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Introduction

Gravitational waves have been theorized by the general theory of relativity and
they proved to be a great tool to study the Universe. Nowadays, gravitational
waves observation is becoming a routinely task in astronomy. To detect these
ripples in space and time, huge interferometers have been constructed. They
work together in a global network composed by LIGO Hanford and LIGO Liv-
ingston in the US [1], Virgo in Italy [2] and KAGRA in Japan [3]. LIGO-India
will be also constructed in the near future and it will join the network [4].
Since gravitational wave detections proved to be practicable [5, 6, 7] new projects,
aimed to develop more sensitive detectors, are now being planned for the next
future.

Interferometric gravitational-wave detectors are very interesting from the physi-
cal point of view: they suffer from a huge variety of background noises [8], each
one arising from different physical processes. These noises produce unwanted
displacements on the detector’s test masses, which are the probes that, through
the use of coherent light, measure the gravitational field distortions due to grav-
itational waves.
The so called Newtonian Noise (NN) arises from the density fluctuations of
the materials which, in turn, cause unwanted perturbations in the gravity field
that surrounds the test masses. These gravitational noises cannot be physically
shielded, neither reduced, without forcing severe modifications to the already
existing infrastructure [9, 10]. The best approach to suppress this noise is there-
fore through its active cancellation from the data stream, which can also be done
offline. Techniques of this kind have already been implemented in gravitational-
wave detectors to reduce other noises [11, 12, 13, 14]. Already in 1998, with the
contemporaneous works of Beccaria et al. [15] and Hughes and Thorne [9], it was
predicted that NN would have been a limiting noise in the lower frequency band
(below 10 Hz) of ground-based interferometric detectors. In the next observing
run (O4) Advanced Virgo+ (AdV+) sensitivity will be enhanced enough that
NN will become the dominant noise below the few tens of Hz. For this reason it

1



CONTENTS

will be important to be able to reduce it as well.
Addressing the NN problem will be a crucial task also for 3rd generation gravitational-
wave detectors, like the Einstein Telescope (ET) [16]. In spite of the fact that
ET will be constructed underground, it will still be very important to find ways
to reduce NN. [17].

The active noise cancellation is based on the idea that the NN affecting a test
mass can be reconstructed by simply monitoring nearby density fluctuations by
means of many auxiliary sensors and then use a Wiener filter to cancel out the
noise. Optimizing the positions of the sensors in the array is a very important
thing that we need to do in order to maximize the Wiener filter performances.

The NN arises mainly from atmospheric fluctuations and seismic displacements.
In this thesis work I focused on the NN of seismic origin but the same techniques
can also be applied to the atmospheric NN.
As mentioned before, the problem of finding the optimized array is a crucial
step for implementing the NN cancellation system. Some attempts were already
made for 2nd generation gravitational-wave detectors, in particular for LIGO [18].
LIGO has a seismic noise that is nearly homogeneous, and thus the optimization
was made assuming a homogeneous seismic field. This is sufficient for the NN
cancellation in LIGO, but not for AdV+: here we know that the seismic field is
far from being homogeneous and isotropic [19].
The optimization of seismic arrays for underground detectors is instead a prob-
lem that has not yet been accomplished. This is also important to understand
the feasibility of NN cancellation in ET, but also, potentially, in KAGRA.

My work can be divided into three main tasks: the optimization of a seismic
array for the NN cancellation in underground detectors (Chapter 7), the op-
timization of a seismic array for AdV+ (Chapter 8), which required a more
advanced approach with respect to the former, and the evaluation of the NN and
the seismic field in the KAGRA site (Chapter 9).
The structure of this thesis is organised in two parts: Part I is a broad intro-
duction to the gravitational wave physics but mainly focused on the detection
techniques. Chapter 1 explains what gravitational waves are, how they arise from
the general relativity framework and the major breakthroughs of the 2nd genera-
tion gravitational-wave detectors. Chapter 2 presents the general components of
Advanced Virgo+ and how they work. Chapter 3 describes the contributions to
the noise given by intrinsic limitations arising from the physics upon which the
detector is based on. Some of the techniques used to suppress them up to the
edge of the available technology are also presented. Chapter 4 introduces con-
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cepts for future gravitational-wave detectors, in particular the Einstein Telescope
and ELGAR: an interferometric detector that will exploit atom interferometers.
Part II presents and describes my PhD work. Chapter 6 is a self consistent in-
troduction to the NN field with particular attention to all the equations needed
in the following chapters. Chapter 7 will present the published results regarding
the optimization of seismic arrays in underground detectors, while Chapter 8 will
present my other second work on the optimization of seismic arrays for AdV+.
Finally, Chapter 9 will explain the work I have made to characterize the Newto-
nian and seismic noises budget in KAGRA.
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

1.1 A brief historical introduction

The theory of gravitation has an interesting history: it starts from the gravita-
tional law of Newton and ends (at least for now) with the General Relativity
(GR) theory of Einstein which, in the weak field limit, can be reduced to the
classical gravity theory.
Einstein was not the first one to propose the concept of gravitational waves
(GWs), but eventually, his GR theory was the only one which was able to pre-
dict phenomena in the right way [20].
In the beginning (with Newton), gravity was treated like an instantaneous force,
but later (1805) Laplace made a first attempt to consider a finite speed for the
propagation of gravity and concluded - wrongly - that it had to be million times
larger than the speed of light. Later (end of 1800), Gerber obtained a gravity
speed very close to that of light using the perihelion shift of Mercury’s orbit
(even though his results were controversial due to some errors). In the meantime
(1865), Maxwell, in his paper on electromagnetism [21], made a first attempt to
understand gravity as something that could propagate into some medium. Even
Heaviside attempted to write an analogue of the Maxwell theory for gravitation,
showing that gravity could produce waves (”A gravitational and electromagnetic
analogy, Oliver Heaviside, 1893”). On 5 July 1905 Poincaré published a work
in which he assumed that gravitational forces could propagate at the speed of
light by means of GWs. Many were, in the end, the attempts to explain gravity
as some signal propagating with finite speed. Indeed, Special Relativity (pub-
lished some months after Poincaré’s paper, on 26 September 1905) and Classical
Gravity theory were incompatible precisely because Classical Gravity assumed
an instantaneous transmission of the gravity force. It was with GR that gravity
and Special Relativity found an agreement. The development of GR started with
the Einstein conception of the equivalence principle, which implies the necessity
of considering the gravity as a manifestation of a curved space-time rather than
a force. Indeed, GR reduces to Special Relativity in the case of a flat space-time
(which means in absence of gravity - or in absence of energy which can curve the
space-time).
In that period other scientists, like Max Abraham and Gustav Mie, developed
unified theories of gravitation and electromagnetism, but these were scalar theo-
ries and the predicted GWs that arose from those theories were polarised longi-
tudinally (which we know now to be wrong). Gunnar Nordström then developed
the very first theory (1913) that can be considered predating GR: he treated for
the first time gravitation as a pure effect of the space curvature, but his the-
ory was not in agreement with observations (Mercury perihelion shift and light
bending) while, as we know, GR is.
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

After his paper on GR, Einstein came to the conclusion that GWs should exist
in three different types: longitudinal–longitudinal, transverse–longitudinal, and
transverse–transverse. However, later, Eddington showed that two types were
due to coordinate system artifacts and that only one (the transverse-transverse
type) was really physical. In 1956 Felix Pirani [22] reformulated the GWs theory
relying on the Riemann tensor and leading then to an invariant formulation of
the theory.
GWs are the solution to the linearised Einstein equations (which otherwise are
not linear), so they are the result of an approximation (Equation 1.1). For this
reason, it is important to prove that the Einstein equations can have a grav-
itational radiation as a solution and that, in the far field approximation, this
radiation can be written as the GWs obtained from the linearised Einstein equa-
tions. Indeed, there exist a planar wave solution to the non-linear equations (see
[23]) which also carries energy, but it was only after the works of Trautman,
Bondi, Pirani, Robinson [24, 25], and others (early 60s) that the theoretical ar-
guments supporting the existence of gravitational radiation became solid and
well accepted.

The first attempt to measure GWs was made by Weber in the 60s with a res-
onance bar, but, despite the claim of a detection, no convincing evidences were
found and GWs remained something to be yet proven experimentally. Mean-
while, the very first paper concerning the possibility of building a gravitational-
wave detector was written in the Soviet Union by Gertsenshtein and Pustovoit in
1963 [26]. Eight years later, Robert L. Forward, a student of Weber, constructed
the first interferometric detector which was only 8.5 meters long [27]. The follow-
ing year Weiss wrote the historical paper where he described how to construct
an interferometric detector and its sensitivity limits [28]: for this reason Weiss
can be regarded as the father of the LIGO detectors.
Virgo instead, the interferometric detector placed in Italy, was devised primarly
by A. Giazotto and A. Brillet: the proposal was submitted in 1989 [29] and its
construction started in 1996.

The first (indirect) experimental evidence of GWs was related to the discov-
ery of the binary pulsar PSR B1913+16 by Hulse and Taylor [30]: indeed it was
evident from the data that an orbital decay happened and that it was completely
in agreement with the GWs energetic loss predicted by GR.
It was then in 2016 that the first direct gravitational wave detection was an-
nounced by the LIGO collaboration. This was the beginning of the gravitational
wave astronomy.
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

1.1.1 Milestones in gravitational wave astronomy

On September 14, 2015 at 09:50:45 UTC, the LIGO Hanford (WA) and the
LIGO Livingston (LA) observatories detected the GW150914 event [5]: the first
direct detection of a GW! This signal marked the beginning of GW astronomy.
GW observations are important because they can provide a direct access to the
space-time behavior in the strong gravity field regime. This signal belonged to a
binary black hole system with masses of 36+5

−4 M� and 29+4
−4 M�. Already with

the first detection, it was possible to understand some important astrophysical
implications: heavy (>25 M�) black holes do exist, binary black hole systems
do form and they can merge within the Hubble time [5, 6].

Another important event is GW170817 [31]: it marked the beginning of a new era
of multi-messenger astronomy [32]. Its signal was recorded 2 sec before the GRB
170817A [33], which turned out to be linked with the GW signal. GW170817
lasted for ∼ 100 s and its sky localization was significantly better compared to
that of GW150914: 28 deg2 (see Figure 1.1) compared to the 600 deg2 of the
first detection. This improved precision was the result of the presence of Virgo,
a third detector, in the observing run (O2). This allowed the electromagnetic
follow-up campaign to discover the electromagnetic counterpart of GW170817:
it was located in the near galaxy NGC 4993. It is worth mentioning also the
event GW190521 [34], discovered during the third observing run of LIGO and
Virgo. This was related to the detection of a 142 M� black hole resulted from
the merging of two black holes of 66 and 85 M�. It is of particular importance
because both the remnants and the biggest progenitor lie in the upper mass gap,
where no black holes should be found according to the current black hole for-
mation theories. Indeed, according to the current theories, in very massive stars
(in the 130 M� - 250 M� range) a pair-instability supernovae should occur: as a
result of a particular mechanism the star would be completely blown apart with
no remnant left. For this reason, the detection of black holes in this gap is so
important: it opens new insights into the study of the death of massive stars and
the supernovae mechanism, even though, it might be that black holes in the gap
are simply formed by the merging of lighter black holes (like in the case of the
the product of GW190521) or from the collision of massive stars (or other exotic
processes).
These are few of the new discoveries allowed by this new field: we expect many
other exciting detections with future GW detectors (see Chapter 4).
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

Figure 1.1: Localization of GW170817. The light green represents the 90% credi-
ble region of localization using only LIGO data, the dark green is instead obtained
using also data from Virgo. The other colors come from Fermi and INTEGRAL
detector localizations. The inset on the right shows the pre-discovery image of
the apparent host galaxy NGC 4993 20.5 days prior the GW signal (bottom) and
the image of the same galaxy 10.9 hours after the discovery (top) [6].
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

1.2 General relativity for gravitational waves

With Einstein (but already before him, with Nordström, see section 1.1), the
concept of gravitational force passed from being an instantaneous force to being
an effect due to the geometry of the four dimensional space-time.
The Einstein equations Equation 1.1 are a set of non-linear partial differential
equations whose solutions represent the geometry of the space-time. This equa-
tions can be summarized with a citation from J.A. Wheeler: ”Space acts on
matter, telling it how to move. In turn, matter reacts back on space telling it
how to curve.” This mutual effect is a consequence of the non-linearity of these
equations. Moreover, this leads to a big difference with respect to the electromag-
netic field (which is a linear theory): the source of the electromagnetic potential,
Aα, is a conserved 4-current, Jα, which doesn’t depend on Aα itself, this means
that the electromagnetic field is not ”charged”. The source of the gravitational
field, the energy-momentum tensor Tµν , instead does depend also on the gravi-
tational field; this means that the field itself carries energy and momentum from
which it is also generated [35].

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.1)

Here Tµν is the energy-momentum tensor which describes the matter distribution
in space-time and gµν is the metric: a tensor which describes the geometry of the
space-time and allows to calculate distances between points (ds2 = gµνdx

µdxν).
Rµν is called Ricci tensor and it can be obtained by contraction of the Rie-
mann curvature tensor: Rρ

µνρ = Rµν , while R, the Ricci scalar, is obtained from:
gµνRµν . The curvature tensor, Rσ

µνρ, represents the physics of the gravitational
field and a good understanding of this comes from the geodesic deviation equation
[36]

D2ξµ

Du2
= −Rµ

ρνσξ
ρẋν ẋσ (1.2)

Here xν and xσ represent the points belonging to two nearby geodesics that are
separated by a distance ξµ. D2ξµ

Du2
is the covariant derivative of the geodesics

deviation took along a geodesic of reference (and parametrized by u), while
ẋν = dxν/du. We can now understand the meaning of Rµ

ρνσ: if it is zero then:
ξµ(u) = Aµu+Bµ, which means that the geodesics are straight lines, and so the
geometry is flat. In a curved geometry instead, like a sphere or a saddle, two
initial parallel geodesics will converge or diverge and D2ξµ/Du2 can be regarded
as the tidal force that push/pull the points on the two geodesics. We can deduce
that we have to look at the curvature tensor if we want to understand the physics
of the gravitational field. Even if gµν describes the geometry, it depends on the

12



1. GRAVITATIONAL WAVES AND DETECTION THEORY

coordinate system, so that a very complicate metric could still represent a flat
geometry. Rµ

ρνσ = 0, on the other side, represents the physics of a constant
gravitational field (which, for the principle of equivalence is the same as an
absent gravitational field) and, being a relation between tensors, it holds in any
system of coordinates (zero remains zero in all coordinate systems).

1.2.1 Linearisation of Einstein equations and wave equa-
tion

The theory of gravity is not linear, but we can turn it into a linear one under
the approximation of weak fields:

gµν = ηµν + hµν , |hµν | � 1 (1.3)

Here ηµν represents the metric corresponding to a flat space-time and hµν can be
regarded as a small deviation from this flatness. If we restrict ourselves to a coor-
dinate system where Equation 1.3 still holds, we can expand Equation 1.1 in pow-
ers of hµν and then keep only the linear terms in hµν , thus obtaining a linearised
theory of gravitation. The expansion in linear terms of hµν is not enough to re-
trieve the wave equation for GWs: hµν should be redefined as h̄µν ≡ hµν− 1

2
ηµνh,

where h = ηµνhµν . The equations that we obtain by linearising and defining h̄µν
are valid only in systems of coordinate in which Equation 1.3 remains valid, but,
in this way, we are breaking the general covariance that characterizes GR (that
means that the form of the physical laws remains invariant under general coordi-
nate transformations). This implies that the linearised theory of gravity remains
covariant solely for two kind of coordinate transformations: Lorentz transforma-
tions and infinitesimal transformations. By transforming our coordinate system
with a Lorentz transformation, Λν

µ, we can see that gµν → g′µν = ηµν + h′µν with
h′µν = Λρ

µΛσ
νhρσ. So, in the context of the linearised theory, we can look at hµν in

Equation 1.3 as a tensor living in the flat space-time. This is equivalent to have
a gravitational field defined in a special-relativistic context. Infinitesimal coor-
dinate transformations, instead, allow us to rewrite Equation 1.1 in a convenient
way: under this transformations we have that xµ → xµ + ξµ(x) with ∂µξν(x) of
the order of hµν and so:

gµν → g′µν = ηµν + h′µν , h′µν = hµν − ∂µξν − ∂νξµ (1.4)

In the viewpoint where hµν is a tensor defined on the flat space-time, Equa-
tion 1.4 can be regarded as the analogous of the gauge transformation in electro-
magnetism. We can exploit this gauge freedom by choosing ξµ in order to have
∂ρh̄

µρ = 0 (called Lorenz gauge), this leads to the the wave equation for the

13



1. GRAVITATIONAL WAVES AND DETECTION THEORY

gravity field (for an extended treatment see [23, 35, 36]):

∂ρ∂
ρh̄µν = −16πG

c4
Tµν (1.5)

1.2.2 TT gauge and polarization of gravitational waves

The simplest solution to Equation 1.5 is the monochromatic plane wave: h̄µν =
<{Aµν exp(ikρx

ρ)}. The amplitude symmetric tensor, Aµν , has 6 independent
components: 10 less 4 constraints coming from the Lorenz gauge (that implies:
Aµνk

µ = 0). Actually, we still have 4 degrees of freedom because the Lorenz gauge
is preserved for any further infinitesimal transformation that satisfy: ∂α∂

αξµ = 0.
We can see ([23, 36]) that only 2 degrees of freedom survive if we fix the Lorenz
gauge. For a particular choice of ξµ (called the Transverse-Traceless gauge -
or TT gauge) it is possible to write hµν in the simplest way possible (where
summation is intended over repeated indexes):

hTT
0µ = 0, ∂jh

ij
TT = 0 (transverse), hi

TTi
= 0 (traceless) (1.6)

where i and j represent the spatial indexes. Note that in this gauge there is no
distinction between hµν and h̄µν (indeed the trace is zero hTT = hi

TTi
= 0). In

this case the only non vanishing components of hµνTT are h11
TT , h22

TT , h12
TT = h21

TT :

h+
TT ≡ hxxTT = −hyyTT = <{A+e−iω(t−z/c)}
h×TT ≡ hxyTT = +hyxTT = <{A×e−iω(t−z/c)} (1.7)

Using the geodesic deviation equation (Equation 1.2) in the TT gauge, it can
be shown that a particle, initially at rest, will remain so, despite the passage of a
GW. This is due to the fact that the position of the particle is calculated in the
TT gauge, which can be seen as a breathing frame: that is a coordinate frame
which expands and squeezes following the wave expansion/squeeze. We fixed the
Lorenz gauge by choosing ξµ such that the TT gauge was satisfied, but ξµ had
to satisfy also ∂α∂

αξµ = 0, in order to preserve the Lorenz gauge. This means
that the TT gauge forces the new coordinates to move according with the GW.
If instead of looking at the coordinate position in the TT frame of reference, we
look at the distance between two point coordinates (ds2 = gµνdx

µdxν), we find
that polarized GWs indeed move particles with respect to each other, in the way
shown in Figure 1.2.

1.2.3 Energy and momentum carried by gravitational waves

GWs do carry energy and momentum, because otherwise they could not even
be detected and no forces (Newtonian approach) would be applied to the detec-
tor. The problem is that this energy is not localized. Indeed, we know from the
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

Figure 1.2: Effects induced by polarized GWs travelling along z on a circle
composed by free falling test masses. ”+” polarization effects (hxxTT ) are shown
on the top and ”×” polarization effects (hxyTT ) are shown on the bottom.

principle of equivalence that we can find a local frame in which all local gravita-
tional fields disappear (local flat coordinate system). Moreover, in the linearised
theory we look at hµν as a tensor living in a flat space-time: a zero space-time
curvature, as supposed in the linearised theory, means no energy-momentum
(see Equation 1.1). So, in order to understand the energy-momentum tensor
of the GWs, we need to go beyond the linearised theory and, in particular, we
cannot any more consider a flat background metric. In this regard, we need
to use the shortwave approximation [37, 23], where the GWs are considered as
short-wave fluctuations over a much more coarse grained metric (no longer flat):
gµν = gcoarseµν +hµν . However, close to a GW source, hµν will become comparable
to its background metric, so that speaking of the latter will become meaningless.
However, far from it, on the Earth, we can still use the short-wave approximation
and obtain: 〈

Rµν −
1

2
gµνR

〉
=

〈
8πG

c4
(Tµν + tµν)

〉
(1.8)

Where the mean is intended over lengths of the order of the background metric
(gcoarseµν ), Tµν is the energy-momentum tensor associated with any presence of
matter and tµν is the energy-momentum associated to the GWs and is meant
to be quadratic in hµν . Only quadratic terms of hµν can indeed contribute to
a coarse-grained energy-momentum tensor. It is through this non-linearity that

15



1. GRAVITATIONAL WAVES AND DETECTION THEORY

the GWs can act back on the space-time and curve it. The averaging process is
important because we know that for a suitable coordinate choice we can make
disappear the gravity field locally and so the energy of the GW cannot be defined
locally, but only in a coarse-grained sense.
We can explicitly compute tµν far from the source (at the detector location),
where the background can be thought again as flat (gµν → ηµν) and covariant
derivatives become simple derivatives:

tµν =
c2

32πG

〈
∂µhTT

ρσ∂νhTT ρσ
〉

(1.9)

Moreover, we can calculate the energy flux of the emitted gravitational radiation
of very far sources with velocities v � c:

dE

dt
=

G

5c5

〈...
I ij

...
I

ij
〉

(1.10)

Where i, j are the spatial components, I ij ≡
∫
d3xρ(t,x)(xixj − 1/3r2δij) is the

quadrupole moment (with ρ(t,x) the mass density distribution of the source and
xi the ith spatial coordinate of the mass element). The quadrupole moment is
non-zero only for asymmetric systems with mass density which varies in time.
This equation is only valid for nearly Newtonian sources; fast sources in strong
fields, instead, need to rely on a complete field equations treatment Equation 1.1.

Possible sources that can radiate are [38, 23]: binary systems (composed by black
holes, neutron stars, or both), supernovae and, possibly, a stochastic background
composed by the all unresolved astrophysical sources. At very low frequencies
we can also hope to find a cosmological stochastic background arising from early
universe sources.

1.2.4 Principle of measurement

Let us consider a ”+” polarized GW propagating along z. Then, if we consider
the distance between two points at (t, 0, 0, 0) and (t, Lx, 0, 0), we can see that a
GW modifies their distance in the following way: L′x ≡ ds = (1 + h+(t))1/2Lx '
(1 + (1/2)h+(t))Lx and so we can write:

∆L =
1

2
h+(t)Lx (1.11)

We can make the same simple calculation along the y direction, the result will
be the same but with reversed sign (see Equation 1.7). So, if we want to measure
h+(t), we just need to find a way to measure ∆L. One way of doing this is mea-
suring the variation in the distance between two inertial test masses by means
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

of a light beam. This can be achieved by measuring the variation in the travel
time of the light, that is, measuring its phase difference. The Michelson inter-
ferometer layout (Figure 1.3) is something well known and used for such kind of
measurements. A concern that might arise when thinking about the principle of
measurement of the GWs is what follows: ”if light waves are stretched by grav-
itational waves, how can we use light as a ruler to detect gravitational waves?”
[40].
The key point here is that we are not using the light as a ruler, but rather as
a clock. What we are really measuring is indeed the phase of the light, not its
wavelength. During a GW passage, the distance between two test masses will
change, and so also the light wavelength, but the velocity of light will remain the
same. This means that the wave crests will be separated by a greater distance
and it will take a greater time for the light to travel and reach the next test mass.
This is why even if light itself is stretched inside the detector, it can still used to
measure the stretch of the space.

1.3 Gravitational wave interaction with the in-

terferometric detector

The end test masses of gravitational-wave interferometers are not really free
falling bodies, like they should be, indeed various forces act on them, like the
system controls but also various Newtonian forces (the Earth indeed is not an
inertial reference frame). However, these forces are static compared to the GWs
we are looking for, so at high frequencies we can consider the test masses as free
falling bodies (only in the direction of the laser, where they are actually free to
move), and, consequently they can be used as coordinates in the TT gauge. This
does not mean that at low frequencies we are not allowed to use the TT gauge,
we can, but the test masses cannot any more be used as coordinates.
Assuming then to be in the frequency band where the test masses can be used as
coordinates, their positions will be: (t, 0, Ly, 0) and (t, Lx, 0, 0), while the origin
is placed at the beamsplitter (see Figure 1.3). Moreover, we assume a monochro-
matic GW propagating along z and polarized ”+”: h+(t) = h0 cos(ωgwt). At this
point, we can calculate the phase difference accumulated from the light during
a round trip in the x arm (integrating the metric and neglecting terms O(h2

0))
[37]:

∆φx(t) =
ωLLx
c

sin(ωgwLx/c)

ωgwLx/c
h+(t− Lx/c) (1.12)

where ωL is the light frequency and t is the time at which the light returns
back to the beamsplitter (BS). This relation holds only for GWs with direction

17



1. GRAVITATIONAL WAVES AND DETECTION THEORY

Figure 1.3: This is the most common configuration in optical interferometry and
it is well known thanks to the famous experiment of Michelson–Morley, which
had to prove the existence of the aether (then confuted) [39]. Gravitational-wave
detector layouts are based on it: a laser beam sent towards a beamsplitter is di-
vided into two equal beams which will travel towards two end mirrors (called test
masses in gravitational-wave detectors) and will be reflected back, recombining
again at the beamsplitter and then detected at the photodiode.
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1. GRAVITATIONAL WAVES AND DETECTION THEORY

of propagation normal to the plane of the interferometer. For a more general
interferometer response one needs to rely on a more sophisticated model with
tensorial relations [41].
We can then see that for Lx � c/ωgw = λgw/2π, we have that ∆φx gets sup-
pressed. This can be explained by the fact that too many wavelengths fit within
the round trip, so that, in the end, the space in between will stretch and squeeze
many times and the travel time of the light will remain unaffected. On the con-
trary, when ωgwLx/c → 0 the GW wavelength will be longer compared to the
interferometer sizes and the phase shift will just be: ∆φx(t) = h+(t)ωLLx/c.
From Equation 1.12 we can see that the transfer function between h+(t) and
∆φx depends on Lx through the factor: ωL/ωgw sin(ωgwLx/c). We want of course
maximize ∆φinterferometer ≡ ∆φx − ∆φy = 2∆φx (since: ∆φx = −∆φy), and so
the optimal length for a Michelson interferometer should be: L = c/(4fgw) =

750 km
(

100 Hz
fgw

)
. This order of magnitude is too big to be realized on Earth, un-

less we fold the arms of the interferometer introducing the Fabry-Perot cavities,
which will be discussed in subsection 2.2.2.
A GW passing through an interferometer will create sidebands that will propa-
gate in the detector together with the carrier (which is the original electromag-
netic wave coming from the laser). Actually, the sidebands formation happens
everytime that a wave is phase modulated (through ∆φx in our case), but, usu-
ally, only the first two sidebands (±ωgw) are considered due to the fact that the
others are too small to be detected (because of the smallness of h0 - see sec. 3.1
of [42] for further details).

1.3.1 Proper reference frame

When describing GWs, the TT gauge is usually taken into account because it is
the easiest way to represent them: within the same coordinate system we can still
make arrangements exploiting the remaining degrees of freedom and expressing
the wave equation in a very easy and known way (subsection 1.2.2).
In this frame of reference GWs do not change the coordinates of a freely falling
test mass (but, yes, they change its proper distance from another test mass). Such
a coordinate system would be easily realizable in a drag free satellite experiment
like LISA [43] (see section 4.3). In an Earth bound detector, things are different
because an experimentalist will measure coordinates using a rigid ruler and with
respect to a fixed origin, so the test masses will be expected to change their
position with respect to some fixed point. In addition to this, the experimentalist
will be positioned in a rotating and accelerating system of reference. It is then
clear that it is no more convenient to use the TT gauge [44].
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It turns out [40, 23, 37] that if we use a coordinate system which is rotating and
accelerating (the proper detector frame) we can describe our detector like if it was
subject only to Newtonian laws. This is only valid as long as the dimensions of the
detector are small compared to the incoming reduced gravitational wavelength:
L� λgw/2π, but this is always true in Earth bound detectors.
We can then rewrite the metric using an accelerating and rotating frame: in this
case GW effects will be contained in terms of order O(xixj) of the metric (which
lead to the O(xi) term in Equation 1.13). Exploiting the geodesic deviation
Equation 1.2, we can calculate the correspondingly geodesic equation for an
element of the detector (which can be fairly considered as entirely contained in
the neighbourhood of the world’s line of its center of mass):

d2xi

dτ 2
= −ai − 2(Ω× v)i +

f i

m
+O(xi) (1.13)

Where ai is the gravity acceleration, Ω the Coriolis acceleration and f i an ad-
ditional external force that might be applied to the detector elements (like sus-
pension mechanisms). What about GW contributions? They have a role in the
O(xi) term. So we see that the worldlines of the detector’s elements are subject
to Newtonian forces which arise from being in a non-inertial system of reference
(the laboratory bounded to the Earth) and that these forces are orders of mag-
nitude bigger than the effect of the GWs (indeed xi is taken to be close to the
worldline of the detector’s elements, thus O(xi) are corrections to the metric). As
already stated, this is not a problem if we consider GWs with high frequencies.
Indeed, the Newtonian forces will appear as static since their typical frequencies
are very low (below 10 Hz). If we restrict ourselves in this frequency window
it is possible to demonstrate [37] that the GWs action on the detector can be
accounted as a simple Newtonian force acting on it:

F i =
m

2
ḧTTxi (1.14)

Where m is the mass of the detector’s element, xi is its position with respect to
the origin of the proper detector frame and ḧTT is the second time derivative of
the amplitude of the GW in the TT gauge (this is possible because in the calcu-
lation comes into play the curvature, which, in the linearised theory of gravity,
is invariant instead of just covariant: so we can can use h as calculated in the
TT gauge).
This demonstrates that it comes natural to treat the incoming GW as a force
acting on the test mass. Moreover, starting from Equation 1.14 it is possible to
show [37] that the interaction of the GW with the detector gives the same result
as in the TT gauge in the limit where ωgwL/c� 1 (section 1.3).
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It is important to keep in mind that, despite the proper frame description is
valid for long wavelengths, at very low frequencies we cannot, any more, con-
sider forces acting on the test masses as static: they will compete with GWs
hiding them in a sea of Newtonian noises. For this reason, if we wish to detect
GWs down to few Hz, we need to cancel them out from the data. This is equiv-
alent to subtract from Equation 1.13 the external forces (gravitational forces,
forces of controls and so on) and being left with a dominant term given by O(xi),
which indeed contains the GWs we are seeking out.

This is precisely what we aimed to do in this Ph.D thesis work.
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2. ADVANCED DETECTORS

Figure 2.1: Sensitivity of AdV during O3 and the foreseen sensitivity for O4.

2.1 Required sensitivity

Advanced Virgo (AdV), the upgraded version of Virgo, is a second generation
GW interferometric detector sited in Cascina (near Pisa), Italy. During O2
(observing run 2) its BNS sensitivity range was 25 Mpc, then improved to ∼
50 Mpc during O3. Before O4 there will be a commissioning period, during
which AdV will be further upgraded to Advanced Virgo Plus (AdV+). The main
upgrades will include the implementation of a frequency dependent squeezing (see
subsection 3.4.1), a higher input laser power, heavier test masses, the addition
of a signal recycling cavity (SRC) -see subsection 2.2.3- and of the Newtonian
noise (NN) cancellation system, which is indeed the subject of this Ph.D work.
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2.2 The optical design

2.2.1 Michelson layout

As already anticipated in subsection 1.2.4, the Michelson interferometer (see
Figure 1.3) is a well suited instrument for measuring GWs because it is meant
to measure light phase differences, which are indeed the result of the passage of
a GW across the interferometer.
The typical optical layout of a Michelson interferometer is depicted in Figure 1.3:
a coherent light beam (from a laser) is injected into the interferometer towards the
beamsplitter (BS) and divided in two (ideally) equal and perpendicular beams
(one in reflection and one in transmission). These beams will travel along the
two arms reaching the two end mirrors (that in gravitational wave physics are
defined test masses) after a path long L = 3 km (for Virgo). The four directions
seen from the BS are often called North, West (referred to the two long arms),
East and South (which are also the two outputs respectively called bright or
symmetric port and dark or anti-symmetric port) [45, 46].
Energy conservation considerations allow us to easily calculate the output power
of the Michelson interferometer [42]. Let us first defining the common (L̄) and
the differential (∆L) arm length as:

L̄ =
LN + LW

2
(2.1)

∆L = LN − LW (2.2)

where LN and LW are respectively the length of the North and the West arm.
We can then write the power at the dark port as:

P = P0 cos2(2π∆L/λ) (2.3)

The detector is then tuned at the dark fringe by setting ∆L = λ/4: in this way
no output signal will be detected at the dark port. This means that all the laser
power will be reflected back to the bright port (conservation of energy). Current
interferometric detectors operate at the dark fringe or close to it, depending
on which detection scheme is used, see subsection 2.2.5. Advanced Virgo Plus
(AdV+) will keep using the DC scheme [47, 2].

2.2.2 Fabry-Perot cavities

As we have seen in section 1.3, a GW detector should be hundreds of km long in
order to be able to detect a GW signal. For this reason, GW interferometers are
actually modified Michelson interferometers with Fabry-Perot cavities (FPCs)

25



2. ADVANCED DETECTORS

placed in the two arms, see Figure 2.2. These cavities are meant to increase the
light path inside the arms. FPCs are composed by two highly reflective mirrors:
the light remains trapped in between them for many bounces before exiting and
going back again to the BS.
For a specific laser frequency, there will be some particular values of the FPC
length for which it will resonate (2klaserLFP = 2πn): then the circulating power
will be maximum (and amplified). The induced phase produced by a passing
GW in the enhanced interferometer will be the same as if it was produced in a
simple Michelson with arm length: L′ = (2/π)FL, where F = π

√
r1r2/(1− r1r2)

is the finesse, and r1 and r2 the reflectivities of the two mirrors of the cavity.
AdV+ will then be equivalent to a Michelson with L′ ∼ 860 km (where we used
L = 3 km and F = 450). This is valid in the long wavelength approximation
(when λgw � L′). It is important to look also at the FPC frequency response
when the long wavelength approximation is no longer valid. Indeed, when the
storage time becomes comparable to the GW period, it happens that we sum
over positive and negative contributions and the sensitivity degrades. The GW
phase shift induced in an interferometer with FPCs can be written as:

|∆φFP | ' h0
4F
π
klaserL

1√
1 + (fgw/fp)2

(2.4)

Where h0 is the GW amplitude and fp ' c/(4FL), which for Virgo means
fp ∼ 55.5 Hz: so, above this frequency the sensitivity will be degraded by the
FPC [37, 46].

2.2.3 Signal and power recycling mirrors

As we will see in section 3.4, one of the main noises in interferometric detectors
is the shot noise, which can be reduced by increasing the circulating power. A
way to increase the power, besides using FPCs, is recycling the laser power that
otherwise would be lost. Indeed, the symmetric port sees the interferometer as a
highly reflective mirror which sends back almost all the power (we indeed work
at or close to the dark fringe). This means that, if we put an additional semi-
transparent mirror at the symmetric port, we can increase the circulating power
inside the detector (and therefore its sensitivity) by just sending back light that
otherwise would be lost. This mirror will form the power recycling cavity (PRC).
Moreover, this will not impact the signal sidebands created by the GW. These
sidebands, indeed, inherit the differential nature of the GW, so those coming
from one arm will have a π phase difference with respect to those coming from
the other arm. In this way, the interference at the BS will be opposite with
respect to that of the main beam: the GW sidebands will be completely trans-
mitted to the dark port and nothing will go back to the bright port, towards the
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Figure 2.2: Simplified layout of Advanced Virgo+ (AdV+).

27



2. ADVANCED DETECTORS

PRC.

Using the same reasoning that we used for the PRC, we can construct a sig-
nal recycling cavity (SRC). Adding a reflecting mirror at the anti-symmetric
port will affect only the signal sidebands, partially sending them back to the
interferometer (for symmetry reasons with respect to the BS, the laser light en-
tering from the anti-symmetric port will not make it to the symmetric port).
A Michelson interferometer enhanced with a PRC, a SRC and FPCs is called
dual-recycled Fabry-Perot-Michelson interferometer. The SRC can also be used
to change the frequency response of the interferometer. Indeed, it can be seen
[46] that tuning the SRC can increase the bandwidth of sensitivity at the cost
of reducing the gain, or increase the gain (and then the sensitivity) at the cost
of reducing the bandwidth. This is useful in order to have a tunable GW inter-
ferometer to be set as needed, depending on the astrophysical signals we want
to search for. During O3 AdV did not have the SRC that, instead, was installed
during the commissioning phase in sight of O4.

2.2.4 Additional optics

The laser beam inside a GW interferometer needs to meet very specific condi-
tions, in particular it has to be a pure fundamental gaussian mode (TEM00) with
very stable frequency. For meeting all the stringent laser requirements there is an
injection system in between the laser and the interferometer. Inside this system,
the input mode cleaner (IMC) is meant to suppress the higher order modes of
the laser beam.
At the detection photodiode the only light that should arrive is the one of the GW
sidebands and of the local oscillator used for the readout (see subsection 2.2.5).
Any control sidebands (for which the dark port is not dark) and any higher
order modes and sideband noises created inside the interferometer must be re-
moved. For this reason the output mode cleaner (OMC) is installed just before
the detection photodiode.

2.2.5 Signal detection and strain reconstruction

As we have seen, the interferometer is very complicated and the best sensitivity
is reached when the laser light resonates in the cavities (FPC, PRC and SRC)
and the output port is set on the dark fringe.
As we will see in section 2.3, the optics are all provided with a seismic isolation
which can dump mirror movements produced by seismic vibrations. At low fre-
quencies, the residual mirror displacements become greater than the resonance
width of the FPC and thus we need to control them to maintain the resonance
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and to have destructive interference at the dark port: the interferometer needs
to be locked [48]. This leads to the situation in which at high frequencies the
masses behave as free-falling masses, while at low frequencies they are controlled
by external forces. This is not a problem, since at such low frequencies we can
use the proper reference frame to describe the detector, while the GW becomes
just another force acting on the test mass together with a sea of Newtonian noises
(see subsection 1.3.1) and control forces. For this reason, we cannot just use the
dark port signal to measure the strain h(t), but we need to reconstruct it by
subtracting the control signals from the output: in this way the final signal will
correspond to that of the freely falling mass [49].

Generally, the GW signal is very faint, many order of magnitude smaller than the
carrier. So, in order to detect it, we need some local oscillator, that, through the
effect of the beat between it and the GW sidebands, will allow to read the signal.
The first GW interferometers were working with an heterodyne detection scheme
which implies a radio frequency oscillator that should couple with the GW sig-
nal at the dark port. To allow the radio frequency bands to get out through the
dark port, it was introduced a macroscopic arm length difference of several cen-
timeters (the so called ”Schnupp asymmetry”). Current detectors, like AdV+,
are using a particular readout scheme called ”DC-offset” which has many more
advantages respect to the heterodyne detection scheme [50]. In this scheme, a
small detuning with respect to the dark fringe is introduced. In this way, some
of the carrier field leaks through the dark port working as a local oscillator. This
new scheme requires a very stable laser, which can now be provided.

2.3 Suspension system

We will see in section 3.1 that the seismic noise at low frequencies is a very
strong source of disturbance for GW detectors: so we need to attenuate it by
at least a factor 109. The Virgo’s superattenuators (SA) are, maybe, its main
peculiarity: they are seismic isolations adopted to achieve the necessary seismic
suppression and are constituted by a multistage pendulum with 6 filters. In-
deed, the pendulum is a natural low-pass filter above its frequency of resonance:
f0 = 1/(2π)

√
g/l (where g is the gravity acceleration and l is the length of the

pendulum). For vibrations of the suspension point with frequencies f > f0 the
oscillation of the pendulum mass will be suppressed by a factor ∼ f 2

0 /f
2. At the

last stage of the N pendulums chain, the suppression of the vibration amplitudes
is of the order of A/f 2N , with A = f 2

0 f
2
1 · · · f 2

N .
Due to the Earth curvature and due to the large distance between the test masses
(3 km), the suspensions are slightly misaligned between each other (3 10−4 rad).
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So, any vertical seismic vibration will couple with the horizontal displacement
of the mirrors. For this reason we also need to suppress vertical seismic vibra-
tions. This is done by using triangular shaped cantilevers which hold the wires
at which all the pendulum stages are attached. The whole N pendulums chain is
attached to a three-legged inverted pendulum which serves to introduce another
low frequency filtering stage. Moreover, it allows also seismic reduction through
inertial sensors. At the frequencies of the normal modes, the vibrations are in-
deed amplified and they need to be damped using some actuators. The inverted
pendulum reduces the forces needed to move the whole (1 tonne) chain allowing
to apply less than 1 N to obtain 1 cm of displacement. This makes the damping
with the actuators much easier.
The payload is the last part of the suspension system and it consists of an upper
mass, called ”marionette”, which supports an optical component (either a test
mass or an optical bench). Behind the test mass, attached at the marionette,
there is a reference mass which acts as a reaction mass for the actuators that
control the mirror position. The whole payload is under vacuum and is attached
to a seventh filter designed to steer the payload.
The mirror is attached to the marionette by means of monolithic suspensions
(that is a unique piece with the mirror) made of fused silica. This is done to
reduce the thermal noise that otherwise would arise from the friction of the
clamping points of the mirror’s suspensions.
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Figure 2.3: The VIRGO Superattenuator composed by the three-legged inverted
pendulum, six seismic filters and the payload of the long suspension chain. Ev-
erything is inserted in a tower [45].
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Figure 3.1: Comparison between the noises affecting AdV and its sensitivity
curve during O3 and the future O4 (the latter was considered with the best
achievement in noise reduction).Upper : sensitivity during O3. Bottom: predicted
sensitivity curve for O4 considering high level of noises subtraction. In particular,
the NN has been considered reduced of a factor 3. The predicted BNS range (1.4
M� each compact object) for this configuration is ∼ 142 Mpc, while the predicted
BBH range (30 M� each compact object) is ∼ 1.3 Gpc.

An interferometric detector like AdV, needs to be very sensitive to any tiny dis-
placement of the mirrors. We seek displacements induced by GWs which are of
the order of ∆L = (1/2)h0L = 1.5 10−18 m (with an expected GW amplitude
h0 ∼ 10−21, L = 3 km and assuming that the long wavelength assumption is
valid: ωgwL/c � 1). This tiny displacement is smaller than the size of the nu-
cleous of an atom. This could be seen as a limitation, since the roughness of
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the mirrors will always be of the order of atom sizes, so how could we detect
its position down to ∆L? Indeed, the laser beam has a transverse size of a few
centimeters, so what it senses is the position of the surface of the mirror averaged
over a macroscopic scale [37].
Anything that could induce mirror displacements greater than ∆L is a source of
noise and it needs to be suppressed. We can distinguish the noises in four main
categories: fundamental noises, control noises, technical noises and environmen-
tal noises. Control and technical noises come from the electronic and the control
loops implemented in the detector. Environmental noises come from the envi-
ronment surrounding the detector: magnetic fields, vibrations and so on. They
are kept under control by means of environmental sensors displaced all along the
detector.
Fundamental noises, which will be described below, arise from limitations im-
posed by the underlying physics of the detector (for example the quantum or the
thermal noise).
In AdV+ many noises are planned to be suppressed by some orders of magnitude,
in particular the quantum noise, which otherwise would limit the sensitivity over
almost all the detection band, see Figure 3.1.

3.1 Seismic noise

Even in the absence of earthquakes, seismic noise is a strong source of distur-
bance for the GW detectors. In the range of Virgo’s sensitivity its typical Am-
plitude Spectral Density (ASD) can be written as: α/f 2 with α of the order of
10−6 m Hz3/2 at the surface and in a relatively quiet place. At 10 Hz, this gives
a strain of: ∆L/L ∼ 10−12 Hz−1/2 [45]. So, in order to have a sensitivity of the
order of 10−21 Hz−1/2 at 10 Hz, we need to suppress the seismic noise by a factor
of 109. For this reason, AdV needs a very good seismic isolation system, which
is provided by the superattenuators (see section 2.3).

3.2 Newtonian noises

Newtonian noise (NN) has been theorised from the beginning of the GW inter-
ferometer design [28]. This kind of noise can arise when density fluctuations
are present around the test mass. We know that variations in the mass density
lead to fluctuations in the gravity field. There can be density fluctuations in the
ground (generated by the seismic noise), and in the air (caused by variations in
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the atmospheric temperature or in the atmospheric pressure) [51]:

δρseis(r, t) = −∇ · (ρ(r)ξ(r, t)) (3.1)

δρpress(r, t) =
ρ0

γp0

δp(r, t) (3.2)

δρtemp(r, t) = −ρ0

T0

δT (r, t) (3.3)

Where ρ(r, t) is the density of the soil (or the air), ξ(r, t) is the seismic displace-
ment, p(r, t) and T (r, t) are the air pressure and air temperature, γ ∼ 1.4 is the
adiabatic index and ρ0, p0 and T0 the average density, pressure and temperature
of the atmosphere. These density fluctuations will cause gravity perturbations
that can be written as:

δφ(r0, t) = −G
∫
dV

δρ(r, t)

|r− r0|
(3.4)

Here G is the universal gravitational constant. If we combine Equation 3.1 with
Equation 3.4 we can calculate the perturbation of the gravity caused by the
seismic waves [52]:

δa(r0, t) = G

∫
dV ρ(r)

1

|r− r0|3
(ξ(r, t)− 3(err0 · ξ(r, t))err0) (3.5)

With err0 ≡ (r− r0)/|r− r0|.

NN can affect the detector’s sensitivity at low frequencies, in particular below 10
Hz, where also the seismic noise is higher. It is not easy to physically shield the
detector from this kind of noise: the interferometer is indeed aimed to detect any
variation in the gravitational field caused by a GW. It would be difficult then
to shield it only from the NN but not from the GW effects. One idea, would be
to construct moats around the test masses to shield out the fundamental-mode
Rayleigh waves [9]. These moats would need to be very deep to be effective,
moreover, this method is valid as far as the assumption that Rayleigh waves
come from external sources holds. Another way to reduce this kind of noise
would be instead to perform an active cancellation. This is based on the use of
data collected with many seismic sensors in order to reconstruct the NN accel-
eration on the test mass. In this way it would be possible to cancel the noise
from the detector’s data. In this regard, the position of the sensors need to be
optimized based on the seismic field characteristics: this can make more effective
the final noise cancellation. This particular aspect is the main subject of this
PhD thesis and it will be addressed in Chapter 7 and Chapter 8. The same
kind of cancellation could be done for what concerns the atmospheric NN. In
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that case, though, the sensors need to monitor punctually the pressure and the
temperature variations in a 3D space. To this end, the LIDAR technology could
come to the aid [52].

3.3 Thermal noise

Thermal noise [53, 54] is another important source of noise for GW detectors:
at temperatures T > 0 atoms constituting the mirrors move randomly around
their equilibrium position. The surface of the mirror will then undergo small
distortions that will affect the phase of light, causing noise. We can roughly
estimate these displacements through the equipartition energy theorem. The
theorem states that every degree of freedom which appears only quadratically
in the total energy of the system owns an average energy of: (1/2)kBT (where
kB is the Boltzmann constant). If, for simplicity, we only consider the mean
kinetic energy of the particles constituting a mirror of mass m = 42 kg, we can
write: (1/2)mω2 〈x〉2 (ω) = 1/2kBT , where 〈x〉 (ω) is the average displacement
of a mirror’s particle. This tells us that at 10 Hz and at room temperature we
will have an average displacement of: 〈x〉 (ω) ∼ 10−14 m. This is more than the
expected displacement induced by a GW (10−18 m). The fluctuation-dissipation
theorem can tell us which is the PSD of the thermal noise and how to reduce it: if
in a system there is a dissipative process, then there must also be a reverse process
related to thermal fluctuations (which are the direct cause of the dissipation).
In the end the theorem tells us that the thermal noise in a system is produced
by a thermal contribution (kBT ) as well as by a dissipative one. Since more
dissipation means more fluctuations (and so more noise) we can deduce that
materials with low internal dissipation are better suited for GW interferometers.
The fluctuation-dissipation theorem reads as:

SFth(ω) = 4kBT<(Z(ω)) (3.6)

Here SFth is the PSD of the thermal force that induces random movements in
the system (the fluctuations), while Z(ω) is the impedance and it is defined as:
F (ω) = Z(ω)v(ω). The real part of the impedance is a measurement of the
dissipation (damping) in the system. Alternatively, we can rewrite the theorem
as:

Sx(ω) =
kBT<(Z−1(ω))

π2f 2
(3.7)

If we consider a damped harmonic oscillator, then Z−1(ω) = ω/(ω2
0φ(ω) + i(ω2−

ω2
0)), where φ(ω) is related to the internal damping and is the inverse of the

Q-factor: φ = 1/Q. This tells us how the system is damped at resonance: the
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bigger the Q, the lower the damping. Moreover, we can see that in the limit
ω � ω0 then Sx(ω) ∝ φ(ω)/ω, in the limit ω � ω0 then Sx(ω) ∝ φ(ω)/ω5, while
at resonance: S(ω)x ∝ 1/φ(ω). This means that if we manage to have a material
with low φ(ω) the noise will be concentrated in the narrow peak of the resonance
and it will be lower far from the peak.
In the end, the thermal noise is generated inside the mirrors, but also inside the
suspensions and in the clamps of the mirror’s suspensions. For these reasons,
monolithic suspensions and fused silica fibers [55] are employed for suspending
the mirrors and special care is devoted to their coating.

3.4 Quantum noise

Quantum noise has traditionally been described as two separate effects: shot
noise (affecting the high frequency band) and radiation pressure noise (affecting
the low frequency band), but, in the end, both share the same origin: vacuum
fluctuation coupling into the dark port [56].
Differently from what happens with other fundamental noises, this one arises
directly from the measurement process.
We can describe quantum noise ASD by means of simple classical considera-
tions, but we need to keep in mind that a better and mathematically rigorous
description is needed (see [57]). The light photons hitting the photodetector can
be described with a Poissonian process, this means that the photocurrent will
fluctuate: these fluctuations are called shot noise and their ASD in a Michelson
interferometer (without cavities) is:

hshot(f) =
1

L

√
hcλ

4π2P
(3.8)

So, we can reduce this kind of noise by simply increasing the circulating power
by using Fabry-Perot cavities or just increasing the laser power. The shot
noise in a simple Michelson interferometer (i.e. without FPCs) of length 3
km with laser wave length λ = 1064 nm and circulating power P = 20 W is:
hshot(f) ∼ 10−19 Hz−1/2. We can then see that, if we wish to measure GWs, we
need also to reduce the shot noise.
There is another factor that induces noise and it is linked to the light: the radi-
ation pressure. Each photon impinging on the mirror will transfer momentum,
but this will not be constant in time: it will instead fluctuate according to the
Poisson distribution. This results in a fluctuating force on the mirror. The ASD
of this noise can be calculated as follows:

hrad(f) =
1

mf 2L

√
hP

4π4cλ
(3.9)
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Figure 3.2: Left : the SQL (trace 3) and the quantum noise contribution for a
simple Michelson interferometer with L = 10 km and test masses with m = 10
kg. Low (traces 1a–1c) and high (traces 2a–2c) circulating power has been con-
sidered. Right : quantum noise without squeezing and with phase and frequency
dependent squeezing. The ellipses at the bottom show how the squeezing angle
varies with the frequency in the quadrature picture for the frequency dependent
squeezing. Figure taken from [60].

In this case the noise is frequency dependent and, hence, it will dominate the
lower frequency band. We can of course reduce it by increasing the mass of the
mirrors or lowering the circulating power. However, any attempt to reduce the
radiation pressure noise by lowering the circulating power will end in an increase
of the shot noise and vice versa. This leads to the concept of the Standard Quan-
tum Limit (SQL) [58, 59] which is constituted by all the points where shot and
radiation pressure noises are equal at each frequency (it is the green curve formed
by all the knees in the noise curves of Figure 3.2). At the beginning, it was be-
lieved that this would have been the last insurmountable limit for interferometric
GW detectors. It turned out it was not.

3.4.1 Squeezing

To understand the squeezing [56] and how we can use it to improve sensitivity
and to overcome the SQL, we can introduce the concept of amplitude A(r) and
phase P (r) quadrature [60, 57]:

A(r) = a∗(r) + a(r) (3.10)

P (r) = ia∗(r)− ia(r) (3.11)
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Where a(r) is the complex amplitude of an electro-magnetic field with frequency
ω and polarization vector p(r, t): E(r, t) = E0 [a(r)e−iωt − a∗(r)eiωt] p(r, t).
With these definitions we can rewrite the electromagnetic field in terms of its
quadratures:

E(r, t) = E0 [A(r) cos(ωt)− P (r) sin(ωt)] p(r, t) (3.12)

Each quadrature has its own noise: in a coherent state the two quadrature noises
are uncorrelated, but, as a consequence of the Heisenberg uncertainty principle,
if we reduce the noise in one quadrature, it will increase in the other one. In
particular, amplitude quadrature couples via radiation pressure to the position
of the mirror. Then, the displacement is translated in an additional component
of the phase quadrature: this means that the noise of the two quadratures are
now correlated. This correlation will help to beat the SQL. Indeed, we can think
of injecting phase squeezed light into the interferometer (i.e. low noise in the
quadrature phase). This will result in a shot noise decrease, but, due to the
increased amplitude quadrature, which in turn induces radiation pressure, it will
have the side effect of increasing the noise at low frequencies. So, in the end,
injecting phase squeezed light will have the same effect of just increasing power.
However, we can exploit the coupling of the radiation pressure with the phase
quadrature by exploiting a homodyne detection scheme where it is possible to
change the phase of the local oscillator. Indeed, the readout axis is the axis of
the quadrature space along which we read the signal: a modification in the phase
of the local oscillator is equivalent to steer the read out angle (look at [60]). This
allows us to use a readout angle for which the radiation pressure coupled with
the phase quadrature is cancelled out by the amplitude quadrature (radiation
pressure and amplitude quadrature are correlated). In this way, we are left with
only the phase quadrature noise and we can drop our sensitivity below the SQL,
to the same level induced by the shot noise (which is frequency independent).
We can thus be limited only by the shot noise contribution and no longer by the
radiation pressure one. Unfortunately, the read out angle is different for each
frequency: indeed the radiation pressure coupled with the phase quadrature is
frequency dependent. So, in order to improve our sensitivity, we would need to
change it according with the frequency. This method is called variational readout
[61]. In AdV+ it will be instead implemented another technique: the frequency
dependent squeezing [62]. Considering the squeezing angle as the direction along
which the noise is reduced, we can change it according with the frequency, while
leaving the readout angle always along the phase quadrature. In this way we
could phase squeezing at high frequencies and amplitude squeezing at low fre-
quencies, thus achieving sensitivities below the SQL - see Figure 3.2. This will
also be one of the key technologies for the Einstein Telescope [63].
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4. CONCEPTS FOR FUTURE GW-DETECTORS

4.1 Introduction

Second generation detectors, like AdV and LIGO, have already led to a remark-
able boost in astrophysics and fundamental physics.
Future GW detectors will be able to access better sensitivities and lower fre-
quency bands. It is important to be able to detect signals in the low frequency
band, indeed, most of a GW signal is emitted here, when the compact binary
system is still in the inspiralling stage and the masses are far apart. Being able to
detect part of the inspiralling phase would allow us to increase the SNR [64]. At
low frequencies we can also detect white dwarf mergers (at the mHz scale) and
massive black holes. Moreover, detecting GWs at other frequencies than those
now accessible could bring to the discovery of some completely new phenomena.
For these reasons, in the next future, new detector concepts will arise in order to
cover as much frequency band as possible. It is also of fundamental importance
to develop new detectors capable to better detect polarization and localization
of the GW signal. The polarization could help to test alternative GR theories
[65].
There are many projects for future GW detectors, among them there are the Ein-
stein Telescope (ET, see section 4.2), the Cosmic Explorer [66], and LISA (Laser
Interferometer Space Antenna, see section 4.3) that will be all constructed and
run in the next few years. A frequency gap in between LISA and ET sensitiv-
ity curves will remain uncovered: it could be filled by some ground based low
frequency GW detector (see section 4.4). However, the low frequency band is
very challenging, indeed ground-based GW detectors are strongly affected by the
seismic and the Newtonian noise. This is an important limitation, which can be
mitigated, but that will forbid any detection below 0.1 Hz (maybe a bit lower if
enhanced seismic sensors will be available). Anyway, a suppression of the NN by
4 or 5 orders of magnitude is required at 0.1 Hz for ground-based low frequency
GW detectors [67]. For even lower frequencies we will have no other choices but
to construct space-based GW detectors.

4.2 ET - Einstein Telescope

Current GW detectors (LIGO, Virgo, KAGRA and GEO600) have ageing in-
frastructure or infrastructure imposing constraints on potential future sensitiv-
ity improvements. For this reason, it is important to look at the (by now near)
future in order to construct a third generation detector able to do a more precise
and enhanced GW astronomy [68]. The Einstein Telescope (ET) is a proposed
European third generation GW interferometric ground-based detector [69]: it
would access low frequencies above ∼ 3 Hz and it targets a factor 10 enhanced
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Figure 4.1: Sensitivities of current and future GW detectors. Figure produced
with http://gwplotter.com.

sensitivity with respect to the 2nd generation GW detectors, like AdV [16, 63,
70]. In order to achieve the required sensitivity for ET, it will be necessary to
push the current technologies up to their physical limits [71]. The most impor-
tant improvement will be related to the construction of longer arms, which now
are 3 km for Virgo and 4 km for LIGO. ET aims to have arms 10 km long, more-
over it will be constructed underground in order to limit seismic and Newtonian
noises. ET will consist of three nested detectors (see Figure 4.2) arranged in
a triangular shape, and each detector will comprise two dual-recycled Michelson
interferometers. The simultaneous presence of at least two detectors will allow to
better constrain the polarization of the GW signals, which, in turn, will let to do
a better parameter estimation and to have a better overall response (that is: less
blind spots). Moreover, adding a third detector in a triangular shape will permit
to construct a null-data stream, which is a linear combination of the individual
detector streams, such that the GW signal cancels out: any signal detected both
in the null stream and in the single detector-streams shall be considered noise.
The fact that each detector will be composed of two interferometers implies that
we can optimize one interferometer for low frequencies and one for high frequen-
cies. The low frequency interferometer will be sensitive mostly in the 1.5 Hz -
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30 Hz band and it will operate at cryogenic temperatures (10-20 K). This will
be done in order to suppress as much as possible the thermal noise which spoils
the sensitivity curve in this frequency band. To reduce the radiation pressure
noise, the low frequency interferometer will work at lower power (18 kW) in the
arm cavities. Mirrors of the low frequency interferometer will be made of silicon
or sapphire, which at cryogenic temperatures have a better behaviour than the
fused silica. The high frequency interferometer will instead work at room tem-
perature, at a higher circulating power (3 MW) and with fused silica optics: its
best sensitivity will lay in between 30 Hz and 10 kHz. Both the low and the high
interferometer will have mirror masses around 200 Kg.

Figure 4.2: Example of the triangular layout that will be adopted for ET. The
detector will be formed by three coplanar interferometers forming an equilat-
eral triangle. As for Virgo, the interferometers will be based on the Michelson
topology, but with the inclusion of additional optical technologies. Figure from
[72].
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4.3 LISA - Laser Interferometer Space Antenna

LISA [73] will be the first space-based large-scale GW detector designed to be
sensitive in the 0.1 mHz - 1 Hz frequency band. It will be composed by three
free-drag spacecrafts in a triangular formation and separated by 2.5 million km.
Each spacecraft will host two free falling test masses and a telescope aimed to
transmit and receive a laser beam to and from the other spacecrafts. LISA
configuration allows to have two Michelson interferometers plus a third null-
stream (said “Sagnac” configuration) which can help in the detection.
LISA will be able to study GW signals otherwise inaccessible from Earth and for
this reason it will be a very important new instrument for GW astronomy [74].

4.4 Low frequency Terrestrial GW detectors

Low frequency detectors are aimed to cover the frequency gap in between LISA
and ET but they will also offer the possibility of an easier maintenance respect
to a space-based detector.

4.4.1 ELGAR - European Laboratory for Gravitational
wave and Atom-interferometry Research

ELGAR’s main aim is to fill the frequency gap in between LISA and ET with
a sensitivity laying in the frequency band 0.1 Hz-1 Hz. ELGAR’s data produc-
tion would also provide many other applications in other fields like fundamental
physics, quantum gravity, general relativity and also geophysics [75].
In an optic interferometer like AdV and LIGO, the test masses are the mirrors at
the end of the arms of the interferometer. ELGAR proposes a matter-wave inter-
ferometer where the test masses are cooled atoms dropped into a laser beam. Its
geometry would still be L-shaped (Figure 4.3). An array of atom gradiometers
will be placed along the arms: they will provide the way to measure the light
phase. Each gradiometer is essentially composed by two atom interferometers
separated by a distance L. An atom interferometer utilizes matter-wave BSs
and mirrors to create a quantum mechanical version of the optical one. The
BSs and the mirrors are made through light pulses of different time length which
induce coherent state transitions between the atoms called Raabi oscillations.
The scheme adopted by ELGAR will consist of four pulses: a cloud with some
initial momentum will be interrogated and a superposition of two states of equal
probability will be created by a lower BS-like pulse. The atoms will reach an
upper beam (where the apogee is) which operates as a reflecting mirror (flipping
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the atom states), and then they will be reflected twice (one before and one after
the apogee, see Figure 4.3). At the end of the atom’s gravity fall they will be
recombined with another BS-like pulse in the lower interrogation beam. After,
the population imbalance will provide a direct measurement of the atomic phase.
In the end, the measured GW signal will be calculated as the difference between
the two averaged signals of the two perpendicular arms. This will let us to reject
all the common signals, while mitigating gravity gradient noises thanks to the
average process [76].

Figure 4.3: Left : Schematic example of the four-pulse atom interferometer that
serves to read the phase acquired by the light in its travel. Right : ELGAR layout:
each arm will be LT = 32.1 km long. A number of N = 80 atom gradiometers of
length L = 16.3 km each and placed with their starting point at a distance of δ =
200 m one from the other will be placed along ELGAR’s arms: (N−1)δ+L = LT .
Figures from [75]

4.4.2 TOBA: Torsion Bar Antenna

A TOBA [77] is another project proposed for low frequency GW detection. It
would be suitable both as ground-based and space-borne GW detector (it could
be indeed placed on a spacecraft). It comprises two bars (the test masses) or-
thogonal to each other and parallel to the ground. Each bar would be suspended
by its center of mass and free to rotate around the vertical axis. In this way
an incoming GW (assumed with wavelength much bigger than the TOBA di-
mensions) would impress on it tidal forces ending in a rotation [79]. The GW
signal would then be read using a laser beam impinging on the two bar’s ends.
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Figure 4.4: Left : Principle of a torsion-bar antenna. Two orthogonal bars feel
differential torques due to the passing GW. Right : SOGRO’s test mass configu-
ration: six magnetically levitated superconducting test masses (in blue) are used
to measure the six components of the curvature tensor. Figures from [77] and
[78]

The resonance of such a torsion pendulum would be lower than that of AdV’s
pendulums, with a fundamental torsion frequency of ∼ 30µHz: this is important
in order to be sensitive in the lower frequency band.

4.4.3 SOGRO: Superconducting Omni-directional Gravi-
tational Radiation Observatory

SOGRO [80] is thought to be a tensor detector, which means that a single antenna
would be capable of resolving the source direction and polarization of an incoming
GW. In this regard, all the six independent components of the metric tensor need
to be measured. SOGRO would be composed of six superconducting test masses
(with three degrees of freedom each) levitated over three orthogonal mounting
bars. Movements of the test masses would be measured with respect to sensing
circuit elements mounted on the bars (which should be rigid and with resonance
frequencies above the sensitivity frequency band). SOGRO has been proposed
to be constructed underground at a depth of 500 m or more and at cryogenic
temperatures. The entire platform should then be suspended like a pendulum in
order to suppress the seismic noise, which dominates at lower frequencies. NN
would be an important source of noise [78].
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4.5 LGWA: Lunar Gravitational Wave Antenna

Another interesting project that aims to be sensitive in the frequency band of
1 mHz - 1 Hz is the LGWA [81]. It is supposed to monitor Moon’s normal modes
excited by GWs by means of an array of high-end inertial sensors. The Moon is a
very large body with very low seismic activity [82]. For this reason, it is an ideal
candidate for such a detector [83, 84]. The seismometer technology is already
under development as part of ET R&D, [85, 86, 87] but it would need additional
improvements beyond ET requirements to make GW detection possible. In this
case the test mass would be the Moon itself. This is feasible because the seismic
noise would be very low due to the absence of an atmosphere and oceans. The
choice of the readout system will be important as well, in particular, if cryogenic
technologies will be employed (like levitating test masses) [88], the sensitivity of
LGWA above 0.1 Hz would beat those of LISA (of course, cryogenic technologies
are not of easy implementation on the Moon, but there we can find regions with
continuously very cold temperatures which could help).
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5. ALGORITHMIC TOOLS

In this short chapter some algorithms that have been used in this PhD thesis
will be introduced. In particular, optimization algorithms and Gaussian process
regression (GPR) will be discussed in section 5.1 and in section 5.2, respectively.
Finally, section 5.3 will present the theory of Wiener filter (WF) which is the
core of the NN cancellation.

5.1 Global optimization algorithms

In Chapter 7 and Chapter 8 we will show that, in order to maximize the capa-
bility of cancelling the NN by means of a WF, we need first to find the optimized
array of witness sensors. Indeed, as we have seen, WF performances are well
described by the residual, R(ω), which represents the NN left in the data after
the cancellation -see Equation 5.20. The lower the residual the better the can-
cellation performances: this leads us to the concept of global optimization: we
need to find the global minimum of R(ω). R(ω) depends of the positions of the
N witness sensors (R(ω) : RdN → R, with d = 2, 3 representing the dimensions
of the physical space where we put the seismometers). Finding the minimum of
R(ω) means finding the optimal locations of the sensors that will maximize the
cancellation performances (giving the smallest possible R(ω)).
Normally, local optimization algorithms are able to find a local minimum in the
neighbourhood of a given point of a N-dimensional function. This is not enough
if we wish to find the optimal array for the noise cancellation: the residual func-
tion R(ω) might be a non-convex function and have many local minima higher
than the global minimum. Each one of these local minima would give us a sub-
optimal array. So we need to search for the global minimum scanning a broad
compact subset of the R(ω) domain: Ω ⊂ RdN. In the global optimization field,
R(ω) is called cost function.

5.1.1 Basin hopping optimization

In chemical physics there is much interest in efficient global optimization meth-
ods for finding the lowest energy configuration of macromolecular systems. In
this framework, the basin-hopping global optimization algorithm was developed,
it attempts to stochastically find the global minimum and it is part of the an-
nealing algorithms. The basin-hopping algorithm [89, 90, 91, 92] transforms the
potential energy surface into a collection of interpenetrating staircases (see Fig-
ure 5.1): this transformation associates every point of the configuration space
with the local minimum obtained by a geometry optimization started from that
point. In this way, transition state regions are removed from the problem.
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Basin-hopping is an iterative algorithm, and in each cycle three steps are per-
formed:

• A stochastic perturbation of the coordinates

• A local minimization

• An application of an acceptance/rejection criterion of new coordinates
based on the minimized function value

The acceptance test is usually the Metropolis criterion of the standard Monte
Carlo algorithms [93].

Figure 5.1: Scheme of the two optimization algorithms Basin hopping and Dif-
ferential evolution.

5.1.2 Evolutionary algorithms for optimization

Evolutionary algorithms [94, 95] use simulated evolution to explore the solu-
tions of complex real world problems. They are a subclass of the Evolutionary
computation and are stochastic search algorithms. An evolutionary algorithm is
inspired by the mechanisms of biological evolution: such as reproduction, mu-
tation, recombination, and selection. In particular, we will briefly describe the
differential evolution algorithm (DE) [96, 97]. DE can be run in parallel, so,
depending on the computing infrastructure, it can be made faster.
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The algorithm starts by choosing a random population that should cover the
entire space of solutions. For the optimization of an array of sensors the starting
population (or first generation) should cover many possible configurations of the
array. If prior knowledge of the problem is available, it can be included in the
search by choosing the initial population accordingly. Then, the algorithm per-
forms a mutation: for each individual belonging to the starting population it is
generated a mutated individual by combining the former one with the difference
of other two randomly chosen individuals of the starting population. Every indi-
vidual is a vector containing the coordinates of the array configuration: in order
to amplify population diversity, it is created another group of individuals mixing
some vector elements from the first generation with the mutated vector elements.
This passage is called crossover. The last step is the selection: the individuals of
the next generation will be selected choosing between the individuals of the first
generation and the individuals obtained from the crossover. Those that will lead
to a smaller cost function (residual for us) will be part of the next generation,
the others will be discarded. These steps will be repeated until some convergence
criterion will be met (for example until R(ω) > ε), see Figure 5.1.

5.1.3 Particle swarm optimization

Particle swarm optimization arose in the context of simulating the ability of hu-
man society to improve its knowledge [98], but it can be used as well to describe
bird flocks behaviour [99]. The psychological assumption of particle swarm relies
on the fact that individuals usually tend to follow their beliefs that proved to
be the best ones in its experience. But the single individual will also consider
beliefs of others if these are proved to be better than its own beliefs.
This can be translated in an algorithm where the individuals (for example the
configurations of the array) update their position in the hyperspace of the all
possible solutions based on their prior best solution (individual behaviour) and
on the swarm global best solution (social behaviour). Some randomness needs
also to be inserted in order to help the swarm to escape from possible local min-
ima.
This kind of algorithm has been found to be effective with several kind of prob-
lems. Moreover, it is in some sense related to evolutionary algorithms even
though, differently from them, the particle swarm algorithm relies on the previ-
ous memory of the best position. As for DE, particle swarm can run in parallel.
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5.2 Gaussian Process Regression

In the statistic field, people are usually interested in inferring models from data
and then interpreting them. Machine learning is instead oriented to learn from
data algorithms that are capable of predicting new data very accurately, but
with no possibility of interpreting the results (for examples neural networks are
mostly black boxes applied to data).
Gaussian processes merge these two aspects: they are mathematically equivalent
to known models but can learn from data to accurately predict new values [100]
(under certain conditions Gaussian processes are also very similar to large neu-
ral networks). The problem of learning in Gaussian processes is related to find
the best values of the hyperparameters of the covariance function (see below),
this allows us to have a model for the data which we can interpret. Gaussian
processes are a very powerful tool in machine learning, and they can be used for
regression problems as well as for classification ones [101]. Gaussian processes
regression (GPR) are also known in the geophysical field as ”kriging” [102, 103]

We will focus on the Gaussian processes for regression problems.
A Gaussian process is a collection of random variables, any number number of
which has a joint Gaussian distribution. We can then think at a Gaussian process
over functions: this means that we can consider the values taken by a function in
a point xi, f(xi) = fi, as the random variables of the process. If we take any N
number of points x1, ..., xN we will have N random variables f1, ..., fN whose joint
distribution will be a Gaussian described by a mean function and a covariance
function:

m(x) = E[f(x)] (5.1)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (5.2)

so, we can extract values taken by functions by drawing them from a multivariate
Gaussian:

f(x) ∼ GP(m(x), k(x, x′)) (5.3)

GPR takes the form of a Bayesian inference over a ”latent function”, f(x), [104]:

y = f(x) + ε (5.4)

Where y represents the noisy observation of f(x): ε is the noise affecting f(x)
and we assume it to be Gaussian distributed.
Following a Bayesian approach we can think of Equation 5.3 as a prior for the
distribution of the values of f(x). We can also set m(x) = 0 because assuming
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some function for m(x) usually does not change too much the GPR performances,
so:

f(x) ∼ N (0, k(x, x)′)) (5.5)

We can choose the model for the covariance function (or kernel) k(x, x′) and this
will represent our prior knowledge about f(x). In the majority of cases a squared
exponential is a good choice:

k(xi, xj) = σ2
fe
−

(xi−xj)
2

2` − σεδij (5.6)

Where σf , ` and σε are the signal variance, the length scale and the noise variance,
respectively; they are the hyperparameters of the GPR. This are free parameters
that can be inferred by the data. We can draw many functions from the prior
of Equation 5.5 and with fixed hyperparameters and covariance function defined
by Equation 5.6. For example, Figure 5.2 shows 150 sampled functions from the
prior described by Equation 5.5 and with fixed hyperparameter values. If we

Figure 5.2: Functions f(x) sampled by a prior with fixed hyperparameters: σf =
1, ` = 0 and σε = 0 and zero mean.
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wish to infer the Gaussian process model from some data points what we need to
do is to condition (Bayes’s theorem) the prior joint distribution, Equation 5.5, on
the N observed data (that will be expressed like vectors: xo and yo). Exploiting
some properties of the multivariate Gaussian distributions we can express the
posterior of f∗ evaluated at the point x∗ as:

f∗|x∗,xo,yo ∼ N (µ∗, σ∗) (5.7)

Where the asterisk indicates the predicted value that we wish to obtain from the
posterior distribution, and:

µ∗ = k(x∗,xo)
T
(
k(xo,xo) + σ2

ε Ī
)−1

yo (5.8)

σ∗ = k(x∗, x∗)− k(x∗,xo)
T
(
k(xo,xo) + σ2

ε Ī
)−1

k(x∗,xo) (5.9)

Here, k can be a scalar (k(x∗, x∗)) a vector (k(x∗,xo)) or a matrix (k(xo,xo)). In
Figure 5.3 we plotted µ∗(x∗) and a ±2σ∗(x∗) shaded area for a noise-free model
(σε = 0) and for a noisy model. We should note in Figure 5.3 that for noise-free
data the variance of the posterior is zero at the observed data points, while it is
smaller than the other points, but not zero, for a noisy model.

Of course, for a proper regression, we should infer the values of the hyper-
parameters from the data. This can be done in two ways, but always relying
on the Bayesian framework. The first way is a fully Bayesian approach which
consists in marginalizing over the hyperparameters to get the predictions. This
would necessitate to define a prior for the hyperparameters: the problem here,
is that we cannot rely any more on the straightforward math which is typical of
the Gaussian probability distributions. This is due to the fact that the marginal-
ization over the hyperparameters leads to a non-Gaussian likelihood so that we
can marginalize only through computationally expensive methods like Markov-
Chains Monte Carlo. The second way of learning the hyperparameters is easier
and it consists in maximizing the likelihood. This is the most common approach
and it is what I used Chapter 8.

5.3 Wiener filter for NN cancellation

Norbert Wiener formulated the underlying theory for continuous time least mean
square error filters in his 1949 work [105]: the extrapolation to discrete time sig-
nals is then straightforward. A WF is typically used to estimate signals immersed
in the noise. It can also be used in the opposite way: to estimate a noise that
needs to be removed from some signal (that is exactly what will be done for the
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Figure 5.3: Posterior obtained from the conditioning of the prior over the green
data point. The black curve represents µ∗(x∗) and the shaded area ±2σ∗(x∗).
The hyperparameters were fixed: σf = 1, ` = 0, σε = 0 for the free noise signal
(Top) and σε = 0.4 for the noisy signal (Bottom).

58



5. ALGORITHMIC TOOLS

NN). It also finds application in removing the effects of some linear distortions
in images or in the telecommunication field. An historical application of the WF
is its use to predict the trajectory of a projectile during the World War II. More-
over, the prediction of signal fluctuations based on past values finds application
in audio and video coding. The Wiener filter theory is the basis of least square
applications, such as linear predictions (used in economy) and adaptive filters.

The least square error theory assumes that the signal is a random stationary
process1. In reality, signals are unlikely stationary, but they can usually be
considered almost stationary over a small number of samples: in this case it is
possible to recalculate the filter coefficients over every block (the filter is said to
be block adaptive).
In the following we will consider a Finite Impulse Response filter (FIR)2. The
signal that has to be reconstructed is denoted as target : in the NN cancellation
this is the strain response of the test masses, while the witness sensors provide
the input signals to the linear filter. Being that we reconstruct the target signal,
x(t), with a linear combination of the input signals, y(t), it is necessary that they
are linearly related one to the other. This is indeed true in the case of the NN
acceleration induced by a seismic wave (see Equation 3.5). Signals are actually
discrete and sampled at a rate of 1/∆t, so, let y[m] represent the discrete signal
y(t) at the time tm = t0 + m∆t. With N witness sensors the estimated target
time series, x̂[m], will read:

x̂[m] =
P−1∑
k=0

wk0y0[m− k] + ...+
P−1∑
k=0

wkNyN [m− k] =

=
P−1∑
k=0

N−1∑
n=0

wknyn[m− k] =

=
P−1∑
k=0

wT
k y[m− k]

(5.10)

1A stochastic process, {Xt}, is said to be strictly stationary if the cumulative distribution
of the unconditioned joint distribution of {Xt}, FX(xt1+τ , ..., xtn+τ ), at times t1 + τ, ..., tn + τ ,
satisfies: FX(xt1+τ , ..., xtn+τ ) = F (xt1 , ..., xtn), for all τ, t1, ..., tn ∈ R and for all n ∈ N. This
means that FX is not a function of time: the properties of the stationary process do not change
with it. A less strict definition is that of a wide-sense stationary process, where the expectation
value E[X(t)] = µ is constant in time and the variance is E[(X(t1) − µ)(X(t2) − µ)] = σ(τ),
where τ = t2 − t1 (σ does not depends on the specific time, but only on time differences).

2It is a filter whose impulse response is of finite duration. An Nth-order discrete-time FIR
filter has an impulse response (i.e. the output in response to a Kronecker delta input) that is
long precisely N+1 samples.
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This is a Multiple Input Single Output (MISO) linear filter of order P , which
means that we use P Wiener coefficients and P past values of each witness signal,
yn[m]. wk represents the kth vector of filter coefficients:

wk =

wk0...
wkN

 (5.11)

While y[m] is the vector containing the signals from all the N witness channels
at the time t0 + ∆m:

y[m] =

y0

...
yN

 (5.12)

The WF is then defined by the coefficients that minimize the ensemble average
of the square error function, E[e∗[m]e[m]], with e[m] = x[m]− x̂[m].

The work presented in this thesis deals with the problem of optimizing the posi-
tions of the witness sensors in order to improve the WF capabilities to reduce the
NN of seismic origin. This is done in the frequency domain, so for this particular
goal we do not need a time domain discussion of the WF; even though, when
the time of setting up the pipeline for the NN cancellation will come, the WF
will need to be considered in the time domain. The distinction between the time
domain WF and the frequency domain WF lays principally in the fact that in the
frequency domain the information regarding the order of the filter disappears.
Indeed Equation 5.10 is a discrete convolution of functions with finite support,
so we can apply the convolution theorem. This means that we can apply the
Fourier transform to a block of M samples and rewrite Equation 5.10 as:

X̂(ω) = WT (ω)Y(ω) = YT (ω)W(ω) (5.13)

Where both W(ω) and Y(ω) are N-dimensional vectors containing the Fourier
transforms of the WF coefficients and the N witness signals respectively. We
will directly perform the minimization to obtain the least square error in the
frequency domain. To lighten the calculations in the following steps we will omit
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the dependence on ω.

E [e∗e] = E
[(
X −YTW

)∗ (
X −YTW

)]
= E

[
XX∗ −X(YTW)∗ −X∗YTW + (YTW)(YTW)∗

]
=

= E

[
XX∗ −X

∑
i

Y ∗i W
∗
i −X∗

∑
i

YiWi + (
∑

i

YiWi)(
∑

j

Y ∗j W
∗
j )

]
=

= PXX −
∑

i

WiP
∗
XY i
−
∑

i

W ∗
i PXY i

+
∑

i,j

WiW
∗
j PY Y ij

(5.14)

Where PXX(ω) = E[X∗(ω)X(ω)] is the PSD of the target signal, PY Y ij
(ω) =

E[Y ∗i (ω)Yj(ω)] is the element ij of the N×N matrix of the CPSDs between the ith

and jth witness signals and it will be denoted as P̄Y Y . PXY i(ω) = E[Y ∗i (ω)X(ω)]
is the ith element of the the N -vector of the CPSD between the target signal
and the ith witness sensor signal and it will be denoted as PXY . To get the WF
coefficients we have to minimize Equation 5.14 with respect to W . In the time
domain this is easy, since everything can be considered real. In the frequency
domain we have to deal with complex quantities and we must be careful. Indeed,
if z ∈ C we have that f(z) = z∗ is not analytical, which means that the derivative
of f(z) respect to z does not exist and, consequently, every f(z) containing z∗

is not analytical. Since we just have to find the minima of Equation 5.14, we
can find a way around and use the Wirtinger derivative [106], which allows us
to perform the derivative with respect to z∗. The Wirtinger derivatives are so
defined:

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
(5.15)

∂

∂z∗
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(5.16)

(5.17)

with z = x+ iy, in this way we have that: ∂zz
∗ = 0, ∂z∗z

∗ = 1 and all the normal
rules of the derivatives will apply. So we minimize with respect to W∗:

∂

∂W∗E[e∗e] =
(
∂W ∗1 , ..., ∂W ∗N

)
E[e∗e] = 0 (5.18)

And we finally obtain:

PXY = P̄Y Y W→W =
(
P̄Y Y

)−1
PXY (5.19)
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Some considerations about PXX , PXY and P̄Y Y . PXX is a scalar and it is real
(PXX = P ∗XX), while PXY and P̄Y Y are a complex vector and a complex matrix,
respectively. Indeed, the CPSD of two signals contains information about their
phase difference, which is stored in a complex exponential. Moreover, P̄Y Y is
hermitian.
So far we have found the values of the WF coefficients that minimize the square
root error. With this result we can rewrite E[e∗e] in a way that will be useful in
the following chapters:

E [e∗e] = PXX − 2
∑
i,j

(P−1
Y Y )ijPXY j

P ∗XY i
+
∑
i,j

∑
m,l

(P−1
Y Y )imPXYm(P−1

Y Y )∗jlPXY l(PY Y )ij =

= PXX −
∑
i,j

(P−1
Y Y )ijPXY j

P ∗XY i
=

= PXX −P†XY P̄−1
Y Y PXY

Where we exploited the fact that P̄Y Y is hermitian and that P̄Y Y P̄−1
Y Y = Ī, with

Ī the identity matrix. We can finally define the residual as the ensemble average
of the least square error normalized by the target signal PSD:

R(ω) = 1− P†XY P̄−1
Y Y PXY

PXX
(5.20)

Since both E[e(ω)∗e(ω)] and PXX(ω) are real and positive scalars, R(ω) will also
be positive and real.
The square root of E[e(ω)∗e(ω)] is the amplitude of the noise left after the can-
cellation. This means that

√
R(ω) represents the reduction factor that we can

achieve applying the WF to the NN: it is therefore a well representation of the
capability of the WF of cancelling the noise. For this reason it will be used as
cost function in the optimization of the witness sensor array (see Chapter 7 and
Chapter 8).

The information regarding the order of the filter did not enter in our calculations,
however, the interferometer data is a time series and for the noise cancellation
the WF will have to be implemented in the time domain. It is then important
to understand the impact of the WF order on the cancellation. In [107] the WF
order has been examined and it was shown that it plays an important role in
the effectiveness on the NN cancellation, moreover it was found that increasing
the order not always results in a better residual: in [108] it was demonstrated
that a high number of WF coefficients leads to higher statistical errors in the
correlation measurements and then worse WF performances. Moreover, we have
to keep in mind that a higher WF order implies more computational complexity:
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large filter orders may lead to numerical instabilities with ill-conditioned matrix
of correlation (in the WF time domain exposition the matrix dimensions depend
also on the order of the filter).
The WF is considered the optimal filter because it minimizes the square error
function. In reality, using a WF in the time domain (which is necessary if we
want to remove the noise in real time and without introducing any artefacts)
implies the inversion of a huge matrix. This introduces statistical errors, which
make the WF, not really optimal. Even taking a very long correlation time would
not be very useful: the seismic field is indeed non-stationary and the filter would
need to be updated regularly to adapt it to the drifts in the seismic field.
As suggested by J. Harms [109], one solution could be using a gradient descent
to find the optimal values of the linear FIR coefficients such that they can op-
timally reduce the noise (it would mean applying the gradient descent to the
square error).

In Chapter 7 and Chapter 8 we will refer at P̄Y Y , PY X and PXX as C̄SS, CSN

and CNN respectively.

5.3.1 Could the Wiener filter also cancel part of the GW
signal?

A concern might arise regarding the use of a WF to reduce the NN: could it also
cancel part of the GW signal that we want to measure?
This is possible only if the GW has some effect on the seismometers. For example,
the GW might excite normal modes of the Earth that could then be recorded by
the seismometers. This possibility would be a very small effect. Indeed, already
at 1 Hz, the seismic noise would be larger than the effect induced by a GW by 5
orders of magnitude [110]. The seismic noise background is the main reason for
which the LGWA project is aimed to be located on the Moon (see section 4.5).
On the Earth, instead, the coupling between the GWs and our seismometers
would be very small and negligible, especially in the frequency band of interest
of the interferometric detectors.
We can also have other effects that could induce coupling between the GW and
the seismic sensors. The actuators of the test masses could couple in various ways
to the seismometers, for example by means of magnetic fields or through the recoil
of the actuators transmitted to the ground and then to the seismic sensors. Since
the actuators contain also part of the GW signal (this happens especially at low
frequencies, where the cavities must be kept locked, see subsection 2.2.5) this
could lead to some cancellation of the GW signal. Also in this case, however,
the coupling effect can be neglected because it is very small [111].
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Another possibility [111] that could lead to a partial cancellation of the GW
signal would be training the WF on a too short data set. This would lead to
random correlations between the GW signal and some seismic transients, but
this can be avoided using data much longer than the expected GW signal, thus
averaging out the seismic transients.

5.3.2 Stationarity of the seismic data

The WF theory assumes to deal with wide-sense stationary signals, otherwise
the WF trained on a piece of non-stationary data might not perform optimally.
It is clear that seismic noise cannot be stationary: there will be transients, small
earthquakes, glitches induced by some source (i.e. moving objects like cars).
Virgo is located near a lot of possible sources of this type, in particular there are
some bridges in its vicinity [112] which can provoke glitches in the seismic data
due to passing cars. Apart from these transients, the underlying seismic noise
is produced by sources, such as wind, ocean waves and natural phenomena that
are mostly stationary over the course of the day (except for stormy days).
Tringali et al. in [19] found that the seismic field in Virgo is inhomogeneous
and anisotropic, which is likely due to the presence of local sources as well as
to the scattering of seismic waves from the building structures laying under the
ground. This is particular evident above 10 Hz. The paper also showed that the
noise cancellation performances of a WF applied to seismic data collected in the
vicinity of the test mass varied significantly over the day. These results suggest
that the WF should be updated at least every hour in order to follow diurnal
evolutions of anthropogenic noise.

5.3.3 SNR limiting curve

The SNR of the witness sensors is very important for the performance of the
cancellation: in the end the WF will be limited by it.
The best possible case for a WF with N witness sensors is when each sensor
records the target signal plus some noise:

Yi(ω) = X(ω) + ni(ω) (5.21)

We assume that the noise of the ith sensor, ni, is uncorrelated both with the
target signal, X(ω), and with the noise of the jth sensor:

P̄Y Y = E[Y(ω)∗Y(ω)] = PXX(ω)Ā + Pnn(ω)Ī (5.22)

PXYi = E[X(ω)∗Yi(ω)] = PXX(ω) (5.23)

(5.24)
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Where Ā is a matrix of ones with dimensions N ×N :

Ā ≡


1 1 · · · 1 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
1 1 · · · 1 1

 (5.25)

In order to calculate the residual in Equation 5.20 we need to find the inverse of
P̄Y Y : (

PXXĀ + PnnĪ
) (
kĀ + P−1

nn Ī
)

= Ī (5.26)

Which means solving for k, where:

P̄−1
Y Y =

(
PXXĀ + PnnĪ

)−1 ≡ kĀ + P−1
nn Ī (5.27)

To solve Equation 5.26 we notice that:

Ā2 = NĀ (5.28)

And finally:

k =
−PXX

Pnn(Pnn +NPXX)
(5.29)

Inserting P̄−1
Y Y in Equation 5.20 we find:

R(ω) = 1− 1

1 + 1
N SNR2

(5.30)

Where we defined SNR2 = PXX/Pnn. Equation 5.30 tells us that the WF averages
the noise of the N sensors: the more the sensors that we use, the better the overall
SNR and therefore the estimation of the target signal X(ω).
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6. SEISMIC NEWTONIAN NOISE CANCELLATION

6.1 Introduction

At low frequencies, a GW detector can be described using a proper reference
frame - see subsection 1.3.1. This allows us to describe the movements of the
test masses as if they were caused by external forces, in particular, it can be
shown that the GW signals are immersed in a sea of Newtonian noises. One of
these noises is caused by fluctuations in the gravity field, which are produced
by variations in the density of the materials surrounding the test masses (see
section 3.2).
Weiss, in his famous paper (1972) [28] about the design of an interferometric
GW detector, already recognized that gravity fluctuations could be a possible
source of noise for this kind of instruments. More than 10 years later (1984) Peter
Saulson [113] provided a more accurate model, which later was further developed
in two distinct works: [15] and [9]. In these two last works the wave nature of
the seismic field is taken into consideration and, moreover, it is argued that the
dominant contribution to NN comes from seismic surface waves, in particular
from Rayleigh waves (see section 6.2). In these works it was considered that the
Rayleigh field produces density perturbations beneath the surface, and correlated
displacements at the surface. Taking this into account, the coherent summation
of these effects was directly obtained. Models of NN from Rayleigh waves have
not improved much since these works.
Newtonian noises impact particularly on the lower frequency band of a GW
interferometer: below 10-20 Hz. Thermal and quantum noise are planned to
be reduced in AdV+ (in sight of O4) to a level such that the NN will become
the dominant noise at low frequencies - see Figure 3.1. It is then important to
find a way to also reduce the NN. While it is possible to physically shield the
detector from seismic vibrations, it is more difficult to do the same for Newtonian
noise: it would indeed require major modifications in the infrastructure of the
detector, like constructing narrow moats close to test masses [9] or digging recess
structures around them [10]. Another way is to actively mitigate the NN, which
can also be done offline. Techniques of this kind have already been implemented
in GW detectors to reduce other noises [11, 12, 13, 14].
The active noise cancellation is based on the idea that the NN acting on a test
mass can be reconstructed by simply monitoring nearby seismic displacements by
means of many auxiliary sensors. As we can see in Equation 3.5, the gravity field
perturbation is linear with respect to the seismic displacement. This allows us
to use a linear filter to estimate the NN: the Wiener filter (WF), see section 5.3.
The capability of the WF to estimate the NN depends a lot on the quality of
the information gathered with the array of sensors and on the stationarity of the
noise (section 5.3 and subsection 5.3.2), it is then of fundamental importance to
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optimally deploy high quality sensors (with very high SNR - see subsection 5.3.3).
The performances of the WF can indeed change depending on the array geometry:
the best one will allow to collect the most complete information about the seismic
field. For this reason, one of the most important tasks for the NN cancellation
is to find the optimal geometry for the sensor array. This will be addressed in
Chapter 7 for what concerns underground detectors (which implies the possibility
of deploying a 3D array) and in Chapter 8 for what concerns the specific case of
Virgo.

6.2 Seismic fields generating NN

Seismic waves can be divided into longitudinal and transverse waves [114], the
former are addressed as primary waves (also as P waves or compressional waves)
because they are faster and are the first to arrive during an earthquake. They
cause a compression/decompression displacement along their propagation direc-
tion (see Figure 6.1). This kind of wave causes a modification in the local density
of the material that they cross and, for this reason, they can give rise to grav-
ity fluctuations. Transverse waves are also denoted as secondary waves (also S
waves or shear waves) because they are slower and during an earth quake they
arrive after the P waves. They produce a shear displacement perpendicular to
their propagation direction (see Figure 6.1). S waves can be distinguished in SV
and SH, depending on the direction of the shear respect to the surface (vertical
or horizontal). Since the shear stress does not modify the local density of the
materials, S waves are usually not responsible for producing gravity fluctuations.
However, if there is some discontinuity in the medium, then S waves will also
produce gravity fluctuations (for example at the surface of a cavern, see Chap-
ter 7).

Seismic waves on Earth can be distinguished into body and surface waves, de-
pending on where they propagate. Body waves are constituted by P and S waves
which propagate inside the medium. Surface waves could be instead called guided
waves [115] because they arise from P and S waves when the medium is bounded:
the waves are then guided along the surface (or along the boundary layer). Two
kinds of surface waves can then be formed: Love and Rayleigh waves. Rayleigh
waves arise at a discontinuity in the medium when P waves couple with vertical
S waves (SV). They are elliptically polarised: the motion of a particle laying
on a surface crossed by Rayleigh waves will be a retrograde vertical ellipse in
the plane normal to the surface and to the wave propagation direction (see Fig-
ure 6.1). Also, Rayleigh waves are responsible for Newtonian noise: they are
indeed able to provoke density changes in the crossed medium. We can divide
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Rayleigh waves in two groups: fundamental Rayleigh modes (RF) and Rayleigh
overtones, which are composed by all the higher modes. The overtones exist only
if the medium is stratified.
Love waves are generated by horizontal S waves (SH) resonating near the surface
(or near a discontinuity between two different layers). They do not cause density
variations (see Figure 6.1) and therefore neither gravity fluctuations (unless the
ground is not flat and presents complicated shapes).

The velocities of P and S waves depend on the material’s density (ρ), the shear
module (µ) and the bulk module (K) in the following way [9]:

cP =

√
K + 4

3
µ

ρ
(6.1)

cS =

√
µ

ρ
(6.2)

In the bedrock, located deep below the surface, cP ∼ 5000-6000 m/s and cS ∼
3200 m/s. Near the surface, velocities are instead lower: cP ∼ 500-2000 m/s
and cS ∼ 250-700 m/s. For what concerns surface waves it is a different matter:
in a homogeneous and isotropic half space Rayleigh waves have velocity values:
cR ∼ 0.9 cS and they show a non dispersive behaviour (i.e cR is independent from
the frequency). If on the top of the half space there is also a homogeneous and
isotropic layer, then Love waves propagate too and both them and the Rayleigh
waves will show a dispersive behaviour.
Seismic noise is always present on the Earth’s surface: in his 1993 paper [116]

Peterson collected data from 75 seismic stations distributed all over the globe.
He then parametrized the data and provided a New Low Noise Model (NLNM)
and a New High Noise Model (NHNM), which are usually taken as a reference
in seismic studies (NLNM is also plotted in Figure 6.2). Below 10 Hz, every
seismic spectrum recorded on the globe follows the shape of Peterson’s models:
this shape is generated by different mechanisms. The part of the spectrum be-
low 2 mHz is generated by atmospheric effects [117]: in particular by gravity
fluctuations consequent to variations in the atmospheric density. Between 2 and
7 mHz there are many small peaks (called normal-mode resonances), denoted
as hum, that show seasonal variations. This leads to think that the mechanism
of generation could be due to infragravity waves (waves with frequency lower
than that of their forcing process), but the hypothesis are still many and the
mechanism still needs to be fully understood. The part of the the spectrum
between 0.02 Hz and 1 Hz is called microseism and shows two distinct peaks:
the primary microseism peak, at 0.05-0.07 Hz, which is mainly constituted by
Love waves and the secondary microseism which lies around 0.1-0.4 Hz and it is
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Figure 6.1: Representation of the displacement caused by the body waves (P and
S) and by the surface waves (Rayleigh and Love). Image from Encyclopaedia
Britannica (www.britannica.com).

mainly composed by Rayleigh waves. The primary microseism has the same fre-
quency of the ocean swells, while the secondary microseism has a frequency that
is about the double of the first one, but with larger amplitudes. Longuet-Higgins

Figure 6.2: PSD of the NLNM in unit of acceleration [117].

71

www.britannica.com


6. SEISMIC NEWTONIAN NOISE CANCELLATION

[118] showed that the secondary microseism peak might be generated by the in-
teraction of counterpropagating ocean waves. The characteristics of the primary
microseism (same frequency as the ocean waves and large content of Love waves)
suggest instead that the excitation mechanism is likely due to the interaction of
the ocean waves with the bottom of the sea[119]. At frequencies > 0.5 Hz the
seismic noise depends primarily on winds, cultural noise (human activity) and
also movement of water [120], while the displacement spectrum follows a power
law of 1/f 2 [121], which is the main cause of seismic noise in interferometric GW
detectors (see section 3.1).

6.3 Required Newtonian noise suppression in

GW interferometers

Until now, Newtonian Noise has not been a concern for GW detectors, but with
the new upgrades it will become a limiting factor. The latest models on NN can
be found in [15] and [9]. The work of Beccaria et. all ([15]) shows that, given
the spectral amplitude of the seismic noise (∼ 10−6/f 2 m/

√
Hz), the spectral

amplitude of the NN will be:

ShNN (f) ∼ 3 10−17 × 1

f 4
(6.3)

Since the beginning, it was known that after all the final improvements the NN
would have been a final limitation for Virgo below 10 Hz. In particular, we can
see (Figure 3.1) that for the sensitivity curve aimed for O4, Virgo will have to
suppress the NN by at least a factor 3. In Chapter 8, the problem of finding the
optimal array for performing the NN cancellation in AdV+ will be addressed. It
will also be shown that, at a given frequency, it is (in principle) possible to reach
the required reduction factor with already 15 seismometers.

Despite the fact that ET will be located underground, we will still have to take
care of the NN cancellation. The main motivation of constructing ET under-
ground is to strongly suppress NN from atmospheric [51] and seismic fields [122].
However, NN will still play an important role. As shown in Figure 6.3, NN from
surface waves will be insignificant if the detector will be constructed a few 100 m
underground (as long as frequencies are considered above ∼ 1 Hz). However, the
NN from seismic body waves cannot be avoided at any depth, and it becomes a
sensitivity-limiting noise contribution below 10 Hz. Depending on the quality of
the underground site, one still needs to mitigate body-wave NN up to a factor
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10.
The range of body-wave NN shown in the two plots of Figure 6.3 assumes that
underground seismic spectra are a factor 3 to 12 above the NLNM [116], and
that an isotropic field is composed entirely of P waves (conservative assumption
since if it were composed entirely of S waves, then the NN would have been a
factor 2 smaller). The prediction of Rayleigh NN (denoted Surface in the two
plots) in underground detectors requires an assumption about the seismic surface
spectrum, which is a factor 50 to 1000 above the NLNM in the two plots, but
also an assumption about the dispersion curve. The assumed dispersion curve of
Rayleigh waves has been taken as [123]:

c(f) = 2000 m/s e−f/4 Hz + 300 m/s (6.4)

The slower (and therefore the shorter) the Rayleigh waves, the stronger the
suppression of the associated NN with depth [52]. The dispersion model used
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Figure 6.3: Seismic NN predictions for the Einstein Telescope.

(Rayleigh wavelength plays a negligible role for NN in surface detectors) yields
a Rayleigh-wave speed of 1.8 km/s at 1 Hz falling to ∼ 500 m/s at 10 Hz. There
can be significant regional variations, but these values are typical.
Rayleigh waves produce NN through rock compression, cavern-wall displacement,
and surface displacement: all these three contributions must be taken into ac-
count in the model for the surface NN budget in underground detectors. These
three contributions interfere suppressing the surface NN estimation of Figure 6.3
at specific frequencies.
The model for the NN from body waves, instead, has to take into account the
different contributions coming from the bulk (only P waves) and from the cave
walls (P and S contribution). The reflection of body waves from the surface
topography is not taken into account, but this might need further investigations
[52]. Both for body-wave and Rayleigh-wave fields, anisotropies can increase or
decrease the NN relative to the isotropic level shown in Figure 6.3, but since
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the final location (and so any potential anisotropy) for ET is not known yet,
introducing any anisotropy in the NN estimations would not make sense.
We can conclude that planning for ET must include also NN cancellation, and
it will be essential to have a detailed understanding of the seismic field in terms
of spectra, speeds, or more accurately, two-point spatial correlations. This will
make possible the precise prediction of NN in the underground detector, also
considering the possible presence of anisotropies. Only then we will be able to
determine the required NN cancellation, and to calculate the optimal sensor loca-
tions as it has been done for Virgo [124]. At the present time, due to the lacking
of a detailed understanding of the seismic field in the ET location, NN suppres-
sion of up to a factor 10 is potentially required, if the underground site will be
among the quieter ones, a factor 3 will be very likely sufficient (see Figure 6.3).

6.4 NN in ELGAR

If NN has not been a concern in interferometric GW detectors up to now, it will
be instead a very important noise for low-frequency GW detectors located on
Earth. In subsection 4.4.1 the ELGAR detector was introduced. Its operating
window, 0.1 - 10 Hz, lays in the frequency band of the seismic microseism, for this
reason it is important to understand how the NN will impact this instrument.
As for ET, the main source of NN will come from atmospheric NN (which will
be anyway damped by going underground) and from seismic NN generated by
body and Rayleigh waves that, in the microseism band, are typically dominant
[125]. Of course, also for ELGAR, selecting a very quiet underground site will
be of great help in reducing this kind of noise.
Both GW-interferometers, like AdV+, and ELGAR exploit the phase difference
induced in a laser beam by a passing GW: however, the main difference between
them is that ELGAR will measure this phase difference by means of N gradiome-
ters regularly spaced along the arms (see Figure 6.4). Having many gradiometers
will help to average the NN affecting ELGAR. Indeed, in the frequency band cov-
ered by the instrument, GWs can be considered constant along the whole arm
length. Instead, the NN coherence length will be of the same order of the one
of the seismic waves from which it is generated. This means that ELGAR will
repeat the same GW measurement affected by different NN content and then it
will average out the NN without influencing the GW signal. Following [76] we
can write the strain relative to the NN in ELGAR like:

√
SNNaverage(ω) =

K(ω)√
N

√
SNN1(ω) (6.5)

74



6. SEISMIC NEWTONIAN NOISE CANCELLATION

Figure 6.4: Geometry of one arm of ELGAR. Each arm is composed by N
gradiometers (two atom interferometers (also said atom fountains) placed at xi

and xN+i) regularly spaced all over the arm.

Where
√
SNNaverage(ω) is the NN strain obtained averaging over the N gradiome-

ters and
√
SNN1(ω) is the NN strain of the single one. K(ω) is a factor that

guides the reduction gain of the ELGAR NN with respect to that of the single
gradiometer. K(ω) ranges from 0 to

√
N and so we can have three different con-

figurations. When successive atom fountains are uncorrelated, then K(ω) = 1
and ELGAR simply averages the noises of the single gradiometers. If the succes-
sive atom fountains are correlated, then K(ω) > 1 and the gain diminishes until
the maximum value of K(ω) =

√
N , that means that the atom fountains are

completely correlated over the whole arm length: this makes the averaging pro-
cess ineffective since every gradiometer will measure exactly the same NN. The
best configuration is the one with K(ω) < 1: when the atom fountains are anti-
correlated. Having anti-correlated gradiometers means that when a gradiometer
contributes positively to the NN, another one will contribute negatively and the
average process will just cancel everything out.
If the seismic field is homogeneous and isotropic, then the spatial CPSD, C(r, ω),
will satify [126]: C(r < λ/2, ω) > 1, C(λ/2 < r < λ, ω) < 1 and C(r > λ, ω) ' 0,
where r represents the distance between two points. One can then optimize the
gradiometers disposition accordingly to the frequency band of interest following
the procedure that will be explained in Chapter 7 but in a 2D space. Actually,
the field will not be really homogeneous nor isotropic, so it will be necessary to
make a survey to evaluate the spatial correlations and only then proceeding with
the optimization (see Chapter 8). In both cases, (homogeneous-isotropic and
inhomogeneous - anisotropic field) the optimization procedure will be lighted by
the fact that the space of the possible positions will be constrained along the
ELGAR baseline. In the end, the mitigation of the NN for ELGAR could benefit
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from the averaging of the different gradiometers and also from the use of a linear
filter to further reduce the noise. With both these contributions Equation 6.5
becomes: √

SNNaverage(ω) =
K(ω)R(ω)√

N

√
SNN1(ω) (6.6)

Where R(ω) can be calculated from Equation 5.20.
Following [17] we can see that an optimized 3D seismic array around a test mass
(which in ELGAR would be represented by a single atom fountain) needs to be
placed at ' 0.2λ. So at ' 1 Hz and with body waves velocities cbody ' 6 km/s
this would imply to have distances of the order of kilometers. In [17] the array
was calculated assuming NN contribution only from body waves and in a 3D
space. For ELGAR, we need to keep in mind that the experiment will operate
at a frequency band where Rayleigh waves will dominate [125], so the optimized
array might be different than that obtained in [17]. Usually, performing a seismic
survey in underground sites would require to dig boreholes where to place the
seismic sensors. Assuming that at those frequencies Rayleigh waves dominate,
we could, in a first place, exploit the already deployed surface seismic stations
and understand if there are anisotropies and where. After that, one might want
to explore the seismic field more deeply by means of boreholes.

6.5 NN from body waves

It is important to understand the impact of the presence of a cavity on the NN
estimate in underground detectors. Indeed, the presence of a cavity is mathe-
matically equivalent to the introduction of some discontinuity inside the medium:
this will lead to boundary effects that need to be taken into account. In partic-
ular, if we consider only body waves, we know that S waves will contribute to
gravity perturbations only when some discontinuity is present. Hereinafter, I will
follow the derivation in Harm’s LRR [52], section 3.3. Before going into details
about the NN generated by body waves in the presence of a cavity, we will show
that we can split Equation 3.4 into two contributions: one due to the presence
of a surface (i.e a discontinuity) and the other one due to the bulk contribution.
To do that we first need to insert Equation 3.1 in Equation 3.4:

∇ · (ρ(r)ξ(r, t)) = ∇ρ(r) · ξ(r, t) + ρ(r)∇ · ξ(r, t) (6.7)

This makes clear that it is possible to split Equation 3.4 in a surface and in
a body contribution: in particular we can see that ∇ρ(r) · ξ(r, t) allows us to
switch to a surface integral. Indeed, the gradient of a field gives the direction
and the rate where the field increases faster, so in the case of a homogeneous and
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Figure 6.5: In underground detectors the test masses will be hosted in cavities,
and their presence must be taken into account when modelling the NN contri-
bution. In the text, it has been considered a spherical cavity with radius a and
a test mass placed in the origin (even though it is only an approximation).
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isotropic medium, separated from the empty space by a general surface Σ(r):

∇ρ(r) = −n(r)δ(r− Σ(r)) (6.8)

where Σ(r) describes the surface of the medium and n(r) is the vector normal to
it and pointing from the medium to the empty space (in the opposite direction
of the increase). Considering also that inside the bulk ρ(r) = ρ0 (where ρ0 is
the density of the medium) and ρ(r) = 0 outside it, we can see that the volume
integral reduces to a surface one:

δφsurf(r0, t) = −Gρ0

∫
Σ

dΣ
n(r) · ξ(r, t)

|r− r0|
(6.9)

The bulk integral comes instead from the other term in Equation 6.7:

δφbulk(r0, t) = Gρ0

∫
dV
∇ · ξ(r, t)

|r− r0|
(6.10)

At this point we have everything we need to calculate the NN from body waves
propagating in an infinite homogeneous and isotropic medium with a spherical
cavity. We start with Equation 3.5 by simply solving the integral with the
displacement ξ(t, r) of a plane wave and leaving a sphere of radius a and centred
in the origin out from the integration volume. In the bulk, we have two types of
waves: compressional (P) and shear waves (S) (section 6.2): so we need to solve
Equation 3.5 for both of them:

ξP (r, t) = eP ξ
P
0 (kP , ω)ei(k

P ·r−ωt) (6.11)

ξS(r, t) = eSξ
S
0 (kS, ω)ei(k

S ·r−ωt) (6.12)

With eP ≡ kP/|kP | (longitudinal/compressional wave) and eS · kS = 0 (trans-
verse wave). From Equation 6.11 and Equation 3.5 we get the gravity acceleration
induced by a P wave at the center of the spherical cavity: this is of course only
an approximation, since the cavity will not be spherical, nor the test mass will
be placed in the cavity center.

δaP (0, t) = 8πGρ0ξ
P (0, t)

j1(kPa)

kPa
(6.13)

This is the NN acceleration caused by P waves at the center of a spherical cavity
of radius a, here j1(kPa) is the spherical Bessel function of order one. Until
now, the contribution to the gravity acceleration from S waves has not been
considered. To take that into account we need again to solve Equation 3.5 for
a homogeneous and isotropic space with a spherical cavity centred in r = 0.
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Since we already know that S waves can only cause gravity fluctuations at the
surface of the cavity, it is more straightforward to directly calculate their surface
contribution withEquation 6.9, this leads to:

δaS(0, t) = −4πGρ0ξ
S(0, t)

j1(kSa)

kSa
(6.14)

Finally, the total induced gravity acceleration on the test mass will be:

δabody-waves(0, t) = 4πGρ0

(
2ξP (0, t)

j1(kPa)

kPa
− ξS(0, t)

j1(kSa)

kSa

)
(6.15)

We can see that the acceleration depends on the displacement caused by P and
S waves at the cavity center and on a weight term, j(kP,Sa)/(kP,Sa), that we will
call gravity contribution. Of course, measuring the displacement of a seismic wave
at the center of an empty space is not possible. In reality, we will measure the
displacement at the cavity walls: this will introduce only a small error ∝ (kP,Sa)2

in the real part of the displacement amplitude, ξP,S(0, t). We should note that P
waves contribute to δa with a factor 2 respect to S waves: this is easily explained
by the fact that P waves contribute to the NN through two mechanisms: cavity
walls displacement and bulk compression/decompression, while S waves enter
into play only through the cavity walls displacement. Equation 6.15 tells us in
which cases the cavity has a real impact on the NN: in Figure 6.6 the gravity
contributions of P and S waves are plotted. The plot is in units of P wavelengths
and the velocity of S waves was taken to be: vS ∼ vP/2, relation that can be
retrieved by rewriting Equation 6.1 and Equation 6.2 in terms of the Poisson ratio
[9]. In Figure 6.6 we can see that when the cavity radius is ∼ 0.4 λP then the
gravity contribution is already reduced by a factor ∼ 2. If we consider a cavern
located in a bedrock medium, then vP ∼ 4 km/s, so, in order to halve the gravity
contribution at 10 Hz, we need a cavity radius of a ∼ 160 m. Constructing such
a big cavern is probably unrealistic, so, even if the use of big caves would help
in reducing the NN, this is not a doable solution. If instead we consider a cavity
radius of the order of a = 30 m, we can see that already at 10 Hz and with vP ∼ 4
km/s we have kPa ∼ 15 10−3, which is small. So, for real applications we can
make the following approximation: kP,S � 1 and rewriting Equation 6.15:

δabody-waves(0, t) ∼ 4πGρ0

(
2

3
ξP (0, t)− 1

3
ξS(0, t)

)
(6.16)

Where we used that: limx→0 j1(x)/x ∼ 1/3. The possible wave scattering from
the cavern walls has not been considered yet. Since at low frequencies kP,Sa
is very small and so also the scattering cross-section of the seismic waves from
the obstacle [127], we might think that the scattering over the cavern walls is
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Figure 6.6: Gravity contribution (j1(kP,Sa)/(kP,Sa)) for S and P waves. It is
represented in P wavelength units and it was considered that usually: vP ∼ 2vS.
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negligible. However, due to the scattering, P and S waves can be converted one
into another. This might leads to different numerical factors in Equation 6.15,
so neglecting the scattering might have the side effect of overestimating or un-
derestimating the NN on the test mass. However, in [52] it is shown that in the
limit where kP,Sa→ 0 holds, we can actually neglect the scattering on the cavern
walls. So, in Chapter 7, we will consider this assumption valid.

6.6 NN from surface waves

Surface detectors, like AdV+ and LIGO, will suffer from seismic NN mainly
generated by surface waves. In most cases, surface wave amplitudes are indeed
larger than body waves amplitudes [125], this is for sure true in AdV+, where a
lot of nearby (cultural) seismic sources are present [128, 112]. Being that Love
waves do not impact on the vertical spectrum, which is the most important one
for what concerns NN, we will assume that NN in surface detectors is only due
to Rayleigh waves contribution.
We can write Rayleigh waves following [129]:

ξ(r, t) = ξk(r, t)ek + ξz(r, t)ez

ξk(r, t) = i(H1e
h1z +H2e

h2z)ei(kρ·ρ−ωt)

ξz(r, t) = (V1e
v1z + V2e

v2z)ei(kρ·ρ−ωt)
(6.17)

Here Hi,hi,Vi,vi are real parameters that describe the Rayleigh wave. The 90◦

phase difference between the vertical and the horizontal component is related to
the characteristic elliptical motion of Rayleigh waves.
To have an analytical model of the NN generated in a test mass, we need to solve
Equation 6.9 and Equation 6.10 for a Rayleigh wave displacement (Equation 6.17)
in a homogeneous and isotropic half space. For what concerns the surface part,
we can notice that only the z-component of Equation 6.17 will contribute to the
NN; moreover, the problem is symmetric for test masses placed above or below
the surface, so the final result is valid for both the cases.
The part of the NN produced by the Rayleigh waves propagating inside the half
space needs instead to be solved using Equation 6.10 and distinguishing between
the two cases of a test masses located above and below the surface. When solved
for a test mass below the surface, a new term that will slightly increase the z-
component of the NN acceleration will arise. The result that we obtain following
this procedure represents the contribution of the Rayleigh waves from the surface
displacement and from the rock compression inside the bulk. For an underground
test mass we still need to take into account the presence of a cavity. This can be
done noting that Equation 6.17 contains a shear and a compressional part: this
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allows us to exploit the result of Equation 6.10 and get the cavity contribution.
From now on, however, we will consider only the case of a test mass located
above the surface, like in AdV and LIGO; in this case the NN acceleration from
a single Rayleigh wave can be written as (see also [52]):

δaRayleigh(r0, t) = 2πGρ0γ(ν)e−hkρξz(0, 0)ei(kρ·r0−ωt)

 i cos(φ)
i sin(φ)
−1

 (6.18)

Here γ(ν) is a factor determined by the Poisson ratio (i.e. by the elastic proper-
ties of the medium) and its value ranges from 0.5 to 1, φ is the angle that k forms
with the x-axis and kρ is the surface component of k. We obtain Equation 6.18
by calculating the gravity potential induced by a Rayleigh wave and then tak-
ing its gradient with respect to r0. The gravity potential can be calculated by
inserting Equation 6.17 in Equation 6.9 and in Equation 6.10 and then solving
for a test mass located above the surface.
We should notice that Equation 6.18 represents the NN acceleration on a single
test mass. If the correlation length of the seismic wave is much shorter than the
interferometer arm length, then the NN acceleration in the input test mass will
be uncorrelated with respect to that in the end test mass. So, in the differential
output of the interferometer, the NN will be present as an incoherent sum of
the noises at the two test masses. Since the noise strain amplitude is inversely
proportional to the arm length, h ∝ 1/L, the longer will be L, the lower will be
the NN strain in the interferometer (see Figure 6.7). For surface interferometers
like AdV, we can assume uncorrelated NN. It is then enough to estimate the NN
by using the single test mass equation (Equation 6.18).
If instead the arm length is much shorter than the seismic wavelength, the cor-
relation between the end and the input test mass will be very good and the
common-mode noise will be suppressed: only the NN coming from the uncorre-
lated contributions to the NN will survive. The spectra of the differential NN
strain (in units of 1/Hz) along the direction of freedom of the input and the end
test masses, for a fixed seismic wavelength can be written as [52]:

C((δx0 − δxL)/L;ω) =
(2πGρ0e

−hkRγ(ν))2

c2
Rω

2
C(ξz;ω)F(kRL) (6.19)

Where we defined:

F(kRL) = (1/(kRL)2)(1− 2J0(kRL) + 2J1(kRL)/(kRL)) (6.20)

In Figure 6.7 we plotted the dimensionless quantity
√
F in units of λR = 2π/kR,

where cR = ω/kR;
√
F tells us how the strain noise changes varying L for a fixed

wavelength.
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Figure 6.7: Evolution of the differential NN strain in a detector arm with respect
to the arm length at a fixed Rayleigh wavelength λR.
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6.7 Active NN cancellation

Active noise cancellation has already been employed in GW interferometers to
further suppress noises in the instrument [13, 11, 12]: in LIGO, for example, this
method is used to actively suppress seismic noise [14].
The basic idea underlying the active noise cancellation is to monitor a noise
source with some witness sensors and with them feeding a linear filter and re-
constructing the noise produced in the data stream of the GW detector (the
target). The least square error estimation leads to the formulation of the Wiener
filters (WF) and it has been discussed in Chapter 5. For the cancellation of the
seismic NN we have to deploy seismic sensor arrays around the test masses of the
interferometer and then use a Wiener filter to proceed with the NN cancellation,
operation that can also be done off-line. The main problem here relies in find-
ing the optimized array which can lead to the best cancellation performances.
These are well represented by the residual function introduced in section 5.3
(Equation 5.20). With the goal of pinpointing the optimal array, we aim to find
the minimum value of the residual function. This can be done with a global
optimization algorithm (see section 5.1). In the following sections we will derive
the equations that are needed to calculate the residual of Equation 5.20. We
will calculate them for three cases that were addressed during this PhD work:
an isotropic and homogeneous seismic field composed by a mixture of P and S
waves, an isotropic and homogeneous Rayleigh wave field and a general Rayleigh
wave field, with no other assumptions.

6.8 Two point spatial correlation for the NN

cancellation

In principle, to estimate the NN, one could construct an analytical model of the
seismic field and then use it together with a finite element model of the medium,
letting every element moving according to the seismic field model. This is a
kinematic simulation and it is very powerful if the seismic field and the ground
models are very well known. One could instead use a dynamical simulation,
for which we only need the analytical model of the seismic sources and of the
medium, but, again, the models should be well known.
Virgo has a complex structure (see Chapter 8) and neither the seismic sources,
nor the the seismic field can be modelled. This leads us to the development of
some method that allows us to estimate the NN using easily measurable quanti-
ties [18]. As explained in section 5.3, in order to perform the NN cancellation, we
need the cross correlations of the seismic field at different locations and the cross

84



6. SEISMIC NEWTONIAN NOISE CANCELLATION

correlations between the seismic field and the test mass strain signal. The key
point here is that we do not have to rely on complicated models of the seismic
field or its sources and on the medium model. We just need to know the values
of two-point spatial seismic correlations.

We will now derive a general form of the two-point cross power spectral density
(CPSD) between the NN acceleration at different locations. From this general
equation we will be able to give the expression of the quantities needed for the
WF in various different cases (it will be enough to substitute the acceleration
with the seismic displacement when required).
We start defining the two-point CPSD of a quantity ζ as:

C(ζ; r′, r′′, ω) ≡ 〈ζ∗(r′, ω)ζ(r′′, ω)〉 (6.21)

Where 〈...〉 is the ensemble average1. What we now want to find is the expression
of:

C(δax; r1, r2, ω) = 〈δã∗x(r1, ω)δãx(r2, ω)〉 (6.22)

Where δãx(r, ω) is the Fourier transform of δax(r, t). Considering the Fourier
transform in the space domain:

δãx(r, ω) = F−1 {δāx(k, ω)} =

∫
d3k

(2π)3
δāx(k, ω)eik·r (6.23)

and inserting Equation 6.23 in Equation 6.22 we get:

C(δax; r1, r2, ω) = 〈δã∗x(r1, ω)δãx(r2, ω)〉 =

=

〈(∫
d3k′

(2π)3
δā∗x(k

′, ω)e−ik
′·r1
)(∫

d3k

(2π)3
δāx(k, ω)e+ik·r2

)〉
=

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈δā∗x(k′, ω)δāx(k, ω)〉e+i(k·r2−k′·r1) =

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
C(δax; k,k

′, ω)e+i(k·r2−k′·r1)

(6.24)

Considering that the NN acceleration, δax, is linear with respect to the seismic
displacement, ξ, we can write δax in the general form:

δax(k, ω) = ξ(k, ω)g(k) (6.25)

1It is assumed that the seismic noise is a stochastic process, and therefore also the NN on
the test mass. The ensemble average is intended as the average of all the possible outcomes of
ζ in the frequency domain.
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This allows us to rewrite Equation 6.24 as:

C(δax; r1, r2, ω) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
C(ξ; k,k′, ω)g(k)g∗(k′)e+i(k·r2−k′·r1) (6.26)

This is a good starting point, since it allows us to express C(δax; r1, r2, ω) as a
function of the CPSD of the displacement: C(ξ, r′, r′′, ω). Indeed, using the same
reasoning as done for Equation 6.24, we can write C(ξ; k,k′, ω) as a function of
the two-point CPSD of ξ:

C(ξ; k,k′, ω) =

∫ ∫
d3r′ d3r′′C(ξ; r′, r′′, ω)e−i(k·r

′−k′·r′′) (6.27)

So that we can obtain the general form of C(δax; r1, r2, ω):

C(δax; r1, r2, ω) =∫
d3r′

∫
d3r′′

∫
d3k

(2π)3

∫
d3k′

(2π)3

H (ξ; k,k′, r′, r′′, ω)e+i(k·r2−k′·r1)e−i(k·r
′−k′·r′′) (6.28)

Where H (ξ; k,k′, r′, r′′, ω) = C(ξ; r′, r′′, ω)g(k)g∗(k′). This last equation might
seem complicated, but once the model for δax is known, we can get some in-
teresting equations that allow us to evaluate Equation 5.20 and to perform the
optimization of the sensor locations.

6.8.1 Isotropic and homogeneous seismic field

We can solve Equation 6.28 for a isotropic and homogeneous seismic field by
inserting Equation 6.18 in Equation 6.28 and considering the NN acceleration
component which is parallel to the direction where the test mass is free to move
(δax). The isotropic assumption is valid as far as we can assume to have far-
field sources located in all directions, while the homogeneous assumption assures
that every point in the space is equivalent. Homogeneity means invariance under
translations and isotropy means invariance under rotations. So, the seismic field
will look the same in every point (no locations are more special than others) and
in every direction. For example: a homogeneous seismic field could be composed
by plane waves propagating in a single direction, this implies that an observer will
see the waves coming always from the same direction, independently by his/her
position in the space. If the field is also isotropic the observer will see the waves
coming from all directions (isotropy) and in every point he/she will see the same
thing (homogeneity).

homogeneous field: f(r1, r1 + ∆r) = f(0,∆r)

isotropic field: f(R̄r) = f(r)
(6.29)
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Where ∆ = r2 − r1 and R̄ is a rotational matrix. First of all, we note that
homogeneity means that: H (ξ; k,k′, r′, r′′, ω) = H (ξ; k,k′, r′, r′ + ∆r, ω) =
H (ξ; k,k′,∆r, ω); C(δax; r1, r2, ω) then becomes:

C(δax; r1, r2, ω) =∫
d3r′

∫
d3∆r

∫
d3k

(2π)3

∫
d3k′

(2π)3

H (ξ; k,k′,∆r, ω)e+i(k·r2−k′·r1)e−i(k−k
′)·r′e+ik′·∆r =∫

d3∆r

∫
d3k

(2π)3

∫
d3k′

(2π)3

H (ξ; k,k′,∆r, ω)δ(k− k′)e+i(k·r2−k′·r1)e+ik′·∆r =

(6.30)

We then obtain the general expression of C(δax; r1, r2, ω) for a homogeneous
field:

C(δax; r, ω) =

∫
d3∆r

∫
d3k

(2π)3
H (ξ; k,∆r, ω)e+ikre+ik·∆r (6.31)

Where the homogeneity applied to H automatically reflects on C(δax; r1, r2, ω) =
C(δax; r, ω), with r = r2 − r1. We also notice that if we calculate the PSD (i.e.
r2 = r1), the dependence from r disappears: since the field is homogeneous it
does not matter where we calculate the PSD.
To take into consideration the isotropy assumption it is better to express H (ξ; k,∆r, ω)
explicitly: see subsection 6.8.2 and subsection 6.8.3.

6.8.2 Two point spatial correlation for isotropic and ho-
mogeneous body waves field

In Chapter 7 we will deal with the optimization of underground seismic arrays
in presence of cavities with negligible radius with respect to the seismic field
wavelength (ak � 1). Now, we will calculate some quantities that will be useful
in Chapter 7.
Firstly, we will calculate the CPSDs -Equation 6.21- relative to a homogeneous
and isotropic seismic field composed only by body waves. We intentionally ne-
glect the presence of Rayleigh waves, since we consider the case in which the
detector is located underground and works at frequencies & 1 Hz, where the
Rayleigh waves are still not dominant. At those frequencies, with body wave ve-
locities ∼ 4− 6 km/s and cavity radius a . 30 m, we can rely on the assumption
that ak � 1 without introducing too many errors.
We write the seismic field as:

ξtot(r, ω) = ξP (r, ω) + ξS(r, ω) (6.32)
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Where ξP (r, ω) and ξS(r, ω) are the Fourier amplitudes of the displacement
caused by P and S waves, respectively. When we deal with NN from Rayleigh
waves we limit ourselves to the measurement of the vertical displacement, ξz,
since it is indeed the only one responsible for the gravity fluctuations. For what
concerns body waves NN, instead, we need to consider the displacement along
all the three spatial directions. The seismic measurement along a direction will
be indicated as: ei · ξ(r, ω), where we will refer at ei and ej as at the direction
of measurement of the first and the second seismometer (note that the direction
can be the same or not). Therefore the two-point CPSD will depends on the
directions of the two measurements. Using Equation 6.16 and the definition in
Equation 6.21 we find:

CSSij
(r, ω) = C

(
ei · ξPi ; ej · ξPj ; r, ω

)
+ C

(
ei · ξSi ; ej · ξSj ; r, ω

)
(6.33)

CSNi
(r, ω) = C

[
2

3
C
(
ei · ξPi ; ej · ξP0 ; r, ω

)
− 1

3
C
(
ei · ξSi ; ej · ξS0 ; r, ω

)]
(6.34)

CNN(0, ω) = C2

[
4

9
C
(
ei · ξP0 ; ej · ξP0 ; 0, ω

)
+

1

9
C
(
ei · ξS0 ; ej · ξS0 ; 0, ω

)]
(6.35)

With C = (4πGρ0). In the following, C̄SS will denote the matrix of the CPSDs
of the N signals recorded by the N witness sensors, CSN will denote the vector
containing the CPSD between the NN acceleration on test mass and the signals
from the witness sensors, while CNN will denote the PSD of the NN acceleration
on the test mass (placed in the origin). ξP,Si represents the P or the S seismic
displacement calculated in ri and r ≡ |rj − ri|. The symbol ξP,S0 indicates in-
stead the P or the S displacement measured at the test mass location. With
negligible scattering we can consider uncorrelated P and S contributions, then:
C(ξS, ξP ; r, ω) ' 0. Moreover, we already considered the seismic field to be ho-
mogeneous and isotropic, so the CPSD will depend on r. We now introduce the
polarization mixing parameter, p:

p =
E
[
ξP
∗
ξP
]

E
[
ξtot∗ξtot

] ≡ C(ξP ;ω)

C(ξtot;ω)
(6.36)

Here, C(ξP ;ω) represents the energy carried by the P waves while C(ξtot;ω) is
the total energy of the field (P + S). Since we are neglecting mixed correlations
between S and P, then C(ξtot;ω) = C(ξP ;ω) + C(ξS;ω), and so:

1− p =
C(ξS;ω)

C(ξtot;ω)
(6.37)
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With C(ξS = E
[
ξS
∗
ξS
]
. At this point, we can evaluate equations from 6.33 to

6.35. Following [52], we express C(ei · ξP ; ej · ξP ;ω) and C(ei · ξS; ej · ξS;ω) as:

C(ei · ξP ; ej · ξP ;ω) = C(ξP ;ω)fPij
(kP , r) (6.38)

C(ei · ξS; ej · ξS;ω) = C(ξS;ω)fSij
(kS, r) (6.39)

(6.40)

fP,S have been defined as:

fPij
(kP , r) = (j0(ΦP

ij ) + j2(ΦP
ij ))(ei · ej)− 3j2(ΦP

ij )(ei · eij)(ej · eij) (6.41)

fSij
(kS, r) = (j0(ΦS

ij)−
1

2
j2(ΦS

ij))(ei · ej) +
3

2
j2(ΦS

ij)(ei · eij)(ej · eij) (6.42)

where: ΦP,S
ij = kP,S|rj − ri| and eij ≡ (rj − ri)/|rj − ri|.

Finally we can rewrite equations from 6.33 to 6.35 as:

CSSij
(r, ω) = C(ξtot;ω)(pfPij

+ (1− p)fSij
)

CSNi
(r, ω) = (4πGρ0)C(ξtot;ω)(

2

3
pfPi0 −

1

3
(1− p)fSi0)

CNN(0, ω) = (4πGρ0)2C(ξtot;ω)(
4

9
p+

1

9
(1− p))

(6.43)

(6.44)

(6.45)

These equations are the expressions needed for calculating the residual: they are
the equivalent of P̄Y Y , PXY and PXX in Equation 5.20.

6.8.3 Two point spatial correlation for isotropic and ho-
mogeneous Rayleigh waves field

To calculate the NN spectrum for an isotropic and homogeneous Rayleigh field
we have to insert Equation 6.18 in Equation 6.31 with r = 0 (we are calculating
the PSD, not the two-point CPSD) and then solve assuming isotropy of the field
in 2D. The procedure to get Equation 6.31 does not change if we are in a 2D
space instead of a 3D one. Moreover, to simplify the notation we will indicate
∆r simply with r:

C(δax;ω) = (2πGρ0γ(ν))2

∫
r dr dθ

∫
k dk dφ

(2π)2
C(ξz; r, ω)e−2hk cos2(φ)eikr cos(θ)

(6.46)

Where φ is the angle that the wave vector k forms with the x-axis, which is also
the direction where the test mass is free to move, while θ is the angle formed by
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r respect to k. Since we assume isotropy, C(ξz; r, ω) depends only on |r| = r.
Performing the integral over φ and θ we obtain:

C(δax;ω) =
1

2
(2πGρ0γ(ν))2

∫ ∞
0

dr rC(ξz; r, ω)

∫ ∞
0

dk ke−2hkJ0(kr)

=
1

2
(2πGρ0γ(ν))2

∫ ∞
0

dr C(ξz; r, ω)
2hr

(r2 + (2h)2)3/2

=
1

2
(2πGρ0γ(ν))2

∫ ∞
0

dr C(ξz; r, ω)K(r, h)

(6.47)

Where 2πJ0(kr) ≡
∫ 2π

0
eikr cos(θ)dθ and in the last passage we used the Hankel

transform of order zero:

H{f(k)}(r) ≡
∫ ∞

0

f(k)J0(kr)k dk (6.48)

and:
H{e−αk}(r) =

α

(r2 + α2)3/2
(6.49)

For an isotropic and homogeneous Rayleigh field we can also write the expression
of C(ξz; r, ω). Indeed, for a wave field composed by plane waves propagating in
all the directions with same velocity, we can directly evaluate the correlation
function between two points at a distance r [130]:

C(ξz; r, ω) = C(ξz;ω)J0(kr) (6.50)

Here C(ξz;ω) is the PSD of the displacement ξz in the origin. Inserting this
equation in Equation 6.47 leads to a Hankel transform with result:

C(δax;ω) =
1

2
(2πGρ0γ(ν)e−hk)2C(ξz;ω) (6.51)

Equation 6.50 is only valid for a seismic field composed by planar waves, this
implies that the sources are far from the test mass.
It is worth studying the kernel K(r, h) of Equation 6.47 for a more general
C(r, ω) (always homogeneous and isotropic but not necessarily composed by
planar waves). In Figure 6.9, 2hK has been plotted with respect to r expressed
in units of 2h: the fact that K(r, h) has its maximum in r =

√
2h means that

in a homogeneous and isotropic Rayleigh field the points that contribute most
to the NN are those at a distance ∼

√
2h. Already at r ∼ 4h the contribute

is halved. This means that there will be no need of putting the witness sensors
for the active cancellation too far. In Virgo, for example, the test mass is 1.5 m
above the ground (but 5 m above the floor of the recess - see Chapter 8), this
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Figure 6.8: Two-point correlation of (0,0) with the field in all the other points of
the plane. The Rayleigh seismic field is considered isotropic and homogeneous
and the plot has been normalized with respect to C(ξz;ω).

means that sensors at a distance > 6 m from the test mass will not gather impor-
tant information for the reconstruction of the NN. We still need to keep in mind
that this result is valid for an isotropic and homogeneous field, which in many
cases does not hold (especially for Virgo). With Equation 6.31, Equation 6.50
and Equation 6.51 we we have everything we need to calculate the residual of
Equation 5.20:

CSSij
(r, ω) = C(ξz;ω)(J0(krij) + δijSNR

−2)

CSNi
(r, ω) = 2πGρ0γ(ν)e−hkC(ξz;ω)J1(kr0i) cos(φi)

CNN(ω) =
1

2
(2πGρ0γ(ν)e−hk)2C(ξz;ω)

(6.52)

(6.53)

(6.54)

Where rij is the distance between the ith and the jth sensor and r0i is the distance
of the ith sensor from the test mass located in the origin. Here φi is the angle
formed by r0i with the x-axis (where the test mass is free to move). Equation 6.53
can be calculated using Equation 6.31: a detailed calculation of it can be found
in section A.2. In the expression for C̄SS the self noise contribution of the sensors
has also been added.
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Figure 6.9: Plot of 2hK(r, h) with r in units of 2h. The maximum value is
obtained at r =

√
2h.

6.8.4 Two point spatial correlation for a generic seismic
field

As we will see in Chapter 8, the seismic field in reality is not homogeneous
nor isotropic. This makes it impossible to use equations of subsection 6.8.3 to
calculate the residual and optimize the seismic array for Virgo.
In a situation in which the properties of the seismic field are unknown, we need
to rely only on seismic data: CSSij

can be completely known experimentally (see
Chapter 8 to know how to address the problem of a continuous C̄SS). From
Equation 6.28, we get the expressions for both CSN and CNN as a function of
the solely known quantity: C(ξz; r1, r2, ω).
These equations can also be found in [18] while a derivation of them is shown in
section A.3:

CSS(ri, rj, ω) = C(ξz; ri, rj, ω)

CSN(r0, ri, ω) = Gρ0γ(ν)

∫
d2r′C(ξz; ri, r

′, ω)K(r′, r0)

CNN(r0, ω) = (Gρ0γ(ν))2

∫
d2r

∫
d2r′C(ξz; r, r

′, ω)K(r, r0)K(r′, r0)

(6.55)

(6.56)

(6.57)
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Where: rij = ri − rj is the vector distance between the ith and the jth sensor
placed in ri and rj, while the test mass is located in r0. The kernel is defined as:

K(r1, r2) ≡ x1 − x2

(h2 + |r1 − r2|2)3/2
(6.58)
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7. OPTIMIZED ARRAYS FOR UNDERGROUND NN CANCELLATION

The work presented in this chapter was published in 2019 [17].

7.1 Introduction

Analyses at the LIGO Hanford detector showed that surface displacement is
dominated by Rayleigh waves [131] (similar unpublished results were obtained
for the Virgo detector). This result was anticipated since the dominant ground
vibrations are produced by local seismic sources located at the surface such as
ventilation fans and pumps. Consequently, the development of NN cancellation
systems for LIGO and Virgo focuses on NN from Rayleigh waves [18]. Con-
tributions from body waves are being neglected. The situation changes once a
detector upgrade relies on high suppression of NN by a factor 10 or more. In this
case, relatively weak body-wave NN might become significant. More importantly
even, body-wave NN might be the dominant contribution to NN in underground
GW detectors such as KAGRA [3] or the planned Einstein Telescope [132], where
the main incentive to build a GW detector underground is to strongly suppress
NN from atmospheric and seismic surface fields [122, 51]. Since first NN esti-
mates for the Einstein Telescope neglected contributions from body waves, it was
not immediately realized that NN cancellation will still be required to reach the
low-frequency sensitivity target as shown for example in [63]. Educated guessing
of underground array configurations to achieve body-wave NN cancellation did
not lead to satisfactory results [52]. It is therefore necessary to search for opti-
mal array configurations and understand how these depend on properties of the
seismic field.

In this work, the performance of optimized seismometer arrays for the can-
cellation of NN from body waves were investigated. We consider a test mass
sufficiently far underground so that the seismometers can be placed anywhere
around the test mass up to distances of a few 100 m. Body waves can be shear
or compressional waves. Both produce NN through displacement of cavity walls,
where the test mass of the GW detector is hosted. Compressional waves pro-
duce additional NN through compression and dilation of rock (see section 6.2).
In section 7.2, we present the correlation functions of an isotropic seismic field
required to calculate the Wiener filter. In the following, the two-point CPSDs
will be simply named as correlations. In section 7.3, we present our solutions
of optimized arrays. Cancellation performance is investigated as a function of
the number of seismometers, and on the compressional-wave to shear-wave con-
tent ratio. Furthermore, it is studied how sensitive the performance is to the
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exact placement of seismometers, while implications for the Einstein Telescope
has been already discussed in section 4.2. We then conclude in section 8.5.

7.2 Wiener filters for underground NN cancel-

lation

In underground detectors, test masses will be located in cavities fully surrounded
by hard rock. Seismic waves propagating through the rock will cause NN. A
possible mitigation strategy is to cancel part of the NN using an optimal linear
filter (the Wiener filter) [133, 107], which provides a coherent estimate of NN from
seismic observations (see section 5.3). For long, perpendicular detector arms and
isotropic seismic fields, NN picked up by different test masses is uncorrelated (see
section 6.6). In this case, one can cancel the NN from each test mass individually.
It should be noted though that the seismic measurements for NN cancellation
at the two input test masses will in any case be correlated, since they are close
to each other, which means that even if seismic arrays deployed at all four test
masses have identical configuration, the Wiener filter will be different at the
vertex station due to correlations between the two seismic arrays. Following
Newton’s law, we can write the perturbation of gravity acceleration inserting
Equation 3.1 in Equation 3.4:

δa (r0, t) = −G
∫
dV ρ (r) (ξ (r, t) · ∇0)

r − r0

|r − r0|3
(7.1)

where ξ(r, t) is the seismic displacement field, ρ(r) the density of the ground
medium, r0 the position vector of the test mass, and r points to locations inside
the ground medium. The linear dependence of the gravity perturbation on the
displacement field makes it explicit that correlations between seismic displace-
ment and NN must exist. These correlations determine the Wiener filter. Wiener
filters can be formulated in time or frequency domain (see section 5.3). For Gaus-
sian, stationary noise as considered throughout this work, frequency-domain cor-
relations are expressed as cross-spectral densities (CPSDs) (see subsection 6.8.2).
The performance of a Wiener filter can be quantified by the relative residual of
the NN spectral density, R(ω), left in the GW data [134] after the cancellation.
R(ω) that can be expressed by Equation 5.20 which we conveniently rewrite here
using a different notation:

R(ω) = 1−
C†SN (ω) ·

(
C̄SS(ω)

)−1 ·CSN(ω)

CNN(ω)
(7.2)

Here, CSN represents the vector of CPSDs between the displacement recorded
by the N seismometers and the NN at the test mass, C̄SS is the matrix of CPSDs

97



7. OPTIMIZED ARRAYS FOR UNDERGROUND NN CANCELLATION

between all seismometers, and CNN is NN spectral density. In the following, we
will use

√
R to quantify the noise reduction. The best possible cancellation using

N equal seismometers characterized by a certain signal-to-noise ratio (SNR) is
achieved if the seismometers’ data are all exact copies (up to some irrelevant
transfer function) of the NN so that the CPSD between NN and seismometers
assumes its theoretical maximum. In this case, the noise residual is given by
Equation 5.30 which for a big number N of seismometers can be approximated
as:

Rmin(ω) ≈ 1

N · SNR(ω)2
. (7.3)

For sufficiently high N the residual R will be limited by the SNR of the sensors
and it will fall at least with 1/N , indeed, one can always add a new seismometer
next to an existing one to effectively average over the seismometer instrument
noise.
In the following we will only consider the cancellation of NN from a single test
mass. The residual R can be understood as a function of the seismometer po-
sitions with a fixed number of seismometers. One can then search for the seis-
mometer positions that minimize the residual. We choose here to optimize the
array for a fixed frequency, which translates into a fixed length of the seismic
waves.
Sufficiently far underground, we have two kinds of body waves: compressional
waves (also called primary waves or P waves) and shear waves (also called sec-
ondary waves or S waves), see section 6.2.
Having two kinds of body waves reduces the efficiency of the Wiener filter. Be-
cause of their different propagation velocity in the ground, P and S waves produce
two-point correlations that are out of phase affecting the configuration of the op-
timal array (see also B).
The isotropic CPSDs are shown as a function of seismometer separation in Fig-
ure 7.1): when the mixing parameter (Equation 6.36) is less than 1 we have
a visible degradation of the correlation. We can assume that polarizations are
equally distributed in energy, so S waves will contribute with the two transverse
polarizations and P waves only with the longitudinal polarization (for 1/3 of the
total energy as in Figure 7.1).

We now consider the example of an isotropic, homogeneous seismic field. Corre-
lation functions (CPSDs) between seismometers and with the associated gravity
fluctuations have been calculated analytically in subsection 6.8.2 - Equation 6.43,
Equation 6.44 and Equation 6.45 (see also chapter 7 of [52]). We remind that
for those equations the CPSD between the displacement caused by P waves and
the one caused by S waves has been considered negligible.
The diagonal of the CPSD matrix C̄SS contains the spectral densities of all seis-
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Figure 7.1: Normalized CPSDs between two sensors measuring the displacement
along the x-axis in an isotropic and homogeneous body-wave field. The CPSD
is real-valued. Here, p is the polarization mixing parameter (p = 1 means only
P waves). Top: p = 1. Bottom: p = 1/3
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mometers. If we want to simulate a more realistic case, we need to add a con-
tribution coming from the seismometers’ instrument noise (which we consider
uncorrelated with the signal and between one sensor and another, for this reason
it is present only in the diagonal elements). This can be achieved by multiplying
the seismic spectral density on the diagonal by (1 + 1/SNR2). Since the seis-
mic field is homogeneous, all seismometers will observe the same seismic spectral
density, and if all seismometers have the same sensitivity, then the values on the
diagonal of C̄SS will be all the same and equal to C(ξ, ω)(1 + 1/SNR2).
In order to calculate the CPSD between the test-mass acceleration δa due to
gravity fluctuations (NN) and the seismometers, we first need a gravitational
coupling model. As mentioned earlier, the test mass is assumed to be located in
a underground cavity. For simplicity, the cavity has a spherical shape and the
test mass is at its center. Also, it is assumed that the cavity has a small radius
a so that kPa � 1 and kSa � 1. The last conditions will clearly be fulfilled
in underground detectors with typical body-wave speeds of a few km/s. This
greatly simplifies the equations describing the gravitational coupling between
seismic field and test mass, and also makes sure that we do not need to consider
seismic waves scattered from the cavity [52] (see also section 6.5). If the test
mass is not located at the center of the cavity, then the coupling will obtain an
additional negligible phase term. The impact of the shape of the cavity volume
on the gravitational coupling between seismic field and test mass has not been
investigated yet. Under these conditions, the seismic gravity perturbation is that
of Equation 6.16, which has been used to calculate the analytical expression of
CSN. All terms inside Equation 7.2 are then available as analytic expressions for
the isotropic seismic field (boxed equations of subsection 6.8.2). This allows us
to study cancellation performance of Wiener filters using seismometer arrays and
to search for optimal array configurations under the assumptions of an isotropic
and homogeneous field.

7.3 Optimization of seismic arrays for NN can-

cellation

7.3.1 Validation of algorithms using the case of surface
isotropic and homogeneous Rayleigh waves

The optimization of seismometer arrays for isotropic Rayleigh-wave fields was
addressed in previous publications [111, 18]. We have used this case to validate
our optimization algorithms, which however requires a different tuning of certain
parameter settings in the optimization algorithms. Consistency with previous
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results was achieved and a new analysis regarding the robustness of the cancel-
lation performance with respect to small deviations of the seismometer locations
from their optimum was carried out.
The equations for a isotropic homogeneous plane wave model used for the valida-
tion can be found in subsection 6.8.3. The case presented here is that of N = 6
seismometers measuring vertical surface displacement with a SNR = 100 and
located on a flat surface monitoring an isotropic, homogeneous Rayleigh-wave
field. In the optimal configuration that we found, the approximate distance be-
tween seismometers and test mass is about 0.3λ, where λ is the length of the
Rayleigh waves at the optimization frequency. This distance depends on the
seismometer SNR (see Figure 7.2). In Figure 7.2 we show the optimal arrays
for N = 6 for varying SNR values. The outer four seismometers in this plot
describe S-shaped trajectories moving towards smaller abs(x)-values, and larger
abs(y)-values with increasing SNR. The two seismometers located at y = 0 move
outwards with increasing SNR. We compare this result with the one obtained in
[18] shown in Figure 7.2 (bottom plot). The optimal sensor coordinates found
in previous works can be found in section 7.1.6 of [52] and they are completely
comparable with our result. So we confirmed what already found for isotropic
and homogeneous Rayleigh fields.

We moved a step forward and tried to understand how much the performances of
the cancellation change if we commit some errors in the placement of the sensors
with respect to the optimal positions. This is made by modifying the array co-
ordinates adding Gaussian errors to the location coordinates of each sensor. We
used two different zero-mean Gaussian distributions with standard deviations:
σ = 0.01λ and σ = 0.1λ. For each of the resulting array configurations that we
obtained the NN residual was calculated. The values

√
R are collected in the

histogram shown in Figure 7.3. Coordinate mismatches of a bit less than 0.1λ
could be tolerated to achieve a NN reduction by a factor 10 with SNR = 100
seismometers. At the LIGO and Virgo sites, Rayleigh-wave speeds at 10 Hz are
about 300 m/s, which means that we can misplace the sensor by 0.1λ ≈ 3 m and
still obtaining a factor 10 of NN reduction.

7.3.2 Cancellation of NN from body waves

Finding the optimal array for NN cancellation means to find the configuration
that minimizes the residual in Equation 7.2. This kind of calculation becomes
very demanding as the number of seismometers increases. We deal with functions
in 3N -dimensional spaces, where N is the number of seismometers. From now on,
we will be focused on the optimization of an array of seismometers in underground
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Figure 7.2: Comparison between the results obtained with our optimization and
the results of [18]. Top: Optimal array configurations that I found for N = 6
seismometers and with varying SNR. A homogeneous and isotropic Rayleigh field
(and plane wave assumptions) has been considered. The red cross represents the
test mass. Bottom The results obtained from Coughlin et al. in [18]. The optimal
arrays for N = 6 sensors are shown for an isotropic plane wave model (IPW), an
isotropic Gaussian model, an anisotropic plane wave (APW) and a single plane
wave model (SPW). The resulting geometries and positions are comparable with
our results except for the isotropic Gaussian model optimal array.
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Figure 7.3: Robustness of cancellation performance for NN from Rayleigh waves
determined by random Gaussian shifts of seismometer coordinates from their
optimal values. The array contains N = 6 sensors with SNR = 100. The dashed
red line represents the residual of the optimized array.
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environments. Thus, we will use the assumptions made in section 7.2. The opti-
mization algorithms do not guarantee to find the global minimum (within a finite
time). The optimization of seismometer arrays for body-wave NN cancellation is
more demanding than in the case of seismic surface waves for two main reasons:
the array needs to disentangle NN contributions from compressional and shear
waves, which gives the residual function a richer structure in terms of local min-
ima, and, as we will see, there is no unique optimum due to symmetries of the
seismic field.
We used two different global optimizers (see Chapter 5): Basin Hopping (BH)
and Differential Evolution (DE). Basin Hopping is a combination of a local min-
imizer with a global Monte Carlo search of the minimum [90, 89] based on the
Metropolis criterion [93], while DE is part of the family of evolutionary algo-
rithms [95, 135]. Both algorithms require parameter tuning to efficiently find the
global minimum instead of some local minimum with higher noise residuals. For
DE, we had to specify the coordinate boundaries to look for the minimum. For
BH, we had to specify the step size (which tunes how the space is explored to find
the minimum) and another parameter, called ”temperature” (high temperature
means that longer jumps in parameter space are accepted).
We adopted three different methods to validate our solutions. First, as men-
tioned already, we checked to achieve a match of the Rayleigh-wave results with
the published solutions. Second, we have analytic solutions (Equation 7.4) of
the optimal arrays and their residuals for N = 1 (and arbitrary values of p), and
for p = 0 and p = 1 (for arbitrary number N) that can be compared with the
numerical solutions. For p = 0 and p = 1, the residual is given by Equation 7.3.
Third, as explained by Equation 7.3 and in subsection 5.3.3, for sufficiently high
N , the noise residual R needs to fall at least with 1/N when increasing N . We
found that the results passed all the three tests.

R(ω) = 1− (2pfP − (1− p)fS)2

(3p+ 1)(1 + 1
SNR2 )

(7.4)

Nevertheless, different solutions were found by running the global optimizers
many times: many of them corresponded to local minima, others were degener-
ate optimal solutions (the degeneracy due to the symmetry). Figure 7.4 shows
the seismometer locations of the 100 overlapped solutions obtained from the 100
optimization runs made for N = 6 sensors. The x-axis corresponds to the di-
rection of the detector arm, which means that it corresponds to the relevant
direction of test-mass displacement (where it is free to move). We considered
two kinds of seismometers: a single-axis seismometer monitoring displacements
along the x-axis, and a three-axis seismometer monitoring displacements along
the three directions (x,y,z). We used SNR = 15 for all the seismometers (which
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Figure 7.4: Comparison of DE with BH algorithm, for single-axis sensors and for
three-axis sensors. The number of seismometers is N = 6 with SNR = 15. The
seismic field has a mixing ratio p = 1/3. In each case, the optimization was run
100 times and the solutions were collected in a single plot. The colors on the
bar measure the different values of residual obtained with the minimization. See
Figure 7.8 for a better understanding of the optimal array configurations.
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is a reasonable assumption since we are in a low-noise environment [18]), and the
residual was minimized at the single frequency of 10 Hz, so that the compres-
sional wavelength λ used as length unit in the plots was fixed. The corresponding
length of shear waves is then λs = 0.67λ. The markers are coloured according to
the residual achieved by the array: blue dots represent local minima and then
lead to higher values of the residual function (and worst cancellation perfor-
mances).
The DE algorithm performs better on average, but best solutions found with BH
and DE over 100 runs perform equally well. Interestingly, the three-axis arrays
do not perform significantly better than the single-axis arrays even though the
number of channels is 3N vs N . It means that there is very little extra infor-
mation that can be extracted from the y,z-axes (the x-axis being the relevant
direction of test-mass displacement).
In Table 7.1, we present values of optimal sensor locations for N = 6 and
SNR = 15 as a benchmark. These results were obtained with DE using decreased
tolerances on the sensor positions to give precise values up to 5 decimal places
(this was useful to obtain a better optimization result), while larger tolerances
are acceptable (and used throughout the rest of the paper) to get arrays with
very similar configuration and performing equally well for all practical purposes.

Configuration Sensor coordinates [λ] Noise residuals
√
R

Single-axis (-0.014, 0, -0.224),
(-0.014, 0, 0.224),
(-0.014, -0.224, 0),
(-0.014, 0.224, 0),
(0.059, 0, 0), (0.250, 0, 0)

0.430

Three-axis (0.152, 0, 0.183),
(-0.152, 0, 0.183),
(0, -0.230, 0.040),
(0, 0.230, 0.040),
(0, 0, 0.064), (0, 0, -0.158)

0.416

Table 7.1: Benchmark solution for N = 6, SNR = 15, and p = 1/3. Coordinates
are given in units of compressional-wave length λ. It is one possible solution
among many.

The solutions for the single-axis and three-axis solutions are not unique. Any ro-
tation of the array around the x-axis yields another solution with the same noise
residual. Therefore, these benchmark values are obtained by taking the result
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Figure 7.5: Results obtained with DE with three-axes or single-axis sensors and
with p = 1/3. The theoretical sensor-noise limit is shown as a black curve (SNR
curve). The residuals correspond to the minimum over 100 optimization runs for
each number of seismometers.

of the optimization and rotating it such that symmetry axes are aligned with
coordinate axes. In Figure 7.5, the residuals are shown for single and three-axis
sensors as a function of N . A residual of

√
R < 0.1 is achieved for N > 14. For

comparison, the plot also shows the theoretical sensor-noise limit from Equa-
tion 7.3). At high N , the curves start to fall with similar slope, which means
that any new sensor just serves to effectively improve the sensitivity of the array
without significantly affecting the Wiener filter’s ability to disentangle different
modes and polarizations of the field.
We investigate the robustness of cancellation performance with respect to shifts
in sensor locations from their optimum as it was done for the Rayleigh wave case
in subsection 7.3.1. Random errors for the location coordinates are drawn from
two zero-mean Gaussian distributions with standard deviations: σ = 0.01λ and
σ = 0.07λ. As shown in Figure 7.6, sensor coordinates for an array of three-
axis seismometers can deviate by (in average) 0.07λ from their optimal values to
achieve a factor 3 of reduction for body-wave NN. In section 6.3, we argued that a
factor 3 of NN suppression is likely sufficient to achieve sensitivity targets of the
future GW detector Einstein Telescope. One additional aspect of noise cancel-
lation is the width of the frequency band over which it is effective. According to
the noise plots in Figure 6.3, cancellation for ET might be required over a larger
band of frequencies between about 2 Hz and 10 Hz. Figure 7.7 shows the results
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Figure 7.6: The histograms show the variability of the residual functions for
an underground array with N = 15 seismometers (single and three-axis) and
SNR = 15 when the optimized array coordinates are shifted with random values
extracted by a Gaussian distribution with standard deviation σ. The two vertical
dashed lines show the residuals for the optimized coordinates.
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Figure 7.7: Broadband optimization of cancellation performance also including
histograms of residuals when all sensor coordinates are shifted randomly of values
drawn from a Gaussian with standard deviation of 50 m (which corresponds to
about 0.08λ at 10 Hz). The curve N = 6 + 6 is plotted without histogram.
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of various attempts to achieve broadband-optimized cancellation. The dashed
curve shows the NN reduction using an array with 12 seismometers optimized
at 10 Hz. In this case, NN reduction at 2 Hz is minor. Similar performance is
obtained when minimizing the sum of residuals between 2 Hz and 10 Hz using
12 seismometers, as shown by the solid curve. The dotted curve results from
merging two arrays with 6 seismometers each, one optimized for 2 Hz, the other
for 10 Hz. Good suppression can be achieved at low and high frequencies, but
the performance is not uniform over the entire NN band. The best solution
was found by minimizing the maximum residual over the band 2 Hz to 10 Hz
(dot-dashed):

L = max
∀ω∈ωi

{R(ω)} (7.5)

Of course, better other cost functions could be found, in future, to yield even
better broadband results.
The optimization results presented in this work are only indicative of course.
In reality, the seismic field is neither isotropic nor homogeneous. Nonethe-
less, isotropic fields pose a greater challenge to NN cancellation designs than
anisotropic fields [18], and since inhomogeneities are caused by the presence of
local sources or strong scattering of seismic waves, it is possible to adapt the ar-
ray provided that the location of local sources and scattering centres are known.
An important result from subsection 7.3.2 is that seismometer positions do not
need to exactly match the optimal positions (see Figure 7.6). Even strongly de-
graded configurations with respect to the optimum can still achieve a factor 3 of
NN reduction in our analysis. We therefore conclude that reduction of NN in ET
by a factor 10 using coherent cancellation of body-wave NN would be feasible.
Clearly, it remains a significant effort since boreholes for about 15 seismometers
per test mass need to be drilled and a site-characterization campaign is required
to obtain two-point spatial correlations of the seismic field. It should also be men-
tioned that the cancellation can be achieved with already existing commercial
seismometers, which have instrumental noise below the seismic global low-noise
model up to 10 Hz.

7.4 Conclusion

In this work, published in 2019 [17], we have analysed the performance of op-
timized seismometer arrays for the cancellation of body-wave NN using Wiener
filters. We found that about 15 sensors are required to reduce NN by a factor 10
(in amplitude) when 1/3 of the spectral density of the seismic field is in compres-
sional waves (the rest being in shear waves). The optimal array configurations
were determined for isotropic, homogeneous fields. The cancellation performance
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is mainly limited by the array’s ability to disentangle shear from compressional
waves. In contrast, cancellation performance is limited by the seismometer noise
if only one wave polarization (either compressional or shear) is present in the
seismic field.
We then found that for a well performing array, the seismometer locations do
not have to match the optimal locations precisely. This is true for Rayleigh-wave
and body-wave NN cancellation given the respective NN suppression targets in
future detectors.
Cancellation of NN will likely be required to achieve ET sensitivity (according
to the reference sensitivity ET-D). Our results lead us to the conclusion that NN
cancellation is feasible for underground detectors. Neither the required number
of seismometers, nor their sensitivity, nor the required accuracy of their position-
ing in boreholes is prohibitive. We therefore propose coherent cancellation of NN
using Wiener filters as technique in the third-generation GW detector Einstein
Telescope.
Finally, we discuss the role of the various assumptions made in this paper. The
assumption of an isotropic and homogeneous field is of course a great simplifi-
cation. However, something we know from previous work [18] is that anisotropy
does not have a big impact on cancellation performance, and it can even be ben-
eficial, e.g., you only need one seismometer if waves always come from a single
direction. However, concerning homogeneity, one cannot be sure that our analy-
sis is robust when introducing heterogeneities. This is a complicated matter since
there are different reasons for which a field can be inhomogeneous (scattering,
nearby seismic sources, coupling to other fields such as sound,. . . ). We expect
that body-wave fields should have a high degree of homogeneity, since dominant
sources of body waves are typically distant, and since body waves are so fast and
therefore long that the wave field is less disturbed by scattering, also considering
that an underground environment is geologically more homogeneous than near-
surface soil. Nevertheless, in the case of strong underground seismic sources,
as often present in underground array measurements (e.g., anthropogenic noise
from ventilation and pumps), this assumption might not hold. In this case, it is
important to know the local underground seismic sources to adapt the seismic
array accordingly, and we cannot exclude that the number of sensors required in
this case needs to be higher. However, in Chapter 9 we showed that the seismic
noise from infrastructures is not a big concern from the point of view of the
seismic and the Newtonian noises.
For what concerns the assumption of a spherically shaped cavern, simple ar-
guments can be used to conclude that the shape and size of the cavern is not
so important for NN and its cancellation. The main point is that the seismic
waves are much longer than the diameter of the cavern [136]. Newtonian noise
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is therefore almost the same if one considers a cavity of 5 m radius and one of
50 m. Both numbers are a small fraction of the length of body waves even at a
frequency as high as 10 Hz. For the same reason, the effect of scattering on NN
can be neglected [52] (see section 6.5 ), and it follows that the shape of the cavern
has no significant effect either. It does not even matter where the test mass is
located inside the cavity since the position can only vary by a small fraction of
the length of a seismic wave.
The last assumption made is that P and S waves are in average uncorrelated.
We know that this is likely not the case since an incoming body wave, when
reflected from the surface, is partially converted into other polarizations. How
much average correlation this produces between P and S is not known to us, and
it will be important to estimate this effect in future work. It might well have a
significant impact on optimal array configurations.
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Figure 7.8: Optimal array configurations for N = 6 and p = 1/3 (coordinates
listed in Table 7.1). Difference in marker colors indicates different values of the
coordinate along the projection direction.
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8. ARRAY SEISMOMETER OPTIMIZATION FOR ADV

The work presented in this chapter was published in 2020 [124].

8.1 Introduction

For Virgo detector, the dominant contributions to NN are predicted to come from
seismic and acoustic fields [137, 51]. Low-frequency noise, including Newtonian
noise, will have significant impact on parameter estimation of compact-binary
GW signals [138, 139, 140], and it can also significantly influence the signal-to-
noise ratio, especially of intermediate-mass black-holes visible mostly through
their harmonics excited during the merger [141]. Mitigation of NN, therefore,
will have an important impact on the science that could be done with GW ob-
servations.
New methods to lower environmental noise are being developed and implemented.
One approach is to lower disturbances in the environment, which is possible
whenever the sources are under human control like pumps and ventilation sys-
tems. Another method is the so-called offline subtraction of noise, where data
from environmental sensors are passed through filters and subtracted from the
detector data [142, 107]. This method has been implemented successfully in
LIGO and Virgo, for example, to reduce noise from vibrations of optical tables
causing laser-beam jitter [11].
A combination of these two methods is also being considered to mitigate NN at
Virgo as part of the AdV+ detector upgrade.
Extensive seismic studies were carried out to characterize the field in terms of
its spatial and temporal properties [19]. The goal was to understand from the
observed properties of the seismic field, especially its two-point correlations, how
to deploy the seismometers. In order to implement the NN offline subtraction
[134, 131] which will be ready for O4, the results of this work will be used to
deploy a total of 120 sensors inside the three main experimental halls of the Virgo
detector.
Optimization of array configurations for NN cancellation has been a difficult
challenge, and so far, it was only possible to calculate optimal arrays for sim-
ple fields where seismic correlations and the gravity perturbation have a known
analytic expression [111, 18]. The main challenges are:

• The optimization involves a large number of variables (2 coordinates per
seismometer).

• Real seismic fields, especially those at Virgo site where local seismic sources
dominate and seismic waves interact with a complex infrastructure [19,
137], cannot be represented by analytic models.
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• Information about the seismic field obtained by site-characterization mea-
surements with arrays is incomplete [143].

• How to systematically and optimally use information about the seismic
field for the design of a NN cancellation system has been an open problem
so far.

Figure 8.1: InnoSeis sensor used to record data. The mount was modified by
Nikhef in order to be used indoors. The cables were twisted around the sensors in
order to reduce as much as possible the vibrational coupling with the instrument.

In this work, I present an efficient approach to the optimal design of a NN can-
cellation system based on observed two-point spatial correlations between the
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seismometers deployed in the array (see also subsection 6.8.4). The solution
takes the form of a surrogate Wiener filter with seismometers as input channels,
and whose output constitutes an estimate of the gravity fluctuation produced by
the seismic field. It can be calculated for an arbitrary number of seismometers
with arbitrary positions on the surface. The method incorporates kriging [102,
103] (as Gaussian process regression is sometimes called when spatial correlations
are involved) and a simple interpolation, and it is devised to address computa-
tional limitations (the optimization procedure still requires a computer cluster
to obtain robust optimization results).
A summary of the seismic experiment at Virgo whose data were used to calculate
the surrogate model is given in section 8.2. In section 8.3, I describe the construc-
tion of the Wiener-filter surrogate model and some of its properties. The results
about the optimization of the seismometer locations are presented in section 8.4.

Figure 8.2: Blueprint of the end building of Virgo.
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8.2 Instruments and positioning

In this work I used the data collected with 38 seismometers (5 Hz geophones)
placed in the Virgo West-End Building (WEB) [19].
The seismometers (geophon type) were manufactured by InnoSeis [144]. A geo-
phone is a transducer of the seismic motion (velocity) into voltage, the working
principle exploits the inductance law. The sensors were placed on the ground
and were mounted on a heavy metal plate attached to the ground by means of
a double-sided adhesive tape (see Figure 8.1). The data used here were taken
during one hour between the 00:00 and the 01:00 of February 5, 2018, i.e., a
time without human activity in the building and therefore representative of the
situation during Virgo observation runs. The WEB hosts one of Virgo’s sus-

Figure 8.3: Plan of the WEB seismic array.

pended test masses (red star in Figure 8.3 and in all our plots); we can see from
Figure 8.2 that it has a complicated structure: the ground is not homogeneous
and consists of a basement placed under the test mass whose floor is 3.5 m below
the surface (horizontal extent of the recess will be marked by a red rectangle in
our plots). The ceiling and the walls of the basement are disconnected by a thin
gap (5 cm) from the main building floor. The entire structure supported by the
basement is called tower platform and it is anchored with 52 m deep pillars to a
more stable gravel layer beneath the clay (there are many gravel layers, which
alternate with clay in the substrate of soil beneath Virgo [145]). These pillars
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are meant to prevent the sinking of the platform. This is important since the
platform carries the vacuum chamber of the seismic isolation and the test-mass
suspension system [45].
I placed the origin of our coordinate system at the surface level, right below the
test mass. The basement extents from -8 m to 6 m along x, and ±2.6 m along
y (see Singha et al for more details [137]). Of the 38 seismometers placed in
the WEB, 15 were placed on the tower platform (of which, only two were on
the floor of the basement) and 23 on the building floor. One seismometer was
discarded since it was deployed on a metal sheet that forms part of the ceiling
of the basement, and whose vibrations are uncorrelated with the seismic field.
Also, the metal sheet is too thin to contribute significantly to NN.

8.3 Surrogate model of the Wiener filter

For the noise cancellation, data from witness sensors is passed through a filter
and its output is subtracted from a target channel [146, 133, 147]. Normally,
the goal is to reduce the variance of the target time series. For the cancellation
of stationary noise, the Wiener filter (see section 5.3) is known to minimize the
variance of the residual data [146], and they were therefore proposed for NN
cancellation in GW detectors [134].
When the source of disturbance is an entire field, as for NN, then effective moni-
toring of the field becomes the main challenge in the design of a noise-cancellation
system. Effective monitoring can be achieved by choosing effective types of seis-
mic sensors [148], and by optimal sensor positioning [111, 18, 17]. Until now,
determining the optimal sensor locations based on correlation measurements of
the seismic field has been an open problem.
For this work, observations of vertical seismic surface displacement, ξ, were con-
sidered and for the optimization the same cost function as Chapter 7 was used. I
recall that the noise residual of Equation 7.2 depends on the cross-spectral den-
sity matrix between all the seismometers, C̄SS and the cross correlations between
the N seismometers and the test-mass, CSN. While CSN is a function of two pa-
rameters per seismometer (its two horizontal coordinates), C̄SS depends on the
coordinates of a pair seismometers, and so it is a four dimensional function.
The Wiener filter minimizes the residual noise R(ω) for a given configuration of
the seismic array and it is related to the NN power spectral density (PSD) CNN

of the test mass. For reasons that will be clear later we express Equation 7.2 as:

R(ω) = 1− ĈNN(ω)

CNN(ω)
(8.1)
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Where ĈNN is the Wiener filter estimation of the PSD of the NN: ĈNN =
C†SN (ω) ·

(
C̄SS(ω)

)−1 · CSN(ω). The aim is now to minimize R(ω) by finding
the optimal locations of the N seismometers. This can be achieved by maximiz-
ing the numerator in Equation 7.2, indeed CNN is just a constant. In past studies
(like the one of Chapter 7), analytic models were used for CSN and C̄SS repre-
senting simplified, i.e., isotropic, homogeneous seismic fields. The field observed
in Virgo is very complicated and cannot be represented by any analytic model
[19]. The question arises how to make best use of the information we have about
the seismic field to estimate the optimal array configuration and how to evaluate
Equation 8.1.

The approach taken here is to construct a surrogate model of the Wiener filter
for an arbitrary number of seismometers, and to use it for the calculation of the
optimal array. While we can obtain C̄SS from the data by means of regression
methods (see section 8.4) we cannot do the same for CSN since Virgo’s sensitiv-
ity is not yet good enough to observe NN. We need then to provide a model for
CSN. Assuming that the dominant seismic displacement is produced by Rayleigh
waves, or more generally, that NN contributions from surface displacement are
dominating over contributions from (de)compression of the ground medium, we
can use the model of Equation 6.56. Here we must consider that the tower base-
ment h has two values: 1.5 m and 5 m, for points on the main building floor
and on the basement floor, respectively. The kernel K of Equation 6.56 links
the seismic correlations with the NN from Rayleigh waves or surface displace-
ment. Its values are shown in Figure 8.5. I point out that contributions from
the normal displacement of basement walls, despite the fact that they can be
included in Equation 6.56, cannot be considered in our analysis since no sensors
were installed on the basement walls.
In order to perform the optimization over R(ω) to find the optimal configuration
of the seismometer array we need a way to evaluate R(ω) in every possible con-
figuration. In subsection 6.8.4, we have seen that this simply translates in having
the values of C̄SS for every possible position of the N sensors. The collected data
cannot, of course, cover all the possible combinations of sensors locations, but
only very few of them. For this reason, we need to use the collected data to infer
the underlying model for C̄SS. This, in principle, could be done with a simple
interpolation (spline or linear, for example) of the CPSDs that we can calculate
from the 37 seismometers deployed in the WEB. However, we can achieve much
better results with a Bayesian approach, i.e., Gaussian-process regression (GPR)
that was discussed in section 5.2. The GPR approach makes it also possible to
extend the analysis to a region beyond the convex envelope of the deployed array,
this last point is convenient for technical reasons, since it let the possibility of

121



8. ARRAY SEISMOMETER OPTIMIZATION FOR ADV

Figure 8.4: Normalized cross-spectral densities (coherence) between all possible
pairs of seismometers at 15 Hz. The correlation values are shown in a down-
scaled array configuration where the reference seismometer is marked as black
dot. Top: reference sensors on main building floor. Bottom: reference sensors
on tower platform.
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Figure 8.5: Kernel of gravitational coupling between seismic field and NN from
Rayleigh waves or surface displacement.

using a rectangular area for our analysis.

The main problem that arises here is that the elements of C̄SS are obtained by a
function defined in the 4D space: CSS(xi, yi, xj, yj, ω) : R2×R2, where xi, yi, xj, yj

are the x, y coordinates of the ith and jth sensors taken into consideration. The
GPR should then in principle infer a 4D function starting from the CPSDs ob-
tained by the 37 sensors’ data, i.e., 372 total training points. This poses two
main challenges: the first is that the GPR regression requires to invert a matrix
that is 372 × 372, which requires huge computational efforts. The second thing
concerns the curse of the dimensionality [149]. Indeed, it turns out that we have
not enough density of data to infer with sufficient accuracy the values of C̄SS.
To demonstrate that the density of data points in the 4D space is not good, we
can compare it with the density of data points in the 2D space: to make them
comparable we need to define a dimensionless density of points. I will define,
then, the density of points as follows:

ρnD =
Mdata points ∗ Vn

Vtot

(8.2)

Where ρnD represents the dimensionless density of the M data points that we
have in the nD space. Vtot represents the minimum (hyper)rectangle containing
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all the 37 seismometers’ coordinates . In the 2D space it will have volume: L1L2,
with L1 and L2 the long and the short side, while in the 4D space Vtot will be:
(L1L2)2. Vn, instead, is the volume of hyperspheres of unitary radius centred
on the data points and used here to make the densities dimensionless and then
comparable:

Vn(R) =
π
n
2

Γ
(
n
2

+ 1
)Rn (8.3)

Where Γ
(
n
2

+ 1
)

is the Gamma function and n represents the dimensions of the
space.
With the actual values of L1 = 16.36 m and L2 = 22.72 m we can see that:
ρ2D = 0.31 and ρ4D = 0.05. So, for the GPR it would be better to use a 2D
space with 37 data points, rather than a 4D space with 372 data points. This
is the main point of this work: we can infer the 4D CSS function by simply
switching to a lower dimensional space: the 2D space. This is made possible by
the Fourier convolution theorem. If we apply the theorem to CSS(xi, yi, xj, yj, ω)
we can see that it is enough to have the Fourier amplitudes, ξ̃i(ω), defined in
every point of the 2D space:

CSS(xi, yi, xj, yj, ω) =
1

T
〈ξ̃i(ω)ξ̃∗j (ω)〉, (8.4)

where ξ̃i, ξ̃j are the Fourier amplitudes at the points (xi, yi) and (xj, yj) and 〈·〉
represents the ensemble average. This allows us to perform the GPR on the 2D
space, where the density of data points is higher and the inversion of the matrix
in the GPR is easier (because it is smaller since we have only 37 data points).
So, for a fixed frequency ω and for any couple of sensor’s locations, (xi, yi) and
(xj, yj), we are now able to evaluate CSS(xi, yi, xj, yj, ω) using a surrogate model.
In the optimization process this would be enough: we have everything we need
since we can already evaluate C̄SS in every possible couple of locations. However,
calculating C̄SS using eq. 8.4 for each point explored in the optimization process,
becomes too expensive from the computational point of view. So, to avoid this
problem, I added a further step before the evaluation of CSS for the optimiza-
tion. This consists in evaluating with the preceding method only N4 elements of
CSS(xi, yi, xj, yj, ω) over a regular 4D grid and then performing a linear interpo-
lation (it is faster if the points are on a regular grid). During the optimization,
the evaluation of CSS(xi, yi, xj, yj, ω) was calculated from the linear interpolation
instead that evaluating every time Equation 8.4.
This allows us to have a very precise, but fast, evaluation of CSS for every possible
point in the 4D space. In this specific case, I used a 4D grid of N = 30 points
that allowed us to construct a 4D density of points ρ4D linear = 28.9, which is
even one order of magnitude bigger than the density we had for the 2D GPR of
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the Fourier amplitudes. Thus, introducing this middle step linear interpolation
with so many points, we do not spoil the final evaluation of CSS(xi, yi, xj, yj, ω)
with respect to the one that we would obtain using Equation 8.4.

This method was they key point which allowed me to perform an optimization
of this kind in feasible times (two weeks for the optimization with 15 seismome-
ters) and with much more precision than using the GPR directly on the 372 data
points in the 4D space.

8.4 Array optimization

As stated in section 8.3, I used a coarse-grained representation of the seismic
correlations obtained by GPR and then performed a regular grid linear inter-
polation to evaluate CSS at arbitrary points, as requested by the integration in
Equation 6.56 and by the optimization algorithm.
For the evaluation of the 2D integral of CSN (Equation 6.56), I used Simpson’s
method [150]. For what concerns the optimization process, I chose the Parti-
cle Swarm Optimization algorithm [99] (see also subsection 5.1.3). Some of the
results were also compared with the Differential Evolution algorithm [96] (sub-
section 5.1.2) to check their consistency.
In Figure 8.6, I present results for optimizations at 10 Hz, 15 Hz, and 20 Hz. Each
plot contains optimal arrays with 2, 5, and 10 seismometers. It is interesting to
observe that the most efficient placements of seismometers starts around the edge
of the tower platform in extension of the arm, and only with 10 seismometers the
array starts to occupy space closer to the test mass. This can be explained by
the fact that most of the dominant seismic sources in the NN band are located
in a part of the building that lies towards negative X values, beyond the plotted
range. This means that the seismic displacement is significantly stronger closer
to these sources. This was also shown by Tringali et al. [19]. However, one might
still wonder whether placing several sensors close to each other, as seen in these
optimal arrays, is an effective strategy for NN cancellation. We will be able to
explain why this is the case in the following. However, it should also be pointed
out that, as seen in subsection 5.3.3, the Wiener filter averages the self noise of
the sensors, so having more sensors close one to another means that the overall
SNR is improved also improving the cancellation performances.
Few important features of the obtained optimized arrays need to be considered.
We can see that, up to 10, the sensors are all located near the edge of the tower
platform. It also seems very unlikely that sensors outside the building will be
required for NN cancellation, which was an important open question for the de-
sign of the NN cancellation system at Virgo. The solutions also indicate that
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Figure 8.6: Sample of optimal arrays with 2 (top), 5 (center), 10 (bottom) seis-
mometers at 10, 15 and 20 Hz
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deployment of sensors on the basement floor might be advantageous. It should
be noted, though, that only two seismometers used to take data were deployed
on the basement floor (most seismometers within the red rectangle, which marks
the edge of the tower platform, were deployed at surface level, on the ceiling of
the basement), which means that the basement contribution to the integral in
Equation 6.56 might be biased towards greater values (because the PSD is, on
average, stronger on the ceiling).
One important observation about all the 100 optimizations that I run is that,
with many more than 5 sensors, I never found two equal optimal configurations
(albeit they were very similar). This indicates that I might not have found the
global minimum of the residual noise, but just many local minima. This is not a
problem for the design of the NN cancellation system because the performances
of the Wiener filter were practically the same. This is also consistent with the
result found by Choromanska et al [151], which states that in large neural net-
works most local minima are equivalent and lead to similar performances on a
test set. Comparing with our method, this is of course to be taken with a grain
of salt, since they demonstrated it for a multilayered neural network, which is
something very different from what we have, but it could be a symptom of the
high-dimensional optimization problems.

At first sight, the optimization results seem inconsistent with the estimated
correlation CSN of Equation 6.56 shown in Figure 8.7. For example, the 10 Hz
plot in Figure 8.7 shows that there is strong correlation between NN and ground
motion near the edge of the tower platform towards positive X. Why then do
optimal arrays never include sensors located there? The answer is that the seis-
mic displacements at the two ends of the tower platform are partially correlated,
which can be verified by close inspection of the two plots in Figure 8.4 for 15 Hz.
This means that placing a seismometer at one end, it is possible to cancel NN
originating from seismic displacements at both ends. The negative X side of the
tower platform is then favored, because the part of the seismic field uncorrelated
between the two ends is stronger there. This is true at 10 Hz and 15 Hz. In
contrast, only one end of the tower platform shows significant correlation with
NN at 20 Hz. The most likely explanation for this is, as reported in [19], that
seismic waves originating from the machine rooms beyond X = −13 m are re-
flected from the tower platform and never make it (with significant amplitude)
to the other side of the tower platform. The key here, is that the waves at 20 Hz
are sufficiently short to be strongly affected by the tower platform.

Finally, in Figure 8.8, I show the Wiener-filter performances. There, I plot-
ted the estimation of the PSD of the NN (ĈNN) that we can obtain with the
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Figure 8.7: Fraction of NN cancelled (1− R) by deploying a single seismometer
as a function of seismometer position. top: 10 Hz, center : 15 Hz and bottom:
20 Hz.

optimized array as a function of the number of seismometers and at different fre-
quencies. ĈNN was then normalized by an estimate of the NN at infinite to show
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Figure 8.8: Wiener-filter performance (1 being the maximum) as a function
of number of seismometers in optimized arrays. For comparison, a theoretical
performance curve is shown for the isotropic, homogeneous Rayleigh field.

the relative cancellation performance. To obtain the NN estimate at infinite for
a given frequency, I performed a fit over the values of ĈNN and then took the
limit for an infinite number of sensors: N → ∞. The fit was calculated for the
function:

c(N) = a

(
1− 1

bN

)
(8.5)

The parameter a is the NN estimate that we are searching for. It is first of
all surprising that all the curves follow this model. This was indeed expected
to hold only for sensor-noise limited performances and to depend on properties
of the seismic field [17]. Seismic correlations at 10 Hz, 15 Hz, and 20 Hz are
qualitatively different at the WEB, and certainly different from the correlations
in an isotropic, homogeneous Rayleigh-wave field (which for comparison was also
plotted in Figure 8.8). This means that if Wiener-filter performances depend
on properties of the seismic field, then the curves should look differently. This
points to a yet-to-be understood universality of Wiener-filter performances in
Rayleigh-wave fields, but, certainly, comparisons with array measurements at
other sites are necessary to verify that universality holds in all cases.
The value taken by a in the fitting function also provides a NN estimate that

takes into account the observed seismic correlations, as well as the presence of the
basement. These values are listed in Table 8.1 and compared with a theoretical

129



8. ARRAY SEISMOMETER OPTIMIZATION FOR ADV

model of NN in units of strain from a single test mass assuming a flat surface
and isotropic, homogeneous Rayleigh field [52]

C iso
NN(ω) =

(
1

Lω2

)2 (
2πGρ0e

−hω/cγ
)2 1

2
S(ξz;ω), (8.6)

where G is the gravitational constant, ρ = 2500 kg/m3 is the density of a homo-
geneous medium, γ = 0.8 accounts for the suppression of NN due to sub-surface
(de)compression of soil by Rayleigh waves, c = 300 m/s is the speed of Rayleigh
waves, and S(ξz;ω) is the PSD of the vertical surface displacement. For the
value of the test mass height above the ground I used h = 1.5 m, which would
be its height if the surface at WEB was flat, i.e., without basement. Here, the
best guesses of parameter values were used, since we do not have precise knowl-
edge of average density of the ground, speed of Rayleigh waves at WEB, and the
Rayleigh-NN reduction γ, which also depends on ground properties. While there

Frequency
√
C iso

NN

√
a

10 Hz 1.33 · 10−23 1/
√

Hz 4.04 · 10−23 1/
√

Hz

15 Hz 7.21 · 10−24 1/
√

Hz 1.04 · 10−23 1/
√

Hz

20 Hz 4.34 · 10−24 1/
√

Hz 4.44 · 10−24 1/
√

Hz

Table 8.1: Comparison between a theoretical model of an isotropic, homogeneous
seismic field and the square root of the estimated NN PSD (a) in Equation 8.5.

is a significant mismatch between our predictions and the ones obtained from a
simple theoretical model, the estimated NN values

√
a are in accordance with

results from a finite-element simulation of an isotropic Rayleigh-wave field when
including the basement (see top, right plot in figure 4 of [137]).

Now, with the NN estimate CNN = a, we can evaluate the relative residual
in Equation 8.1. The results are summarized in Table 8.2. Accordingly, we can
predict that up to a factor 10-50 reduction of NN can be achieved with an opti-
mized array of 15 seismometers. However, one needs to keep in mind that these
reductions are achieved by optimizing the array configuration at the respective
frequencies. The last column shows that if we assume the same array of 15 seis-
mometers (optimized at 15 Hz) for the cancellation at 10 Hz and 20 Hz, then NN
is reduced only by about a factor 2-3. This might still be sufficient for AdV+,
but it is clear that we need to refine the technique if we target a factor 10 reduc-
tion throughout the entire NN band. A broadband optimization is then required.
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√
~C†SN (ω) · (CSS(ω))−1 · ~CSN(ω) Relative residual

Relative residual;
15 Hz optimized

10 Hz 3.95 · 10−23 1/
√

Hz 0.02 0.39

15 Hz 9.60 · 10−24 1/
√

Hz 0.08 0.08

20 Hz 4.01 · 10−24 1/
√

Hz 0.09 0.47

Table 8.2: The second column corresponds to the PSD of the Wiener-filter out-
put with 15 seismometers. The third column shows the corresponding relative
residuals R. The fourth column shows the relative residual achieved with an
array optimized at 15 Hz.

This is done by combining the single-frequency cost function of Equation 8.1 at
different frequencies ωi. In Chapter 7, I found that a good cost function L is
given by Equation 7.5. I performed such an optimization using three frequencies:
ωi = 10, 15, 20 Hz. In Figure 8.10, the values of the residual obtained with the
broadband optimization and calculated at those three frequencies are compared
with the single-frequency optimization. Here, we first notice that, looking at
a specific frequency, the broadband optimization performs worse compared to
the single-frequency optimization (around 80% of the reduction factor that we
get with the single- frequency optimization is achieved). We also see that the
broadband optimization gives best cancellation performances at 15 Hz, while the
10 Hz NN reduction is significantly less than at the other two frequencies. It
is not surprising that one frequency has a significantly higher residual than the
others in the broadband optimization. Indeed, minimizing the broadband cost
function means to find a trade-off configuration that reconciles the requirements
of the optimal array needed at each of the three considered frequencies. The
result in Figure 8.10 means that the broadband configuration is at a local mini-
mum for R(ω) at 10 Hz: this was the largest residual between the three and the
optimization tried to push down its value, without caring about the other two
since they were lower. Given that L is defined in such a way that it does not
constrain the residuals at 15 Hz and 20 Hz, these residuals should not be expected
to be at their local minimum. Figure 8.9 shows the array configurations for 3,5
and 10 seismometers obtained with the broadband optimization.

We do not have a theoretical model for the broadband-minimized residuals (like
Equation 5.30), thus, it is difficult to extrapolate the results to higher number of
sensors. Using polynomial and exponential fits, I can obtain residuals of R = 0.1
and less with at least 20 seismometers, which means a bit more than a factor 3
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reduction of NN amplitude. Of course, from Table 8.2 we know that no more
than 3×15 seismometers are required to achieve R < 0.1 at all three frequencies.

8.5 Conclusion

I have developed a surrogate Wiener filter to make the best use of seismic corre-
lation measurements at the Virgo detector for the estimation of Newtonian noise
and to calculate optimal array configurations for Newtonian-noise cancellation.
The approach was to use Gaussian Process Regression in combination with sim-
ple interpolation techniques. The technique is an important milestone for the
design of Newtonian-noise cancellation systems of current and future GW detec-
tors, where array configurations are to be chosen using available information of
the seismic field from previous site-characterization measurements.

The method requires correlations between ground motion and GW data. This
correlations are provided by a model based on purely gravitational coupling de-
termined by the field of seismic correlations. This model is accurate for arbi-
trarily complex surface displacements, but it does not consider contributions of
sub-surface compression of the ground medium by body waves. As soon as New-
tonian noise will be observed (or any other linear ground-to-test-mass coupling
[131, 108]), the coupling model in Equation 6.56 can be substituted by correlation
measurements between seismometers and GW data, which makes the optimized
array configuration fully model independent.

I found that there is a universal dependence of the noise residuals on the number
of seismometers used for Newtonian-noise cancellation, i.e., weakly dependent on
the properties of the seismic field. Its origin should be investigated since it could
be used to greatly simplify the prediction of Wiener-filter performance with op-
timized arrays in future detectors.

I calculated arrays with up to 15 seismometers optimized for Newtonian-noise
reduction at a single frequency, which yielded a reduction by a factor 3-7 in
noise amplitude depending on frequency. A broadband optimization with up
to 6 seismometers showed that reduction by almost a factor 2 can be achieved
in amplitude. Here, extrapolation to larger numbers of sensors would not give
reliable estimates since we do not have a model of the broadband residuals as
a function of the number of sensors, and extrapolation depends strongly on the
chosen fitting function. The results obtained with this work were used to deploy
the seismic array that will be used for the NN cancellation subsystem in O4:
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30 sensors were deployed in the WEB, other 30 in the NEB and, finally, 60 will
be installed in the CEB. In Figure 8.11 we can see the positions of the sensors
deployed in the WEB. Since the optimized array covered only specific frequencies
and its cancellation performances degrade for other frequencies values, the arrays
were placed following only the main results:

• On the left side the noise is stronger and the covered area needs to be larger
(Figure 8.7) and with more sensors.

• The space around the edges of the platform is very important and need to
be covered by many sensors.

• No sensors were placed in the basement since optimization results only
weakly indicated the necessity of basement sensors. In comparison, the
seismometers at the surface level were showing stronger contributions with
respect to the basement ones.

Finally, this optimization method can be applied to all current and future gravitational-
wave detectors located at the surface. Moreover, it can be extended to the case of
an underground detector. In this case, it would be enough to change the step re-
garding the 2D Gaussian process regression into a 3D Gaussian process regression
(in an underground detector we should place seismometers all around the test
masses). In the underground detector case, CSS would depend on 6 coordinates
instead of 4. These modifications would lead to a much bigger computational
effort. At the same time, it might also be more challenging to provide enough
underground seismic data for the inference of CSS, but this strongly depends on
the properties of body-wave fields, of which little is known. One way to mitigate
the scarcity of underground data would be to perform a fully Bayesian GPR
combined with numerical simulations of the seismic field [143].

As a final remark, I would like to bring the attention on Equation 6.57: in
principle, one might think that this equation is enough general to allow to prop-
erly estimate the NN at the test mass. So we could think of observing data for
a very long time, evaluating Equation 6.57 and then taking the inverse discrete
Fourier transform to obtain the time series that will be subtracted from the data
stream. This could work in principle, but in reality we need to consider various
things: firstly Equation 6.57 is valid for a general Rayleigh wave field propa-
gating in a flat half space. So, any deviation from flatness would spoil the NN
estimate (this is true as well for Equation 6.57 used in the residual evaluation).
Moreover, to perform a precise integration, we need to scan very well the seismic
field and have a very precise value of the test mass heigh. All of this, summed
with the fact that such an integral could lead to numerical errors, makes this way
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too complicated with respect to implement a Wiener filter in the way explained
so far.
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Figure 8.9: Array configurations for 3,5 and 10 seismometers obtained with the
broadband optimization.
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Figure 8.10: Relative residual R obtained from the broadband optimization (di-
amond) compared with the one obtained from the single-frequency optimization
(circle).

Figure 8.11: Sensors installed in the WEB in sight of the NN cancellation system
for O4.
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9.1 KAGRA mine as a probe for 3rd generation

underground detectors

KAGRA is an L-shaped gravitational-wave detector, just like Virgo and LIGO
are, but there are two main differences with respect to them. Firstly, KAGRA
is constructed underground, in order to reduce the seismic noise (it is in the
Ikenoyama mountain, close to Kamioka mine, where also the super-Kamiokande
and kamLAND neutrino detectors are hosted). Secondly, its test masses are
made of sapphire and are designed to work at cryogenic temperatures (∼ 20K)
to reduce the thermal noise [3].
Third generation gravitational-wave detectors could as well be constructed un-
derground to reduce the seismic noise and its consequent Newtonian noise. These
detectors (like for example ET, see sec. section 4.2) will be very complicated in-
struments that will need many components, including vacuum pumps, water
pumps, cryotraps, cryostats, ventilation systems and so on. This infrastructure
might produce a lot of seismic and acoustic noise, which could make it pointless
going underground. It is then important to look at the already existing KAGRA
detector, which is already built underground: this will allow us to asses the im-
portance of these noises.
With this purpose, some measurements of the seismic field were performed at
KAGRA in order to assess the impact of the infrastructure and to estimate the
NN in an underground detector.

9.2 Instrumentation and measurements

We used one compact Trillium seismometer 20s to acquire seismic data of the
corner station of KAGRA (where the BS and the input test masses are hosted)
and inside the arms X and Y . The reason for that was to check how the seismic
noise produced in the corner station would propagate along the arms to the end
test masses. Measuring the spectra was not the only goal: we initially wanted
to measure also the seismic correlations between the Trillium and another seis-
mometer already installed in the mine. For that reason, it was important to
synchronize the Trillium with the other seismometer. Unfortunately, the syn-
chronization by means of a GPS was not feasible being that we were hundreds
of meters underground. KAGRA, on the other hand, can synchronize all the
equipment by means of a GPS located outside the mine and connected via long
cables to all the instrumentation. Of course, the time delay caused by the ca-
bles is compensated in such a way that everything is well synchronized with a
negligible delay [152]. We took data with the movable seismometer in the corner

138



9. SEISMIC AND NEWTONIAN NOISE ESTIMATES AT KAGRA

Figure 9.1: Two Trillium compact seismometers. One was connected to KA-
GRA’s acquisition system, while for the other one this was not possible, so it
was just deployed close to the first one in order to synchronize them.

station and along the two arms of the interferometer, see Figure 9.2 for details.
Since we could not synchronize our Trillium with KAGRA seismometer by means
of a GPS, we chose to use the KAGRA seismometer as a reference clock. The
reference seismometer was located close to the input test mass, in the X arm
(IXC). Data were taken during 6 days for about 24 h in each position. The
sample rate was 250 Hz.

The method used to synchronize the mobile seismometer with the one installed
in the mine was simple in principle: beating strong hits in proximity of the two
seismometers placed close to each other. In this way it was possible to extract
the time shift between the internal clock of the mobile seismometer with respect
to the GPS time of the installed seismometer. With the assumption that the
time shift was changing linearly, the measure was only performed three times,
one at the beginning and twice at the end of the the 6 days data acquisition
(we did it twice at the end because there were some problems with the reference
seismometer).
The reason for having synchronized seismometer was to use their data to extract
some information about the apparent velocity of the seismic waves. However, we
concluded that, if one aims to perform this kind of measure, this synchronization
method is not good.
Indeed, to measure seismic wave speeds it is necessary to measure the differ-
ence in the time travel between two seismometers (this is only a rough method
though, since it would be more appropriate using an array of seismometers [153,
154, 155]), so we need a very precise synchronization between them. Let assume
that the seismic wave speed we are trying to measure is of the order of 103 m/s
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Figure 9.2: Positions where we measured the seismic noise by moving the Tril-
lium day by day and a representation of the X arm with the noise sources (red
rectangles). Green star : KAGRA seismometer used as reference clock. Light
blue stars : positions relative to the x arm. Lilac stars : positions relative to the
Y arm.

(this is a very conservative assumption) and that the two seismometers are sep-
arated by 500 m. In this case, the travel time difference will be of the order
of: ∆τ = 0.5 s (or less, depending on the incidence angle of the seismic wave).
This means that, if the clock drift is not perfectly linear as we assumed, then
any deviation from linearity must be � 0.5 s, which was not the case with our
sensors. Indeed, thanks to the third measurement of the time shift, we measured
fluctuations of about 0.9 s. This means that it is not possible to extract any
useful information about seismic speed using that couple of seismometers.
We used the data collected with the Trillium to estimate the NN and the seis-
mic noise induced by the infrastructure. For estimating the velocities we instead
asked for seismic data from the already installed seismometers at KAGRA: one in
the cave hosting the BS and the other two in the caves of the ending test masses.
In this way, it has been possible to extract speed information and directions of
the seismic field (although a seismic array of only 3 seismometers can provide
very low quality information). As a final step, we also used some data from the
F-net seismograph network, in Japan, in order to estimate the NN impact of the
surface Rayleigh waves. Indeed, at low frequencies, they propagate underground
with a damping factor of e−hk (where h is the depth and k is the horizontal
seismic wave vector).

9.3 Underground seismic noise

We firstly investigated the seismic noise in the mine moving the Trillium from
the corner station, where many noisy instruments are collocated, along the X
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Figure 9.3: ASD of the seismic noise as measured along the interferometer arm
(see Figure 9.2 for position references). Distances are taken from the BS.

and Y arm. These measurements are useful to understand the impact of the
infrastructure on the seismic noise and how it can propagate. In particular, the
data taken in the position number 2 (Figure 9.2) are interesting from this point
of view. Indeed, as we can see in Figure 9.3, the infrastructure noise starts to be
important only above 10 Hz, where the suspensions system starts to suppress the
seismic noise [156]. This means that the underground detector infrastructure do
not pose a limitation to the seismic noise, nor to the NN.
In Figure 9.4 spectrograms of the seismic noise relative to all the positions in
which we placed the Trillium are shown.

9.4 Seismic array processing

9.4.1 Introduction to the method

The simplest way to measure the velocity of a seismic wave would be that of
measuring its propagation time along its direction of arrival (DOA). We generally
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Figure 9.4: Spectrograms relative to the different locations at which the Trillium
was set (see Figure 9.2).

do not know the DOA, but we can exploit the information gathered by multiple
sensors in order to infer both the DOA and the velocity of the wave. In this case
we would use an array of seismometers.
Let us assume that we have an array of M sensors and an incoming signal:

E(t, r) = A(t− r/c)ej(ωt−k·r) (9.1)

where r is the distance between the source and a sensor, k is the wave vector and
c is the phase velocity: k = ω/c. We consider valid the so-called narrowband
assumption for which it holds: A(t − rm/c) = A(t − r/c), where rm is the the
distance of the mth sensor from the source and r is the distance of the origin of the
array from the source (it can be placed on one particular sensor). This means that
A(t) does not vary too much compared to the carrier ejωt and that its frequency
content will be at very low frequency, so the signal E(t, r) will have a spectrum
peaked on ω with a very narrow frequency band. This assumption is important
since it allows us to assume that the signal recorded at each seismometer will be:
xm(t) = s(t)e−jk·rm , with: s(t) = A(t− r/c)ejωt being the signal recorded in the
origin; in this way each seismometer output will differ from the origin only by a
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Figure 9.5: Above each test mass in KAGRA, at 13 m of height, there are
additional caves which host the upper part of the suspension systems and where
the seismometers we used are also hosted. We show here their ASD variations
(over a year of quiet times) together with the NHNM and the NLNM (red dashed
lines) [116] and the 10th, 90th (white lines) and 50th (black line) quantiles. We
used these three seismometers as an array to measure seismic velocities. Upper
left : Seismometer in the X end mass upper cave, Upper right : Seismometer in
the Y end mass upper cave, Bottom: Seismometer in the X input mass upper
cave.

phase shift.
For some applications the narrowband assumption is not suitable: for example,
when we want to extract speed information using the ambient seismic noise
(as far as we work in the time domain). This can be overcome by taking the
Fourier transform of Equation 9.1 (after demodulation, i.e. after removing the
carrier), in this way the output at each seismometer would still be affected only
by a phase shift: Xm(ω) = S(ω)e−k·rm . We can define the array output as:
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X(ω) = [X1(ω), X2(ω), ..., XM(ω)], that would read:

X(ω) = a(k)S(ω) + n(ω) (9.2)

Where a(k) =
[
ek·r1 , ek·r2 , ..., ek·rM

]
is called steering vector (or array response

vector) and n(ω) was introduced to account for some injected sensor noise.
The problem of finding the velocity of the incoming seismic wave can be solved
by exploiting the array output to find the k of the seismic wave. The easiest
way to do that is to ”steer” the array to find for which k the power of its output
will be maximised. With this purpose, we can use a linear combination of the
outputs of each sensor:

Y (ω) =
M∑
m=1

WmXm(ω) = W ·Xm (9.3)

If we search for the values of Wm that maximise the power of Y (ω) we are
constructing a spatial filter that ”steers” the array until the maximum power is
reached. This operation means that the Wm weights bring again the mth output
in phase with all the others, and so the weights Wm are those that carry the
information about the k of the signal.
This technique is called beamforming and different beamformings correspond
to different ways of weighting the outputs. The conventional one, the Bartlett
beamforming, is obtained by maximizing the power of Equation 9.3. If we search
for the Wm which maximize Equation 9.3 we obtain that the power of Y (ω) can
be written as a function of k:

PY (k) =
aH(k)R̂a(k)

aH(k)a(k)
(9.4)

Where R̂ is the (M×M) matrix of the cross correlations between the sensors.
At this point, if we want to find the k of the incoming seismic wave, it will be
enough to run an optimization and find for which k Equation 9.4 will be maxi-
mized, that k will corrispond to the signal’s one [157].

We should consider the fact that measuring a signal with an array of sensors
means sampling the signal in the space. As it happens when sampling in the
time domain, we can measure signals without falling into aliasing up to frequen-
cies lower than π/∆, where ∆ is the maximum distance between the sensors. The
larger ∆ will be, the better will be the resolution of the array, that is, the ability
of distinguish between different k. Aliasing is not the only way where ambiguities
can arise: the less the sensors in the array, the more the k compatible with the
observed signal (see Figure 9.6). The best thing would then be constructing an
array with large ∆ and many sensors.
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Figure 9.6: Array response |aH(k0)a(k)| of different arrays relative to a
monochromatic wave with wave vector k0 at 0.5 Hz from a DOA of π/4 and
v = 3 km/s. Upper left : array with 3 seismometers located in (0,0); (0,L); (L,0).
Upper right : array with 5 seismometers located in (0,0); (0,L); (L,0); (0,L/2);
(L/2,0). Bottom left : array with 3 seismometers located in (0,0); (0,2L); (2L,0).
Bottom right : array with 7 seismometers located in (0,0); (0,L/2); (L/2,0); (0,L);
(L,0); (0,2L); (2L,0). With L = 3 km.

9.4.2 Velocity estimation in KAGRA

In this section it will be explained how the velocities of the seismic waves were
estimated using a small array composed by only three sensors.
We used data collected during 100 quiet periods sampled along one entire year
and lasting one hour each. The data were taken with three seismometers placed
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one in the corner station (which will be taken as the origin of the array) and two
at the end of the interferometer arms. The arm length is L = 3 km and this gives
us a very poor resolution along the x and y directions: kr = π/L ∼ 10−3 m−1.
With only three seismometers, not only is the resolution poor, but also it is
difficult to understand which is the peak in k-space relative to the physical signal
and which ones are the aliased peaks (see Figure 9.6). We searched for all the

Figure 9.7: The 9 peaks in the portion of the wave vector space analysed at
0.5 Hz. They are represented both in the polar plane (left) and in the Cartesian
plane (right).

peaks contained in the wave vector space with kx, ky ∈ [−3kr,+3kr] and then we
ranked them by velocity values in descending order. We can assume indeed that
the physical peaks in the wave vector space are those that are closer to the origin
(recalling that v ∝ 1/k), the others being produced by the aliasing effect. For
a given frequency we searched for the k that maximized Equation 9.4 and this
was done for each one of the 100 pieces of data we had. In Figure 9.8 I plotted
the median values found for the 9 ranked velocities (in the analysed portion of
k-space, [−3kr,+3kr], there is space for 9 peaks, so 9 values of velocities). If
we look at the median velocity produced with the first peak (the one closer to
the origin in the k-space), we can see that after 0.6 Hz there is an increase in
the velocity values. This is very likely due the fact that the first peak does not
correspond any more to the physical one. If now we look at the median values
of the velocities produced with the other ranked peaks, we can notice that after
0.6 Hz the median values obtained with the peaks from 4 to 9 follow a linear
trend: this suggests that they are the result of aliased peaks. Indeed, an aliased
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mode can be written as:

kx,y = k0x,y +
2πN

∆x,y

(9.5)

where ∆x,y is the largest distance along the x or y direction, k0x,y is the physical
mode that we are searching for and kx,y is the x or y component of the peak
located in k. This means that the velocity is

v =
ω√

k2
x + k2

y

=
ω√

(k0x + 2πN/L)2 + (k0y + 2πN/L)2
(9.6)

and if 2πN/L is large compared to k0x,y the velocities will have a linear trend with

respect to the frequency ω: v = ωL/(2
√

2πN). We want then to discard velocities
obtained from the peaks 4 to 9. After 0.6 Hz we need to understand which peak
between 2 and 3 is the correct one. At this regard we should look at the plot
of the DOA (Figure 9.8). Here we can notice that up to 0.6 Hz the DOA is the
same for all the frequencies, while after 0.6 Hz it changes a lot from one frequency
to another. This is probably due to the fact that the wavelength of that waves
starts to have the sizes of the mountain and scattering can arise. For the analyses
we used the vertical displacement that should contain only the Rayleigh wave
contribution. Indeed, it is true that underground Rayleigh waves are suppressed,
but at frequencies below 1 Hz this does not hold any more [125]. Here Rayleigh
waves should dominate the spectrum. If we take into account also the horizontal
displacement we can get some hint about the DOA of the seismic waves. With
this purpose we calculated the PSD of the horizontal channels along x and y
and then took the arctan of |PSDy|/|PSDx|. This is done in the assumption
that the spectrum is Rayleigh-dominated and so, since Rayleigh waves produce
horizontal displacement only along their DOA, the horizontal x and y PSD should
contain more or less signal depending on the DOA. The direction so calculated is
only defined between 0 and π/2 rad so we cannot distinguish between directions
that differ for ±π/2 or +π. In Figure 9.9 we can see the four indistinguishable
directions (red) along with the DOA that were calculated from the first three
ranked peaks (blue, green, orange). After 0.6 Hz, excluding the DOA from the
first peak, we can see that the one from the third peak better follows the red
lines, so we are led to believe that the velocities from the third peak correspond
to physical values. In Figure 9.10 I plotted the median velocities obtained using
the first peak (up to 0.6 Hz) and the third one (beyond 0.6 Hz).

Below 0.2 Hz we cannot say anything because in this case the resolution is not
good enough to correctly estimate the velocity. Indeed, at those frequencies
wavelengths start to be very large, and therefore k will be very small. It is
then not possible to find the right k. Indeed, if we suppose to have a Gaussian
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Figure 9.8: Values of the 9 median ranked velocities (left) and their corresponding
DOA (right) at different frequencies.

Figure 9.9: Comparison of the DOA from the first three peaks (blue: first peak,
orange: second peak and green: third peak) with the DOA inferred from the
horizontal channels (red line). See in the text to further explanations.

shaped peak in the k-space, with 3σ = π/L m−1 then σ = 3.5 10−4 m−1 with
the peak that will fall inside: [−σ,+σ]. This means that the spatial frequency
corresponding to k = 1σ will be: f = kv/(2π) = 0.2 Hz with v = 4 km/s. With
this simple reasoning we can find that 0.2 Hz is the lower frequency limit that
we can reach with the resolution allowed by our simple array.
In Figure 9.10 we can see that from 0.2 Hz to 0.6 Hz velocities diminish with
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Figure 9.10: Median of velocities given by the first ranked peak (up to 0.6 Hz)
and by the third one (from 0.6 Hz to 1 Hz).

the increasing of the frequency. This is in agreement with some other studies
where we can see this trend [158]. Moreover, the velocities that we found are
phase velocities of Rayleigh waves propagating from the surface deep into the
mountain. This is reasonable since we know that the microseism below 1 Hz
consists mainly of fundamental mode of the Rayleigh waves [125]. We can also
see that, if we consider a depth of ∼ 200 m [152], at 0.5 Hz and with a seismic
velocity v = 3 km/s (Figure 9.10), the attenuation factor of the Rayleigh waves is
only e−hk ∼ 0.8, so it is reasonable to assume that Rayleigh waves at frequencies
< 1 Hz are also present underground.

9.5 NN estimate in KAGRA

Interferometers like KAGRA are constructed underground for one main reason:
limiting the seismic noise and consequently also the NN. This helps to improve
the sensitivity but also to have a more stable interferometer, which means less
troubles in the control systems. We can see in Figure 9.11 that at 10 Hz the
measured ASD at KAGRA is 2 orders of magnitude smaller than that measured
at Virgo. At the surface we can indeed assume that the Rayleigh contribution
to the seismic noise is stronger and dominates all the others (even if it depends
a lot on the soil and on the noise properties) [125]. Surface waves are also com-
posed by Love waves (horizontal spectrum), but their contribution to the NN can
be neglected compared to that of the Rayleigh waves, which instead dominates
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Figure 9.11: Comparison between the ASD of the average seismic noise at KA-
GRA (position 2 and 5 of Figure 9.2) and Virgo.

the spectrum (the vertical one in particular, see section 6.2). Surface waves are
characterized by an exponential decay e−hω/v that reduces their amplitude going
deep in the ground, especially at higher frequencies. Going underground helps
to greatly reduce the NN from surface seismic contribution, but the NN contri-
bution from the body waves still remains (see Figure 6.3). It is then important
to understand how much NN is still present in these kind of detectors.
To estimate the body wave NN budget, we can use the data taken inside the
arm’s tunnel, in particular, we used the data taken in the position number 5,
see Figure 9.2. From Figure 9.3 we already know that the impact of the instru-
mentation over the NN is not a problem: the noise in position 2 starts indeed
to rise above the noise recorded in the other positions only after 10 Hz, and up
to 30 Hz the NN budget in position 2 is the same as that in the other positions
showed in Figure 9.14. To estimate the NN from body waves, we can consider
Equation 6.13 in the limit a→ 0, which is valid in an infinite and homogeneous
space filled by a P wave seismic field. Using only the P contribution is of course
an approximation given by the fact that we do not know the relative spectrum of
P and S vaves (that could be disentangled by a strainmeter though) and that in
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the bulk (i.e. without cavity) only P waves contribute to the NN (at most we will
overestimate the NN). Moreover, we have to remember that the NN contribution
needs to be multiplied by 2 since we consider uncorrelated NN between the two
end test masses. We also need to consider that, even if KAGRA is hosted inside a
cave, we can still neglect its small dimensions, that, compared to the considered
wavelengths, are negligibile [52] (section 6.5).

For completeness, we can also check the Rayleigh waves contribution to the
NN by using Equation 6.18 and the data taken from the F-net seismometer net-
work, in Japan. Given that Equation 6.18 has been calculated with a model valid
only for test masses located above the surface and not below, we are probably
slightly underestimating or overestimating the NN. However, in the frequency
band of interest for KAGRA, Rayleigh waves are negligible, so we can still use
Equation 6.18 without introducing too much error. In ET the dimensions of the
cavities will be instead bigger, and therefore in Figure 6.3 it has been used a
model which also takes this into account.
In Figure 9.12 the NN budget coming from Rayleigh and body waves is shown,
while in Figure 9.13 represents their comparison. We can see that Rayleigh-wave
NN is always lower than body-wave NN, even if close to 3 Hz they start to be
similar. I did not plot the contribution to the NN below 1 Hz because there
Rayleigh waves should dominate and so the body-wave model loses its validity
without a method to disentangle body from surface waves.
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Figure 9.12: NN estimate from surface Rayleigh waves (top) and from body
waves (bottom), the black line is the 50th quantile, the white lines represent the
10th and the 90th quantiles.
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Figure 9.13: Comparison of the NN generated from body waves and the NN
generated by Rayleigh waves at a depth of 200 m. The NN from body waves was
estimated using seismic data from position 2 (see Figure 9.2) while the NN from
Rayleigh waves was estimated with seismic data taken from the SRN station of
the F-net seismic network, Japan.
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Figure 9.14: Comparison of the NN budget inside the cave (position 2) and in
the arm of the interferometer (position 5). The thinner lines represent the 10th

and the 90th quantiles (the thickest being the 50th quantile instead).
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10. CONCLUSION

This thesis work fits in the Newtonian noise (NN) cancellation framework for
gravitational-wave (GW) detectors of 2nd and 3rd generation. In particular, I fo-
cus on the optimization of the seismic array that, together with a Wiener filter,
will be used to develop the NN cancellation system. The optimization is a very
important task because it allows us to maximize the performances of the Wiener
filter.
The state of the art for underground seismic array optimization was still in the
embryonal phase of a 2D step wise optimization [52] (where sensors are added
one after the other at the best location). It is clear that the optimization should
be done in 3D and using a global approach, that is, exploiting a global optimiza-
tion algorithm. However, a global optimization requires a huge computational
effort: for this reason, before this work, this task was not yet accomplished. To
optimize the positions of N sensors in a 3D space we need to find the global
minimum of a cost function –typically the noise residual– in a 3N-dimensional
space. In order to find the global minimum for the residual function, the global
optimization algorithm searches all over the phase space of the array for the best
configuration. It is then clear that with 3N dimensions this task is computation-
ally very expensive.
To construct the cost function to be used in the (global) optimization I make a
few assumptions, considering the seismic field as composed only by body waves
and neglecting every possible contribution from surface waves (which is reason-
able at the frequencies where 3rd generation detectors will work). Moreover, I
assume the seismic field homogeneous and isotropic: since we do not yet know
the future location for ET, nor we have underground seismic data, this is the
most reasonable assumption we can make (any inhomogeneity and anisotropy
would be characteristic of the specific chosen site). I also neglect the dimensions
of the cavity and the scattering of the seismic field from the cavity walls. In
order to test the results, I run two different global optimization algorithms (100
times each) on a computer cluster. They both reached the same optimal configu-
rations. With this work I am able to assess the feasibility of active NN reduction
in underground detectors and the possibility of reaching a factor 10 of reduction
(at 10 Hz) by deploying only 15 sensors. In 2019 I published the above results
in the Classical Quantum Gravity peer-reviewed journal [17].
The second work I did during my PhD was conceptually similar to the previous
one but very different in the approach needed to solve it. The complex structure
of the buildings hosting Virgo’s test masses do not allow to describe the seismic
field with an isotropic and homogeneous field, nor with an analytical model. The
best way to proceed in this case is to characterize the seismic field by means of
sensor’s array data and use them to evaluate the cost function (the residual).
It is possible to demonstrate that the residual can be described only by two-
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point seismic correlations between the sensors of the array. Here lies the biggest
problem: we need a continuous two-point seismic correlation function. A simple
interpolation on the available data is not enough: in reality, the two-point seis-
mic correlation function is defined in the 4D space and the data are too sparse
to allow an informative interpolation of the seismic field. What I do is circum-
venting this problem exploiting the convolution theorem. I perform a Gaussian
process regression on the 2-dimensional space of the Fourier amplitudes of the
recorded signals and then I calculate the two-point seismic correlation with the
above mentioned theorem. This allows me to construct a surrogate model of the
Wiener filter but at the cost of introducing more computational complexity. In
order to reduce the computational effort, I introduce a further step in which the
two-point seismic correlation function is sampled over a dense grid of points in
the 4D space. This lets me to perform a 4D linear interpolation, which is faster,
while keeping intact the information about the seismic field. The global opti-
mization algorithm is then run 100 times in order to statistically prove the global
minimum, exactly as it was done in the previous work on the underground opti-
mization. As a result, I find that the deployment of an array of 15 seismometers
should be able to achieve a NN reduction by a factor of 3 to 7. This is enough
for the aimed sensitivity of O4. Moreover, there seems to be some universal de-
pendence of performances of the Wiener filter with respect to the characteristics
of the seismic field. This is a point that I did not investigate further, but that
might be worth being deepened. The results of this work were used to set the
array for the NN cancellation system in AdV+.
In 2020, I also published the above results on the peer-reviewed journal Classi-
cal Quantum Gravity. Moreover, this approach will be probably useful in the
future, when seismic data will be available to perform the more computationally
expensive optimization for underground seismic arrays.
Finally, I use seismic data collected in the Kamioka mine (where the gravitational-
wave detector KAGRA is hosted) to investigate the seismic noise caused by the
presence of noisy infrastructure and also the NN budget. These are important
aspects that need to be assessed in view of the 3rd generation gravitational-wave
detectors, like the Einstein Telescope. Seismic data show that the infrastruc-
ture noise becomes relevant above 10 Hz, where the NN reduces its impact on
the detector and the seismic isolation system suppresses the seismic vibrations.
Moreover, I use the data from three seismometers to perform a beamforming
analysis of the velocities and the main directions of the seismic waves. The ex-
tracted values serve as a reference for the velocity in the NN estimation. For
completeness, I also estimate the contribution of surface Rayleigh waves to the
NN budget. For this task I exploit the data of the F-net network, in Japan.
Finally, I show that both the NN from surface waves and the one from body
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waves can be neglected in KAGRA.
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APPENDIX A. APPENDIX

A.1 Bessel functions

We introduce here some relations useful to the resolution of integrals reported in
this thesis.

Jn(x) =
1

2π

∫ +π

−π
ei(x sin(φ)−nπ) =

=
1

2π

∫ +π

−π
ei(x cos(φ)−n(π/2−φ))

(A.1)

From which follows:

J1(x) =
1

2πi

∫ +π

−π
eix cos(φ) cos(φ) (A.2)

This can be also recovered in a more elegant way, exploiting the relation:

−∂xJ0(x) = J1(x) (A.3)

A.2 Calculations of Equation 6.53

We start from Equation 6.31 where instead of calculating C(δax;%, ω) = 〈δa∗x(0, ω)δax(%, ω)〉
we calculate: C(δax;%0, ω) = 〈δa∗x(0, ω)ξz(%0, ω)〉, where %0 is the sensor position
on the surface and the integrals are performed in 2D:

C(δax, ξz; %0, ω) = 2πiGρ0γ(ν)

∫
d∆r dθ∆r

∫
dk dα k

(2π)2

C(ξz, ω)J0(kR∆r)e−hk
R

eik
R%0 cos(α)ek∆r cos(θ) cos(β)

(A.4)

Where β is the angle formed by k with the x-axis. Integrating over dθ we get a
J0(k∆r) and integrating over d∆r we get a δ(k − kR)/kR where we used:∫

d∆r∆rJ0(k∆r)J0(kR∆r) =
δ(k − kR)

kR
(A.5)

So that the integral A.4 becomes:

C(δax, ξz; %0, ω) = 2πiGρ0γ(ν)

∫
dα

(2π)
C(ξz, ω)e−hk

R

eik
R%0 cos(α) cos(β) (A.6)

We still have to integrate over α, which means integrating all over the directions
of kR. We see that φ depends too from α: β = α + φ where φ is the angle

160



APPENDIX A. APPENDIX

between %0 and the x-axis. So, cos(β) = cos(α) cos(φ) − sin(α) sin(φ) and then
the integral with sin(α) sin(φ) goes to zero and Equation A.4 becomes:

C(δax, ξz; %0, ω) = 2πGρ0γ(ν)C(ξz, ω)e−hk
R

J0(kR%0) cos(φ) (A.7)

Where we used that:∫
dαeik

R∆r cos(α)i cos(α) = 2πJ0(kR∆r) (A.8)

A.3 Calculations of Equation 6.56 and Equa-

tion 6.57

C(δax, ξ;%0,%, ω) = 2πGρ0γ(ν)

∫
d2r′

∫
d2r′′

∫
d2k

(2π)2

∫
d2k′

(2π)2

C(ξz; r
′, r′′, ω)ehki cos(α)eik·(%0−r

′)eik·(%−r
′′)

(A.9)

Integrating over d2k′ we obtain a δ(%− r′′), integrating over d2r′ we get:

C(δax, ξ;%0,%, ω) = 2πGρ0γ(ν)

∫
d2r′

∫
d2k

(2π)2
C(ξz; r

′,%, ω)e−hki cos(α)eik|%0−r
′| cosφ

(A.10)
Again, we can see that φ depends also from α: β = α + φ where φ is the
angle between %0 and the x-axis. So, cos(β) = cos(α) cos(φ)− sin(α) sin(φ) and
then the integral with sin(α) sin(φ) goes to zero and using Equation A.2 and the
Hankel transform:∫

k dkJ1(k|%0 − r′|)e−hk =
2|%0 − r′|Γ(3/2)

(|%0 − r′|2 + h2)3/2√π
(A.11)

And we finally get:

C(δax, ξ;%0,%, ω) = 2πGρ0γ(ν)

∫
d2r′C(ξz; r

′,%, ω)
x0 − x′

(|%0 − r′|2 + h2)3/2

(A.12)

Where x0 − x′ = cos(β)|%0 − r′| and Γ(3/2) =
√
π/2. With similar passages we

can easily obtain also Equation 6.57.
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B.1 Reduced SNR for sum of incoherent signals

Let us assume to have an array of sensors that have record two different signals
plus some noise, ε:

Yi(ω) = X1(ω) +X2(ω) + εi(ω) (B.1)

Thus, with the definition of SNR2
X = CXX/Cεε, the total SNR will be:

SNR2
toti

= 1 +
CX1X1 + CX2X2

Cεε
+ 2c

√
CX1X1CX2X2

Cεε
(B.2)

With:

c =
<{CX1X2}√
CX1X1CX2X2

(B.3)

the Pearson’s correlation coefficient: −1 ≤ c ≤ 1. We can then see that:

for c = 1 then: SNRtoti = 1 + (SNRX1 + SNRX2)
2

for c = 0 then: SNRtoti = 1 + (SNRX1 + SNRX2)
2 − 2SNRX1SNRX2

for c = −1 then: SNRtoti = 1 + (SNRX1 + SNRX2)
2 − 4SNRX1SNRX2

So any difference in the phase of X1 and X2 will lead to a decrease of the SNR
in the ith sensor.
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