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Abstract

This thesis is concerned with static properties of large bosonic systems in
two dimensions. These systems at very low-temperatures are expected to ex-
hibit Bose-FEinstein condensation. From a mathematical and physical, point of
view it is interesting to provide conditions for the occurrence of Bose-Einstein
condensation. Obviously, studying a system of N particles, where N is large,
is very challenging. However, to overcome this problem we can rely on effective
theories, which describe the collective behaviour of the particles.

The aim of the manuscript is to present new results regarding the occurrence
of Bose-Einstein condensation in two-dimensional bosonic systems in suitable
scaling limits.

Our first result consists of the rigorous derivation of complete Bose-Einstein
condensation of low-energy states in a regime where the interaction potential
scales as N?PV(NP?.), for 8 > 0 such that logy_ . (log N®)/N = 0, where N
is the number of particles. We show that the system exhibits complete Bose-
Einstein condensation with a uniform bound on the number of the excitations
and we prove upper and lower bounds on the ground state energy of the system
up to O(1).

Our second result regards the Gross-Pitaevskii regime. In this scenario the
range of the two-body potential is exponentially small with respect to the number
of particles, i.e. the potential scales as e?VV(eV.). The strong singularity of
the interaction implies that the correlations among particles play a crucial role.
In this limit, we improve existing results on the emergence of Bose-Einstein
condensation, providing an almost optimal bound on the rate of condensation
and more precise bounds on the ground state energy.

In the conclusion, we briefly analyze our progress concerning the project of ver-
ifying the predictions of Bogoliubov theory for 2d bosons in the Gross-Pitaevskii
regime. The goal consists here in deriving an asymptotic expansion of the ground
state energy up to the second order and the low-energy spectrum of the Hamil-
tonian related to the system.

Throughout the manuscript we highlight the main differences between the
two scaling regimes that we are considering. On the contrary, the last chapter,
(Chapter 5), is focused on the Gross-Pitaevskii regime.
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CHAPTER 1

Introduction

A Bose-Finstein condensate is an exciting state of matter which occurs in
dilute gases of bosonic atoms (and even in more general bosonic systems) at very
low-temperatures. It roughly consists of a macroscopic fraction of the particles
behaving as they occupy the same one-particle state. The first theoretical pre-
diction of this phenomenon was given by Einstein in 1925 for cold atomic gases
[24, 25|, based on previous ideas of the physicist Bose in 1924 [12].

After seventy years, the groups of Cornell, Ketterle and Wieman got some
fruitful results at an experimental level, verifying the phenomenon in laborato-
ries. Their discovery led them to win the Nobel prize in 2001. To observe BEC
experimentally, physicists cool down atomic gases to very low-temperatures in
extremely dilute regimes (this is to prevent the gases from solidifying); see [13,
Chapter 1] for a review on experiments.

Although Einstein predicted theoretically the realization of BEC for non-
interacting bosons, one is clearly interested in considering the more realistic
case of interacting systems. From a mathematical point of view, the problem
of showing the occurrence of BEC for interacting particles, has been addressed
later. The first trace can be found in the work of Bogoliubov in 1947, [11]. Bo-
goliubov theory, under the assumption of BEC, showed that dilute interacting
bosons exhibit superfluidity, by predicting a linear spectrum of excitations for
small momenta. Although Bogoliubov approach is an illuminating treatment,
it is not mathematically rigorous. We will spend some more precise words on
Bogoliubov theory in Chapter 5.

The rigorous justification of the occurrence of Bose-Einstein condensation and
of the validity of Bogoliubov predictions in interacting Bose gas is a challenging
problem. So far, realization of BEC for interacting particles has been estab-
lished for an homogeneous system only in the special case of hard core bosons
on a lattice at half-filling in dimension greater or equal three [23]. The only
available results for a general dilute gas in the thermodynamic limit, i.e. where
N interacting bosons are confined in a periodic box with volume L?, L > 0, with
density p = N/L? kept fixed and the volume of the confining box increases to
infinity (limit as L — o0), concern the expression for the ground state energy
(see [73, 30] for latest results).

Even though to affirm that a phase transition really occurs one needs to study
the thermodynamic limit, it is interesting to investigate the equilibrium proper-
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ties of interacting bosons in simpler, but still physically relevant, dilute regimes,
where the effective range of interaction, described by the scattering length (later
denoted by a) of the interacting potential, is let to depend on the number of par-
ticles in such a way that pa®? — 0 as N — co. In these settings, the N- dependent
potential might be understood as an effective description for interactions occur-
ring in large many particles systems. Examples of these effective theories are, for
instance, the Gross-Pitaevskii theory for strongly interacting systems, and the
Hartree theory for weak interactions. For both scaling, there are many results
in three dimensions. BEC for three-dimensional bosons has been established in
the mean-field regime (see reference in [15, page 3] for a complete list of result
in this regime) in the Gross-Pitaevskii regime, and intermediate regimes interpo-
lating the two (a complete list of these results appears throughout [67, Chap. 4,
Chap.5] respectively). In the same regimes the predictions of Bogoliubov theory
have been verified [70, 35, 44, 9, 8|.

While three dimensional settings have been studied intensively, the problem
in lower dimensions, both from an experimental and theoretical point of view,
has got attention later. Experiments for bosons confined in a optical traps have
been first realized in two-dimensions in 2001 by Gérlitz et al. [34] (again see [13]
for a review on other related experiments).

From a theoretical point of view, the two-dimensional case is critical. In fact,
while a very general theorem due to Mermin-Wagner-Hohenberg [57, 36] rules out
the occurrence of BEC in two-dimensional systems at any positive temperature,
a phase transition is expected at zero temperature. This criticality makes the
study of Bose-Einstein condensation in two-dimensions even more challenging
and interesting.

Turning to the simpler problem of characterizing the equilibrium properties
of 2d Bose gases, the first prediction for the ground state energy in the ther-
modynamic limit was obtained by Schick in the '70s [68], later confirmed by
Lieb-Yngvason in [55]. The expected expression for the second order correc-
tion has been proved for 2d bosons restricted to quasi-free states by Fournais-
Napiorkowski-Reuvers-Solovej in [29]. Furthermore, systems of two-dimensional
bosons in the Gross-Pitaevskii regime confined by external trapping potentials
have been studied in [51, 46, 47]. If one consider intermediate scaling limits, be-
tween Gross-Pitaevski and mean-field, results have been obtained in [41, 42, 59]
(see also next subsections).

The aim of this thesis is to present new results concerning the occurrence of
Bose-FEinstein condensation in two-dimensional bosons in suitable scaling limits.

Our setting

Let us briefly sketch the mathematical setting and the scaling limits we will
be interested in. What we are going to say is standard and can be found for
instance in [66, Chapter II] and in [49].

In this thesis we are interested in studying static properties of large two-
dimensional bosonic systems.

A single particle in quantum mechanics is identified by a -normalized- vector
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Y e b, |¢|lp = 1, where b is a complex, separable Hilbert space. A system of
N € N particles is described by a vector ¥y € h¥ = h¥V. We are considering
particles which obey Bose-Einstein statistics, they are called bosons. We deal
with a system of N bosons, which is described by a vector ¥y € h¥, invariant
under permutations, namely:

YN(T1, . Ty Ty N) = UN(T1, Ty T, TN,

forany j #k=1,...,N.

Throughout this thesis, our Hilbert space for one particle is h = L%*(A),
where A = [—1/2;1/2]? a unit box in two dimensions with periodic boundary
conditions, identified with the two-dimensional unit torus. Hence, the N-particle
bosonic system is described by Y := LZ(AV).

The energy of N interacting bosons can be generally described by a Hamilton
operator Hy which acts as a self-adjoint operator in hY¥ and has the form

N
Hy =) (=Dp, + Vi) + Y vlzi — ;). (1.1)
i—1 1<i<j<N

In (1.1) the one-body operator —A,,, i = 1,..., N is the Laplacian with
respect to the variable x; € A, it measures the kinetic energy of the i-th particle.
The operator V,,; denotes an external potential. In our proof we will consider
bosons trapped in a box, with periodic boundary conditions without external
potential, but we expect our results to hold in this more general setting. Finally,
v is a real-valued, measurable function which models the interactions among
particles and acts as a multiplication operator. We assume v radially symmetric
and non-negative. Notice that, here, we are considering a two-body interaction.
In fact, since we deal with very dilute regimes we can neglect all interactions
involving three or more particles.

With the conditions on the interaction potential that we are going to impose,
we can ensure that Hy : D(Hy) — L2(AY), is a densely-defined, self-adjoint
operator, bounded from below. Thus, we define the ground state enerqy Ey as

Ey = inf JH . 1.2
N wNe%l(HN),WN N ¢N> ( )
lYn|=1

The ground state energy corresponds to the lowest possible energy of the
system. Since we deal with large bosonic systems, an exact computation of Ey
is not feasible. However, one can aim to get a good approximation in the limit
for large N, i.e. N — oo. Moreover, one can also investigate the energy levels
above the ground state energy, called ezcitation spectrum, and the conditions on
the trapping potential also ensure that the spectrum is purely discrete. We will
give a hint about how the techniques introduced in the thesis can be used to
investigate the excitation spectrum in Chapter 5.

As mentioned above, we aim to prove Bose-Einstein condensation for low-
energy states at zero temperature in two dimensions. A mathematical formal-
ization of this phenomenon for general interacting system was given by Onsager
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and Penrose [61] Their definition makes use of the so-called one-particle reduced

density matriz ”y ) e L(L*(A)), of a many-body wave function y, where with
L(L*(A)) we denote the space of trace-class operators. The one-particle reduced
density matrix is defined through its integral kernel

'y](\})(a:;y) = ¢N(:B7:E2,...,xN)EN(y,xQ,...,xN)dasg...da:N (1.3)

AN-1

for z,y € A. Equivalently, it is defined as
1 ._
YN = tra N YN) (U],

normalized such that tm(l) = 1. Then a sequence of many-body wave func-
tions (¢¥n)nen € L2(AY) with associated sequence of one-particle reduced den-
sity matrices (7](\})) ~Nen exhibits complete Bose-Einstein condensation in the one-
particle wave function ¢ € L?(A) with associated orthogonal rank-one projection

o) (¢l € L(LA(A)) if

- Ol _
wlim -ty = ) (el = 0. (1.4)
N/|A|=const

One can also consider different scaling regimes, keeping |A| = 1 and setting the
interaction potential depending on the number of particles N. In these settings,
where condensation is said to occur if the convergence (1.4) is established in the
limit N — oo (without requiring the density to be constant), there are many
results both for the investigation of the ground state and the excitation spectrum.
For a discussion of the results on the dynamical and static properties of 3d and
2d bosons, including very recent results on BEC for positive temperature we refer
the reader to [67, 21, 5, 33| and reference therein.

From now on we will focus only on the two-dimensional case. In the following
we will briefly recall the 2d scalings that will be investigated in the manuscript.

From the mean-field to the Gross-Pitaevskii regime

First, we consider Hy being of the form

HN_Z Aml+— Yo Vi — ), (1.5)

1<z<]<N

and acting on L?([—1/2;1/2]*); this is the so-called mean-field regime. Notice
that the kinetic and the potential parts are of the same order with respect to the
number of particles N, hence they give the same contribution to the energy. In
this limit each particle interacts essentially with all the others, since the range
of the interaction is comparable to the extension of the whole system. Thus, we
can say that interactions are frequent, but weak.

We can go one step further and investigate even low density regimes where
the interaction is more singular and converges to a Dirac mass. Namely, we
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consider interaction potentials that scales as N2~V (N#.). Actually, for 3 < 1/2
the behavior is similar to the mean-field regime S = 0, since the range of the
interaction is much smaller than the full system size, but it stays much larger than
the typical inter-particle distance N~/2. On the other hand, when 3 > 1/2 the
range of the interactions is much smaller than the typical inter-particle distance
(see [67] for a detailed explanation), hence interaction becomes stronger.

In two dimensions, a critical threshold is determined by the limit
¢ =limy_oo(logay)/N, with ay is the scattering length of the interaction, (i.e.
the effective range of interaction between particles), when ¢ # 0 the system
is in the so-called Gross-Pitacvskii regime. In general, this setting describes
a situation where N particles are confined in a two-dimensional box of side-
length L and interact through a potential whose scattering length is of order
e~V (remember that we consider unit boxes). Hence, we deal with an extreme
dilute regime.

There are a few results in the literature concerning the investigation of the
ground state energy for regimes where ay ~ N7 and ¢ = 0. Lewin, Nam and
Rougerie [41, 42, 59], obtained convergence of the ground state energy and of
the one-particle density matrices for 5 < 1. Remarkably, for 5 < 1 they can also
consider non-positive potentials (see also [67] and reference therein for a review).
We consider this regime in Section 1.1 explaining which results we obtained.

Let us now focus on the more challenging case, the Gross-Pitaevskii limit. In
this scaling the range of the interaction is exponentially small with respect to the
number of particles, i.e. the potential scales as e?VV (eV+). This regime has been
first studied by Lieb-Seiringer-Yngvason [47, 51, 50, 46]. In these papers they
proved the exhibition of condensation and the expression for the ground state
energy. To be precise, in [47] they considered the harder case with a magnetic
potential (see also [49] for details and a review on these results).

Similar results have been obtained starting from a three dimensional Bose
gas, trapped by a potential which is strongly confining in one direction, so that
the system becomes effectively two-dimensional [69]. Finally, it is worth to men-
tion [37, 14], where rigorous results on the time-evolution in the two-dimensional
Gross-Pitaevskii regime have been established (in [14], the focus is on the dy-
namics of a three-dimensional gas, with strong confinement in one direction).

In [20] we improve the result in [55] and prove optimal condensation up to
logarithmic corrections. This work is part of this thesis, we explain our result in
Section 1.2, Chapter 2 and 4.

In the next sections we explain our main results in two-dimensions and we
give a general idea of the proof, which stems from ideas introduced in [7, 9, 10]
for the analysis of 3d bosons.
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1.1 Bose-FEinstein condensation for 2d bosons interact-
ing through singular potentials

We consider N bosons in a box in R? of side-length one, i.e. A = [—1/2;1/2]?,
described by the Hamilton operator

Hy =Y =Dy + > N*W(NP(z; — 1)), (1.6)

j=1 i<j

where 3 > 0 such that limy_,.(log N°)/N = 0.

In this regime we establish an upper and lower bound for the ground state
energy of the system up to O(1) corrections and obtain a proof of condensation
with optimal rate for all low energy states, as described by the following theorem.

Theorem 1.1. Let V € L*(R?) have compact support and be pointwise non-
negative. Let f > 0. Then there exists a constant C' > 0 such that the ground
state energy EIBV of (1.10) satisfies

U U (0)2
EY — @N + 40 log N?| < C. (1.7)
Furthermore, consider a sequence ¥y € L2(AN) with ||¢¥n| = 1 and such that

), 70y
2 8

for a K > 0. Then the reduced density matriz ’y](\}) = tro__ n|UN) (Y| associated

with Yy satisfies

(U, Hybn) < log N® + K

C(K+1)
N

(1)

1 — (w0, 75 o) < (1.8)

for all N € N large enough.

Remark. 1. The condition V € L?(R?) comes from the proof of properties of
the scattering function associated to the potential N?*~1V(NPx), that we
need in our analysis, see Chapter B for more details.

2. Notice that Theorem 1.1 eventually holds for any 5 > 0 such that
limy_o(log N?)/N = 0. Indeed it might depend on N.

The strategy of the proof of Theorem 1.1 follows [10]. We will work in a
second quantization setting to describe the fact that the number of excitations
(i.e. particles outside the condensate) vary. Using a unitary map introduced
by Lewin-Nam-Serfaty-Solovej [44] (see Section 2.1 for the precise definition) we
factor out particles in the condensate from the Hamiltonian H ]ﬁv Hence, we are
able to rewrite H f, as a new excited Hamiltonian - that we will call Lﬁ,— where
the particles in the condensate do not appear anymore.

However, this excitation Hamiltonian is not enough to get the correct ground
state energy or to show condensation. In fact, in Ejﬁv there are still important
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constant contributions hidden in the cubic and quartic terms. This is because,
the action of the map Uy, which factors out the condensate, does not take into
account the correlation between particles. Hence, to overcome this problem,
we construct a unitary map which is obtained by taking the exponential of an
anti-symmetric operator By quadratic in the excitations. This map was first
introduced in [4], in the Fock space, then implemented in [17] and [7], in the
3d setting, and it is constructed in such a way that the coefficients take into
account the correlation structure. In particular, these coefficients come from the
solution to the scattering equation. The action of the unitary map eP# allows
us to obtain a new Hamiltonian, called Q]Bw.

Now, if we consider a sufficiently small factor in front of the interaction poten-
tial, then the result for the ground state energy immediately appears. However,
without restriction on the size of the potential, the renormalized Hamiltonian
Qﬁm is not enough. To solve this issue, we use another unitary operator e4#, de-
fined through the operator Ay, cubic in annihilation and creation operators over
excited particles. With the action of e?#, we get a renormalized Hamiltonian
R

At this point it is worth to stress that, in order to show BEC, one would ideally
obtain a quadratic Hamiltonian, which can be diagonalized, thus obtaining an
upper bound for the number of excited particles in terms of the energy. However,
this is not the case. The renormalized Hamiltonian will not be really quadratic,
but there are still terms that need to be controlled through localization tech-
niques on the number of particles developed by Lewin-Nam-Serfaty-Solovej [44]
(and before by Lieb-Solovej [53]). This requires an a-priori knowledge on the
occurrence of condensation in the regimes described by (1.6), as stated in the
following theorem.

Theorem 1.2. Let Hﬁ, be defined in (1.6) with V' non negative, radially sym-
metric and compactly supported. Let B > 0. Then
(v, Hyd) _ V(0)

I i _
N1—>H<1>o ||11pI||1:1 N 2

Moreover, if 1y is an approzimate ground state for Hy, namely

i (v Hyow) Y (0)
N—o0 N 2 ’

and 7](\1;) = Trron|Un)(UN| is the k- particle reduced density matriz of ¥y,
then there is complete Bose-Finstein condensation

Jim Tr |y — ) (ef"]| =0, VkeEN. (1.9)
—00

with po(z) € L*(R?) the zero momentum mode defined by po(z) = 1 for all
x €A

Remark. As in Theorem 1.1, also Theorem 1.2 holds for any 5 > 0 such that
limy o (log N?)/N = 0.
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The proof of Theorem 1.2 for § < 1 can be found in [41, 42, 59]. For larger
the same statement can be shown following the strategy applied in [60] for the
three-dimensional case, see Appendix C.

1.2 Bose-Einstein condensation in the Gross-Pitaevskir
regime

We analyze, now, the limit where the interaction between particles is expo-
nential in NV, namely the Gross-Pitaevskii regime. The achieved result is part
of a joint paper with Serena Cenatiempo and Benjamin Schlein, submitted for
publication to a peer review journal [20]. The GP regime is more interesting and
intricate than the other regimes we mentioned in previous sections. Indeed, the
integral of the potential is no longer of order O(N 1), but it is of order O(1),
moreover, the interaction is more singular, as it is clear from (1.10).

The Hamilton operator for this setting is of the form

N N
HSY = Z—Azj +Ze2NV(eN(x,- —zj)), (1.10)
j=1

i<j

again acting on a dense subspace of L?(R?). Here we assume V € L3(R?),
which comes from the correlation structure defined by the zero-energy scattering
equation. We denote by a the scattering length of the unscaled potential V. We
recall that in two dimensions and for a potential V' with finite range R, the
scattering length is defined by

21

o 2 1 2

where R > Ry, Bp is the disk of radius R centered at the origin and the infimum
is taken over functions ¢ € H'(Bg) with ¢(z) = 1 for all z with |z| = R.
The unique minimizer of the variational problem on the r.h.s. of (1.11) is non-
negative, radially symmetric and satisfies the scattering equation

_AG %Vﬁb(R) 0,

in the sense of distributions. For Ry < |z| < R, we have

_ log(lal/a)
log(R/a)

By scaling, ¢n () := ¢" ®(eNz) is such that

o (z)

1
—A¢n + §e2NV(eN$)¢N = 0.

We have

log(|z|/an) 2. N
p) = 28UT/ON) g cR2 e NR < 2| < R,
on(2) log(R/an) o <l <
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for all z € R? with e Ry < |z| < R. Here ay = e Va. See [49, Appendix C]
for a more detailed explanation.

As we said in the introduction, the properties of trapped two dimensional
bosons in the Gross-Pitaevskii regime (in the more general case where the bosons
are confined by external trapping potentials) have been first studied in [51, 46,
47]. These results can be translated to the Hamilton operator (1.10), defined on
the torus, with no external potential. They imply that the ground state energy
Ey of (1.10) is such that

Ey =2aN(1+O(N"'%). (1.12)

Moreover, they imply Bose-Einstein condensation in the zero-momentum mode
wo(x) = 1 for all z € A, for any approximate ground state of (1.10). More
precisely, it follows from [46] that, for any sequence ¥y € L2(AY) with |[¢n| = 1
and

1
Jim (o, Hy ) = 2m, (1.13)

the one-particle reduced density matrix 7](\}) = tro__n|®¥n) (Y] is such that
1— D) < ONT° 1.14
{0, 7N ®0) < (1.14)

for a sufficiently small § > 0. The estimate (1.14) states that, in many-body
states satisfying (1.13) (approximate ground states), almost all particles are
described by the one-particle orbital ¢y, with at most N'=° < N orthogonal
excitations.

In the theorem we are going to state, under the assumption V € L3(R?), we
improve the results (1.12) and (1.14) by providing more precise bounds on the
ground state energy and on the number of excitations. In particular, we prove
the following result.

Theorem 1.3. Let V € L3(R?) have compact support, be spherically symmetric
and pointwise non-negative. Then there exists a constant C' > 0 such that the
ground state energy En of (1.10) satisfies

2rN —C < Exy <27N + C'log N. (1.15)
Furthermore, consider a sequence ¢ € L2(AN) with |[1n| = 1 and such that
(Un, HY Yn) < 27N + K (1.16)

for a K > 0. Then the reduced density matriz fy](\}) = tro__ n|¥n) (Y| associated

with Yy s such that
C(l1+K)
N

(1)

1 — (o, 7n"%0) < (1.17)

for all N € N large enough.

It is interesting to compare the Gross-Pitaevskii regime with the thermody-
namic limit, where a Bose gas of N particles interacting through a fixed potential
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with scattering length a is confined in a box with area L?, so that N, L — oo
with the density p = N/L? kept fixed. Let b = |log(pa?)|~'. Then, in the dilute
limit pa®? < 1, the ground state energy per particle in the thermodynamic limit
is expected to satisfy

eo(p) = 47rp2b<1 +blogb+ (1/2 + 2y + logm)b + 0(b)> , (1.18)

with 7 the Euler’s constant. The leading order term on the r.h.s. of (1.18) has

been first derived in [68] and then rigorously established in [55], with an error

rate b~/°. The corrections up to order b have been predicted in [1, 58, 62]. To

date, there is no rigorous proof of (1.18). Some partial result, based on the

restriction to quasi-free states, has been recently obtained in [29, Theorem 1].
Notice that, for a fixed a Eq. (1.18) leads to

47 p? < log | log p| 5 1 log | log p|
eo(p) = 11— —=——"2—=+4(1/2+ 2y + log(n/a +0< ) :
)= Togal \' ™ Tlogal * 1D ogal * \log oy

Extrapolating from (1.18), in the Gross-Pitaevskii regime we expect |Ey —
27 N| < C. While our estimate (1.15) captures the correct lower bound, the
upper bound is off by a logarithmic correction. Eq. (1.17), on the other hand, is
expected to be optimal (but of course, by (1.15), we need to choose K = C'log N
to be sure that (1.16) can be satisfied).

The proof of Theorem 1.3 follows the strategy cited in the previous section
1.1, that has been recently introduced in [10]. But let us stress that there are
additional obstacles in the two-dimensional case, requiring new ideas. To ap-
preciate the difference between the case of singular interacting potentials in two
dimensions, as well as the Gross-Pitaevskii regime in two- and three-dimensions,
we can compute the energy of the trivial wave function ¥y = 1. The expecta-
tion of (1.10) in this state is of order N?. It is only through correlations that the
energy can approach (1.15). Also in three dimensions, uncorrelated many-body
wave functions have large energy, but in that case the difference with respect to
the ground state energy is only of order N (NV(0)/2 rather than 4wayN). This
observation is a sign that correlations in two-dimensions are stronger and play a
more important role than in three dimensions (this creates problems in handling
error terms that, in the other setting considered, were simply estimated in terms
of the integral of the potential).

Summary

The thesis is organized as follows. In Chapter 2 we introduce our setting,
based on a description of orthogonal excitations of the condensate on a truncated
Fock space. Moreover, we describe separately for the two different regimes con-
sidered in this thesis the main steps to prove Theorems 1.1 and 1.3. Namely, in
Section 2.2 we show how to renormalize the excitation Hamiltonian Hy, to reg-
ularise the singular interaction, through the action of unitary operators. Section
2.3 is dedicated, analogously, to the renormalization of the Hamiltonian HSY.

10
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The technical bounds establishing the properties of the renormalized Hamil-
tonians described in Chapter 2 are the content of Chapter 3 (where we show
Prop. 2.4, Prop. 2.8 as well as Theorem 1.1) and Chapter 4 (where we prove
Prop. 2.11, Prop. 2.14 and Theorem 1.3).

Finally in Chapter 5 we have a look at the future perspective. Namely, the
result of Theorem 1.3, are the starting point to investigate the validity of Bogoli-
ubov theory for the Gross-Pitaevskii regime. We explain how one can obtain the
next-to-leading order term in the expansion of the ground state energy as well
as information on the low energy excitation spectrum.

We defer to Appendices A and B respectively the proof of the two crucial
Lemmas 2.10 and 2.1 establishing properties of the solution of the Neumann
problem associated with the two-body potential V' in both regimes. Finally, in
Appendix C we give a sketch of the proof of Theorem 1.2, following the strategy
in [60].

11



CHAPTER 2

Bose-Einstein condensation: outline of
the proof

2.1 The Fock space setting: focusing on excited particles

The mathematical framework we use throughout the thesis is the Fock space,
useful to describe excitations around a Bose-Einstein condensate. It is the aim
of this section is to describe this setting, i.e. we introduce the Fock space, first
over a generic Hilbert space b, which in our model is h = L*(A). What follows
is well-known, we recall just some useful definitions. The reader can find proofs
and details, for instance, in [5].

We define the bosonic Fock space as the Hilbert space

F- @y -y

n>0 n>0

where h7 is the dense subspace of h" consisting of vectors that are symmetric
with respect to permutations. This space is provided with an inner product, for
U dec F

(U, @) = (¥, o)

n>0
and the corresponding norm for W € F is given by

e = ™.

n>0

On F we denote by Q = {1,0,...} € F the vacuum vector, which describes
a state where no particles are present at all.

We can now define, for a function f € b, the creation operator a*(f) and the
annihilation operator a(f) by

(@ (F)0) (@, .. ) = % S F )8,y s )
j=1

(a()O) M (zy,...,2,) = Vn+ 1 /A F@) Ot (@ 2y, x,) da.

Indeed, a*(f) creates a new particle with a wave function f, on the contrary a(f)
annihilates such a particle. Notice that a*(f) is the adjoint of a(f) and that they
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satisfy the canonical commutation relations

[a(f),a*(9)] = {f.9), [a(f),alg)] = a*(f),a"(9)] = O

for all f,g € b (here we are indicating with (g, h) the inner product on L?(h)).

In our setting, as we already said in Chapter 1, we are considering the Hilbert
space h = L?(A), with A a unit box with periodic boundary conditions. For most
of the analysis, it will be convenient for us to work in momentum space. The
plane waves ¢,(2) = e~?* form a basis for L?*(A). Then, we define the operators

a;; =a"(py), and a,=a(y,)

creating and, respectively, annihilating a particle with momentum p.

However, to exploit the non-negativity of the interaction potential V', some-
times it will be useful to switch to position space. For this purpose, we introduce
operator valued distributions a,, a; such that

olf) = [ F@yards, a(f)= [ 1@ d

which in turn satisfy

(G0, @y = 0(x —y), [t @] = [ag, a,] = 0.

The number of particles operator, defined on a dense subspace of F by (N¥)™ =
np™ € F, for any ¥ = {wq(go} can be expressed both in momentum and position

space as
_ * _ ~ 3k >
N = g a,a, = /amax dx .

pEA*

It is then easy to check that creation and annihilation operators are bounded
with respect to the square root of NV, i.e.

laCH YRl < IANINY2EL, e ()Rl < ATV +1)Y2e|
for all f € L?(A).

As we did for N/, we can express the second quantization of any one-particle
operator in terms of the operator-valued distribution d,,aZ. Consider J®) be a

one-particle operator on the space ). The second quantized operator dI'(.J (1)) on
the Fock space F is defined by

(dD(JD)YT)™ = Z JWap(m),
i=1

where J®) denotes the operator acting on h” as J on the i-th particle and as
the identity on the other (n — 1) particles. If J() has integral kernel JM (z;y),
it is easy to show that

dr(JW)y = /dxdyJ(l)(x;y)a;ay.

13
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In partlcular we can use this representation to define the one-particle density
operator 7\1, : h — b associated with a vector ¥ on F through its integral kernel

1
(@) = gy (W )

which for N-particles states coincide with the definition of 7N in (1.3).
With the tools introduced above, we are able to rewrite Hamilton operators
of the form (1.1) (with no external potential) as follows.

* 1 - * *
Hy = Z p2apap + 5 Z o(r)ay, ,a,a,04, (2.1)
peEA* p,q,reEN*
where

B(k) = /]R )

is the Fourier transform of v, defined for all k¥ € R?. For (1.6) and (1.10), v
is of the form v(z) = N?71V(NPz) and v(z) = e*VV(eNz) respectively. In
particular, we will have

HY = Zp a,ap, + 2N Z V(r/N%)a’ Ay Uy Ay (2.2)
peEA* p,q,rEA*
and
HSY = Z prara, + Z V(r/eN) Oy Gy Ul - (2.3)
peEA* pqreA*

Notice that, (1.10), (1.6) are the restriction of (2.1) to the N-particle sector of the
Fock space F. Moreover, there is a slight abuse of notation for the Hamiltonians:
the same notation is used both for L2- space and Fock space.

Next, we want to construct another Fock space. We denote by L2 (A) the
orthogonal complement in L*(A) of the one dimensional space spanned by ¢y,
which, we recall, is the zero-momentum mode in L?*(A), normalized for all z € A.
We construct the Fock space over L2 (A), generated by the annihilation and
creation operators defined above a’ with p € A% := 27Z*\ {0}. This will be

denoted by
Fi = @Li(A)@)sn-

n>0

Moreover, we indicate the number of particles operator on F, as

_ *
N+ - Z CLpCLp.

PEAL

Our aim is to factor out particles in the Bose-Einstein condensate from low-
energy states of Hy. To this end, first we need to introduce for N € N the

truncated Fock space
N
S @riw
n=0

14
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Following [44, 43] for the zero-momentum mode ¢y € L?(A), i.e. go(z) =1 for
all z € A, every ¥y € L%(AY) can be uniquely represented as

N
Uy = 0 @505 Y = @ oY + o @05+t a

n=0

for a sequence a; € L3 (A)®, for all j =0...N. Here, L2 (A)® indicates the
symmetric tensor product of j copies of the orthogonal complement L2 (A) of ¢y.

We can therefore introduce the unitary map Uy : L2(AY) — F:V defin-
ing Un(wo)bn = {ag,ai,...,ay} € F£¥. This map removes the condensate
described by the one-particle wave function ¢y and allows us to focus on its or-
thogonal excitations. We can also define Uy identifying 1 with the Fock space

vector {0,0,...,%x,0,...} and using creation and annihilation operators; we
find
N N—n
a(po)
= 1— on_ P
Un YN HG:%( |00} (o) (N_n)!%v

for all ¢ € L2(AN). One can easily check that the Uy : F — L2(AN) is
given by

N CL*((,D )an
U {a®, oty =S 20w
a } ;} D]

and that UyUyx = 1, ie. Uy is unitary.

Using Uy, we can define the excitation Hamiltonian £ := Uy HyUj,;, acting on
a dense subspace of ]:fN. From (2.1) we can compute the excitation Hamiltonian
L using the following rules, whose proof can be found in [44], describing the action
of the unitary operator Uy on products of a creation and an annihilation operator
(products of the form a}a, can be thought of as operators mapping L2(A") to
itself). For any p,q € A% = 27Z*\{0},

UNCLSCL()U;]:N—N_;_
* x %

Uy ayao Uy = aj/N — N,
* *

Uy aja, Uy = /N — Ny a,
* * _ %

Uy aya, Uy = ajaq.

It is useful to introduce generalized creation and annihilation operators

bp:ap“T—i_, and bp:\lTap

for all p € A%. Their definition is a natural consequence of the action of the map
Uy. In fact, we get

a*
* 0
Ui, Uy = -2 g,

VN

U;/b;UN == CL;

Qo
VN’

15
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this means that b creates a particle with momentum p € A% but, at the same
time, it annihilates a particle from the condensate. Moreover, differently from the
standard creation and annihilation operators, by and b, leave the total number
of particles in the system invariant. On states exhibiting complete Bose-Einstein
condensation in the zero-momentum mode g, we have ay, aj ~ VN and we can
therefore expect that by ~ a; and that b, ~ a,. These operators satisfy the
commutation relations

* N+ 1 *
[bp, bq] = (1 - W) Opq — Naqap (2.5)
[bp, bg] = [by,, bg] = 0.
Furthermore, we find
[bp, agar] = dpqbr, [0y, agar] = —0,by (2.6)
for all p,q,r € A%; this implies in particular that [b,, N\] = b, [b5, No] = —b}.

It is also useful to notice that the operators by, by, like a;, a,, can be bounded by
the square root of the number of particles operators; we find

Ibp€ll < IN2ElL, Bl < TVs + 1)V

for all £ € ffN. Since N, < N on ]—"_EN, the operators by, b, are bounded, with
1511, 10511 < (N +1)12.
We can also define modified operator valued distributions

. N — . N —
bx:\/Tde, and b;:d;\/TM

in position space, for € A. The commutation relations (2.5) take the form

s, N 1,
[0z, 0y] = <1 — W+) Sz —y)— e

b2.b,] = [55.5;] = 0

x) 7y

Moreover, (2.6) translates to

by, ara,| = d(x —y)b,, (0%, a%a.) = —6(z — 2)b

x? Yy 4 Yy
which also implies that [b,, Ny] = by, [0, N} ] = —br.

Going back to the two settings that we are considering, we obtain on one hand
for the Hamiltonian HY,

Ly = UnvHN Uy = L3O + L3 + 3% + £33

16
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with
o _ V) V(0)
E?\/( ) — N (N —1)(N —./\/+) + WN+(N_N+)
* i’ * 1 *
5@ = Z prasa, + Z V(p/N”) {bpbp - Napap}
pEA’jr PGAj_
1 > * 7k
+5 2 V/N) [Bbt, + by @)
pEA: '
1 5 * * *
ﬁr]B\/’(S) - \/_N Z V(p/NB> [bp-i-qa—paq + aqa’pprrq}
P,gEAY :p+g#0
1 ~
(4 g
DJBV( )= IN V<7"/Nﬁ)ap+raqapaq+’"'
P,gEN reA™:
r#—p,—q
For the Gross-Pitaeviskii Hamiltonian Eq.(1.10) we have
Ly =UnHEFUy = L9 + L2 + £ + £ (28)
with
1 1<
¥ = VOV = DN = N) + S VONL(N = N)
* 17 * 1 *
ﬁg\?) = Z pzap&p +N Z V<p/€N) {bpbp - Napap}
peAj_ peEAT
+ ST Ve [, + by
9 p p —p p-—p (29)

pEAi

EE\?) =N Z V(p/e™) [b;+qafpaq + afla_pbpﬂ]
P,qEAY :p+g#0
1 ~
Egé) =3 Z V(r/eMar, atayaqs, .
p,qGAi,reA*:
r#—p,—q
The expressions (2.7) and (2.9) show clearly why dealing with the Gross-Pitaevskii
regime is harder. Indeed, if we take the expectation on the vacuum state €2, while
for £, it is of order N, for Ly it is of order N2. Moreover, while £§3V’(3) and E’?\,’M)
have some small factors 1/v/N and 1/N in front, the cubic and quartic terms in
(2.9) are much larger. Indeed, the analysis of the excitation Hamiltonian £7, is
done closely following [10], while the one for the Gross-Pitaevskii regime requires
additional ideas.
In the following section we describe the analysis of EJBV and Ly separately,
showing how to obtain a proof of Theorems 1.1 and 1.3 respectively.
From (2.7) and (2.9) we see that conjugation with Uy extracts, from the
original quartic interaction in (2.2) and (2.3), some large constant and quadratic

contributions, collected in E%(O), 553), and E}B\;(Z), Eg\%) respectively. However, in

17
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the two regimes we are considering, this is not enough; in fact, there are still
large contributions to the energy hidden among cubic and quartic terms in EZBV’(?’)
and E?\;M) as well as in Eﬁ\?}) and E%) for the Gross-Pitaevskii case (as we already
mentioned the expectation of £y on the vacuum state € is of order N?, which
is a clear indication of the fact that there are other large contributions to the
energy).

Since Uy only removes products of the zero-energy mode ¢, correlations
among particles remain in the excitation vector Uynty. This means correlations
play a crucial role in this regime. In the following section we explain how to take
into account the correlation structure. This will lead to a renormalization of the
excitation Hamiltonians £5 and Ly in Equations (2.7), (2.9) which allows us
to show condensation. As we will see, the analysis of the two regimes, although
sharing a similar strategy, requires different ideas.

2.2 Renormalization of the excitation Hamiltonian Ejﬂv

To take into account the short scale correlation structure on top of the con-
densate, we consider the ground state f, of the Neumann problem

(= 2+ 5V(@) fula) = A fole) (2.10)

on the ball |z| < N?¢, normalized so that f,(x) = 1 for |x| = N?¢. Notice that
also f, and Ay depend on N, but for convenience we omit its dependence. By
scaling, we observe that f,(N?.) satisfies

A NQBVNB NPz) = N? ), f,(N”
(= 2+ S VIVD)) fu(N2) = N, f(N'2)

on the ball |z| < ¢. We choose 0 < ¢ < 1/2, so that the ball of radius ¢ is
contained in the box A = [—1/2;1/2]?. We extend then f,(N?.) to A, by setting
Ine(z) = fo( NPx), if |[z| < € and fy,(x) =1 for z € A, with |z| > £. Then

N2 26
(= 2+ 57 VIN@) fre@) = N2 fue@)ale) (2.11)

where Y, is the characteristic function of the ball of radius ¢. The Fourier coef-
ficients of the function fy, are given by

.]/C\N,g(p) = / fg(Nﬁ‘I)eiip'xd.T
A
for all p € A*. We also introduce the function

we(z) =1— fo(z)

for |x| < NP¢ and we extend it by setting wy(x) = 0 for || > NP{. Its re-scaled
version is defined by the function wy, : A — R, such that wy ¢(z) = w,(NPz) if

18
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|z| < { and wyy, =0 if z € A with |z| > /.

The Fourier coefficients of the re-scaled function wy, are given by
Wne(p) = / we(NPz)e P?dx = N~ @, (p/NP). (2.12)
A

We find fNyg(p) = 6p0 — N=2W,(p/NP). From the Neumann problem (2.11) we
obtain

—p’ N~y (p/N”) + % > V(p—=a)/N))fnalg) = N*A > X(p—a) fve(a),
qEA* qEN*

(2.13)
where we used the notation Y, for the Fourier coefficients of the characteristic
function on the ball of radius £. Note that x,(p) = ¢* X(¢p), with X(p) the Fourier
coefficients of the characteristic function on the ball of radius one.

In the next lemma, we collect some important properties of the solution of (2.11).

Lemma 2.1. Let V € L*(R?) be non-negative, compactly supported (with range
Ry) and spherically symmetric, and denote its scattering length by a. Fiz 0 <
(< 1/2, NP0 > 0 sufficiently large and let f, denote the solution of (2.10). Then

i)
0< fi(z) <1 VxERQ:MSN/BE

i1) We have

1 V(0 V(0) C
‘T (NBOZ 27N (1 T 4rN 10g<NB)> ' = (NBORN?

iti) We have

1 V(0) V(0) 5 C
— 1= < '
' = / AV (@) fl) — (1 gV )< 1)
iv) There exists a constant C' > 0 such that
jwe(z)| <Cif x| < Ro
V(0) 5 c 5 (2.15)
— < — < < .
wy(x) N log (N E/]a;\) <y if Ro <l|z| < N"¢

v) There exists a constant C > 0 such that

1
lz] +1

C
|Vw(z)| < ~

19
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vi) Let wye =1 — fy, with fxe = fo(NPz). Then for the Fourier coefficients
of the function wy, defined in (2.12) the following holds

c

—. 2.1
v (216)

(W e(p)| <

Proof. The proof of points i)-v) is deferred to Appendix B. To prove point vi)
we use the scattering equation (2.13):

we(p/ Z V((p— 0)/N?) fvula) - p—Q)\z > Xelp — @) nala).

qEA* qu*

Using the fact that N?)\, < C¢=2N~!, from point ii), and that f, < 1, we end
up with

(TN % ) ®)] + 2V |Re fN,e><p>|]

(VC/N) 5 ) 0) + gy (e Fo)O)

%’
'2| H' =] »—' '2| -

C
Do+ e (@A

O

We now define the function 77 : A — R through its Fourier coefficients 7 :
A =R

ny = —Nn(p) = —N'""*"@,(p/N?). (2.17)

Using Lemma 2.10, we can bound

C
< — 2.18
|Up|-_ ‘p|2 ( )

for all p € A% = 27Z*\{0}, and for some constant C' > 0 independent of N
and ¢ € (0; %), if N is large enough. We can also rewrite the scattering equation
(2.13) in terms of n,, we find

P+ SO Fu) = N NG Fulp)  (219)

or equivalently, expressing the other terms through the coefficients 7,

1 1 _
Py, + §V(p/Nﬁ) + 5w > Vilp—q)/N)m,
gen” (2.20)
= N0 %e(p) + N0 >~ Relp — @)

qgeEN*
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Moreover, with the bounds in (2.15), we can estimate the L?*-norm as

ol = 1l =€ [1og(¢/laDx(lel < O <CE 22n)
For a > 0, we now want to define the momentum set
Py ={pe Ay :|p| ="},
with ¢ € (0;1/2). We set

nu(p) = np x(p € Pr) = mpx(lp| > 7). (2.22)
Eq. (2.18) implies that
el < CL*. (2.23)

Notice that for o > 1, the last bound improves (2.21). For our analysis, this
improvement, due to the cutoff on high momenta, will be crucial. We will mostly
use the coefficients 7, with p # 0. Sometimes, however, it will be useful to have
an estimate on 79 (because Eq. (2.20) involves 79). From (2.17) and Lemma 2.1,
part iii) we find

ol <N [ wi(NPa)die < c/ log(t/|z))|d2z < C2.  (2.24)
jal<t <t

We can also consider some bounds for the function 7. Writing

nu(p) = np — mpx(lp| < £7%),

we obtain

(e = 1) = 3 1 = N = Y e

pEA™: pEA*:

[p|<e=e lp|<e—e
We thus find
17m(z)| < Clog NP + Z Ip| 72 < C(log N + alogl) < Clog N°  (2.25)
pEA*:
[p|<e=@

for all x € A, a independent on N and N € N large enough. Moreover, the
H'-norms of n diverge, as N — oco. From (2.17) and Lemma 2.1, part iv) we
find

176l 7, < Nl = N?|Vwy(NPz)*d*x

|z|<¢

- / N2V () [2d%
| <NBE
1
<C ————d?x < Clog N
wl<nse (2] +1)2

for all £ € (0;1/2) and N € N large enough.
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2.2.1 Quadratic renormalization

To factor out correlation, one could think to conjugate Ejﬁ\, with a Bogoliubov
transformation of the form

5 1
eB = exp 5 Z (mpaga’, — Mpapa_p) (2.26)

pEAi

defined through the standard creation and annihilation operators, where the coef-
ficient 7, is defined as in 2.17. This idea was used first in [27] and later exploited
in [4] to study the effective dynamics of large system of bosons in the Gross-
Pitaevskii regime. Although the action of standard Bogoliubov transformation
on creation and annihilation operators can be explicitly written as (see [4], [3,
Chapter 2.2])

e’g%eé = cosh(n,)a, + sinh(n,)a”,
this unitary operator does not leave the truncated Fock space FEN invariant.
This is why we need to define generalized Bogoliubov transformation through the

anti-symmetric operator

1
B =3 > (mbib, — Npbyb_y) (2.27)

pGAi

with n_, = n, for all p € A%, and we consider the unitary operator

1
B — exp 5 > (b, — pbpbp) | - (2.28)

PEAT

Their action ensures that the truncated Fock space ffN remains invariant. They
have been first introduced in [17] (in position space) and then translated to
the momentum space in [7]. Their definition and their main properties will be
discussed in this subsection.

Conjugation with (2.28) leaves the number of particles essentially invariant,
as confirmed by the following lemma.

Lemma 2.2. Assume B is defined as in (2.27), with n € (*(A*) and n, = -,
for all p € A%, Then, for every n € N there exists a constant C > 0 such that,
on ffN,

e BN, + 1) < ceClM N, + 1) (2.29)

. . <N
as an operator inequality on Fi .

The proof of (2.29) can be found in [17, Lemma 3.1] (a similar result has been
previously established in [70]).

We collect now important properties about the action of unitary operators of
the form e?, as defined in (2.28). As shown in [7, Lemma 2.5 and 2.6] (or see
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[10, Lemma 3.2]), we have, if ||| is sufficiently small,

[e.9]

_1)n
e Pbye” =3 %adg)(bp)
n=0 ’
- (2.30)
—Bb* B __ (_1)71 d(n) b*
e Phye” = Z o ady (p)
n=0 ’

where the series converge absolutely and adp is defined recursively as
adP(A) =4 and ad(A) = [B,ad" "V (4)].

To confirm the expectation that generalized Bogoliubov transformation act simi-
larly to standard Bogoliubov transformations, on states with few excitations, we
define from (2.30) (for |[n|| small enough) the remainder operators d,, d;

e Pbge” = qgby + ogb", + dy, e Pie” = bl + ogb_g + d; (2.31)

where we introduced the notation ~, = cosh(n,) and o, = sinh(7,). An explicit
definition of the operators d,, d; can be found in [10, Eq. 3.17]. It will also be
useful to introduce remainder operators in position space. For x € A, we define
the operator valued distributions d,, d* through

e_Blv):ceB = b(’?&?) + b*<6_z) + Cz:m G_BBZGB - b*(ﬁz) + b(‘vjr) + d;; (232)

where 7,(y) = >_ ca- cosh(n,)e’ @Y and ,(y) = D qehs sinh (1, e (=),

Throughout our analysis we are going to use pointwise bounds for the quan-
tities defined above, namely, v,, 0, as well as ,(y) = é(x) + 7(z), 7.(y). In mo-
mentum space, using their definitions and expanding the hyperbolic functions
we have that for all ¢ € A%

C
= W, |’Yq‘ <C,
C C
g — 1] < [ngl? < I Ye0q — 1g| < (1 +1g) (g +12) — 0l < [ngl® < oF
(2.33)

C
’Uq| < |77q‘ < W’ |Uq _77(1’ < |77q|3 <

In position space, we obtain from (2.25) the estimates
5]l < C, [|6]lc < Clog N, |6 Y[loc < C'log N

The definition of operators d,, d; will be crucial in the analysis shown in
Chapter 3.

The next lemma is from [10, Lemma 3.4] and gives us estimates necessary in
our analysis

Lemma 2.3. Let n € (*(A*), n € Z. Forp € A%, let d, be defined as in (2.31).
If ||n|| is small enough, there exists C' > 0 such that

C
[V + 172y < < [l + D72 + Il (A + 1))

C
[+ 2] < Il IOV + 1972
(2.34)
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for allp € A%, € € FN. With jp =d,+ N™! quAi ngbsa* ,ap, we also have,
for p & supp n, the improved bound

n 7 C n
IV} + 1)) < N||77||2||ap(/\/+ + 1), (2.35)
In position space, with d, defined as in (2.32), we find
n/2 3 C n n
[Ny +1)"2d, €| < N ||77H[||(N++ D2 4 |lba (N + 1) (2.36)

Furthermore, letting dy = d, + (NL/N)b*(1).), we find
IV + 1)y dog]|

C
< = [ PN + DE22e]] + i@ — )IIIV + 1) 272

e (Vs + D2 4 2 lla, (M + 1)E+72¢]| (2.37)
+ |9l l|agtiy (N + 1)F272¢)|
and, finally,
[N+ 1)™2d,d, ]|
< % Il N + D)2 )l |i(x — y)[[[(Ve + 1) .

+ [l lae (Ns + D2 4 ) [lay (N + 1) 72|
+ [nl? lasay (N + 1) 972 ]

for all € € F=".

From [10, Corollary 3.3] and Lemma 2.3 next corollary follows. This controls
the double commutator of the remainder operators d,, d; with smooth functions
f(N /M) of the number of particles operator, varying on the scale M. This will
be necessary to localize the number of particles operator in Prop. 2.5.

Corollary 2.1. Let f : R — R be smooth and bounded. For M € N\{0}, let
fau = f(Ng/M). The bounds in (2.34), (2.36) and (2.37) remain true if we
replace, on the left hand side, d, by [fur, [fu,dp)]), dp by [far, [far, dp)], d, by

[fars [fM7de7 dyCZz by [far, [fM7anyH and dey by [fur, [fMadxdyH and, on the
right hand side, the constant C' by CM 2| f'||2,. For example, the first bound in
(2.34) becomes

[Ny + ™2 far, [fars dy)JE]|
Il
- NM?

[ 1A + D)2 ] [l 1, (N + 1) T2 %] ]
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We can now construct the generalized Bogoliubov transformation as in (2.28),
with the coefficients introduced in (2.22), efr : F=V — F=V. With P# | we
define a new, renormalized, excitation Hamiltonian gfv I ]-"_EN — ffN by setting

Gy = e PnLlePrn = e Puyy Hy UsePr. (2.39)

Notice that QJBM depends also on «, which appears in the definition of the unitary
operator eP#. For convenience we do not keep track of its dependence in the
notation of QJBW.

In the next proposition, we collect some important properties of the renor-

malized excitation Hamiltonian gf, ;- In the following, we will use the notation

K= Z prasa, and  Vy = —— Z V(T/Nﬁ)a;+ra2aq+Tap (2.40)

pEAT p,gEAY rEA*:
r#—p,—q

for the kinetic and potential energy operators, restricted on FEN. We will also
write

HY =K+ V5.

Proposition 2.4. Let V € L?(R?) be compactly supported, pointwise non-negative
and spherically symmetric. Let Qfm be defined as in (2.39) and let

V() V()

2
gril = > SN 1ogNﬁ] (N —N)
V)  V(0)? 5 N-—N,
+ 5 + - log N° | N —

" (2.41)
+V(0) Y aa, (1 —~ %) - @ > (bpbp +b7,05)

PEPY pEPY;

1 =5 * *
tos 2 VN [t the ]+
P,qEAY :p+q#0

where Pf; = A%\ Py. Then for all a > 1, { € (0;1/2) there exists a constant
C > 0 such that Ef,’g = Q’fw — Qﬁ,’;ﬁ is bounded by

£EX, < CL'HY + C|log €. (2.42)
for all N large enough. Moreover, there exists a constant C > 0 such that
£ [PV, [FN M), ER || < e pIE (R 1) (243)

foralla > 1, ¢ € (0;1/2) small enough, f: R — R smooth and bounded, M € N
and N € N large enough.
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The analysis of Qﬁ,x as well as the proof Prop. 2.4 will be discussed in details
in Chapter 3. In the next proposition we give more detailed information on Q]ﬁv ’
as well as a localization estimate for the renormalized Hamiltonian.

Proposition 2.5. Let V € L*(R?) be compactly supported, pointwise non-negative
and spherically symmetric. Then the lower bound

v(0) 70
2 8

holds true for all « > 1, ¢ € (0;1/2) small enough, N € N large enough. Under
the same conditions we can also write

2
gfm > log N® + CH% — CN, — C|log/|, (2.44)

V(0 V(0)?
O g = ; Iv - 8(73 log N? + HY + 0%, (2.45)
where for every § > 0 there exists a constant C' > 0 such that
£ 0%, < 0Hy + C [log (|(N + 1), (2.46)

and there exists a constant C > 0 such that
| N /M), [FNG /M), 83, || < Cliog 012 M2 I, (15 +1) (2.47)

foralla > 1, ¢ € (0;1/2) small enough, f: R — R smooth and bounded, M € N
and N € N large enough.

Moreover, Let f,g: R — [0;1] be smooth, with f*(z)+g¢*(x) = 1 for allx € R.
For M € N, let fy := f(Ny/M) and gy := g(Ny/M). There exists C > 0 such
that

Gre = far Gy Foa + s G o 91 + Eby (2.48)
with O log 2
log
—r U1+ 1l11%) (M + 1)
foralla> 1, ¢ € (0;1/2) small enough, M € N and N € N large enough.

Proof. First we prove (2.44),(2.45) and the bound in (2.47). We have to con-

trol the off-diagonal quadratic term @ Zpe P (bpb,p + b*_pb;) and the cubic

+&), <

term \/1_N Zp,qEAi:p—i—q;éD V(p/N?) b5, 0% yaq +hic. | appearing in g]%ff’ defined
in (2.41). We observe, first of all, that
Vo) <] < VO
|57 D26 by + 6,500 | < = D7 NG + )2y
pePg pePs, (2.49)
< Cllog €|'/2[| (N5 + 1) 2| /%]

Moreover, we have

[va [va bpb—p]]
= [ (far bpb—p — bpb_p far) — (far bpb—p — bpb—p far) fu
= f(NL/M)?byb_p — 2f (N /M) (NG +2/M)byb_py + f(Ny +2/M)?*byb_,
= (F(NL/M) = F((Ny +2)/M))bb_y,
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where we used the definition of f)s, and the equality f(Ny + 1)a, = a,f(N,).

Using this identity and a similar one for [fy, [far, b3b* ]|, we also obtain

@ S L L, (Boby +507,)119)]
pEPg
< OM|log (12 % (N + D)2 1%
(2.50)

On the other hand, it is possible to show an improved lower bound for the
operator on the Lh.s. of (2.49), by noticing that, for an arbitrary ¢ > 0,

o<;<f\ by, + \[(‘)’p>(fy by + f(oy)‘*_p>

v 1 V(0
=5y pbib, + —) > b, + o) D (bpby+b3b7,).

PEPH pEPH pEPE

From commutation relations in (2.5), we have

bpb™, =b" b »+ (1 =N, /N)— Lar p0—p -
Observing that
* * N — N+ *
bpbp = a, N ap < a,a,

and that ZpeP;, Ip| =2 < Cllog £], we conclude that there exists a constant C' > 0,
independent of ¢ € (0;1/2) and of N, such that

Y

) S (b + 007,) > 6K — COTINL — 6| log (| (2.51)

pEPE

M ‘

for any > 0. As for the cubic term on the r.h.s. of (2.91), we have, switching
to position space,

1 T *
‘\/_N Z V(p/N7)(&, (bp+qa p%a +h'c')£>‘

P,qEAY :p+97#0
< N'/2 /A2 dedy N** 7'V (NP (x — y)) || aull|asayél| < N + )72 (V)2 €]l
(2.52)

and analogously

1 ~
W V( NB fM7 fM7 D+q _paq+hC 6
‘ VN p,qungq#O P [ [ ( )H >’ (2.53)

< OM 72| f NN + 1) (V)2 €]l
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Combining (2.42) with (2.49) and (2.52), we obtain (2.46). From (2.42), (2.51)
and (2.52), we infer (2.44). Combining instead the bound in (2.43), with (2.50)
and (2.53) we find (2.47), since all other contributions to Q]B\,’ff commute with

N,. Next, we prove (2.48). One can easily check that Qﬁm can be rewritten as
(see also [53, 44])

1
Gre = FuGxofar + 9uG gu + 3 ([fMa [far, G )]+ [gars [, gﬁf,ﬁ”)'

Writing as in (2.45), Gy, = Dy+Hy+0% ,, with Dy = V(0)N/2 —V (0)*(log N?) /8,
and noticing that Dy and 7-[]% commute with f/, gas, and using the bound in
(2.43), we conclude that

C'|log ¢|'/?
(Ufae oo Gl + o loar G5:1) < SO U2 + e 2) (74 +1).

]

2.2.2 Cubic Renormalization

Conjugation through the generalized Bogoliubov transformation (2.28) is not
enough to prove Theorem 1.1. In order to estimate the number of excitations
N, through the energy and show Bose-Einstein condensation, we still need to
renormalize the cubic term on the last line (2.41).

To obtain this, we conjugate the main part of gf@’ﬁ, namely Q]B\,’;ﬁ, with an addi-
tional unitary operator, given by the exponential of the anti-symmetric operator

Ay FEN = FENY
1
Ay = — Z e b patay —hoc], (2.54)
VN rePy vePs
with coefficients ng(p) defined as in (2.22) and
Py =N \Py={peAi:|p <},

for ¢ € (0;1/2), @ > 1 introduced to make the norm of 7, small.

An important observation is that while conjugation with e# allows to renor-
malize the large contribution in Q]Bw, it does not substantially change the number
of excitations. The following proposition can be proved as in [10, Proposition
5.1].

Proposition 2.6. Suppose that Ay is defined as in (2.54). For any k € N there
exists a constant C' > 0 such that the operator inequality

e M (NG +1)rett < O +1)"
holds true on }"fN, for all « > 0, and N large enough.

We will need to control also the growth of the expectation of the total energy
operator HY =K+ Vﬁ, with respect to the cubic conjugation, as stated in the
following lemma.
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Proposition 2.7. There exists a constant C' > 0 such that
e AnHE A < CHY 4+ C |logl] (N, + 1) (2.55)
for all « >0, s € [0;1] and N € N large enough.

The proof of Prop. 2.7 can be found in Chapter 3, Section 3.2. We now use
the cubic phase e4# to introduce a new excitation Hamiltonian, defining

R = e Guel et (2.56)
<

on a dense subset of F=". The operator Q]BV’;H is defined as in (2.41).This allows
us to show the following proposition.

Proposition 2.8. Let V € L*(R?) be compactly supported, pointwise non-negative
and spherically symmetric. Then, for all o > 1, there exists a constant C > 0
such that

V() V(0)?
T &

log N? + (1 — C ¢*log () HR, — CL*NE/N — Ct™>
(2.57)

for all € € (0;1/2) small enough and N large enough.

As for g;%’e, the detailed analysis of R’fw and the proof of Proposition 2.8 will
be given in Chapter 3.

2.2.3 Proof of Theorem 1.1

To show Theorem 1.1 we will use Theorem 1.2, as stated in Section 1.1, which
shows Bose-Einstein condensation for approximate minimizers of the Hamilto-
nian (1.6). The next proposition combines the results of Prop. 2.4, Prop. 2.5
and Prop. 2.8 with Theorem 1.2. We make use of localization of the number of
particles techniques, a technique borrowed from Lewin-Nam-Serfaty-Solovej [44]
(inspired by previous work of Lieb-Solovej [53]).

Proposition 2.9. Let V € L*(R?) be compactly supported, pointwise non-negative
and spherically symmetric. Let Qjﬁw be the renormalized excitation Hamailtonian
defined as in (2.86). Then, for every a > 1, £ € (0;1/2) small enough, there
exist constants C',c > 0 such that

~

% 2
V<O)N + Vég) logN? >¢N, - C (2.58)

O =
for all N € N sufficiently large.

Proof. As in Proposition 2.5, let f, g : R — [0; 1] be smooth, with f?(z)+g¢*(z) =
1 for all x € R. Moreover, assume that f(z) = 0 for z > 1 and f(z) = 1 for
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r < 1/2, we fix M = 3*N, and we set fyy = f(N,/M), g = gN,/M). We
also define

o ~
Y0, YO

2 8
It follows from Proposition 2.5, Eq. (2.48) that

2
Dy log N7 . (2.59)

g]%,ﬁ — Dy > fM(g]ijg - DN)fM —I—gM(gfw — DN)gM

e (2.60)
— C|log 0]"? 075 N=2(H5 +1).

Let us consider the first term on the r.h.s. of (2.60). From Prop. 2.4, there
exists C' > 0 such that

Gro— Dy > GR5F — Dy — CLo7"HY, — C'|log (|
and also, from (2.45),
1
Ge = D = SHy — CN = C | log (| (2.61)

forall @ > 1, £ € (0;1/2) small enough and N large enough. The last two bounds
combined together imply that

Gre = Dy = (1= CL* ) (G — D) — Ot "W = C [log (],
and in turn, for ¢ > 0 small enough,
1 € —
Gra— D = 5(G34" = D) = CL7N. = C [log ]
Now, using Prop. 2.8, choosing o > 1 we find

Fru(GN e — D) fur
1
> sfu (gjﬁv’ff - DN) far = COT NG = Cllog €] 13

2
>1f AH-1—cea1 ¢ Hﬁ—ce—m/\ﬁ—ce—m —An
2 5 fue™ | ( | log £] ) Hly N e M fu

— O N — C [log I3

e [(1= CElog ()M, = CEN ] e fy = CET BN, — Coe g,

>~ fetn
> 2fMe

where in the last inequality, we used Prop. 2.6 to estimate

e MNZe fr < Cfy (NG + 12 fy
< ONGfar(Ny + 1) far < ONE* frre A5 (N + 1)e for

due to the choice of M = 3*N. Since now N, < CK < C”Hﬁ,, we obtain that,
for ¢ € (0;1/2) small enough,

fM(gjﬁw — D) fu > Cfue™ Nope M for — CLOTFUNL — CU2 f7
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With Prop. 2.6, we conclude that, again for ¢ > 0 small enough,
Fu(GRe = D) far = CIRN T = CO £, (2.62)

We now focus on the second term on the r.h.s. of (2.60). We want that Eq.
(2.62) holds true, so we keep ¢ > 0 fixed, and we will only worry about the
dependence on N. We claim that there exists a constant C' > 0 such that

Im (gzﬁv,g - DN)gM > M (QJBW - ?(O)N/2)9M > ONg]Q\/[ (2.63)

for all N sufficiently large. To prove (2.63) we observe that, since g(z) = 0 for
all z < 1/2,

gm (gfm - ‘7(0>N/2>9M > inf ! ~{£,G £ — 40 Ng2,
| gersy lel=1 V 2

where ]-">M/2 {€ € FEN . € = x(N, > M/2)€} is the subspace of F& where
states with at least M /2 excitations are described (recall that M = ¢3*N). To
prove (2.63) it is enough to show that there exists C' > 0 with

mf (f QNKQ—@

> C (2.64)
FEN lel=t NV

for all N large enough. From Theorem 1.2 we know that

> inf g - YO

mf <f gNZ€> F<Nygimt N 9

cersN llel=1 IV

<>
Ve

_E_ﬁ_m

N 2—>0

as N — oo. Hence, if we assume by contradiction that (2.64) does not hold true,
then we can find a subsequence N; — oo with

mf (f QN€§>—ﬂ—>O

ceFsy iliéll=1

2

as j — oo (here we used the notation M; = ¢3*N;). This implies that there
exists a sequence &y, € ]-fﬁ; Jo With [|n; ]| =1 for all j € N such that

0

=

1
Jlirglo F(&v ,Q]B\/j,g En,) =

w ‘

Let now S := {N; : 7 € N} C N and denote by {y a normalized minimizer of
Qfm for all N € N\ S. Setting vy = UyeBuéy, for all N € N, we obtain that
lvn|| =1 and that

<

1 1 0
lim N(@DN, Hyvw) :]\}l_fgo N@N,gfmfm _ A )

N—oo

M ‘
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In other words, the sequence ¥y is an approximate ground state of Hy. From
(1.9), we conclude that ¢ exhibits complete Bose-Einstein condensation in the
zero-momentum mode g, meaning that

lim (1 — <900,7Ng00>) =0.

N—oo

Using Lemma 2.2 and the rules (2.4), we observe that

Eny NEn) = — (e PrUN YN, Npe PHrUN YY)

1
~

IN
zlQzlaz|az[~

(U, Uy Ny 4+ 1)Unton)
(2.65)

+C 1= 1w a’(alalau)in)

+ C[1 = {(po,Ynp0)] = 0

as N — oco. On the other hand, for N € S = {N; : j € N}, we have {y =
XNy > M/2)¢n and therefore

1 M 3o
N(fN,NJrfN) > oN T o

in contradiction with (2.65). This proves (2.64), (2.63) and therefore also
Im (gﬁw — Dy)gu > CN4 g3y (2.66)
Inserting (2.62) and (2.66) on the r.h.s. of (2.60), we obtain that
Gry— Dy > CNy —CN*HY - C (2.67)

for N large enough (the constants C' are now allowed to depend on ¢, since ¢ has
been fixed once and for all after (2.62)). From Eq. (2.67) together with (2.61),
we obtain

Gxe— Dy > CNy —CN*Hf —C
> CN, —CN7(Gy, — Dy) — CN 2N, — CN?|log ],
which clearly leads to (2.58). O
We are now ready to show our main theorem.

Proof of Theorem 1.1. First of all, (2.45) and (2.46) in Prop. 2.4 imply that
Gro— Dy < 2HJ + CN. + C

with Dy defined in (2.59). With the vacuum 2 as trial state, we obtain the upper
bound Eff < Dy + C for the ground state energy E]BV of gfw (which coincides

with the ground state energy of Hﬁ,) With Eq. (2.58), we also find the lower
bound EY > Dy — C. This proves (1.7).
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Let now be ¢y € L2(AYN) with ||¢n] = 1 and

(hn, HYon) < Dy + K .

We define the excitation vector {x = e PHUnty. Then ||x|| = 1 and, recalling
that Gy , = e PHUN HY UL ePH | we have

(s N ) < Cl6w, (Ghy = D )én) + C < C(K +1).

If vy denotes the one-particle reduced density matrix associated with ¢y, we
obtain

1~ o, ) = 1= (o, @ (o))

1 * * *
=1- N<UN€BH§N7G (wo)a(yo)Une”"én)
1 C C(K+1
= (P NeePiEy) < Cen M) < TEAD
which concludes the proof of (1.8). O

2.3 Renormalization of the excitation Hamiltonian Ly

In this section, we proceed as in Section 2.2. Namely, we will suitably renor-
malize the Gross-Pitaevskii excitation Hamiltonian £y defined in Eq. (2.9). This
section follows [20, Section 3, 4, 5], a joint work with Serena Cenatiempo and
Benjamin Schlein.

As before we consider the scattering problem associated to the Gross-Pitaevskii
interaction to take into account the short scale correlation structure on top of
the condensate. In particular, we consider the solution f,! of the equation

(= 2+ JV@) filw) = M fula) (2.68)

associated with the smallest possible eigenvalue \;, on the ball |z| < N/, with
Neumann boundary conditions and normalized so that fy(z) = 1 for |z| = /.
Here and in the following we omit the N-dependence in the notation for f, and
for \;. By scaling, we observe that f;(e”) satisfies

2N
( - A+ %V(eNx)>fg(€N$> = e\ fo(eN )

on the ball |x| < ¢. We choose ¢ < 1/2, so that the ball of radius ¢ is contained

in the box A = [—1/2;1/2]*>. We extend then f,(e".) to A, by setting fx¢(z) =

fe(eNx), if |z| < ¢ and fye(x) =1 for z € A, with |z| > £. Then, assuming also

!The reader can notice that we are using the same notation as in Section 2.2. This is just
for our convenience, the two fy solve different Neumann problems.
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that Roe ™ < ¢ (later we will choose ¢ = N~%, so this condition is satisfied, for
all N large enough),

2N

(= 2+ 5V(eVD)) falw) = A fralw)xe(@) (2.69)

where Y, is the characteristic function of the ball of radius ¢. The Fourier coef-
ficients of the function fy, are given by

fzw /fz eNa)e P dy

for all p € A*. We also introduce the function wy(z) = 1 — fy(x) for |z| < eNe
and extend it by setting wy(x) = 0 for |z| > e™{. Its re-scaled version is defined
by wye: A = Rwy(r) = we(eNz) if 2] <L and wy, =0 if 2 € A with |z| > £.

The Fourier coefficients of the re-scaled function wy, are given by

Wy (p) = / we(eNz)e P dy = e *Niw, (e Vp) . (2.70)
A

We find fAN,g(p) = 0,0 — ¢ N wy(e Np). From the Neumann problem (2.69) we
obtain

—ple N, ZV Np— ) Fae(a) A Rulp p— q)frve(q)-
qGA* geEN*

(2.71)
where we used the notation Y, for the Fourier coefficients of the characteristic
function on the ball of radius ¢. Note that X,(p) = ¢? X(¢p) with Y(p) the Fourier
coefficients of the characteristic function on the ball of radius one.

In the next lemma, we collect some important properties of the solution of
(2.68).

Lemma 2.10. Let V € L3(R?) be non-negative, compactly supported (with range
Ry) and spherically symmetric, and denote its scattering length by a, as in Eq.
(1.11). Fiz 0 < ¢ < 1/2, N sufficiently large and let f, denote the solution of
(2.69). Then

i)
0< fi(z) <1 V|$|§6N€.

it) We have
2 C

Ao — < 2.72
C (€N 2log(eNE/a) | (eN0)21log®(eNl/a) (2.72)

iwi) There exist a constant C' > 0 such that

4 C

de'V - < 2.73
v - oot < e e
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iv) There exists a constant C' > 0 such that

_fc if x| < Ro
we(x)] < c% if Ro < |z| < eNe

< C 1
~ log(eNl/a) |x| + 1

(2.74)

Vw(z or all x| < eNe
|V () f ||

v) Let wyy = 1— fxyo with fony = fi(e™x). Then the Fourier coefficients of the
function wy, defined in (2.70) are such that

Tnl0)] < (2.75)

Proof. The proof of points i)-iv) is deferred in Appendix A. To prove point v)
we use the scattering equation (2.71):

o 2N I N AN R N
We(e™™p) = 55 D V(e (0= a)fwela) = — 2 D Xelv — ) fwal9):
p qeEN* p qeEN*

From point ii) e*¥ A\, < C¢72| In(eM¢/a)|~! and using that 0 < f, < 1, we end up
with

|@e(e™Vp)| < Z? [’(‘7(6_]\7') % o) ()] + 262N | (R0 * ]?N,E)(p)u
< Z? [/ V(x) fo(z)dx 4+ Cl2|log(eNt/a)| ™ /Xe(ﬁ)fz(eNx)dx}
C€2N

<
~ p*log(eMN{/a)

O
We now define 77 : A — R through
i(x) = =Nwye(x) = =Nuwg(e"z) . (2.76)
With (2.74) we find
@)l < { Clotfiel) it i< o< ¢ 277)
and in particular, recalling that e ™V Ry < ¢ < 1/2,
[7(x)] < Cmax(N,log(¢/|z[)) < CN (2.78)

for all x € A. Using (2.77) we find

1
Il = 4P < ¢ /| s/l e < o / (logr)?rdr < CL2.
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In the following we choose ¢ = N~%, for some a > 0 to be fixed later, so that
In|| <CN~“. (2.79)

This choice of ¢ will be crucial for our analysis, as commented below. Notice, on
the other hand, that the H'-norms of n diverge, as N — oo. From (2.76) and
Lemma 2.10, part iv) we find

1, = /| NN V) () — / N2 |Vun() P

|z|<eN¢

< C/ % d*z < CN
|z|<eN¢ (|$| + 1)

for N € N large enough. We denote with 7 : A* — R the Fourier transform of 7,
or equivalently
Ny = —Nin(p) = —Ne Ny (p/e™) . (2.80)

With (2.75) we can bound (since £ = N~%)

C

for all p € A% = 27Z*\{0}, and for some constant C' > 0 independent of N, if
N is large enough. From (2.79) we also have

[7lloc < CNT*. (2.82)

Remark. Notice that in this scaling we need to choose the smallness of the L*-
norm of n in terms of some power of N. On the contrary, in Section 2.2 was
sufficient to choose ||ng|| < C¢*, with £ € (0;1/2) of order O(1). Indeed, a
constant of order O(1). In fact, in this setting, a small constant would not be
sufficient to control the error terms.

Moreover, (2.71) implies the relation

Pt ST 5 F)p) = NN s Tu)e) (289

or equivalently, expressing also the other terms through the coefficients 7,

N~ 1 — =
2 N N
P+ 5 Vip/eT) + 5 Z V(p—a)/e™)n,
ach (2.84)
= Ne®™A\Re(p) + NN ) Xelp — @) -

gEA*

We will mostly use the coefficients 1, with p # 0. Sometimes, however, it will
be useful to have an estimate on 7y (because Eq. (2.84) involves 7). From (2.80)
and Lemma 2.10, part iv) we find

Ino| < N we(eNx)d?r < C'/ log(¢/|z|)d*x + CNe™ < Cr*. (2.85)
lz|<e

jal<t
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2.3.1 Quadratic renormalization

We introduce generalized Bogoliubov transformation, as we did in Section 2.2,
this allows us implement the correlation structure keeping invariant the truncated
Fock space .FEN. Again we use the coefficients defined in (2.80) to construct
an anti-symmetric operator as (2.27) and in turn the unitary operator e as in
(2.28). Here, as opposed to the coefficients in (2.22), we do not need to introduce
the cut-off, and so, the unitary operator e? will act over all the momenta in A%
Moreover, Lemma 2.2 is still valid, indeed the proof only requires that ||n|| < C.

Now, using the generalized Bogoliubov transformation e? : }"EN — Fi,
we define a new, renormalized, excitation Hamiltonian Gy, : 2" — Fi by
setting

Gna =€ PLye? = e PUNHNUeP . (2.86)

In the next proposition, we collect important properties Gy . We will use the
notation

1 ~
K= E prasa, and Vy = 3 g V(r/eN)a: atagira, — (2.87)
pEAY P,gENT ,TEAT:
r#—p,—q

for the kinetic and potential energy operators, restricted on ff ,and Hy =
K + V. We also introduce a renormalized interaction potential wy € L>®(A),
which is defined as the function with Fourier coefficients Wy

On(p) == gnX(p/N®), gy = 2NN, (2.88)

for any p € A%, and

with X(p) the Fourier coefficients of the characteristic function of the ball of
radius one. From (2.72) and £ = N~ one has |gy| < C. Note in particular that
the potential Wy (p) decays on momenta of order N, which are much smaller
than eV. From Lemma 2.10 parts i) and iii) we find

C

Gy = NIVAIL <%0 |on(0) —ar (1+aY) < <. (2.90)

=19

Proposition 2.11. Let V € L*(R?) be compactly supported, pointwise non-
negative and spherically symmetric. Let Gy, be defined as in (2.86) and define

. 1. N- ~ 1. N-
T, = §wN(0)<N —1) (1 — W*) + {2NV(O) — 50.)]\[(0)} N, (1 — W*)
+ = ZwN (bpb_p +hoc.) + VN Z Vp/e p+q _paq+hc}
pEA* pqu
p+q750
+Hn.

(2.91)

37



Bose-Finstein condensation: outline of the proof

Then there exists a constant C' > 0 such that £ = Gn o — Qf\,]?ca 15 bounded by

(6, €66)1 < C(NV*~ + N~ (log N)V2) [ €l [| (W + 1)'7%¢ |

2.92
+ ONTO(VL + D)2+ Cllg)? 29

foralla>1, €& € FEN and N € N large enough.

The reader could notice that in Eq. (2.91) the original potential V(p/e™)
is replaced in the constant and in the off-diagonal quadratic terms, namely
%ZpEAi Wn(p)(byb_p, + h.c.), by the faster decaying potential Wy (p). Whereas,

in Prop. 2.4, Eq. (2.41), the original potential ?(p/Nﬁ) was replaced in the
same terms by V(0).

The proof of Prop. 2.11 is very similar to the proof of [8, Prop. 4.2], as well
as the one in Chapter 3. For completeness, we write it Chapter 4, Section 4.1.

2.3.2 Cubic Renormalization

Conjugation with the generalized Bogoliubov transformation (2.26) renor-
malizes constant and off-diagonal quadratic terms on the r.h.s. of (2.91). In
order to estimate the number of excitations A, through the energy and show
Bose-Einstein condensation, we still need to renormalize the diagonal quadratic
term (the part proportional to NV (0)A,, on the first line of (2.91)) and the
cubic term on the second line of (2.91). To this end, we conjugate gf\ffa with
an additional unitary operator, given by the exponential of the anti-symmetric
operator )

A=— .10, a® a, — h.c. 2.93

\/N nveZAi 77 [ r—4+v T :| ( )

with 7, defined in (2.80). Notice that, differently from (2.54), here it is not

necessary to introduce a cut-off, even on low momenta. Again the smallness,

that allows us to control error terms, is gained by choosing ¢ = N~%, see Eq.
(2.79).

As for Prop.2.7, also in this setting we observe that while conjugation with e4
allows to renormalize the large terms in Gy ,, it does not substantially change
the number of excitations. Similarly to Prop. 2.6 one can show that the growth
of the number of particles operator under the action of e? is almost invariant.

Proposition 2.12. Suppose that A is defined as in (2.93). Then, for any k € N
there exists a constant C' > 0 such that the operator inequality

e AW+ 1t < Oy + DY

holds true on .F_EN, for any a > 0 (recall the choice £ = N~ in the definition
(2.80) of the coefficients ), and N large enough.

We will also need to control the growth of the expectation of the energy
‘H with respect to the cubic conjugation. This is the content of the following
proposition, which is proved in Subsection 4.2.1.
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Proposition 2.13. Let A be defined as in (2.93). Then there exists a constant
C > 0 such that
e Hyet < CHy +CON(Ny +1) (2.94)

foralla > 1, s €[0;1] and N € N large enough.

Remark. 1t is interesting to compare Prop. 2.13 with Prop. 2.7. While in 2.7,
under the action of the cubic renormalization we loose a factor |log¢|, of order
O(1), in terms of the number of particles, in the GP regime the action of e#* on
Hx leads to the appearance of large terms NN, , as in Eq.(2.94). This makes
the analysis of the cubic operator substantially more difficult.

We use now the cubic phase e to introduce a new excitation Hamiltonian,
obtained by conjugating the main part Qj’\ga of Gn . We define

Ry =€ Gy, e’ (2.95)

on a dense subset of ffN . Conjugation with e” renormalizes both the contribu-
tion proportional to A} (in the first line on the r.h.s. of (2.91)) and the cubic
term on the r.h.s. of (2.91), effectively replacing the singular potential \A/(p/eN)
by the renormalized potential Wy (p) defined in (2.88). This follows from the
following proposition.

Proposition 2.14. Let V € L3(R?) be compactly supported, pointwise non-
negative and spherically symmetric. Let Ry o be defined in (2.95) and define

¢ 1 ~ 1.
Rifl, = 5 (N = DO(0)(1 = No/N) + S0n(0) Ny (L = N /)
B * N 1 -~ * ]k
+ Wy (0) Z apap(l — #) + 3 Z Wn(p) [bpb_p + byb_y]
peEA} peEA®, (2.96)
1
+—= > On() B0t a0+ he] + My
\/N r,veAi:
r#£—v

Then for ¢ = N~ and o > 2 there exists a constant C' > 0 such that Ex =
Rna — nga 15 bounded by

+ Er < C[N?* 4+ NV2(log N)V?|(Hy + 1), (2.97)

for N € N sufficiently large.

The proof of Proposition 2.14 will be given in Chapter 4, Section 4.2. We
will also need more detailed information on Rf,, as contained in the following
proposition.

Proposition 2.15. Let Rf\jga be defined in (2.96). Then, for every ¢ > 0 there
is a constant C' > 0 (large enough) such that

won(0) c o N?
— — — 2.98
5 N++logN%N C(log N) N C (2.98)

R, > 27N +
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for all o > 2 and N € N large enough.

Moreover, let f,g: R — [0;1] be smooth, with f?(x)+¢*(x) =1 for all x € R.
For M € N, let fa := f(Ny/M) and gp = g(Ny/M). Then there exists C > 0

such that
ch\]r?a = fMR]e\Jrﬁca Ju +9MR o 9M + On
with

Clog N
1O, < Mg

1%+ Nlg'l1%) (Ha + 1)
forallaa>2, M € N and N € N large enough.
Proof. From (2.96), using that |y (0)] < C we have

R, > ng(O) NOYN, + = Z O (p)[brb", + byb_,]

pEA*

—l—L Z N (r) [b,at av+h.c.}+’HN—C'Aﬁ—
qu r+v-—r

N

ﬁUGAii
r#E—v

For the cubic term on the r.h.s. of (2.100), with

o 2
Z ’WN(QP)’ < Clog N
peAj_ p

we can bound
= 3 e k)

rvGA*
r#—v

(2.99)

(2.100)
C.

(2.101)

J__ D BN + D)7 ha [N + 1) 2a]|

rwEAT
r#£—v

| ) 1/2
< | S IR+ ) ]

nvGAi
r#—uv

~ 9 1/2
% { Z |WNr<7;)‘ H(N++1)1/2av£”2:|

rmEAi |‘
r#E—v

ICZE Il (N + 1)e]|

- C(log N)1/?
- VN

(2.102)

As for the off-diagonal quadratic term on the r.h.s of (2.100), we combine it with

40



Bose-Finstein condensation: outline of the proof

part of the kinetic energy to estimate. For any 0 < p < 1, we have

- Z On(p b*b* + b_pb Z praya,

pEA* peEA’
. wn(p) Wn(p) .
I [b by | byt b,
pent — np* 2(1 = wp
|WN *
BRSSPy
peA* peEAT
since a*ap byb, = ay (N1 /N)a,. With (2.5), we conclude that
= Z Wn(p) [bsb*, + b_pby] + (1 — ) Z prasa,
pEA* peEAT
1 On @) . 1 @ (p)|?
> — a,ap — .
41— p) pgx:j pr T Al - p) p;; p?
With the choice = C'/log N and with (2.101), we obtain
= Z Wy (p) [b3b*, + b_pby) Z praia,
pEA* pGA*
‘w ’w (2.103)
NP . NP
>~ & -3X
pEA* peA*

To bound the first contribution on the r.h.s. of the last equation, we use the
term Wy (0)AN,, in (2.100). To this end, we observe that, with (2.90),

[On (p)]? 0w (0)]? wn(0) log N Wy (0)
4(1 = pp? : A(1 = pp? = A1 — p)m (HC N ) =72

for every p € A% (notice that |p| > 2, for every p € A% ) and for N large enough
(recall the choice p = C/log N). Inserting (2.102) and (2.103) in (2.100) and
using the kinetic energy puk = C(log N)7'K (remaining after subtracting the
term (1 — ) needed on the Lh.s. of (2.103)) to bound the r.h.s. of (2.102), we
find

N w Wy (0
R?\fffaz_wN Z| v(p N2<)N+
= (2.104)
log N
HN _ C( Og ) N2

logN
Let us now consider the second term on the r.h.s more carefully. Using that,
from (2.88), Wy (p) = gN)?(p/N"‘) we can bound, for any fixed K > 0,
|WN 1 On(p)]?
Ly o+l y B
pEA pEAY:
K<|p|l<N*

41



Bose-Finstein condensation: outline of the proof

With |0y (p) — On(0)] < Clp|/N“, we obtain

~ 2 1 1
Z\WN +\wzv(O)\ Yoo S <ot+art Y . (2.105)

4 2
pEA pEA’_j_: p pEA’j'_: p

K<|p|<N® K<|p|<N®

For ¢ € R?, let us define h(q) = 1/p?, if ¢ is contained in the square of side
length 27 centered at p € A% (with an arbitrary choice on the boundary of the
squares). We can then estimate, for K large enough,

1
Ar? — < / h(q)dq .
Z P K/2<|q|<Ne+K @

pEAi:
K<|p|<N®

For ¢ in the square centered at p € A%, we bound

1l |p*— ¢
‘h(Q)__2 = a2 S
q Pq lq]
Hence
1
4’ > —2§/ —dq+C’<27ralogN+C’
pel’ p K/2<|q|<Ne+K q?
K<|p|<N®

Inserting in (2.105), we conclude that

Z |WN < 2ralog N +C'.
pEA*

Combining the last bound with (2.90) (and noticing that the contribution pro-
portional to log N cancels exactly), from (2.104) we obtain

logN)

N2

()N+ 2y — U8 N

N,aa —

gN

which proves (2.98).
Next we prove (2.99). From (2.96), with |&x(0)| < C, the bound (2.102) and
since, by (2.101),

peAi peAi
1/2

<> "”N I, + D212

pEAT

< C(log N)”QII(M + 1)
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it follows that
Riya=27N + My + Oy, (2.106)

where for arbitrary § > 0, there exists a constant C' > 0 such that

+0n0 <O0Hy+ C(logN)(NL+1). (2.107)
We now note that for f: R — R smooth and bounded and 6y, defined above,
there exists a constant C' > 0 such that

£ [FNG /M), [FNG /M), O] < OB TP (Hy +1) (2108

2

for all @ > 2 and N € N large enough. The proof of (2.108) follows analogously
to the one for (2.107), since the bounds leading to (2.107) remain true if we
replace the operators b, # = {-,x}, and a’a, with [f(N /M), [f(N/M),b¥]]
or [f(Ny/M), [f(Ny /M), a’a,]] respectively, provided we multiply the r.h.s. by
an additional factor M 2| f'||2,, since, for example

N /M), [f(N /M), b)) = (FNG /M) — F((N +1)/M))%,
and || f(N /M) —f((Ne+1)/M)|| < CM 7| f/||o- With an explicit computation

we obtain

€ € € 1 € e
’R’]\ﬁf,a = fMR]\i;f,an + gMR]\fff,agM + 5 ([ff\/b [vaRJ\fo,a]] + [gMa [gMaRJ\fo,a]]> :
Writing R$, as in (2.106) and using (2.108) we get

Clog N
M2

= (Lars o R+ oars loar, R ) < (712 + /%) (o + 1)

]

2.3.3 Proof of Theorem 1.3

The next proposition combines the results of Prop. 2.11, Prop. 2.14 and
Prop. 2.15. Its proof makes use of localization in the number of particle and is
an adaptation of the proof of [10, Proposition 6.1]. The main difference w.r.t.
[10] is that here we need to localize on sectors of F=V where the number of
particles is o(V), in the limit N — oc.

Proposition 2.16. Let V € L3(R?) be compactly supported, pointwise non-
negative and spherically symmetric. Let Gy, be the renormalized excitation
Hamiltonian defined as in (2.86). Then, for every a > 5/2, there exist con-
stants C,c > 0 such that

GNa — 27N > cN, = C (2.109)

for all N € N sufficiently large.
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Remark. Eq. (2.109) actually holds also for a > 2. We pick a > 5/2 in order to
have a uniform bound in Eq. (2.116).

Proof. Let f,g : R — [0;1] be smooth, with f%(z) + ¢*(z) = 1 for all z € R.
Moreover, assume that f(z) = 0 for z > 1 and f(z) = 1 for < 1/2. For a small
e >0, we fix M = N'7¢ and we set fy; = f(N/M),gn = g(N,/M). Tt follows
from Prop. 2.15 that

Riye — 27N > faur(RY, = 27N) far + g (Rive — 27N) g

e (2.110)
— CON*"(log N)(Hy + 1)

Let us consider the first term on the r.h.s. of (2.110). From Prop. 2.15, for all
a > 2 there exist ¢, C' > 0 such that

R‘;Vf’fa—zwzvzcm—%(bgjv)?/\ff—c. (2.111)
On the other hand, with (2.106) and (2.107) we also find
Ryo — 27N > cHy — C(log N) (N + 1) (2.112)

for all @ > 2 and N large enough. Moreover, due to the choice M = N17¢, we

have (1 N)2 a N)2
og og
N fuNZ fur < NE

With the last bound, Eq. (2.111) implies that

FuN .

fu (R‘;éfa - 27rN) far > efA N, —C (2.113)

for N large enough.
Let us next consider the second term on the r.h.s. of (2.110). We claim that
there exists a constant ¢ > 0 such that

am (Rﬁ\f{a - 27TN>gM > cNgs, (2.114)

for all NV sufficiently large. To prove (2.114) we observe that, since g(z) = 0 for
all z < 1/2,

1
gM(R%fa—sz)gMz[ inf (6 RLE) — 27| Naky

ceF=N llel=1 NV
where f;ﬁ/z = {€ e F2V € = x(Ny > M/2)¢} is the subspace of £V where

states with at least M /2 excitations are described (recall that M = N'7¢). To
prove (2.114) it is enough to show that there exists C' > 0 with

1
inf — (RN —2r>C (2.115)
ceFEN lel=1 NV
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for all N large enough. On the other hand, using the definitions of Gy, in
(2.91), Ry,o and RS, in (2.96), we obtain that the ground state energy Ey of
the system is given by

Ey= inf ({eGnae®) = inf (& (RN.+EL)E)
geFENigl=1 eeF=N el|=1

with £, = Er + e 4Ege?. The bounds (2.92) and (2.97), together with Prop.
2.12 and Prop. 2.13, imply that for any o > 5/2 there exists C' > 0 such that

+E, < CON2(log N)'?[(Hy + 1) + e A (N ' (Hy + 1) + WV} +1))e] + C

< CNV2(log N)V*(Hy +1) + C.
(2.116)

With (2.112) we obtain
+ &, < CN 2 (log N)V2 (RS, — 2aN) + CN" 2 (log NN, + C, (2.117)
and therefore, with N < N

Ey—-27N <C <isz1f <§7 (R‘;\ﬁja — 27TN)£> + CONY2(log N)¥2 + C.
eF =V Jel=1

From the result (1.12) of [51, 46, 47]
1 1

inf — (¢, Reﬁa@ — 21 > inf  —{(¢, Reﬁa —27N)§)
ceFsh plel=1 IV " cereNlel=1 NV (RS )

Ex C B
>cl =2 —27r) — —— (logN)*? —CN~' =0
> <N 7r> \/N( gN)

as N — oo. If we assume for contradiction that (2.115) does not hold true, then
we can find a subsequence N; — oo with

inf 1<§R &8) —2m =0

cery lel=1 Vi

as j — oo (here we used the notation M; = le_s). This implies that there exists
a sequence EN]. € ‘FEJ\ZZN with ||§~N]|| =1 for all j € N such that

1 -
lim — (€, RA En,) =27
j—o0 N 7

On the other hand, using the relation RSE =~ = _AQN aft — Er; with & ;
satisfying the bound (2.117) (with Ny < N; ) "we obtaln that there exist constants
c1,c9, C' > 0 such that

c1(Enys (R, — 20N;)Ex,) — CN;(log N;)*/?
< (e’ (Ony 0 — QWNj)eAﬁN)
< ey(€n;s (R, — 27N))En,) + CN}/%(log N;)*/2
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Hence for &y, = eA¢y. we have
J J

Nhinoo N, <5N], On;aéN,) = 27 .

Let now S := {N; : j € N} C N and denote by £y a normalized minimizer of
Ono for all N € N\ S. Setting ¢y = UyeBEy, for all N € N, we obtain that
|¥n]| = 1 and that

) 1 _ 1
A}gﬂoo N(@/)Na H{ y) = ng{l)o N(ézv, Onoén) =21 (2.118)

Eq. (2.118) shows that the sequence vy is an approximate ground state of H{Y .
From (1.14), we conclude that ¢y exhibits complete Bose-Einstein condensation
in the zero-momentum mode g, and in particular that there exists 6 > 0 such
that

|1 — (o, Tne0)| < CN7°
Using Lemma 2.2, Prop. 2.12 and the rules (2.4), we observe that

<§N7N+§N> — (e PUnYN, Nie PUnYN)

IN
2l ZIQZIQZ =

(Un, Uv(Ny + 1)Untn)
(2.119)

+O|1 = Sl (ao)alekin)

+ C'[1 — (@0, 7np0)] < CN~°

as N — oo.
On the other hand, for N € S = {N; : j € N}, we have {x = x(Ny > M/2)¢y

and therefore u N--
<€N7N+£N>_2N 9

Choosing € < § and N large enough we get a contradiction with (2.119). This
proves (2.115), (2.114) and therefore also

gum (Rﬁvffa — 27TN> gu > cNygir . (2.120)
Inserting (2.113) and (2.120) on the r.h.s. of (2.110), we obtain that
Rio —2rN > cNy — C(log N)N**(Hy +1) = C (2.121)
for N large enough. With (2.112), (2.121) implies
Rivo —2rN > Ny —

To conclude, we use the relation e~ 4Gy e = R4, + & and the bound (2.117).
We have that for a > 5/2 there exist ¢, C' > 0 such that

Gna — 27N > ce? (RS, — 2nN)e * — ON"*(log N)*?e N e
>ce'Nye™ —C>ceN, —
where we used (2.121) and Prop. 2.12. O
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Bose-Finstein condensation: outline of the proof

We are now ready to show our main theorem.

Proof of Theorem 1.3. Let Ey be the ground state energy of H{Y. Evaluating
(2.91) and (2.92) on the vacuum §2 € FfN and using (2.89), we obtain the upper
bound

Ex <27N + Clog N .

With Eq. (2.109) we also find the lower bound Ex > 27N — C. This proves
(1.15).

Let now vy € L2(AY) with |[¢n] = 1 and
(Un, Hy y) < 27N + K. (2.122)

We define the excitation vector &y = e PUnty. Then ||Ey|| = 1 and, recalling
that Gy o = e BUNHSE Ui e? we have, with (2.109),

(n, (HY" = 2eN)Yn) = (En, (Gno — 27N)En) > e(én, Nién) — C (2.123)
From Egs. (2.122) and (2.123) we conclude that
(e, Nién) < C(1+ K). (2.124)

If v denotes the one-particle reduced density matrix associated with ¢, using
Lemma 2.2 we obtain

1 {pu, ) = 1= {0, @ (o)) )

1 %w;eBgN, a*(po)a(ipo)Utyeen)
_ %<€B§N7N’+6B§N> S M

<§N7N+§N> < N

=l

which concludes the proof of (1.17). O
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CHAPTER 3

Analysis of the Renormalized Hamilto-
nian for bosons interacting through sin-
gular potentials

In this chapter we show Prop. 2.4 and Prop. 2.8 establishing properties of
the renormalized excitation Hamiltonians gfw and R?V,é defined in Eq. (2.39)
and Eq. (2.56)

While this analysis follows closely the one in [10, Section 7, 8] appropriate
adjustments (due to the different scaling and dimension) are needed. We write
all the details for the reader convenience.

3.1 Analysis of the quadratically renormalized excita-
tion Hamiltonian gfv ’

From (2.8) and (2.86), we can decompose
Gre = PrLie =G + G + Gy + G

with 4 '
g}ﬁ\;’(év) _ e*BH‘C/]ng(J)eBH

In the next subsection, we prove separate bounds for the operators g;%fg'),
Jj =0,2,3,4. As stated in Chapter 2, we will assume the potential V € L?(R?)
to be compactly supported, pointwise non-negative and spherically symmetric.

As already said in Section 2.2, Lemma 2.3 will be crucial throughout our
analysis. A first simple application of it is the following bound on the growth of
the expectation of N.

Lemma 3.1. Assume B is defined as in (2.27), with n € (*(A*) and n, = n_,
for all p € A%. Then, there exists a constant C' > 0 such that

(€ [e PN e = M| < Il + 1) 2

forall € € F=V.



Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Proof. With (2.31) we write
€_BN+€B - N+
1
= / e *BIN,, Ble*Bds
"
_ / S e B lbyby + i) ds
0 pEAj

1
= /0 >y |57, + o0, + A (b + o0, + d)) + e | ds

pEAi

with 45 = cosh(sn,), o) = sinh(sy,). Using || < C and |o7] < C|n,l,
(2.34) in Lemma 2.3 we arrive at

(€ [N e = N ]9)]
< CING + M2 D gl [l N + 12601+ 1581

peAi

< Clnlll (N + )2 2.

O
3.1.1 Analysis of g]%ff) = ¢~ Bu 50 By
From (2.9), recall that
V(0 V(0
0= YO v n+ Y% v o). e

2N 2N
Hence, we define the error operator £ ](\(,] ) through the identity

~

V(0 V(0
J%’(eo) _ e—BHEf]B\;(O)eBH - %(N— (N =N+ (0)

S Mo (N =N+ £

(3.2)

In the next proposition, we estimate 55,’7(50) with a smooth and bounded function

of V.
Proposition 3.2. There exists a constant C' > 0 such that
ﬁv(o) &7
&y, <CL (N, +1) (3.3)

and

+ [f(NL/M), [fN /M), EGPN < COMT FIR N +1)  (34)

for all « > 0, £ € (0;1/2), f smooth and bounded, M € N and N € N large
enough.
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Proof. From (3.1) we have

—(NQ_ 1)17(0) LYo

N 2N

V(0
Ny — %Nj. (3.5)

We use the following identity to rewrite the last term on the right hand side

N2 N — N N
~ = N, Ny =D by — *—M,
qeENT
we insert it in (3.5), and we obtain
s _ V=D -
Ly = ==V )| D bib
qEA*
From (3.2), it follows that
1

20 = 10(0) S [ ButhyePn — bb,] —

5 5‘7(0) [e_BHN+€BH —/\/_,_] - (3.6)

qENT

With (2.31), we can express

Z eiBHbequH - Z [’qu; +ogbg + dﬂ [Yaq + ogbZy + d,]

S qeA]

where we set 7, = coshny(q), 0, = sinhny(q) and where d,,d; are defined
as in (2.31), with n replaced by ng(q) = nyx(¢ € Pg). From (2.33) we have
g — 11 = vg = Ul + 1 < Cn(q)?, og| < Clnu(q)l, the first bound in (2.34),
Cauchy-Schwarz and the estimate ||ng|| < C¢* from (2.23), we conclude that
first term on the r.h.s. of (3.6) can be bounded by

D [P e — b O] < CENG + 1)

qEAi

As for the second term on the r.h.s. of (3.6), we use Lemma 3.1, with n replaced
by ng. This concludes the proof of (3.3).

Now consider the bound (3.4). It follows similarly, because, as observed in
Corollary 2.1, the estimates (2.34) in Lemma 2.3 remain true if we replace d, and
dy by [f(N4/M),[f(N3/M),dp]] and, respectively, [f(N5/M), [f(N+/M), d]],
provided we multiply the r.h.s. by an additional factor M 2| f’||2,. The same
observation holds true for bounds involving the operators by, by, since, for exam-

ple,
[N /M), [f (N /M), by]] = (FING /M) = f((Ny +1)/M))%, (3.7)

and || f(NG/M) = f(N + D)/M)|| < CM7H| '] O
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

3.1.2 Analysis of g]%ff) — G*BH)C?V?(Q) B

From (2.9), we can decompose in two parts Cjﬁ\}(z) = K + Ejﬁ\}@’v), where
K= Zp enr p2a;ap is the kinetic energy operator and

1 ~
Ly =>"V(p/N?) [b*b — e ] +35 > V(p/NP) [b3b*, + byb_y) -
pEA* pEA:
(3.8)
Hence, we have
gf,”(;) = e BB e’BHﬁjﬁ\}(Q’V)eBH. (3.9)

In the next two propositions, we analyze the two terms on the r.h.s. of the last
equation. We start with the analysis of the action of ef# on the kinetic energy
operator.

Proposition 3.3. There exists C > 0 such that

e PP = K+ > pPnp(bpby + b3b%,)

pEPH
NN\ /N-N, -1 (3.10)
2 2 + + (K)
() () e
pEPY
where
L&) < CrT HE + 1) (3.11)
and

£ [FOV /A0, [FV ), )| < MR p IR e (1) (3.12)

for all « > 1, ¢ € (0;1/2) small enough, f smooth and bounded, M € N and
N € N large enough.

Proof. To show (3.11), we write
1
e BB — C :/ e *BHIC, Byle*Prds
0

/ Z p 77p SBHb b,pQSBH +e sBHb*b* SBH} ds.

pEPH
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Using the relations (2.31), we can write

e BugcePr —

/dsanp[ b —l—o b )( ()p_ —1—0 b*)—l—h.c.]

pEPy

/ ds > p*n, [(7b, + 07 )dE) + dS) (70, + 0 $8;) + hc ]

pEPh

/dsanp (s) —i—hc]

pEPH
:::(}14—(;2%—(}3
(3.13)

with the notation 75” = cosh(snu(p)), o) = sinh(sny(p)) and where 4 is

defined as in (2.31), with 7, replaced by sng(p) (recall that ng(p) = n,x(p €
Py)). We start by analysing Gy, and we obtain

/ ds 3 pPmp | (377 + (017)%) (Byboy + 2,07)

pEPH

+ 7O (4b7, — 2N*1a;ap))}

p
N, (3.14)
/ ds Y ol (1_W)
pEPY
_ Z 2 b b b* b* 2 2 N+ K
= PP (bpb—p + b7 ,07) + anp 1_W + &
pEPn pEPn

with

€1K—/dsanp ’yp 1)+( )](bb,p—i-b* 0%

pEPH
/ ds Z D npyps 4b*b — 2N ta ap))
pEPy
(s) (s) N
ds anp —1) —|—(ap —snp)} <1_W>'
pEPH

For an arbitrary & € F. EN, we bound

(€, EFOI < C Y Pl I NIV + D)2+ CL+ N7 Y pPnp ]

pEPr pEPy

+C Z p2n§

pEPy
< CO((Nx + )2,
(3.15)
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

since |((77(,S))2 —1)| < Cn2, (UI(,S))Z < Cn3 and p*n, < C, for all p € Py.
We consider now Gg in (3.13). We split it as G = Ga; + Gag + Goz + Gy,
with

Gop = / ds Z p Mp < ](Js)bpd(_sz)) + hC) ,

pEPH

sz/dsanp( b (S)+h.c.>,

pEPy

Gggz/dsanp b,p—l—hc)

pEPH

Gaq :/ ds Y p™n, (o§2db; + he. ).

pEPy

(3.16)

We start from Gg;. We write

1
Go1 = / ds Z P’n,(7%) —1)b, d(s / ds Z p2npbpd(_sl),

pEPy O pear
S 1 * %k
/ ds Z P Npby (,I), + N Z anbqa_qa_p]
pEP q€Py

1
+/0 dSN Z p2npnqbpbf]aiqa_p+h.c.

pEPE,qEPy
where with Pf we mean Pf; = A% \ Py. Using (2.5) we rewrite
by Nob = (N4 1)bybs = (N +1)(1=Ny /N)+(Ny+1) (b3b,— N aray), (3.17)

to manipulate a bit the second term and we arrive at

Ni+1N-N
Gar=— Y _ ™y +N+ N =+ [EX +he] (3.18)

pEPH

where £F = Z] L EX . with

259

1 s
En = 5 2N ZP N++1)(b*b Na;‘,ap), £ = _/ ds Zp Tpb J(—;

pePH pGPC
S 1 * %
= [as 3 0P - - gy S Puabdi
pePy PEPE ,qEPH
EX = / ds Z P’1pby ci(fp,
pEAY
(3.19)
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

where

s N * (s s 1 * %k
CZ( ) = d,p + snu(p )Wbp’ and cf(,z, = d(,z), + N Z sngbga” a_p.  (3.20)

q€PyH
Let us consider the first term in (3.19), this can be easily bound

(& ERO < C Y pipllayg]l® < Cer N (3.21)

pEPh

and, using | — 1] < Cny and (2.34) in Lemma 2.3,

(€. 86 < N pPInp PN €] [1d%)e]

pEPH

< 3 P PIN N Inl IV € + ] (3.22)

pEPy

< O+ ) (N + 1) %

With (2.35) in Lemma 2.3, we can also estimate

1
(€, £216)] < /0 ds Y plmlIlN + 1)l ¢l

pePﬁ,

< Cllgul PN + D)2 Y llag]

e (3.23)
1/2 1/2
< CllnlPIN + 1726 D el | Y 1]
lp|€Pg, p|<t=

< CONNG +1)Y%].

To bound the last term in (3.19), we commute b, to the right (note that p # q).
We find

(€, Ea56) < CNTH Z P11yl 1l laga—gélllapa—pg|l

PEPE ,qEPH
<C 3 Plplnllagllo]
pePf,q€ P
2 1
<c Y wlasl?] [ 1lalal? w
PEPE,qEPY pePf,q€Py

< Cllnml e IKCV2E NN+ + 1)V

< CYRYPEN Ny + 1))
(3.24)

To control the third term in (3.19), we first use the scattering equation (2.19) to
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

write

e = [ sy 3 (PO« B )0

pGA*
1
+ / ds N'7205 Y (ye* fw) (p)b,d®).
0

PEAT
Switching to position space, we obtain

1
ef = — / ds / dudyN*"V (N*(z — ) fxe(x — y)bady
0 A?

1
+/ dsNHzB/\g/ dzdyxe(x —y) fne(z — )5

0 A2
With Lemma 2.1, we find
1
(€, €256)| < C/ ds/ drdy [N*V(N"(z —y)) + " xe(x — y)]
0 A2

X NN+ D2V + 1) 7 2aqdi e
Hence, with Eq. (2.37) in Lemma 2.3,

1
(6. E56)] < CN Yl / s / dady [NV (NP (z — ) + € xe(e — y)]
0 A2
< NG + 12 [1og NIV + 1)Y261 -+ g (V. + 1))
+ g€ | + llaaa, (Vi 1)) |

< COTH|(Ns + 1)V + Cefl NV + D)2l 0) 2 €l

for N large enough. Combining the last bound with (3.21), (3.22), (3.23), (3.24),
we conclude that

+[EX +hee. ] < COTHHT + ). (3.25)
Next, we consider the term G in (3.16). With (2.34) in Lemma 2.3, we find
(6, Goat)[ < C 3w llbpelldpé]

pEPH

<C Y PPullbp€ll [Inplll (N + D)2l + [lnalllo€1] - (3:26)

pEPH

< PNy + D)2
As for the term Gag, defined in (3.16), we split it as Gog = 24_ £45 +h.c., with

5ﬁ=/d82pnp dS)b—pv E,':g:/ dszpnp b—p

pEePy PEAT
1
€§§ = 5N Z D npnqbq _qapb_p, 53{1 = —/ ds Z p np b_p
pEPIc{,qEPH pepc
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

with the notation for dy introduced in (3.20). With (2.34) in Lemma 2.3, we
find

1
(. eKe) < © / S PRI POV, + 1)Y2e) b,

pEPn

< Clla|I(N+ + DV Y D Pllby€ll < CE (N +1)2¢)?

PEPH
and also, proceeding as in (3.23),

1 —
(€, E516)] < C/O ds Y DPlmp |V + 1)V + 1) 2d0b |

pEPE

< Cllaal PN + D2 P mpl15-5€ ] (3.27)

pEPE
< CLYIN +1) 2],
The term EX coincides with the contribution £% in (3.19); from (3.24) we obtain

+EK < CrP(HT +1). As for EE, we use (2.19) and we switch to position space.
Proceeding as we did above to control the term &35, we arrive at

1
(el < C [ ds [ dody [NIVV =)+ Pl =)
X NN + DV + 1) 2d0a,

With (2.36) in Lemma 2.3, we find

6, E56)) < Cllnal | dody [NBV(V* (o = ) + € et = )]

X el [y A + el + N2z é]]
< CENG + 1) + O + 1)V (Vi) V2 ¢l

Combining the last bounds, we conclude that
+Gag < CLYHE +1). (3.28)

To estimate the term Goy in (3.16), we use (2.34) in Lemma 2.3; with (2.2),
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

we find
(€, )]
<c / ds 37 PRI+ DVREN IV + 1) 2dng]
pEPH
< O+ DY S g [l IV + 1%

pEPH

Nl 16,05 (N + 1)2¢ ]
<O Y Il + 1)) 2

pEPH

+CN a7 ol (1038 + 1)V + TN+ DV IV + D)2

pEPy

< O+ )N + 1) 22,

Together with (3.18), (3.25), (3.26), (3.28), this implies that

+&F

- oy Ny +1N =N,
PN N

pePy
where
+EF < crY(HE +1). (3.29)
We still have to analyze Gg, defined in (3.13). We split it as
Gz =E&L + &5 +he

with

& :/ ds Y pndds, &= _/ ds " pPnyddC),

pEA* PEPE

With (2.34) in Lemma 2.3 (using ng(p) = 0 for p € P§;) and proceeding as in
(3.27), we obtain

(& ESEN < Cllnall Y PPl WV + 1)V [ld-pé]|

PEPE

< ClnalPIlNG + 12 Y pPlnplllb-p€ll < CLIN +1)V2€ 2.

pEP;I

To estimate £X | we use (2.19) and we switch to position space. Again, we proceed
as in the analysis of the terms £ and £X above, we obtain

1
(6. E5O1 < CIN + 1)) [ s [ dady [NV(N* (@ =) + 2o = )]
<N+ 1) 2]
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

With (2.38) in Lemma 2.3, we arrive at
€, €516
<O+ 12 [ as [ ety NPV ) 4 P~ )]
X [(||77HH2 + el N~ log NN +1)Y2€]| + [lnall[la€ |

o sl + Il 2N 2 a6
< CET|(N + 1)V + CE N + 1Y 2 V2%

Hence, +G3 < O Y (15 +1). With (3.14), (3.15), (3.29), we obtain (3.10)
and (3.11), as desired.

As explained in Corollary 2.1, the bounds in Lemma 2.3 continue to hold, with
an additional factor M ~2|| f’||2, on the r.h.s., if we replace the operators d,,, dy, dy,
Gy, d.d, by their double commutators with f(A, /M). From (3.7) we conclude
that also bounds involving b, and b;, or, analogously b, and 5; remain true if we
replace them by their double commutator with f(N,/M). As a consequence,
(3.12) follows through the same arguments that led us to (3.11). O

In the next proposition, we pass to the study of the second term on the r.h.s.
of (3.9).

Proposition 3.4. There is a constant C' > 0 such that

e—BH 5%(27V)GBH

= Y P () ()

pEPH
F Y V0N (1270 ) 4 5 X VO by 055) + €347
pEAT pEAj_
(3.30)
where
7Y <O HY + 1) (3.31)

and
£ [N /M), [P, 0] S comIf I (G +1) (332)

for all « > 0, £ € (0;1/2) small enough, f smooth and bounded, M € N and
N € N large enough.
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Proof. To show (3.31), we start from (3.8) and we decompose
e’BHﬁg\?:g)eBH = Z YA/(p/Nﬁ)e’BHb;bpeBH

pGAi
1 = .«
N Z V(p/NP)ePrasa,ePr
pes (3.33)
1 5 - * Pk
+3 Z V(p/N%)e P [byb_, + bib* | ePH
peAi
Zi‘Fl%—FQ—%PB.

With equations (2.31), we split F; as
Fi = Z V(p/N?) [1by + pb—p] [Vl + b7,
peAi
+ > V(p/NP) (b + 0pb_p)dy + di(pby + 07 ,) + did, ]
pEA:
=:Fp1 +Fpp

with the notation v, = coshng(p), o, = sinhny(p) and the operators d,, as
defined in (2.31), with n replaced by ng. We decompose

Fii= Y V(p/NP)bib, + &
peAi
with
£ =>_ V(p/N?) {(vﬁ — 1)biby + 70 (b_pby + b3b" )
pEPh
N - N,
— )

where we used 7, = 1 and 0, = 0 for p € P to restrict the second sum. With
e — 1| < Cn2, |op| < Clnpl for all p € Py and since [|ng|| < €%, we find

+& < Cl* (N +1)

+ 02(byb, — N"azay) + o2 (

if N is large enough. With Lemma 2.3 (with 7 replaced by ny), we can also
bound +F5 < Cl*(N, + 1). We conclude that

= > V(p/N)bib, + & (3.34)
pEA:

with £& < Cl¥(N, +1).
Let us now focus on the second contribution on the r.h.s. of (3.33). We have
—F5; > 0, and, by Lemma 2.2,

—Fy = ZV (p/N%)e Prara,e”
= (3.35)

‘7 [ - C o
S H]\u e BHN+€BH S NN+ Sé (N++].)
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

if N € N is large enough. In fact, the smallness in terms of N guarantees the

bound —F, < Cl¥(N, +1).
Finally, we turn our attention to the last term on the r.h.s. of (3.33). With

(2.31), we decompose F3 as

1 ~
Fs = > V(p/N?) by + 0pb*,] [1pb—p + 0,b3] + hc.

peEAT
1 ~ . #
+ 2 Z V(p/N?) [('Ypbp +opb’,) dep +dp (pb—p + Upbp)] +h.c.
pEA, (3.36)
1 ~
+35 > Vip/N?)dyd_, + h.c.
pEAT
= F31 + F32 + F33 + h.c.
We decompose in turn the first term as
| ~ o - N - N,
Fao=5 > VO/N) (bpby +07,0,) + >, Vo/Nny———+ & (337)
pEPH

pEA]

with (recall that v, =1 and ¢, = 0 for p € P§;)

17 1 * * *
& =Y V(p/N?) {5(%3 — 1+ 02) (bpb_p + b7,b%) + 20,7,b5b,

pEAi
_ . N —N.
-N lVPUpapap + (9p0p — 1p) N -

Using again the estimates |v7 — 1| < C7?2 and |o,| < Cln,| for all p € A%, we find
+& < CU*(N, +1). (3.38)
Consider now F35 in (3.36), which we split into four parts

1 = . .
Fg = Bl Z V(p/N”) [(vpbp + opb”,) d—p + dp (pb—p + Upbp)] +he

peA”. (3.39)
=: Fao1 + Fazo + Fao3 + Faou.
Starting with Fso;, we decompose it again as
Fan =5 > V/N) = Dby + 5 > V/NIby | doy+0m(0) 78,
pEA®. peEA’
1 -~ Ny,
-5 > V(p/N)nu(p)b, W*bp +he.
pEAi

Using (3.17), as we did in the proof of Prop. 3.3, we arrive at

= N — 1
Fao = — Z V(p/Nﬁ)Up ( NN+) (N+N+ ) +&

pEPH

60



Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

where &) = £} + &} + EJ; +hec., with
1 ~ 1 ~ -
ngl ~ 95 Z V(p/NB> (v = Dbpd—p &E D) Z V(p/NB)bpd—p
PEAT PEAT

1 ~ Ny+1
€= —5 D V/Nm—5

pEPH

(b;bp — N_la;‘)ap)

and with the notation d_, = d_, + N~ g (p) Nybs. Since |y, — 1] < Cn2, we
find easily with (2.34) in Lemma 2.3 that

(€. ERE) < C Y mll Vs + )2 [Implll (N + 1€ + llnalllapé ]

pEPH

< OO (N3 + 1) M2 2.

Moreover,

(& EROI < C D mpllayg)? < Cr N2,

pEPH

While, to control £}, we switch to position space. With (2.37) in Lemma 2.3, we
find

(6, E501 < C [ dady NPVIN G = )| + 1) IV + 1) s
< Cllnal /A2 dady N*°V (N®(z — y))||(N4 + 1)V2%¢||

x [(N‘lllnHH +log N/N)||(Ny + )Y€ + [[nalll| ]l
+ N~ aygll + N2 a.a,8]|
< CO(Ny + D)V + Ce (N + 1Y (VR) €]l
We conclude that
Y <o +1).

To estimate the term Fgoo in (3.39), we use (2.34) in Lemma 2.3 and |o,| < Cln,;
we obtain

(€, Fa226)| < C Y Iyl 10-p€ llld—pé]|

pEPy

<C Y nplllo—p€ll [Imp N + 1)) + [l 1€ ]

pEPH

< CO|(NG + )2 2.

Let us now consider the term F33 on the r.h.s. of (3.39). Here, we proceed as
we did above to estimate F351. We write Fgoz = 55‘/1 + Es‘g + h.c., with

1 ~ 1 ~
& = 2 Z V(p/Nﬁ) (v — 1) dpb—yp & = 2 Z V(p/Nﬁ) dpb—p.

peEAT peEAL
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With |, — 1] < Cn2, we obtain

(€. ERE < C Y Ve + D2 lan el < CE* N + 1)1,

pEPy

While for £Y, we switch to position space, and we find, by (2.36),

(6, E501 < C [ dedy NPVN (@ = ) IOV -+ 1) IV + 1) ]

< ClnlllVs +1)M2]| /A2 dady NV (N?(z — y))

% [lay€ll + N7l aayll]
< OO (NG + 1) + O+ DY (Vn) V2.

Hence, :]:F323 < CKQOL(HJ% + ].)

To estimate the term Fsoy in (3.39), we use (2.34) in Lemma 2.3 and the
estimate

~ 1 V(p/N*?
S IPeml<c Y e Y MY o niic,

2 2
pEAT pEAT:|p|<NP \p! pEAL:|p|>NF ]p|

(3.40)
where we used |n,| < C|p|~?; we find

(€ Faa&)| < C Y |V(p/NO)|Inp |V + V2NN +1)7V2d, b

pEPH

< C Y [V/N) Il |(Vs + 1)V

pEPr
[l [N + )Y€ + N7 g || 10,05 (N + 1)1%¢] ]
< Y V/NO Il Il(Ns + 1)

pEPY

< [l OV + 1€+ N~ IOV + 1)2€ ] + Inllla,€]]
< O + N og N (N + 1)Y2¢ .

Combining the last bounds, we conclude that

pum 3 P (2 (2570) v

pEPH

with
+& <CI(H5 +1). (3.41)

To bound the last term Fs3 in (3.36), we switch to position space. With
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Lemma 2.3, specifically (2.38), and (2.25), we obtain
(€. Fas€)| < ClI (N + 1) %] /A2 dady NV (N (z = y))| (N + 1) 2dad €|

< Clnalll Vs + )72 / drdy NV (NP(z — )
A2

< (el + DIV +1D)Y2] + [Inalllla.€]|
Hinalllaygl + N2 asa,€]]
< CLYWN + 1)V + COUINZE NN (V) 2l

The last equation, combined with (3.36), (3.37), (3.38) and (3.41), implies that

]‘ i >k >k
=3 Z V(p/NP)(byb_p + b* b%)

pEAj

~ N - N N-N; -1
F Y T (T () e
pEPH

with
+&Y < Cr(H5 +1).

Together with (3.34) and with (3.35), we obtain (3.30) with (3.31). Finally,
to prove Eq. (3.32) we argue similarly as we did at the end of the proof of Prop.
3.3 to show (3.12). O

In conclusion of this subsection, we combine the results of Prop. 3.3 and Prop.
3.4.

Proposition 3.5. There exists a constant C' > 0 such that

=4 32 [ P (5 ()

N
PEPH
+ > (0, +bibp) + Y VPN )apa,———
pEPy pEAj_
1 > * * (2
+ 5 Z V(p/Nﬁ) (bpb—p + b—pbp) + g]@,(e )
pEA:
where
e < CeTYHR + 1)
and

£ | SN /M), SN/, Q)] | < o2 £ (15 + 1)

for all > 1, £ € (0;1/2) small enough, f smooth and bounded, M € N, N € N
large enough.
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3.1.3 Analysis of g]%f’) — G*BH)C?V?(S) B
From (2.9), we have
3 1 ~ .
gN( )= VN Z V(p/Nﬁ) BprJrqa paquH +h.c. (3.42)
P,qEA] :p+q#0

Proposition 3.6. There exists a constant C' > 0 such that

G = —— 3 V(p/N) [B,0% g+ he ] + €L (3.43)
PAENT a0
where
Y <O (HY + 1) (3.44)
and
£ [FNG/M), [FNG/M),ER N < OM72| fI%0* (Hy +1)  (3.45)

for all a > 0, £ € (0;1/2) small enough, f smooth and bounded, M € N, N € N
large enough.

Proof of Proposition 3.6. We start by writing
1
e Prar a,e"t = a* jag + / dse*P1la* ja,, Byle®™"
1
=a’,a,+ / dse™*P1 (n,bgb, + neb* b ).
0
From (3.42), we find

Gy’ ) V(p/N")e Py e a” aq

p qu* .
p+q7é0

%\H

1

Z ?(p/NB)UH() “nby BH/ ds =", bye P
0

p+q

+
2l

P,gEAT,
p+q#0

1
Z V p/NP)n(q) e BHb;Jrq / ds e_SBHb*—pb*—q b
quA* 0
p+q¢0

+ h.c.
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Using (2.31) we arrive at (3.43), with

Z VO/NY (g = Djrq + Opabopa + djg) a” g

p+q¢0

1 i —Byp* ! —sB sB
R > V(p/NP)nu(p) e Py, ” /Odse b, bee* P

P.gEAT,
p+q#0

1 ~ !
b S VN ) e Pt e [ dsen et p et
Np,qGAi, 0
p+q#0

+h.c.
=: 51(3) + 52(3) + S?E?’) + h.c.
(3.46)

where we defined +, = cosh,, 0, = sinhn, and where the operator d,, is defined
as in (2.31),with n replaced by ny. To conclude Prop. 3.6, we have to show

that the three error terms 51(3), 82(3), 5§3) all satisfy the bounds (3.44), (3.45). We
consider & 3) first, and we proceed decomposing it as

51(3) \/— Z (p/NB) (('Yerq - 1)b;+q + Optqb—p—q + dp+q) pq
P,gEA] :p+q#0
— D el 1 ¥
Since |Ypq — 1| < Inu(p + @)f* and [Inu|l < CL7, we have
1 N
(eI <Coe 3 PN+ o Iprga—lla]

P,qEAL :p+q#0

1 1/2
<Cr=| 3 o+ @)l laspyWy + 1)V
VN [nq@\i:pﬂ#o ] (3.47)

S I SO e s

P,qENY :p+q#0

< ClnulP |V +1)Y%€))* < Cef|(N + 1)1,

To bound £ we move a*, to the left of b_, , (using [a_, 4,a* ]
q #0). With |op4] < Clnu(p + ¢)|, we obtain

1 .
|<£’51(3)§>|§C\/_N > WV/NOnup+ o)l llazptlllagb—p—g]

P,qEAY :p+q#0

1 5 9 1/2
<O=| X lmlra)P el

P.a€AT :p+g#0 (3.48)

X [ Z Haqbfpfqﬂﬁ] v

p,gEAY :p+q#0

= 0, since

< OO+ 1))
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In 51(2), on the other hand, we write dj,, = J;+q — MTH)??H(I? + @)b_p—q. We
split £ = £ + £8) with

i = > VN0
P,qEAY ip+qF#0

Ny +1) . .
gl@; = = ]:_73/2 Z V(I?/Nﬁ)T]H (p + Q) bfpfqafpaq-

P,qEAY :p+q#0

2l

Similarly as we did for 51(3), to bound the term Sl(g’%, we commute a* , to the left

of b_,_, and we find ££5), < CN-V202(N_+1). As for the term £, we switch
to position space:

3 1 i T *
51(31 = \/_N Z V(p/NB) dp+qafpaq
p,gENT :p+q#0

1 .
=— | dadyN?*’V(NP(z — y))d a*a,.
T5 Yy (N"(z —y))d,a,

With (2.37), we bound

1 =
(€. EBe) < — [ dnay NPV =)ol o)

C
< — dzdyN*’V (N’ (z — y))||da
< el [ dady VBV @ = )]
< [Vl + Jog N/N2) A+ DM€+ N2 g

+ na || a, N el + Nlaeaygl]
< C(P*N=' 4 log NN + N7H* 4 02)||(N + 1)M2¢]2

+ O N+ DY) V2]l
Combining the last bound with (3.47) and (3.48) we conclude that

+&® <o 1P +1). (3.49)
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Next, we consider the term 52(3), defined in (3.46). Using Eq. (2.31) we rewrite
3 1 U *
&' =% D V/Nmulp)e b, e
P,qEAY ;p+q#0

/ds(’yp wqbb —1—0 b* b* —l—’yp b*b+0 b*b)

P —q

1 i * s) (s *
b Y TN )t [ s
P,q€AY ,p+g7#0 0
1 17 —B *
+ ﬁ Z V(p/Nﬂ)nH( ) pr+q B

D,qENY ,p+q#0
1

></ ds [ (37, + o{00%,) + (4§78, + o0 )l + dfdl
0

3 3 3
= 52(1) + 52(2) + 52(3)

where, for any s € [0;1] and p € A%, ) = = cosh(snu(p)), o) = sinh(sng(p))

and d}(,) is the operator defined as in (2.31), with n replaced by ny. First we
bound

1
(& £ Scﬁ Y @)1 €l | 1bpb]l

P.gEAT ipF—q

+ ()b N + )€ + Inm (@) ||bp(N + 12
+ [na (@)l na (@) | N5 + 1)E]

1
<O—— + 24 NN + 1)V2¢)?
< \/N(HUH” nall® + Inall®) [N+ 1)2%¢]

S ONTV2(0 4 2% 4+ £5) |V + 1)V2¢)12
(3.51)

Since [by, b* | = —a* ,a,/N for all p # —q, we find

(6 EDAI<ON2 S (o)l Ima (@) lbprae™ (N + 1)

P,gEAY ,p+q#0

< ONHnlPI Ny + D22 < ONTHE[NV + 1),
(3.52)

To bound the third term on the r.h.s. of (3.50), we switch to position space.
We obtain

1 .
52(3) = \/_N . dxdydzNQﬁV(Nﬁ(m —2)n(z —y) e_BHb;eBH

1
X / ds[ I (B(AEN) + 07 (68)) + (b)) + b (5850))dY) + dlDdL)
0
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Using the bounds (2.36), (2.37), (2.38) and Lemma 2.2 we arrive at

(6, E€)] < CNT2 |y /Ad dudydz N**V(N?(z = 2))li(y — 2)| [be™¢|

X [yl + IOV + &N + B (N + 1)Y2€] -+ 1B, (Vs + 1) 2]

< Sl iz pag v, + 1))

< CO|(NG + 1)V2¢) 2.

Combined with (3.51) and (3.52), the last bound implies that
+&0 <Cr (N + 1), (3.53)

Finally, we consider the last term on the r.h.s. of (3.46). In this case, we estimate
the expectation of its adjoint -in absolute value- because it is more convenient.
We split it as follows

1
Eé Z V p/NP)nu(q )/0 dse sPnp_ e

P,gEAT,
p+q750

X ( (s)b*p + U(S)b* d(—sz)a) (7p+qbp+q + Opigblpg + dp+q)

1
V p/NP)nu(q )/ dse BHp_ P
p+q750

[’Y;r() Vp+q0—pbp+q + ‘7 Upﬂbpbip ¢ T 7128)

\/_

Optablp_gb—p + ’Yp+q‘7;(;s)b;bp+q

+dt (7p+qbp+q + Oprgbl,g) + (Vzgs)b—p + Oés)b;) dpyq + d(—i)oderq

1 T ! —S S *
+ \/N E V<p/N6)T]H(Q) / dS € BHb—qe BHrYp Up—l—q [b—p7 b—p q]
P,gEAT, 0
p+q#0

3 3
e v o)

Using that ¢ # 0 and thus that [b_,, 0", | = —a*, ,a_,/N, we can estimate the
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second term by

3
(€.E5 >£>|
Oy [ 45 X D@ lantp+ lllap-q e85
PgEA,
p+q750
—SBH * SBH 2 1/2

<Cym | [ X @ laspeg e e ]
P,geEAT
p+q750

[ o+ 9Pl

p,geA]
p+q7#0

< CNTHnlPIINVG + D)2E)P < CeONTHIWG + )21
(3.54)

To bound the expectation of Eéi’), it is convenient to switch to position space.

We find

I CSBup(n s
Eg’) = \/_N/o ds //\2 dxdy NPV (NP (z — y)) e B b (1 . )e* P
X [BB(T,) + ' (G (5y) + b (3,)b(357) + ' (5))b(3,)

+ P (b(3) + °(3,)) + (B3) + 5 (61))dy + dd, |

where we used the notation 7, %) and &) to indicate the functions on A

with Fourier coefficients ng(p), cosh(sng(p)) and, respectively, sinh(sng(p)), and
where 7y, 7, and d, denote the functions defined by Mg .(2) = nu(z — z),
F:(2) = (2 — x) and d,(2) = d(z — x). Using (2.36), (2.37), (2.38) and the
bound (2.25), we find, for N large enough,

eeal < — [ ds [ dnty NV = ) e
x [ubzbysn + BN+ 1260+ 1, (N +1)M26] + | + 1]
With Lemma 2.2, we estimate

16" ()P €]l < Clina IV + 1) %€

and so, we conclude that

(6, E06)] SCLNW + 1) + CL | (V)2 ENING + 1))
From (3.54), we find

+&¥ <o +1)
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and thus, combining this bound with (3.46), (3.49) and (3.53), we arrive at
+EV), < CL(HY +1)

This proves (3.44). The bound (3.45) follows similarly, arguing as we did at the
end of the proof of Prop. 3.3 to show (3.12). O

3.1.4 Analysis of QJBV:(;) = e‘BHE”f\;(4)eBH
With Eﬁ,’w as defined in (2.7), we write

GO — o~ Bu 50 Bu

N6
1 . N N, +1
=V 4 N § V(r/N®)ngen, (1 - —N+) (1 — *N )

qEA” reA*
q,q9+r€Pn
1 5 * 7% B,(4
+ 0% S V0 /N)ngrr (bbog + b2b",) + ExS
qui,reA*:
q+rePy

Proposition 3.7. There exists a constant C' > 0 such that
G <O (HY + 1) (3.55)
and
£ [FNL /M), [FN /M), EGP < CM7E IR (Hy +1) - (3.56)

for all a >0, ¢ € (0;1/2) small enough, f smooth and bounded, M € N, N € N
large enough.

In the proof of Prop. 3.7, we are going to use the following lemma, which is
an adaptation to this scaling of [10, Lemma 7.7], due to the different L>° norm
of n(x), and it simplify computations for the proof of Prop. 3.7.

Lemma 3.8. Let n € (*(A*), as defined in (2.22). Then there exists a constant
C > 0 such that

[N+ 1)2e 5, b e
< C[ IV, + 1)) + 1og NJI(N +1)"/%]

[l N+ 1)) + flan (W + 1)) + flaad, (N + 1)/%€] |
(3.57)

for all £ € J:EN, n € 4.
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Proof. We consider n = 0, the general case follows similarly. With the notation
vp = coshn,, r, =1 —,, 0, = sinhn, and denoting by &, 7 the functions in
L*(A) with Fourier coefficients o, and r,, we use (2.31) to write

le™BhubyePel| = || (be + b(70) + b*(62) + dy) (by + b(7y) + 0°(5,) + d,)€|
< babyg |l + C(1bN €] + 11BN 2] + Clo(x — y)l]I€]
+ |bod &l + || ds (by + b(Fy) + b7 (&) + dy)€]|

because |||, |lo|| < Cn|| < C. Using Eq. (2.38) and (after writing b,d, =
bpd, —b, (N /N)b*(1,)) Eq. (2.37), and with the bound (2.25) (which also implies
|5(z)] < Clog N), we obtain (3.57). O

Proof of Prop. 3.7. We start by writing
e_BH Elf\;(4) €BH

1 N
=N Z V(r/N%)e Praraia, ray . e""

p,qGAj_,rGA*:
T#E—D,q
1 R 1
= Vﬁ, + N V(T’/N’B)/ dse B [a;a:;aq,rapw, BH] esBu
0

P,gEANT TEA™:
T# =D

1 i ! —S * 7 %k S
=Vitow 2. VO/Nmu(g+ r)/ ds (e7*Pupibr ePr 4 h.c.)
qENY TEN*: 0
r#—q

1
+ = Z V(r/NYng(q+r) / ds (e_SBHb;Mb;aiq_rapeSBH +h.c.).
P,gEANT ,TEN™: 0
T#p,—q

(3.58)

Notice that

—SBH * SBH
e a_,_,ape

=a’, ,a +/ dre "B la* .y, Br] e ThH
0

= aiqfrap + / dr e_TBH (TIH (p)bipb*qur + NH (q + T)bpbq-l-r) e_TBH-
0

Inserting in (3.58), we can rewrite

GR) = Vi = Wi+ W+ W5 + W,
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with

1 - ! —s s
W, = N Z V(T/Nﬁ)nH(q —i—?”)/o ds(e BHbqb,qe Bu 1 h.C.)

qEAi TEN*:r#£—q

1 =5 ! —s * 1% S *
Wm0 TN [ ds(e P e a, )
pgEeA] reA™: 0
T#pP,—q
1 ~
Wy = > V(r/N?ynu(q + )0 (p)

P,qENY rEA*TFE—p—q

/ ds / dr (e7*Brby, bre*Prne TPyt br &P L)

W= Vir/N) iy (g +7)

P,qEAT, TEA* r#£—p—q

1 s
X / ds / dr (e™*Pubr bre*Pre b b, e + hie. ).
0 0
(3.59)

Let us first consider the term W;. With (2.31), we find

Wi=oo S VN g )

qEAi,rGA*:r;ﬁ—q

1
< [ s+ o0 A (0 o+ ) + e

where we defined 73" = cosh(sny(q)), 08 = sinh(sny(q)) and where d i

defined as in (2.31), with 7 replaced by sny. We split

Wimow > VONmmlatn) [ dsaPPeb, +he)

qEAj_,TGA*:r;E—q

+ % > ‘7<7"/N6)77H(Q+7")/ ds o ([bg, U] +hoc.)

qGAj_ JLEN*r£—q

1 % S S
TN > V(T/NB)UH(qur)/ ds 7 (byd®) + hoc. ) + £

qENT rEN £ —q

= W11 + W12 -+ W13 + 51(3)
(3.60)

where
4 4 4
510 = 5101 + 5102 + 51(023 + 51(021 + 51(035 (3.61)
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with the errors

1 ~
) _ 8 () - (5) (\2p¢
&1 ON Z V(r/N )UH(Q+T)/ d8[27q b,0q +(cr )b b +hc}
qeEAT ;rEN™:
r#—q
1
(o _ 1 O (r /NP .
5102—2N Z V(r/N )77H(q+7’)/0 dso (b d +hc)
geEN} rEA*T£—q
_1 1 ! S S *
Elgl = 5N > V(T/Nﬁ)m{(qﬂw)/o ds o (d9b; + h.c.)

qENT rEN £ —q

1 R 1
51(321 ~ 5N Z V(r/N®Yng(q+r) / ds vqs) (dgs)b_q + h.c. )
0

qEA’_j_ JTEN*r£—q

1 . ! .
Ewn=5v 2 V/Nalg+r) / ds(d¥d®) + h.c.).

qeN® reA rE—q 0
(3.62)
From the bound (3.40), for all 8 > 0 considered in Theorem 1.3 we have
1 .
& sup D [V(r/NP)ngi| < C (3.63)
geA} reA

uniformly in N € N. We can bound the first term in (3.62) by

(€, ENE] < C S [malllbggll* + n2llbEllI N + 1)72]]]

qEA"+
< CLN N+ 1)V

To estimate the second term in (3.62), we use (3.63) and Lemma 2.3; we find

(& €106 < C Y I (@Ib—g&ll [Inar (@I + 1€l + Il [[b-g8 1]

qEA*
< CPY(N +1)V2¢)%

For the third term in (3.62) we switch to position space and use (2.36) as well
as (2.25):

C
(€ ERQ < 5 [ dedyNP V(N (o = )z = )

1
<[ as I+ 1B DI + 1)

0

N

C 1
< lillelinl [ deagNv (8@ = )|+ 1] [ as

(1@l + 5199 @ = I + 1))+ (o1
<O(logN)

< OB (W + D)

73



Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Consider now the fourth term in (3.62). We write 51(321 = 51041 + 51042, with
1 - ! .
Eon=5v 2. VO/Nalg+r) / ds (1) = Vg,

qEN] reEA*T£—q

2N

1 R 1
=52 .  VE/N)u(g+r) / dsd®b_,.
qEN rEN*r£—q 0
With [\ — 1| < Clnu(q)[?, (3.63) and Lemma 2.3, we easily find
(€, EuE)] < O (N +1)M2¢ 2.

While to study the term 51(3212, we switch to position space. Using (2.25) and
(2.36) in Lemma 2.3, we obtain

. 1 .
6. E8)l = |5 [ ds | dsdyNPVOV = )i = ). d0B0)

logN (!
< BR[| dedg NV @ - )N+ 1)
0 JA2

x (Vg + 1)72d9b,¢|)

log N 1
<C ]g\, ||77H||/0 /AdedyNQBV(NB(;p_y))H(NJF_|_1)1/2€||
N €]+ a3 e ]
logN

log N

< OB+ 1)V + OB+ 1) (V) %)

Let us now consider the last term in (3.62). Switching to position space and
using (2.38) in Lemma 2.3 and again (2.25), we arrive at

BN dhndy NPV (NP — ) N+ 1) %]

A2

(6, Els)| < C——
X NN+ 1) 2dad €

<C 1OgN||77HHII(N++11/2€H / dudy NPV (N%(z — y))
< [(Inall + DI + DY) + e laag ] + laygll + N~Y2]|aud,e]]
< BN v+ 1y
log N
+ OB (W + 1) (V) 2.

N
We conclude that the error term (3.61) can be estimated by

+& < o1 + 1),
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Next, we come back to the terms Wiy, Wia, Wy3 defined in (3.60). Using (3.63)
and [\ — 1| < Cni(q)?, we can write

1 ~
Wo=gw > VO/Nmmlg+r)(bb, +he) + &) (364)

qGAj_,rGA*:r;éfq

where 81(111) satisfies the estimate

C ~
GEVol< T > PO+ )linala) PRI G + D'

qEN] rEA*T£—q

< CO|(WNs + D™
The second term in (3.60) can be decomposed as

N

Wimor X VNt (150 ) e 6o

qEA’_j_,rEA*:r;éfq
where the error

1 — ! N.
£y = N > V/Nnulg+ 7“)/0 ds(vi70 — snu(q)) (1 - ﬁ)

qEANT TEN £ —q

_1 % ! S S *
v 2 VO/Nmla+) / ds7Potaza,

qui,reA*:r;é—q
can be bounded, using (3.63) and [7\” 05 — sni()|| < C|n,l, by
+E9) < Cr (WL +1).

As for the third term on the r.h.s. of (3.60), we write

4
N + 51(3)

1 N
_ 8
Wi E V(r/N°)nu(q + r)nu(q) (1 N N
qEAi,TGA*:r#fq

A A
(3.66)
where €5 = %) 1 &) + 8 1 0 with

1

5(4) _
131 2N

1
Yo VE/Nulg+r) / ds(7() — 1)byd®) + h.c.
0

qEAj_,TEA*:r;éfq

| _ ! ) N
En=gv D V(T/Nﬁ)nH(qur)/ ds b, [d(_; + (@) by | + e
qEAj,reA*:ryé—q 0

1

Ew= g > VE/Nnalg+ (@b,

geEN} rEA*r£—q

N, +1
N

1 ~ . Ni+1

=gy 2 VO/N)ala+rmm(@age 55—

qENT TEN T #E—q
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It is easy to estimate the last two terms: with (3.63), we have
+&(3 < Clog N) /NN + 1), £, < Clog N)/NE* (N + 1),

With |7§8) — 1] < Cnr(q)?, Lemma 2.3 and, again, (3.63), we also find

e eBal<ae S 1PN lmnta+ Dl PIN, + 1))

qEA’_‘HTEA*:r;éfq
X [Ing [N + DM€ + lInll1bg]I]
log N

< 20 1/2¢£12
< O WL+ DV

Let us now focus on 51(;1)2. Switching to position space making use of the notation
CZ?(JS) = dés) +s(NL/N)b* (1) and using Lemma 2.3, specifically (2.37), we obtain

c ! -
(€ EBO = |57 [ ds [ dsduN" V(N = p)in(o = )€, )

1 N
< il [ drdg NV (N @ = )|+ 1))

x [(N7'+ N7 og N)[|(N: + D2 + N7 as€

o _ . - 1/2
Hlnallllayel + N~ |apa,N |

log N,
B + 1)

log N

<C

+ C—=—L|(N5 + DNVl

We conclude that +&5 < CEO‘(’H]@ +1). Combining this with (3.64), (3.65),
(3.66), we obtain

W, = % Z ‘/}<T/NB)77H(Q +7) (bqb—q + h'C')

qEAi,TGA*:r;E—q
1 ~ N- N +1
il B vt _ v
+ 5w > Ve /Nnu(g+r)nu(q) (1 N ) (1 N )
qui,reA*:r;é—q

+&

(3.67)

with
+&W < ol +1).

We focus now on the remaining terms in Eq. (3.59). First, consider Wy, we
switch to position space and we find

1 ! .
W = dxdyNzﬁV(Nﬁ(x— ) / ds (e bibt ™ a* (1 4 )dy + h.c.)
0
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

with the notation 7y .(2) = Ny (xr — z). By Cauchy-Schwarz, we have

C 1
(EWat)| < [ dady NPV p) [ s

X NN+ 1) 2eBbobye™ e[| (N + 1) 720" () g€ .

With
IV + 1) 72 (a.0)ay€ ]| < Cllmllllayéll < Ce*lay]|

and using Lemma 3.8, we obtain

(e%

Cv .
- / dedy N¥V(N?(z — y))|ayé€]|
A2

x { (1og NV ++ N) (W5 + 1)M2€l] + Va8l + Nyl + N2zl |
< O (N3 + D)V262 + LN+ )MV 2 €]l

(3.68)

Also for the term W3 in (3.59), we switch to position space. We find

W; = ¢ dxdy N**V (NP (z — y))
A

N Jp2
1 s
x/o ds/o dr (e_SBHB;B;eSBH e~ TP (Mg 2 )b (M) e + hc.)
and so

(e Wat)| < [ dsdy NV (N = )

1 s
X / ds / ar ||(Ny + 1) 2e=sBup b eBrg |
0 0
X ([N A+ 1) 7210 ()b (77, )€™
With Lemma 2.2, we find
I+ 1) 2500 (1,00 (e €N < Cllmal | (N5 + )2

Using Lemma 3.8, we conclude that
C
(€, W38)| < NHWH”Z //\2 dedy NV (NP (x — y))||(Ny + 1D)Y%¢|

x {(log N + N)| (Vs + 1)V + Nau€l + Nlay€ll + N2 aaaé]

< COC (N + 1)V + Ceo| (V) €N + DY)
(3.69)

The term W, in (3.59) can be bounded similarly. Switching to position space,
we find

1
Wa= /d:cdy N?PV(NP(z —y))
1 s
X / ds/ dr (e_SBHB;l;Z e*Bu e_TBHb(ﬁ%LI)ByeTBH +h.c.)
0 0
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where 72 denotes the function with Fourier coefficients n%(q), for ¢ € A*, and
where 7% ,(y) = nu*(x —y). We conclude that [|72|| = || < C6**. With
Cauchy-Schwarz, we arrive at

6304 1 s
Wil < S [ s [ ar [angv (v —g)
0 0
X [N+ 1)2e=>Bub boeBre [ |byem |-
Applying Lemma 3.8 and then Lemma 2.2, we obtain

3o 1 s
1(€, W48)| Scﬁf /0 dS/O dT/dxdyN%V(Nﬁ(x—y))||6yeTBH§H

x {(log N + N)|[|[(Ny + 1D)V2E]| + Nljag€||
+Njay |l + N2 aga,€ }
< CO|(Ne + DY + OO (V) €N + 1),

Finally, combining (3.67), (3.68), (3.69) together with the last bound, we end up
with

1 ~
Gt = Vi + I > VO /NPu(g+7) (b +hc.)

qEA% reA*:
r#—q

Foy X VNl (1- ) (1- 25

qEN’ reA*:
r#—q

+EptY

where 8}?,’7(44) satisfies (3.55). As for the bound (3.56), again, we argue similarly
as we did at the end of the proof of Prop. 3.3 to show (3.12).
[

3.1.5 Proof of Propositions 2.4

Aim of this subsection is to prove Proposition 2.4. To this end we combine
the results of subsections 3.1.1 - 3.1.4. Indeed, from Propositions 3.2, 3.5, 3.6,
3.7, we conclude that the excitation Hamiltonian gﬁ’e defined in (2.39) is such
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that
V(0
Gt = ;)N+N+—1< M)
N—-N.\N/N-N, -1
+ an[p%erVp/Nﬁ v > VN anK ¥ +>( N )
pEPH reA*
p+rePy
_ CN-N
+ K+ Z V(p/N’B)apapT+
pEA*
F Y [Pt V@I 4 e S VN e | (507, + i)
EPH reAN*: p+rePy
1 ~
i Z [ BN+ 5 D V(T/Nﬁ)nw} (bpb_p + b, 1%)
106]3c reA*: p+rePy
1 N
+—= V(p/NP) [b5, 0" a—i—hc}—i—VN—l—SB
\/N p,qEA%—l—q;éO - !
(3.70)

where
+&7 < Cr Y (HE + 1)

and, with the notation fy; = f(N /M),
= far, [far, €] < COTIM7E 5 (Hy +1)

for every f bounded and smooth and M € N.
First, we want to show (2.42). Using the scattering equation (2.20), we have

> [p%p +V(p/N?) + % > V(r/NB)nW]

pEPy reAN*: p+rePy
=) ﬁp[ V(p/N%) + N0 5%0(p) + N0 >~ Rulp — @)y }
pEPy qeEN*
1 ~
—5n 2. V=N,
P,qEA™:
PEPH,q€ Py

With Lemma 2.1 and estimating

el = el <€ Amull < €% X null = Ixetall < l9ull < €9,

we conclude that

N — N N-N,.—-1
p;f,np[p”ﬁv( p/N?) + Z V(r/N? "P*’"K N +)< N )
p+r€PH
1 ~ N — N N-N, -1
jéwp/wm( ) () e
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with £&7 < C(|log (*| N~ log N4-£o~ 1222 N 1) Since D pers, IV (p/N?)||n,| <
C|log¢*|, and from (2.14), we further obtain

Z np[p2np+‘7(p/Nﬁ) + % Z V(r/NB)anrr} (N;V/V;—) (N—N+ — 1>

N
pEPy reA*
p+rePy
V2(0) 5 N—-N, P
= |~y losN (N—/\/'+—1)( ¥ + &,

(3.71)

where &) < C(|log (| N~ log N + (21 4 (202N ~1),
Using once more (2.20), we can also handle the fourth line of (3.70); we find

1~ 1 i *7 %
SO VN 5 DD VN e | (B, + bibey)

pEPK rEA*: p+rEPy
=) [ N2\ %u(p) + N2 Y Rulp — q)nq] (007, + byb_y)
pePm qEN*
1 TV * 7 %k
—ov 2 V(= /N e (Bbt, + yby).
paqu*5
PEPH,qEPy

(3.72)
Notice that

(€ N0, 3 Ry )| < COPING + 1Y€ S IRl

pEPy pEPy
< CePHIERA (N 4 1) 2|2
< CPPODN (NG + 1) 21K %¢]|.

Using Xy * n = n (because x¢(z)w,(x) = we(x) in position space), we can also
bound

‘(5, NN > Relp— @)mg(B07, + bpb—p)@‘ < ONTHZ|(NG + 1)1 2.

pE Py ,qeA*

Furthermore, we have

1 ~
Con D Vil —a)/Nmbyb8)]

p,qEN*:

pEPH,qEPI(fI

1 |[V((p—q)/NP)PT?

S%{ Z W’ ((p‘g)‘/ )q

e q p

PEPH ,qEPE

1 1/2
[ > —\p|2|rbp§||2] I+ 1%

2
ol
pEPy, qEP;I

< Cllog €|(log N) 2NV [[(Wy + 1)V%¢].
(3.73)
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We conclude that Eq. (3.72) can be included in the error term as

1+ 1 N
£ P+ VN 4 5 D VN | (505, + byboy)
pEPy reA*:

prela (3.74)
< (637D L o2 N1 4 log | (log N)YV2N~1H (K + 1)

< Cg3/2(a—l)(lc + 1)

for N large enough. Proceeding in the same way for the fifth line on the r.h.s.
of (3.70), we can write it as

S PN+ S VN ] (b ,5)

pEPf; reA*: p+r€PH

=z Z (-/N®) % J) (p) (byb—p + 7, 05) + EF

pEPC

(3.75)

where the error operator

1 ~ * *

& =5y > V(= a)/N)yy(bobp+ 17, b5)
p,qEA™:
P, qEP;

can be bounded by £&7 < C|log ¢|(log N)Y2N (K + 1), similarly as in (3.73).
Combining (3.70) with (3.71), (3.74) and (3.75), we conclude that

V() V(0)? N - N
- [F2 - 0w (Y52
V()  V(0)? N — N,
2 TN IOgNB] N+( N )
+E+ Y \A/(p/Nﬂ)a;ap t 4 Z (-/N®) % Fiv.0)p (bpb_p + b%,0%)

pEAi pEPL
1
+— ) V(p/N?) [05, 0" yaq +hc. ] + V5 + EF

P,gEAY :p+q#0

with
+& < CLHHE, +1) + C|log ).
Observing that
+ Y V(p/N)apa, < COYK+1),

pEPH

that [V (p/N?) — V(0)| < C|p|N~?, and that, by (2.14),
((V/N?) % fye)y = V(0)]
< /dx NQBV(NB:E)fg(NBa:)‘eip’I -1+ ‘/NZBV(Nﬁx)fg(Nﬁa:) — V(0)

< C(Ip|N~ + (log N”)/N) 3.76)
3.76
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we arrive, with gmﬁ defined as in (2.41), at QNe = Q’B off 4 Sﬁ,z, with an error
P58 ¢ that satisfies
+£EN, < CLT'HY + C|log (|

for all N large enough. This completes the proof of (2.42). The second bound
in (2.43) follows similarly, arguing as we did at the end of Prop. 3.3.

3.2 Analysis of the cubically renormalized excitation Hamil-
. p
tonian RN,E
In this section we want to prove Proposition 2.8, which gives a lower bound

on the excitation Hamiltonian R”? No = e‘AHQB eff A , with QNZ as in (2.41) and
the cubic phase

1
Ay = — g e by pa ay — hc] (3.77)
VN pymeps "

introduced in (2.54). Here we indicate the high momentum set Py = {p € A% :
Ip| > ¢~} and the complementary set Pf; = {p € A% : [p| < 7} for o > 0. To
this aim, we decompose for convenience

Oxy =On+K+Qn+Cy+Vy

with K and Vﬁ, being the kinetic and the potential energy operators, as in (2.40),
and

o= [E2+ S8 ] . (2525
ﬁi] 0 ()

(3.78)

N N\ V(0)
Qn =V(0) Z ayay (1 - ﬁ) — Z (050", + byb_y]
pEPY; pePy

CN:L Z Vip /NB)[p+qa ol +he ]

P,gEAY :p+q#0

with Pf; = A%\ Py. To study the contributions of these operators to RY N and
so to prove Proposition 2.8 we will need a-priori bounds controlling the growth
of the expectation of the energy HE =K+ V]/f, through cubic conjugation, in the
next subsection we obtain these bounds. Throughout this section, as in section
3.1, we will always assume that V € L?(R?) is compactly supported, pointwise
non-negative and spherically symmetric.

As we already stressed at the beginning of this chapter, this analysis follows
from the one in [10], with some slight modifications. In particular, our analysis
is simplified by the fact that in two-dimensions we do not need to introduce a
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cut-off on low momenta, restricting the momentum v appearing in Eq. (3.77)
to a subset of Pj;. On the contrary, in [10], the authors need to restrict v to
the set of low-momenta P, = {p € A% : |p| < £77}, with 8 < a, rather than
considering v in P = {p € A% : [p| < ¢~*}. Furthermore, the growth of the

total energy operator 7—[]6\, as stated in Prop. 2.7, is the best that we can achieve
(due to the logarithmic growth, and properties of the logarithm). On the other
hand in [10, Section 8.1], the authors need to work harder to control the growth
of the total energy (a-priori bounds on the growth of the kinetic energy operator
on low-momenta K = Z\pl <t-v p2a;ap, allow them to treat better the growth of
the total energy operator).

3.2.1 A priori bounds on the energy

To get a-priori estimates on the growth of the expectation of the energy
operator, we proceed first in controlling the commutator of the cubic phase (3.77)
with the potential energy operator Vﬁ,.

Proposition 3.9. There exists a constant C' > 0 such that

1 T * *
Ve Ap) = e > (VNP ) (r)[br,,a7 0, +he ] +6,5 (379
reN’ wePY
r#£—v

where
(€, 0y O <C(] log €]"/20% + 02)[| (K3, + 1)/2¢)? (3.80)

for all a >0, ¢ € (0;1/2) and N large enough.
Proof. With

[a;+ua;aIJG’Q+U7 b:-ﬁ-va*—rav]
= [a;+ua2aPGQ+u7 a:Jrv] 1 - (NJr/N)a’ira’U + b:+v [a;+ua;aPGQ+u7 airav
= by Oy Qg u@” 0 0p iy + )10 050" 000 1ty
+ b 4 g p 0 —p g+ U0, 0 Qg0 Orp
- b:+va*—ra;+uapaq+u5q,v - b:+va*—ra2apaq+u6v7p+u
and normal ordering the first two terms, we obtain

*

1 ~
Ve Anl =z Y. Vw=r)/N)nb,,0" 00+ 02+ 05+ Ot he.

u€A*,re Py ,vePE
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with
1
O, = N3/2 E : V(U/Nﬁ)”r pruly+v—ul= s GpQ

uEA™,pEAT,
TEPH,UEPC

1 Z
Py— 6 *
O3 1= N3/2 u€A* ,peAY, V(U/N )777“ r+v P+u —r—ullplv (3-81)
T’EPvaepc

Z V( JN?)n, b o @ Ay -

uEAN* peAY |
re Py vePf

1

O1:= ~p

Where with 3" we indicate that we exclude choices of momenta for which the
argument of a creation or annihilation operator vanishes. Writing

1 * ~
N3/2 Z V((’U, o r)/Nﬁ)nTb vaffua'u
ueA*
rePy,vePg

—1 - U * *
~ N3/2 Z V((U_T)/Nﬁ)nTbu_H,a_u@v
u,reEA*,
vePE

1

T ON32 Z V((w—7r)/N),b, 0" a0,

ueAN* wePf,
rePgU{0}

and comparing with (3.79), we conclude that 5va =0;+ 0,4+ 03+ 0,+h.c.,
with

1
O, = N2 Z V((U —7)/N7)n,b; uto@—y @
uEN* wePf,
rePgU{0}

and with O, ©3, 0, as defined in (3.81).

To conclude the proof of the lemma, we show next that each error term ©;,
with j = 1,2, 3, 4, satisfies (3.80). We start with ©;. For any ¢ € ]-"EN, switching
(partly) to position space and applying Cauchy-Schwarz, we find

) ) o 1/2
|<§,@1€>|§—N{/ dedy N**7'V(NP (@ —y) > el 2||b$ay§||2}
AZ re{0}uPs,
vePE
1/2
| [ty NV S o]
AZ re{0}UPg
vePE

C
<5l log €[ (Vi) /€[l .
(3.82)
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Denoting by 7y € L*(A) the function with Fourier coefficients ny(p) = n,x(p
Py) and using (2.23), we can bound the term O, on the r.h.s. of (3.81) by

1
(€, 0:8)| = ‘Nlﬁ/ dedy N*W(NP(x —y Z e (e, b ita ﬁHy)axau@‘
veEPE
||77 || d dy N2°-1y NB . -2 N1/2b - 2 V2
< | [ dedy (N?(@ =) D [l 2N *Bea g
vePy

dxdy N>~V (N*(z — s
| [ oy w=9) 3 Plaadl?]

veEPE
< O log (2| (V) E[IIKM¢ -

The remaining contributions ©3 and ©4 can be controlled similarly. We find

1 - —ir atak
(6,008)1 = |7 [ oy NPV ) e i)
TePHv
vePE

1 1/2
< NW{ / drdy N**7'V(N(z —y)) Y |o 2||br+vamayf||}

T'EP[{7

vEPE

1/2
X U drdy N¥7'V(N(z —y)) Y nf|v|2||éxav5||2}
A2

rePy,
veEPE

Cllog €'
<= VPO NIV

< Ot log €2 (V)2 €12

as well as
1 —iv vk v v
(€, 048)] = ‘N—/ / drdy N*7'V(N%(x =) Y mee (€ bry 0" Taxamay@'
rePy,
vePE
1 1/2
< | [ dody NV =) 3 1 Pl
TGPH
UEPI‘;

1/2
[/ drdy N**7V(NP(z =) Y [r]*[[brrva Taxfllﬂ
A2

TEPH
vEPE

< o)l

Choosing N > |log ¢|*/? (to control the r.h.s. of (3.82)), we obtain (3.80). O

With the help of Prop. 3.9, we are now ready to prove Prop. 2.7
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Proof of Prop. 2.7. We apply Gronwall’s lemma. For a fixed ¢ € ]:fN and
s € [0; 1], we define

fe(s) == <§,e_SAHH§7 eSAHg).
Then

fils) = (& e MK, Aplet1g) + (€, e VY, Alertne). (3.83)

Let us first consider the second term. From Prop. 3.9, we find

VP, Ay = Ni/2 Z (V(-/NP) % )(r) (b 0" a,+he ]+ 5va

rEAi
vEPE ,r#—v

where the operator 5\/5 satisfies (3.80). Switching to position space and applying
Cauchy-Schwarz, we find

RCED DI (0 RG]

reA wEPE r#£—v

—1 - N T —s ~ ok vk s
= 'Nl/Q /A2 dxdy N2B8 1V(N’B(:E —y))n(m _y) Z e <§,e AHaxayave AH€>'
vEPE
CHﬁHoo B\1/2 _sAp 28-1 5 sAH 971/2
e C
1ogN 5 i
O I(VR)2 e e[| et

(3.84)

because, by (2.25), ||77]| < C'log N and
[l 5 e
A veP

Together with (3.80), for a > 0, we conclude that

‘2 _ Z <€SAH€7GZGU€SAH€> < <€SAH€,N+68AH£>.

vE Py,

(€ e DG, Aule9)| < Cle, MG, ) (3.85)

if N is large enough. Let us consider the first term on the r.h.s. of (3.83). We
compute

1
K, Ay] = Wi Z 2r’n, [bF . ,a* .a, + h.c.

TEPH,vEPIfI

—1—% Z v b ,at,a, +hel

TGPH,UEPI?I

(3.86)

= T1 + TQ.
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We use (2.20) to rewrite the first term on the r.h.s. of (3.86) as

1 ~ ~
Ti= - 3 VN () [bat b
reA; wePs,
1

r#—v

b /. B*ANT*GJ_GJ’U C.
+WT7;§,(V(/N) Fre) (1) [br 0" v, + hec] (3.87)

r#&E—v

1 Pt
+ i Z N2\ (Xe * fve)(r) b, a0 a, + he]

rePy,vePg

=Ty + T2+ T3

Since || fr]lo < 1 and using Lemma 2.1, part iii), the contribution of Ty; can be
estimated similarly as in (3.84); we obtain

(& 74Ty eAmE) | < (V)2 e g |V Pestrg .
The second term in (3.87) can be controlled by

) 1 1/2
|<f>esAHTm€“H€>\SW[ D |r|2||br+ya_resAHf||ﬂ

rwePf r#—v

1/2
x [ > |r|—2||avesAHs||2}

rwePf r#£—v

< Cllog )2V 2esAn e || N PesAug)|.

Finally, since (X, * .]/C\N’g)(p> = X¢(p) + N71n,, the explicit expression in spherical

coordinates
e [ [ =3 H O
p

where J; is the Bessel function of the first kind, and for high momenta can be
bounded by ([56])

and the bound (2.18) imply that |(X, * le)(p)] < COV2|p|=3/2) for N large
enough. With Lemma 2.1, the third term on the r.h.s. of (3.87) can thus be
estimated by

(€, 74 Tze* e |

1/2
SCE‘“”QN‘”Q{ > |r|2|||bT+Ua_resAH§||ﬂ [ ST [P llage g

rePy vePE rePy,vePE

1/2

< COPEN | e e[|V 2etug]| < O e e[|V et
(3.88)
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So far, we proved that
(€, T1€)| < Cllog £'2[|(HZ )2 et |[[|NL e ug | (3.89)

for all ¢ € F=". Let us now consider the second term on the r.h.s. of (3.86). We
find

(€, e Toe 1)

C 1/2
< TQ br rUa/_TGSAH 2:| |: v 2,2 aveSAH 2
‘_WLZ 210 {l S ol tng]

Py wePg rePy,vePE

1/2

< O£a||K1/26SAH§||2 )
(3.90)

Together with (3.89), we conclude that

(€, e K, Aple** &) < C{E, e HY 47 E) + Cllog (|(€, e AN e A E).
(3.91)
With Eq. (3.85), Eq. (3.91), and Prop. 2.6, we obtain the differential inequality

|[fe(s)| < Cfe(s) + Cllog £ (€, (N5 + 1)¢).
By Gronwall’s Lemma, we find (2.55). O

3.2.2 Analysis of e 47 OyelH

In this section we study the contribution to R?v,z arising from the operator
Oy, defined in (3.78). To this end, it is convenient to use the following lemma.

Lemma 3.10. There exists a constant C' > 0 such that

‘ Z Fy (&, (eiAHa;apeAH — aya,)&2)
pEAi (392)

< COFllscl (N5 + D)2 [V +1)26|

foralla >0, &,& € F2N, F € ((A%), £ € (0;1/2) and N € N large enough.

The proof follows directly from [10, Lemma 8.6], we report it for convenience
of the reader.

Proof. 1t is a simple consequence of Proposition 2.6. We write

Z Fy(e Mata,e™ — a’ay) / ds Z Fye 4 [ara,, Ayle®'"

pEAY PEAT

and compute

1
> Flara,, Anl = i > (P + Foo = F)pibry 0% a, + he.

pGAj“F rePH,vePIc{
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

By Cauchy-Schwarz, we find with the help of Proposition 2.6 that

1
‘\/_N Z (Frgw + . — Fv)nr<€SAH£17 b:+va*—rav€SAH§2>

rePy vePE

CllF | A A
< — = Y nelllave™* &llllarby et G|
N r€ Py wePs

< COYF ol (V5 + D)Y26 [Ny + 1)1,
Since the bound is uniform in the integration variable s € [0;1], we obtain
(3.92). O
With the following notation

V(0) V(0)? V() V(0)
Dy = —>+ —2-log N’ Dy =-—2— " logN”
NT Ty T gy e N srN et

the following statement holds.

Proposition 3.11. There exists a constant C' > 0 such that
N - N,

e A Onett = DN, < I

) + Dx(N = N2 + o,

where
|<€a 5ON€>| < C€a<€7 (N-‘r + 1)§>
foralla>0, &€ ffN and N € N large enough.

Proof. Recall from (3.78) that
N - N,

Ox =Dy N, ( =

) + Dy (N — Ny)
Lemma 3.10 implies that
£ {e= [Dy Ny + Dy (N = Ny)| e — [Dy Ny + Dy (N — N3]}
< CUY Ny +1).
As for the contribution quadratic in V., we can write
N (e [ et - A €)
= N7' (&, [eMNe™ = N &) + N7H(E [ MN e — NL] &)
with & = e AN e ¢ and & = N €. Applying again Lemma 3.10, we obtain
[NTHE [ Ne™ = N2] §))
< ONTHNG + DY2| IV + D26+ [V + 1)Y26]]
Using (twice) Prop. 2.6, we find
[N+ D26 = (Ve + 1)2e MmN etirg]| < OV + 1))
Hence,we conclude that
(& [em M NZet = NE] €))
< ONTH(WNG 4+ DYZE Vs + 12| < OV + 1)1
O
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

3.2.3 Contributions from e 44 et

In this subsection, we consider contributions to R’]B\,’Z arising from conjugation
of the kinetic energy operator K = Zpe A% an;ap. In particular, in the next

proposition, we establish properties of the commutator [KC, Ay].

Proposition 3.12. There exists a constant C' > 0 such that

K, An] = — S (VN v (p) (b 07 paq + hic.)

PEAY qEPE pF—q

Z [bF 0% yaq + e | + 6k

PEPE qE P p#—q

2=

<

+<O

=

where
(&, 8| < PN (HE +1) %€ (3.93)
foralla>1, ¢ € ffN, N € N large enough. Moreover, we have

’% Z (&, [0y g0” pag, A 5>‘

P,q€ P ,p#—q

<O |log €2 + )| (Hy + 1) %€

(3.94)

foralla >0, € € ]-"fN and N € N large enough.

Proof. The bound (3.93) is a consequence of Eqs. (3.86), (3.87), (3.88), (3.90)
in the proof of Prop. 2.7, and of the observation that, from the estimate (3.76),

e X TN B - PONE B0l

P,qEPf ,p£—q

< CN-YES Z 1Pl l|bp+qa—péllllag|l

P,q€E P ,p£—q

+ C(log N°O)N 32 Z 1bp-+qa—p€ Il agl

D,9€ P . p#—q

< O(N7P072 + (log NPO)N Y| 2| [N €.

Let us now focus on (3.94). We have

=

0
( Z [0} a* aq, A ] + hec.

P,q€EPE p#—q

- 3

0) (3.95)
Y Z T [bp+qa7pam by i@ 0y — %lerbrﬂ)] + h.c.

TEPH’p7Q7U€P]?[7
PFE—qrFE—V
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

We split the commutator into the four summands

>k * * * * _ * * * * >k *
(b5, 0% yaq, bryya ay — aba_ybyp] = (b5, Ui a0t an] + [aha_ by, b5, ])a* ag
>k * * * * *
+ bp+q ([a—pafP br+va—rav] + [ava—rbr'ﬂﬂ a—paq])'
(3.96)
We compute
* >k * * _ b k * _ >k * *
[prrq? errva’fra’U]afpaq - _br+vbfrafpa’q6]7+q,v - _errvbfraqfvaq(sp-i‘q,v (397)
as well as
* * *
laya_vby iy, by Ja” ay
* % *
=(1- N+/N)avar+qaqar+v5p+qﬁr + (L = Ny /N)ayaulpsg,—r0r0,—p
ko k *
+ (1 =Ny /N)aya; . a—1aq0psqriv + (1 =Ny /N)ayaydpigrivoryp
—1 % % * —1 % % —1 _*
- N aa,, a” ,a a0y — N avaq_r_v@,r@qdrﬂ,,p — N avaqﬂ,arwaqépm.
(3.98)
Similarly, we find
* * >k * _ >k * * >k >k *
bp+q[a—paq7 br—&-va’—rav] - bp+r+vb—pa’—ra115q,7"+v + bp—rbr+va—pav6q7—7” (3 99)
* * * :
- bq—vbr+va—raq5*pyv
and
* * * * * * *
i glana_vbiy, a” jag] = by, anaghey0rp — by, a” a_.biy0g, (3.100)

* *
+ b,y ybOr iy

Taking into account that d,, = 04— = 0pyvq = 0 for r € Py,p,q,v € Pf; we
obtain, inserting these formulas into (3.95),

~

0 7
\/(N Z [b;+qa*—paqa Ay] +he = Z T;+h.c.

P,9€E P ,p£—q j=1

~—
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

where
2V (0) . e
Tl = = T Z nrbr—l-vb—raq—vaq;
re€Py;q,veEPy,
qFv,r#E—
V(0 ‘o
Ty := % Z nr(l - N+/N)avar+qaqa7”+v?

rEPH;qvEPE,

T3 := Z n-(1 — Ny /N)aja,,

rePy ,vePE,
r+veEPg

T4 = Z 777'(1 _N—&-/N)aza;frfva—?"aq?

TEPH;q,UEPﬁI,
q—r—vEPE

(3.101)

V(0)
R * ok *
Ts:= — e E Nyl (@ 0 QO
TGPHzp’q7/U€PI?[7
pE—qrF—v

(0)

R k%

Te:= — 2 E Ny Qg A—r Gl
re€Py;q,vEPE,
r+vEPE ,qAT+v

T? = = T Z nrb;+va*fpafrbr+v7

rePy.puePg,
p7’l”7£—U

V(0) P
Tg = N Z nrbq_T_UaUa_rbq.

r€Pr;que Py,

r+vEPf q#T+v
In fact, Yy collects the contribution from (3.97) and the non-vanishing contri-
bution from (3.99), Ty — Y4 corresponds to the five non-vanishing terms on the
r.hs. of (3.98), T7 and Ty reflect the two non-vanishing terms on the r.h.s. of
(3.100).

To conclude the proof of Prop. 3.12, it remains to show that all operators in

(3.101) satisfy (3.94). By Cauchy-Schwarz, we observe that

cere -

(T <= D InelllagWe + D)Y2eIrlllazrag-oaro (N + 1) 72
TGPH;q7’U€PI(§7
qFv,r#F—v

< CO||(Ny + D)2 I 2.
While the expectation of 15 is bounded by

C _
|<§7T2§>‘ < Z n:[lalllagar+v€llg] 1||avar+q§“

N
re€Py;q,vePE,
q+rePg r#—q,r#—v

< Cr2| log £]V2|| V%€ ||| NV} %¢].
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

On the other hand one can easily see that +Y3 < CN~!|log ¢|N,
< Cl* (N, + 1), since we already said N > |log /|, and the expectations of the
terms T4, T and Yg can all be estimated by the expectation

C _
(€, (T4 + T + Ts)E)| < N > [0 |[v][|avag—r o€l 0] la—ragé]
re€Py;q,vePE,
q—r—v#0

< O [log 2| KV 2|V ¢ ).

Finally, the expectations of T5 and Y7 can be bounded by

o .
(& T:0)] < =7 > [0l [Pl la—pavapo€llpl " r[lla—rarruaqd]]
r€Py,p,q,vEPE,
PF—GTF—V

< O log (]2

and by

ce _
(€, T76)] < o Inlplllapapsi€lllpl ™ rllararg]

N
rePy ,p,vePg,
p/rl#iv

< O log 212

3.2.4 Analysis of e 41 QyetH

In this subsection, we consider contributions to R]B\, , arising from conjugation
of Qu, as defined in (3.78).

Proposition 3.13. There exists a constant C' > 0 such that

. N V(0
e Qe = V(0) Y a;;ap<1 — W+) + % > [opb7, + bpby] + oy
PEPH PEPH
where
+ 0o, < CLlog 0 (HE +1) (3.102)

for alla >0, and N € N large enough.

Proof. Proceeding as in the proof of Proposition 3.11, it follows from Lemma
3.10 that

+ {XA/(O) > e Mara,(l— N/N e —V(0) Y ala,(1— N/N)

pEP peEPS,
< CUY(NL +1).
(3.103)
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

Let us thus focus on the remaining part of Qy. We expand
V(0
7O S (i b Jetn — [, + 0]
PEPH
Vo) [
= —; ) /0 ds Z e~ sAH [b;b*_p,AH] e*A 4 h.c.
PEPY

(3.104)

We compute

k7 %k * * * _ * * 7 % * * * 7 %
[bpbfp, by 0"y — ana_pbriy] =07, [bpbfp, afrav] + [ava,rbrﬂ,, M 7p}

where
by iy [b;b*ﬂm airav} = _b:+vbivbtr(5fp,v + 6pw)
and
[aia,rbr+v, b;b*_p] =005 bty (0 + Orp)
+ (1 =Ny /N)OZ,_yaga—y(6rtv,—p + Orro,—p)
— 2N at (0 + Opp) — 2N’1b;a’ipa;ﬁa,rar+v.
Using the fact that 6, , = 0,, = 0 for r € Py and p € Pj, we find that

ZpEPIfI [b3b*, An] 4+ hec. = Zil(@ + h.c.), where

2
b= — — nbr, b ,b"
Y

r€ Py ,vePE,

2
Py = TN Z (1= Ny /N, _aga—r,
TGPH,UEPE:T-‘FUGP}%
2 Xk %k *
Oy = — Nz Z npra_ana_rarH.

r€Py,v,pePg

Let us now bound the expectation of the operators ®;,7 = 1,2,3,. By Cauchy-
Schwarz, we find that

09| 2 S nletar g

rePy vePE

C - —
T 2 Il NN+ D P ollo-brdor (W £ 1)
TEPH,UEPIZ

< O log £)2|| (N + D)V 2¢||

<

as well as

6, 2a6)] < \%ﬁ ST e (1= NNt )

re€Py weEPE r+veEPE

C
S o= 3 Il IOV 1) el el e

TEPHWEPE{

< L log (][ (N + 1) 2 I %] .
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

To bound $3 we notice that

ce _
(& ®58)| < 7 Y Inellpllapan Ny + 12 Ipl~ rllla-pars ]

r€Py,v,pEPY

< Ce*log (211 %¢] .
With (3.104), we conclude that
—A * ok A * 7k
+ {T > (e b, + bbo et — [, + bpb_p])}
pEPE

1
< C/ ds e 4[| log ¢|'*(K + Ny + 1) + (7| log £|'/2K] e*4
0
1
< C’/ ds e=* [(*] log 02 (MY + 1)]esn,
0

Finally, we apply Prop. 2.7 to conclude that

V(0 o N
+ { g_) Z (e A [brb* 4+ bpb_y e — [bibt ) + bpb_p}ﬂ

pEPE

< CU|log €2 (HT, + 1) + Ct2|log £]** (N, + 1).

Together with the estimate (3.103), we arrive at (3.102). O

3.2.5 Contributions from e 4H#(CyetH

Finally, in this subsection, we consider contributions to R?V,z arising from
conjugation of the cubic operator Cy defined in (3.78). In particular, in the next
proposition, we establish properties of the commutator [Cy, Ag].

Proposition 3.14. There exists a constant C' > 0 such that

2 ~ ~ N —
[CNv AH] - N Z [V(T/Nﬁ)ﬁr +V((r+ U)/NB)UT]CLZ@U% + ¢y
TGPH,UGPI(}
where
(€, 8en€)] < O + £ |Tog ]'/2) || (M + 1)'/2¢|? (3.105)

for all « > 0 and N € N large enough.
Proof. We have

1 .
[Cn, An] = N Z V(p/N°)mn, [b;+qa’k_paq, br 0t ,a, — aja_by,] + hee.

p,qEAY :p+q7#0
rePy ﬂ)EPI?I
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From (3.96), (3.97), (3.98), (3.99) and (3.100) we arrive at

(Cn, A] = % > [VE/Nm 4+ V((r+v) /Nﬁ)nr]azav@ ~ Aﬁ)

N
r€Py vePS,
12
j=1
where

o= — = E V(p/N )mbr—s—vb—ra—pa“_p’
T‘GPH,’UEPIC_[,
pEAi:p;év

52 =7 Z V(p/NB)nT(]- - N—l—/N)a’vafpa’—T pa'f—l—v;
rePy ,vePE,
pGAj_:r;é—p

B3 = N Z V(p/Nﬁ)Ur(l - N—&-/N)a:a*—pa—rar-&-v—p,
TEPH,vePﬁI,
pEN r+v#p
— 1
=4 0= N2 Z (P/NB)TH a, p+qa’ pl—rQr4yQq;
rePy vePs,
P.gENT :p+q#0

55 = _m Z V((T+U)/NB)77T a, q r— Ua—ra‘I’

T‘EPH ,’UEPC
S :7“+1)7£q

= e— E B

—6 -— ﬁ V(T/N )nT ay q+ra’7“+1)aq7
rePy ,vePg,
quf‘_:r;éfq

SYES Z V(p/Nﬁ)nT p-‘rr—l—vb—Pa rv;

TEPH ,’UEPI?I,
pEN rtvFE—p

EB = N Z V(p/NB)nT' p— rb:+v 7pafv7
r€Py vEPy,
pEAY irF£—p
_ 1
=9 = N Z V(U/NB)T’T q—v 7‘+va rQq,
rePy, ’UEP(’
qeA] #v
— 1
Sio = o7 > V@ /Nnbaiagb, .,
T‘GPH,’UGPH7
qGAi:r;éfq
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Analysis of the Renormalized Hamiltonian for bosons interacting through singular potentials

as well as

_ 1

=11 & — N Z V(p/NB)/r/T p+va'—pa bT+U7
TEPH,’UEPH,
PENY :pF~—v

— 1 .

Zii= Z V((r—kv)/NB)nr o p Oy by

TEPH,UEPH,

qGAj_:q;ér—Q—v

To conclude the proof of the proposition, we have to show that all terms Zj,
j=1,...,12, satisfy the bound (3.105). The expectation of =; can be controlled
with Cauchy-Schwarz by

ce~
(€28 < S Il + D20l rlllazsar sy (N + 1)1

N
r€ Py vePg,
pGAj_ :pFv

< CLNN- + 1)V 2] .
The same bound holds (after relabeling) for Z9; we find
(€, Z66)] < CEWy + D)2l H2])

Also the expectations of the terms Z,, =3 and (again after relabeling) of the
terms Zs5, =g, =10, =12 can be bounded similarly. We find

cee
< Z<|77r|||ava—p€|||7“+U|||ar+va—r—p§||+|77r|||a—p%§|||7“|||a—rar+v—p€||
rePy,

veEPF,

pEAj_
+ el lavap—r—o€ |l |la—rapsll + |7 |lavap&lllr + vlflarroand]]
+ el lapsravglllr + vl larrvapg| + |77rH|aprav€H!r|||afrap€|\)

< CLN- + D)V 2.

To control the remaining terms, we switch to position space and use the potential
energy operator Vﬁ,. We start with =,. Applying Cauchy-Schwarz, we find

(6201 = |5z [ oty NPV ) 3 s i)
A2 TGPH,
UEP;I
1
<y [, N*PWV(NO (@ =) Y [nelllavtatyé|llla—rariviad]|
’I"E]DI.[7
vePE

< CE| (V)P INT ).
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Next, we rewrite Z7, =g and =;;- partially- in position spaceas

= = /A dedy NP7V (N (2 — y)) > bt a,

rePy vePE

By = [ dady N*7'V(NP(z— e, bibrar, ,a
8 \/A? ray ( (:U y)) Z Nr030y Gy 4y Qs

r€ Py weEP

Zn = — [ dedy NP 'W(NP(z — P bbby
w= = [ ey NV @) S b

rePy ,vePy

Thus, we obtain

(6,556)] < / dady N1V (N (5 — ) S |uiiya_€] ]

Ze “a,

rePy EPC
1/2
< ce vy [ / dr 3 et ,aq,,av@}
v,V EPc
< OV eIV |
as well as
‘(67 E'8€>‘ + ‘(67 E'1l€>|
<C [ dxdy N*'V(NP(z —y))
A2
x>0 (Il syl ollan | + Ol la—bergl)
rEPy vEP
< O log ]2 + )| (Vi) 2 1K€
Collecting all the bounds above, we arrive at (3.105). O

3.2.6 Proof of Proposition 2.8

In this last subsection we recombine the results of Sections 3.2.1-3.2.5 to prove
Proposition 2.8. We are assuming o > 3.
From Prop. 3.11 and Prop. 3.13 we obtain that

V(0) Z arap(1— Ny /N) + @ Z [b5b", + bpb_y]

pEPE pEPH

B
Riye 2

1
+K+Cy + V5 +/ ds e M [K 4 Cy + V3, A e
0

— CL*|log (12 (HE + 1)
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with Cy defined as in (3.78). From Prop. 3.9, Prop. 3.12 and Prop. 3.14, we can
write, for N large enough,

L p - V(0 .
> N ZV(]?/NB) [0} 0" paq +hc] + % Z [0} 0" paq +hc]

peEA, pEPy,
qEPE, qePg,
P#—q pF~—q
2 [P/N A V(4 0) /N ], (1- Aﬁ)
N v N
r€ Py wEPE

— C*|log (| (HE +1).

From Prop. 2.6, Prop. 2.7, and recalling the definition (3.78) of the operator
Cy, we deduce that

1
/ ds e * MK 4 Cy + Vﬁ, AH} esAn
0

b V(0) .
> /0 ds e s4H [ —Cn + ﬁ Z [prrqafpaq + h.c.}

pEPE ,qEPE,

PF—q
2 ~ R ) /\/+ .
ty 2 VN A V(0N ]aja, (1= ) et
r€Py veEPE
1 /1 .
e [ ds YD VRN a0, + b e
PF£—q

— C0*|log (2 (HE +1).
(3.106)

We consider the expectation of the operator on the fourth line, this can be
estimated after switching to position space as

—;L—- 1 0 —s * * s
’Nl/z/o ds Z V(p/NP)(€ e AprJrqa—paqe AH@‘

peN’ ,qEPH,
PF£—q
1
< N2 / ds / drdy N7V (NP (x _y))uaxayesAHéHH > eiqxaqesAHgH
0 A2 qE Py
1 1/2
<c [ |r<vfé>1/2esAH§||[ Jar 3 e“"‘q”%esAH»;a:;faqesAH@]
0 A

q,9' Py
1
<o / ds [[(VE)12 An ][I 2e e |
0

< CO|(Ha + DVZEP + Cev|log £ (N + 1),
(3.107)
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Next, to bound the term on the third line of (3.106) we use the fact that

5 ere VIV

i% /Olds e—sAH[ Z [‘7(7"/]\75)7)7«+‘7((T+v)/Nﬂ)nr]aZav<1—%)} sAp

'I’GPH,’UGPI(}

log N
< .
<C N

To handle the second term on the second line of (3.106), we apply Prop. 3.12
and then Prop. 2.6, Prop 2.7

( / Z [ —eAEpe ot jagett —brat paq] —|—h.c.>

pqEPC
PF£—q
< / / dt Z _tAH[;HJa paquH]etAH>
p,9€Pg,
psﬁ q

< | log €PP(HE +1) .

As for the first term on the second line of (3.106), we use again Prop. 3.14.
Proceeding then as in (3.2.6), we have

1 1 s
ds e A1 Cyet M = C +/ ds / dt e 1 [Cpy, Ap]ettH
/0 N R (Cx Ax) (3.108)

< Cy + O (H5 41) + O | log £|(Ny + 1).

Inserting the bounds (3.107)-(3.108) into (3.106) and using additionally the sim-
ple bounds

0< ) ara, <K

pEPy
and
‘7(0) Z 1
= € B8] < S X Iollapan€llel lallag]
N e i
1/2
fﬁar log €]1/2 | C12A/%¢ | [ 3 Jgf? ||aqsu2}

qEPy

< O log (2|1 K2
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we end up with

V(0 N V(0 V(0)2
+V(0) ) ara, (1 - W+> + % > [opbr, + by
pEPE PEPH

V(0) Z (b5, 0" a, +hc] + (1 — O log€|2)(7'l]% +1)

p+q"—p
\/N pEPY ,qGAj_ pF£—q
(3.109)

under the assumptions o > 3.

We define now the function vz € L>(A) by setting

ve(z) =V(0) Y ePT=V(0) > &P

pe{0}UPE pEA*:|p| <l

~

In other words, vg is defined so that vg(p) = V(0) for all p € A* with |p| < 7
and vz(p) = 0 otherwise. Observe, in particular, that vg(p) > 0 for all p € A*.

Proceeding as in (2.9), but now with V (p/N?) replaced by Us(p), we find that

~

. V() V(0)
Uy = W(N — DN —=Ny) + WN;(N—NH

+ ‘7(0) Z a;ap<1 - %)

PEPY

+ 5 > (b, +byby)

pEPE

Un

1 N
N > wslw — )
1<j

/N Z (01407 g + ga—pbpig]
PEPE gAY p#—q

* *
+ - E Ayt O Qg -

P,qENT ,TEPr#—p,—q
Comparing with (3.109) and noticing that

Z lap+rag€|l[lapagrE]

=ie

‘7
(0) Z <€7 a;+ra2apaq+rf> S

N P,qEAY rEPE: P,qENT ,TEPE:
r#—p,—q r#£—p,—q
C€_2a
< NE|?
< Tl
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we conclude that

V(0)?

N
1
N ZUIB(.TZ — .ﬁﬂj) lOg Nﬁ - 067204./\[_*2_/]\[

1<j

R?\/,Z > Uy U;f_

+ (1= Ce*log £]*)HY, — C*|log ().
(3.110)

By standard arguments, see for instance [70, Lemma 1], we observe now that,
since Ug(p) > 0 for all p € A*,

0< /A2 dxdy vs(z — y) Zd(m — ;) —N] [Z(S(y—xi) + N
— Z vg(x; — ;) — N?03(0) = 2 Zvﬁ(ggi — ;) + Nug(0) — N205(0).

This implies that

1 N
N > vpla =) >

1<j

From (3.110), we finally obtain

~

V), _ VO
2 8T

2
Rie > log NP + (1 — CL2|log £]YH3, — CLT*N? N — C~>,

This completes the proof of Proposition 2.8.
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CHAPTER 4

Analysis of the Renormalized Gross - Pitaevskii
Hamiltonian

In this chapter, we proceed similarly as we did in Chapter 3, namely, we write
explicitly all the bounds needed to prove properties of Gy, and Ry, defined
as in Eq. (2.86) and Eq. (2.95) respectively, established in Prop. 2.11 and 2.14.
These propositions are the key ingredient to prove Theorem 1.3. The analysis in
Section 4.1 follows closely that of [10, Section 7] with some slight modifications
due to the different scaling of the interaction potential and the fact that the kernel
np of e? is different from zero for all p € A% (in [10] n, is different from zero
only for momenta larger than a sufficiently large cutoff of order one). Moreover,
while in three dimensions, as well as in the dilute regime showed in Chapter 3, it
was sufficient to choose the function 7, appearing in the generalized Bogoliubov
transformation with [|n|| sufficiently small but of order one, we need here ||n|| to
be of order N~ for some « > 0 large enough. As discussed in Chapter 2 this
is achieved by considering the Neumann problem for the scattering equation in
(2.69) on a ball of radius £ = N~%; as a consequence some terms depending on
¢ will be large, compared to the analogous terms in [10].

On the other hand, in Section 4.2 we describe in details the analysis of Ry o
and we end up in proving Proposition 2.8.

The calculations in the following sections are reported as in [20, Section 6 and
Appendix A}, with obvious modification to avoid overlapping with the analysis
in Chapter 3.

4.1 Analysis of the quadratically renormalized excita-
tton Hamaltonian Gy,

The aim of this section is to show Prop. 2.11. From (2.8) and (2.86), we can

decompose
Ona =€ PLye® =GV, + G0, + GV + ONh
with A _
RS

To analyse Gy, we need precise informations on the action of the generalized
Bogoliubov transformation e”, with B the antisymmetric operator defined in
(2.27), as explained in Chapter 2, Section 2.2. Then, in the subsections 4.1.1-

4.1.4 we prove separate bounds for the operators QNa, 7 =20,2,3,4, which we
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combine in Subsection 4.1.5 to prove Prop. 2.11. In the analysis we will make use,
again, of Eq. (2.33), Lemma 2.3 and Lemma 3.1 with the appropriate smallness
of the norm of 7.

4.1.1 Analysis of g}@{{x = e BL0eB

We define 5](\?) so that
1~
N = €L = SVON + Ny = 1)(N =N + £,
where we recall from (2.9) that

1~
£ = SVON = 1+ NN =N

Proposition 4.1. Under the assumptions of Prop. 2.11, there exists a constant
C > 0 such that
+EV < NN+ 1)

for alla >0 and N € N large enough.

Proof. The proof follows [10, Prop. 7.1].
We write

£§3>:_N(N2—1)‘7( V()| 3 b~ N

qGA*
Hence,

NA — * *
eV = V) > [e7Puib,e” — bib,] —
qEAj

5‘7(0) [eiBNJreB —N+} .

To bound the first term we use (2.31), |2 — 1| < Cn2, |og| < Clngl, the first
bound in (2.34), Cauchy-Schwarz and the estimate ||n| < CN~*. To bound the
second term, we use Lemma 3.1. We conclude that

(6, EQ€)] < ON||(N, + 1)V2e)2.

4.1.2 Analysis of Q](\?)a —eBLYeB
We consider first conjugation of the kinetic energy operator.

Proposition 4.2. Under the assumptions of Prop. 2.11, there exists C' > 0 such
that

e PKeP =K+ ) pPnp(byb_p + b307 )
pGA*

- () () e
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where
(€. ENE)| < ONVEIHPE (W + 1)1 + CNT (NG + 1)V (42)
forany a>1, & € F_EN and N € N large enough.
Proof. We proceed as in the proof of [10, Prop. 7.2]. We write
e BKe? — K
/ ds Z D np[ b + O'(S)b* )(V;S)b_p + J;S)b;) + h.c.]

pEA*

/dSanp b, + 0§06, )dC) + S (b, + of)) +hee ] (4.3)

pEA*

/dsanp (s) —i—hc]

peEAT

::;(}14—(}2 +‘(}3

with 7Y = cosh(sn,), o) = sinh(sn,) and where d5 is defined as in (2.31), with
np replaced by sn,. We find

N
D N () ( )+5K
pEAT PEAY

with

& :2/ dsanpas) (bpb—p + b= 0%)

pEA*

/ ds Z D np7p5 4b*b — 2N ta »0p)

peA

/dsanp 1o + (o) — sn)] (1-28).

pEA*

Since |((17)2 = 1)| < Cn2, (03”)2 < Cn2, pPln| < €. |Inloe < N=°, we can
estimate

[(€.E1°6)]
<C Y PpLlIbglING + D)2+ Y pipllanl® +C Y pplill®
peEA’, pEAT peAl

< Ol + DY < ON72|(N + 1)Y2¢1%,
(4.4)

for any £ € F =N To bound the term Gj in (4.3), we switch to position space:

6.6 < ON [ ds [ drdy [#VV (- ) 4 Nl = o] < N7
< NG+ )72 g |G + D)€
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With (2.38), we obtain
|<§a G3§>|
< CNl“/ dady [*MV (€M (2 —y)) + N**7Ix(|Jo — y| < N™O] (N + )72 f?
A2
+ CN_M/ dady [V (M (z —y)) + N**7Ux(je —y| < N7 (V5 + D)2
A2

X [as(Ny + €]+ lay Wi+ DE] + laady (Wi +1)1%¢]

< ONTO|(Ny + 1)V2¢)12 + CNY2 2|V + D)V [Vl
(4.5)

Finally, we consider Gg in (4.3). We split it as Gy = Gay + Gag + Gag + Gog, with

1
G = / ds > pPnp (75,d") + hie. ).
0

pEA*
G22:/ ds Zp Mp <asb*pd(_sp—i—hc )
A*
" (4.6)
peA*
G24:/d32pnp d(sb*+hc).
pEA*
We consider Go; first. We write
N.+1N-N, K
(}21 = — 2{: p2n§ pJ }V +—[é§ %-}LC.]
pEAj
where £ = Z , €5, with
1 *
55— Zp Ve +1) ( bp_ﬁapap)v
pGA*
eE = / ds > (7S — 1)b,d), (4.7)
pEA*
52I§:/ dsanp d(s
pEA*

and where we introduced the notation d( - d(_p + 81, (N3 /N)by. With (2.82),
we find
—ay ArL/2
(& ERON < C Y mpllapgll” < ON NP (48)

peAi
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Using m(,s) — 1] < Cn? and (2.34), we obtain

(& EROT < D P PINZENdEEN < ONTP W + 1))

pEAi

(4.9)

To control the third term in (4.7), we use (2.83) and we switch to position space.
We find

ER = — N/ ds/Adedye”VV( (2 — ) fne(x — y)b, ?ly

2 = (s) 4.10
+ ]V/ dseQN)\g/ dxdy xe(x — y) fne(z — y)bad, (4.10)
0 A2
= 52I§1 + 52@2 :
With (2.37) and |i(z — y)| < CN, we obtain
6RO <N [ ds [ dady V(N )
A2
(4.11)

< [NVe + DYVZE [NV + 1) a.d €||
< ON'OYI(NG +1)2¢)? + ONY2 °‘|!(N++1)1/2§||||V1/2§H'

As for £X,, with (2.37) and Lemma 2.10 (recalling £ = N~), we find
(€ €3326)] < ONTO||(WN + 1)V2%¢ 2
a (4.12)
+ [ dsdyx(e = ol < NI+ 1 o, N )

To bound the last term on the r.h.s. of (4.12) we use Holder’s and Sobolev
inequality |jull, < Cq?||u|| s, valid for any 2 < ¢ < co. We find

/m dady x(|Jx — y| < N™)|[W + 1)l [laza,N3 €]

L 1-1/q 12 1/q
<l +1)7¢] [ da ( [ vt =l < N%) ( [ vla.a,n fuq)

< o+ 0] [ o ([ dylaan ) "
< CgPNE O, 1)
x { /A dady a2V, a, N 2|1 + /A dady |, Ny 2£HQ] "
< Cq' AN (W 4 1)V [ ANl + IV e
Choosing ¢ = log N, we get
| dndyxla =yl < NG+ D s, + 1)

(4.13)
< ON'*(log N)2[|(N + 1)Vl 2.
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Therefore, for any £ € .FEN

(€, E2326)] < N'72*(log N)2|KC2E (VG + 1)V2€]| + N7 (N + 1)2¢] 2.
Combining the last bound with (4.8), (4.9) and (4.11), we conclude that

(€, E5°€)] < ON'(|(Wy + 1)V2€)1” + CNY2 [ HPE W + 1)M2¢ . (4.14)

for any o > 1, N € N large enough, £ € ]:EN
The term G in (4.6) can be bounded using (2.34). We find

(€, Goab)| < ONT2|(N + 1)V (4.15)
We split Gog = 83{{ + 53{5 + h.c., with
1
EX = / ds Z P 77 s) — 1 d s)b,p, EX :/ ds Z anPdéS)b,p
pEAT 0 peEAT
With (2.34), we find
(6, Ea8)| < C/ ds Y PPl (dy)) ElIb-péllds < CNT* (N + 1) 22
peEAT

To estimate £, we use (2.83) and we switch to position space. Proceeding as
we did in (4.10), (4.11), (4.12), we obtain

1
’<f,€?{§£>’ < CN/O ds /A2 dxdy [32NV(6N(1» _ y)) +N2aflx(’$ . y’ < N,a)]

X NN+ D)2V + 1) 7 2dbyg ]
With (2.36) and (4.13) we find

6, E56)1 < N [ dady [V (o =)+ N o =y < N7

X NN+ D2 [llay Ny + DEN + lanay (N + 1)2¢]]
< ON'C|[(N + DYP + ONVE | (N + 1)V vy
£ ON' 2 (log N) (V. + 1) [
Combining the bounds for £X and £ | we conclude that, if a > 1,
(€, Gas€)| < CNY22| (W + 1)V2E || Hy2E] + ON' (N + DY (4.16)
To bound Gy in (4.6), we use (2.34), the bounds (2.81) and |[n||7;, < CN, and

the commutator (2.5):

(€, Gas&)|
/ ds 7 P2l (N + DYV + 1) 20|

pEAT

< OIN+ + Y2 Y w0 [Inp VG + 1)l + N7l 1yby (Vo + 1)M2€]]

pGA*

< ON" (N +1)Y2¢ 2.
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Together with (4.6), (4.14), (4.15) and (4.16), this implies that

Ni+1N-N
Go==) Pip—n—— +&

peA}
with
(€, E£E)] < ONVPZIHPEN NG + 1) %€] + ONT|(V + 1)) (4.17)
Combining (4.4), (4.5) and (4.17), we obtain (4.1) and (4.2). O
In the next proposition, we consider the conjugation of the operator
LY =N V(p/e) {b*b - } = V(p/e") [brb7, + byb_,]
peEA’ pEA*

Proposition 4.3. Under the assumptions of Prop. 2.11, there is a constant
C > 0 such that

e PLGVe? =N Y ?(p/eN)np(N _M) (N Ny 1)

N N
pEAi
> Ny x N—‘r
+N Y Vip/eMaya, (1- = (4.18)
pEA:
NS ey (b,hy + b 1) + V)
+E Z (p/e )(p -p T fpp)+ N
pEAi
where
(6, E86)] < ONYVAHZEN (NS + D)%) + ON' (W + 1))
(4.19)
forany a>1, ¢ € ffN and N € N large enough.
Proof. We write
e_BES’V)eB =N Z \A/(p/eN)e_Bb;bpe Z V(p/eMePa; ap
pEA* pEA*
+= Z V(p/eM)e Bbyb_y + 0207, ] e” (4.20)
pEA*
=. Fl + F2 + F3 .
With (2.31), we find
=N Z V(p/e™) [%b; + Upb—p] hpbp + opbZ)
pEAi
+ N Z v(p/eN) [<7pb; + Upbfp)dp + d;(%bp + Upb*—p) + d;dp]
pGAi
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where 7, = coshn,, 0, = sinhn, and the operators d,, are defined in (2.31). Using
11 —7,| <2, |op| < Cnpl| and using Lemma 2.3 for the terms on the second line,
we find

Fi=NY" Vip/e" )b, + & (4.21)

pEAi

with £&/ < CN'"*(N, +1).
Let us now consider the second contribution on the r.h.s. of (4.20). We find

—Fo= Y Vip/eMaa, + & (4.22)
pEAi
with
vVo_ U (/N —sB sB
& = Z Vi(p/e )/ e 7 (nyb_pb, + h.c.)e*"ds.

1
pEA: 0

With Lemma 2.2, we easily find £ < ON~“(N, + 1).
Finally, we consider the last term on the r.h.s. of (4.20). With (2.31), we
obtain

N .
Fs = 5} Z V(p/e™) [’ypbp + apb*,p} [Pypb,p + apbﬂ +h.c.

pEAj

N ~ § .
5 2 V/e) [(pby +0ub" ) doy + dy (3b-y + 0,b7)] + hic.
peAy (4.23)

N ~
+5 > Vip/eV)dyd_y + hoc,

peAi
=:F31 + Fgo + Fas.
Using |1 —,| < Cn2, |0, < Clnpl, we obtain
N > N * 7% > N N _N"r \%
Fa =5 > V(p/eV) (bpbp + b7 ,05) + N Y Vip/e )n,,T + &)

pEAT peEA]

(4.24)

with ££) < CN'"(N, +1). As for Fay in (4.23), we divide it into four parts

N ~ . N
Fsy = o Z V(p/eN) [(”Ypbp + Upbfp) d_p+dp (’Ypbfp + Upbp)] + h.c.
pent, (4.25)

=: F391 4+ F390 + Fgo3 + F304..

We start with F3o1, which we write as

~ N — 1
F321 - _N Z V(p/eN)TIp ( NN+) (N+N+ ) —|—5X

pGAi
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where &) = &)} + & + EJ; +hec., with

N ~ _

gl = Z Vip/eM) (vp — Dbyd_,,  Ey = 5 > Vip/eMbyd_,
peA* pEAY

= —— Z Vip/eN (b*b ~ N"'a%a,)

pEA*

and with the notation d_, = d_, + N~y Nibs. Since |y, — 1] < On2, [1]loe <
CN~®, we find easily with (2.34) that

(€, E0E)| < CNTP(NL + D)Y2P.
Moreover

(€ EROI < ON Y myllaygl* < NIV %12

pEAj

As for £}, we switch to position space and we use (2.37). We obtain
(6. E5E < ON [ dady V(e @ = ) IV + 1) IV + 1) g
<OV [ dady VN (o= g |V + 1)
X NN+ 1)Y2)] + €l + lay&ll + N2 €]
< ONY (W, + DV + ONY2 (N + 1) ][V
We conclude that
(6. £ E) < ON'2 (N + D)2V EN + ON' | (W + D)€

To bound the term Fso9 in (4.25), we use (2.34) and |o,| < C|n,|; we obtain

(€, Fa226)| < ON Y [ 1o—p€ll [Implll (N4 + 1)2€ ) + [Inll1o-p€ ]

pEAi

< ON'2(WV + 1))

Let us now consider the term Fsp3 on the r.h.s. of (4.25). We write Fzo3 =
EY + &Y + hee., with

N ~
&Y = Z Vip/eM) (vp — 1) dpb_,, &Y, = 5 > Vip/e")dyb_y.

pEA* peAi

With |y, — 1] < Cn2 and (2.34) we obtain

(€. €06 < ON Y mplldigllllanéll < ON'*|(N + 1))

peAi
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We find, switching to position space and using (2.36),

(€, £356)!

<CON [ dadye® V(e (z — y))Il(Ns + 1)V 2NN + 1) 2 deayg]]
A2

< ON'T|(VG + 1)V / dady ™V (¥ (x — y)) [la,€]l + N2 aza.€]]
A2
< ON'"[(Ny + D)) + ONYP (W + DM€
Hence,
(€ Fans€)| < CN'"[[(Ws + 1)V + ONY2 | (W + 1)V
To estimate the term Fsoy in (4.25) we use (2.34) and the bound

S el <e Y Loy el

2
p
pEAL peA”, |p|<eN peA’, |p|>eV

1/2 1/2
< CN+C( > I‘A/(p/eN)\?‘) ( > %)

pEAY peAT, [p|>e™
<CN
We find
€, Faas&)| < CN D [V (p/eM)|Impl | (Ve + DV [V + 1) 724, b |
pEAi
<CON DY |Vip/eM)|Impll(N+ + 1)
pGAi

< [l + 1)M2€] + Nl 1bpby (Ve + 1)V2¢] ]
<CON Y [Vp/eM)|InpllIl (N + 1)

pEAi
< [ImlIOV: + 1026 + N7l + 1260 + Inlllasé])]
< ON™ (N + 1)2¢)2
Combining the last bounds, we arrive at

P =N Y Ui/, (57 ) (F ) el

pEAi

with
(6, E4€)] < ONTO||(N + )MY2E)2 + CNY2 | (W + 1)Y2e|[|[viPe] . (4.26)

To control the last contribution Fs3 in (4.23), we switch to position space.
With (2.38) and (2.78) we obtain

(€, Fas)| < ONII(N + 1) /A2 drdy eV (" (z — y) [Ny +1)"2ddy€ |

< CONYOY|[(N + 1)Y2¢)2 + ONYV22 | (W + )YV el
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The last equation, combined with (4.23), (4.24) and (4.26), implies that

N s * *
Fa= > Vip/eV)(bpb—p + b7 b7

pGAi
~ N - N N-N; -1
o (15 ()
+

with
(€, EY€)] < CN'7*||(Na + 1)V |2 + CNV22|| (N + 1)V V2]

Together with (4.21) and with (4.22), and recalling that b3b, — N~'ara, =
aya,(1 — Ny /N), we obtain (4.18) with (4.19). O

4.1.3 Analysis of g](\?)a = e PLYe?

We consider here the conjugation of the cubic term L’g\?;), defined in (2.9).

Proposition 4.4. Under the assumptions of Prop. 2.11, there exists a constant
C > 0 such that

g](\:;”)a = e*BES\?})eB = VN Z XA/(p/eN) [0} 0% paq +hoe | + 5](5’)
p,gENY :p+q#0

where

(6, EQE)] < CNY22||(N + DY) [V €l + CNT||(Ny + 1)Y2e|? (4.27)

for any a > 1 and N € N large enough.

B
)

Proof. This proof is similar to the proof of [10, Prop. 7.5]. Expanding e‘Ba*_paqe
we arrive at

5](\?) =VN Z V(p/e™) ((prq = Dlpig + Oprgb—p—q + dpuy) a”paq

P,qEAY :p+q#0

1
+VN Z Vp/eM)n, e_Bb;+qu / ds e *Pb,b,e®?
P,gEN’ ,p+q#0 0
1
+VN Z Vip/eMnge Pby e’ / dse Py b* P
p,gEN’ p+q#0 0
+h.c.
3 3 3
— &P 1 el + &P fhe
(4.28)

where, as usual, v, = coshn(p), 0, = sinhn(p) and d,, is as in (2.31). We consider
6'1(3). To this end, we write

51(3) =VN Z Vip/e™) ((%ﬂ = Dbpig + Tprabpg + d;rq) 0% g

P,qEAT :p+q#0

3 3 3
= 51(1) + 51(2) + 51(3) :

113



Analysis of the Renormalized Gross - Pitaevskii Hamiltonian

Since [Yp+q — 1] < [1p4q|* and [Inf] < N7, we find
(&, EXO] < CNIInlP (W5 + 12> < ON'2YWV + DY) (4.29)

As for 51(3), we commute a* , through b_,_, (recall ¢ # 0). With |o,14| < Clnpql,
we obtain

(€, E5€)] < ONT||(N +1)V%¢ |12 (4.30)

We decompose now 513 = 51(31 + 5132, with

gl(g)lz\/ﬁ Z (p/e ) p+qa pQq

D,qEAY :p+q#0

Ny +1) . .
En= VN D V@M mpgbpga .

P,q€AY :p+q7#0

where we defined dy,, = c_l; (N++1) Np+qb—p—q- The term 51(3% is estimated
similarly to £5', moving a*, to the left of b_,_4; we find i8132 < CON'YY(N,+1).
We bound 5{31 in position space. We find

(€, E€)]
< Nl/z/ drdy NV (€N (x — y))||as€]l | a,da]|
A2

<ONVe | dady NV @ - )]
A2

X [NV + DEN+ N7 oW+ D72 + [Inllllay (N + 1DV + [laaayé]l]

< ON'°|[(Ny + D)Y2E)% + ONY22[ (W + 1) 2 [Vl
With (4.29) and (4.30) we obtain
(& EPE) SN2 VI[N + 1)) + CN' (W + 1)) (4.31)

Next, we focus on 52(3), defined in (4.28). With Eq. (2.31), we find

=VN > Vp/eMme b P

P,qEAY ,p+q7#0

1
x /0 ds (978bpbg + 050 00* b* 4 A0 l6" b, + oIy br by

P —q

1
+VN Z V(p/eM)n, Bb;+q / ds 71(,5)055) [0y, 07 ,]

p,g€AY ,p+q7#0

+VN Y V(p/eN)m, e Phy, ef

P,gEAY ,p+q#0

1
x /0 ds [d§,5> (Vby + 006" ) + (b, + 0B )dl + d(s)d(s)]

P Tq
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with v = cosh(sn,), off) = sinh(sn,) and d defined as in (2.31), with n
replaced by sn. With Lemma 2.2, we get

(€, Ee)| < ONT=| (N + 1)V, (4.33)
Since [by, b* | = —a* ,a,/N for p # —q, we find
(€, ED )| < CN2 (N + 1)M2¢||2. (4.34)

As for the third term on the r.h.s. of (4.32), we switch to position space. We
find

52(3) = VN . drdydz NV (eN(x — 2))i(y — 2) e Bbte?
X /0 1 ds [d;” (O + b7 (68) + (b(75) + 6% (647))dS) + dd | .
Using the bounds (2.36), (2.37), (2.38) and Lemma 2.2 we arrive at
(6.86)
<OV [ dodydz NV (o = )ity = 2 e /0 s
X I (B + b 4+ 5 () el + 1By + bSY) + b (550)) el + (g |
<CVN . drdydz NV (N (x = 2)) iy — 2)[]|b.e”¢ [N_llﬁ(:v — I NG+ 1)E]|

+ lll1Baby€ | + InlHIHCN + DEN + nllllos (A4 + )Y€l + Il 115, (Vs + 1)1/2§||}

< ON"|N2B ||| + 1)E]|
< ONY||(Ny + 1)V2¢2

where 7 indicates the function in L?(A) with Fourier coefficients r, = 1 —,, and
the fact that ||7|], |7, [|o]] < CN~. Combined with (4.33) and (4.34), the last
bound implies that

+& <ON'"* (W, +1). (4.35)

To bound the last contribution on the r.h.s. of (4.28), it is convenient to bound
(in absolute value) the expectation of its adjoint

1
Eég)* — VN Z V(p/eN)nq/ dse *Pb_,e*P
0

p,gEN ,p+q#0

X (VZ(JS)b—p + al(f)b; + dg) (7p+qbp+q + Oprgbt,, t dp+q)
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1
=N Z V(p/eN)nq/ dse *Pb_ e’
0

PgEN ,p+q#0

(s)

[Vp Vo+ab—pbp+g + Uz(zs)Uerqb;bi —q T Ol b + 7p+qa(s)b*bp+q

+d” (7¢+qbp+q‘+'0p+qb ) (Vbﬂb—P‘+’U b*)dp+q‘+'d8)d

1
+VN Z Vp/eM)n, /0 ds e_SBb_qBSBVZ(f Oprqlbp; 0", ]

PYEN ,p+q#0
=& + 5.
Since ¢ # 0, [b_p,b*, ] = —a*, ,a_,/N. Thus, we can estimate
3
(2431

1
con [as Y s locyege P el 030

p,q€AY ,p+q7#0

< ClnllP[NVE + 1)V2E)? < ONT> (N + 1)1

To bound the expectation of S?E‘;’), we switch to position space. We find

(€.£7)

< s [ ddy SVt ) el [t

+ Ill152 (N + )2 N+ [Inll15, (N + 1)Y2€] + N7 (e — )lI[(N + 1)€H] :
With Lemma 2.2, we conclude that

(€ £V SCN'E VPN + DY)+ ONT*[[(W + 1) V%12 (4.37)
From (4.36) and (4.37) we obtain

(€. &7 SCN' V| (N + 1Y) + ON' (W + 1) V%

Together with (4.28), (4.31) and (4.35), we arrive at (4.27). O

4.1.4 Analysis of g};‘fa —eBLWeB

Finally, we consider the conjugation of the quartic term ng}). We define the
error operator £ ](é ) through

_ 1 S N Ny+1
Q](é)a:eBE%)eB:VN—i-§ Z V(r/eN)anrmq(l—]\;r) (1— +N >

qui,reA*
T#—q
1 i *7 % 4
+ 3 Z V(r/eN) ngsr (bgb—q + bibE,) + EJ(V)
qui,TEA*:
r#—q
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Proposition 4.5. Under the assumptions of Prop.2.11 there exists a constant
C > 0 such that

(6, ELE) SONY2 W2 |[[(Wy + D)Y2| + CONT|(Ny + 1)2¢))? (4.38)

foranya >1, €€ ]-"EN and N € N large enough.

To show Prop. 4.5, we use the following lemma, whose proof can be obtained
as in [10, Lemma 7.7].

Lemma 4.6. Let n € (*(A*) as defined in (2.80). Then there exists a constant
C > 0 such that

IV + 1) 2e™Pb,b,e ¢
< C| NN+ 1)"2€]| + [|ay (N + 1)+

+ e (Ve + 1)V 4 [l (N +1)"%]

for all £ € }"EN, n € Z.
Proof of Prop. 4.5. We follow the proof of [10, Prop. 7.6]. We write

Gan = Vv + Wi+ W + Wy + W,
with
1 5 N ! —sB B
W, = 3 Z Vir/e )nq+r/0 ds (e=*Pbgb_qe*” + h.c.)

qEA’_j_,TEA*:r#fq

1
W = Z V(r/e™) nggr / ds (e=*Pb;  bie*Pa* _.a, + h.c.)
P,qENT ,rEA* T #Ep,—q 0
(4.39)
and
W = > V(r/eN ngern,
p’qu* ZTEN*:r#£—p—q
/ ds / dr (e7*Pbr biePe Py bt e™P +hic.)
(4.40)
W4 - (7“/6 )anrr

p,qEAT, TGA* r#—p—q

1 s
x / ds / dr (e7*Bb, bre*Pe P, bye™ + hie.) .
0 0
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Let us first consider the term W;. With (2.31), we find

1 . 1
Wi=s X VeV / ds(7§7)? (bgh—g + hc.)
0

qEA’jr JTEAN i r#£—q

_;_% Z \A/(r/eN)nq+T/ ds*yq 0 ([bq,bZ]—FhC)

qEAi,rEA*:r;ﬂfq (441)
1 R 1
+3 Z V(r/eN)on/ dsyq ) (b ) o +he)+ gy
qEN® reN rE—q 0
= W11 + ng —|- W13 + 51(3)
where
4 4 4 4 4 4
51(0) = 51(01 + 51(0% + 51(0:)3 + 51(021 + 51(0% (442)

with

1
@ _ 1 % . N\2ps g
Eon=5 D VG /e asr [ ds[2900, + (o) b + .

qEA’_‘HTEA*:r;éfq

1 ~
En=5 >, V0/n

geEN} rEA*T£—q

S—

1

dsal® (b*,d%) + h.c.)

q-—q

S—

1

1 1 S S >k
Eloh = B Z V(r/eMme | dsol?(db: + hee.)

qEA’jr,TEA*:ryé—q

1 ~
En=5 > V/"ng

qEN rEN* T #£—q

1 ~
En=5 >, V0/Mn

qEAi,reA*:r;é—q

S—

1

s~y (db_y + h.c.)

S—

1

ds (dfls)d(_szl + h.c. ) )

S—

(4.43)

With .
= sup S V(r/eV)gse] < C < o0 (4.44)

qeEN
TreAy

uniformly in N € N, we can estimate the first term in (4.43) by
(€ E1016)| < ONT (N + 1) V3¢ 7.
Using (4.44) and (2.34) we also find

(€, E02€)| < ONT722|(NV + 1)V2¢12.
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For the third term in (4.43) we switch to position space and use (2.36):
1 y
(€ ER01 < 5 [ drdye Ve @ = )i - )
1
x / ds (N + 1) 72 d, 0" (G eV + 1)
0

1
< Clillollnl / drdye™V (e (@ — )| (N + 1)72%€] / s

k(= (5) Lo / Lo e
< (1801l + 1o = DI + 12 + (6]
< ON'||(Ny + D)2

Consider now the fourth term in (4.43). We write 51(321 = 51041 + 51042, with

1 ~
=y X Ve [ sl i,

geEN} rEA*r£—q

1 ~ ! .
51(34)12 = B Z V(T/eN)an/O ds d((; )b—q

gEAT rEA £ —g
With [y = 1 < Clng|?, (444) and ||zl < Ol (Vs + 1)1/2¢]|, we find
(€ ElonE) < ON (W2 + )P
As for 51042, we switch to position space. Using (2.78) and (2.36), we obtain
(€, Egaf)|

=[5 [ s [ dndy PV - it - e a8

<CN / ds [ dedy V(e (o= ) [N+ 1) PN + 1) 2B
0 A2

1
= CNH"”/ ds/ drdy NV (€N (x — y)) (V5 +1)%¢|
0 A2
N7 [llayNagll + llana, Ny el |
< ON' (Vs + D)Y2[2 + ONYE2 (N + 1) M2V

Let us consider the last term in (4.43). Switching to position space and using
(2.38) in Lemma 2.3 and again (2.78), we arrive at

€. £
1

<ON [ ddy V(N (o= ) [N+ DY) [ a1 0]
0

A2

< CN|nll [N+ 1)%¢| / drdy eV (e" (v — y))
A2

< [IWVG + D)2l + Inlllasg |l + nllllaygll + N7 (il asayll]
< ON'|[(Ny + 1)V + ONY229 (N + D)2Vl
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Summarizing, we have shown that (4.42) can be bounded by
(€ £ SONVE VPN + DY+ CNT (Ve + 1)'2¢)P - (445)

for any a > 1, £ € ]-"_EN. Next, we come back to the terms Wi, Wi, Wy3
introduced in (4.41). Using (4.44) and | — 1| < Cn?, we can write

1 ~
Wu=5 > V/Mmbby +he) + ew, (4.46)

qGAi,TGA*:r#fq
where 51(111) is such that
(€, E7€)] < ONT2|(N + 1)¢ 2.

Next, we can decompose the second term in (4.41) as

1 ~ N
Way X T/ (120 ) e aan

qEA*+ JTEN*r£E—q

where +€5) < CN—N, + N1-3¢
The third term on the r.h.s. of (4.41) can be written as

1 -~ N\ N, +1
Wiz = -5 Z V(T/eN)anrr??q (1 - #) +T

qGAj_ JLEN*r£—q

+&9 (4.48)

where £5) = €% 1 £ + 8 1+ £ with

1 ~ 1 . 5
=5 X Vo / ds (119 = 1)b,d") + .

qEA’jr,TEA*:r;é—q

4 1 i ! s N *
51(3% =5 Z V(r/eN)on/ ds b, [d(_c)[ + anﬁbq + h.c.
qENY rEA*r£—q 0

4 1 ~ . NL+1
51(32% -9 Z v(r/eN)nq+r77qbqthT
qui,reA*:ri—q

w 1 - L N +1
Elgy = oN Z V(T/€N>77q+r7lqaqaqT '

gEAL rEA*ir£—g
With (4.44), we immediately find
+EW <ON"* (W, +1),  +EL) <CN (N +1).
With ]'yés) — 1] < Cn2, Lemma 2.3 and, again, (4.44), we also obtain

(€, EG16)] < ONTT3|(N + 1)V %¢)2.
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)
Let us now consider 5{;‘%. In position space, with d, = dl )4 (N4 /N)b*(n,) and
using (2.37), we obtain

I - =(s)
(€ EB01 =[5 [ ds [ dray NV @it - (e, )
<ONt [ dedy NV (@ - )| + 1V
A2
X N+ )Y€+ a8l + lagl + N~ i N el
< ONT(N + )M + ONY22 [ (N + 1) 2 Vel
It follows that
(€ EDN < CNVE VNN + 1)) + ON | (W + 1))
With (4.45), (4.46), (4.47), (4.48), we obtain

1 ~
Wy =2 >V eV ) g (bh—g + hoc.)

qEN} reEA*T£—q

1 N N N, +1
s Yo Ve, <1 = ﬁ) (1 - +T> + &Y

qENT rEA* T #£—q

(4.49)
where
(&, E16)] < CNYVPWPEIINV + DY2e]| + ONT |V + D)V,
Next, we control the term Wy, from (4.39). In position space, we find

1
W, = / dady NV (N (z — y)) / ds (e_SBB;B;eSBa* (12)ay + h.c.)
A2 0

with 7,(2) = n(x — z). By Cauchy-Schwarz, we have

1
(€, Wa8)| < /A2 dxdy NV (N (z —y))/o ds
X NNy + 1) Ph,b, e B[Ny + 1) %0 () ayé |

With
1Ny + D)2 ()ayéll < Clinllllayéll < CN~*(la,é|

and using Lemma 4.6, we obtain
(EWa) < N [ dady V(e o = ) o]

x { VIOV + 12l + Vel + Nllay€l + N2aaa,€) |

< ON' [N + D)V + CNY22 (N + DY)
(4.50)
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Also for the term W3 in (4.40), we switch to position space. We find
W3 = /1\2 dady *NV (N (z —y))
X /01 ds /08 dr (e_SBl;;BZeSB e 7P (11,)b* (1, )e™” + h.e.) .
and thus
Wil < [ dety Vi@ —y) (s [ ariov w0 e b
X NN+ 172650 () b (e
With Lemma 2.2, we find
1NV + 1) 726770 () b (77, )e Pl < CllmlP [N+ + 1)1
Using Lemma 4.6, we conclude that
(€, W3&)| < Cllnlf? /A2 drdy MV (e (x — y)) (N5 +1)%¢|

x { NI + 112+ Nl + Nlaygl + N2|a,a,¢] }

< ONT72 (N + D)Y2¢)12 4+ CNY2 2 W2 [V + 1))
(4.51)

The term W, in (4.40) can be bounded similarly. In position space, we find
W, = /d:vdy ANV (e (x —y))
1 s
X / ds/ dr (6_836;[); B e ™Bh(n2)b,e™? + h.c.)
0 0

with 72 the function with Fourier coefficients 772, for ¢ € A*, and where ﬁ%(y) =

n2(z — y). Clearly ||n2|| < C||7||> < CN—2*. With Cauchy-Schwarz and Lemma
2.2, we obtain

1 s

(€, W4&)| < C’N‘ZO‘/ ds/ dT/dxdyezNV(eN(x—y))
0 0

x |I(N +1)Y20, el |be™ ¢

Applying Lemma 4.6 and then Lemma 2.2, we obtain

1 S
(€, W) < ON—2 / ds / dr [ dady V(e @~ )b,

< {NIINVx + )2 + Nlasg ] + Nlayll + N'2llaqa,€ll}
< ON'9Y|(WN5 + 1)V2))° + CNY22 Ve[V + 1) 2]
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From (4.49), (4.50), (4.51) and the last bound, we conclude that

4 1 ~
g](\/)a =Vn+ 3 Z V(r/e™)nger (bgb—g + h.c.)

qEN rEA T #£—q

! % N Ny +1
+ 5 Z V(r/eN)UQ+r77q (1 - ﬁ) <1 — +T> + 5](\74,)04

qEAi,TEA*:r;é—q

where 8 ', satisfies (4.38).

4.1.5 Proof of Proposition 2.11

With the results established in Subsections 4.1.1 - 4.1.4, we cam now show
Prop. 2.11. Propositions 4.1, 4.2, 4.3, 4.4, 4.5, imply that

V(0
gN,a - % (N+N+ - 1) (N—N+)
~ 1 ~ N-N\/N-N, -1
+ > |+ NV + 5 3 Vo] () ()
PEAT reA*
p+r#£0
~ . N
+K+N Z V(p/eN)apap(l — ﬁ)
pGAi
2 N5 N 1 > N *7 %
3 [P VR 5 D VN | (65, + byb-y)
peEA] reA*: p+r#£0

+VN Z ‘A/(p/eN)[erq _paq+hc]+VN+51
P,qEAT 1 p+q#0
(4.52)
where

(€. EE)] < ONHIZEN W+ 1)'2€] + ON' (W + 1)

for any @ > 1 and & € .F_EN. With (2.84), we find

ot NV 45 F T/

PEAT reN*: p+r#£0
1~
= 3 ] SV + NEARD) + NN S Relo — g~ 5V 0/ |
pEA* qEN*
From Lemma 2.10 and estimating ||X¢|| = [|xel] < CN™, |n|| < CN~ and

[IXe *nll = lxenll < [l < CN™, we have

NN Y mRelp)| < ONIRl ] < €

pPEAT
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and

< ON*HXexnllnl < ON

N > Relp— manp

Moreover, using (4.44) and the bound (2.85) we find

1 i —2a
‘5 Z V(p/eN)npng‘ < CN'72,

peAi
We obtain
~ 1 ~ N - N N-N; -1
2 N 1 N + +
an[p np+ NV(p/e”) + 3 > Vir/e )%w]( N )( N )
peEA] reA*
p—i—rEA+
N ~ N N - N, N-N, -1
=5 X P () () e
pGAi

with £& < C for all @ > 1/2. On the other hand, using (2.85) we have

g Z V(p/eN)Up =

peEAT

N
2

Nk

(V(-/e) %) (0) — -V (0)no

_ N; ( / AV (@) fo(x) ~ V() + &,

with & < CN'~2*. With the first bound in (2.90) we conclude that

Sl 5T+ 5 T (5 (A
reA*

pEA*
- p+reA’

1

= 5 [Bn(0) = NV(O)] (V= My = 1) (N = N}) + &

(4.53)

where +& < C, if a > 1/2. Using (2.84), we can also handle the fourth line of
(4.52); we find

> [p%?p + %‘7(19/ ) + % RU eN)np+r] (0%, + byb-)

peAi rEA*:p+r€Ai
o~ A~ 1/\ * 7 %k
- Z [Nem)\gxg(p) + M)\, Z Xe(p — q)ng — §V(p/eN)770} (bpb_p + bpb,p) )
pGA: qeEN*

(4.54)

The last two terms on the right hand side of (4.54) are error terms. With (2.85)
and (4.44) we have
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‘ Z V(p/e™ o (0,07, + byb—y)

pEAY

o> ‘%/—N"} m[ > o] v+ g

pEAj p pEAi

< ONY2220 2| (NS + 1)1 %]

The second term on the right hand side of (4.54) can be bounded in position
space:

(€ A Y (e mB) OB, + byb,)E)]

pGA

< OV NG+ 1) [ dedy il = )it = IOV + 1) Db

1/2

< ONW, +17%] | [ dsdyale - 1N + ) aua
A2
The term in parenthesis can be bounded similarly as in (4.62). Namely,
/ dady xi(x = y)|(Ns + 1) Paza,8])* < CgN =2/ |||
A2

for any ¢ > 2 and 1 < ¢’ < 2 with 1/g+ 1/¢' = 1. Choosing ¢ = log N, we get

(620 S R m BB, + bybp)E)

pEAi

< ON"'(log N)' 2|V + 1) 2l 2%

and, from (4.54), we conclude that

> [p Ny + NV(p/e Z V(r/eN )np+r] (bbr, + byb_p)

pEAT reA*:
p+reA1 (4.55)
=) NeMARe(p) (byb", + bpb_y) + 4,
pEAT
with

(€, £48)] < CN~'(log N)'2 (N4 + D)2 I3

if « > 1. Combining (4.52) with (4.53) and (4.55), and using the definition (2.88)
we conclude that
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Gro = 2O - 1)(1-28) ¢ /[évv(o) 3o 0] N, (1-52)
1 — -
+ ngA Vip/eM)a: p0p ( ]J) + §p; W (p)(bpb—p +hoc.) (456)

+VN V(p/e") [b4ga” 00+ hc.]

P,qEAY :p+q#0
+K+Vn+6E5,
with
(€, E5€)] < CNYPHRPEN W + 1)V + CN' (N + )Y€
+ ON ! (log N)2[[ K2 [| (N + 1)V + O],
for any a@ > 1. Observing that |I7(p/eN) — 17(0)| < Clple™ in the second line

on the r.hs. of (4.56), we arrive at Gy o = G, + &g, with Gy, defined as in
(2.91) and with &g that satisfies (2.92).

4.2 Analysis of the cubically renormalized excitation Hamil-
tonian Ry

In this section, we show Prop. 2.14, where we establish a lower bound for the
operator Ry, = e*AQeH 4 with Q?\ffa as defined in (2.91) and with

1
A=— > n[b,a",a,—hc]. (4.57)
\/N r,vEA*
We decompose
A —Oy+K+ Zy+Cy+ Vy (4.58)
with K and Vy as in (2.87), and with
1. Ni ~ 1. N,
Ox = SN (O)(N - 1)(1 - W) + [2NT(0) — §WN(0)}N+(1 - W)’
1 ~
Zy =3 > On(p)(bpb—p + hoc.) (450)
PEAT

Cy = VN Z V(p/eN)[erq f g +he] .

P,gEAY :p+q#0

We will analyze the conjugation of all terms on the r.h.s. of (4.58) in Subsections
4.2.2-4.2.6. The estimates emerging from these subsections will then be combined
in Subsection 4.2.6 to conclude the proof of Prop. 2.14. Throughout the section,
we will need Prop. 2.13 to control the growth of the expectation of the energy
Hy = K+ Vy under the action of (4.57); the proof of Prop. 2.13 is contained in
Subsection 4.2.1.

In this section, we will always assume that V' € L3(IR?) is compactly supported,
pointwise non-negative and spherically symmetric.
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4.2.1 A priori bounds on the energy

In this section, we show Prop. 2.13. To this end, we will need the following
proposition.

Proposition 4.7. Let Vy and A be defined in (2.87) and (2.93) respectively.
Then, there exists a constant C' > 0 such that

1 ~
[VN? A] = N1/2 Z V((u - T)/eN)nT[ u+v —ua’v + h C. ] + 5VN
u,7‘,vEA*+
uF—v
where
(€, Sva€)] < Cllog NN ¢ (4.60)

for any a > 0, for all € € .FEN, and N € N large enough.

Proof. We proceed as in [10, Prop. 8.1], computing [a’, ,a}a,aq4u, by ,a*,ay].
We obtain

1
VN, A] = NI Z V((u—r)/eN)n,b: 0,0y + 014+ 03 + O3 + h.c.
u€A* ,rvEAT
with
S S
1= = use 777“ urvuaraav7
\/N ueA* p+ " ’
r,p,veAi
1« 5
Oy = V(u/eN)n bt ak, ,at . apa, 4.61
\/— ZA + p+ P ( )
p,rvEN]
1 - 5 .
O3 = ——— Z V(u/e ) br—i—v —r p+uapa”u+u‘

VN

uEA* ,p,rvEAY

and with }_* running over all momenta, except choices for which the argument
of a creation or annihilation operator vanishes. We conclude that éy, = ©; +
Oy + O3 + h.c. Next, we show that each error term ©;, with j = 1,2, 3, satisfies
(4.60). To bound ©; we switch to position space and apply Cauchy-Schwarz.
We find

(€008 < < [ dody VI 0= ) ()€l ]

< Clal [ dody V(e 0 = ) a8

<ON~|V%¢|?,
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for any & € .F_EN The term ©3 can be controlled similarly. We find

6. 006)1 = | [ dody V(o = )€ B ge.,)|
<ONT V.

It remains to bound the term ©y on the r.h.s. of (4.61). Passing to position
space we obtain, by Cauchy-Schwarz,

60a8)| = | [ dodydz VI - ate - e Baiaznag)

< N [ eyt NV - 2l - @l
A3
1/2
< ONVEVY2A ) [ / dxdydze”v<eN<y—z>)|ﬁ<x—z>|2||axayf||2} ,
A3

To bound the term in the square bracket, we write it in first quantized form
and, for any 2 < ¢ < oo, we apply Hélder inequality and the Sobolev inequality
ully < C\/q ||u||gr -derived from [45, Theorem 8.5.ii)]- to estimate (denoting by
1 < ¢ < 2 the dual index to q),

Z Z/ [62NV(6N-) * [17?] (z; — z;) 1€ (2, ... @) |2day .. . dxy,

n=2 i<j

< Cqlle*™V(e™) * [y

N n
YD [ Ve ) I o, )P
n=2 i=1

< Oql|ill3, 1+ N)Y2N 2.
(4.62)

With the bounds (2.78), (2.79),
17712, < ll7ll3/® ||||2 /e < N—2e/d N2 -D/d

we conclude that

(€.926)| < CqPNTPNT NV VN (K + N)VIN
< CqANVEN TNV eI

for any 2 < ¢ < 00, if 1/q¢+ 1/¢' = 1. Choosing g = log N, we obtain that

(€.026)] < Cllog N)PNY2 [ |
Using Prop. 4.7, we can now show Proposition 2.13.
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Proof of Prop. 2.13. The proof follows a strategy similar to [10, Lemma 8.2].
For fixed ¢ € F£" and s € [0; 1], we define

fe(s) = <§,e_5’4'HNeSA§).

We compute

fi(s) = (€, e™IC, Ale™€) + (&, e[V, Ale*e) . (4.63)
With Prop. 4.7, we have

[vN,A]—%N ST (/™) ) () [Fogot® uo + hic. ] + by

u,WEAY JuF—v

with dy,, satisfying (4.60). Switching to position space and using Prop. 2.12 we
find , using (2.78) to bound ||| < CN,

LS (T e) e, e b g >‘
_ ‘— [y NV =it — e e >'
A2
1/2
< N2 [ [ oy V- y>>||axaye“§||2}
A2

1/2
| [ oty V- el
A2
< ONY2 eIV} e
Together with (4.60) we conclude that for any o > 1/2
(6, e~ W, Ale™6)| < OlE e Hve™i6) + ON (g e (N + 1)ee) (4.65)

if V is large enough. Next, we analyze the first term on the r.h.s. of (4.63). We
compute

Z 2r? 77r O _Tav—l—hc}

rvEA*
2 (4.66)
+ —= r-on. b, ,aa, + he. :
VN m;* U [ + }
WEAY
:irTl%‘Té.
With (2.84), we write
VN S (V(/eN) * Faa) () [Brya® a0 + hec]
TUGA*
r#—uv
ok 4.
+2VN Z N (Re * sz)( )[bF,at a, + huc] (4.67)
TUEA*
=Ty +Tha.
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Analysis of the Renormalized Gross - Pitaevskii Hamiltonian

The contribution of Ty; can be estimated similarly as in (4.64); switching to
position space and using (2.73), we obtain

(6, T &)| < C\/N/dwdyezNV(eN(iv — ) fee™ (x = y))lazayé] llayé]

< CVN | [ dudye V(e = p)asa,gl]

<[ [ oy @ @ - ) e = ) langl?)

< OV ¢l
(4.68)

for any ¢ € ]-"_fN. The second term in (4.67) can be controlled using that for any
fofNand2§q<oowehave

N /A dzdy x (| — y| < N™)||agi, €| ||l |

1-1/q 1/q
< N2 /A2 dz||a.€ | (/ dy x(lz —y| < Na)) (/ ddexdnyq)

1/2 1/2
< ON%*/agl/? V dxuazgﬂ [/ drdy||a,V ;€2 +/dxdy||dxdyf\|2]
< ON*4g 2N+ DY IV + D2+ TV + 1) -
(4.69)
Hence, choosing ¢ = log NV,
|<§7T12§>|
= [N [ dadyx(fo— o] £ N fale — (6 Bajan)
A? (4.70)

<oNe [ dadyx(a =yl < N s llang]
< C(log N)V2[(W + 1)V T 2| + 1 (N + 1)M2l]
With (4.68) and (4.70) we conclude that
(€, e A Tre€)| < Cllog N)'2||(Hy + 1) 24| [[(V + 1) 2ee]|. - (4.71)
for all £ € F£™. As for the second term on the r.h.s. of (4.66) we have

|<57T2€>‘
<£[Z P2 suﬂm[ S lolndlle §||2]m
<7 Va, n (4.72)

reAi T,UEA:

< ONT|IKV2e| 2.
for any ¢ € F=~. With (4.71) and Prop. 2.12, we conclude that
(€, e~ A[KC, Ale*A€)| < Cl€, e HnesAe) + Clog N{E, AN, e*4¢)
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Analysis of the Renormalized Gross - Pitaevskii Hamiltonian

Combining with Eq. (4.65) we obtain
(€, e [Hn, Ale™ )| < C€, e He™€) + ON(E, e N e™g) .
With Prop. 2.12 we obtain the differential inequality
|[fe()] < Cfe(s) + ON(E, (N +1)8) .

By Gronwall’s Lemma, we find (2.94). O

4.2.2  Analysis of e *Oye?

In this section we study the contribution to Ry, arising from the operator
Oy, defined in (4.59). To this end, it is convenient to use the following lemma.

Lemma 4.8. Let A be defined in (2.93). Then, there exists a constant C' > 0

such that
Z Fye ataye’ = Z Fyaya, + &

pEAT peEAT

where

(€1, Eréa)| < CNTO|F[loo | (N5 + D)2& [[[[(Wy + 1) 126
forall o >0, &,& € }“EN, F e (>(A%), and N € N large enough.

Proof. The lemma is analogous to [10, Lemma 8.6]. We estimate

‘ > Bl&, e Mapaets) — (&, a;ap£2>)’

pEAi
1
= ’ / ds Z F, (&, e_SA[a;ap, Ale*&,)
0 pEA]
1 /1
< —= ds |Fro + Fop — Fv||777’||<68A€1> by vairav68A€2>|
qu: 0 r%é%i ’ '
< ClIFlloo N5+ DY2E NG + 126
where we used Prop. 2.12. O]

We consider now the action of e on the operator Oy, as defined in (4.59).

Proposition 4.9. Let A be defined in (2.93). Then there exists a constant C > 0
such that

e Oyet = %@N(O)(N—l) (1 — %)+[2N\7(0)—%@N(0)}N+(1—N+ /N)+d0,

where
+50, < ON"*(NL +1)

for all « > 0, and N € N large enough.
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Proof. The proof is very similar to [10, Prop. 8.7]. First of all, with Lemma 4.8
we can bound

:I:{e_A B@N(O)(N —1) (1 - %) + [2NV(0) — %@N(O)}NJ e

2 N
<CN"™*(NL+1).

_ F@N(O)(N —1) (1 - AA) + [2NV(0) - 1CuN(O)]J\&} }

Moreover, for the contribution quadratic in N, we can decompose
(& [N = NE] €)
= (&, [e " Waet =N &) + (& [e"Nae? — NL] &)
with & = e AN e4¢ and & = N.€, and estimate, again with Lemma 4.8,
(& [ Net = NE] )
< ONT[(Vy + DY IV + D26 + [V + 1))

With Prop. 2.12, we have ||(N, + 1)Y2¢|| < C||(NV; + 1)3/%¢]]. O

4.2.8 Contributions from e 4Ket

In Section 4.2.6 we will analyse the contributions to Ry, arising from con-
jugation of the kinetic energy operator I = Zpe AL pza;ap. To this aim we will

exploit properties of the commutator [/C, A, collected in the following proposi-
tion.

Proposition 4.10. Let A be defined as in (2.93) and Wy (r) be defined in (2.88).
Then there exists a constant C > 0 such that

K Al= —VN > (V(/eN) * fne) (p) (b 40" paq + hec.)

P.qEAY pF—q

1 R o
TN Z wN(p) [bp-l-qa—paq + hC] + 6IC

P.qEAY pF—q

where
|(€,6€)| < ONT!(log N)V2| K2 || |V} €]| + CN= | KC2¢ |12 (4.73)

foralla>1, €€ FEN, and N € N large enough. Moreover, the operator

Ax = — wn(p)[bh, 0" aq, Al
\/Np,qelg;#—q e

satisfies
(€. Ax€)] < CNT*(log N)' 2|2 |12 + CNTHINL + )% (4.74)

foralla>1, ¢ € .F_EN, and N € N large enough.
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Proof. To show (4.73) we recall from Eqs. (4.66), (4.67) that
K, A= —VN Z (X/}(-/eN) * fN7g)(’f‘) b, ,a* .a, +h.c]

rUEAT
r#E—v

+ 2\/N Z 62N)\[<5(\g * ,]?N,Z) (7’) [b:+vafrav + hC]

T,UEAi

2
+ — ~vn,.|br,,a" .a, + h.c.
5

=Ty + T2+ To.
with Ty satisfying (4.72). Using the definition &x(p) = 2Ne*N \/Xe(p) we write

1 -~ * *
Ty = \/_N Z Wn(p) [bp+qa_paq + h.c.}

P.gEAY pF—q

2 ~ * *
i o 2V ), Z (Xe *1)(p) [bp+qa_paq +h.c.]
P.gEAY pF—q

= Ta1 + T22.

Hence, 0 = Ty + T122. To bound Ti99 we switch to position space:

‘ <€7 T122€> ‘

<on [ e =it = )l

1/2
<o | [ vte - plaagder| | [ it - PagPay

1/2

1/2
<N | [ e - e
A

To bound the term in the parenthesis, we proceed similarly as in (4.62). We find
/2 Xe(w = ) apay €| dedy < Callxlly [ KCM2NZE)> < CoN' /|| KCH2¢|
A

for any ¢ > 2 and 1 < ¢’ <2 with 1/¢+1/¢' = 1. Choosing ¢ = log N, we obtain
(€, Trao€)| < ON ™ (log N)V2 Nl [IK%¢
With (4.72), this implies (4.73).

Let us now focus on (4.74). We have

1 A~ *
TN Z wn(p) [bsy a7 paq, A
P,q€AY pF—q
1 -~ *
=¥ Z N (P)1e (V)4 g0" g, b0ty — afa_rbryy] -
r,p,q,vEAY,
pE—qrF#E—v
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With the commutators from the proof of Prop. 8.8 in [10], we arrive at
12

1 *
T Z W (p >[bp+qa paq>A] the = ZTj +he.
P.aENY p#—q j=1
where
1 A~ - k * *
Tl = _N Z (WN<U_Q>+WN( )) br+vb—r q—v Qq
q,rvEANT,
qFv,r#£—0v
1 ~ k k
Ty = N Z Wn(r+ @)n(1 — N+/N)avar+qaqar+v )
q,r, vEN? |
7‘75—1),7“7:—!1
1 A~ A *
Tg = N (WN(T+U)+WN(T))77T(1_N+/N)avav7
roweEA
r#£—v
1
T4 ::N Z wN(T+U_Q)nT’(1_N+/N) a, q r—o@—rQq;
q,rvEAT
qFv,r#—v
1 5
Ty := — m Z (p)nr a, p+qa pl—rQr4yQq ;
p,q,r,vENY |
p#—qmiiv
1
Tﬁzz_m ZG;\ WN(T+U)nTvqrva rQq;
q7r77‘} +’
' a7t (4.75)
Tr:= — N2 Z N (7)nray q+rar+vaq7
q,rvEN?
G —rr Ay
Ts:= N Z wn (D)7 Db p07 100 s
rv,p€A+,
pF—T—V
TQ N p rbi—&-va pav?
p,rvEAY
p;ér,ryé—v
1 ~
TIO = N (,UN(’I")’U q+ravaqbr+v,
q,rvEAY,
qFE—Trr£—0V
1 /\ k
Tll = - N ( ) bp+va pa,_rbr,-_H),
p,rvEAY |
P
1 o~ * *
T12 = N Z UJN(’F + ,U)nqu r—oAy— bq :
q,r,vGAj_
r#q—v,—v

To conclude the proof of Prop. 4.10, we show that all operators in (4.75)
satisfy (4.74). To study all these terms it is convenient to switch to position
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space. We recall that &y (p) = gnX(¢p) with |gy| < C and £ = N~“. Using
(4.69) we find:

(€, T16)| < ON?*! /A dady xe(@ — ) [b01)bran€]| [lla=€]| + llayg]]]
< ON**n]| /A dady xo(v — ) |[bedy (N + 1)M2E |asg |
< ON"*(log N)'?||(Ny + 1)2¢ || CM2¢]

The expectation of Ty is bounded following the same strategy used to show
(4.69). For any 2 < ¢ < oo we have

| <§7 T2§> ’
< ON* / dedydzx(z — )iz — ) llasa,lla.a.g)

< oN* / dedzlifz - o)l e

1-1/q 1/q
. ( I N-a>) ( / dyuaxaysuq)

1/2
< g PN+ €] | [ dodyla, Va8l + [ dedilaael?
A A
< CN"*(log N)2[[(N + L)% | K2
where in the last line we chose ¢ = log N. The term Y3 is of lower order;
using that | >, On(r)n.| < [X(./N*)|2llnll2 < C and Cauchy-Schwarz, we easily

obtain

(€, T5€)| < CNTHING + 1) %)%
The term Y4 can be estimated as T using (4.69):

(6 Ta)] < N [ dadyxalo — ) gllati,)ad]

< ON*Hn| /A2 dady xo(w — y)llaaty€llla, (Vs +1)72%]
< CN~*(log N)2[[(N + 1) V%€ [ M2

The term Y5 is bounded similarly to Ts; with ¢ = log N we have
(€. 0)| < ON* 2l [ dodydz xely - 2)asta6| IV .t
N

< ON*32||y| / dudy gty €]
AQ

1-1/q 1/q
<([astu-s=vn) ([ axlaaar)
A A

< ON~*(log N)!?|| (N4 + 1) l]| %]
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The terms Yg and Y7 are of smaller order and can be bounded with Cauchy-
Schwarz; we have

(€. T66)| < ON*2 /A drdydzxu(x = y)asayg]| (i) a,|

1/2
s<NWPW2(/ Mﬂywu%sw) (/"dmwxax—yrSAF%n%aP)
A2 A2
< ONT(N, + )22,

1/2

and

e Tre)] < N [ dedyde vy = it - o)l laaa
1/2
< ones ([ gz ity - 2)lawal?)

X(A;m@mm@—wFMmgwfm
< CNTHI(WVG + 1)Y2) 2.
The terms Tg, T11, Y12 are again bounded, as Yy, using (4.69). We find
(6, (Ts + Tua + Ti2) )] < ON* | /A dady xe(o = ) INTas,8] 2]
< CN"*(log N)'2[[(N + 1) 2 [ 2]
It remains to bound Tg and Tiy. The term Yy is bounded analogously to Ts:
(€, To8)|
<ovet [ dudydzato = 2)lite = o)l gl

1-1/q
<on [ asdylate - il ([ oy - < 57)

1/q
y (/ ds ||a$ayaz§||q>
A

1/2

< ON~“(log N)2||(N + 1) 2|l £

5 11/2
o]

As for Ty, we find

(6. Twe)] < N [ dodyd ety = it = s

Proceeding as in (4.62), we obtain

(€, T106)| < CaN**[lxe * [illl IKM2€]* < Callilly 1€
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for any ¢ > 2, and ¢’ < 2 with 1/¢+ 1/¢’ = 1. Since, for an arbitrary ¢’ < 2,
Inlly < Inll2 = [Inlla < N~2, we obtain

(€, T10€)| < ON||K1%¢)1?

We conclude that for any a > 1

(6D Ti6)] < CN"*(log N)'? [[(K + 1)V2¢|1> + CN TV + 1)V2¢)

4.2.4 Analysis of e 4 Zye

In this subsection, we consider contributions to Ry, arising from conjugation
of Zy, as defined in (4.59).

Proposition 4.11. Let A be defined in (2.93). Then, there exists a constant
C > 0 such that
€AZN€ Z wN b*b* + b b,p) + (521\/

pe/\*

where
+6z, <CN'"*(Hy +1)

for all a > 0, and N € N large enough.
Proof. We have

- Z On(p) [e " (babe, + bpb_y)e™ — (bib, + byb_y)]
pEA*
1 1 N (476)
= 5/ ds Z Wn(p) e” [b;b*_p + byb_, Al e
0 pear
We compute
Z Z Wn(p b*b*p, br ., ay — aba_ by,
pEA
* k * -~ k k 2 *
= = ( )br—f—vb 'ub—r + wN(T)b'U (brbT+U - NaraT-‘rU)
~ N * * 1 ~ * % *
+ WN(T + U) <]. — #) b—'r e — N wN(p)bpa—paya—T’ar-‘rv'
pEA*
(4.77)

With (4.77) we write

- ZWN )bsb*, + bpb_p, A] =D T + hec.

pEA* j=1
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with
1 o k * t
= — — Z On (v)nebr b2, 0%,
N *
nv€A+
r#E—v
1 ~ * k 2 *
Il = — Wn(r)n.by (brbﬂrv - —ara,nﬂ,) ,
N N
nvGAi:
r#E—v
1 N N
I3 = — On(r+v)n, (1 — —+> b, ana_y
N N
rvEAY
r#E—v
1 ~ * *
r,0,pEAY
r#—v

To bound the first term, we observe, with (2.101),

1/2
@ (v)[?

e mel < Pjeeny g « ) | Y B

2
vEAY v
< ON~*(log N)2|| M2 || (N5 + 1) 2]
The term I3 can be bounded similarly to II;, with (2.101). We find
(€. 136)| < CN"*(log N)V2[|(Ns + 1)2e [ €Y%
With |0y ()] < C, we similarly obtain
(€. ToE)| < N7Vl ZE (W + 1)V
< ONIRYZE I[NV + 1)1
Finally, we estimate, using again (2.101),

el < N2( 3 pinPlasye e+ 102?)

r,v,pEAY

@ () 1/2
(X T laangl?)

nvaAi
< ON7*2nl|(log N)ZIC2 (N + DENNN + 1E]
< ON~*(log N)2[[ICV2€|[[|(NV + 1)1

With (4.76), we conclude that

5 3 O (€. (507, bb-)ee) = 6 (507, + 0b-)6))

peEA*

1
< N (log )2 [ ds I e g (- + 1)1 e
0
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With Prop. 2.12, Lemma 2.13, we conclude that

% Z N (P) [(5’ e (b;b*—p + bpb—p)€A§> - <§7 (b;b*—p + bpb—P) 5” ‘

pEA™
< ON~“(log N [/ + NNl IO + 1) %]
< ON'||(Hy + DMV2E.

4.2.5 Contributions from e 4Cye”

In Section 4.2.6 we will analyse the contributions to Ry, arising from conju-
gation of the cubic operator Cy defined in (4.59). To this aim we will need some
properties of the commutator [Cy, A], as established in the following proposition.

Proposition 4.12. Let A be defined in (2.93). Then, there exists a constant
C > 0 such that

N N
[Cy, A] = 2%} V(r/eMm +V((r +v)/eV)n,] af)av<1 _ W*) 4 ey
where
(€, e €)| < ONPZ2|| 1P| (N + 1)V%¢]| (4.78)

foralla >0, £ € ffN, and N € N large enough.
Proof. We consider the commutator

[Cn, A] = Z \A/(p/eN)nr[ g pqy by, @7y — asa_;b4,] +hec. .

P,qEAY :p+q7#0
r,UEAi

As in the proof of Prop. 4.10, we use the commutators from the proof of Prop.
8.8 in [10] to conclude that

12
~ N —
ev. A =2 Y [P0/ m + P+ mdaia 2 3=, 4 ne)
rUEAT j=1
where
El = Z V p/e 777“ 'r'+v 7,,.CL aU -
v pEA
pFv
Zo = Z V(p/GN)Ur(l - -N’-I—/N)afza*—pa—?"—pa?“-kv:
r,v,peAj_
r#—p
S5 = Z Vip/e"n.(1 = Ny /N)asa* ja_,riy—p,
T,U,pEAi:
r+v#p

139



Analysis of the Renormalized Gross - Pitaevskii Hamiltonian

as well as
— 1 > N
Ee= - E Vip/e™ nranan, a” ,a ra,iyaq,
7,0,p,qEAY :p+q#0
=5 = E V T+U)/€ )nrvqrv —rQg;
r0,qEAY
rrotq
He 1= E V (r/eN)n,a gy Qg0 lq
T v,qEA* :
r#—q
=7 = E V p/€ 777' p+r+v —p —raw
rv,pEA
r+v#E—p
Hg 1= E V p/e Nrby by 0"y,
r,0,pEAY:
T#—D
g = E V (v/eM)n.b —oDr @0,
T0,qENT :
q#v
=10 = E V(r/e )Ur q+r vaqu+U’
T,U,qEA*:
T#F—q
=11 0= E V p/@ Mr p—l—’ua a—?"br-‘rva
r,0,pEAY
pF#—v
=12 = E V 7“+U/€ )anrvv be]'
v qEA* :
q#?”rv
To prove the proposition, we have to show that all terms =;, j = 1,...,12, satisfy

the bound (4.78). We bound =; in position space, with Cauchy-Schwarz, by

|(€,218)| < C/AS dxdydze*MV (e (z — y)) iz — 2)|l|ané | || oty a.£|
1/2
<c [ / dedydz NV (N (z — )|y ant]?
A3

1/2

. [ / drdydz PNV (N (2 — y))li(e — )P ast]?
A3

< ClnllllNVy + D)2 IVNEN ]
< ONYPZ (VL + 1)Vl

We can proceed similarly to control Z9. We obtain

(6, Z08)| < CNY2=||(N + 1)V2¢ [ Vi3]
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The expectations of the terms =3 and =15 can be bounded analogously:

(€, Za6)| + [(€, E26) |
< C/AS drdydz NV (N (x — y))(In(z — 2)| + [n(y — 2)]) |aztyé ||| aoa.£|

1/2
< 0| [ dutyts ¥V @ = gl = )+ o - 2P)

1/2
X {/ dadydz e*NV (eN (x — y))dedzﬂ\Q}
A3

< Cllmll N + DENIVY el
< ONYP (VL + 1)Vl

As for =4, we find
- L ANTAN(  N\Je ket (s
(620 = | [ daduds V(e )6 aasaatn,g)

<ON~Hnl / dadydz 2NV (e (y — 2)) a6 ||V} oy
1/2
< ON | [ dodyz VI - ) syl
A2

g UAZ drdydz "V (e (y — 2))\\/\/32%%5\!2} )
< CNYER VeIVl
The terms =5 and Zg can be bounded in momentum space, using (4.44). Hence,
(€, Z58)] + (€, Ee€

<CN! ( !ml\leavaqufHHafraqu
7,0,qEAY

L Ve
o

< ONY2)|(Ny + DY)

[l + v [|ar g | ||aqar+u§||)

Similarly we have

vV N
NERIEN IS (ﬂm«up\|rava_p§||uar+va_7«_pgu

T,v,pGAi |p|
V(r/e)
- 0] 70|+ vl [lagarro€l[l|artqavé|]

< ONPP||(N + 1) 2l 2.
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Next, we rewrite =7, =g and =1 as

Thus, we obtain

1(€.Z+€)| < Cllnl / dudy ¥V (@ — ) N aagl g

< ClnllIN PV lIN ||
< ONYVZ Vel IV el

as well as

‘<£>E8£>|
< C/A2 daxdydz 2NV (eN (x — y))|n(z — 2| awy @€l @£l

<C [/ drdydz NV (N (x — y))||dwtya.£]?
A2

1/2

1/2
| [ ddds V@ - plnte - PlaceI?
A2
< ONE VR IV,
and
(6 Zn8)] < Cln /A dady NV (€N (1 — ) [Jaai, €l IV as
< CllllIVL2EN V€] < NV Vi2e IV 3]
Collecting all the bounds above, we arrive at (4.78). O

4.2.6 Proof of Proposition 2.1

With the results of Sections 4.2.1-4.2.5, we can now show Proposition 2.14.
We assume « > 2. From Eq. (4.58), Prop. 4.9 and Prop. 4.11 we obtain that

Rya =€ G3,e"
1 . ~ 1.
5 N(O)(N = 1)(1 =N /N) + [2NV(0) - §WN(0)}N+(1 — N} /N)
1
+5 D On(p) [0, + byby] + K+ Cx + Vi

PEAT

1
+/ ds e=*4 [/C +Cn + Vn, A} e 4 57(21)
0
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with
+&) <ON'"(Hy +1).

From Prop. 4.7, Prop. 4.10 and Prop. 4.12, we can write, for N large enough,
K+ CN + Vn, A}

ZWN b5, ,a* .a, +h.c] — VN Z ‘A/(T/eN) b}, ,a* .a, +h.c]

TUGA rv,EAY,
PFE—q
+2 3 V([N + V((r +v)/e¥n] ajan(1 = Ny /N) + EF
rvEA*

where
(€, €26 CN'(log N) [ HYEI + ON*>~ My 6| (N + 1)%€]
+ CN"Y(log N)V2|H €|l | (N + 1) V%]

for all £ € }"EN. From Prop. 2.12, Prop. 2.13 and recalling the definition (4.59)
of the operator Cy, we deduce that

1
/ ds G_SA[IC + CN + VN, A] GSA
0

1
s 1 .
:/0 ds e A[_CN+\/_N Z N () [br, 0" a, + D]

rwEAT

+2 Z V(r/eN) T]T—i-‘A/((r—i-v)/eN)nr]aZav(l—%)}eﬁ—i—gg)

TUEA*
(4.79)
with
+&¥ < CIN* + N"2(log N)/*|(Hy + 1)

for N € N sufficiently large.
We now rewrite

QMGZA* (r/eV nr+‘7((r—|—v)/eN)77r}ajjav(1 —%)
= N
_ N * IVt
= 4T’UGZA* V(r/e )nravav(l I )
N * JV;
+2 Z (r+v)/eV) — (r/e )]nr%av(l_ﬁ) =Q;+Qy.
rvGA*
(4.80)
With Lemma 2.10, part iii) we get
= N ~ C
2 Y T/~ [20w(0) - 287 0] < (481

reA*
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and therefore, using Lemma 4.8 and (4.81)
—s s ~ ~ . N
+ {e AQle A_ 2[2&)]\/(0) — QNV(O)} Z* ay,ay (1 — W"’):|
vehd (4.82)
C
< CON'(NL+1) + N

On the other hand it is easy to check that e=*4Q,e®*” is an error term; to this
aim we notice that

STV /e, — VI +v) /e,

reA*

Hence with Props. 2.12 and 2.13 we find
+ [e_SAQQGSA} < CNe_Ne_SANJlr/QICl/QeSA < ON?e NHy +1). (4.83)

< CNlvle ™.

To handle the second term on the second line of (4.79), we apply Prop. 4.10
and then Prop. 2.12 and Prop. 2.13

1 /1
+(— [ ds Oy (r) [6_5‘45? L0 pane®t — b} va*—rav] +h~C-)
S P> . +

rmEAi

1 1 s
Y d dt -~ —tA b* * . A tA
(foo [ T oo ataae) o

rUEAY
1 s
SC’/ ds/dte_tA(N_a(logN)/C+N_1(N++1))etA
0 0

< CON'"@logN(Hy +1).

As for the first term on the second line of (4.79), we use again Prop. 4.12. Using
(4.80), (4.82) and (4.83) we have

1 1 s
/ ds eSACNeSA—CN:/ ds / dt e*tA[CN,A]etA
0 0 0
N,

= [20n(0) = 2NV (0)] 3 asa (1 - W> e
pEAi

(4.85)

with ££5) < ON2-*(Hy + 1) + CNY(N, + 1).

Inserting the bounds (4.82), (4.83), (4.84) and (4.85) into (4.79) we arrive at

Rive = 5(N = 1)Bx(0)(1~ Ny /N) + S0w(O0) Ny (1 - N /N)
+ Wy (0) Z a;ap<1 — %) + % Z Wy (p) [b3b*, + byb—p)

peEAT peAT

Y () [Baat e+ b + My + Er

VN

nvEAi:

r#E—v
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with
+E&r < CIN* "+ N~Y2(log N)?)(Hy + 1)

for N € N sufficiently large.
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CHAPTER 5

Conclusion and Perspectives

In the thesis we presented a proof of Bose-Einstein condensation for 2d bosons
interacting through positive potentials both in the Gross-Pitaevskii regime and in
intermediate scaling limits interpolating between the mean-field and the Gross-
Pitaevskii scaling. Our results provide an optimal rate of convergence, thus
extending previous results available in the literature [47, 51, 46, 59, 59, 41, 42].

The main idea behind these results (borrowed from [7, 9, 10]) is to use a Fock
space setting to describe excitations out of the condensate and unitary operators
to implement correlations among excitations. This leads to a renormalization of
the original Hamiltonian, where the singular interaction is replaced by a softer
potential.

In the case of the singular interaction, the Hamilton operator is reduced to a
mean-field Hamiltonian, for which standard arguments are available. Differently,
in the Gross-Pitaevskii regime the slowly decaying GP potential V (p/e") is re-
placed by the potential Wy (p) (see definition (2.88)) which decays faster and we
are able to control (see Section 2.3).

The strategy developed to show Theorem 1.1 and 1.3 can be used as a starting
point to investigate the validity of Bogoliubov theory for two dimensional bosons
in the corresponding scaling limits, following the strategy developed in [8] for the
three dimensional case in the GP regime.

In the following we focus only on the Gross-Pitaevskii setting, even though a
similar analysis also holds for less singular regimes. What follows is a ongoing
project with Serena Cenatiempo and Benjamin Schlein.

Bogoliubov Theory

Bogoliubov theory [11] was the first rigorous treatment concerning Bose-
Einstein condensation. In physics, it is used to approximate with high accuracy
the ground state energy and the excitation energies of a dilute system of weakly
interacting bosons [63].

Bogoliubov worked in a periodic box A in the thermodynamic limit, in which,
we recall, the side length of the box L and the number of particles N go to
infinity while the density is kept fixed p = N/L?. Under the assumption that
the system exhibits complete Bose-Einstein condensation in the zero momentum
mode, and neglecting processes involving more than two excited particles, Bo-
goliubov derived an expression for the ground state and excitation energies of
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the system, which is believed to be correct in the dilute limit (for a review on
Bogoliubov method we address the reader to [49, Appendix A] or [16]).

More precisely, he predicted that in the thermodynamic limit the ground state
energy of weakly interacting Bose gas is given by

Ey = 4mpaN (1+% pa3+0(\/,073)) : (5.1)
where a is the scattering length associated to the interaction potential. The
equation above is the so-called Lee-Huang-Yang formula [40]. The first result
for the upper bound was achieved by Dyson [22] (for hard-sphere interactions).
Later in [54] Lieb-Yngvason proved the lower bound at a first order. For the
second order correction Lieb-Solovej verified the validity of Eq.(5.1) in [52] and
for the two-component charged Bose gas in [53] as well as [72].

Erdos-Schlein-Yau in [27] proved an upper bound for the Lee-Huang-Yang
formula, up to errors that are subleading for small potentials. Their result was
later improved in [73] by Yau-Yin. Another important result was achieved by
Giuliani-Seiringer in [32], where they proved a lower bound matching the Lee-
Huang-Yang formula for systems of interacting Bose gases in a regime of weak
coupling and high density. This result was improved by Brietzke-Solovej [19].
Very recently, Fournais-Solovej in [30] eventually proved the Lee-Huang-Yang
formula from below for L! potentials. The best available lower bound for general
potentials, including hard-core, is due to Brietzke-Fournais-Solovej in [18], where
the leading order has been shown with an error of the order of the LHY correction.

Bogoliubov’s approximation was originally proposed in three dimensions, how-
ever it also leads to a prediction for the two-dimensional case. The analogous of
the Lee-Huang-Yang formula (5.1) is given in Eq. (1.18), for which, we recall,
the second order correction has not yet been proved. However, results based on
the restriction to quasi-free states have been obtained in Fournais-Napiorkowski-
Reuvers-Solovej [29, Theorem 1].

In an ongoing project with Serena Cenatiempo and Benjamin Schlein we aim
to prove the second order correction of the ground state energy and excitation
energies of our Hamiltonian H§Y (1.10). With the same strategy used to show
the bound in Eq. (2.124) one could also get an estimate for the energy operator
Hy. We are able to prove the following statement.

Proposition 5.1. Let V € L3(R?) be non-negative, compactly supported and
spherically symmetric. Let ¢n € L*(AN) with ||vn|| = 1 belong to the spectral
subspace of Hy with energies below En + K, 1.e.

¢N - 1(—00;27rN+K](HN)¢N .

Let éx = e 4e " BUn1n be the renormalized excitation vector associated with ¥y .
Then, for any j € N there exists a constant C > 0 such that

(Eny (N + 1Y (Hy + 1) Ex) < C(1+ K)(log NV [(1 4 K)* + (log N2 .

The proof is obtained by induction and it is similar as in the three-dimensional
setting [8, Proposition 4.1] (although the authors of [8] worked over excitated
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states of the form &y = e PUnvn, we need to deal with excitated states &y =
e e BUnvy, and so we use properties of the renormalized Hamiltonian
ng A
e *Gnac?).
The proposition above allows us to improve the estimates involving the ex-
citation Hamiltonian Ry, introduced in Chapter 4 and obtain the following
result.

Proposition 5.2. Let V € L3(R?) be compactly supported, pointwise non-negative
and spherically symmetric. Let Ry = e 4Gy qe?, with Gy defined as in Eq.
(2.86). Then for any a > 2

Rye=Cr+ Qr+ Vn + Ex.

with
Cr = 5 (VC/) o) O = 1)+ 5 3 owlon,
pGAi
. (5.2)
Qr =Y (p*+0n(p))bib, + 5 > Dwp) [bpb*, + buby).
cA” pEAT

where and £y, such that
+ & SONT*(Hy + )Ny +1) + ON"Y2(log N)2NL + DK +1). (5.3)

Proof. We start from the expression of R§, as in Eq. (2.96). The constant Cg
is obtained in the same way as in the proof of Prop. 2.14 (as well as Prop. 2.11),
keeping track of the order O(1) terms. To estimate the cubic term Cy in (2.96)
we use the bound in Eq. (2.102), namely

1 C(log N
/5 X an0e bt < Che D oo + el g
r#—;
With Prop. 5.1, we get (5.3). O

If now we neglect the potential energy operator Vy, as in Eq. (2.87), which
we recall to be defined as

1
VN - 5 Z (7“/6 ) p+7" qanrrap

ngAiJEAf
r#—p,—q

we obtain a quadratic Hamiltonian which can be explicitly diagonalized (simi-
larly as in [8, Section 5]), acting with a unitary operator quadratic in terms of
annihilation and creation operators. We find the following lower bound.

Proposition 5.3. Let V € L3(R?) be non-negative, compactly supported and
spherically symmetric. Let Epo, be defined as

Epog = Z( Pt + 8mp? — p° %))

pEA*
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Then
e " Ruae” > Cn + Qn + &R,

where Cy and QQn are respectively of the form

Cn =2m(N — 1) + mlog(2a®) + Epoy — 47° Z J0(|p|/\/§)’

2
pers 1Pl

with a the scattering length defined in Eq. (1.11), and Jy is the Bessel function

of the first kind, and
Qn = Y \/p*+8mp? ajay,

pEAi

with £, satisfying

+&5 <CN**(log N)*(Hy + 1)
+ CN~Y2(log N)32(Ny +1)(K + 1) + C(log N)>N~t,

for any a > 2 and N large enough.

Getting an upper bound is, on the contrary, non-trivial. In fact, differently
from the 3d case, the potential energy operator Vy is of order O(1), hence it
cannot be neglected. In particular, its expectation on the trial state e?Q) with
B the generalized Bogoliubov transformation which allows us to diagonalize the
quadratic part Qg as in Eq. (5.2), is of order O(log N). This suggest that to
obtain an upper bound up to O(1) the excitation Hamiltonian Ry, has to be
further renormalized to cancel out the large energy contributions hidden in Vy.
We are currently working on the project of finding a unitary operator which
allows us to reduce Ry, to a quadratic excitation Hamiltonian (up to lower
order terms). This will also allow to get information on the low-energy spectrum
of the system and also to provide a norm-approximation to the many-body low
energy wave function in the spirit of [8, Equation 6.7].

Obtaining a norm-approximation for the ground-state wave function would
open the way to investigate fluctuations of observables measured on the ground
state, with respect to their expected value provided by the knowledge of the
condensate wave function. In fact, it is a natural question whether one may
adapt the strategy followed in [64, 65, 38| to investigate the validity of a central
limit theorem for one particle observables measured on the condensate.

Last but not least, one can ask if the methods used in this thesis may be
adapted to investigate the properties of 2d bosons in the thermodynamic limit,
in the same spirit of recent results [2].
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APPENDIX A

Properties of the Scattering Function in
the GP scaling

In this appendix we are going to show some uselful properties of the scat-
tering function stated in Chap. 2, Sec. 2.3.1. For practical reason we prove
before properties for the Gross-Pitaevskii scaling, while in Appendix B we prove
similar properties for the scattering equation with singular interacting potential,
corresponding to Lemma 2.10

Let V be a potential with finite range Ry > 0 and scattering length a. For
a fixed R > Ry, we study properties of the ground state fr of the Neumann
problem

(= 2+ V@) fala) = An fale) (A1)

on the ball |x| < R, normalized so that fgr(z) = 1 for |z| = R. Lemma 2.10,
parts i)-iv), follows by setting R = e™/ in the following lemma.

Lemma A.1. Let V € L3(R?) be non-negative, compactly supported and spher-
teally symmetric, and denote its scattering length by a. Fix R > 0 sufficiently
large and denote by fr the Neumann ground state of (A.1). Set wg =1 — fg.
Then we have

0 < fr(x) <1
Moreover, for R large enough there is a constant C' > 0 independent of R such
that 2 3 1 C 1
p—————— 1+ | | € —=———. A2
" R2log(R/a) ( * 4log(R/a)) ' ~ R%log’(R/a) (8.2)
and A o
T
de'V — < . A3
[ evinie - o)< e )
Finally, there exists a constant C' > 0 such that
log(|z|/R
wa(@)] < v(le) < R + 0 2 (g < oy <
log(a/R)
(A.4)
¢ x(z|<R)

Ver@)l < R el T

for R large enough.
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To show Lemma A.1 we adapt to the two dimensional case the strategy used in
[26, Lemma A.1] for the three dimensional problem. We will use some well known
properties of the zero energy scattering equation in two dimensions, summarized
in the following lemma.

Lemma A.2. Let V € L3(R?) non-negative, with supp V. C Bg,(0) for an
Ry > 0. Let a < Ry denote the scattering length of V.. For R > Ry, let
or : R?2 — R be the radial solution of the zero energy scattering equation

1
{—A + §V} ¢r=0 (A.5)
normalized such that ¢pr(x) =1 for |x| = R. Then

_ log(|z|/a)
br(r) = Tog(R/a) (A.6)

for all |x| > Ry. Moreover, |x| — ¢gr(x) is monotonically increasing and there
exists a constant C' > 0 (depending only on V') such that

C
> 0) > —— A7
¢R($) = ¢R( ) = 10g(R/O) ( )
for all x € R%. Furthermore, there exists a constant C' > 0 such that
C 1
IVor(z) (A.8)

<
< Tioa(Rja)] o] 1
for all z € R

Proof. The existence of the solution of (A.5), the expression (A.6), the fact
that ¢r(z) > 0 and the monotonicity are standard (see, for example, Theorem
C.1 and Lemma C.2 in [49]). The bound (A.7) for ¢r(0) follows from (A.6),
comparing ¢r(0) with ¢r(z) at |z| = Ry, with Harnack’s inequality (see [71,
Theorem C.1.3]). Finally, (A.8) follows by rewriting (A.5) in integral form

onta) = 1= 1= [ oz R/l =3l)V()on(s)ay.

For |z| < Ry, this leads (using that ¢r(y) < log(Ro/a)/log(R/a) for all |y| < Ry
and the local integrability of |.|=3/2) to

Vor(o)] < ¢ [ FP0 g, < S

Combining with the bound for |z| > Ry obtained differentiating (A.6), we obtain
the desired estimate. O

Proof of Lemma A.1. By standard arguments (see for example [49, proof of the-
orem Cl)), fr(z) is spherically symmetric and non-negative. We now start by
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proving an upper bound for Ag, consistent with (A.2). To this end, we calculate
the energy of a suitable trial function. For k € R we define

Jo(ka)
Yo(ka)

V() = Jo(klx]) - Yo(klzl) -

with Jy and Y{ the zero Bessel functions of first and second type, respectively.
Note that

and ¥y (z) = 0 if || = a. We define k = k(R) to be the smallest positive real
number satisfying 0,¢g(z) = 0 for || = R. One can check that

02 31 c 1
N R loa(Rja) (1 * 4log(R/u)) ‘ = R log’(R/a) (A.9)

in the limit R — oo. To prove (A.9), we observe that

 h(kR) + k20

Ortpi(z) |z|=R Yo (ka)

Yi(kR), (A.10)

and we expand for kR, ka < 1 using (with - the Euler constant)

2 2

Jo(r) =1+ 7| <ot Jl(r>—g(1—%)‘ <O
Yo(r) — %log(re”/Q)‘ < Cr?log(r), (A.11)
Yi(r) + %% (1 — %(1 — %) log(re?/2) + %) ‘ < COr®.
With (A.11) one finds that (A.10)
arwR<x) le|=R
B 1
" 2kRlog(kae'/2)
- {("’?) log(R/a) — (kR)? [mg(R/a) - %] + 24 O((RR) + (ka)2)}
(A.12)
The smallest solution of
““? log(R/a) — (kR)? [mg(R/a) _ %} +2-0
is such that
2 _ 2 3 003
(kR)* = g (B/a) {1+ 410g(R/a)} + O(log " (R/a)) (A.13)
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in the limit of large R. Inserting in (A.12), we find that the r.h.s. changes sign
around the value of k defined in (A.13). By the intermediate value theorem, we
conclude that there is a k = k(R) > 0 satisfying (A.9), such that 0,9y (z) =0
if |[z] = R.

Now, let ¢r(x) be the solution of the zero energy scattering equation (A.5),
with ¢g(z) =1 for |z| = R. We set

Vr(z) := Yu(mr(x)) = Jo(kmg(z)) —
with k& = k(R) satisfying (A.9) and

ma(z) = aexp (log(R/a)x(x))
With this choice we have mpg(x) = |z| outside the range of the potential; hence
Ur(x) = Yg(z) for Ry < |z| < R. In particular, Uy satisfies Neumann boundary
conditions at |z| = R.
From (A.6), (A.7) and the monotonicity of ¢r, we get

Jo(ka)
Yo(ka)

Yo(kmg(z)), (A.14)

Ca <mpg(z) < Ry forall 0<|z|] <Ry (A.15)
and for a constant C' > 1, independent of R. From (A.8) we also get
|Vmg(z)| < C forall 0<|z|<R. (A.16)

With the notation h = —A + %V, we now evaluate <\I/R, b\IfR>. To this end we
note that

(U T ) = /

\I/R(x)(b\IfR(m))dx+k2/ |V ()] dx . (A.17)

‘x|<R0 |.’E|2R0
Let us consider the region |z| < Ry. From (A.14) and (A.11) we find, first of all,
log(mr(z)/a) 2
Y ——— 1 < Al
ala) + et DB < Clhmala), (A18)
Next, we compute —AWUg(x). With
!/ ! 1
Jo(r) = =(r) Ji(r) = 5 (Jo(r) = 1a(r))
!/ !/ ]'
Yo(r) = =Yi(r) Yi(r) = 5 (Yo(r) = Ya(r)).

we obtain (here, we use the notation m’, and m%, for the radial derivatives of the
radial function mg)

CAUp(z) = — BPUp(z) — 0,0 ()

||
= — kmy(2) [ — Ji(kmpg(z)) + }J/EEZZ;K(ka(x))]
— %kQ (m%(m))Q[Jg(ka(x)) — QE:Z;%U{?WR(@)}
1.5, , 2 Jo(ka)
— 5K (mip(@))* [ = Jo(kmu(x)) + % (ka)%(k:mza(x))}
_ ki (@) [— Ji(kmg(z)) + Jo(ka) Yy (kmg(x))]
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We note that, using the scattering equation (A.5),

" (mlR)2 1 / 1 1
mp, — + —mp = =Vmpgorlog(R/a) = =Vmpglog(mg/a).  (A.19)
Mg || 2 2

Now we write

- A\I/R(l’)
= [~ k(o) + ") Vihmnn(o)) + 5 (o) PYallma(o)] 20
+ gr(7)
(A.20)
where gp(z) =307, gg) (x) with
1 " m,}:i(I)
012 () = b (miafa) + 05 ) i (homn()
9 () = K (min(2) T hrmn(2)
S)(x) = —%H(m’ﬁ.(x))z( — Jo(kmpg(z) + QEIZZ;%(ka(Jc)D
= ()" l).

With (A.19), (A.11) and (A.15), (A.16), we find

o (0 < OO (o)) + 3V I ogtomaa)f)) < CH(1+V ().

Next, with |Jo(r) — r?/8] < Cr* we get
957 ()] < O (mip())* (ma())* < CK*.
With (A.18), we can also bound
log(mg(z)/a) -
(3) < CF2(m) 2108\MR < Ok 1o~}
957 (0)] < O i) P B < O g (ko).

We conclude that |gr(r)| < C(1 + V(z))k? for all r < Ry and R large enough.
Finally, using Eq. (A.19), the expansion for Y;(r) in Eq. (A.11), and the bound

41
Y: —— | <C
‘ 2(T)jLWr? -

we can rewrite the first term on the r.h.s. of (A.20) as

{—Nmﬂ@+m§@PHMm@»+%@&@WE%mMM)Qgg(Am)
= %V(x) log(mR(:I:)/a)}J/ZEZZ; + hp(x)
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with |hgr(z)| < C(1+V (x))k? for all r < Ry, R large enough. With the identities
(A.20) and (A.21) we obtain

1 Jg(/{?a)
7 Yo (ka)

‘ — AU p(z) — V(z)log(mr(z)/a)| < C(1 + V(z))k?,

for all |x| < Ry and for R sufficiently large. With (A.18), we conclude that, for
0 S |l‘| S RO)

((—A+ %V)\I/R(l')’ <O(1+ V(z))k?. (A.22)

With (A.17), (A.22) and the upper bound

C

RIS Tiogtra)]

(A.23)

for all |z| < Ry (which follows from (A.18) and (A.15)), we get

Ck?

—| o (k) |x\§Ro(1 + V(x))dx.

(Up,hUp) < k*(Up, Ug) +

On the other hand, Eq.(A.18), together with mg(z) = |z| for |z| > Ry, implies
the lower bound

C
Up, W 2/ |\ xdeZ—/ log2xadszR2.
< f R> RoS\x|§R| #()| | log(ka)|? Ro<|z|<R (le/a)

Hence, with (A.9), we conclude that

< SHDE) o (, Clloghal)

(Vn, Vr) R (A.24)

<#(1+§ L, ¢ >
~ R2log(R/a) 4log(R/a)  log*(R/a)

in agreement with (A.2).

To prove the lower bound for Ag it is convenient to show some upper and lower
bounds for fr. We start by considering fr outside the range of the potential. We
denote ep = v/Ag R. Keeping into account the boundary conditions at |z| = R,
we find, for Ry < |z| < R,

fr(z) = Ar Jo(er |2|/R) + Br Yo(er |z|/R)

with
Ap = <J0(8R) ~ier) 1{?22;) |
and ;
By = (Yow - jfigw)) |
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From (A.24), we have |eg| < C|log(R/a)|~*/2. Thus, we can expand f for large
R, using (A.11) and, for Y, the improved bound

<Cr?,

Yo(r) — %log(re”’/Q) (1 _ }172)

we find

’AR —1+ %(2 log(ege”/2) — 1)‘ < Ceyx(loger)?,

. 22 (A.25)
‘BR——éT%( ——R> SC&T%
which leads to

2

fr(x) =1+ %R (2 log(R/|z]) =1+ ;#22) - ilogm/‘x') (1 - 2%22) ‘ (A.26)

< Cey(logeg)?.

We can also compute the radial derivative

O, fr(z) = —%R (AR Ji(err/R) + Br Yi(er r/R)) .

With the expansions (A.11) and (A.25) we conclude that for all Ry < |z] < R
we have

2 2 2.2
ER x ERT 4
R (2 4 TR < _ ,
Oy fr(x) ol (1 =T o log(R/|x|))‘ Cegrloger (A.27)

The bound (A.27) shows that 0, fr(x) is positive, for, say, Ry < |z| < R/2. Since
Oy fr(x) must have its first zero at |z| = R, we conclude that fg is increasing
in |z|, on Ry < |z| < R. From the normalization fr(z) = 1, for |z| = R, we
conclude therefore that fr(z) <1, for all Ry < |z| < R.

From (A.26) and (A.24) we obtain, on the other hand, the lower bound

fr(z) >1— % log(R/|z|) — Ceg(logeg)?

log(R/|x]) (1 s3_ 1 ., _ ¢ ) - (loglog(R/a))

log(R/a) 4log(R/a)  log*(R/a) log®(R/a)
log(|z|/a) _ 3log(R/|z|)  Ilog(R/lz]) . (loglog(R/a))”

~ log(R/a) 4 1log*(R/a) log’(R/a) log®(R/a)

(A.28)

for R sufficiently large. Let R, = max{Ry,ea}. Then Eq. (A.28) implies in
particular that, for R large enough,

C

fr(x) > m-

(A.29)

for all R, < |z| < R.
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Finally, we show that fr(z) < 1 also for |z| < Ry. First of all, we observe
that, by elliptic regularity, as stated for example in [45, Theorem 11.7, part iv)],
there exists 0 < a < 1 and C' > 0 such that

|fr(z) = frRW)| < CI[(V = 2AR) frll2 |2 — y|®

With ||V frllz < [IVIsllfrlle < Cllfrllm < C(1 + Ag)||frll2, we conclude that
0 < fr(z) < 1+ C|f|l2 for all |z] < Ry (because we know that fr(x) < 1 for
Ry < |z| < R). To improve this bound, we go back to the differential equation

(A.1), to estimate

Afn=3Vin = Anfn > ~Aa(1+CIfl) (430

This implies that fr(z) + Ar(1 + C| f|l2)2?/2 is subharmonic. Using (A.26), we
find fr(z) < 1— Ce% for |z] = Ry. From the maximum principle, we obtain
therefore that

fr(z) 1= Cef + CAR(L + O frll2) (A.31)

for all |z| < Ry. In particular, this implies that || frlizj<r,ll2 < C 4+ CAgl| frll2,
and therefore that

| frR1Ro<|zi<rll2 > || fR]l2(1 = CAR) = C

With fr(z) < 1for Ry < |z| < R, we find, on the other hand, that || fr1r,<|z|<r]|2
CR. We conclude therefore that || fr|l2 < CR and, from (A.31), that fr(xz) <
1—Ce%+ C/R <1, for all |z| < Ry, if R is large enough.

We are now ready to prove the lower bound for Agr. We use now that any
function ® satisfying Neumann boundary conditions at |x| = R can be written
as ®(z) = q(x)Vg(zx), with Ug(z) the trial function used for the upper bound
and ¢ > 0 a function that satisfies Neumann boundary condition at |z| = R as
well. This is in particular true for the solution fr(z) of (A.1). In the following
we write

fr(z) = qr(2)VR(2)
where ¢ satisfies Neumann boundary conditions at |z| = R. From (A.18), we
find |Ug(z)| > C/log(ka). The bound fr(xz) < 1 implies therefore that there
exists ¢ > 0 such that

qr(z) < C'log(ka) Viz| < Rp. (A.32)
From the identity
bfr = (DYR)gr — (Aqr)¥r — 2VqrV¥r

we have

/ dfoth:/ dx\quP\y;+/ dz |gr|*Vrh¥x .
|lz|<R lz|<R

lz|<R
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Properties of the Scattering Function in the GP scaling

From (A.22) and (A.23), we have
2

Cm(l +V(z))x(|z] < Ro).

|Wr(z)(hVr)(x) — K*WH(2)| <

Hence
Ck?
[log k| J\z1<ro

/| Rdx frbfr > K| frll* — dz (1+V(2))|qr(z)]*. (A.33)

With (A.32), we obtain
/ de frbfr > Kl fal2 = CK log(ka)
|z|<R

With (A.29) (recalling that R, = max{Ry,ea}), we bound

CR?

2 2
1 fall? > /R PR

and, inserting in (A.33), we conclude that

Ay = {fr.bfr) S 2 <1 B

(fr, fr)

>#(1+§ Lo ¢ )
~ R?log(R/a) 4log(R/a)  log*(R/a)/’

where in the last inequality we used (A.9).

To prove (A.3) we use the scattering equation (A.1) to write

/de(x)fR(m) :QASRdfoR(x)+2/ deAp fa(z).

lz|<R

Passing to polar coordinates, and using that Afg(z) = |z|7'0,|z|d, fr(x), we
find that the first term vanishes. Hence

[ v @ fate) = 22n [ do fao).

With the upper bound fr(r) <1 and with (A.2), we find

9 4 C
/dx V(z)fr(z) <27R*Ag < loa(R/a) (1 + log(R/a)) )

To obtain a lower bound for the same integral we use that fr(r) > 0 inside the
range of the potential. Outside the range of V', we use (A.26). We find

/dx V(x)fr(x) > 47)g /RO drr (1—Ce%log(R/r)) > logzl]g/a) (1 — log((];/a))
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Properties of the Scattering Function in the GP scaling

We conclude that

Am C
dzV — < .
‘/ VIR = o R ey | = o (A7)
Finally, we show the bounds in (A.4). For r € [Ry, R], from (A.26) we have
log(R/|z|) ¢
— . A.34
onte) = S5} | < g .

As for the derivative of wr we use (A.27) to compute

C 1

|8rfR(37)| < mm .

Moreover 0, fr(x) = 0 if |z| = R, by construction.

On the other hand, if |x| < Ry, we have wg(z) = 1 — fr(xz) < 1. As for the
derivative, we define fr on R, through fr(r) = fr(z), if || = r, and we use the
representation

Fir) = 7 [ as(Fato)s + Falo)

With (A.1), we have (with V defined on R, through V(z) = V(r), if |z = r)
i 1 = ls =
r(T) + ;fR(T) = Arfr(r) — §V(7")fR(7") ;

By (A.34), we can estimate ]?R(RO) < C/log(R/a). From (A.30), we also recall
that
fR<7’) < fR(PLo) + CR)\R < C/ log(R/a)

for any r < Ry. We conclude therefore that
~ /" ~ 1~  ~
Far)l = |~ [ dss(nfals) = 57() Fals))]
0

Ar 7 C " ~
< 2B -
= / rd”rlog(R/a)/o drrvir)
log(Ry/a) < C

log(R/a) ~ log(R/a)

C
<——+C||V
< gtz HEIV e
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APPENDIX B

Properties of the Scattering Function
through singular potentials

In this appendix, we give a proof of Lemma 2.10, containing basic properties
of the ground state fr of the Neumann problem

(= A+ 5V (@) fale) = An fale) (B.1)

on the ball || < R, with boundary condition ), fr(|z|) = 0 for |z| = R, nor-
malized so that fr(z) =1 for || = R. Here (and in Lemma 2.10) we are using
the notation R := N?¢. Note that due to the factor 1/N in front of the potential
in (B.1) the proof of Lemma B.1 is easier than the corresponding Lemma in the
GP regime.

In the course of the proof we will use some well known properties of the zero-
energy scattering equation in two dimensions, namely (— A+ ﬁV(m)) E%N) (x) =

0 with qb(N)( ) =1 as |z| = R on the ball of radius R, that we recall in the fol-
lowing lemma.

Lemma B.1. Let V € L*(R?) non-negative, with supp V' C Bg,(0) for an Ry >
0. Let a < Ry denote the scattering length of V. For R > Ry, let ¢r : R*> - R
be the radial solution of the zero energy scattering equation

[ A+—V qu = (B.2)
normalized so that gb%v) (x) =1 for |x| = R. Then for all |z| > Ry ,
log(z/an)
(N) g N
o) — , B.3

where ay = a/N. Moreover, |x| — gbg_-iN)(x) is monotonically increasing and there
exists a constant C' > 0 (depending only on V') such that

(M) (2) > 6 (0 > ¢ B
for all x € R%. Furthermore, there exists a constant C' such that
1 V)|  C
— — B.
log(R/ay) 4nN |~ N2 (B-5)




Properties of the Scattering Function through singular potentials

The proof of (B.3)-(B.4) follows exactly as in Lemma A.2 in Appendix A. We
give a proof for Eq. (B.5).
Remark. Notice that we ask for V' € L?(R?), differently from the Lemma A.2, the

proof of Eq. (B.8) does not require properties on the gradient of gb%v). Indeed,
it would be sufficient to choose V € L'*¢ for ¢ > 0, which is necessary for the
proof of Eq.(B.4), based on the Harnack inequality (see [71, Theorem C.1.3]).
We eventually need V' € L?*(R?) in the proof of Eq. (B.5) as we can see below.

Proof. Rewriting (B.2) in the integral form we have

onta) = 1= o [ oe (Rl = )V@ont)ds. ()

Using the definition of scattering length, and the integral form (B.6) we get

1 1 V(0)
— d = —
log(R/ay) 47N Jg V)ory)dy = 77+
with
< o [ Vs [ los(R/lz = V()0 )
- (47TN)2 R2 R2 R
V(0 R?
< 20w
(47 N) 4
where we used that ¢§%N) < 1. Thus Eq. (B.5) directly follows . O

We are now ready to prove Lemma 2.10. We adapt to the two dimensional
case the strategy used in [26, Lemma A.1] for the three dimentional problem.
For completeness we recall the statement of the lemma.

Lemma B.2. Let V € L*(R?) be non-negative, compactly supported and spher-
teally symmetric, and denote its scattering length by a. Fix R > 0 sufficiently
large and denote by fr the Neumann ground state of (B.1). Set wgr =1 — fg.
Then we have

0< fr(z) <1 (B.7)
for all z € R%. Moreover,
v v C
Y %% (1 - %mg(m) ' < %ﬁ (B.8)
and N R
Vv Vv C
‘% / dv V (z) falz) — % (1 - ﬁlog(}%)ﬂ <o (BY
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Properties of the Scattering Function through singular potentials

Finally, there exists a constant C' > 0 such that red
lwr(z)| < if x| < R,

V(0)

wr(®) = 47T N

log(R/|z[)| < if Ro<|z[<R,

(B.10)

Vz| < R

Proof of Lemma B.2. By standard arguments (see for example [49, proof of the-
orem C1] it follows that fr(z) is spherically symmetric and non negative. We
start by proving an upper bound, consistent with (B.8). To obtain this upper
bound for \g we compute the energy of a suitable trial function. In this direction,
we consider as a trial function

V(0)
4 N

Yr=1- log(R/|z|)x(|x| = 1).

Set h = —A + ﬁv, then we have

1
< Vlog(R/x)|?dx + — Viz)dx
T622N2 1§WSRI g(R/z)| N Sy, (x)

V(0) / V(0) /
— Viz)log R dx + Vi(x)log |z| dx
ATN? Ji<joi<Ry (=) log ATN? Ji<jai<ry () log |

C
+—3/ V(z)log®(R/|x|) dx
N? Ji<izi<ro

()2

st i) < O

V(0) V() V(0 OVl ClIVl2
SWIOgR W_WIOgR+WROIOgRO+TRO
V(0) V(0) C
< _ ] -
S SN smene et E
V(0) V(0) C
< 1= el
= 9N ( N el
(B.11)
while
V(0) 2
— 1— 1 > 1] d
vy = [ (1= g e /lelx(el 2 1)) 0
V(0) /
> der — —= log(R/|x|)dx B.12
/|:v§R 21N Ji<zi<r (Bl (B.12)
V() ClogR
>aR* |1 - —2 — = .
= mh ( N N R? )
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Properties of the Scattering Function through singular potentials

Putting together Eq.s (B.11) and (B.12) we end up with

_ Wrbhvm) _ 1VO) [ V(0 C

To prove (B.7) and (B.10) we proceed as in Appendix A. We recall here only
the main steps of the proof for the reader convenience. First, we get an explicit
expression of fr outside the range of the potential. Indeed solving the equation

~Afr(r) = K fr(z)
with k? = A\gR?, we find, for Ry < |z| < R

fr(x) = Ar Jo(k|z|/R) + Br Yo(k|z|/R), (B.14)
with
Ap = <J0<k:> - Jl(k)%>_ . Ba- (%(k) - %mk))_ |

where Jy and Y} are the zero Bessel functions of first and second type respectively.

From the upper bound found before we have k = VAzR < CN~'/2. This
allows us to expand fr(z) for large R; using the bounds in (A.11), we find Ag
and Bg as in (A.25), which leads to

2 2

fr(x) — 1+ % (2 log(R/|z|) — 1+ %) ‘ < Ck*(log k)? (B.15)

for k£ small enough. The argument to bound fg from above is the same as in
Appendix A.
On the other hand, from (B.15) and (B.13) we obtain the lower bound

K Wogr? > 1 V(O (log Ny
fr(x) > 1= Z-log(R/|x]) = Ch*(logh)? > 1 — -5 — == >0, (B.16)
for N sufficiently large.
Now we want to prove the bounds for wg in Eq. (B.10). For Ry < |z| < R,
using (B.15) we see that

2

fr(z) — 1+ k— log(R/|z])

< 2
5 < Ck*,

hence, it follows that

2

wr(x) — %log(R/m) < CK*. (B.17)

While from (B.14), taking the derivative (this leads to one expression similar to
(A.27) but with eg replaced by k) we find

k2

0. fa(@)] < O (B.18)
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Properties of the Scattering Function through singular potentials

Moreover 0, fr(xz) = 0 if |x| = R, by construction. Which proves the second
bound in (B.10). On the other hand, if |z| < Ry, we have wg(xz) = 1— fr(x) < 1.
As for the derivative, the proof for [Vwg| < C//N inside the range of the potential
follows the one in Appendix A.

Now we are ready to prove the lower bound for Agz. With fr = 1 — wg, and
using (B.17) and (B.18) to bound |Vwg|, we get

(fr:b fr) = <(1 — Wg), <— A+ LV)(l - wR)>

2N
1
> / Pz [Vor@)P+ — [ @ V(@)1 - 2wr(z))
1<|o|<R 2N Jzi<r
E* 1 1
> — v — + — &z V(x
4 1<|z|<R [z~ 2N lz|<R (@) (B.19)

2
— i/ d*xV () [k— log(R/|x]) + Cl{;z}
N Ji<jz1<ro 2

> % - %log(R) <@ — k27r> — %k?

On the other hand we have (still with (B.17))

(fr, fr) s/ @ (14 wh(z)) < 7R* (1+ CkY).

|z[<R
This allows us to conclude, using the upper bound k? < C'/N

V() K Vo) . ) Co,
o~ g loelf) (T—‘“ ”) Nt

(b fr)

ot > [TR? (1+ Ck*)]

AR =

zm 1 (1_ClogR)‘

27N R? N
(B.20)
With the help of (B.20) we have
V(0) log R
2 _ 2 _
K= el — | <O, (B.21)

thus we can improve the lower bound of A\g. Indeed, using the improved bound
(B.21) into (B.19), we end up with

This concludes (B.8). Moreover, using once again (B.17), (B.18), and (B.21) we
conclude the bounds in (B.10).
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Properties of the Scattering Function through singular potentials

To prove Eq. (B.9) we use the scattering equation (B.1):

! V) falz)de =2 [ Afa(e)de +2 / Mnfr(z) de

N Jiei<r je|<R l|<R

Passing to spherical coordinates (and denoting the radial coordinate as |z| = r)
we get:

R R
V(z)fr(z)dx = 47?/ 4 (rifR(r)> dr + 47r)\R/ rfr(r)dr.
o dr\ dr 0

(B.22)
The first integral on the r.h.s. of (B.22) is zero due to the boundary condition
Or fr(r)|r=r = 0. So it is sufficient to find upper and lower bounds for the second
integral on the r.h.s. of (B.22) . To obtain an upper bound we use fg(r) <1
together with the upper bound for Ay in (B.8). We get

1
N Jii<r

1

R
N Jii<n Vo) rle)de = 47T/\R/o etr)dr

ATV (0) V(0) R
< R
< 5N (1 TN log(R) /0 rdr

< vi0) <1 V) log(R) + Q) :

N  4nN

To obtain a lower bound for the same integral we use that fr(r) > 0 inside the
range of the potential, and (B.16) for r € (R, R]. Hence:

R C\ _ V(0) V(0) C
/|:n|§RV($)fR(x) dz > 47r)\R/ rdr (1_N> > T ( - 47T—Nlog(R) — N) :

Ro
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APPENDIX C

Ground state for many-bosons system through
singular potentials

C.1 Introduction

In this appendix we will show Theorem 1.2, adapting the proof for three
dimensional bosons in the Gross-Pitaevskii regime from [60]. Even though for
the purpose of the present paper we only need to consider bosons in a box with
periodic boundary conditions, in the following we will describe the arguments
leading to the result in Theorem 1.2 in the more general case of bosons trapped
by an external potential.

In the following we consider /N interacting bosons in the two-dimensional space
R2, described by the many-body Hamiltonian

N
HYy =Y hi+ Y Vs(w;—ax) (C.1)
=1 1<j<k<N
acting on the space L?(R?"). The one-body operator is given by

h = —A+ Ve ()
with Ve (2) an external potential satisfying

0 < Vi € L (R?);  lim Viy(z) = +o0 (C.2)

|x|—o00
The particles interact pairwise via a repulsive potential V given by
Vs(z) = N*7'V(NPg), (C.3)

with 3 > 0 such that limy_,., log N®/N = 0. Here V is a non-negative, radially
symmetric and finite range function, i.e. V(x) =0 for |z| > Ry, with scattering
length a < Ry. We are going to use some properties of the zero-energy scattering
equation gbg%N) (z), i.e. the solution of (B.2) on a ball of radius R = N?/. From
(B.3) we recall that for any Ry < |z| < R

(N) () — log(z/ay)
R (7) = log(R/an) (C4)
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where ay = a/N. Moreover for any 3 such that limy_,., log N°/N = 0 we have

AN (z) dx = VoM (z) -1 dog = ——"

lz|<R lz|=R log(R/an) (©5)

where we denoted with dog the surface measure of the ball of radius R. From
(B.2) and the divergence theorem it also follows

N, 1 B 2m
[ 9or + SV Plar = pis. (o)
Moreover, with (B.5) we also have
. V(0)
Jim [N/M [V P+ oV @l P = TV

We are going to show that the ground state energy and ground states of H ﬁ,
converge to the ones of the non linear functional,

V(0

Envslu] == (u, hu) + % lu(z)[*de. (C.7)
R2

Since we are not considering magnetic fields and V' is radially symmetric, the

minimizer of (C.7) exists and is unique by well-known arguments, see for instance

[31]. Aim of this appendix is to show the following theorem.

Theorem C.1. Let HY be defined in (C.1) with V,y satisfying (C.2) and V
defined in (C.3). Then for all § > 3/4 s.t. limy_,o, Blog N/N =0 we have

. (b, Hy) .
lim f 270 = inf €& ul . C.8
N—oo ||9]|=1 N lull 2 g2y =1 NLS[ ] ( )

Moreover, if 1 is an approrimate ground state for Hﬁ,, namely

B
lim W—NW = inf SNLS[U];

N—o0 N l[ull L2 2y =1

and yj(\lf)m = Tri1on|UN)(UN| is the k- particle reduced density matriz of Py,
then
hm Tr vy — |05 (@5 =0, VkeN,

where g s the minimizer of (C.7).

Actually, the theorem above holds for any 5 > 0 such that limy_,, 5log N/N =
0. A proof valid for § < 1 can be found in [59]. Our proof follows closely the
proof of condensation for approximate minimizers of the three dimensional Gross-
Pitaevskii Hamiltonian, obtained in [60]. However, we reproduce below the main
steps of the proof in our setting, for the reader convenience. We also refer the
reader to the arxiv version of [10] for an adaptation of the proof by [60] to the
translation invariant case, which is also the setting of relevance for this thesis.
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C.2 Generalized Dyson Lemma

Using the same notations as [60] we set 6 : R? — R a radial smooth Heaviside-
like function, i.e.

0<60<1; 6(x)=0for |z| <1, O(x)=1for|z|>2.

Let U : R? — R aradial smooth function supported on the annulus 1/2 < |z| < 1
such that

Ux) >0, /R U(x) log (|| fa)dz = 27N

with ay the scattering length of the potential %V. Using the monotonicity of
the logarithm we clearly have

2rN 9 2rN
Tog(an)] = JECEE Tog(2ax)| (€9)

and therefore we conclude with (B.5) that for any R = N s.t. limy_,o log N°/N =
0 there exist constants cg > ¢; > 0 s.t.

o < /U(a:)de <. (C.10)

In the application we will choose U(z) = const. for all z s.t. 1/2 < |z| < 1 and
zero otherwise, so that ||Ul|, < C. For every ¢ > 0 we now define

Oo(z) =0(x/0), Ulzx)==U(z/0). (C.11)

The first step of the proof by [60] consists in using the Dyson lemma to replace
the Gross-Pitaevskii interaction in the original Hamiltonian with a less singular
potential. In our setting, we use a generalized version of Dyson lemma to replace
the original potential Vj in Hﬁ, by the potential U,, with some ¢ = N7, for some
suitably chosen v € (0;1). To this aim we will make use of the following Lemma.

Lemma C.1. Let V' compactly supported in the ball of radius Ry < 1/2, with
scattering length a defined through the solution of the scattering equation (B.2)
on the disk of radius R, with Ry < R < 1/2. Let xgr(x) be the characteristic
function of a disc of radius R centered at the origin, 6(p) a radial function, such

that h(x) = (1/—\9)(x) bounded and integrable. Let

gr(z) = sup |h(x —y) — h(x)|

ly|<R
and 5
on(@) = Zgn(o) | _auo)dy
Let ay = a/N and u(z) a positive radial function supported in the annulus

Ry < || < R such that

/R2 u(z) log(|z|/ay)dz = 20N (1 + dn)
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with Oy such that limy_,o Oy = 0; then for alle >0

~TIDNRIT + 55V () 2 g )

a 27TN(11+ o)z </ “<$)d2x> wr(z).

Proof. We adapt the proof in [48, Appendix A]. We first notice that it suffices
to show that the operator inequality (C.12) holds for the expectation value with
any smooth function () with compact support. Given ¢ (x) we define {(z) b
its Fourier transform &(p) = 6(p)(p). We thus have to show that

(C.12)

[ e + V@

1

S
> Sira Lo [ = P P |

Let (/b%v) (x) be the solution to the zero-energy scattering equation (B.2), subject

to boundary condition ¢§%N) () = 1 for |z| = R. Let v be a complex-valued
function on the unit disk D;, such that fDl |v|> = 1. Now consider the following
expression, with ¢ as above,

A /| Ve Y@+ g [ Ve @

By Cauchy-Schwarz inequality we can bound

e < ([ (Ve + ggveler)
([ 9@ + gy @ier @Rl )

Since QS%N) is a radial function, the angular integration in the last term can
be performed by using the condition on v. The remaining expression is then
bounded using (C.6). Hence we end up with

[ v+ vt > (m) ©.13)

Now we need a lower bound on |A|%. Note that gbg{N) is a radial function and that
ngﬁg%N)(m)M:R = %m from (C.4). Therefore, by partial integration we get

/ o(2)VE (2) - Vo (2)de = — / & (@) (2) A (2)de
le|<R lel<R (C.14)

11 .
+ /  E@piion
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where dogr denotes the surface measure of the ball of radius R, and we used
that Vv (z) - ngﬁ%v)(x) = 0. Recall now that by definition of h(x) we have
E(x) = () — (2m) Y (h *¢)(x), hence we can rewrite (C.14)

/| <R v(x)VE () - Vo'ii (z)da = — V(@) A (2)v(x)de

lz|<R

bor [ () @) Ad @)
/<R
L1
Rlog(R/an) Jjz=r
1 1

— QWRIOg(R/aN) /|Z|ZR(h*¢)*(:L‘)l/({L‘)dO'R

v (x)v(x)dog

Hence, with (A.5)

A= [ (hx ) @) A (2)da

27 Jje<r

11 .
+ Rioa(RJan) m:Rw (x)v(x)dog (C.15)

1 1 .
~ 2rRlog(R/ay) /|I_R(h>k¢) (z)v(z)dog.

We rewrite the first and the last term as

iﬁ/tb*(x)[/h(x—y)du(y)] dz, (C.16)

where we deﬁned the measure du supported in the ball of radius R, such that

du(y) = vy )A(bR (y)dy }gm v(y)d(ly| — R)dy. Note that, by integration
by parts, radial integration and (C.5)

[ ants) = [ )20 )y = i [ vyl = Ry o

Moreover,

_ (N) .
[l = [ wmad @iy - g [ @il - Ry

- '/ WY@+ s [l

v (y)ldy,

l0»?;(3/ an) Js

using Cauchy-Schwarz can be bounded by

2(2m)1/?
/ ) < s
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This bound allows us to estimate the integral in (C.16) with A, using the defini-
2(2m)1/2

tion of gr
/ bl = )dp)| < o

Now, using again Cauchy-Schwarz, the definition of wr we get

[1s@loatie < ([ wtona) ([ o) &
< 2 ([ woontaras) -

Thus we can conclude that (C.16)

o [ v @] [ e~ y)duty)]do > —m ( / |w<w>|2w3<x>dw) -

which is independent of v. We still have to bound the second term on the r.h.s.
of (C.15). To do so we choose v(z) to be the restriction of ¢(x) to the disk of
radius R, normalized, namely

gr(x).

—1/2
v(@) = p()x(J2] < R) ( |¢<Rx>|2)

D1

where we denote with D, the disk of radius ». We obtain

Az ( / . |¢<x>|2daR) m—W ( / |¢<x>|2w3<x>dx) "

Again, using Cauchy-Schwarz we get that, for any € > 0

2 ; l _ 2)%do —l 2)Pwg(z)de
AP > s [ 50-9) [ o= [ o) Panteia]

Now, this equation, together with (C.13), imply that

[ [we@r + vl e

1P ()
> e | 1) /| PECRETE [ 1ot untoie,

Namely,

[ e + spv@eas

> o R -9 [ a1 | o) nlie) |
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which allows us to conclude the proof replacing R by s, multiplicating both sides
by u(s)slog(s/ay), where u(s) = u(z) for |z| = s, and integrating over s € [0; R].

[ urstontsfayas [ [9e@ + vl

> (1) /ORUWS/M:S o, ~ L [Mutsysis [ ot Ponta

Using the assumption (C.1) we end up with

N1+ 6x) / . IVE@)P + 5V (@l () de

>0 [ uiveld - o ([ uwrte) [ 1ot Puntoras

which concludes the proof of (C.12).
[l

Let {(p) be a smooth, radial, positive function with [(p) = 0 for [p| < 1 and
l(p) = 1for [p| > 2, and 0 < [(p) < 1 in between, let O5(p) = I(p/s) so that the h
defined in the theorem is such that h(x) = (1/—\95)(1“), then the corresponding
potential wg, for R < C's satisfies

wa(z)| < CR%s'  and / wa(2)|dz < CR22. (C.17)
]R2

We can easily extend Lemma C.1 with the following corollary

Corollary C.2. Ifyi,...,yn, N points in R*N | s.t. |y, —y;| > 2R for anyi # j
then, under the assumptions of Lemma C.1, we have

— Vl(p)*V + m Z Vi(r —ys)

N (C.18)

> N 2o (e )~ et ).

We can now state the equivalent of Lemma 2.1 in [60] in our setting. The aim
of this lemma is to smooth out the singular interaction potential V3 with a softer
one with a larger range of interaction, namely U, defined in (C.11).

From now on we set R = N®/¢. It is important to notice that in this appendix
we are considering ¢ = N~7, while in Appendix B the parameter ¢ was small but
of order one. With a slight abuse of notation we keep the same notation.

Lemma C.2. Let HY and U, be defined in (C.1) and (C.11) respectively. Let
05(p) be defined before (C.17). Then, for all s > 0,0 <e <1 and { > 2Ry/N”,
we have

N
an(l—¢)? CNP?st
][322 (1 —&)p2b,(p:)) +—N(N ) Wy ————, (C.19)
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where ay is a constant bounded uniformly in N and s.t. limy_,o ay =1 and

N
Wﬁ = Z U@( — .Tj H (925 — Jﬁk (CQO)
i#] ki,
with C' > 0 generic constant.

Proof. The proof is an application of Eq. C.18. We first notice that by scaling
the solution of the scattering equation for the potential V3 on the disk of ra-
dious ¢ = N=PR is given by gzﬁéﬁ)(m) = QSE%N)(Nﬁx). Hence, Eq. C.18 holds with
(+ V. an, Ro, R) substituted by (Vs, N"?ay, N7 Ry, () and a potential u(z) sat-
isfying the assumptions in Lemma C.1.

To conclude it is then sufficient to notice that the potential Uy(x) is different
from zero for (/2 < |z| < ¢, and satisfies

/Ug(ﬂf) log(|z|/N"Pay)d*x = 27TN—|—log(Nﬁ€)/U(x)d23:.

Therefore with (C.10) we have
log(N?¢
Us(e) g /N Pan )2 = 2N (14 dy) . with oy < B0,

Then (C.18) and (C.17) imply that for all £ s.t. £ > N=PRy/2 (so that U,(z) is
supported in the annulus N=°Ry < |z] < /) we have

N—-1
1 1—5 C?st
+§E Vg(x—yi)_ E ng—yz
=1

on L*(R?), for all given points y; satisfying min,z |y; — yx| > 2¢ and ay =
(1+ dx)~*. Since the left hand side is non-negative we can relax the condition
on the distance of points by multiplying the r.h.s. with [, ; 62,(y; — yx). Thus
forevery i =1,..., N

N . 2 4
+%ZVB(1’1‘—%’) ol 5ZU6 zi = ;) [1 0205 = ) —

J# i#] k#j
Now, multiplying both sides with 1 — ¢ and summing over ¢ we obtain

N
Z(l—a)p&( 1—5 ZVB T — Tj)
i=1 VE
1 —¢)? CNZst
ZUe i — ;) [ [ 02y — ) — —
i#j k#j
(C.21)
With the definition HY = > b+ Zl<j<k<N Vs(x; — x1,) we have
N
HE >3 (- (1- )20 1—521939 P
i=1 i
hence with (C.21) we conclude. O
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C.3 Second moment estimate

In the next step we will focus on the Hamilton operator

Z i 5)2% (C.22)

where W3 has been defined in (C.20)
hi = p}(1 = (1= €)0s(pi)) + Vexs + 1. (C.23)

and ay = (14 dx) "' is bounded uniformly in N and s.t. limy_, ay = 1. Here
we are adding a constant to make sure that h; > 1. We will remove it when we
will compare H ]’[f, with H ]/f, later on. Our goal is to bound the second moment
of Hy from below in terms of the second moment of ZZV hi. To this end we
use the following lemma, which is an adaptation to the two dimensional case
of [60, Lemma 3.2]. A statement of the corresponding lemma in two and three
dimensions can be found in [67, Lemma 4.4].

Lemma C.3. For every 0 < W e L' N L?(R?), the multiplication operator
W(x —y) on L*(R?) satisfies

0 < Wie—y) < CIWlpymu (1 - A,), (C.21)
forany 0 <§<1/2

0 < Wiz —y) < Cs||Wilpme) (1 —A) (1 — A, (C.25)
Moreover, for all1 >¢& >0, s >0 and 0 > Vyy € L] (R?)

haW (z=y)+W (2 —=y)he > =CIIW || 2g2)+ (1+5)) W || or2me)) (1= A2) (1=-4,)
(C.26)

Proof of (C.24). To prove (C.24) we use Holder and Sobolev inequality in two-
dimensions. For any function f € H'((R?)?)

W= = [ [ W lsepPdedy
3
Wiz — 3/%[) ( d) d
s/( (« o) (i) ay
< CIW e, / 1£2dy
RQ

< Wl | [ [ 15t = w)Pasdy

/RQ/RQWN_ |dxdy]

< CW | gsra@e)((f, £) + (f, —Asf))
< CIW | iy (f, (1= A2) f)

174



Ground state for many-bosons system through singular potentials

Proof of (C.25). A proof of the estimate with § = 0 can be found in [28] in 3d
and stated in 2d in [39]. Note that for every operator K, K*K <1 if and only
if KK* < 1. Therefore, (C.25) is equivalent to

Wz —y)(1 = 2,)" (1= A7 W (w —y) < Cs| W] (C.27)

Let G be the Green function of (1 — A)°~!, which Fourier transform is given by

1
(1 + 4m2[k]2)10

G(k) = / e 2R (x)da =
R2
For every function f € L?((R?)?) we have

(f, (VW (2 = y) (1= A.)° 7 (1= AW (2 = y))f)

= /f(x, YVW(x — )Gz — )Gy —y )W —y)f(@,y)dedyda’ dy

<1 / Wz — )Gz — )P F(, )2

2
+W (@' — )Gy — )| f(z, y)|?] dedyda’dy’

< CgHW”L1 <f7 f>7

where ik
o 2 _ A2
o= [1er = [10r = || s

which is finite for all 0 < ¢ < 1/2. Thus (C.27) holds. O

Proof of (C.26). Before we prove a simpler version of (C.26), namely
()W (z —y) + W(z = y)(=As) = =C[W][L2(1 = Ax)(1 = Ay).  (C.28)

By an approximation argument one can assume that W is smooth. For every
f € H*(R? x R?), a straightforward calculation using integration by parts and
the identity V(W (z —y)) = =V, (W(x — y)) gives us

— 2Re / / VT @ )Va(W(x — ) f (2, y))dedy

=2 [ [19. )P0 e = y)dedy
+ 2Re / / VT (e ) V(W (a — ) f (x,y)ddy
> 2R [ [ V@9V, (0V( - ) f(@.g)dody
= 2Re / / Vo (Vof(z,9) f(z,y))W(z — y)dzdy
= 2Re / / [mevyf(%y) + Vy(me)f(:w)]W(x — y)dxdy.
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Using Cauchy-Schwarz and Sobolev inequality (C.24) we get
[ [ 9T e - sy

1
<5 [ [ 9@l + Vot )] W = yldody
< ClW s (f, (1= Az)(1 = Ay)f).
Moreover, by Cauchy-Schwarz inequality and (C.25) with 6 = 0 and W replaced
by W? we get

‘ / / (VyVaf (2,9))f (@, )W (x — y)dxdy‘

< ( /] |vyvxf<x,y>|2dxdy)l/2 ( /] |f<x,y>|2|W<x—y>|2dxdy)1/2

S COWH 2 (f, (1 = A)(1 = Ay) f).
Thus we can conclude

(F (D)W (z —y) + W(x —y)(—A)) f)
> —C[IIW |z + W] gsr2] (f, (1 = Az)(1 = Ay) f).

Now if we want to prove (C.26), we just need to estimate the second part of the
operator h. Using the Cauchy-Schwarz estimate for operators, namely

+ (XY +Y*X*) <O6XX* +67'VY V6 >0 (C.29)
and using (C.24)

> _5p;2r<1 - es(pm))W(x - y)pi(l - es(pac)) - 6_1W($ - y)
> —C|[W || /2 (95 (1 = Os(pa))® +071)(1 = Ay)

for all § > 0. Now since 1 — 0,(p,) < x(|p| < 2s) and choosing § ~ s72 we end
up with

P21 = 0s(pa))W (@ — y) + W(z — y)pa(1 = 0:(pa))

> —C|[Wl|gs/2(s™pa(1 = 0s(p2))* + 57)(1 — Ay) (C.30)
> —C||W||s28*(1 — Ay).
Putting together (C.28),(C.30) we conclude the proof for (C.26). O

Now we are ready to prove the following key bound for H f,

Lemma C.4 (Second moment estimate). Let H and h; be defined in (C.22) and
(C.23) respectively. Then, for every 0 < e <1 and s >0, and { = {(N) > N~!
when N — oo, then

(HY)? > % <Z h) , (C.31)

for N large enough.

176



Ground state for many-bosons system through singular potentials

Proof. The proof follows similarly to [60, Lemma 3.1]. We have
(1—e)? & (1 —e)t
<Zh> = TZ (han W5+ Wshpy,) + NTWg (C.32)
=1

The goal is to bound the "mixed” term leWg + Wgﬁl from below. In order to
do it we first decompose Wjs as

Wy =W, +W,

where

= Y Uz — ) [] ol — a),

1e{i,j} k#i,j
= Uia; — z;) [] eelaj — ).
4,522 k#i,j

First we estimate W,. By the Cauchy-Schwarz inequality (C.29) we get
+ (W, + W,hy) < N~ hyWohy + NW, (C.33)

having chosen § = N~!. Let us show that

W, < % (C.34)

Indeed, for every given (1, s, ...,7x) € (R?)V, the product

U(z1 — ;) H Ore(x; — 1)

k#1,5

is bounded by ||U||z~ < C¢™? and it is zero except in the case
|2y — 2| < <20 < 12111?; |z — ]
By triangle inequality last condition implies
|21 — ;] min [z — 2|

and it is satisfied by at most one index j # 1. Therefore,

Zngl—x] H@Q@ —l’k _;.

j>2 k#1,j

Similarly we have

NIQ

ZUZ( — 1) H92z i — Tp)

i>2 k#£1,i
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and so (C.34) holds true. From (C.33) and (C.34) we obtain

C
(h1W + W, hl) < N_€2 hl + 2N E Ug — IE] H 62@ - .Z'k
1e{i,j} k+#i,j

Now we can proceed with W, we need to split it again

Wy =W.+ Wy
with
WCZZUE —CUJ Heﬂ _xk
©,j>2 k#1,i,j
Wy = Z Ui — x;) (1 — a0z — 1)) H Ooe(xj — x1).
1,7>2 k#1,j
Note that

W.>0, Wy>0, and hW,=W.h >0.
On the other hand by Cauchy-Schwarz inequality (C.29)
+ (M Wy + Wyhy) < 6haWahy + 6 W,
We have two different ways to bound Wj. First by (C.24) and h; > 1,
(1= Oa(wj — 21)) < C1 = Ol g2 < Col Iy,
because

2/3
11 — Ol 32 = (/ (1-— 0(x/2€))3/2d2x) < C*3
R2

Since here i, j > 2, both sides of the last estimate commute with
H Oze(1; — 1),
k#1,i,j
and we deduce that, multiplying both side by this term,

(1 —62@<Ij —.’13'1) H 926 —ﬂfk

k#1,4,5

< C 64/3]11[][ - l’] H 024 —LL’k

k#1,i,5

Taking the sum over i, j > 2 we obtain
Wy < CALP W,

On the second hand we can show that

C
Wd<€_2
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Indeed, for every given (z1,...,zy) € R?*V, the product

Up(z; — x;) (1 — O(z; — 21)) Heze — Xg)

k#1,i,j
is zero except in the case
|z, — x| < 4, |x; — 21| <40, min |z; — x| > 20 (C.39)
k#1,,j

By the triangle inequality, equation above implies that the ball B(z1,5¢) contains
B(z;,£/2), B(x,£/2), and the balls B(z;,¢/2), B(z;,¢/2) do not intersect with
B(xy, £/2) for all k # 1,4, j. Since B(xy,5¢) can contain only a finite number of
disjoint balls of radius ¢/2, we see that there are only a finite number of pairs
(i, 7) satistying (C.39). Thus we can conclude that

Wy < CHUg“Loo < Ce2.
From (C.36),(C.37),(C.38), we obtain

ille + Wbill = ;Lle —+ Wdill —+ 2l~11WC

co ~
i (o,

Choosing & ~ (43 we get

C-

haWy + Wyhy > —

(h1)*. (C.40)

We can now put together the pieces and conclude the proof. From (C.35) and
(C.40) we get

- - C C.\ -
h1W5 + Wghl Z — <W + m) <h1)2 — 2N {Z} UZ(ZEZ k]7;[ 024 — l’k
1e{i,jy 2y

Summing the similar estimates with 1 replaced by m and using

N
Z Z Ug( —ZL’j Hggg —ZL’k —2W5

m=1me{i,j} k#i,j
we find that
N 3 N
(hm W5 + Wshy,) > ( ~z t 7z /3> > (hm)® = 2NW.
m=1 m=1
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Therefore, coming back to our original equation (C.32) we can conclude that

(&)

N
an(l—¢)? - . a%(1—e)t
= T (thﬁ + Wghm) + NTWE
m=1
an(l—¢e)? [ C Co\ = -
Z - N (N€2 + 52/3) mz1(hm)
2 1 — 4
— QaN(l — €)2W5 + OCJV<]V—2€)W52 + N?
C G NSy (no 0= N e
2‘(@*%)2 (i (N_T%) -
c N
= (NQKQ 62/3]\7) 2_:1
When ¢ > N~ we have o
e ey <1
and hence
N
(HR)?>2 > hiby+ (1 =o0(1)) Y (hs)
1<i<j<N i=1
which yields the result, recalling that i > 1, i.c. Zlgiqu ﬁzﬁ] > N2 O

C.4 Three body-estimate

Goal of this step is to remove the cut-off Hk#j B¢(x;—x)) in the potential Wp
to obtain a lower bound in terms of a two-body potential. Using the elementary

inequality

with 0 < s5; <1 for all 4, we get
[T [eelay — 2) £1) = ] [1— (1 = Oae(; — a))]
k#i,j k#i,j

>1-— Z(l — Oge(xj — 1))

ki,

Therefore, we have

Ws > > Uz —a;) = Y Upla; — 2;)(1 = Og(; — 21)). (C.41)

i ki
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This implies that we have only a three-boby term to estimate. To remove this
interaction, we make use of the second moment estimate lemma.

Lemma C.5. For every 0 <e <1 and s >0, if { = ((N)> N~', then

64/3

Z Ui — ;) Z‘(l — Oe(x; — ) < Ce,sw(ﬁz/{/f (C.42)
1#] k#i.j
Hence,
L, N an(l — &) 04/3 -
N Z Zh]‘{'TZUg(Z‘Z—ZIﬁ]) _C&SW(HN) (043)

Proof. By (C.24) and h; > 1 we have
(1 — 025($2 - .Tk)) S CH(l - 924)HL3/2<1 — Az) S 05,364/3%%

for k > 3. Since Uy(z1 — x2) commutes with both sides, we get

Up(ar — 22) Y (1 — Oag(s — 1))

S 06,564/3[]6(1:1 - 'TQ) Z hk

k>3

1 L. 1
= 5057364/3([’[]% — hl — hg — (1 — 8)2—

NWB)UZ(% — .CL'Q)

1 T 1
+ 5057564/3(]4(1‘1 - ZL'Q) (Hﬁ, - hl - hg — (1 — E)QNI/Vg)
1 . -

S §C€’S€4/3 (HﬁUg(CEl - 513'2) -+ Ug(l’l — xg)Hf,)
2

1 ~ -

- 5057864/3 > (hUs(ay — x2) + Uglay — w2)hy),
j=1
(C.44)

where in the last estimate we used that Wj > 0. Thanks to (C.26) and h; > 1
we get for all j = 1,2,

h;Up(z1 — x2) + Ug(x1 — 22)
> —Ces| Ul r2 + (1 + 82)HUeHL4/3] (1=A)(1=Ay)
> —Cos(' + (141 =AM+ V)1 = Ay + V)
> —Os,sé_lihilz
(C.45)

On the other hand, by the Cauchy-Schwarz inequality (C.29), with X = HY Up(z1—
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22)V2 and Y = Uy(x1 — 3)"/2, h; > 1 and (C.25) (with § = 0 and W = U)

.Hﬁ;Ug([El — x9) + Up(xy — x9) ~]’€, < 5I:If,Ug(a71 — {L‘Q)f{ﬁ; + 67U (2 — 19)
< CeoOl|Ull o HR (1 = Ay) (1 — Ag) H,
+ 0711 = AD(1 = Ay)
< C.0HYhyho HY, + C. o6 hyhy
(C.46)

for all § > 0. Choosing § = N~! and using that £~} < N, then from (C.44),(C.45)
and (C.46) we end up with

Vs —22) S (1 = os(s — ) < %(1573@4/3 (SH i S + 6V uhy)
k>3
+ 3087554/35—%1%2
< O M3 (N HGhaho Hy + Nhahs).
By symmetrization with respect to the indices, we find that
N Udwi—;) Y (1= sl —)) < cs,sz4/3(zv—1ﬁ§3 S by HGANY iziz}j).
i#] ki, i#] i#]

Combining with the second moment estimate (C.31) we obtain

S Unlar = ) 37 (1 = By — ) < O (NV (G2 + N
i#j k#i,j
- NTHEY R -NY Bf).

and hence with H ﬁ, > N and neglecting the negative terms on the second line
we find (C.42). From the three-body estimate (C.42) and the inequality(C.41)
we get the second bound (C.43), namely

~ 3 N ~ O{N(]_ — 5)2
=1
N N
~ O./N(l — 5)2
Zzzlhl—i_ i ;Uz(l’z—l’j>
1— 2
_on(l=e) > Uil — 25)(1 = Ox(w; — 1)
k#i#j
N N
 an(l—e)? “s o
Z ;hz + N ;U@(Z’Z .fL'j) CESW(HN)
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C.5 FEnergy lower bound and convergence of states

Using Lemma C.2, C.4 and C.5 we are able to prove the convergences in
Theorem C.1. In particular we can eventually justify the mean-field approxima-
tion for the new Hamiltonian with the two-body interaction potential U,(z — y),
which converges to a Dirac delta much slower than the original potential V5. The
proof follows directly from [60], however the analysis is simplified since we do not
have a magnetic field. We recall the main result used here, namely Quantum de
Finetti theorem, stated as in [60, Theorem 2.2].

Theorem C.3 (Quantum de Finetti). Let b be an arbitrary Hilbert space and
let PN € ®i\;mf) with ||¢Yn|| = 1. Assume that the sequence of one-particle

density matrices %(;13 converges strongly in trace class when N — oo. Then, up

to a subsequence, there exists a (unique) Borel probability measure p on the unit
sphere SH in b, invariant under the action of S, such that

lim Tr
N—o0

vﬁ—/m%w%ww>

=0, (C.47)

for all k € N.

Before, we define the energy functional Exfg for 0 < e <1 and s > 0 by

. V(0
Gilul = G+ (1 = P2 [
R2
again one can prove that there exists a unique, positive minimizer ¢,. We aim

to prove the following proposition

Proposition C.6 (Mean-field approximation). Let HY be defined in (C.22).
Assume Nt < £ = ((N) < N=3/* then for any 0 < e <1 and s > 0

. info(HY) ,
lim —— = inf &Y. C.48
N—co N lull g2y =t -9 (C.48)

We adapt to the 2d case the proof in [60, Proposition 4.1], with some simpli-
fication due to the fact that we do not include magnetic fields.

Proof. The upper bound in (C.48) can be obtained easily using trial states of the
form of™, since limy oo [ Us(x)dr = V(0)/2 from (C.9) and limy_,e0 ay = 1.
For the lower bound, let us consider a ground state Uy of H f, (which exists
because h has compact resolvent). Using the ground state equation, we find that

(b, (HR) 4w = (inf o (Hy))" < (C.,N)" (C.49)
for all £ € N. In particular the second moment estimate (C.31) implies that

(¥n, hihotby) < Cey (C.50)
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and the operator estimate (C.43) implies that

lim inf M > lim inf (Tr(iw(})) + an(1 —&)*Tr(U, 7(~2))> (C.51)
N—oo ~ N—oo YN N ¢ YN’ )" .
Here ’ygz is the k-particle density matrices of @N and U, is understood as the

multiplication operator Uy(x —y) on L?((R?)?). The proof of the lower bound in
(C.48) will be obtained by showing that

lim inf (Tr(fw(})) +an(l— E)ZTr(Ue’Vg))>

N—oo P
_ 2‘7<0) A ) (052)
u, hu 1—e) —= ul® | di(u) .
> << y+a-ep? [ |> filw)

We first notice that since Tr(ingi) is bounded uniformly in N and & has compact

1)
N
class. By the quantum de Finetti theorem up to a subsequence we can find a

Borel probability measure fi on the unit sphere S(L*(R?)) such that equation
(C.47) holds. Since h is positive and independent of N, (C.47) and Fatou’s
lemma imply

resolvent, up to a subsequence we can assume h~vy:’ converges strongly in trace

N—o0

g inf Ti () > / oy T (C.53)
S(L2(R2

It remains to prove the lower bound for the term involving the two particle
reduced density, i.e.

lim inf Tr(ay Uy ) > Vi) Jul*dji(w). (C.54)
R2

N—oo 2

Since U, does depend on ¢, and so on N, we cannot conclude immediately as
before using quantum de Finetti and Fatou lemma. We proceed replacing U,
by an operator bounded independently on N. In order to do it we localize the
problem onto energy levels of the one-body Hamiltonian / lying below a chosen
cut-off A. Indeed, since h has compact resolvent, for every A > 1 the projection

Py = 11(71 <A)
has finite rank. Let us denote
I o= Loy — PR
Since U, > 0, we can apply the Cauchy-Schwarz inequality for operators with
X = P22u” v =01
to obtain
Uy = (PP + DU (PY? + 1)

= PY2U,PY? + U + PP2ULIT + TIU, PY?
> PY2U,PY? — 5 TIU + 6 PY2UPY?
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for all 6 > 0. Using the operator bound (C.25), and the fact that the 4/5-th
power is operator monotone [6, Chapter 5] we have

Up(z1 — x3) < C|| Ul (1 = AP (1 = A)Y5 < CLy(hy)Y?(ho)Y. (C.55)
Therefore,
PR U,PE? < C.yhihy and UL < C. JA™Y5hyhy.

Here, in the second estimate we have used that IT := 1 72((ge)2)—Py* < C. A~V/5RM5,
which is a consequence of the definition of P,. Thus,

Us — PRRUP? > —Cey(6 + 0 ATY2) oy .

If we choose § = A=Y/10 and take the trace against v%, then by the a-priori

YN
estimate (C.50) we find
Tr(Un ) = Tr(PRPU P ) > =C oA™Y,
On the othere hand, from (C.55) and the definition of P, it follows that the
operator norm PL2U,P? is bounded uniformly in N for A fixed. Since ay is
bounded uniformly in N, the strong convergence (C.47) implies that

lim (Tr(PEQaNUngny@) - / (PE2u), &NUg(Pj?Zu))d/](u)) =0.
Novoo N Jswre)

Since the left side of (C.53) is finite, every function u in the support of dfi belongs
to the quadratic form domain Q(h) of h and hence Pyu — u strongly in Q(h) .
Using (C.25) and the continuous embeddings Q(h) C H' C L* we get

: : X2 X2 S 4 4
Jimn T (P§2u), anU(PPu)) = i [Pyt = JjullL.

By Fatou’s lemma,

liminfliminf/((P/‘?Qu),ozNUg(Pﬁbzu»dﬂ(u) > —/||u||i4dﬂ,

A—oo  N—=oo

where we used that limy_,o ||Us||1 = \7(0)/2 and limy_,, ay = 1. So the con-
vergence (C.54) follows. O

We are now ready to prove the convergence of the ground state energy stated
in Theorem C.1.

Proof of energy convergence (C.8). The proof of the upper bound for a generic
external potential Vi can be obtained as in [51]. In our setup, with the bosons
trapped in a torus, where the minimizer is exactly ‘7(0) /2, it is sufficient to test
the excitation Hamiltonian gfm in Eq. (2.45) on the vacuum in F;".

We consider now the lower bound. We are considering N=! <« ¢ <« N~3/4,
From lemma (C.19) (which requires ¢ > N~#) and Proposition C.6 it follows
that for every 0 <e <1, s >0

inf o (H? inf o (H?
lim inf w > liminf AN o(Hy) — 1= inf &Y.
N—o00 N—oo llull2=1
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C.5.1 Convergence of density matrices

We are left with the proof of the convergence for approximate minimizers of
H f, Following [60] we use the Hellmann-Feynman principle. For v € L*(R?)
and k € N we will perturb H ]BV by

k!
Syl 1= A1 Z [0 (0 iy

1<i1<...<i, <N

Here [v®*)(v®*|; . acting on the k-body Hilbert space of the i;-th,..., i;-th
variables. We have the following extension of (C.8).

Lemma C.7 (Energy lower bound for perturbed Hamiltonian). Assumption as
before. For every v € L*(R?) and k € N, we have

. J(Hﬁ, — Sy k) . 2%
) > J— .
lign inf ——S——=== > ”u@f:l <5NL5[U] (v, )] )

Proof. Let 0 <e < 1and s> 0 and > N~' Recall that from (C.19) we have
HY — S, > HY — S, + N —C. N2, (C.56)

Let ¢ be a ground state for HY — S, ;. Since ||Sy4||/N is bounded uniformly in
N, then for any ¢ = N~7 for some v > 0, Eq. (C.49) still holds with zﬁN replaced
by ¢n, namely )

(x5, (Hy)"dn) < (CooN)" (C.57)
for all n € N. Combining (C.57) with the three-body lemma C.5 we get the
following analogue of (C.51)

. L
ti i N = Suk) L (O (Hy = Sop)on)
N—oo N N—o0 N
> tipint (T0nf2) +an(1 — L) ~ T 070L2).
(C.58)

Moreover, (C.57) and the second moment estimate (C.31) imply the a-priori
estimate (¢, leﬁgqﬁN) < Cg 5. Therefore, we can estimate the right-hand side of
(C.58) by proceeding exactly as in the proof of Prop. C.6. More precisely, by
the quantum de Finetti Theorem C.3 we can find a Borel probability measure
[ty on the unit sphere Sh such that, up to a subsequence,

)= [ 1) g ()] =0,

lim Tr
N—oo

for all k € N. Using (C.52) with ¢y replaced by ¢ and employing the fact that
[v26) (v9¢] is bounded, we obtain

lim inf (Tr(ﬁ’yéig) +an(1 - E)QTT(UMg\),) - Tr(|v®k><v®k|7<§>]jv))>

o ] > (C.59)
-/ <<u, i)+ (1= P [t - |<v,u>|2’f) Big ().
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From (C.56), (C.58) and (C.59), it follows that

.. U(Hﬁ; - Sv,k)
fim inf ——"~——

> if (<u, -1+ =222 [ - |<U,u>,%) sy (u).

ol 2=1

Finally, by a standard compactness argument from [47] we have that —A+1 has
compact resolvent, then the limit

e=20s—=00 \ |Jull 2=1 R2

lim lim ( inf (<u, (h— 1)u) + (1 — 6)2@ ul* — |(v,u)|2k>dﬂ¢N (u)>

= ot (&l = Io, ).

]

Now we prove convergence of density matrices.

Proof of state convergence. Let ¢ be an approximate ground state for H ]@ as in
Theorem C.1. For every v € L*(R?) and k € N, from the upper bound in (C.8)
and the lower bound from the previous lemma we have

(wN, Hwn)  (n, (Hy — Sv,kwm)

lim sup Tr (o) (v®* h/](\f)) = lim sup

N—o0 N—=oo N N
: info(HY) info(HS —S,)
< lim su NJ N v,
< inf &nps — inf <5NLS — (v, u>|2k)
l[ull 2=1 llull 2=1

Here v is not necessarily normalized. Therefore we can replace v by A ¥y with
A > 0 and obtain

N—oo llull ,2=1 lull 2=

1
lim sup Tr(|v®k><v®k|7$\),) < X( inf Ens — ﬁnf ) <€NLs - )\|<U,U>|2k>>.

With given v and k, for every A > 0 let uy be a normalized minimizer for
u — Exrs — A (v, u)|*. Since (uy, huy) is bounded and h has compact resolvent,
there exists a subsequence A; — 0 such that uy; converges to ug in L?. By
Fatou’s lemma, ug is a minimizer of Exrg, hence

1
lim sup — ( inf Eyps —  inf <5NLS [u] — /\j|<U7U>|2k)>

jooo Aj\ llull2=1 l[ull p2=1

) 1
< limsup + <5NLS[UAj] - <5NLS[UAJ-] - /\j|<U7UAj>|2k>> = |(v, o).

J—00 A
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We used the uniqueness of the minimizer of Exps. This implies that for any
veE L*(R?) and k € N

lim sup Tr(|v®k><v®k]'y$3) < (v, o) |**.
N—oo
Now we can conclude the convergence of density matrices using the quantum
de Finetti theorem. In fact, by Theorem C.3, up to a subsequence of ¥y, there
exists a probability measure p on the unit sphere S(L?(R?)) such that

O dut)| = o
S(L*(R?))

for all £ € N. To conclude the proof we will show that p is supported on the
set of minimizers of Exs, called Myrs. To show it, we assume by contradiction
that there exists vy € L*(R?) in the support of u but vy ¢ Myps. Denoting by
B the set of all points in the support of p within a L2-distance less than ¢ from
vo, 1.e. [[v — vglla < 6. We claim that we could then find § € (0,1/2) such that

lim Tr|y

N—oo

(v, p0)| <1 — 362 (C.60)

for all v € B. Indeed, if that was not the case, we would have two sequences in
the support of u strongly converging in L?(IR?)

Up = Vo, Up — Qo € MnLg

with [|u, — v,|| — 0, and thus vy € Mnrs. Here we have used that Mg is a
compact subset of L?(R?). On the other hand by triangle inequality,

o,d] > Sl + ol — = o) > 1 - 2, (C.61)
for all u,v € B. From (C.60) and (C.61) we find that
@B =20 < [ [ o) Pautuanto)
< /B (0, o) Prdu(v) < u(B)(1 - 36%)2*

for all £ € N. Taking the limit & — oo, we have u(B) = 0. However, it
contradicts the fact that vy belongs to the support of u and pu is a Borel measure.
Thus we can conclude that p is supported on Mg and the proof is complete. [
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