4) as in Theorem 3.25. By Theorem 3.25 we
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have that

1
= ul (0, 2,v) mo(dz, dv)
T Td xRd

L[ L2 ™\ T

= *{ —|w|* 4+ F(x,v,m; ) | p; (dz,dv,dw)dt
T'UJy Jrixrixre \2
+ / g(z,v,mb) u%(dx,dv,dw)} (3.63)
Td x R4 x R4

= inf w2+vamT> dx, dv, dw)dt
g L (3l + Fla o) ) )it
+ / g(x,v,mg) uT(dx,dv,dw)}.
TdxR4xR4
We first claim that
limsup inf / / < lw|* + F(z,v mtT)> pi(dzx, dv, dw)dt
T—sto0 HECT (mo) T Td xR xRd
+ / g(z,v,m¥y) pr(de, dv dw)} (3.64)
Td x Rd x Rd

1
< inf Z|w|?+ F T i(dx, dv, dw) 5.
_}th{/ﬂrdeded <2|w‘ " (x,v,m)) Alde, dv, w)}

In order to prove the claim, we first note that, by Young’s inequality and Proposi-
tion 3.32, we have, for any u € CT (myg),

T
‘/ /Td - (F(Lv,mtT) — F(z,v,m)) ut(d:c,dv,dw)dt)
X X

F(x' o Ty F(x' o . m 4
/ / sup P,y mi ) (f V)| (1+ \UIZ)dil wi(dz, dv, dw)dt
TdxRIxRE (¢ ,0") €T x RY (1+ [v|2) T

sup dt

x,v) €T xR (1 + ”U|2)2d

< / ‘F('rav:mtT) —F($,v,m)’2d+2
- 2d+2 (

1

2d 1T 4@d+Dn 2d

(2d+1) (1 + o) D py(dae, dv, dw)dt
2d + 2 0 TdXRdXRd

T
g0T3+T4<23+1>/ / (1 + |v[?) pe(da, dv, dw)dt.
Td xR x R4

(3.65)

As g is bounded, we have therefore, for any p € CT'(my),

1 [* 1
T{/o /W - <2|w|2 + F(x,v,m?)) pe(dz, dv, dw)dt
X X

+ / g(z,v, m%) pr(dz, dv,dw)}
TdxRdxRd

1 ’ LT _
< *{ —|w|* + F(z,v,m) | p(dz,dv,dw)dt
T \Jy Jrixrixmrd \ 2

T
+ T / / (1 + |v|*) pe(dz, dv, dw)dt} +OT ™4+ T M 9lloo-
Td xR x R4
(3.66)
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Given fi € C, we know from Lemma 3.31 that there exists ™0™ such that

1
1 mo—TH[i
/0 /T Gl er (L o)™ (do, dv, duw)at
X

< Cz(l + MQ(mo) + MQ(Wﬁﬂ))

(3.67)

Let us then define i’ by

~T {M?OHWML? te [Oa 1]
t — ~

i, te(1,7T],

By Lemma 3.31, il belongs to CT (mg) and we have, in view of (3.67),

T
1
Tl/o /Jl‘d - <2]w|2+F(x,v,m)> ad (da, dv, dw)dt
X X

< CoT 7M1 + Ma(mo) + Ma(mtit))

+ T YT ~ 1)/

1
Tdy RAXRA <|w\2+F(az,v,m)) a(dwz, dv, dw)
XIREX

2

while

T
XIR% X

< Co(1 + Ma(mg) + Ma(mtfi)) + (T — 1) Mo ().

Therefore, coming back to (3.66) and using the i’ built as above from the fi € C as
competitors, we have

1o/t 1
inf {/ / <w2+F :B,v,mT) dx,dv, dw)dt
peCT(mo) T'UJg  JrdxRrdxRrd 2’ | ( 1)) )

+ / g(x,v,mp) pr(dz, dv,dw)}
Td xRd xRe

1
< inf {/ (\w|2 + F(z,v, m)> a(dx, dv, dw)
REC \ J1d wRd xRd 2

+ CT 40 (14 My (mo) + Ma(mtji)) | + CT 5 + T g]lcc.

(3.68)

Since, by assumption (F2?),
/ F(z,v,m) fi(dz,dv,dw) > ci' Ma(m4fi) — cp,
Tdx R4 xRd

one easily checks that the limit of the right-hand side of (3.68) as T" — +o0 is

. I _ _
ligg{/ﬁrdeded <2|w| +F(:B,U,m)> ,u(dx,dv,dw)}.

This proves our claim (3.64).
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Next we claim that there exists a closed measure i € C such that

Lo [r 1
limi fi{ Slwl2+ F T T
lim inf - /0 /11‘dede¢1 <2w| + F(z,v,m; ) | p; (dz,dv, dw)dt

Td x R4 x R4
1
2/ (‘w’Z—FF(.TJ,'U,m)) ﬂ(dm,d”u’dw)
TdxRIxRd \ 2

For the proof of (3.69), we work with a subsequence of T — +oo (still denoted by T')
along which the lower limit in the left-hand side is achieved. Coming back to (3.65),
we have

1T 1
T{/o /11‘d i <2|w2 +F(x,v,mtT)> pl (dx, dv, dw)dt
X X

+ [ g(x,v.mf) 1 (d,dv, du) }
Td xR x R4

1 T 1
=z {/ / ~|w|? + F(z,v,m) | pl(dz,dv,dw)dt
T\Jo Jrixrixmrd \ 2

T
7w [ (gt} - €T~ gl
0

By the coercivity of F' in assumption (F2’), we can absorb the second term in the
right-hand side into the first one and obtain:

1 (" 1
T{/o /Td . (2]w\2 —i—F(a:,v,m%F)) pl (dx, dv, dw)dt
X X

+ [ o(x,v,m) (i (de, dv, dw)
TdxRdxRd

1

T 1
>_(1-cCc7 T 4<2‘}+1>)/ / <lw|2 + F(x,v,rh)) pl (dx, dv, dw)dt
T 0 JTdxRIxR? \ 2

T — CTF — ||gfleT
(3.70)

As in the proof of Proposition 3.32 (see (3.62)), for any A > 1, we can find a closed
measure 17 € C such that

1
/Td R2d (2\wl2+F(x,v,m)> 'aT(dx, dv, dw)
X

T
1
ST_l/O [ﬂ‘d . (2]w\2+F(m,v,m)> pl (dz, dv, dw)dt
X X

+ 203(1 + Mg(mo))()\2T_1 + )\_2).
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Plugging this inequality into (3.70) we find therefore

1ot 1
T{/o /Td - <2|w|2 —i—F(az,v,m?)) pd (dz, dv, dw)dt
X X

+ [ o(x,v.mf) (i (da, dv, dw)
TdxRdxRd

>(1-— C\7 aeaE )/ 5

1
. <|w|2 + F(x, v,rh)) i (dzx, dv, dw)
T4 xR2

— 2C5(1 + Ma(mo))(NT ™" + A2) — T~ 77,

By assumption (F2”), the functional in the right-hand side of the inequality is coercive
for T large enough. So i’ weakly-* converges (up to a subsequence) to a closed mea-
sure fi. Taking the lower-limit in the last inequality then implies (3.69).

Putting together (3.64) and (3.69), we find that £ is a minimizer in the right-hand
side of (3.64) and that the semi-limits and the inequalities in (3.64) and (3.69) are in
fact limits and equalities. So coming back to (3.63) we find that

1

Lo b T
TLHEOO T /Wdeu (0, z,v) mo(dx,dv)

1
= inf w2+ F T i(dz, dv, dw) §.
/.%Iéc{/ﬂ*dXRdXRd <2|w‘ + (l"v’m)) H( aj’ U, w)}

The right-hand side of this equality is nothing than but X since (), i) is a solution
to the the ergodic MFG problem with m = wfp: this completes the proof of the
proposition. O]

To complete the proof of Theorem 3.5, we need estimates on the oscillation of u”.
This comes next:

Lemma 3.33. For any R > 1 and (z,v), (2',v") € T? x Bg, we have
4d+3
luT (0, z,v) —u? (0,2',0")| < C’RQT‘*(dL),
where C' is independent of T and R.
Proof. Let v € T'(x,v) be optimal for u” (0, z,v) in (3.41). We define 7 € I'(2/,v’) by

[ a(t) if t € [0,1]
(t) = { AE—1) ifte[1,T].

~

where o is as in Lemma 3.8 with 0(0) = 2/, 6(0) =/, 0(1) =z, 6(1) = v and

/1(;|5(t)|2 + F(o(0),5(t),m]) ) dt < 20,2
0

Note that, as the problem for u” depends on time through (m{), the cost associated
with 4 could be quite far from the cost associated with . To overcome this issue, we
use in a crucial way Proposition 3.32. Indeed, applying (3.54) in Proposition 3.32, we
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T
/0 [F(y(8),4(t), mF) — F(y(t), 5(0),m)| dt

T T _
F _F
< [a+liopi sy Hpnm)=Bpaml,
0 (y,2)ET4 xR (1+ |vf2)F
! a2 T |F( Ty — F( 7)[20+2 5@z
2d —_
< ([ arpopEa) ([0 Pomn - Tosmi?,
0 0 ()i 1+ o)
2d+1

) T Sits
<orm ([T popa)

We have by assumption (F2’) and Lemma 3.6 that
T
/ (A2 = cp)dt <™ (0,2,v) < T (1 4+ |v]?). (3.71)
0
Therefore
T ] T . 3 4d+3 g\ 2d+1
/ |F(4(1),4(8),mi ) — F(y(t),4(t),m))| < OTHaD (1 4 R?)24v2. (3.72)
0

For the very same reason we also have

2d+1

T 4d+3
/1 [F(y(t = 1),5(t = 1),m{) = F(y(t = 1),%(t = 1),m))| < OT %@ (1 + R?)2i52,
(3.73)

because we only used the optimality of v only in the estimate (3.71). So, by (3.72) and
(3.73) we obtain

T
W0.00) < [ (GEOF + FGO.50.mD))
11 ' T-1,1 .
_ /0 (51607 + Flot). o), mf) ) dt + /0 (5h =P+ FOt = 1), = 1),m]) ) dt
2 r 1. 2 . _ _4d+3_ o\ 2d+1
< 20,R? + /O (SHOF + POy, 5(0),m) )dt + CTHE (1 + R2) 36t

9 T ]_ . 2 . T 4d+43 9 2d+1

< 2R’ + /0 (SHOP + F((0).4(0), m]) ) dt + 20755 (1 4 B33
T 2 4d+3 2 2d+1
<u' (0,z,v) + 202 R* 4+ 2CT @1 (1 4 R*)2d+2,

from which the result derives easily. O

Proof of Theorem 3.5. Proposition 3.23 states the existence of a solution for the ergodic
MFG system and its uniqueness under assumption (3.6). From Proposition 3.29 we

know that )

lim — (o dx,dv) = \.
T—1>r-|r—looT/-ﬂ~d><Rdu ( 7x’v)m0< “ U)

It remains to prove the local uniform convergence of u’ to A\. Fix R > 0 and ¢ > 0.
We have by Lemma 3.6 that

0 <ul(0,2,v) < cpT(1+ |v]?). (3.74)
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As mgy € P5(T? x R?), there exists R’ > R such that
/ (1+ o2y mo(da, dv) < . (3.75)
Tdx (R¥\Bpy)

Then, for any (zg,vg) € T¢ x Bg, we have, by Lemma 3.33, (3.74) and (3.75),

1 - 1 _
" .0 w) =X < |7 [ T 0)mo(drdo) - A
T T deRd
1
+ = ‘UT(O,:L"’U) - UT<O,$O’UO)‘ mo(d$, d?})
T Jraxp,,
1 T T
+ (|U (O,CC,U)|+‘U (07$07U0)D mo(dx,dv)
T Jrax(®d\By)
1 T 3 1 2 2
<= u” (0, z,v)mo(dx,dv) — A |+ CT ™ (R)*T*@+D + cpe(2 + R?),
T Jraxrd

from which the local uniform convergence of u” (0, -, ) /T to A can be obtained easily. [

3.4 Appendix

3.4.1 Von Neumann minmax theorem

Let A, B be convex sets of some vector spaces and let us suppose that B is endowed
with some Hausdorff topology. Let £ : A x B — R be a saddle function satisfying

1. a+ L(a,b) is concave in A for every b € B,
2. b L(a,b) is convex in B for every a € A.

It is always true that

inf L(a,b) > inf L(a,b).
i sup £(ed) > up o £lo.)

Theorem 3.34 ([64]). Assume that there exists a* € A and ¢* > sup,¢, infpep L(a, b)
such that
B*:={beB:L(a",b) <}

is not empty and compact in B, and that b — L(a,b) is lower semicontinuous in B* for
every a € A.
Then

minsup L(a, b) = sup inf L(a,b).
beB QEK (a,) aegbeB (a,)

3.4.2 An interpolation inequality
Lemma 3.35. Assume that f : T% x R* — R is locally Lipschitz continuous with
|f(z,v)| 4+ |Dyf(x,v)| + | Dy f(z,v)| < co(l+|v]) for a.e. (z,v) € T? x R? (3.76)

for some constants co > 0 and o € (1,2]. There exists a constants Cy > 0 (depending
on dimension only) such that

2d+2
sup % < Cdcgd/ £ (z,v)Pdzdv.
(ww)eTdxrd (14 [0]*) Td xR
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Proof. Let (zg,v9) € T? x R? be such that f(zg,v9) # 0 and let R = %.

Note that, by our assumption on |f| in (3.76), R is less than 1. Then, for any (z,v) €
Bpg(xo,v9), we have by assumption (3.76) that

| Do f (2, 0) | +] Do f (2, 0)] < co(L+(1+[vo])*) < co(1+2971 42 Hoo|*) < co(3+2[vo[*),

(where we used the fact that R < 1 and that (a + b)® < 297 1(a® + b%) in the first
inequality and the fact that o < 2 in the second one). Therefore

|f($0300)|'

£, 0)] 2 1f (o, w0)] — o(3+ 2ol )R = -

Taking the square and integrating over Bg(xo,vg) gives

> 24 |f (0, vo) |” |f (0, v0)[***2
dzdv > | By |R241 70 W) ,
/]I‘dx]R’i |f(.%‘,’[))’ rav = ’ 1‘ ‘ ‘22d+263d(3 + 2|’UU|O‘)2d

which implies the result. O
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Chapter 4

Singular limit problem for mean
field control of acceleration

4.1 Assumptions and main results

In this following, we will use the same notation for similar objects for two problems.
Howewver, both the analysis are self contained and there are no intersections that might
create ambiguity.

4.1.1 Control of acceleration

We begin with the analysis of the pure control problem of acceleration without mean
field interaction.
Assume that the Lagrangian Lo : R?¢ — R satisfy the following.

(L1) Lo € CH(R%);
(L2) there exists Cy > 0 such that for any (z,v) € R??

1
o= Co < Lof@.v) < Co(1 + o), (4.1)

2

)
1D, Lo(z,v)] < Co(1+|v[?), (4.2)
|DyLo(x,v)| < C’o(l + ]v|),

and, without loss of generality, we assume that Ly(z,v) > 0.

We consider the Hamilton-Jacobi equation

—Opuf (t, 2, v) + 52| Dy (t, 2, v)|? — (Dyus(t, z,v),v)
—Lo(z,v) =0, (t,z,v) €[0,T] x R¥ (4.4)
UE(Ta €z, U) = g(x), (l‘, U) € R,
and assume the following on the function g : R¢ — R.
(TC) ¢g(-) € C,}(Rd) such that Cy > max{%, %HDg(‘)Hoode}.

Let T' be the set of C' curves v : [0,7] — R? endowed with the local uniform
convergence of the curve and its derivative, and given (¢, z,v) € [0,T] x R?? let I';(z, v)
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be the subset of I' such that v(t) = x, 4(t) = v. Similarly, let I';(x) be the subset of T
such that 7(¢) = z. Define the functional Ji;: ' — R

T e
i) = [ (GHOP + a9 4() ds+a(a(T). ity € 0. TR

and set Jip(y) = +ooif v & H?(0,T;R%). Then, we know that the solution u® of (4.4)
can be represented as

i (t,x,v) = inf  Jip(y), (t,z,v) € [0,T] x R%, (4.5)
~velt(z,w) 7

Let Hy : R?? — R be the Hamiltonian associated with Lo, i.e.,

Hy(z,p) = s;é)d { — (p,v) — Lo(x,v)}.

Theorem 4.1 (Main result 1). Assume (L1), (L2) and (TC). Let u® be a solution
to (4.4). Then, there exists a sequence {eitren with e L 0 as k — oo, and a function
u® € W-2°([0,T] x R%) such that for any R > 0

loc

klim ufk (t,xz,v) = u®(t,x), wuniformly on [0,T] x Br x Bg.
—00

Moreover, u° satisfy

—0uu®(t, z) + Ho(x, Dgul(t,x)) =0, (t,z) €[0,T] x R?
u(T,z) = g(z), r € R4

and, consequently, for any (t,z) € [0,T] x R? we have that

P = {f " Lo(r(s).4(s)) ds + (1)}

’YEFt(QE

4.1.2 Mean field control of acceleration

We now list the main assumptions on the Lagrangian Lg : R?¢ x 2 (R%) — R.

(M1) Lg is continuous w.r.t. all variables and for any m € 22;(R%) the map (x,v)
Lo(z,v,m) belongs to C*(RY).

(M2) There exists My > 0 such that for any (z,v,m) € R x 22;(R?)

1
EW — My < Lo(x,v,m) < My(1 + |v|?), (4.6)
|DyLo(z,v,m)| < Mo(1+ [v]?), (4.7)
|DyLo(z,v,m)| < Mo(l + ]v\), (4.8)

and, without loss of generality, Lo(x, v, m) > 0 for any (z,v,m) € R* x 2 (R%).
(M3) There exists two moduli 0 : R; — Ry and wp : Ry — R4 such that
|Lo(z,v,m1) — Lo(z,v,m2)| < 0(|z])wo(di(m1, m2)),

for any (z,v) € R and mq, mg € 221 (RY).
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Let Hy : R?? x 22 (R%) — R be the Hamiltonian associated with L, i.e.,

H(](Ql',p, m) = Supd { - <p7 U) - LO(xﬂ-]vm)}‘
veER

We consider the following MFG system

—0puf + 5= | Dyuf|? — (Dguf,v) — Lo(z,v,m§) =0, (t,z,v) € [0,T] x R*
Oupf — (Depiy v} — 1 dive (15 Dyti®) =0, (t,2,0) € [0,T) x R*  (4.9)
:U’(E] = Ko, US(T,LBJJ) = g(l‘,m%), ($,U) € R

where m§ = mi#u and 71 : R?¢ — R? denotes the projection onto the first factor, i.e.,
m1(x,v) = x. We assume the following on the boundary data of the system:

(BC1) pp € 2(R??) is absolutely continuous w.r.t. Lebesgue measure, we still denote
by po its density, and it has compact support.

(BC2) g(-,m) belongs to C} (R?) such that My > max{3, 1|[Dg(-,m)||lsc ra} and g(z,-)
uniformly continuous w.r.t. space.

Let T be the set of C' curves v : [0,7] — R? endowed with the local uniform
convergence of the curve and its derivative, and given (¢, z,v) € [0,T] x R?? let T'y(z, v)
be the subset of I" such that (t) = x, §(t) = v. Similarly, let I';(z) be the subset of T
such that y(t) = z. Define the functional Ji: I' = R

€ TE-- 2 : € € : 2 d
220) = [ (SR + Lor(6),3().m0) ds+g2(T).m). it € HA(0.T5RY)

and set Jip(y) = oo if v ¢ H?(0,T;R%). Then, from Chapter 2 we know that there
exist a solution (u®, u) € W/llo’coo([O, T] x R*) x C ([0, T]; 21 (R?*?)) to system (4.9) such
that
ut(t,z,v) = inf  Jip(v) (4.10)
€Tt (ww) 7

and for any ¢ € [0, 7] the probability measure y is the image of 1o under the flow

{’:Y(w =v() (4.11)
0(t) = =z Dyus(t,7(t), v(t)).

That is, u® solves the Hamilton-Jacobi equation in the viscosity sense and u® solves the
continuity equation in the sense of distributions.

Remark 4.2. Note that for a.e. (z,v) € R?? there exists a unique solution to sys-
tem (4.11), which we will denote by Viww)> Such that ¢ (0) = x and 00 )(0) = 0.

x,v (w,v) z,v
Moreover, such a curve ¢, v)(-) is optimal for u®(t,z,v) satisfying Vo) (t) = = and

V) (t) = v as initial condition.

Theorem 4.3 (Main result 2). Assume (M1) — (M3) and (BC). Let (u®, uf) be a
solution to (4.9) and let m§ = mfu§ for any t € [0,T]. That is, there ezists a sequence
{er}ken with e | 0, as k — oo, a function u® € VVll’oo([O,T] x RY) and a flow of

oc

probability measures {m?}te[O,T] € ([0, T); 21 (RY)) such that for any R >0

klim utk (t,z,v) = ul(t,x), wuniformly on [0,T) x Br x Br
—00

and
lim ms* =m?, in C([0,T]; 21 (R?)).

k—o00

Moreover, the following holds.
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(i) (W, mP) € WE>(]0,T] x RY) x C(]0,T]; 21 (R%) is a solution of

loc

—0ul(t, z) + Ho(z, Dou(t, ), mY) = 0, (t,x) €[0,T] x R?
oymyY — div (m?DpHo(CL', Dxuo(t,a:),mg)) =0, (t,x) € [0,T] x R? (4.12)

mg = My, uO(T’ :E) = g(xam(j)“)a T e Rd’

that is, u¥ solves the Hamilton-Jacobi equation in the viscosity sense and m® is a
solution of the continuity equation in the sense of distributions.

ii) For anyt € [0,T] the probability measure m? is the image of mo under the Euler
t
flow associated with Ly.

Remark 4.4. Let (u®, u¥) be a solution to (4.9). Assume that Hy is of separated form,
i.e., there exists a coupling function F' : R? x 22 (R?) — R such that

HO(x7p7m) = H(va) - F(x7m)7 v(vavm) € R2d X gl(Rd)

Moreover, assume that F' is continuous w.r.t. all variables, that the map x — F(x, m)
belongs to C’(} (Rd) and that the functions F', g are monotone in the sense of Lasry-Lions,
ie.

/Rd (F(z,m1) — F(z,mg)) (mi(dz) — ma(dz)) >0, YV my,mge€ 21 (R
/Rd (9(z,m1) — g(z,m2)) (m1(dz) — ma(dz)) >0, ¥ mi,mg e 21 (RY).

Then, we know that that there exists a unique solution (u®,m%) € T/Vlicoo([O, T] x R%) x

C([0,T); 221 (R%)) of (4.12) and thus if (u, m?) is relatively compact then convergence
of (u®,m*) holds for the whole sequence.
4.2 Proof of the main result

4.2.1 Proof for the control of acceleration

We start our analysis by considering the case of control of acceleration without mean
field interaction and first we will show that the value function u® is locally equibounded
and locally equicontinuous.

Lemma 4.5. Assume (L1), (L2) and (TC). Then we have that
~CoT — |lglloo et < u®(t,2,0)] < CoT(1+ [vf*) + llglloc e
for any (t,x,v) € [0,T] x R** and any & > 0.
Proof. On the one hand, by (4.5), (4.1) and (TC) we deduce that
us(t,x,v) 2 =CoT = |g|og a-
On the other hand, the functions

C(t,z,v) = g(x) + C(1+ [ (T —t), (t,z,v)e[0,T] x R*
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is a supersolution to the equation satisfied by u® for a suitable choice of the real constant
C > 0. Indeed, we have that

= 00(1,,0) + 5= |DuC(t,0) P = (Dt 2,0), ) — Lol v)

(T —t)2C?
9

> C(1+[vf?) +2 [0 = (Dag(@), v) = Co(1 + [v]?)

1 1
> C(1+ [of?) = 5 1Dg() s = 510l = ColL+ o)

where the last inequality holds by Young’s inequality. Thus, taking C' = 2Cy by (TC)
we obtain

1 1
Co(1+ [v]*) = S1Dg() ooz — 5lv[* > 0. O

An immediate consequence of Lemma 4.5 is the following uniform estimate on the
velocity of minimizing trajectories for u®.

Corollary 4.6. Assume (L1), (L2) and (TC). Let (t,z,v) € [0,T] x R?? and let +*
be a minimizer for uf(t,z,v). Then, there exists a constant S > 0 such that

T
/t 55 ()2 ds < S(1+ [o]?)

where S is independent of €, t, x and v.

Proof. From Lemma 4.5 we know that
u (¢, x,v) < CoT(1+ MQ) +l9llcore, V (t,z,v) €[0,T] x R4,

On the other hand, let (t,z,v) € [0,T] x R?? and let 4 be a minimizer for u®(t,z,v).
Then, we have that

T
€. .
wt,0) = [ (SR + Loy (67 (5)) ds+gr7(T)
t
T T 1 5
> [ L) s~ lalse > [ (&7 o) ds gl
t t
Therefore, combining the above inequalities we get
T
/ 55 (5)[2 ds < 2Co ([lglloo.ga + CoT(1 + [o])) = S+ o). 0
t

We now provide uniform estimates estimates for the gradients of the value function

u® w.r.t. time and space, and we also show that the gradient w.r.t. the velocity variable
decrease linearly in €.

Proposition 4.7. Assume (L1), (L2) and (TC). Then, there exists a constant C; > 0
such that

|0 (t, z,v)] < C1T(1 + |v]?), (4.13)
| D (t, z,v)| < CLT(1 + |v]?), (4.14)
|Dyuf (t, 2,v)]? < 26 C1(1 + |[v]* + |v]h) (4.15)

for a.e. (t,x,v) € [0,T] x R%,

74



Proof. We start by proving (4.13). By similar arguments to the one in Lemma 4.5 we
deduce that

lu(t, ) = 9()lloog2a < Co(T = )1 + [vf?), Ve (0,T). (4.16)
Moreover, the functions f* : [0, 7] x R?*¢x — R defined by
FEw0) = u(t = hoa,v) £ (5T = hy ) = 90) loogze + h(T = )(1+[0]*)

are, respectively, supersolution and subsolution to the equation satisfied by u®. There-
fore, by Comparison Theorem [12, Theorem 3.7] we get

u=(t, 2, 0) = (t = h,z,0)| < [u* (T = b, ) = 9()loo rax, + T —1)

which yields to (4.13).
Next we show (4.14). Let (t,z,v) € [0,T] x R?*? and let v be a minimizer for
us(t,z,v). Then, by (4.2) we get

T 9
Wt +ho) < [ (GHER + Lol (s) + b)) ds+ 07 (T)+ 1)
T
=t £ [ (L") + B (8) = Loy (). 5°(9) ds

+ gy (T) + h) — g(v*(1))

T
<t (t @, v) +/ Colhl(1+ [7*(s)?) ds + [ Dg() o lhl-
t

Moreover, from (4.1) we obtain

T 1
/ <_CO + Ch/*(s)‘z) dS S u‘s(t,x,v) S COT(l + |U‘2) + Hg”oo,Rd
t 0

which in turn completes the proof of (4.14).

We finally proceed with the proof of (4.15). To do so, we first show the result
assuming that u® belongs to C*([0, 7] x R??) and then we treat the general case with
an approximation argument.

Now, assuming that u* € C1([0,T] x R??) we have that

1
—ou + Z—\Dqu\Q — (Dyuf,v) — Lo(z,v) =0
€
in the classical sense. Thus, by (4.1) we obtain

1

2—|Dvu€|2 < 0| + |Dyuf||v| — C’o(|v\2 +1)
< ) . (4.17)

< |Opuf| + i\DmUEP + 5\”’2 — Co([v]* +1).

Hence, combining (4.17) with (4.13) and (4.14) we get (4.15).

Let us consider now the general case. Take § > 0 and let £€9 € C°([0,T]) be a
smooth mollifier w.r.t. time. Then define the function

u 5(t, x,v) = uf * Wtz 0),  (t,x,v) € [0,T] x R%,
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Then, u‘i s satisfy the following inequality in the viscosity sense
05+ =Dt 4f? — (Do 5,0) < Lo, v),
Let €29 € C°(R?) be a smooth mollifier w.r.t. space and define the function
ug 5t z,v) = u 5% 20 (t, z,0), (t,x,v) € [0,T] x R,
Then, we have that uj; satisfy the following inequality in the viscosity sense
0 5+ 5o Dot gl? — {Deti g v) < Lox €9(z,0) < Lo(a, v) + Cod(1 + [of?).
Let £€39 € C°(R?) be a smooth mollifier w.r.t. velocity variable and define the function
u3 5(t, z,v) = uj 4 * E30(t, 2, v), (t,z,v) € [0,T] x R%,
Then, by Jensen’s inequality we deduce that g g satisfy

1
— Qs 5+ Z*EIDvUE,aI2 — (Dyu3 5,v) < Lo * 30 (z,v) + C=6(1 + [v]?)
< Lo(z,v) + Coc0(1 + |v]?)

(4.18)

in the classical sense. Therefore, applying the argument in (4.17) to the function u3 5
which solves (4.18), we get the result as ¢ | 0. O

Now, define the function u° : [0, 7] x R?? as

T
)= int { [ 1a2(5):4) ds o)} (4.19)

yel(

Then, by standard arguments in control theory it is easy to prove the following result.

Lemma 4.8. Assume (L1), (L2) and (TC). Let (t,z) € [0, T] xR? and let 4° € Ty(x)
be a minimizer for u®(t,x). Then, we have that

T
/ K0(s)[2 ds < Cr
t

for some constant Cp > 0.

We are now in the position to prove Theorem 4.1. To do so, we first show in
Proposition 4.9 that «¢ locally uniformly converges to u” and then in Proposition 4.10
we prove that any minimizers of u converges to a minimizer of u” at any point of
differentiability of u°.

Proposition 4.9. Assume (L1), (L2) and (TC). Then, there exists a sequence £, — 0
such that us* locally uniformly converges to u.

Proof. Tt is enough to show that u® converges to u’ pointwise. Indeed, if this holds
then by Lemma 4.5 and by Proposition 4.7 we can apply Ascoli-Arzela Theorem to
obtain that there exists {j }ren such that u* converges to u" locally uniformly.
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Let R >0, let (t,2,v) € [0,T] x RY x By and let 4° be a minimizer for u®(t,z,v).
Then, we have that

T
wta) = [ (SR + L0 () () ds +9(7(T)

T
2/ Lo(7°(5),%°(s)) ds + g(+°(T))
t

T
> it / Lo(+(5),4(5)) ds + g(1(T)) = u(t, ).

On the other hand, for any R > 0 et (¢,2,v) € [0,T] x R? x Bg and let 1° € T'y(x)
be a minimizer for u’(¢,z). If 4°(t) = v, by the Euler equation and the regularity of Lo
we have that v € C?([0,T]) and thus we can use 7" to estimate u (¢, z,v) from above.
So, we get

T
wta) < [ (GNP + L6 4%) ds +9(°(T) < u(t2) +o{1).
(4.20)

If this is not the case, we observe that
u(ta,0) = (b a,0) = u (@, 30 (1) + ut (2, 40() < o(1) + ut(t, 2, 40(1))

where the last inequality holds by (4.15). Thus, in order to conclude it is enough to
estimate u®(t,z,4%(t)) as in (4.20). Therefore, we obtain

ud(t,z) < u(t,z,v) < ul(t,z) + o(1)

which implies that u® converges to (4.19) pointwise. O
Proposition 4.10. Assume (L1), (L2) and (TC). Let (t,z,v) € [0,T] x R? be a
point of differentiability for u°(t,z) and let v¢ be a minimizer for u®(t,z,v). Then, 7°
uniformly converges to a curve v° € AC([0,T];R?) and v° minimize u° at (t, ).

Proof. Let us start by proving that +° uniformly converges, up to a subsequence. By
Corollary 4.6 we know that

T
[P ds < s+ o).
t
Thus, for any s € [t,T], by Holder’s inequality we have that
()] < lz] + VTVS(1 + [of?)2.

Therefore, 4° is bounded in H'(0,T;R%) which implies that by Ascoli-Arzela Theorem
there exists a sequence {e} }ren and a curve 1Y € AC([0, T]; RY) such that v°* converges
uniformly to +°.

We proceed now that 7" is a minimizer for u%(¢, z). First, we observe that

T
liminf SIE(8)2 + Lo(¥(),45(5)) ) ds + g(+*(T))
e—0 /t (2 0 > (4‘21)

T
> limin / Lo(v(5),4°(5)) ds + g(+°(T)).

e—0
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Since ¢ is uniformly bounded in H'(0,7"), by lower-semicontinuity of the functional
we deduce that

T
lim in / Lo(v(s),47(s)) ds + g(+*(T))

E;O
> / Lo(1°(s),4°(s)) ds + g(+°(T)).

Moreover, given (t,z,v) € [0,T] x R? x By, for any R > 0, by Proposition 4.9 we have
that
uf (t,z,v) < ul(t, z) + o(1)

and by definition

T
wtao) = [ (GFEF + L), 5°(s)) ds+ a7 (D))

Hence, we have that

T
o) +0(t,) = [ (S F + Loly*(s).4°(5))) ds+9(2"(T)

which implies the result passing to the limit as € | 0 in (4.21) since

T
w(t) 2 [ Lo((6),4°() ds + 96T, 0
t
Proof of Theorem 4.1. The result follows by Proposition 4.9 and Proposition 4.10. [

4.2.2 Proof for mean field game of acceleration

In order to prove the main result we proceed by steps analyzing the behavior of the
value function u® and of the flow of probability measures m® separately. First, we show
that u® is equibounded and we prove that, up to a subsequence, m® converges to a
flow of probability measure in C([0,T]; 21 (R%)). Then, we address the convergence of
the value function, up to a subsequence, to a solution of a suitable Hamilton-Jacobi
equation and we study the limit of its minimizing trajectories. Finally, we are able
to characterize the limit flow of measures as solution of a suitable continuity equation
which coupled with the Hamilton-Jacobi equation, previously found, define the MFG
system (4.12).

Lemma 4.11. Assume (M1) — (M3) and (BC). Then we have that
~TMo — [|g(-s 1) |oo pe < u®(t,2,0) < MeT(L+ [v]*) + [lg(-,m%) |0 e
for any (t,z,v) € [0,T] x R?* and for any ¢ > 0.

Proof. First, since u® satisfy (4.10), from (4.6) and (BC) follows that for any (¢, z,v) €
[0, 7] x R?? there holds

ut(t,,v) > =CoT — [lg(-; m7) | o -
On the other hand, the function

C(t,z,v) = gz, ms) + C(1 + | (T —t), (t,z,v) € [0,T] x R*
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is a supersolution to the equation satisfied by u® for a suitable choice of the real constant
C > 0. Indeed, we have that

= Wt 2,0) + 5 IDUC (2, 0) P — (DaC(t,,0),0) — Lo(i,v)

T —t)2C?
> 01+ o) + 2T (Dge,mi), ) — o1 + of?)
1 . 1
> O+ o) ~ S1Dg(mi)ows — 3ol = Mo(1 + of?)

where the last inequality holds by Young’s inequality. Thus, taking C' = 2M, by (BC)
we obtain

1 1
Mo(1+ o) = S 1Dg(c,m5) o0 — 510l 2 0. 0

Corollary 4.12. Assume (M1) — (M3) and (BC). Let (t,z,v) € [0,T] x R?? and let
~¢ be a minimizer for uf(t,x,v). Then, there exists a constant Q1 > 0 such that

T
/ 145()2 ds < Q1(1+ |v]?), V¥ e>0.
t

where Q1 is independent of €, t, x and v.

Proof. On the one hand, from Lemma 4.11 we know that
u®(t,z,0) < MoT(1+ ) + lg(smP) laome, ¥ (t,2,v) €[0,T] X R,

On the other hand, let (t,x,v) € [0,T] x R?? and let 4 be a minimizer for u®(t,z,v).
Then, by (4.6) we have that

T
£ .. .
it = [ (GHEOP + Lo(s)47(s)md)) ds+ 97 (1),mi)
t
T
> [ Lo (5), 4 o)) s [l
t
T /9 )
> [ (SRR = 2o ds = g8 o
¢ \ Mo
Therefore, combining the above inequalities we get
T
/ 55 ()1 ds < 2Mo(llg(-,m%) lloo e + MoT (1 + vf?)) =: Qu(1 + [v]?)
t
where (1 depends only on My, T" and ||g(-,m%)||s ge Which is bounded uniformly in

£
ma. O

Corollary 4.13. Assume (M1) — (M3) and (BC). Then, there exists a constant
Q2 > 0 such that for any s1, so € [0,T] with s1 < s there holds
dy(mS,,m2) < Qals1 — 2|7, ¥V e>0

527

where Qo is independent of ¢.
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Proof. We first recall that for any ¢ € [0,7] we know that m§i = mfuf where puf is
the image of ug under the flow (4.11) whose space marginal we denote by ’y( for
(z,v) € R,

Let s1, s3 € [0,T] be such that s; < so. Then, by (1.3) we have that

z,v)

1) < [y (51) = 2 (50)| ol o)
Rd

and thus, appealing to Corollary 4.12 and the Hélder inequality we obtain

1
2
i) < lov = salt ([ @1+ 10P) ol )
R

So, since pg has compact support we get the result setting

1

Q2 = (/R% Q1(1+ |v]?) ,uo(d:x,dv)> © 0

We are now ready to prove that the flow of probability measures m® converges
in C([0,T]; 221(R%)), up to a subsequence. First, we recall that for any ¢ € [0,7] the
measure m; is the space marginal of i which is given by the push-forward of the initial
distribution o under the optimal flow (4.11), that is

{ o) (£) = v(D), o) (0) =
(t) = —*Dvu (¢, 'y(zv)( ),v(t)), v(0)=w.

Theorem 4.14. Assume (M1) - (M3) and (BC). Then, the flow of measures {mg }e(o,7)
is tight and there exists a sequence {ei}xen such that me* converges to some probability
measure m® in C([0,T]; 21 (R?)).

Proof. Since m§ = mfus, for any ¢t € [0,T], where p§ is given by push-forward of pg
under the flow (4.11), we know that

[ el mian) = [ b OF mo(d,do).

So, we are interested in estimating the curve 7(595 ) for any (x,v), uniformly in ¢ > 0.
In order to get it, from Corollary 4.12 we immediately deduce that

1

Ve (8)] < el + VTVQL(1 + [v*)2, Vs €[0,T].
Hence, for any ¢ > 0 we have that
[ ol mita) = [ 1y ©F polda,dv)
Rd Rd
< /2d Co(\:v|2 +TQ:(1+ |v|2)) po(dx, dv)
R

for some constant Cy > 0. Thus, since pg has compact support we deduce that
{m;i }+epo,r) has bounded second-order momentum, uniformly in ¢ > 0 and, conse-
quently, {mj§ };c(o,7) is tight. Therefore, by Prokhorov Theorem and Ascoli-Arzela The-

orem there exists a sequence {ej }reny and measure m® € C([0,T]; 221 (R?)) such that
m — m0 in C([0,T]; 21(R?)). O
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Next, we turn to the convergence of u®. Before proving it, we need preliminary
estimates on the oscillation of the value function w.r.t. velocity variable and then
w.r.t. time and space variable. In particular, we will show that the function u®(t, z,-)
has uniformly decreasing oscillation which will allowed us to conclude that the limit
function does not depend on v.

Lemma 4.15. Assume (M1) - (M3) and (BC). Let R > 0 and let (z,v), (z,v) €
RY x Bg. Then, there exists Cr > 0 and a parametric curve o : [0,/2] — R? such that

0(0) = o(VE) =z, 6(0)=ws, 6(vE)=v
and .
3
) (GO Lalo).510),m0) ds < C
where CR is independent of €, x, v and vy.

Proof. Let R > 0 and let (z,vp), (z,v) € R? x Bg. Define the curve o : [0,/z] — R?
by
o(t) = z + vot + Bt? + At

with A, B € R satisfying the following conditions
o(0) = o(VE) =2, 6(0) = w0, 6(VF) =v.

Thus, we obtain

Hence, we get

/Ox/é (%\&(8)\2 + LO(U(S),é(3)7m§)> ds

VE .
</ (§|23+6At|2 + Mo(1+ |v+2tB+3t2A|2)) ds < C\/eR?
0

for some positive constant C and the proof is thus complete. ]

Lemma 4.16. Assume (M1), (M2) and (BC). Let R > 0, let T > 1 and £ > 0.
Then, there exists 63(6) > 0 such that for any t € [0,T], any = € R?, and any v, w in
Bpg, there holds

|l (t, 2, v) — u(t, ,w)| < Cr(e)

and Cr(e) — 0 ase | 0.

Proof. Fix R > 0 and take (x,v), (z,w) € RYx Bg. Let ¥° be a minimizer for u®(t, z, v)
and define the curve

(S):{U(S—t), s € [t,t+ /¢
78(8_\/g)a s € [t_'_\@aT]
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where o : [0, /€] — R?? connects, in the sense of Lemma 4.15, (z,w) with (z,v). Then,
we obtain

t+ve o
(2, w) — u (b, v) < /t (516(s = ) + Lo(o(s = 1), 6(s = 1),m3) ) ds

+ / Tf (557 = VA + Loy (s = v/E),47(s = V&) mS) ) ds

t++/€

9Oy (T — Ve), mp) — us(t,2,v)
t++/€
—/t ( 5(s —t)|? + Lo(o (s—t),&(s—t),mi,t)) ds

+

T
/tJrﬁ 2‘7 S_\[)|2+L0(7€(S_\ﬁ)”‘ys(s_\/g))mi—\/go ds
+ 90 (T),m7) + 9(V (T = V&), m7) = g(v*(T), m7) — w'(t, 2, v)

t+y/e
4 / (Lo(o(s — 1), 6(s — £),m3) — Lo(o(s — 1), 6(s — t),mS_,)) ds
t
/ — VE), A (s = VE),mS) — Lo(y(s — V), (s — V), mE__) ds.

Now, from Lemma 4.15 we know that

Ve o
/t (516(s = ) + Lo(o(s 1), 5(s = 1), mi_y)) ds < CrE, (4.22)

and, moreover, from the optimality of v¢ we get

T
L GH 6= VAR Lo = VO 4 = VL ) ds (a0

t++/€

4 € .e € L€ €
<- /T . (5K () + Lo(r7 (), 47(s),m3)) ds < 0.
(4.23)

Then, as observed before from Corollary 4.12 we obtain that
()] < Jal +VIVQIL+ [oP)?2, Vs e[0T

and we also know that the curve o is bounded. Hence, by (M3) and Corollary 4.13 we
deduce that there exists P(e) > 0, with P(g) — 0 as € | 0, such that

t+ve
/t (Lo(a(s —t),6(s—t),m$) — Lo(o(s —t),5(s — 1), mi_t)) ds

T
w05 = VO = VB ) — (s = VB A~ VB ) s

+ g(V*(T = Ve),mz) — g(v*(T), m7) < P(e)
(4.24)

where we have used that the modulus 0 in (M3) is bounded from the boundedness of
~¢ and o. Therefore, combining (4.22), (4.23) and (4.24) we get the result. O
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Proposition 4.17. Assume (M1) — (M3) and (BC). Then, for any R > 0 there
exists a modulus wg : Ry — Ry and a constant Cy; > 0, independent of R, such that
for any € > 0 the following holds:

|uf (t, x,v) — u®(s,2,v)| < wr(jt —s|), V (t,s,2,v)€[0,T] x[0,T] x Bg x Br
(4.25)

|Duf (t, z,0)| < CLT(1 + |v]?), a.e (t,z,v) € [0,T] x R x RY.  (4.26)
Proof. We begin by proving (4.26). Let (¢,z,v) € [0,T] x R x R? and let 7¢ be a
minimizer for u®(¢,z,v). Then, from (4.7) we get

T g
wtatho) < [ (R + Lo () + 3% (s)md)) ds +((T)+ o)

T
= u*(t,x,v) +/t (Lo(¥*(s) + h,47(s),m3) — Lo(7(5), 77 (s), m5)) ds
+ 90 (T) + hymz) = g(v*(T), m7)

T
< w(t,z,v) +/ Mo|h|(1 + 57 (s)?) ds + [ Dg(-,m7) oo palhl-
t

By (4.6) and by Lemma 4.11 we obtain

T
]— . % £ I
| (GO = Mo) ds < 0(e,.0) < MO+ o)+ e ) e

which, in turns, yields to the conclusion.
Next, we proceed to show (4.25). Let R > 0 and take (¢,x,v) € [0,T] x Br x Bg.
Let ¢ be a minimizer for (¢, z,v) and let h € [0,T — ¢]. Then, we have that

us(t + h,z,v)

T
= /t+h (%wa(s = D)[* + Lo(y"(s — h), ¥ (s - h%mi)) ds+ g(4(T — h),m%)

T €
= [ (5B = WP+ Lo (s = W35 = b)) ds -+ gl (D), m)
t+h

T
+[(mwwwmw—m@%mwwwmw—mmmws

+h
+ 90 (T = h),m7) — g(v*(T), m7)
T
< (tx,v)+ [ 07 (s = h)Dwoldi(mg, mg_p)) ds + |[Dg(-, m7) | o ralh]
t+h

where the last inequality holds by (M3). Hence, from Corollary 4.12 we know that
7 (5)] < || + VTVQi(1 + [0]?)Z, Vs €[0,T]

and thus 6(-) turns out to be bounded. Therefore, appealing to Corollary 4.13 we
obtain

u(t+ h,z,v) = w(t2,0) < TO(R)wo([hl2) + || Dg (-, m) o el (4.27)
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On the other hand, let R > 0 and let (¢, z,v) € [0,T]x Bgx Bg. For h € [0, T—t], define
the curve v : [t,t + h] — R? by v(s) = x + (s — t)v. Then, by Dynamic Programming
Principle we deduce that

wtan) < [ T CHOR + Lot 40 m)) ds

+ uS(t+ h,y(t + h),(t + h)) (4.28)

t+h
= / Lo(x + (s — t)v,v,m%) ds +u(t + h,x + hv,v)
t
< Mo(1+ R*)|h| +us(t + h,z,v) + C1T(1 + R?) |

where we applied (4.6) and (4.26) to get the last inequality. Therefore, combining (4.27)
and (4.28) the proof is complete. O

Remark 4.18. Next, we study the behavior of the value function u® as ¢ — 0 and
before doing that we recall the following argument needed to get uniform convergence
from point-wise convergence.

Assume that there exists a nonnegative function ©(do, €o, Rp) such that

@(507507 RO) — O) as  €o, 60 \l/ 07

and assume that for any [t; — to| + |21 — 22| < 0o, any € < g9 and any |z;], |v;| < Rp
(1 =1,2) there holds

\ug(tl,ml,vl) — U‘E(tg,xg,vg)’ S @(50,60,R0).

Then: if u® converge point-wise then u® converges locally uniformly and the limit
function does not depend on v. O

Let m® € C([0,T]; 21 (R%)) be the flow of measures obtained in Theorem 4.14 as
limit of the flow m®* in C([0,T]; 221(R?)) for some subsequence &3 | 0. Define the
function u° : [0, T] x R?*¢ — R by

T
0= it [ L6 36)m0) as+ g0 | @29)

We will prove now that for the subsequence ¢; the sequence of value functions u®*
locally uniformly converge to u°.

Theorem 4.19. Assume (M1) — (M3) and (BC). Then, there exists a subsequence
er 4 0 such that uf* locally uniformly converges to u°.

Proof. We proceed to show first the point-wise convergence of u®* to u°, for some
subsequence € | 0, and then, using Remark 4.18, i.e., constructing such a modulus O,
we deduce that the convergence is locally uniform.

From Theorem 4.14, let ¢, be the subsequence such that m® — m?in C([0, T]; 21 (R9))
as k — oo. Let R >0, let (t,z,v) € [0,T] x R x Bg and let 4°* be a minimizer for
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k(t,x,v). Then, we have that
uk (t x v)

= H()2 o Lo(r7(5), 47 (), mEF) ) ds + g(y7(T), m3F)

2‘ZLM £(s), 4% (), mE*) ds + g(7°*(T), mSk)

> mg{jzmwwwwm9w+mwﬂm%}

'yEFt(x
+g(y*(T),m7) — g(y**(T), mT)

T
[ (B (947 (50 m3) = Lor™ (31,47 (s),m)) ds = u(t,2) = of1)

where the last inequality holds by (M1) and the convergence of me* in C ([0, T]; 21 (R%)).
On the other hand, let R > 0 and take (¢, 2,v) € [0,T] x R? x Bg. Let 1% € T'y(x)
be a solution of

inf { /t " Lo(y(s),$(s).m0) ds + g('y(T),mOT)} -

yel(

Next, we distinguish two cases: first, when 4°(#) = v and then when 4°(t) # v. Indeed,
if 4°(t) = v, by the Euler equation and the C?-regularity of Ly we have that v €
C2%(]0,T)). Hence, we can use 7" as a competitor for u* (¢, z,v) and we get

T g
1ﬂw%wsj(gw@ﬁ+mwwww$mw)@+mﬂﬂmﬂ@»

(4.30)

where the last inequality again follows from the convergence of m®* in C([0, T]; 221 (R?)).
If this is not the case, i.e., 4°(¢) # v, from Lemma 4.16 we deduce that

F(tyx,v) = uk(t,z,v) — u(t, x,"yo(t)) + u°k (t,x,"yo(t)) <o(1) + u* (t,x,"yo(t)).

Thus, in order to conclude it is enough to estimate u®* (¢, z,4°(t)) as in (4.30). There-
fore, we obtain
uO(t, ) — o(1) < u(t,z,v) < u’(t, x) + o(1)

which implies that u®* point-wise converges to u°.

Finally, in order to conclude we need to show that the convergence is locally uniform.
From (4.25), (4.26) and Lemma 4.16 we have that for any R > 0 and any (t1,z1,v1),
(tg, x9, UQ) S [O,T] X ER X ER there holds

us (tr, 21, v1) — ¥ (t2, 22, 02)]
< wr(t1 — t2]) + Ci|zy — 22| + Cry/e.
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Therefore, setting
©(do, €0, Ro) = wr,(d0) + C160 + Cryv/c0

by Remark 4.18 we deduce that the convergence is locally uniform and the proof is thus
complete. ]

After proving the convergence of u®, we go back to the analysis of the flow of
measures and in particular we will characterize it in terms of the limit function «°. In
order to do so, we study the convergence of minimizers for u* and appealing to such
a result we will show that m® € C([0,7]; 21 (R?)) solves a continuity equation with
vector field Dy,Ho(z, D,u°), in the sense of distribution.

Proposition 4.20. Assume (M1) — (M3) and (BC). Let (t,x,v) € [0,T] x R* be
such that u® is differentiable at (t,x) and let ¥° be a minimizer for uf(t,x,v). Then,
v¢ uniformly converges to a curve ¥° € AC([0,T]; R?) and +° is the unique minimizer
for ul(t, ) in (4.29).

Proof. Let us start by proving that ~° uniformly converges, up to a subsequence. By
Corollary 4.12 we know that

T
| R s <+,
t
Thus, for any s € [t,T], by Holder inequality we have that

Ve (s)] < ol + VTV/Q1(1 + [v]?)z.

Therefore, 4¢ is bounded in H'(0,T;R%) which implies that by Ascoli-Arzela Theorem
there exists a sequence {ej }ren and a curve v¥ € AC([0, T]; RY) such that v°* converges
uniformly to 7°.

We show now that such a limit 7° is a minimizer for u°(¢, ). First, we observe that

liminf UtT (’i’“wk(s)yz + Lo(7%* (s), %+ (s), mi)) ds + g(v**(T), m?)}

k—o00 2

k—o00

>ty [ " Loy (s), 47 (s), mEr) ds + g (1))

Then, as observed at the beginning of this proof v¢ is uniformly bounded in H'(0,T).
So by lower-semicontinuity of L and Theorem 4.14 we deduce that

e | " Lol (), 47 (5)) ds + 927 (D), )

k—o0

’ (4.31)
> / Lo(7°(s),4(5),m0) ds + g(+°(T), m%).

Moreover, for any R > 0 taking (¢,z,v) € [0,T] x R¢ x B, from Theorem 4.19 we
obtain
utk (t,z,v) < ul(t, x) + o(1)

and we recall that

T
wta) = [ (FHHR + L0 (9,57 (9. mE0) ds+ (0™ (D). k).
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Hence, we get

T
o(1) +u’(t,) > / (137 ()12 + Lo(r™ (), 4 (), me¥) ) ds + g (77 (T), m).

Therefore, passing to the limit as ¢ | 0 from (4.31) we obtain

T
WOt x) > / Lo(v°(s),4°(s), m0) ds + g(+°(T), m%)

which proves that 7° is a minimizer for u°(¢,z). Since u° is differentiable at (t,z) €
R? there exists a unique minimizing trajectory and thus we have that the uniform
convergence of ¢ holds for the whole sequence. O

Remark 4.21. Since u® is locally Lipschitz continuous w.r.t. time and Lipschitz con-
tinuous w.r.t. space, we have that Proposition 4.20 holds for a.e. (t,z) € [0,T] x R,

Let u” be as in (4.29) and let 7Y(-) be the flow associated with the vector field
x — DyHy(z, D ul(t, ), m?),
that is,
(@) = DpHo(7 (x), Dou®(t,7) (), m?),  t € [0,7]
Yo(z) = .

Note that such a flow exists since the vector field = — D,Ho(z, D,u(t,z), m?) is
Lipschitz continuous by the Lipschitz continuity of the value function u” and by the
regularity of the Hamiltonian Hy. We also recall that the measure u® is the image of
o under the flow (4.11), which is optimal as observed in Remark 4.2 for u®(0, z,v) for
a.e. (x,v) € R?? and thus, for any function ¢ € C2°(R?) the measure mg is given by

[ et mitdn) = [ o080 noldz o), (132

We finally recall that by assumption g is absolutely continuous w.r.t. Lebesgue mea-
sure.

Corollary 4.22. Assume (M1) — (M3) and (BC). Then, we have that

m{ =) ()gmo, ¥ te[0,T). (4.33)

Moreover, m* € C([0,T]; 21(RY)) solves
oymy — div <ngpH0(x, D, ul(t, x),mg)) =0, (t,z)€[0,T]x R4
m8 = my, z € RY,

in the sense of distributions.

Proof. From Theorem 4.14 let &5 | 0 be such that m® — m® in C([0,T]; 21 (R%)).
Then, since ug is absolutely continuous w.r.t. Lebesgue measure by Proposition 4.20
we have that

7(8:?,1)) (t) = 2 (x), po-a.e. (x,v), Vt €[0,T].

Therefore, from (4.32), for ¢ = ¢, as k — oo we get

/ o(x) md(dz) = / o(0(x)) mo(dz), Ve [0,T]
R4

R4
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which proves (4.33). Moreover, again by Proposition 4.20 we have that ) is a minimiser
for u%(0, z) since it is the limit of fy(sm ») which is optimal u®(0,z,v) and we are taking

(x,v) in a subset of full measure w.r.t. . Therefore, from the optimality of 7° we get
3¢ () = DpHo(v{ (z), Du’(t, 7 (x)),m?), t € (0,T)
W(z) ==.

Hence, for any 1 € C2°([0,T) x R%) we obtain

G [ ot mtan) = 5 [ (e mo(d)

dt Rd ) t - dt Rd » Vt 0

:/Rd (O (t, 7 () + (Datb(t, 27 (2)), DpHo( (2), Dato(t, 7 (2)), mi))) mo(dz)

= [ @lt.) + (Dot 2). Dy Hola, Dot ). ) )

and integrating, in time, over [0,7] we get the result. O

We are now ready to prove the main result.
Proof of Theorem 4.3. Let {ex}ren be such that m — m® in C([0,T]; 21 (R%) and
u — u? locally uniformly on [0, T] x R2¢. Then, appealing to Theorem 4.19 and
Corollary 4.22 we deduce that (u’,m°) is a solution to the MFG system

—0u®(t, z) + Ho(z, Dyu(t, ), mY) = 0, (t,x) € [0,T] x R?
oym? — div (m?DpHo(:n, Dxuo(t,m),m?)) =0, (t,z)e[0,T]xR?
m8 = mo, w(T, ) = g(z, m) e R
which completes the proof. ]
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Part 11

Weak KAM Theory and
Aubry-Mather theory for
sub-Riemannian control systems
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Chapter 5

Asymptotic analysis for
Hamilton-Jacobi equations
associated with sub-Riemannian
control systems

5.1 Settings and assumptions
FormeNandi=1,...,m, let
fi : RT — R4
and
u; : [0,00) = R
be smooth vector fields and measurable controls, respectively, and consider the following
controlled dynamics of sub-Riemannian type

m

A(t) =Y fitv(®)ui(t) = F(($)U(1), ¢ € [0,+00) (5.1)

i=1
where F(z) = [f1(2)|...|fm(z)] is an d x m real matrix and U (t) = (u1(t), ..., um(t))*".
For any sg, s1 € R such that sg < s; and x, y € R? we set
Lo = {(,u) € AC([s0, 51 R) x L (50, 51;R™) - 4(t) = F(y(t))u(t), ~(s0) =z},

Loty = {07 u) € AC([s0, s1; RY) x L¥(s0,s1;R™) : 4(t) = F(y(t)u(t), v(s1) =y},
e~y — 1~ ATY

50,51 50,51 50,51°

Throughout the Chapter we assume the vector fields f; to satisfy the following:

(FO) there exists a constant ¢y > 1 such that for any i =1,...,m

Ifi(x)| <cp(l+z]), Voe R, (5.2)

In literature, under assumption (F0) the distribution {f;}i=1,. m is called regular.
By (5.2) and Gronwall’s inequality we get the following estimate for the trajectories
of (5.1).

1(u1, ...,uUm)* denotes the transpose of (u1,...,um)
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Lemma 5.1. Let x € RY, t > 0 and (y,u) € 5y If u € L*(0,¢;R™) then we have
that
u(s)] < (2] + erllulloos)erIMl=s, v s € [0,1].

|
Moreover, still from (5.2) we obtain the following.

Lemma 5.2. Let + € R, t > 0 and (y,u) € Iy - Then there exists a constant
k([Jull2,t) > 0 such that

v(s)| < k(l|ullz, t)(1 + [z]), ¥ s€]0,¢] (5.3)
and
V(t2) = 4(t1)] < eprllulla, t) (1 + [2])|ullaltz — t1]2, 0 <t <ty <t (5.4)

Proof. We begin by proving (5.3). For any s € [0,¢] we have that

t

(s < Jz] + /0 F(y(s)[u(s)] ds
< || + /O er(1+ (s)Dlu(s)] ds

<lolrer ([ 0+ RGN ds) hulle

Thus, we get

t
WP < (W = lul+ g [ )P ds)

which implies the (5.3) by Gronwall’s inequality.
We now proceed to show (5.4). Fix 1, t3 such that 0 < ¢; <9 <t. Then, we have
that

[Y(t2) = y(t1)] < /2 [E(y(s))|u(s)| ds

t1

<e / (1 + y)Du(s)] ds

t
1 .
< epnllules )1+ fal) [ fu(s)] ds
t1
where the last inequality holds by (5.3). Hence, by Holder’s inequality we obtain

1
[7(t2) =) < cprlllullz, )+ [z])lull2ltz —ta]>.

This completes the proof of the lemma. O
Let the Lagrangian L : R x R™ — R be such that

(LO) L € C?(R? x R™) and L(x,u) > L(z,0) for any (z,u) € R x R™,

(L1) There exist a non-decreasing function /5 : [0,00) — R and a constant ¢; > 0 such
that

L(z,u) < B(z)A+ [u]?), V (z,u) €R?x R™
|D,L(z,u)| < €,(1+ [u?), ¥ (z,u) e R? x R™

1
D2L(z,u) > = V (z,u) € R x R™.
1
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(L2) There exists a compact set K7 C R? and a constant 67, > 0 such that

inf L(x,0) > é; + min L(z,0). 5.5
e, H0) 2 00 2 H0) >

Observe that a special class of functions L which satisfy (LO) is the class of La-
grangians L € C?(R? x R™) which are convex w.r.t. u € R? and reversible, that is,
L(z,u) = L(z,—u) for any (z,u) € R? x R™. Moreover, note that by (L0), (L1) and
(L2) we obtain

1
L(z,u) > ﬁ]u\Q + L(z*,0), VY (z,u) € R? x R™ (5.6)
1

where z* € K, is such that

L(z*,0) = xrg}lcri L(z,0).

Furthermore, set
§*(x) = dsr(z,2), VxeR?

and observe that, by Corollary 1.7, there exists a nondecreasing function D : Ry — R4
with

5*(z) < D(|z]), VazeR% (5.7)
5.2 Boundedness of optimal trajectories

We consider the following minimisation problem: for any 7' > 0 and x € R?

T
to minimize / L(7(s),u(s)) ds over all (y,u) € T57 (5.8)
0
and we set -
Vr(z) = inf / L(y(s),u(s)) ds, ¥ zecR< (5.9)
(vwergz Jo

For any = € R? we say that a trajectory-control pair (7, u) € I'{7 is optimal if it
solves (5.8).
Remark 5.3. We observe that by using classical technics from optimal control theory

one can easily obtain the existence of optimal trajectory-control pairs for (5.8) (see, for
instance, [26, Theorem 7.4.4]).

In this section, we prove the uniform boundedness of optimal trajectories for (5.8)
starting from a given compact set. We begin by deriving a uniform bound for the
Lebsegue measure of all times at which an optimal trajectory may lie outside the
compact set K, of assumption (L3).

Proposition 5.4. Assume (FO0), and (LO) - (L2). For any R > 0 there ezists a
constant Mp > 0 such that for any * € Bpg, any T > §*(x), and any optimal pair
(Vas uz) € TG 7 for (5.8) we have that

LY {t €[0,T]: 7.(t) € K1}) < Mp. (5.10)
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Proof. Fix R > 0 and let © € Bg. Let (Y, ;) € I‘g?j’é;) be a solution of (1.5) and

recall that, as observed in (5.7), 6*(z) < D(R). Define the control
~ ug(t), tel0,6"
uﬂwz{%m 0.6 ()]
0, ), T).
Then, (Vz, uz) € Fg?’”* and we obtain

* (x)
¥H@SA L(3a(8), Ua(t)) dt + (T — 6*(x))L(z*,0)
=: c1(z,0%(x)) + (T — §*(x))L(x*,0).

(5.11)

Invoking Corollary 1.7 once again, we have that ¢;(z,0*(z)) < C1(R) for some positive
constant C1(R). Now, let (vz,us) € I'f7 be optimal for (5.8). Then, we have that

T T
»wmzémemm»w;Ameth

T T

2 el ") + [ EOW0 01, el) bt [ 2000, 00185 (00

> co(w,6%(x)) + L(z*,0) L1 ({t € [6*(2),T] : v(t) € KL})
+ <$EI$§CLL($,O)> ,Cl({t € [6"(2),T]: 7(t) € Kr})
= ca(z,0%(2)) + L(z*,0) L ({t € [6*(x),T] : 2(t) € Ki})

n ( inf L(m,O)) (T = 6*(x) — LY ({t € [0" (), T) : 7a(t) € KL}))

Z‘ERd\’CL
(5.12)
where
6% (x)
o8 @)i= [ La(0),0) de
0
From (5.12) it also follows that
Vr(z) = ca(,6"(x)) + L(2™, 0)(T — 6% (),
which, together with (5.11), yields
co(z,0%(x)) < c1(x,0%(x)) < C1(R). (5.13)

Hence, we have that
3(0%(x)) = c1(67(2)) — 2(6%(x)) 2 0, ¢3(6"(x)) < CL(R).

So, combining (5.11) and (5.12) and recalling (L2), we deduce that

e3(0% () > (:ceﬂi%%{ICL L(z,0) — L(z*, 0)) (T — 6% () — L' ({t € [0" (), T : wu(t) € KL}))
> 6L ({t € [0%(2),T) : 7a(t) € K1}).
Therefore,

LL{t€[0,T): va(t) €K1}) < 03(%;3;)) + ().
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Recalling that 6*(z) < D(R) and setting

_Gi(R)

Mp :
R 6L

+ D(R)

we obtain the conclusion. ]

Theorem 5.5. Assume (F0), and (LO) - (L2). For any R > 0 there exist two
constants Pr, Qr > 0 such that for any x € Br, any T > 6*(x), and any optimal pair
(Vas uz) € L7 for (5.8) we have that

T
/ lug (t)[* dt < Pg (5.14)
0

and
vz < Qr, Y te[0,T] (5.15)

Proof. We begin with the proof of (5.14). Since (vz,us) € I'j7 is optimal for (5.8) we
have that

T 1 T
Vi) = [ LOu®.un(®) de = - [ f®P de+ TLE0) (5.16)
0 1.Jo
On the other hand, let (3, u,) € Fg?ﬁf;) be a solution of (1.5) and define the control
i (t), telo,6*
o [0 e
0, t e (6*(x), T,

that is, (., us) € Fg?m*. By the definition of Vi we deduce that

5 ()
Vr(z) < /0 L(F2(t), a4 (t)) dt + (T — 6*(z))L(z",0). (5.17)

Combining (5.16) and (5.17) we obtain
1 T

P di< [ L) aa(t)) di — (@)L (", 0)
2710%) _/0 s (t), gz (t)) x)L(z*,0).

In order to prove (5.14), we need an upper bound for the term

(@) B
| e
Observe that, since ||tz [|,[0,6+(x)) < 1 and 6*(z) < D(R), Lemma 5.1 ensures that
72(t)] < (R+ ¢y D(R))e PR = A(R), Vtel0,6%(x)]. (5.18)
Therefore, by assumption (L1) we deduce that
*(x) B -

| e n) de < 280a(m),
Hence, (5.14) follows taking

Pr =20;(26(A(R)) + D(R)L(z*,0)).
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We now proceed to prove (5.15). Let (72, uz) € I'f 7 be a solution of (5.8). Clearly,
we just need to estimate |y, (t)| for all times at which the optimal trajectory lies outside
the compact set Kr. Let t € [0,7] be such that v,( ¢ ) € K and set

() e KL #0
| iv:(t) e K} =0

We only consider the case of tg # 0 since the reasoning is similar when ¢y = 0. Since
vz is a solution of (5.1) we deduce that for any ¢ € [to, ]

t = {sup{t €0,t]:7.(t) e K}, if{te|0,t
t

0, if {t € [0,

[ (0] < 72 (to)] +Cf/t (1+ 2 (s)Dlua(s)] ds

1
t 2
< (to)| + eflluxll2 o (/t (1+ ba(s)P) dS) :
0

Hence, appealing to (5.10) and (5.14) we deduce that

t
e OF < € (Palto) + B Ma+ el g | 1) )
0

t
<C (]'yz(to)Q—i-PRMR—i-PR \’ym(s)\2 ds>

to

for some constant C' > 0. Thus, recalling that |t — to| < Mg by Proposition 5.4, the
Gronwall inequality yields

172 ()] < Clya(to) P PrMpel®Mr v ¢ € [to, 1]

and we set Qg := Cly.(to)|? PRMgre"MR. Since |v,(tp)| < max{|y| : y € K1} and
|72(t)] < max{|y| : y € K} for all times ¢ at which ~,(t) € K1, we get the conclusion.
O

5.3 Long-time average and ergodic constant

In this section, we investigate the existence of the limit

1
lim — R?
Tl—rgoTVT(x) (.Z’G )7

where Vr(z) is defined in (5.9), as well as the related problem of the existence of
solutions to the ergodic Hamilton-Jacobi equation

c+ H(xz,Dx(z)) =0 (zeR? (5.19)

for some ¢ € R, where H : R? x R — R is the Hamiltonian associated with L, that is,

u€eR™

H(z,p) = sup {Zui<p, fi(z)) — L(m,u)} , V¥ (z,p) € R x RY (5.20)
=1
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5.3.1 Long-time average

In order to prove the main result of this section, that is, Theorem 5.8, we need to show,
first, that the value function Vr is locally equicontinuous uniformly in 7.

Lemma 5.6. Assume (F0), and (LO) - (L2). For any R > 0 there exist two constants
Tr >0 and K(R) > 0 such that

\Vr(z) = Vr(y)| < K(R)dsr(z,y), YT >Tr Vx,y€ Bg.
Proof. Let z, y € Bp, set § = dsr(x,y) and let T > dsg(z,y) =: Tr. Let (3y,1y) €

I§5" be a solution of (1.5), let (yz,u;) € T§7 be a solution of (5.8), and define the
control

Then, we have that

T

T
Vily) - Vile) < /0 LG, (6),T, (1)) dt — /0 Ly (t), us (1)) di

) T T

< [Cr6®.a0) d+ [ L= 9.0 =0) dt = [ Laa0.00)
) T—6 T

- / LG, (). @y () dt + / L(a(s), uals)) ds — / L(va(s), ua(s)) ds
0 0 0
) T

- / Ly (t). ay (1)) dt — / L(a(s), ua(s)) ds.
0

T-5
(5.21)
First, by (5.6) we get
T
| 10u(s)malo) ds = 51", 0.
T-5
Then, since ||Uy||c < 1 and § < ¢(R), by Lemma 5.1 we have that
7, (1) < (R + cpe(R))ecr B = A(R), Vtel0,d). (5.22)

Thus, by (L1) we obtain

)
/0 L(3,(s). 1, (s)) ds < 285(A(R)).
Hence, going back to (5.21), from Corollary 1.7 it follows that
Vily) - Vi)
) T
< /0 L3, (s). 1y (s)) ds — /T () us(s) s

<8(2B(A(R)) — L(z*,0)) = K(R)dsr(z,y)

where K(R) := ¢2(28(A(R)) — L(z*,0)). Switching = and y in the above reasoning
completes the proof. O
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Lemma 5.7. Assume (F0), and (LO) — (L2). For any R > 0 there exists a constant
Cgr > 0 such that for any x € Br, any T > 0, and any optimal pair (v, uz) € Fa? of
(5.8) there exists a pair (yr,ur) € I'{7" such that

T T
/ Ly (), ur(t)) dt < / Ly (t), ua(t)) dt + C.
0 0

Proof. Fix R > 0, z € Bpg, and take an optimal pair (v, u;) € Fg?. If v.(T) =«
then it is enough to take Cr = 0 and (yr,ur) = (7, uz). If this is not the case, let
dp € (0,T) be such that

do = dsr(V=(T = do), ).
Note that such a number &g exists since g(d) := dsr(v(T — ), x) — 0, for 6 € [0,T7, is
a continuous function satisfying

gT)=-T<0
9(0) = dsr(7(T), x) > 0.

For simplicity of notation set y = 7, (T'—dp) and observe that |y| < Qg by Theorem 5.5.
5. be a solution of (1.5) and define the control

Let (y,1y) € T 5,
Uz (1), tel0,T—56
wtty — {0 0.7~ ]
y(t+060—1T), t e (T — bo,T).
Then

T T—80 do
/0 Llyr(t), ur(t)) dt = /0 ), ug(t)) dt + /0 L@y (t), (1)) dt
(1)) di —

L(va(t
T T do
= [ a0y = [ L) s [T LGy, dr
By (5.6) we obtain

T
/ L(va(t), s (t)) dt > doL(z",0).
T—do

Let R' = max{R,Qgr}. Then, since ||tyllo0 0,50 < 1 and |y| < Qr, by Lemma 5.1 we
also have that

u(t)] < (Qr+ cpR)ess™ = A(R)
for any ¢ € [0, dp]. So, we obtain

T 00
- [ noet ) de+ [T LG 0.0,0) d

T8
do
< —dpL(z*,0) —i—/o L(7y(t), ay(t)) dt < (50(26(A(R)) — L(:U*,O)).
The conclusion follows taking
Cr = R'(28(A(R)) — L(z*,0)). O

Theorem 5.8 (Existence of the critical constant). Assume (F0), and (LO) —
(L2). There exists a constant a(L) € R, called the critical constant (or Mané’s critical
value), such that

1
lim sup ‘TVT(I‘) - a(L)‘ =0, VR>O0. (5.23)

T—o0 JJEER
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Proof. Let R > 0. By Lemma 5.6, for all x € By we deduce that
[Vr(z) — Vr(0)] < K'(R). (5.24)

Hence, to obtain the conclusion it suffices to prove the existence of the limit

lim. %VT(O) . a(L). (5.25)

For this purpose let {T},}nen and {(7Vn, un) }nen C Fg}n be such that
1 R n
liminf —V7(0) = lim —  inf L(vy(t),u(t)) dt
T—00 T 0

n—o0 Ty (yu)erys,

. (5.26)
= lim /0 L(yn(t), un(t)) dt.

By Lemma 5.7 there exists a sequence (v, u)) € T) 70 and a constant Cy > 0 such that

Th Tn
/ L), u(#)) dt < / L(yu(t), un(t)) dt + Co. (5.27)
0 0

Next, for any n € N let @2 be the periodic extension of u!), i.e., Ul

ad (t) = ul(t) for any ¢ € [0,T,,]. Then, we have that

n

is T;,-periodic and

1 17
lim sup TVT(O) < limsup T/o L(R2(t),ud(t)) dt, YneN (5.28)

T—o00 T—oo
by using @) as a competitor in (5.9). Then, by periodicity and (5.27) we obtain

1 T
tmsup 1. [ L0, 8 (0) d
0

T—o00

Co

Th Thn
- = /0 LOO.(0) dt < - /0 Ln(t),un(0) dt+ 27

Therefore, recalling (5.28) and (5.26) we conclude that

. 1 . 1 Tn Co
lim sup TVT(O) < lim T/o L(yn(t), un(t)) dt + —

T—00 n—oo n T,
1
=liminf — .
o)
This yields (5.25), thus completing the proof. O

Corollary 5.9. Assume (F0), and (LO) — (L2). Then, we have that
a(L) = L(z*,0).

Proof. First, we recall that

T
(L) = lim ~Vp(0) = lim ~  inf / L(v(s), uls)) ds.
0

T—oo T T—oo T (%u)er‘oH
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So, taking (v, uz) € Fg} optimal for V(0) we obtain

T T
a(L) = lim 1/ L(vz(s),uz(s)) ds > lim L(z*,0) ds = L(x*,0)
T—o00 0 T—o0 Jo
since, by assumption (LO) and (L2), we have that L(z,u) > L(z*,0) for any (z,u) €
RY x R™.
On the other hand, we observe that, owing to Theorem 5.8, the value of «(L) could
be computed replacing 0 in (5.25) with any other point of R?. So,

This implies that

.1 r R N .
a(l) = lim =  inf /0 L(v(s),u(s)) ds < lim T/o L(z*,0) ds = L(x*,0)

Tooo T (yujery

which yields the conclusion. O

Remark 5.10. Note that in view of Theorem 5.8 we have that

=0, VR>0.

lim sup
T—o00 $€§R

1 T
— inf /0 (L(7(s),u(s)) —a(L)) ds

(vu)ergs

Moreover, from Corollary 5.9 we deduce that

in L(z,u) — a(L) = 0.
(z,u)rélﬂégXRm (x U) a( )

Therefore, by replacing L with f(a:, u) := L(z,u) — a(L) one can reduce the analysis
to the case of a(L) = ming, ,)cpaxrm L(z,u) = 0.

5.3.2 Application to Abel means
Now, we move to the analysis of the ergodic equation
c+ H(z,Dx) =0, zcR?

showing the existence of viscosity solutions to such an equation by studying the limit
behavior of solutions to the discounted problem

Moy (z) + H(z, Duy(z)) =0, z € R? (5.29)

as A | 0. To do so, define the function

“+o0o
= in e M U .
@ =t TN .a) ) (5:30

(vu)eTg

where

Ti(e7dt) = { (7, 0) € Lig(0,003RY) x L, (0,00:R™) :
o
(v,u) €Tg7 YT >0, and / e Mu(t)? dt < oo}.
0

Hereafter, we assume the following.
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(L2’) There exists a compact set K C R? such that

min L(z,0) =0, and inf L(x,0) > 0.
zek z€RIN\K

We recall that in view of Remark 5.10 assumption (L2’) is not restrictive and, more-
over, by Corollary 5.9 we have that a(L) = 0. Furthermore, (L2’) stands for the
corresponding of (L2) given so far.

Note that vy(z) > 0 for any € R%. Then vy, is the continuous viscosity solution
of (5.29).

Proposition 5.11. Assume (FO0), and (LO) - (L2’). Then, for any R > 0 we have
that:

(i) { \r}rs0 is equibounded on Bg;

(ii) there exists a constant Cr > 0 such that
loa(z) — vaA(y)| < Crdsr(7,y), VY z,y € Bg. (5.31)

Remark 5.12. Recalling that v is the uniform degree of nonholonomy of the distribu-
tion {fi}i=1,..m associated with the compact Bg, Corollary 1.7 and (5.31) yield

1 _
lua(z) —ua(y)| < Crézlz —y[™= ¥V 2,y € Brg.
Proof of Proposition 5.11: Let R > 0 and let € Bgr. Taking (7,1) € Fg;o(e_’\tdt)
such that (3(t),a(t)) = (x,0), by (L1) we get

+oo
Avy(z) < )\/ e ML(x,0) dt
0

“+o0o
< B(R) / e M dt = B(R).
0
On the other hand, by (L2’) we have that
Avy(z) > 0.
Thus, for any A > 0 we conclude that
Mova(z)] < B(R), Yz € Bp.

Yy—T

In order to prove (ii), for any fixed z, y € Bp set § = dsr(x,y). Let (3, uy) € T}
be a solution of (1.5). Let (v, uz) € ngroo(e*)‘tdt) be such that

/Ooo e*)\tL(’Yx(t),ua;(t)) dt < U)\(JZ) ey

Define a new control
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and so (Vy, Uy) € Fg:o(e_”dt). Then, we have that

oA(y) — va(z)

1 +o00

= [N a0 det @ -1 [ L), uals) s+ )
0 0
1)

_ /0 e ML, (8), (1) dt + (— 6A -+ 0(6X)) (vr(x) + A) + A

where

lim @ =0.
qa—0 @

By point (i) we have that d\vy(z) < 08(R) and for A < 1 we obtain o(d\) < 4.
Moreover, by Lemma 5.1 we know that

Ty (O] < (lyl + c50)e® = A(R), ¥t €[0,4]

since ||ty ||o0,0,5) < 1. Thus, by (L1) we deduce that

P 1
/o e MLy (1), 1y (1)) dt < / By (O + |ay(5)?) dt < 266(A(R)).

Therefore, setting Cr = 26(A(R)) we obtain (5.31) recalling that § = dggr(z,y). O
Note that, the above proof fails for general control systems, i.e., of the form (5.1),
under the assumption (LUGC) since, a priori, Tr might not be of the order of |z — y|.

Theorem 5.13 (Existence of correctors). Assume (F0), and (LO) — (L2’). Then
there exists a continuous function x : R* — R and a sequence A, | 0 such that, for any
R >0,

lim vy, () = x(x), wuniformly on Bg.

n—oo
Moreover, we have that:

(i) x(x) >0, x(x*) =0 and x is locally Lipschitz continuous w.r.t. dsg, that is, for
any R > 0 there exists a constant £r > 0 such that

Ix(x) = x(¥)| < {rdsr(z,y), Y x,y € Br. (5.32)
(ii) x is a viscosity solution of the ergodic Hamilton-Jacobi equation

H(z,Dx(z))=0 (zeR%. (5.33)

Proof. First, we observe that, by an adaptation of [8, Theorem 5] (see Theorem 5.21
in Section 5.5.1), we have that

. | .
0= TLHEOO TV (x) = )1\13%) Avy () (5.34)

locally uniformly in space. We recall that vy(z) is a continuous viscosity solution of

Moa(z) + H(z, Duy(z)) =0 (x € RY)
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Since vy(x*) = 0, by Proposition 5.11 we deduce that {v)}x~¢ is equibounded and
equicontinuous. So, applying the Ascoli-Arzeld Theorem and a diagonal argument we
deduce that there exists a sequence A, | 0 such that {vy, (z)}nen is locally uniformly
convergent, i.e., for any R > 0

lim vy, (z) =: x(z) uniformly on Bg.
n—0o0

Hence, from (L2’) we immediately deduce that x(x) > 0 and, again, since vy(z*) =0
we get x(z*) = 0. Furthermore, from (5.31) we get (5.32). Finally, the stability of
viscosity solutions ensures that y is a solution of (5.33), which proves (ii). O

Definition 5.14 (Critical equation and critical solutions). The equation
H(z,Dx(z)) =0 (zeR% (5.35)

is called the critical (or, ergodic) Hamilton-Jacobi equation. A continuous function
X is called a critical subsolution (resp. supersolution) if it is a viscosity subsolution
(resp. supersolution) of (5.35) and a critical solution if it is both a subsolution and a
supersolution.

5.4 Representation formula

In this last section, we construct a critical solution that can be represented as the value
function of a sub-Riemannian optimal control problem. Such a solution, which is useful
to develop the Aubry-Mather theory in the sub-Riemannian case, will be obtained as
the asymptotic limit as ¢ — oo of the Lax-Oleinik semigroup, applied to x given by
Theorem 5.13.

We begin by giving the definition of dominated functions.

Definition 5.15 (Dominated functions). Let a, b € R such that a < b and let x,
y € R%. Let ¢ be a continuous function on RE. We say that ¢ is dominated by L — c,
and we denote this by ¢ < L — ¢, if for any trajectory-control pair (y,u) € Fi;y we
have that

b
o) — d(x) < / L(x(s),u(s)) ds — ¢ (b— a).

Let us introduce, now, the following class of functions
Sz{wEC(Rd):go(x)ZO Yz € RY, cp%L}

endowed with the topology induced by the uniform convergence on compact sets. Then,
for any x € R%, any t > 0 and any ¢ € S define the functional

Fo: T =R
as

Fplysu) = o((0)) + /0 L(y(s), u(s)) ds

and

Tip() =  inf {w(v(O)H [ z6 ) ds}. (5.36)

('y,u)EFa}tz

Before proceeding to derive several properties of Tip, including the fact that Typ(x) > 0,
we first show that the class S is non-empty.
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Lemma 5.16. Assume (F0), and (LO) — (L2%). Then, the function x constructed in
Theorem 5.13 belongs to S.

Proof. Let x be the critical solution given in Theorem 5.13, i.e.,

x(x) = lim vy, (x)

n—0o0

where the limit is uniform on compact subsets of R?. Recall that

ua(z) = inf /000 e ML(y(t), u(t)) dt.

(yu)€TE 2 (A d)

Next, we show that x € S. From Theorem 5.13 we know that y(x) > 0 for any x € R,
Hence, we only need to prove that x < L. To do so, let R > 0 and let z, y € Br. Fix
a, b € R and let (y,u) € Ty, Let (vy,uy) € Y (e~ dt) be A-optimal for vy(y),
that is,

/Ooo e MLy, (), uy (1)) dt < va(y) + A

and define the control

at) = {u(t+a), t€[0,b— al

uy(t —a+0b), te(b—a,o0).

Then, (7,u) € T'§ 2,
@) — @) < [ e NLEE). () di - /0 N Ly (), uy (1)) dt + A
e ML(y(t +a),u(t +a)) dt

+ /boo e M L{yy(t), uy (1)) dt—/oooe_ML(Vy(t)v“y(t)) di+ A

IN
\c-
h

) dt + ( Ab-a) _ 1) /000 e N L(y (1), uy (1)) dt +
b
_ / L(v(t), u(®)) dt — (b — a)hor(y)(1 + o(1)) + A

Therefore, since A = A\, as n — oo from the previous estimate we get

b
x(@) — x(y) < / L(3(t), u(t)) dt

which completes the proof. ]

Theorem 5.17 (Lax-Oleinik semigroup). Assume (FO0), and (LO) - (L2’). The
following holds.

1. For any ¢ € S there exists a function N, : R? — R, which is bounded on compact
sets, such that for any (t,z) € [0,00) x R? there erists a trajectory-control pair
(Va» uz) € Tgf such that

fw(’)/a:auac) < th(‘r) (537>
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2. For any ¢ € S the following holds. For any R > 0 there exists a nondecreasing
function Cy : [0,00) — [0,00) such that for any (t,z) € [0,00) x Br and any
(v,u) € Tg® satisfying (5.37) we have that

dsr(z,7(0)) < Cp(R) := B(R)D(R) + max ¢(x). (5.38)

x€EBR

3. For any x € R%, any t > 0 and any ¢ € S we have that Typ(x) > 0. Moreover,
for any (t,z) € [0,00) x R? the infimum in (5.36) is attained.
4. For any ¢ € S and any ¢ € R we have that Ty(¢ + ¢) = Ty + ¢ for all t > 0.

5. Ty is a semigroup on S, i.e., Ty : S — S and for any s, t >0 and p € S
Top = ¢, Ti(Tip) = Tetsp.
6. T; is continuous on & w.r.t. the topology induced by the uniform convergence on
compact subsets.

Remark 5.18. We recall that, according to [2, Theorem 3.31], a set K is compact in
(R, dsr) if and only if K is compact in R? w.r.t. the Euclidean distance.

Proof. We begin by proving (1). To do so, we consider two cases: first, we take (¢, z) €
[D(|z]), 00) x R? and, then, (t,z) € [0, D(|z|)) x R%. Recall that D(-) is defined in (5.7)
and satisfies 0*(z) < D(|z|).

Define the function N, : R? - R as

(@) + D(j=))B(|z]), (t,2) € [D(|x]),00) x R
N¢(x) = p
o(x) + D(|z)B(|z]), (t,x) € [0, D(Jz])) x R

Note that, since ¢ € S we deduce that N, is bounded on any compact subset of R,
We now proceed with the first part of the proof, i.e., we show that for any (¢,x) €
[D(|z]),00) x R? there exists (7z, uz) € ['g’* such that

fp('Ymaux) < Ngo(£)

Let (y0,u0) € Fg;:}fc) be optimal for (1.5) and define the control

ug(s) =

{0, s€[0,t—0*(x))
uo(s —t+0*(z)), selft—o"(z),t].

so that (v, usz) € FS;—"‘ . Then

t
fuwwd=w@ﬂ+1ﬁHme—t+W@»w@—tHW@D%
8% (x) 6* ()
=wm+£ M%@WWD%S#Mﬂ+A Lvo(s), uo(s)) ds

Let us estimate the rightmost term above. Recalling that |up(s)| < 1 for any s €
[0,6*(z)] we have that

o(®)] < ("] + ep6% (@) @) =: A(lel), ¥t e [0,67.
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Thus, we get

6% (x)
/0 L(70(s), uo(s)) ds < 6% (x)B(A(|])) < D(|x)B(A(]x])).

Hence, we obtain
Fo(v,u) < (") + D(|z])B(A(lz])) (5.39)

which completes the proof of (1) for (t,z) € [D(|z]),00) x R?.
We now consider the case (t,z) € [0, D(|z])) x R%. Let (v, uz) € [’ be defined as

uz(8) =0, vz(s) =z, se€l0,D(|z])).

Then
Fo(2,0) < p(x) +tL(2,0) < ¢(z) + D(|z])B(|2|). (5.40)

This completes the proof of (1).

We proceed now with the proof of (2). In order to prove (5.38) we estimate from
below F,(v,u), for any (v,u) € I'y}® satisfying (5.37), and then we combine such
estimate with the definition of Ny(- ) In view of (1) we also analyze two cases: first,
we show that the conclusion holds for any (¢,) € [D(]z|), 00) x R? and then we do the
same for (¢,z) € [0, D(|z])) x RY.

Let (t,z) € [D(|z]),00) x R? and let (7, u) € Loyt satisfy (5.37). Then, by (5.6) we
have that

Folos) 2 o0O) + 5 [ WO ds > ordsneaO)F. (541

Therefore, combining (5.41) with (5.39) we have that

QIEIdSR(%,’Y(O))2 < D(lz)B(l2)) + ¢ (") (5.42)

which implies (5.38) for (t,7) € [D(]x|),00) x R? by the continuity of (.
Now, let (¢,z) € [0, D(|z])) x R? and observe that inequality (5.41) still holds true.
So, we combine such estimate with (5.40) to obtain

5745 7(0))? < D(B(le]) + o) (5.43)

which implies (5.38) for any (¢,z) € [0, D(|z|)) x R?, again, by the continuity of ¢.
Hence, from (5.42) and (5.43) we get, for any R > 0, any (¢,z) € [0,00) x Br and any
(v,u) € I'g® satisfying (5.37),

dsr(2,7(0)) < Cp(R) := S(R)D(R) 4+ max ¢(x).

xGBR

Now, given (t,7) € [0,00) x RY, let ¢ € S and let (y,u) € ['g%* be optimal for
T;p(x). Then, by definition we have that

Tyo(a) > Qﬁ/w (5)]2 ds > 0.
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The existence of minimizing pairs (v, u) € I'g}* follows by classical results in optimal
control theory (see, for instance, [26, Theorem 7.4.4]). This completes the proof of (3).
Then, (4) is a direct consequence of the definition of T;p.

In order to prove (5), from the previous point we know that for any (¢, z) € [0, 00) x
R? and any ¢ € S we have that Typ(x) > 0. Moreover, the proof of the fact that
Tip(x) < L and of the semigroup property, the latter being based on the dynamic
programming principle, is similar to the proof of [42, (1) of Proposition 3.3] and [41,
Proposition 4.6.2.] and will be omitted here.

We finally show (6). Let R > 0, let x € Bg and let t > 0. Let {¢n}nen € S
and let ¢ € § be such that ¢, — ¢ locally uniformly. Then, on the one hand, taking
(7#,uf) € Ty optimal for Typ(x) we obtain

Tipn(z) — Trp(w) < 0n(77(0)) — @(77(0)).

Hence, from (2) we deduce that there exists a constant C,(R) > 0 such that
Tipn(x) ~ Tig(®) < n() ~ 60l - (5.44)

Similarly, on the other hand, let (v, uy) € 'y’ optimal for Tip,(x). Then, from (2)
there exists a constant C, (R) > 0 such that

Tip(z) = Tepn(z) < 0(12(0) = ¢n(12(0)) < llen() = 0Ol By, () (5:45)

Again in view of (2) by the locally uniform convergence of the sequence ¢,, the constant
Cy,(R) can be chosen uniform w.r.t. n € N. Therefore, combining (5.44) and (5.45)
the proof of (6) is complete. O

We call T; the Lax-Oleinik semigroup, adapted to the sub-Riemannian systems.
Now, recall that we are interested in finding a critical solution Y such that

X(x) =Tix(z), Vt>0,VzeR

Hereafter, we take x a critical solution in S (the existence of which is guaranteed by
Theorem 5.13). We will show that Tyx(z) converges as the t — oo to the function Y
we are looking for.

Proposition 5.19. Assume (F0), and (LO) — (L2’). Then, for any R > 0 we have
that

(i) {Tyx}t>0 is equibounded on Bg;
(ii) {Tyx}i>1 is equicontinuous on BR.

Proof. In order to prove(i) we argue as in Theorem 5.17. Let R > 0, let ¢ > 0 let
x € Bpr. Let (yz,us) € Tgi* be optimal for Tyx(x). Since x is Lipschitz continuous
w.r.t. dgr the following holds

X(SE) < éRdSR(:L‘v 0)7 Ve ER- (546)

Then, since x > 0 from (5.6) we obtain

Tx(@) = X(0)) + 5 / ual) ds = grdsa(@n () (547)
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which is bounded by (2) in Theorem 5.17. Then, on the one hand, if ¢t € [D(R), o0) by
(5.39) and (5.46) we obtain

Tix(z) < x(z*) + D(R)B(R) < LR dsr(z*,0) + D(R)B(R) (5.48)

where Ry stands for the diameter of . On the other hand, if ¢ € [0, D(R)) by (5.40)
and (5.46) we get

Tix(z) < x(x) + D(R)B(R) < (rdsr(z,0) + D(R)S(R). (5.49)

Hence, combining (5.47) with (5.48) and, also, (5.47) with (5.49) the proof of (i) is
complete.

We proceed to show (i), that is, the equicontinuity of Tix(x) for t > 1. Let R > 0,
let z, y € Bp and let t > 1.

To begin with, assume that dsg(x,y) > 1. Then, we have that

Tix (@) = Tix(y)] < 20|Tixll oo 3, < 201Tix] o0 5, dsR (2, Y)-

. . —>
We now consider the other case, i.e., dsr(z,y) < 1. Let (y,ug) € T’y deR(w ,) be

optimal for (1.5) and let (v, uy) € Fofty be optimal for T;x(y). Then, define the control

u(s) =

{uy<s+dSR<x,y>>, € [0,t — dsg(z,y)]
uo(s —t +dsr(z,y)), s€ (t—dsr(z,y),t]

and call 7 the corresponding trajectory, that is, (7, u) € ['g*- Note that u can be used
to estimate Tix(x) from above. We have that

Tix(z) — Tix(y)

< XG(0)) = x(3(0)) + / L(F(s), (s)) ds - / Lvy(5), wy(5)) ds
Xy (dsr (. 9))) — )+ /0 Ly (s), uy(5)) ds
dsr(z,y) dsr( ,y) t
- / Ly(s), 1y (s)) ds + / uo(s)) ds — / Ly (5), uy(5)) ds

Y) dsgr (z,y)
Ly(5), 10y (5)) ds + /0 Lv(s), uols)) ds.

(5.50)

dsr (z
— x(w(dsr(z,))) — x(75(0)) - /0

We estimate first the integral terms. By (5.6) we immediately obtain

dSR(zvy)
[ o) as>o.

Moreover, since [|ug ||, [0,dgg (,y)) < 1 We have that

No(t)] < (2| + cpdsr(x, y))e SREY) |V ¢ € [0, dsr(z, y))-

So, we get

dSR( 7y)
/ L(v0(s),u0(s)) ds < dsr(z,y) (|| + cpdsr (x,y)) e BsrEY),
0
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Combining both inequalities we have that

dsr (z,y) dsr(z,y)
- / Ly (), uy(s)) ds + / L(70(s), uo(s)) ds
0 0

< dsr(z,y) (Jz] + cpdsr(z,y))ecrdsr@y),

Therefore, in order to obtain the results we need to estimate

X(y(dsr (2, 9))) — x(74(0)). (5.52)

First, we claim that |y,(0)| and |y, (dsr(z,y))| are bounded. Indeed, observe that
from (2) in Theorem 5.17 and the equivalence of the sub-Riemannian topology with
the Euclidean one we deduce that

|7(0)] < 2max{R,C\(R)}.

(5.51)

Moreover, by Lemma 5.2 we know that

Yy ()] < Kl[uyllz, (1 + [ (0)]), Vs € [0,dsr(z,y)]-

So, in particular,
[y (dsr(z,y))| < K([[uyll2, DA+ [74(0)]).

We claim that |uyll2(0,dgq(2,y) 15 bounded by a constant that only depends on R.
Indeed, from (i) we know that T;x(y) is locally uniformly bounded and by (5.6) we
know that

I I
To(y) = XOu(0) + 5 [ s ds = i [P ds
1Jo 1.Jo
Thus, we obtain
1 t
g [ o) ds < Tl

and this completes the proof of the claim since Tyx is locally equibounded by (7). For
simplicity of notation, let R, > 0 be such that

1y (dsr(@,9))] < Ry, [y (0)] < Ry.

Moreover, we denote by r, > 1 the degree of nonholonomy associated with the compact
set ERy.
Hence, going back to by the Lipschitz continuity of x w.r.t. dsg we get

X(y(dsr (2, 9))) = x(14(0)) < £r,dsr(vy(dsr(z,y)),74(0))-
Then, by Corollary 1.7 we have that

X(vy(dsr(z,9))) — x(1y(0)) < e2|vy(dsr(z,y)) — 7?,(0)\% (5.53)

where ¢y depends only on R,. Next, from Lemma 5.2 we have that
1
vy (dsr (2, 9)) = (0)] < (lluyllz,fo,asn o)) dsr (@, 1)) (1 + 174(0))dsr(z, ).

Hence, we get that there exists a constant C'; > 0 such that

1
X(w(dsr (@, 9)) — X(1(0)) < Crdsr(z,y)*. (5.54)
Therefore, combining (5.50), (5.51) and (5.54) we obtain

1
Tyx(z) — Tix(y) < dsr(z,y)(|z] + cpdsr (@, y)) e BSREY) 4 Clhdsg (z,y) 7.

Finally, exchanging the role of x and y the proof of the equicontinuity is complete. [J
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Theorem 5.20. Assume (F0), and (LO) — (L2%). Then, there exists a continuous
function X such that

Jlim Tix(z) = X(x) (5.55)
uniformly on Bgr for any R > 0. Moreover, we have that
X(x) = Tix(z), t>0, z€R?

and X satisfies
H(z,Dx(x)) =0, (zecR?) (5.56)

i the viscosity sense.

Proof. In order to prove the existence of the limit in (5.55), we first show that the map
t = Tyx(x)
is nondecreasing for any = € R%. Indeed, we have that
Tix(x) < Ty (Tox(w)) = Tivsx(x)
where the inequality holds since xy < L. This implies that
Tix(w) < Titsx ()

and so we have that
Tix(z) < Tyx(x), Vt<t.

Therefore, since by Proposition 5.19 we have that T;x is locally equibounded it follows
that the pointwise limit

Ji Tox(o)

exists for all z € R?. Moreover, again by Proposition 5.19 we know that the family T}y
is locally equicontinuous. Thus the above limit is locally uniform.
Let us set
X(z) = lim Tyx(z), VzeR?
t—o00

Next, we show that X(z) = Tyx(x) for any x € R? and any ¢ > 0. Indeed, let s > 0.
Then

Tsx(x) = Jim To(Tix(x)) = lim Topix(z)

where we have used the continuity of the semigroup 7; and property (4) in Theo-
rem 5.17. Hence, we get

T.X(@) = Jim Topx(x) = X(z).

So, we have that

M@)= Tx(@) = inf {x<m>+ [ tats)uts) ds} (5.57)

('qu)epo_:tx

The proof of the fact that from (5.57) the function y solves (5.56) in the viscosity sense
is similar to the proof of [42, Proposition 5.1, Proposition 5.2]. O
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5.5 Appendix

5.5.1 Abelian-Tauberian Theorem

In this appendix, we give a new formulation of the Abelian-Tauberian Theorem, stated
in [8, Theorem 5], tailored for the proof of Theorem 5.13.

Theorem 5.21. Let ¢(t,z) be the solution of
{8t¢(t,x) + H(z,Dy(t,)) =0,  (t,z) €[0,T] x R?
Y(T,z) =0, r € R
For any A > 0, let ¥)\(z) be the solution of
M(z) + H(z, Dip(x)) =0, zeRL
Then:

(i) if {\PA(- )}aso0 locally uniformly converges to a constant deRas X0, then
{%@D(O, - )}rso locally uniformly converges to d as T — oo;

(ii) if {79(0,- )}r>o locally uniformly converges to a constant de€R as T — oo, then
{MxA(-) }aso locally uniformly converges to d as X | 0.

This result can be proved arguing as in [8, Theorem 5] keeping in mind the following
differences:

1. the uniform convergence on the full space Q is replaced by the locally uniform
convergence on R?;

2. whenever the boundedness assumption on L is used in [8] one here has to invoke
the boundedness of optimal pairs (y,u) in L>(0,T;R?) x L%(0,T;R™).
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Chapter 6

Aubry-Mather Theory for
sub-Riemannian control systems

6.1 Settings and assumptions

FormeNandi=1,...,m, let
fi : RT - RY

and
u; : [0,00) = R

be smooth vector fields and measurable controls, respectively, and consider the following
controlled dynamics of sub-Riemannian type

A(t) =Y fitv(®)ui(t) = F(($)U(1), ¢ € [0,+00) (6.1)
1=1

where F(z) = [f1(2)|...|fm(z)] is an d xm real matrix and U (t) = (u1(t), ..., um(t))*".
For any sg, s1 € R such that s < s and z, y € R? we set

e ={(v,u) € AC([so,sl];Rd) x L%(s0,51;R™) : 4(t) = F(y(t)u(t), v(so) = x},

S0,51
It ={(v,u) € AC([s0, s1];R?) x L?(s0,51; R™) : 4(t) = F(y(t))u(t), v(s1) =y},
M =TI, AT,

Throughout the paper we assume the vector fields f; to satisfy the following.

(F0O) There exists an integer 7o > 1 such that f; € C™0~}(R?), for any i = 1,...,m,

and
A™(z) =RY, VzeR%

(F1) There exists a constant ¢y > 1 such that for any i =1,...,m

[fi)] < ep(L+|z)), ¥z eRY, (6.2)

(F2) m<d, F e C’llo’cl (R%) and for any = € R? the matrix F(z) has full rank m.

Observe that, from (F2) we have that the vector fields f; are linearly independent.
By (F1) and Gronwall inequality we get the following estimate on solutions of (6.1).

1(u1, ...,uUm)* denotes the transpose of (u1,...,um)
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Lemma 6.1. Let x € RY, t > 0 and (y,u) € 5y If u € L*(0,¢;R™) then we have
that
(s)] < (2] + epllullact)e = v s € [0,1].

We now state the assumptions on the Lagrangian L : R x R™ — R.
(LO) L € C?(R?xR™) is reversible, that is L(x,u) = L(z, —u) for any (z,u) € R?xR™;

(L1) There exists a positive constant ¢1, C such that

1
D2 L(z,u) > n (z,u) € RY x R™
1
|D,L(z,u)| < Ci(1+ [ul?), (z,u) e R x R™;
and L is locally semiconcave in space uniformly w.r.t. u € R™,.

(L2) There exists ¢2 > 0 such that

L(z,u) < l|uf? + o, (z,u) € RT x R™

(L3) There exists a compact set K, C R? and a constant &7, > 0 such that

inf  L(z,0) > 0, + min L(z,0); 6.3
et (,0) > 0r + min L(z,0) (6.3)

Note that by (L0), (L1) and (L3) we obtain
1
L(z,u) > ﬁ]u\Q + L(z*,0), V (z,u) € RYx R™ (6.4)
1

where z* € K, is such that

L(z*,0) = mrgllcri L(z,0).

Let H : R x R — R be the Hamiltonian associated with L, that is,

H(xz,p) = sup {Zui<p, fi(z)) — L(x,u)} , YV (z,p)€ R? x R, (6.5)
i=1

ueR™

Since the subject of this Chapter is deeply connected with the problem studied in
Chapter 5, we first recall the main results of such Chapter. Consider the following
minimization problem: for any 7' > 0 and any z € R?

T
to minimize / L(y(s),u(s)) ds over all (y,u) € T 7 (6.6)
0
and define the function V7 : R* — R by

T
Vr(z) = inf / L(y(s),u(s)) ds, V¥ z€R< (6.7)
(vwelgz Jo

For any € R? we say that a trajectory-control pair (y,u) € I'67 is optimal if it

solves (6.6). Note that, the existence of optimal trajectory-control pairs for (6.6) is a
well-known result (see, e.g., [26, Theorem 7.4.4]).
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Then, we know that for any R > 0 there exist two constants Pr, Qr > 0 such that
for any = € Bp, any T > dsr(z,2*), and any optimal pair (7, u,) € I for (6.6) the
following holds:

T
/ |ug (t)]? dt < Pr (6.8)
0
and
()] <Qr, Ytel0,T]. (6.9)

Moreover, there exists a(L) € R such that for any R > 0

o1 . =
T1—1>r—+r-loo TVT(.I‘) = a(L), uniformly on Bp (6.10)

and a continuous viscosity solution y : R? — R of the ergodic Hamilton-Jacobi equation
o(L) +H(z, Dx(x)) =0, zeR% (6.11)

Furthermore, such a solution che ne represented as

t

@ =it {xoo)+ [ o) i} -ame 612
(vw)elgy 0

for any (t,z) € [0,T] x R%.

We say that (L) is the critical constant for our problem and x is any critical
solution to the ergodic equation (6.11). Hereafter, we will always work with critical
solutions that satisfy (6.12).

Differently from Chapter 5 here we also need to assume the following on the sub-
Riemannian system:

(S) there are no singular minimizing controls of problem (6.6).

The above extra assumption is needed for the critical solution y to be more regular.
Indeed, under (S) any critical solution is locally semiconcave and consequently locally
Lipschitz continuous, see [25, Theorem 1].

Remark 6.2. (i) Observe that the sub-Riemannian systems in Example 1.5 fit as-
sumption (S), see for instance [25, Theorem 5.1].

(ii) In view of the assumptions on L, we deduce that for any R > 0 there exists a
constant Cr > 0 such that

\H (x,p) — H(y,p)| < CrR(+ |p|)|z —y|, ¥,y € Bg. (6.13)

6.2 Characterization of the ergodic constant

We begin by introducing a class of probability measures that adapts the notion of closed
measures to sub-Riemannian control systems. Set

P2RIXR™) = {u € P(RE x R™) : /

lul? p(dz, du) < +oo, spt(mifip) compact}
R4xR™

where 71 : R? x R™ — RY denotes the projection onto the first factor, i.e. 7 (z,u) = z.
Recall that F'(x) = [f1(2)|...|fm(x)] is the real d x m matrix in (6.1).
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Definition 6.3 (F-closed measure). We say that p € 22(R? x R™) is an F-closed
measure if
(F*(2)Dg(z),u) p(de,du) =0, Ve CHRY).
R XR™
We denote by Cr the set of all F'-closed measures.

Closed measures were first introduced in [43] in order to overcome the lack of reg-
ularity of the Lagrangian L. Indeed, if L is merely continuous, then there is no Euler
flow and, consequently, it makes no sense to introduce invariant measure as in [41].
Similarly, in our setting such a flow does not exists and for this reason the use of closed
measures turns out to be necessary. Moreover, as we will show in the next result,
such measures collect the behavior of minimizing trajectories for (6.7) as the time hori-
zon T goes to infinity. We now proceed to construct one closed measure that will be
particularly useful to study the Aubry set.

Fix 29 € R? and for any T > 0 let the pair (Vay, tz,) € Fgf’; be optimal for (6.6).
Define the probability measure u;‘fo by

1 T
/ o) il (do,du) = / (oo (8), Uy (1) dt, ¥ € CH(RIXR™). (6.14)
R4 xRm™ 0

Then, we have the following.

Proposition 6.4. Assume (F0) - (F2), (L0) - (L3) and (S). Then, {ul }r=o is tight
and there exists a sequence T,, — oo such that u:{g weakly-* converges to an F'-closed
measure fig; .

Proof. First, from (6.9) it follows that {miful }r-0 has compact support, uniformly
in T. Thus, such a family of measures is tight. Let us prove that {mfiu’ }7¢ is also
tight.

On the one hand, taking the null control we have that

1UT(x)<1/TL(a; 0)ds </t
T =7 ) 05 < 2.

On the other hand, since (7vz,, Uz,) is a minimizing pair for Vr(xg), from (6.4) we get

T
%’UT(-Z'O) = ;/0 Lo (1), uay () dt

1
:/ L(z,u) pl (dz,du) > <|u2 + L(m*,O)) pl (dz, du)
RixR™ RixRm \ 201

which implies that

1

— lul? pk (dx, du) < by — L(z*,0).
2€1 R xRm 0
Consequently, the family of probability measures {7r2j:tu§0}T>o has bounded second
order moment (w.r.t. T). So, {maful }rso is tight.

Since {mifiul }r>0 and {maful Y10 are tight, so is {uZ }r>o by [7, Theorem 5.2.2].
Therefore, by Prokhorov’s Theorem there exists {7}, }nen, with T,, — oo, and Moo €
Z2(RY x R™) such that pln —* ;0.
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We now show that pge is an F-closed measure, that is
[ P @DU@),u) w5 (o du) =0, ¥ b€ CRY).
Rd xR™
By definition we have that

Tn
/ (F* (2) Dip (), u) B (dv, ) / (F* (o (E) D (g (£)), 1 (1))t
R xR™ 0

Tn
= 2 [ D0 0 A (0) a = PO =),

ﬁ\H

Then, from (6.9) we know that ~,,(T},) € Eleol. So, we get

(o (Tn)) = ¥ (o)

lim =0
n—oo n
and, consequently,
[, @) Due),u) u (o du) =0, O
R4 xR™

Set
PLRY x R™) = {M e P2(R? x R™) : spt(mtp) C ER} .
The following property, which is interesting in its own right, will be crucial for the

characterization of the critical constant derived in Theorem 6.8 below.

Proposition 6.5. Assume (F0) - (F2), (LO) - (L3) and (S). Then, for any R > Qo,
where Qo is given in (6.9), we have that

inf L(z,u) p(dr,du) = — inf  sup H(xz, Dy(z)). 6.15
pECFNZP% (RIXR™) /]RdX]Rm ( )M( ) weCl(Rd)weng ( w( )) ( )

Lemma 6.6. Assume (F0) - (F2), (LO) - (L3) and (S). Then, for any R > Qo,
where Qo is given in (6.9), we have that

| f 9 d 7d
MGCFF‘IWI%(Rdem) /Rdx m [‘(x u) ,LL( X u)
c R p [ * (616)
inf su / ( (l‘,u) <1 (l‘)l)’ll](l‘),?,w) u(d:ﬂ,du)
PR RIx ) peC1(RE) JRIXR™

The proof of the above lemma is based on an argument which is quite common in
optimal transport theory see, for instance, [67, Theorem 1.3]. We give the reasoning
for the reader’s convenience.

Proof. Since L is bounded below we have that

inf L(z,u dx,du
peCrNP% (RIXR™) /]Rdem ( ) H( )

= inf L(z,u) p(de,du) + w
it L ) )+ )
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where

So, observing that

wli) = swp [ (P (@)D ) ulde, du)
wecl(Rd) RIxR™
we obtain (6.16). O

Lemma 6.7. Let ¢ € C(RY x R™) be such that
do < d(x,u) < Cy(1+[ul?), V (z,u) € RY x R™

for some constants ¢g € R and Cy > 0. Let {uj}jen € P?(R? x R™) and let pu €
PR x R™) be such that p; —* p as j — oo. Then, we have that

liminf/ d(x,u) pj(de, du) 2/ o(z,u) p(de, du). (6.17)
J700 JRIxR™ Re xR™

Proof. We first prove (6.17) assuming that ¢y = 0 and then we remove such a constraint.
For any € > 0 we have that

Tj gb(x,u)
z(dx,du) = _
/Rdem o, u) 15 (de, du) /Rm o

> / olz.u) i (dar, ).

Rixgm 1+ € |uf?

(1+ ¢ ul?) pas (dz, du)

From the growth assumption on ¢ we deduce that the function % is bounded and

so by weak-x convergence we get

liminf/ o(z,u) ,u,gg(dx,du) 2/ $(z,u)
RIXR™

I oo du).
Jj—+oo RdxR™ 1+¢ |'U,‘2 IUIIO( )

Therefore, as ¢ | 0 we obtain (6.17).
For ¢¢ # 0, we have that

/ (62, w) — o) + do] 4 (de, du)
RIxR™

¢ T,u)— ¢0 T.
:/Rdem (14‘5)|U|2(1 & [ul?) pag (e, du) + o

¢($’u) — ¢0 T
> o) — %o | 1 7 |
_/Rdem 1+ e |ul? iy (dz, du) + ¢o

Thus, we obtain

lim inf o(z,u) o (dz, du) > / oz, u) — ¢o

©(dx,du) +
Jj—=+00 Jrdyrm RaxR™ 1+4+¢ |’LL’2 M:):o( ) ¢0

which in turn yields the result as € | 0. O
Proof of Proposition 6.5. We divide the proof into two steps.

116



(1): Define F : C1(R?) x Z%(R% x R™) — R by

Fwuw = [

(L(w,u) - (F*(x)Dw(x),u)> p(dz, du).
R4 xR™

We will apply the Minimax Theorem ([64, Theorem A.1]) to prove that

inf sup / (L(x, u) — <F*(JJ)D1/J(LL“),U>> w(dz, du)
HEPH(RIXR™) yc 01 (RD) JRIXR™

~ s inf / (Lixuw) — (F* (@) D). )} ol d).
PYECT(RL) LEPE(RIXR™) JRA xR

In order to check that the hypothesis of such a theorem are satisfied, let us define
" =14 L(z*,0).
We claim that the level set
E={pe PERY X R™) : F(O,p) < c*}

is compact in (P%(R? x R™),d;). Indeed, for any given p € Z%(R? x R™) we know
that w1 has compact support contained in Br. Moreover, the coercivity of L implies
that for any given u € £ we have that mofiu has bounded second moment which in turn
yields the tightness of the family mofiu for any p € ,@%{(Rd x R™). Thus, the level set is
compact by Prokhorov’s Theorem and [7, Theorem 5.2.2]. Moreover, from Lemma 6.7
we have that F(¢, ) is lower-semicontinuous w.r.t. p in P%(R? x R™). Therefore,
applying the Minimax Theorem ([64, Theorem A.1]) we obtain

inf sup / (L(J:,u) - <F*(x)D¢(m),u>) w(dz, du)
pePE(RIXR™) yyec01(RL) JREXR™

= sup inf / L(z,u) — (F*(x)Dy(x),u) ) p(dz,du).

B ol [ (B — (P @Dy, 0)) e, du)

(2): Proof of (6.15). By (6.16) we get

inf 3 d ,d
uecmellg(Rdem)/Rdem L(z,u) p(dz, du)
in R Sup / (L(aj,u) — (1 *(m)Dw(ff),w) w(dz, du)
HEP{(RIXR™) e C1(RE) JRIXR™
= sup inf / L(z,u) — (F*(z)D{(x),u) ) p(dz,du).
YECT (RL) HEPFH(RIXR™) ]Rdx]Rm( ( ) — (F" (@) (x) >> ( )

Now, the coercivity of L ensures the existence of the

min {L(w,u) - <F*(az)D¢(:c),u)}.

(z,u)€EBRXR™

Therefore, by taking a Dirac mass centered at any minimizer of the above function, one
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deduce that
sup inf / (L(x, u) — <F*($)D1/J(I),u>) p(dz, du)
YECL (RY) HEP R (RIXR™) JRd xR
s min {L(w,0) — (F*(2) Dy(a),w) }.
peCl(RY) (z,u)€EBRrXR™
= sw (= max {L(wu) - (F@)Du()w }
PeC(RY) (z,u)€EBRXR™

= — inf L(z,u) — (F*(2)Di(x),
et B g VL) — (F@DY(0). 10

=— inf max H(z, DyY(x
peiitns [8X (z, Dy())

where the last equality holds true observing that

max {<F*(x)D¢(x),u> . L(:):,u)}

(z,u)EBRXR™

= max sup {(F*(x)D1/1(x),u> —L(x,u)} = sup H(z,Dy(x)).

xEBR ueR™ r€BR

This completes the proof. O

The following characterization of the critical value is essential for the analysis in
Section 6.3.

Theorem 6.8. Assume (F0) — (F2), (LO) — (L3) and (S). Then, for any R > Qo,
where Qo is given in (6.9), we have that

I) = inf L(z,u) p(dz,du) = inf L(z,w) u(de, du),
Oé( ) HeCFﬂ?)%IQ;(RdXRm) /I%dXRm (x U) Iu( o U) ,U«lé1CF R4 xR™ (x U) ,U/( r U)

(6.18)

Lemma 6.9. Assume (FO0) — (F2), (LO) - (L3) and (S). Let x be a critical solution.
Then, for any R > 0 there exists a constant kg > 0 such that for any e > 0

a(L)+H(x,Dx-(z)) < kge, V€ Bpg (6.19)
where xe(x) = x * & (x) and & is a smooth mollifier.

Proof. From (S) we have that y belongs to W,.>*(R?). So,
o(L)+H(x, Dx(x)) =0, ae. zeR% (6.20)

Let R > 0 and let 2y € Br. Then, by Jensen’s inequality we get

(L) +H(ao. Dxelan) =a() +17 (a0, || Dx(oo = 1)) dy

IN

/Rd [ (L) +H (w0, Dx (w0 — y))]&:(y) dy.
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Moreover, writing
|, Ta() +H (o Dx(eo = )]é-(o) d

- /Rd [ (L) +H (z0 — y, Dx(z0 — y))|&(y) dy
+ /]Rd [H(xg, Dx(zog —y)) — H(xo — y, Dx(x0 — y))]fe(y) dy,

II

by (6.20) we deduce that I =0 and by (6.13) we get II < kpe. O

Proof of Theorem 6.5. We divide the proof into two steps.
Step 1: We first show that for any R > Qg, where Qg is given in (6.9),

a(l) = inf L(z,u dzx,du).
( ) ,ueCpm@%(Rdem)/RdXRm ( ) M( )

Indeed, by (6.10) we know that

. 1
o) =l 0)

Hence, appealing to Lemma 6.7 and recalling that L(z,u) > L(z*,0) we obtain

a(L) = lim L(z,u) pd (dz,du) > / L(z,u) py(dz, du). (6.21)

T—oo JrdyRrm™ R4 xR™

Recalling that ui® € Cp N ,@%(Rd x R™) for any R > @, we deduce that

all) > inf L(z,u dx, du).
( ) o MECFQ,@?%(RdXRm) /RdX]Rm ( ) M( )

Next, by Proposition 6.5 we have that for any 1 € C}(R%)

inf L(xz,u) p(dx,du) = — inf  sup H(x, DY(x)). )
MGCFHL@IQ{(RdXRm)/Rdem ( ) i ) wecl(Rd)xeﬁpR ( () (6 22)

Let x be a critical solution. For € > 0 let x.(z) = x * {°(z), where £° is a smooth
mollifier. From Lemma 6.9 we know that for any R > 0

(L) +H(x,Dx:(7)) < kre, x € Bpg.

Then, using x. in (6.22) we obtain

inf L(x,u) p(dz,du
pECFNP%(RIXR™) /RdXRm ( ) i )

> — sup H(z, Dx.(v)) > a(L) —kge.
mGER

Hence, as ¢ | 0 we get

inf L(z,u dx,du) > oL
e B fo ) ) 2 (1)
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and this completes the first step.
Step 2: Now we prove that

a(L) = inf / L(z,u) p(dz,du),
neCr JRdxRm

that is, we remove the constraint u € Z%(R% x R™).
Let {1;}jen C Cr be such that

lim L(z,u) pj(dx,du) = inf / L(z,u) p(dx,du). (6.23)
RIxR™

Jj—00 R4 xR™ uneCp
Since puj € Cp C Z2(R% x R™) we deduce that there exists {R;};en such that
spt(uj) C B, .

Moreover, without loss of generality, we can assume that for any j € N

inf / L(z,u) u(dz,du :/ L(xz,u) pi(dx,du).
uECFm@IQ%j(RdXRm) RAxR™ ( ) 1 ) RExR™ ( ) J( )

Since, for j sufficiently large, we have proved that
a(L) :/ L(z,u) pj(de, du)
RdxR™

the conclusion follows from (6.23). O

Corollary 6.10. Assume (F0) — (F2), (LO) - (L3) and (S). Then the following
holds.

(i) (L) = L(z*,0) = mingex, L(z,0).

(ii) For any xo € R? we have that

a(L) = /]Rdem L(z,u) pg, (dz, du)

where pgo is given in Proposition 6.4.

Remark 6.11. Note that point (i) of the conclusion has beed already proved in [23,
Corollary 5.4]. Here we propose a different approach which relies on (6.18).

Proof. (i) On the one hand, by Theorem 6.8, we have that
a(L) = inf / L(z,u) p(dz,du) > L(z*,0)
neCr RdxR™

where the inequality holds true by (6.4).
On the other hand we observe that the Dirac measure d,+ ) is F-closed. So,

a(L) = inf / L(z,u) p(dx,du) < / L(z,u) 6= 0y(dz,du) = L(x*,0).
HECF JRdxRm RdxR™ '
(ii) Recalling Lemma 6.7 we obtain
a(L) = lim L(z,u) pd (dz, du) > / L(z,u) pug°(dz, du).
T—oo JRdxRrm RdxR™

Thus, the conclusion follows from Theorem 6.8 recalling that ug is F-closed by Propo-
sition 6.4. O
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6.3 Aubry set
We denote by L* the Legendre Transform of L, that is,

L*(z,p) = sup. {{p,v) — L(x,u)},

and we observe that
H(xz,p) = L*(z, F*(z)p), (z,p)€ R? x R4, (6.24)

Moreover, since L satisfies (L0O) — (L2) we know that L* is coercive and strictly convex
in p.

Definition 6.12 (Dominated functions and calibrated curves). Let ¢ € R and
let © be a continuous function on R,

1. We say that ¢ is dominated by L — ¢ and we denote this by ¢ < L — ¢, if for any

a) b)
) € FZ,(b !

a, b € R, with a < b, and any trajectory-control pair (,u we have

that
b
o(v(B)) — pl(a)) < / Liy(s),u(s)) ds — ¢ (b—a).

2. We say that the first component v : [a,b] — R, with a, b € R and a < b, of a

trajectory-control pair (y,u) € Pz(ba)ﬂv(b) s a calibrated curve for ¢ if

b
e(7(b)) — ¢(v(a)) = / L(v(s), u(s)) ds — ¢ (b—a).

We denote by Cal(p) the set of all calibrated curves for .

For any t > 0 and for any =, y € R? we denote by A;(x,y) the action functional,
also called fundamental solution of the critical equation, i.e.,

A(zy) = inf {/OtL('y(s),u(s)) ds}.

(vuw)ery Y

We note that ¢ < L — a(L) if and only if for any z, y in R? and for any ¢ > 0 we have
that

p(y) —p(r) < A(z,y) — a(L)t. (6.25)

Then, Peierls’s barrier is defined as
Ax(z,y) = liginf [Ai(z,y) — a(L)t], z,y€R% (6.26)
Lemma 6.13. The following properties hold.

(i) For any x, y € R? we have that 0 < Ay (x,y) < .

(ii) For any x, y, z € R we have that
Ax(z,2) < Aso(,y) + Ao (y, 2) (6.27)
and, for any t > 0 we have that
A(z,2) < Ax(z,y) + Ay, 2) — (L) t. (6.28)
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Proof. Point (i) follow by (L2) and the reversibility of L, respectively. Point (i7) follows
by similar arguments as in [43]. O

Definition 6.14 (Projected Aubry set). The projected Aubry set A is defined by
A={zeR?: Ay(z,2) =0}.

Lemma 6.15. Assume (F0) - (F2), (L0) - (L3) and (S). Let (z,y) € R*? be such
that
h:=Ax(z,y) € R.

Let {tn}nen € R and (yn,un) € g, Y be such that

tn
t, > 400 and  lim L(yu, (8),un(s)) ds — a(L) t, = h. (6.29)

n—-+o0o 0

Then, there ezists a subsequence, still denoted by (Yn,un), and a trajectory-control pair
(7,a) € T %y such that

(i) {un}nen weakly converges to u in L* on any compact subset of [0,00);
(ii) {Vn}nen uniformly converges to 4 on every compact subset of [0, 00).

Proof. From (6.26) it follows that there exists n € N such that for any n > 7 we have
that

tn
/0 L(yn(s),un(s)) ds — a(L) t, < h+1.

On the other hand, by (L2) we obtain

tn 1 tn .
/0 L (s), un(s)) ds — a(L) ty > %1/ lun(8)[2 ds — (L(z*,0) + a(L) ).

Appealing to (i) in Corollary 6.10 we have that L(z*,0) + (L) = 0. So,
ln
/ lun(s)> ds < 201(h +1), ¥Yn>T7.
0

Therefore, there exists a subsequence, still denoted by {u,}, that weakly converges to
an admissible control % in L? on any compact subset of [0, +0c0). Moreover, let R > 0
be such that |x| < R. Then, by (6.9) for any ¢ > 0 we have that

()2 < Qr, Vse0,t], Vn>n
and
tn tn )
/0 Fn(s)I* ds < /0 G (L+ n()]) Jun(s)|* ds
< Cff(l‘FQR)%l(fH—l), Vsel0,t], Vn>mn.

Hence, {7V, }nen is uniformly bounded in W12(0,¢;R?) for any ¢ > 0. Then, by the
Ascoli-Arzela Theorem, up to extracting a further subsequence, {7, }nen uniformly
converges to a curve 74 on every compact subset of [0, +00).

Now, we claim that (7, ) satisfies (6.1). Indeed, for any ¢ > 0 we have that

_g;+2/ ) fi(vn(s)) ds.
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Thus, by the locally uniform convergence of ~, it follows that fi(v,(t)) — fi(3(2)),
locally uniformly, for any ¢ > 0, as n — +oo for any ¢ = 1,...,m. Therefore, taking
v € R? we deduce that

(v, m(t)) = (v, @ +Z/ $){fi(yn(s)),v) ds, ¥Vt >0.

As n — 400 we get
030 = ) + Y [ GG s V20,
i=1 70

Since v € R? is arbitrary the conclusion follows. O
Remark 6.16. Arguing as in the proof of Lemma 6.15, one can prove the following.
Given h € R, {tp}nen and (vn, u,) € Ff;)f{o such that

0
t, - 400 and lim L(vu, (8),un(s)) ds — a(L)t, = h.

n—4o0o —tn

Then, there exists a subsequence, still denoted by (y,,u,), and a trajectory-control
pair (7, @) such that

(1) {un}nen weakly converges to %4 in L? on any compact subset of (—oo, 0];
(71) {Yn}nen uniformly converges to 4 on every compact subset of (—oo, 0].

Proposition 6.17. Assume (F0) — (F2), (L0) - (L3) and (S). For each x, y € R?
there exists (y,u) € T Y 0.0 Such that

0
A (z,y) — Aoz, 5(—1)) = / L(¥(s),u(s)) ds —a(L)t, ¥V t>0. (6.30)

—t
Moreover, for each x € R? the map y — Aoo(x,v) is a critical solution on RY,
Proof. Fix x, y € R? and let {t, }nen, (Yo, un) € Ff?:f{a be such that

0
tn, — 00, and lim L(vn(8),un(s)) ds — a(L) t, = Aso(x,y).

n—oo t
—ln

Then, from Remark 6.16 there exists (7, ) such that u, weakly converges to 4 and 7,
uniformly converges to 7, on every compact subset of (—oo,0].
Let R > 0 be such that x| < R. Fix t € [0,00), take n € N such that d,, =

dsr (¥(—=t),vn(—t)) < 1and t, > t+1. Let (y0,up) € FV’;( 2;;7( " be optimal for (1.5)
and let @, € L*(—t,, —t + d,) be given by

n(s) = un(8), s € [—ty, —t]
" up(s), s € (—t,—t + dy).

We denote by 7, the associated trajectory, that is, (Y, uy) € FE?W(_t_s_)d Then, defining

the control u,(s) = uy(s — t,), denoting by 7, the associated trajectory by (L2) and
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the fact that [|ug|lec < 1 we get
Aty —t4d, (2,7(=1)) — a(L)(tn — t + dy)

tn—t+dn
< / L (5), n(s)) ds — L) (tn — t + dn)
0

—t+dn

< /_ L(vn(8),un(s)) ds + / L(vo(s),uo(s)) ds — a(L)(t, — t +dy)

—tn —t

—t

< / L(yn(s),un(s)) ds+ (b + €1 — a(L))dy, — (L) (t,, — t).
—tn

Hence, from the lower-semicontinuity of the action we obtain

Ao, 7(—1) + / L(3(s), a(s)) ds — o(L)t

—t

0
< timint {110, (0,3(-0) = a(L)(ts — ¢ = d) | + [ L3(5). () ds — a(D)1
< liminf {(62 +0 —a(l))d, + / L(vn(s),un(s)) ds — a(L)(t, — t)}

n—4o0o —tn

n—4o0o _t

+ liminf{/o L(yn(8), un(s)) ds—a(L)t}.

By combining together the terms inside the brackets we get
0

Ao, 7(—1) + / L(3(s). a(s)) ds — a(L)t

—t

0
< lﬁgg.lg (ba + 01 — a(L))d, + /—tn L(yn(s),un(s)) ds — a(L) tn} = Ax(,y).
Therefore, we obtain
0
Ala) =A@ i(0) > [ DG a(s) ds—a(Dt. (631
Next, we claim that
0
Aco(®,y) = Aco(,7(—1)) < /tL(’Y(S),u(S)) ds — a(L)1. (6.32)

Indeed, by (6.28) we have that
Aco(7,y) = Aco(z,7(—1)) < A:((=1),y) — (L) 1.
Hence, defining the control
u(s)=u(s—t), s>0
and denoting by 7 the associated trajectory, we deduce that

Aoo(x7y) - Aoo(xvf?(_t)) < At(:}/(_t)vy) - Oé(L)t
0

< /Otm@),a(s)) ds—a(D)t= [ LG).a(s) ds (i)t

—t

By combining (6.31) and (6.32) we obtain (6.30). The fact that y — A (z,y) is a
critical solution for any = € R? can be proved by a standard argument which uses the
dynamic programming principle. O

124



6.3.1 Compactness of the Aubry set

In this section, we prove that the projected Aubry set A is a compact subset of RY.
We begin with some preliminaries.

Proposition 6.18. Assume (F0) — (F2), (L0) - (L3) and (S). For any x € R there
exists Ty > 0 such that, for any t > Ty, any optimal pair (vz,us) € Iy for (6.6)
satisfies

LY ({s€[0,t] : v.(s) € Kr}) > 0.

Proof. We proceed by contradiction,. Suppose that there exist zyp € R, {tx }ren with
tr — 0o, and a sequence of optimal pairs (g, uy) € Fgf’t: of (6.6) such that

! ({s € [0,tx] : v(s) € Kr}) = 0.

On the one hand, we have that

tk
| 2k ) ds > b int Lw.0), (6.33)

On the other hand, having fixed any optimal pair (o, ug) € I’g%@ﬁ; for (1.5) and for
any k € N such that ¢t > d(xo) define the control

(s) = {uo(s), s €[0,8(z0)]
0, s € (0(xo), tg]-

Then, since ||uglleo < 1 it follows that

/0 Llw(s), ur(s)) ds < | LG(s), () ds (6.34)

< 6(20) (61 + €) + (tx — (20)) L(a", 0).

Thus, combining (6.33) and (6.34) and dividing by t; we get

1 4]
inf L(y,0) < —d(xo)(l1 + l2) + <1 — (3:0)> L(z*,0)
yekg [ tr
Moreover, by (L3) we deduce that
1 J
L(z*,0) + 41, < ?5(.%0)(51 +02) + (1 — (:0)> L(x*,0)
k k

With ¢, > 0. Taking the limit as k — oo in the above inequalities yields 6, < 0 which
is a contradiction. O

In view of the reversibility of L, the above Lemma implies the following.

Corollary 6.19. Assume (F0) — (F2), (L0O) - (L3) and (S). For any x € RY there
exists T, > 0 such that for any t > Ty, any optimal pair (Y, ug) € th:f() for problem
(6.6) we have that

LY ({s € [-t,0] : v.(s) € KL}) > 0.

We observe that since calibrated curves are, in particular, minimizing trajectories
for (6.6) then Corollary 6.19 can be applied to such curves. This is a key point to
deduce that the projected Aubry set is bounded, as we show below.
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Proposition 6.20. Assume (F0) — (F2), (LO) — (L3), and (S). Then A is bounded.

Proof. Let zyp € R? be such that Ay (zg,29) = 0. By Proposition 6.17 there exists
(3,u) € T”2°, such that 7 is a calibrated curve for A (g, ) and, by Corollary 6.19,

oo,

we know that there exists tg € (—oo, 0] such that
¥(to) € Kr.
Thus, the the trajectory & associated with the control
u(s) = u(s + to),

for s € [0, —tp], with ¥(—to) = zo, is a calibrated curve for A (z, ) such that ¥(0) €
Kr. Then, from (6.9) this implies that there exists Ry, > 0 such that x¢ € Bpg, . O
Next, we show that the projected Aubry set is closed.

Proposition 6.21. Assume (F0) — (F2), (LO) - (L3) and (S). A is a closed subset
of R4,

Proof. Let {zy}nen be a sequence in A such that lim z, =z € R?. Then, we have to
n—oo
show that x € A.
By definition we have that there exist sequence {ty, }nen and {(7, ,uk, )} nen €
ng:x" such that

/O " Lo (5), s (5)) s — a(L) b, < —.

Then, by Lemma 6.15 there exists (7, @) such that ug, weakly converges to @ and g,
uniformly converges to 7, on every compact subset of [0, 00), respectively. Let us define
d,, = dsr(zn, ) and the control

3

ul(s), s € [—dy, 0]
Un(s) { ug, (), s € (0,t,]
Ug(s), s € (tkfn?tkn + dk‘n]
where (77, uf) € T7 /"0 and (v3,u}) € thk’;_;:n +dy, are optimal for (1.5), on their

T—T

respective intervals. Hence, we have that (3,,u,) € T'" At vy

and, thus, we get
Ax(z,z) < hrr_l)inf [Aty,, +2d, (7, 7) — a(L)(tk, + 2dy)]

0 tky,
<timin ([ 207().030) ds+ [ Lo, (9., (5) ds (D),

n—00 _d
n

+ /tknern L(vy(s),uy(s)) ds —2a(L) dn) < lim (dn(€1 +l2) + rlz> =0.

¢ n—00
kn

The proof is thus complete since, by definition, A (x,z) > 0 for any = € R%. O

Theorem 6.22 (Compactness of the Aubry set). Assume (F0) - (F2), (LO) -
(L3) and (S). Then, A is a nonempty compact set.

Proof. The fact that A is compact follows from Proposition 6.20 and Proposition 6.21.
Moreover, (L3) and Corollary 6.10 ensure that A is nonempty since z* € A. O
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6.4 Horizontal regularity of critical solutions

In this section we show that any critical solution is differentiable along the range of F',
see the definition below, at any point lying on the projected Aubry set.

Definition 6.23 (Horizontal differentiability). We say that a continuous function
Y on R? is differentiable at x € R? along the range of F(x) (or, horizontally differen-
tiable at x) if there exists q, € R™ such that

o $@+ F(@)0) = 9(2) = (go,v)

v—0 ”U|

= 0. (6.35)

Clearly, if v is Frechét differentiable at x, than v is differentiable along the range
of F(z) and g, = F*(x)Dy(x).
For any ¢ € C(R?) we set Dfy)(z) = F*(z) D ().

Lemma 6.24. Assume (F0) — (F2), (L0) — (L3) and (S). Let 1 € C(R?) be locally
semiconcave. Then, v is differentiable at x € R along the range of F(z) if and only if

Dip(x) = {a}-

Proof. We first prove that if D;tw(x) is a singleton then v is differentiable at = along
the range of F(z). Let {q,} = D} 4(z) and take p, € DT4(z). Then

Pz + F(z)v) = (x) = (P, F(2)v) < o[ F(2)0]) < 0(|v]).

Therefore, we deduce that

<0.

lim sup (x4 F(z)v) |—|1,/J(ac) )
v—0 v

In order to prove the reverse inequality for the liminf, let {vg}reny be any sequence
such that v, # 0, vy — 0 as k — 400 and let

pr € DTY(x + F(x)vy).

Then
|vlk|(¢(:c + F(x)vg) = (@) = (pa, F(x)vr))
_ @(W + F(z)vr) — ¥(x) — (prs F(2)0r) + Pk — Py F(2)vr))
> @o(\p(m)m) — |F* (@) — qol[vrl-

By the upper-semicontinuity of D" we have that |F*(x)py — q.| — 0 as k 1 co. Since
since this is true for any sequence vy — 0, we conclude that

liming Y@+ F@)v) — (@) — {4z, v)

> 0.
v—0 ‘1}’ -

We now prove that, if 1 is differentiable along the range of F(x), then D}t (x) is
a singleton. To do so, let p € Dt )(x) and let g, € R™ be as in (6.35). Then, we know

that
i U@+ RE(@)0) — ()
h10 h

> <Qx79>'
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Moreover, by definition we have that for any 6 € R¢

i U@+ hE(2)0) — ()
h10 h

< (F*p,0).

Therefore,
(qz,0) < (F*p,0), V6eR%

Thus F*(z)p = ¢q. O
Hereafter, the vector g, given in Definition 6.23 will be called the horizontal differential
of 1 at x € R% and will be denoted by Dpt(x).

The next two propositions ensure that any critical solution y is differentiable along
the range of F' at any point lying on a calibrated curve . The proof consists of showing
that D;X is a singleton on . We recall that

L*(x,p) = sup, {(p,v) — L(z,v)}

is the Legendre Transform of L. We will rather write the critical equation using L*,
instead of the Hamiltonian H, to underline the role of horizontal differentiability.

Proposition 6.25. Assume (F0) — (F2), (LO) - (L3) and (S). Let x be a critical
subsolution and let (v,u) be such that v : [0,00) — R? is calibrated for x. Then we
have that

a(L)+L*(y(1),p) =0, ¥ pe Dfix(v(1))
for all T > 0.

Proof. On the one hand, since y is a subsolution of (6.11) we have that
a(L)+H(y(r),p) <0, ¥ pe D¥x(y(r)).

So, from (6.24) and recalling that D x(z) = F*(x)DT x(z) for any = € R? we get
a(L)+L*(y(r),p) <0, ¥ pe Dpx(y(r)).

Thus, it is enough to prove the reverse inequality.
Let h > 0, then since 7 is a calibrated curve for x we have that

x(Y(7)) = x(y(T = h)) = /T L(v(s),u(s)) ds — a(L) h.

—h

Then, by the definition of super-differential we get
X(v(7)) = x(v(7 = 1)) < (p,v(7) = ¥(7 = h)) + o(h)
= <p,/ Y(s) ds) 4 o(h) = / (F"(v(s))p, u(s)) ds + o(h)
T T—h

—h

Therefore, we conclude that

[ o) s —aths [ G0 ue) ds o)
T—h T—h

~aln) < 1 [ (G u(s) ~ LO).u) ds +o()
<3 [ EOOF O do).
Thus, for h — 0 we obtain the conclusion. ]
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Proposition 6.26. Assume (F0) - (F2), (LO) - (L3) and (S). Let x be a critical
solution and let (y,u) be such that y : [0,00) — R? is calibrated for x. Then, for any
7 > 0 we have that x is differentiable at v(7) along the range of F(v(T)).

Proof. We recall that from [25, Theorem 1] we have that y is semiconcave. By Propo-
sition 6.25 we know that

a(L) +L*(y(7),p) =0
for any p € Dfx(v(7)). Moreover, we have that L*(x,-) is strictly convex and the set

D}l x(x) is convex. Therefore, the above equality implies that D x(v(7)) is a singleton.
Consequently, Lemma 6.24 ensure that y is differentiable at v(7) along the range of

F(y(1)). O

We are now ready to prove the differentiability of any critical solution on the Aubry
set.

Theorem 6.27 (Horizontal differentiability on the Aubry set). Assume (FO0)
- (F2), (LO) - (L3) and (S). Let x be a critical solution. Then, the following holds.

(I) For any x € A there exists a trajectory-control pair (vz,u;) € TZ5 o NI S such
that .
Aso(72(t),x) = —/ L(va(s), ua(s)) ds + a(L)t (6.36)
0
and 0
Ao (z, v (—t)) = —/ L(vz(s),uz(s)) ds +a(L)t (6.37)
—t

(ii) vz : R — R? is calibrated for x.
(iii) x is horizontally differentiable at x € A.

Proof. We start by proving (6.36). Since x € A. We have that Ay (z,z) =0 . So there
exist {tn}nen and (v, ,u,}) € T 7* such that

t'll
tn, — 400 and  lim L(vt(s),ul(s)) ds — a(L)t, = 0. (6.38)

n—+oo Jq "
Then, by Lemma 6.15 there exists (v, , ;) such that u;” weakly converges to u;” and

¥ uniformly converges to 7,7, on every compact subset of [0,00), respectively. Fix
t € [0,400), fix n large enough such that d,, := dsr(7,F (t),7,7 (1)) <1 and t + 1 < t,.

+ +
Let (v0,u0) € FZLS;: ") be a solution of (1.5) and let u, € L%(t,t, + d,) be such
that

in(s) = uo($), s € [t,t+ dy)
N ut(s), s € (t+ dn,tal.

Then, recalling that |Jup||ec < 1 we obtain

tn

tn t+dn,
/t Ln(s), in(s)) ds = / Lv(s), uo(s)) ds + /Hd L(a(s), un(s)) ds

< (b1 + 4o)dy, + /t+d L(vn(8),un(s)) ds.
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Now, defining 4, (s) = u,(s — t) and denoting by 7,, the associated trajectory we get

Anclr (8)) < Timint [Ay, s — a(D)(tn — 1)

IN

r pta—t
lim inf /0 L(An(s),un(s)) ds — a(L)(t, — t)}

n——+oo

IN

rrt+dn tn
lim inf /t L(vo(s),up(s)) ds+ /t L(vn (), un(s)) ds — a(L)(t, — t)]

n—-+00 L +d,,

< timint | (64 )+ [ L0000 ds oDt - 0]
. tn t+dn
= timint | (44 )+ [ LG, (9) ds—a(Dta— [ Lok 6) 0 (9) da + ()

Then, by (6.39), the uniform convergence of ,, and the fact that d,, | 0 we deduce that

| B @) () ds = (D) + A (0.) <0

Moreover, we also have that

t
Aco(@,77 (1) = Aso(z, 75 (1)) — Aco(,7) < /0 Ly (s),uy (s)) ds — (L)t

and A (z, 7, (1)) + Aco (7 (t), ) > 0. Therefore, we obtain

| £ ) (9) ds = D)+ A5 (0).) = 0.

Similar arguments show that there exists (v, ,u;) € I'Z% o such that (6.37) holds.
Indeed, it is enough to consider {t,}nen and (v, ,u,, ) € TZ%, such that
0
tn, — 400 and  lim L(v,, (s),u, (s)) ds — a(L)t, = 0. (6.39)

n—-+4o0o ¢
n

Then, by Remark 6.16 there exists (v, , u, ) such that u,, weakly converges to u and ~,,
uniformly converges to 7y, , on every compact subset of [0, 00), respectively. Therefore,
defining the control

ut(s), s 00
UI(S)_{ Hs). s€0,00)

B u, (s), sé€ (—o0,0]

and denoting by v, the associated trajectory the proof of (i) is complete.
Next, we prove (ii), that is, 7, is a calibrated curve for x. From (6.12) we know
that x < L — «(L) and thus for any ¢t > 0 the following hold

t
Kl0) = x(@) < [ Lul9):(5) ds = a(D) 1.
Moreover, again from (6.12) we deduce that

xX(@) = x(12(t) < As(v2(t), ) —a(L) s

for any s > 0. Thus, we get

X(2) = x(72(t)) < Aco(V2(t), 2) = —/O L(7x(s), uz(s)) ds + a(L) .
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This proves that ~, is a calibrated curve for x on [0, 00). Similarly, one can prove that
the same holds on (—oo,0]. Moreover, if we consider —s < 0 < ¢t we can write

X(7z() = x(z(=5)) = x(12(t)) — x(@) + x(*) — x(1=(—5))
0

- / L(ya(r), us(r)) dr — (L)t + / L(ya(7), us(r)) dr — a(L) s
0

—S

- / L(a(r). (7)) dr — (L)t + 5),

—S

and this completes the proof of (i7).
Finally, by (i7) and Proposition 6.26 we deduce that y is differentiable at =z € A
along the range of F(x). O

Proposition 6.28. Assume (F0) — (F2), (L0) - (L3) and (S). Let x be a critical
solution. Let x € A and let (Vy,uy) be such that v, is a calibrated curve for x on R
with v,(0) = x. Then, we have that

Yx(t) € A, t>0. (6.40)
Proof. In order to prove (6.40) it is enough to show that
Ass(12(t),72(t) <0, ¢=0 (6.41)

since it is always true that Ao (72 (%), 7z (t)) > 0 for any ¢ > 0. From (6.27) the following
holds

Ao (V2(1),72(1) < Acc(12(t), 7) + Ao, 72(1)), t>0. (6.42)

Since 7, is calibrated for x we deduce that

t
Al () = [ L) s(s) ds = a(D)1. (6.43)

and .
Aso(z(t), z) = / L(vz(s),uz(s)) ds + a(L)t. (6.44)

0
Hence, combining (6.43) and (6.44) with (6.42) we get (6.41) which we recall that it
implies (6.40). O

Corollary 6.29. Assume (F0) - (F2), (LO) - (L3) and (S). Let x be a critical
solution, let © € A and let v, be calibrated for x. Then, v, satisfies the state equation
with control

uz(t) = DpL*(72(t), Drx(12(1))), ¢ =0.

Moreover,
Drpx(72(t)) = DuL(72(t), ux(t)), t=0.

Proof. Let x be a critical solution, let z € A and let 7, be a calibrated curve for y.
Let u; be the control associated with +,. Then, from the Maximum Principle and the
inclusion of the dual arc into the superdifferential of the corresponding value function,
e.g. [26, Theorem 7.4.17], we have that

<DFX(’Yw(t))7 ux(t» = L(’Yx(t)a ux(t)) + L*(’Y:c(t)v DFX('Yz(t))
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for any ¢t > 0. Note that, Dpx(7y.(t)) is well-defined by Proposition 6.26. Hence, by
the properties of the Legendre Transform we obtain

ux(t) = DPL*(’Ym(t)vDFX(’Yx(t))% t> 0

and
Dpx(72(t)) = DuL(v2(t), us(t)), t=0. O

Remark 6.30. Following the classical Aubry-Mather theory for Tonelli Hamiltonian
systems, one can define the Aubry set A C R% x R™ as

A= ﬂ{(m,u) € AxR™: Dpx(z) = DyL(z,u)}

where the intersection is taken over all the critical solutions x. Note that such a set is
nonempty since (z*,0) € A.
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