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Abstract

The last decade has seen a significant evolution in software architecting practices as the
process of managing and developing software is becoming more and more complex. This
is especially true due to the heterogeneous composition of modern software systems
coupled with the run-time uncertainties. These include application downtime due to
high CPU utilization, server outages, resource constraints, dynamic resource demands,
etc. These can have a big impact on the Quality of Service (QoS) offered by the system,

thereby impacting the experience of the end-user.

Self-adaptation is nowadays considered to be one of the best solutions to dynamically
reconfigure a system in the occurrence of deviations from the expected QoS. However, one
of the issues with the existing solutions is that most of them are reactive in nature, where
adaptation is carried out in the event of uncertainties. Moreover, current adaptation
methods: 1) do not provide the systems the ability to proactively identify the need
for adaptation with good accuracy; ii) may temporally overcome an impending failure,
while not preventing the system from the state in the future. In essence, they do not
exploit the knowledge gained from every adaptation performed. The use of machine
learning techniques to aid self-adaptation has been proposed in the literature as a way
to mitigate this problem based on the concept of self-adaptation through achieving, but
not much work has been done in this area. Moreover, the challenges associated with
learning bias and less accurate predictions also need to be handled while using machine

learning techniques, which otherwise leads to sub-optimal adaptations.

To this end, in this thesis, we develop a data-driven approach to architecting self-adaptive
systems using machine learning techniques. The approach, in principle, shifts the focus
from self-adaptive architectures to self-learning architectures. It achieves this by us-
ing a combination of deep neural networks and reinforcement learning (RL) techniques
to ensure that the system continuously learns and improves the quality of adaptation
performed over time. It further uses quantitative verification (QV) techniques to over-
come learning bias and enable faster convergence towards optimal adaptations. More
specifically, the approach i) continuously monitors the system data; ii) uses deep neural
networks to forecast any QoS uncertainties; iii) leverages the forecasts using RL tech-
niques to find the adaptation strategy; iv) it further uses QV techniques to verify the
decision selected by RL; v) keeps improving the decisions based on the forecasts as well
as the feedbacks obtained from QV; vi) continuously keeps performing the loop of learn-
ing, selection, verification, and adaptations to converge towards optimal adaptations,

thereby enabling the architectures to learn and improve over time.
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Chapter 1

Introduction

”In fact what I would like to see is thousands of computer scientists let loose
to do whatever they want. That’s what really advances the field.”
- Donald Knuth

Softwares have impacted billions of life across the world. Starting from its inception in
the 1930s, usage of software kept expanding to different walks of life. The expansion
also gave rise to the increasing complexity of software as the software was not just a
simple computer program using a data structure and algorithm. Instead, it became a
collection of programs that achieved different functionalities, and structuring the pro-
grams, following a development practice, and managing the overall complexity became
challenging. This led to the birth of software architecture [8, 9]. Over the years, soft-
ware complexity has further increased due to the ever-increasing pervasive nature of
modern software systems, resulting in different architecting challenges to ensure better

performance, reliability, security, etc [10, 11].

Furthermore, modern software systems generate a tremendous amount of data. In fact,
we live in a data-driven world powered by software where we have an abundance of data
generated by different sources like web applications, smartphones, sensors, etc [12, 13].
A recent article from Forbes quotes that about 2.5 quintillion bytes of data are created
every day. This number is expected to increase drastically in the years to come [14].
Over the years, with the advancements in computing infrastructure, these data have been
fueled by Artificial Intelligence (AI), in particular, Machine Learning (ML) to generate
actionable insights [15, 16]. It has further paved the way for developing software systems
and services that power autonomous vehicles, recommendations in Netflix, search results
in Google, etc. As remarked by Andrew Ng, Al is considered the new electricity and
is expected to transform the world just like electricity did about 100 years ago [17].
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Moreover, as per Gartner, around 40% of the world’s organizations are expected to
leverage Al in the coming years [18]. However, the increasing adoption of Al has given
rise to different challenges associated with development practices, deployments, ensuring
data quality, etc. in addition to the challenges of a traditional software system. These
challenges call for better architecting practices for addressing the concerns of Al-based

software systems [19, 20].

: Generates
Based on P

Requires

Architecting Al techniaues
principles SAand Al - q

| @ Al for SA @ SA for Al

FIGURE 1.1: Research Premise

As represented in Figure 1.1, on the one hand, we have software systems that generate
a tremendous amount of data but face different architectural challenges. Some of those
challenges can be solved using AI [21], and on the other hand, we have AI systems that
thrive on data but require better architecting practices. This combination of challenges
in the field of Software architecture and Al has resulted in two broad research areas: i)
Software architecture for Al systems. It primarily focuses on developing architectural
techniques for better developing Al systems; ii) Al for Software architectures, which
focuses on developing Al techniques to better architect software systems. In this thesis,
we focus on the later side of the spectrum, intending to develop software systems that

can leverage AI’s power to autonomously improve their architecture.

In today’s world, the purpose of developing software ranges from solving simple tasks like
scheduling our daily activities to complex tasks like realizing self-driving cars. However,
the more complex challenges they solve, the more challenging it is to architect and
maintain these systems. This is especially true due to the heterogeneous composition
of modern software systems. Moreover, these systems are subjected to various run-time
uncertainties such as application downtime due to high CPU utilization, server outages,

etc. These uncertainties can have a big impact on the Quality of Service (QoS) offered by
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the system, thereby impacting the end user’s experience. This holds especially true for
data- and event-driven systems, such as the Internet of Things (IoT) applications [22—
24]. In fact, in the last decade, IoT has gained a lot of popularity such that it emerged
as one of the most impactful research topics in academia and the industry [11]. Hence,
in this thesis, we scope our research area within the context of IoT systems and see how

the results can be generalized to other modern software systems.

1.1 Architecting IoT Systems: The Challenges

The emergence of IoT has revolutionized software development as in software develop-
ment is not just about software, but it is about a system that contains software, a set
of connected components such as sensors, actuators, anything, and everything [23]. It
is more of a network of a lot of things connected via the Internet, where the definition
of thing can range from the smallest sensor to a human being. IoT systems find appli-
cations everywhere, starting from a fitness monitoring app to environmental and indoor
monitoring applications. The impact of these systems is so high that they have enabled
thousands of people to keep a check on their fitness condition, monitor the quality of pol-
lutants in the environment, facilitate security and automation in indoor environments,

etc. In fact, IoT systems play a vital role in any domain they are applied to [25].

On the one hand, IoT systems are becoming very popular, and they are widely adopted,
whereas on the other hand, architecting and maintaining IoT systems poses a lot of
challenges [22, 24|. These include:

Heterogenity: 1oT applications often consist of different types of devices (sensors/actu-
ators) such as beacons, temperature sensors, cameras, etc. Each device might provide
native support for specific microcontrollers, and this would mean programming the func-
tionality of different devices in different languages (usually using low-level programming
languages). Further, IoT is not just about sensors. It also consists of backend services
deployed in the cloud, which are usually developed using high-level languages. To sum-
marize, the heterogeneity in IoT applications arises from the devices and the backend

services.

Interoperability: Each device in an IoT system might communicate using different com-
munication protocols and standards. For example, a temperature sensor might commu-
nicate using LoRa, an Infrared sensor that may communicate via ZigBee, etc. Moreover,
each device might follow their data standards. For instance, the camera might send data

as bytes or image frames; an RFID reader might send data as text, etc. All these lead
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to problems of interoperability, and this needs to be managed. One of the primary rea-
sons for interoperability is that many devices are proprietary and designed to operate

in predefined or dedicated hardware.

Security: As in the case of any software systems, ensuring security is of utmost impor-
tance. However, this challenge is even harder in IoT systems due to the heterogeneity
and interoperability issues stated above. The communication between devices and the
cloud/fog needs to happen via a secured channel. This might otherwise allow an attacker
to extract sensitive information. Moreover, the devices themselves need to be secured.
For example, if not secured, a camera in an IoT ecosystem can allow the attacker to

obtain real-time sensitive feeds that may violate user privacy.

There has been a significant amount of research in the domain of IoT to solve the above-
listed challenges. With the ever-increasing importance of the Fog computing paradigm
along with the emergence of architectural styles like Event-driven Architectures (EDA),
Microservice-based Architectures (MSA), etc. some of the challenges related to interop-
erability and heterogeneity are handled [26]. Moreover, with the increasing popularity of
blockchain technologies in IoT, some of the security challenges are taken care [27]. But,
one crucial aspect of IoT systems, as stated above, is that it is not just about the soft-
ware, the devices might be deployed in open and dynamic environments, and this gives
rise to different types of uncertainties. For example, devices might run out of battery
due to resource constraints, weather conditions might affect the functioning of sensors
in external environments, etc. These uncertainties, coupled with the other challenges
listed above, can significantly impact the QoS levels offered by these systems [22, 23].
Therefore, any architecture issues imply that uncertainty in run-time might render the
entire system unusable or may have adverse effects on the humans using it [24]. This
mandates the fact that the architecture designed should be robust to handle uncertain-
ties in run-time. Better architecture for IoT systems also means that the problems of

heterogeneity and interoperability are tackled [28].

In this direction, self-adaptation techniques have been proposed as a solution [22]. This
is mainly due to their ability to handle the uncertainty as well as the dynamic nature of
the environment [29]. In simple terms, self-adaptation techniques equip the system with
the ability to adjust its behavior/structure in response to uncertainties or changes in
environments. The prefix "self” in self-adaptation implies that the system will have the
capabilities to autonomously (with minimal human intervention) decide the action to be
performed in the event of any uncertainty. For example, an IoT system equipped with
self-adaptation capabilities shall automatically reduce device communication (to save
battery), switch networks (to reduce congestion), etc. Due to this reason, the research

in the field of adaptive systems has gained enormous popularity in the last decade.
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This trend is expected to continue both in research and industry [11, 30]. However,
architecting self-adaptive systems, in particular, self-adaptive IoT systems, poses a lot

of challenges. These are listed in the following section.

1.2 Challenges in Self-adaptation

Although a big body of research has been done in the field of self-adaptation [31, 32], a
lot of challenges remain open [29, 33]. To better explain the challenges, let us consider
a simple self-adaptive IoT system for measuring humidity and temperature in a given
room. Let us assume that it operates using battery-powered sensors. For the sensors
to last longer, the system should adapt automatically to ensure that the sensors do not

consume more than 2 joules every minute. The following challenges exist:

1. Reactive nature of adaptation : Most of the self-adaptive solutions that exist
in literature are reactive in nature [31], where the adaptation is performed in the event
of uncertainty. In the example given above, this would mean that the system can adapt
only when the energy consumption goes above 2 joules. In such scenarios, the system
might save more with the use of proactive techniques, where the need for adaptation
can be foreseen and executed before any uncertainty. There have been some works in
the field of proactive self-adaptation [34, 35]. However, one of the biggest challenges in
applying proactive techniques, especially in IoT systems (where the rate of change of
QoS is quite high), is to generate predictions with good accuracy [31]. Towards this,
Al techniques, in particular machine learning techniques, can be used to leverage the
tremendous amount of data generated by the IoT systems to predict any possible QoS
issues. This implies that the self-adaptive systems should have the ability to learn from
the data to proactively foresee any uncertainty to further improve the effectiveness of

the adaptation process. This has not been explored much in the literature [31].

2. Systems adapt, but they do not learn: adaptation is more an instantaneous
process performed by a system to overcome a given situation. Learning, on the other
hand, is more than just an adaptation. It is a process that enables the system to improve
its performance over time [36]. In the event of uncertainty, traditional self-adaptive sys-
tems use techniques like rule-based algorithms, control theory techniques, model check-
ing, model-driven techniques, etc. [32] to decide on the best adaptation strategy. Off
late, self-adaptive systems are also making use of machine learning techniques towards
decision making [37, 38]. However, one main issue is that the performed adaptation
does not necessarily improve the architecture; it may temporally overcome an impend-
ing failure while not preventing the system from entering the same state. Instead, the

architecture adapts to the current context, but it does not learn how to react to new
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families of the same contexts. This process is better known as self-adaptation through
Achieving, and it has not been explored much in literature [29]. In other words, the
systems adapt, but they do not learn. Going back to the example given at the beginning
of this section. Assume that the total energy consumed at a given moment goes above 2
joules, and to adapt, the system reduces the frequency of sensing. However, this might
affect the service accuracy of the system. Since the adaptation method does not have
any mechanisms to learn from this experience, next time a similar situation happens,
the same decision to reduce the sensing frequency is executed. To mitigate this, Al, in
particular, machine learning techniques [15] can be considered towards aiding adapta-
tion as it ensures that the system can learn from multiple scenarios and improve over
a period of time. This was suggested by [29, 39], but not much work has been done in

this direction.

3. Quality assurances to learning: As stated above, machine learning can be
used for decision making in self-adaptation. It can further enable systems to learn
and improve with every adaptation. However, one of the issues with machine learning
is that it suffers from accuracy and bias [40, 41]. For example, recently, there were
reports of a Tesla car in autopilot mode crashing into a barrier [42]. It further led
to the death of the driver. The crash’s main reason was attributed to the machine
learning algorithm’s failure in identifying the barrier. Similarly, in another scenario Al
algorithms were found to be sending wrong people to prison in the US [43]. The main
reason for this behavior was due to the bias in training data. These are some of the
significant issues with machine learning in practice, and the same applies to the use of
machine learning in self-adaptation. In fact, assuring quality has been listed as one of the
significant challenges for using machine learning for decision making self-adaptation [29].
Hence, using machine learning techniques without quality guarantees for the decision-
making process may produce erroneous decisions. Such decisions may further lead to
sub-optimal adaptations, thereby affecting the execution of the overall system. Going
back to the example presented at the beginning of this section, let us assume that as
in the scenario stated above, the self-adaptive process based on the learning decides to
reduce the data frequency due to high energy consumption. It might happen that there
is a sudden instance of fire in the room, and the temperature needs to be sensed at a
higher frequency. However, since the learning algorithm had not seen this issue before,
it does not have the required knowledge to make the correct decision. This calls for
techniques that can verify the machine learning algorithm’s decision before executing it.
Such techniques can further enable the learning process itself to improve based on the

results of verification.
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1.3 Research Questions

As we have seen, many challenges exist in architecting IoT systems (or any modern
software systems in general), which can greatly impact the overall QoS. Self-adaptation
has emerged as a potential solution to mitigate these issues. However, they have their
limitations, as listed above. One of the important characteristics of any modern systems,
especially IoT, is the amount of data they generate [44]. This data includes the context
data generated by the IoT devices and the QoS data (potentially extracted from the
system’s execution logs). This data availability enables the use of machine learning
techniques to leverage the different data generated to predict the need for adaptation
proactively and further autonomously decide on the adaptation strategy. However, as
mentioned in the previous section, such techniques should also provide quality guarantees
of the adaptation performed. Hence the overall goal of this research is to develop a
data-driven approach for architecting self-adaptive IoT systems where, Given an IoT
system and a set of QoS requirements to be satisfied, the approach uses machine learning
techniques to learn from the data obtained, generate an adaptation decision, verify the
decision, adapt the architecture, learn from the feedback and keep iterating over this loop
of learning, selection, verification, and adaptation thereby enabling the architecture to
improve continuously such that the QoS of the system is not compromised. This overall

goal can be further decomposed into four main research questions, namely:

e RQ1 How to perform effective and efficient proactive adaptation using machine

learning techniques?

e RQ2 How can machine learning be used to improve the adaptation process contin-

uously?

e RQ3 How to guarantee the quality of the adaptation performed by such a machine
learning process, and how can such guarantees, in turn, help the machine learning

process?

e RQ4 How can the approach be generalized to other class of software systems?

While RQ1 is based on the first challenge of the reactive nature of adaptation, as men-
tioned in Section 1.2, RQ2 focuses on addressing the second challenge of enabling systems
to learn with adaptations. RQ3, on the other hand, aims to identify mechanisms that
can guarantee the quality of decisions produced by machine learning and further aid
the learning process. Unlike the first three questions, RQ4 targets the approach’s gen-
eralizability by understanding if the approach can be applied to a more general class of

software systems.
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1.4 Self-adaptation to Self-learning: Solution overview

To address the challenges in the field of self-adaptation and to further answer the re-
search questions mentioned above, in this thesis, we develop a data-driven approach
to architecting self-adaptive systems. The approach in principle shifts the focus from
self-adaptive architectures to self-learning architectures. Going by the definition of ma-
chine learning [45], we define the learnability of software architecture as the ability such
that ”Given a task T of solving an architectural problem, given the architecture A of the
IoT system, and a set of quality attributes @) that models the QoS of the system, the
architecture A of the system improves with Data D, such that the QoS Q of the system

is not compromised” [1].

Software
Architecture

Validate

Gather QoS Metrics

FIGURE 1.2: Self-learning software architectures: Solution Overview

Figure 2.1 shows the conceptual overview of the overall approach presented in this the-
sis [46]. As in the case of any software systems, at first, the system’s architecture is
designed, validated, implemented, and deployed. Post the deployment, at run-time, the
Monitor process keeps a check on the system’s QoS metrics such as energy consump-
tion, data traffic, response time, etc., as well as on the data gathered by the system.
The Learn process further processes the collected data to extract actionable insights.
It uses machine learning techniques to proactively identify the need for adaptation and
further decide the optimal adaptation strategy. It then communicates the decision to
the Adapt process, which adapts the architecture. Additionally, to guarantee the adap-
tation’s correctness, the adapted architecture is sent to a Validate process that checks
if the modified architecture satisfies the QoS requirements. Furthermore, the Deploy
process deploys the architecture. After every deployment, the approach uses the vari-
ation in QoS metrics as feedback to measure the quality of adaptation. This feedback

and the feedback from the Vaulidate process are used as feedback to the Learn process
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for further improvement. This process continues throughout the software lifecycle. In
this manner, the approach identifies any possible QoS issues at a much earlier stage and
adapts the architecture accordingly. Moreover, over time, the approach ensures that the

architecture automatically learns to handle the uncertainties optimally.

1.5 Research Activities

Legend
@ Research Ej data used stage flow
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C] Research publication  artifact (Technical
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2 Proactivé adaptation
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e analysis Framework 1 .
earning
6b. Data-driven SMARTCOMP 2020
self-adaptive architecture
RQA ) for MSA-IoT A
5. Verification aided 4. Continous learning | .
Under revision (Technical learning for adaptation through adapation
Report)
6a. Context aware ) o
service discovery T . R e
for MSA RQ3 e ——

ICSA 2020

FI1GURE 1.3: Stage by stage development of the overall research

Figure 1.3 shows an overview of the different activities conducted during our research.
We represent them using six stages. In the first stage, we performed a state-of-the art
analysis. This process involved gathering the different works that have been done in
the field of self-adaptation. These works were further analyzed to understand the differ-
ent techniques to architect self-adaptive systems, challenges, and limitations. Based on
this, we developed the overall research goal. This goal, the research challenges, and our
domain knowledge were used in the second stage to formulate a conceptual approach
to achieve the overall research goal. The resulting approach was published in the pro-
ceedings of the International Conference on Software Architecture (ICSA 2019) [1]. The
rest of the stages focused on realizing the different parts of the conceptual approach to

answer the various research questions.

Stage 3 of our research focused on the development of a proactive approach to architect
self-adaptive IoT systems. The approach mainly leveraged the QoS data, in particular
energy consumption data. This was accomplished using deep neural networks that were

used to generate short-term and long-term forecasts of the expected QoS of a given IoT
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system. Further, the approach was extensively evaluated on an IoT system based on a

case study. The stage resulted in a journal work which is currently under revision [2].

In stage 4, the research was extended to combine the proactive forecasts with auto-
mated decision making to generate a machine learning-driven proactive decision-making
approach. It leveraged two types of QoS data, namely data traffic, and energy consump-
tion. The approach further enabled the architecture to adapt and learn continuously
based on the feedback in the form of forecasts obtained after every adaptation. The
approach was further evaluated on an IoT system and was published in the proceed-
ings of the International Conference for Smart Computing (SMARTCOMP 2020) [4].
The tool resulting from the approach was published in the proceedings of the European
Conference on Software Architecture (ECSA 2019) [3].

While the research activity of stage 4 focused on the continuous learning part, stage 5
combined proactive learning with quantitative verification to provide quality guarantees
to the machine learning decisions. It took three different data types into consideration:
two types of QoS data (energy and data traffic) and context data (acquired by the sen-
sors). The approach further enabled machine learning to continuously improve based on
the feedback from verification and forecasts. After evaluations of the approach on a case
study, the work done was published in the proceedings of the International Conference
on Software Architecture (ICSA 2020) [5].

In the final stage of research, stage 6 focused on extending the approach to a more general
class system. The stage, in-turn, consisted of two parallel activities. The first one (stage
6a) focused on extending the proactive learning approach developed in Stages 3 and
4 to develop a machine learning-driven service discovery mechanism for microservice
architectures. The approach leveraged machine learning techniques on two different
types of data, namely context and QoS data, in particular response time. The approach
was evaluated on a prototype microservice application. The process also resulted in a
potential research publication, and it is currently under revision [6]. The second activity
(stage 6b) consisted of applying some of the concepts developed in the different stages
to create a data-driven self-adaptive architecture for microservice-based IoT systems
(MSA-IoT) and this was published in the proceedings of the International Conference
on Software Architecture (ICSA 2020) [7]. Further, a short article on the concept of
Self-Learnable Software Architectures based on all these different research activities was
published in the quarterly magazine of European Research Consortium for Informatics
and Mathematics (ERCIM News, referenced by DBLP!) [46].

"https://dblp.org
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1.6 Thesis structure

The remainder of this thesis is organized as follows:

In Chapter 2, we provide background details of various concepts underlying this thesis.
This chapter provides a detailed overview of self-adaptive systems, machine learning
with a particular focus on neural networks and reinforcement learning, quantitative
verification, microservices, and a detailed description of an IoT case study that we will

be using throughout this thesis.

Chapter 3 provides a detailed analysis of the state-of-the-art (stage 1 in Figure 1.3).
First, it describes the different works that apply self-adaptation in IoT systems and ma-
chine learning to self-adaptive systems. These form the basis for the approach presented
in Chapter 4 and 5. It then discusses the works that combine quantitative verifica-
tion, and machine learning, which forms the base works for the approach presented in
chapter 6. Further, the chapter elaborates on the works done in service discovery in mi-
croservices and self-adaptation applied to microservice-based IoT systems. These form

the state-of-the-art for the work presented in Chapter 7.

In Chapter 4, we describe the first part of the approach (stage 3 in Figure 1.3), which
uses machine learning techniques to perform effective and efficient proactive adaptation

in IoT systems. The chapter addresses the research question, RQ1.

Chapter 5, describes the second part of the approach (stage 4 in Figure 1.3) which
further extends the proactive approach presented in Chapter 4 to support automated
decision making and continuous learning using machine learning. The chapter further

addresses the research question RQ2.

Chapter 6 provides answers RQ3 (stage 5 in Figure 1.3) by describing the third part
of the approach, which extends the proactive machine learning-driven decision-making

approach presented in Chapter 5 with quantitative verification techniques.

In Chapter 7, we address RQ4 (stage 6 in Figure 1.3) by applying the approach to
perform machine learning-driven context-aware service discovery in microservice archi-
tectures. Further, the chapter also describes a data-driven self-adaptive architecture for

microservice-based IoT applications.

Finally, we conclude the thesis in Chapter 8 by summarizing the overall contributions

of this thesis. We also provide directions for future work.

Additionally in Appendix A, we have described in detail, the different technologies used

for the implementation of the approach presented in this thesis.
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1.7 Research Publications

The research presented in this (as depicted in Figure 1.3) has resulted in the following

peer-reviewed publications?:

e Muccini, Henry, and Karthik Vaidhyanathan. ”A machine learning-driven ap-
proach for proactive decision making in adaptive architectures.” In 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C), pp. 242-
245. IEEE, 2019 (Thesis author contribution: Overall idea, approach framework

and writing under the guidance of the supervisor).

e Muccini, Henry, and Karthik Vaidhyanathan. ” ArchLearner: leveraging machine-
learning techniques for proactive architectural adaptation.” In Proceedings of the
13th European Conference on Software Architecture-Volume 2, pp. 38-41. 2019
(Thesis author contribution: Tool implementation, experiment setup, evaluation,

and writing under the guidance of the supervisor).

e Muccini, Henry, and Karthik Vaidhyanathan. ”Leveraging Machine Learning
Techniques for Architecting Self-Adaptive IoT Systems.” In 2020 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP), pp. 65-72. IEEE,
2020 (Thesis author contribution: Overall idea, methodology, algorithm, imple-
mentation, experiment setup, evaluation, and writing under the guidance of the

supervisor)

e Camara, Javier, Henry Muccini, and Karthik Vaidhyanathan. ” Quantitative
Verification-Aided Machine Learning: A Tandem Approach for Architecting Self-
Adaptive IoT Systems.” In 2020 IEEE International Conference on Software Ar-
chitecture (ICSA), pp. 11-22. IEEE, 2020 (Thesis author contribution: Overall
idea along with other authors, machine learning framework of the overall method-
ology, implementation of the different machine learning algorithms, integration
of machine learning with verification, experiment setup, evaluations, and equal

contribution to writing).

e De Sanctis, Martina, Henry Muccini, and Karthik Vaidhyanathan. ”Data-driven
Adaptation in Microservice-based IoT Architectures.” In 2020 IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 59-62. IEEE, 2020
(Thesis author contribution: Overall idea conceptual methodology along with the
other authors, machine learning part of the methodology, the overall architectural

framework with other authors and equal contribution to writing).

2 Author names are listed in the alphabetical order
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The following publications are under revision and are available as technical reports?:

e Henry Muccini and Karthik Vaidhyanathan, ”PIE-ML: A Machine learning-driven
Proactive Approach for Architecting Self-adaptive Energy Efficient IoT Systems”,
DISIM, University of L’Aquila, L’ Aquila, Italy, TRCS: 002/2020, July. 15, 2020.[On-
line]. Available: https://tinyurl.com/y98weaat ( Thesis author contribution: Over-
all idea, development of the IoT system, implementation of the managing system
and machine learning algorithms, evaluation of experimental results and writing

under the guidance of the supervisor).

e Mauro Caporuscio, Marco De Toma, Henry Muccini and Karthik Vaidhyanathan,
7 A Machine Learning-driven approach to Service Discovery for Microservice ar-
chitectures”, DISIM, University of L’Aquila, L’Aquila, Italy, TRCS: 003/2020,
September. 20, 2020.[Online]. Available: https://tinyurl.com/y67krcn9 (Thesis
author contribution: development and implementation of the machine learning

algorithms, evaluation of experimental results, and equal contribution to writing).

3 Author names are listed in the alphabetical order



Chapter 2

Background

This chapter provides a brief overview of the main concepts and techniques underlying
the research works presented in this thesis. We begin this chapter by providing an
overview on Self-adaptive systems (Section 2.1). This is followed by an overview of
machine learning (Section 2.2, with in-depth details on some of the machine learning
techniques used in this thesis. In this research, we use quantitative verification to verify
the correctness of machine learning. To better understand this, in Section 2.3, we
provide some background details on quantitative verification techniques, in particular
probabilistic model checking. The generalizability of our approach is demonstrated by
extending it to solve some of the challenges in microservices. Hence, in Section 2.4, we
provide an overview of microservice architectures. Finally, in Section 2.5, we provide

details on the case study that has been used throughout this thesis for evaluations.

2.1 Self-adaptive systems

The field of Self-adaptive systems evolved over the years from the term ”Software Crisis”
which was first coined in 1968 at the NATO Software Engineering Conference in Brus-
sels. The term was mainly referring to the issues related to the management of Software
projects and the software’s problem of not delivering its objectives. [47]. As the field of
Software Engineering progressed, different tools and programming paradigms evolved,
which ensured that the problems of software crisis are in control under the hands of soft-
ware architects, project managers, and software developers. On the other hand, as the
software’s complexity kept increasing day by day, the cost of handling the complexity
also increased [48]. The major reason for this trend is because the software components
were becoming more and more heterogeneous, and the goal/run-time requirements of

the software keep changing with time. This was referred to as the Looming Software

14
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Complexity Crisis in 2003. This trend has been clearly observed in the last decade
with software becoming more pervasive in nature, especially with the advent of the In-
ternet of Things. One of the major consequence of this evolutions, as stated by [49]
has been that the software systems need to become more flexible, versatile, flexible, re-
silient, dependable, robust, energy-efficient, recoverable, customizable, configurable, and
self-optimizing by adapting to changing operational contexts, environments or system
characteristics. These requirements have resulted in the rapid growth of research in

self-adaptive systems.

In the reminder of this section, we provide an in-depth overview of self-adaptive systems
starting from the different definitions of the various frameworks that can be used to

develop a self-adaptive system.

2.1.1 Definitions

Kephart and Chess came up with a concept of Self-management as the only way to
tackle the complexity crisis [50]. Self-management refers to the systems that can adapt
autonomously to achieve their goals based on high-level objectives. These systems are
also called as Self-adaptive systems [32]. There has been no single definition for self-
adaptive systems, especially for self-adaptive software in literature. Few of the definitions

are :

e Self-adaptivity is the capability of the system to adjust its behavior in response
to the environment. The ”"self” prefix indicates that the systems autonomously
decide (i.e., with minimal or no interference) how to adapt or to organize them-
selves so that they can accommodate changes in their contexts and environments.
While some self-adaptive systems may be able to function without any human in-
tervention, guidance in the form of higher-level objectives (e.g., through policies)

is useful and realizable in many systems [39]

e Self-adaptive software can evaluate and change its own behavior whenever the
evaluation shows that the software is not accomplishing what it was intended to

do, or when better functionality or performance may be possible [33].

2.1.2 Conceptual Model of a Self-Adaptive System

The figure below shows the conceptual model of a self-adaptive system [29][32] and it

basically consists of four components :
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FI1GURE 2.1: Conceptual Model of a self-adaptive system

1. Environment

The environment refers to anything that is not under the control of software and the
outcome of which can affect the software. It generally represents the external world
with which the self-adaptive system interacts. The environment comprises both the
physical as well as the virtual entities. For example, in an IoT system, the environment
represents the space with which the sensors interact, such as a room in a house being
monitored using a camera. In this case, the environment also comprises the camera and

the software drivers running in this camera.
2. Managed System

The managed system mainly refers to the application code that implements the func-
tionality expected out of a system. The concerns of the managed system are generally
the concerns of the environment. They are responsible for sensing the environment using
sensors to observe changes. In the event of any uncertainties, they are responsible for
making the necessary changes in the environment with the help of actuators. Different
frameworks refer to the managed system using different terminologies. The MAPE-K
refers to this as Managed Element [50]. The Rainbow framework coins it as System
Layer [51]. The 3 layer reference framework terms it as goal management [52] and the

FORMS reference model refers to it as base level subsystem.
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3. Adaptation Goals

These can basically be viewed as the concerns of the managing systems over the managed
system. The goals essentially focus on the software quality attributes of the managed sys-
tem. Four different adaptation goals have been defined in literature, Self-Configuration,
Self-Optimization, Self-healing and self-protection. [50] [32].

4. Managing System

The managing system is responsible for managing the managed system. It comprises
of the adaptation logic depending on the adaptation goals. It is responsible for contin-
uously monitoring the environment. It then adapts the managed system based on the
changes in the environment. This is referred to as Autonomic manager in MAPE-K
[50], Architecture Layer in the Rainbow Framework [51], Controller in 3 layer reference

framework and Reflective subsystem in FORMS reference model.

2.1.3 Engineering Self-adaptive Systems

Different ways to engineer self-adaptive systems have been proposed. This was catego-
rized into six waves by Waynes et al. in [32] and table 2.1 summarizes the different
waves, the corresponding uses, the motivation behind the approach, the framework that

can be used for realization.

The approach presented in this thesis is based on the MAPE-K framework for performing
self-adaptation. We selected MAPE-K considering the problem in hand and the set of
functionalities supported by the MAPE-K framework. Further, we provide an overview
of MAPE-K in the following subsection.

2.1.4 The MAPE-K Framework

The concept of MAPE-K control loop was first introduced by Kephart and Chess in [50],
which was further presented by IBM in [55]. The idea of using MAPE-K in the con-
text of self-adaptive systems was later discussed by Brun et al. [33]. It consists of four
key activities namely Monitor (M), Analyze (A), Plan (P) and Ezecute. Further, these
activities share a common Knowledge (K) base. In the context, of a self-adaptive sys-
tems (refer Figure 2.1), the combination of these activities are used to accomplish the

functionalities of the Managing System.

Figure 2.2 represents the conceptual view of a self-adaptive system that implements the
managing system using a MAPE-K control loop. The key activities of the MAPE-K are

as follows:
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Background
H Waves Uses Motivation Framework H
Automating | Automation of manage- | Management MAPE-K [50]
Tasks ment tasks from human | of the system
administrators to ma- | by human ad-
chines ministrators are
often complex
and error prone
process.
Architecture{ Identification of key | Need for System- | 3-Layer Architec-
Based concerns of  Self- | atic perspective | tural Model [52]
Adaptation | Adaptation, Systematic | for = engineering
management of runtime | self-adaptive
changes and software | systems.
complexity
Models at | Run-time adaptation | Concrete realiza- | Model-Oriented
Runtime and decision making tion of architec- | Architecture [32]
ture based adap-
tation is complex
due to a large
amount of infor-
mation gathered
at runtime.
Goal Handling adaptation in | The difficulty | Goal Model [32]
Driven systems exposed to un- | in managing
Adaptation | certainties requirements
when the system
is  exposed to
uncertainties.
Guarantees | Provides guarantees for | Ensuring that the | QoSMOS  Archi-
Under Un- | the compliance of adap- | system will meet | tecture [53]
certainties tation goals for systems | a goal once ex-
under uncertainties posed to uncer-
tainties.
Control- Application of control | Need for formal | PBM [54]
Based theory to perform adap- | design and ver-
Approaches | tation ification of self-
adaptive systems.

TABLE 2.1: Different Engineering approaches to Self-Adaptive Systems

1. Monitor: The monitor activity is responsible for continuously monitoring the manag-

ing system by regularly collecting different types of execution data, execution metrics,

logs, etc. of the Managed system. It further sends them to the Analyze activity.

2. Analyze: The Analyze activity comprises different functionalities that can further

identify the need for adaptation based on the data obtained from the Monitor activity. It

uses adaptation goals (as defined in Section 2.1.2) to accomplish this. On identifying the
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FIGURE 2.2: Self-adaptive System based on MAPE-K

need for adaptation, it immediately triggers the Plan activity to generate an adaptation

plan.

3. Plan: The responsibility of Plan activity is to generate an adaptation plan/strategy
which can be applied to the system to satisfy the overall goals. Such an adaptation plan
can range from a simple reconfiguration action to complex strategies. To achieve this,
it uses different techniques such as model-checking, model-driven techniques, machine-
learning, control theory, etc. The plan generated is further forwarded to the Fzxecute

activity.

4. FExecute: As the name suggests, the role of the Frxecute activity is to execute the
adaptation plan as suggested by the Plan activity on the Managed System. It results in
the change in behavior/structure of the Managed System. It achieves this with the help

of Effectors, which are similar to simple interfaces. They support dynamic adaptation.

5. Knowledge: It acts as a common shared space that consists of the data that can be
shared by the different activities of the MAPE. These data may consist of execution logs,
data gathered by the Monitor activity, models for the Analyze activity, policies that are
needed by the Plan activity for the generation of an adaptation plan, and knowledge

gathered post the execution of an adaptation.

2.1.5 Architectural Patterns for Self-adaptation in IoT

In general, the type of adaptation performed can be categorized into two main categories:

i) Behavioral adaptation, where the performed adaptation results in reconfigurations on
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FIGURE 2.3: Architectural Patterns for Self-adaptation in IoT

the system behavior. For example, there might be a batch process in the cloud that
gets executed every 1 hour and results in high costs. A simple reconfiguration in this
scenario can be to change the frequency to 3 hours. ii) Structural adaptation is where
the adaptation results in the change in the structure of the underlying system. For
example, all the components in a given system might be communicating to a central
cloud resulting in a central point of failure. A simple reconfiguration can introduce an
additional component that can provide the system with semi-decentralized processing
capabilities. In this direction, in literature, Musil et al. in [56] proposed three different

architectural patterns for self-adaptation in IoT or cyber-physical systems in general.

Each of the three patterns consists of an application layer, a service middleware layer,
a communication layer, a proxy layer, and a physical layer. Figure 2.3 gives a high level
overview of the different architectural patterns applied to IoT. S1 and S2 denotes the
sensors and Controller denotes the MAPE controller responsible for making decisions

based on the data received from the sensors. These patterns include:

1. Synthesize-Utilize (SU): This is a fully decentralized pattern which consists of au-
tonomous entities on the application layer and the MAPE-K based adaptation mecha-
nism on the service middleware layer. This layer receives data from physical resources
and autonomous entities. It then periodically sends data to the application layer that the
autonomous entities further use to perform adaptation. For example, In a typical IoT
architecture, this pattern can be intuitively thought of as an edge-centered pattern (fig.
2.3a)) which will provide each sensor node with the ability to perform decision-making

without resorting to an external controller.

2. Synthesize-Command (SC): This is a fully centralized pattern which consists of
autonomous entities on the service middleware layer, adaptive algorithms on the proxy
layer, and self-organization mechanisms on the application layer. For example, an IoT
architecture based on this pattern will behave similarly to a cloud-centered pattern (fig.
2.3b)). All the sensor nodes and other components communicate to a central server,

which will then perform the decision-making process.
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3. Collect-Organize (CO): This is a semi-decentralized pattern which consists of multi-
agent systems on the application layer which handles the physical resources and MAPE-
K based adaptation mechanism on the service middleware layer. For example, an IoT
architecture with this pattern will use additional controller components similar to a fog-
centered pattern (fig.2.3c)), to receive the data from the sensor nodes and for performing
decision making or in other words, there will be multiple controllers which will act as

the local coordinator for a group of sensor nodes.

2.2 Machine learning

The rapid advancements in computing resources and the increased availability of on-

demand cloud resources have led to the increased adoption of Al techniques.

Machine

Deep ;
Learning

Learning

FIGURE 2.4: Venn diagram representation of the overall field of Al

AT is one of the most active research fields with a plethora of practical applications [16].
Figure 2.4 shows the Venn diagram depicting the different areas of AI. Among the
different areas of AI, Machine Learning (ML) has gained popularity over the years due
to its broad application scope. In other words, most of the Al techniques that are in use
belong to the specific class of ML techniques [16]. In the following section, we provide
an in-depth overview of ML techniques starting from the different definitions from the

literature to specific techniques used in the remainder of this thesis.
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2.2.1 Definitions

Many different definitions for ML has emerged over the years. In simplistic terms,
ML is a class of Al techniques that allows a system/software/process to improve with

experience continuously. A few of the more concrete definitions for ML are as follows:

e One of the key definitions of ML was given by Tom Mitchel [45]. Machine Learning
is a process where a program is said to learn from Experience F, with respect to
some class of task, T', and Performance measure P, if its performance at its task,

T measured by P, improves with Experience FE.

e Another definition was given by Alpaydin in [15]. Machine learning is program-
ming computers to optimize a performance criterion using example data or past

experience.

2.2.2 Types of Machine Learning

ML techniques fall into different categories based on how the learning is performed.
Louridas et al performed such a classification in [57], where the authors classified ML
types into primarily supervised and unsupervised. We further extend this was based
on [58-61] into four categories namely: Supervised Learning, Unsupervised Learning,
Semi-supervised Learning and Reinforcement Learning. This is represented in Figure
2.5'. As we can see from the figure, each category further consists of different types of
algorithms that can be used based on the type of learning tasks to be solved and other
information such as the problem domain, statistical nature of the data, etc. A brief

overview on each of the four categories of ML is provided below:

Supervised Learning: As the name suggests, it is a type of learning in which a
process/program learns how to perform a specific task using different types of well-
defined examples (in the form of data). In other words, the algorithm is given a set of
data consisting of inputs and corresponding outputs. This data is known as training
data, and each attribute in the training data is called a feature. The objective of the
algorithm is then to generate a function that maps the input to the output. Supervised

learning is used for solving two types of problems: i) Classification and ii) Regression.

Classification refers to the process of classifying a given input into one of the prede-
fined categories. In this type of problem, the algorithm is provided with data samples

consisting of different input features and an output variable representing a categorical

'SVM - Support Vector Machines, PCA - Principle Component Analysis, MDP - Markov Decision
Process, ANN - Artificial Neural Networks
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value. The algorithm’s objective then is to generate a mapping function that can map
the input to output such that given a new input, the algorithm will be able to predict the
expected category. Many real-life problems are solved using classification algorithms,

such as prediction of rain (yes or no), disease prediction, etc.

Regression, on the other hand, refers to the problem of predicting a real number based on
a given input. In this type of problem, the algorithm will be provided with data samples
consisting of different input features and an output variable representing a real number.
In this case, the algorithm’s objective is to generate a mapping function between the
input features and the output (real number) such that given a new input, the algorithm
will be able to predict the expected value. Some of the real-world examples of regression

include weather forecasting, stock prediction, etc.

Unsupervised Learning: Contrary to Supervised Learning, it is a type of ML where
the program/process learns to perform a given task using training data with no infor-
mation on output labels/real-number. In other words, the algorithm is given a training
data consisting just of inputs with no information on expected output (as in supervised
learning). The algorithm’s role is then to automatically infer the pattern/identify the
hidden relationship among the input data such that given a new input data, the algo-
rithm understands the action to be performed on the data. Unsupervised learning is
generally used for solving two classes of problem: i) Clustering and ii) Dimensionality

Reduction.

Clustering is a process of dividing a given set of input into different groups based on the

similarities in the data. In this type of problem, the algorithm is provided with data
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samples consisting of unlabelled inputs. The algorithm’s objective is then to identify
the relationships among the input data samples to divide them into different categories.
Given a new input, the algorithm will use the learned knowledge to group the new
data into one category or generate a new category. Clustering techniques have a lot of
practical applications. These include separating the news articles into different categories

(Google), fake news identification, etc.

Dimensionality Reduction is a process of reducing the number of features (dimensions) in
the input training data by removing irrelevant or redundant features. These techniques
are generally used in pre-processing the training data. The objective of these techniques
is to identify the relationships among the training data features, such that they can
identify the independent features or the features that best represent the data without
much loss of information. For example, a training dataset with a feature ” date of birth”

does not require another feature, "age”. These techniques are mainly used in image

processing tasks to reduce the input features in the training dataset.

Semi-supervised Learning: As the name suggests, this is a type of ML which falls
in between supervised and unsupervised learning. In this technique, a program/process
learns to perform a given task using training data consisting of both supervised and
unsupervised input samples. The algorithm is given training data consisting of some
labeled data (data consisting of inputs features and corresponding outputs) and many
unlabelled data. The algorithm’s role is to infer the relationship among the unlabelled
data based on the labeled data samples. They are used for different classes of problems,
including regression, classification, and clustering. Semi-supervised learning is used in
scenarios where manual labeling of the entire training data is a tedious task. It has a
lot of practical applications. These include Speech analysis (manual labeling of different

audio samples can be a challenging task),web-content classification, etc.

Reinforcement Learning:, As opposed to traditional types of learning as discussed
above, this type of ML is also called ”learning with a critic” [15]. In this technique,
the process/program learns to accomplish a task by trying a possible action that can
be performed to achieve the task. It then receives feedback for the action performed.
Based on the received feedback, the process/program tries to select a different (better)
action when given the same task again. This process continues, and the process/program
keeps learning. In other words, given a task, a set of actions that can be performed to
complete the task and a set of rewards for every state reached by performing the action,
the algorithm’s objective at every point is to select the best action that maximizes the

overall reward.

Among the different ML techniques mentioned above, the most commonly used one

where extensive research is being done is supervised learning [16]. There has also been
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substantial research growing recently in unsupervised or rather self-supervised learning?.
In this thesis, we will be using two main ML techniques, Recurrent Neural Network
(RNN), in particular Long Short Term Memory Network (LSTM - supervised learning)
, a class of Artificial neural networks, and Q-learning (Reinforcement learning) in the

rest of the thesis. These are further explained below.

2.2.3 Artificial Neural Networks

An artificial neural network (ANN) is similar to an information processing system with
characteristics similar to a biological neural network. McCullough and Pitts invented
the first neural network model in 1944 [62]. It was called the McCullough Pitts model
or the MCP model. This invention formed the basis of modern machine learning. Any

artificial neural network consists of the following components:

e A set of simple information-processing units called as neurons

e The neurons are connected using links (like edges in a directed graph), and each
link has an associated weight (like weights in a graph). The weight is representative

of the amount of relevance given to a particular connection link.

e Each neuron processes the input information by applying an activation function

(a non-linear function) to produce the output.

Preliminaries

Before we go further, in this section, we provide an overview of some of the commonly
used terminologies while using neural networks. To better understand the terminologies,
we explain the different processes involved in building a neural network through a small
example. Figure 2.6 shows the image of a simple neuron with multiple inputs represented
by X1, X5 and X3 and an output value Y. wj,ws and ws represents the weights given
to the different inputs. These input variables are called as features. As shown in the
figure ((fig. 2.6), the value of Y is determined by applying a function, f on the sum of

the input features multiplied by their respective weights, and a constant value b.

The function, f applied on the weighted sum of input features, is known as activation
function. As the name suggests, it determines if a neuron needs to be activated or not
and how it has to be activated. There are different types of activation functions such

as Rectified Linear Unit (ReLU), logistic sigmoid, tanh, softmaz, etc. In this thesis, we

https://tinyurl.com/y2wsqvop
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FIGURE 2.6: Simple neural network

will be using two specific activation functions, namely sigmoid and tanh. The equation

below represents the sigmoid activation function:

1

f(z) = Trew (2.1)

The sigmoid activation is used in scenarios (well used in classification problems) where
we need f(x) to be in a range (0,1). This is useful where the output of Y should be a
value between 0 and 1 or just a binary value. For example, depending on the value of
f(x), the output can be classified as 1 if f(x) > 0.5 and 0 if f(x) < 0.5. On the other
hand, the equation below represents the tanh activation function:

et —e *

flay=S—_ (2.2)

et +e %

The tanh activation is useful in scenarios where f(x) needs to be in range (-1,1). It gives
more output range compared to a sigmoid and is also very well used in classification
problems. The tanh is sometimes used as an alternative to sigmoid or in combination
with a sigmoid (in complex neural networks). While sigmoid maps negative inputs to
near-zero values, tanh maps negative inputs to negative values due to the inherent nature
of the function. This property of tanh is beneficial in scenarios where such flexibility is

needed.

The constant value, b depicted in figure 2.6 is known as bias and it helps the algorithm
to converge towards optimal solution. In other words, b is similar to the constant, C that

appears in a linear equation Y = max + C. It provides better control over the output.
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For example: Assume that if b does not exist in the previous equation (fig. 2.6) and one
of the features, X; is 0. Then this means that the output will be strongly influenced by
X5 and X3. Such an issue can be controlled by using a constant term, b, which enables

the neuron to produce more reliable outputs.

The learning process happens when the neuron is provided with different data samples,
each consisting of a set of {X7, X2, X3}, along with the expected Y value. This process
is known as training. The goal of training is to identify the best values of wy, ws and ws

that can map a given set of input, X to Y.

What we have seen above is a representation of a simple neural net. The advancements
in the theory of machine learning and computing infrastructure, coupled with the high
availability of data, have led to the birth of complex neural networks consisting of millions
of neurons, thereby giving rise to deep learning [16]. Figure 2.7 shows the conceptual
view of a deep neural network. It mainly consists of three layers: i) The input layer
consists of a set of neurons which are responsible for handling the input data and passing
to the hidden layer; ii) Hidden layer(s) (a typical deep neural network consists of 1 or
more hidden layers) consists of a set of neurons which processes the input data using

one or more activation functions to generate output and iii) Output layer consists of one
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or more neurons which provides the output by processing the data obtained from the

hidden layer.

Once the data moves from the input to the hidden layers during the training process, it
moves through the hidden layers to the output layer. This process is known as forward
propagation. The neural network where the data only moves in one direction, i.e., from
input to the hidden layers to the output (no cyclic information flow), is known as a
feedfoward neural net. Most such neural networks also have an additional information
flow from the output layer back to the hidden layers. This is better known as back-
propagation [63]. This backward flow allows the hidden layers to adjust their weights
appropriately based on the feedback from the output layers.

Having looked at some of the basic terms and terminologies in neural networks, let us

look at some key terminologies which we will be in the remainder of this thesis.

Training data: It represents the set of data samples given as input to the neural

network during training to enable learning.

Model: It is the output of the training process. It represents the mathematical function
and the values of the parameters obtained as an output of training. For example, if the
neural network represented in figure 2.6 is trained with some training data then the
process will result in the generation of f with values for w1y, wo and ws. This function f
with the values of W represents the model and the values of w1, wo, w3 forms the model

parameters or model weights.

Epochs and Iteration: The training dataset usually consists of a large number of
samples. The dataset is further split into smaller chunks known as batches. Then during
training, each batch is fed into the neural network one by one. The process of passing
each batch of training data repeatedly through the neural network such that with every
pass, the model updates its parameters is known as Iteration. Epoch, on the other hand,
refers to the pass of the entire training dataset repeatedly through the neural network.
Therefore, each epoch comprises of multiple iterations depending on the number of
batches (batch size).

Loss Function and Optimization: The purpose of training a neural network is to
reach a point (convergence) where the difference between the predicted value and the
actual value is as minimal as possible. This difference is known as loss and it is often
expressed using a mathematical function which is better known as a loss function. Some
of the commonly used loss functions are Mean Absolute Error, Root Mean Squared Er-
ror, etc. [16]. Optimization is the process which enables the minimization of the loss.
Commonly used optimization methods include Gradient Descent [64], Adam optimiza-
tion [65], etc.
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FI1GURE 2.8: Conceptual View of an Unrolled Recurrent Neural Network

Testing Data and Cross-Validation:, One of the important aspects of developing
a ML model is to test the quality of the trained model. Before training a model, the
input data is divided into two datasets: i) Training data and ii) Testing data. Once
a model has been trained, it is then applied to the testing data to test the accuracy,
precision, etc. of the model. One thing that might happen in this scenario is that the
model will work very well on the training data and not well on the testing data. This
problem is known as Over fitting [66]. This problem is better solved using a technique
known as cross validation. As per this technique, the training data, or rather the input
data, is partitioned into n subsets, usually of equal size. The training is performed on
n — 1 subsets, and the n'* subset is used as a testing or validation set. This process is

repeated until all subsets form a validation set at least once.

Having looked at some preliminaries and important terminologies which we will be using
throughout this thesis, in the following subsection, we provide details of a particular neu-
ral network, LSTM, a class of RNN, which forms one of the central parts of the approach
presented in this thesis. Following this, we provide some background on Q-learning, a

class of Reinforcement learning that forms the next central part of the approach.

2.2.3.1 Recurrent neural networks

Traditional neural networks do not have the ability to store or persist information in the
network, which can be very useful in processing data like video streams, speech signals,
etc. This issue arises due to the sequential nature of data, where data at a particular
instant is dependant on its past instances. For example, assume that we want the neural
network to predict the next word in a sentence ”yesterday was a sunny day, and hence
I think today also it will be ...... ”. The output of this can be anything as unless and
until the neural net can understand the context of the given text and predict the word
”Sunny,” but this will require the neural net store, understand the word ordering and
further understand the dependency between the different words. This type of data is

known better as Sequential data in which the ordering of data plays an important role in
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prediction or classification. This challenge was the key motivation behind developing a
new class of networks known as Recurrent Neural Networks (RNN), which are networks
with inbuilt loops that further allow them to persist information on the sequence order

and handle the problem of dependencies.

Figure 2.8 represents the conceptual view of the architecture of an unrolled RNN?. They
also have primarily three layers, namely, input, output, and hidden. However, unlike
traditional ANN, as we can see from the figure, there is a flow of information from one
neuron (better known as a recurrent cell) in the hidden layer to another in the same
layer (in traditional ANN, this will be from one neuron in one layer to neuron in the
next layer). This flow allows the transfer of information from one step to another. It is

due to this recurrent flow of the information they are known as RNN.

Working: Let X; denote the input vector, h; the hidden state and Y; the output vector
at an instance t of a sequence. Then the value at hidden state is updated using the
formula:

he = fWh s hy_y + WL % a4) (2.3)

As it can be seen, the update is performed using a recurrence equation, where f denotes
the activation function (tanh is the most commonly used one in the case of standard
RNN’s); Wi, denotes the weight of the connection from one hidden cell (neuron) to
another; WJEL denotes the weight of the connection from the input to the hidden cell,
and h;—1 denotes the value of the previous hidden cell. In essence, the value at every
step is determined based on the value at the previous time step and based on the
input at the current step. This property allows the network to store dependency and
preserve the ordering of sequences. RNN’s are one of the most popularly used neural
networks for performing sequence-related predictions and classifications. They find a
lot of applications in real-world scenarios. These include speech recognition, machine
translation, stock market prediction, etc. For more information on RNN’s, we refer the

readers to Graves et al. [67].

Long Term Dependency Issue: Even though RNN’s are found to be very powerful
when it comes to handling sequence data, one issue that exists with traditional RNN’s
is their ability to handle long-term dependency. Going back to the example of word
prediction, presented at the beginning of this subsection, let us assume that we use
RNN to make the prediction. Each word in the sentence can be fed as an input to
different input neurons in the RNN (refer figure 2.8). What might happen is that as the

network takes more and more words as input, the recurrent cell with the last word of

3This is just a conceptual view. In reality, there can be one or many outputs and multiple hidden
layers based on the problem at hand
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the sentence ("be”) will have more information on the previous words (like "today also
it will”). But the network will have less or zero information on the first words in the
sentence (like ”yesterday was a sunny”). This is because as the length of the sequence
increases, due to the recurrence formula, the cell will have more information on the
near previous states than that of a farther state. This problem is better known in the

literature as Vanishing gradient problem [68, 69)].

2.2.3.2 LSTM : Long Short Term Memory Network

Long Short-term Memory networks were introduced in 1997 by Hochreiter et al. to
handle the problem of long-term dependencies which exist in traditional RNN’s [70].
They belong to the class of RNN with additional capabilities. The overall conceptual
view of LSTM is similar to what presented in Figure 2.8. However, the main change
is that the cells in the LSTM (also known as LSTM cell or memory block) performs a
set of complex operations compared to the simple operation performed by a cell in a

traditional RNN (refer equation 2.3).

The hidden layer in LSTM contains a set of cells and the input to these cells are controlled
by three multiplicative gates namely, input gate i, output gate o, and forget gate f (as
denoted in the figure 2.9). These gates determine the flow of information within and

between the cells.



Background 32

The forget gate, f;, is responsible for determining the duration to which information

needs to be stored in the network.
ft = O'(Wf * [ht,1,$t] + bf), (24)

where Wy and by represent the weights and bias used by the forget gate. The sigmoid
function, o, ensures that the value of f; stays between 0 and 1. The value, in turn,
indicates if a piece of information needs to be stored for a long time or not. Going
back to the sentence prediction example, this will mean that words like ”yesterday” and

”Sunday” stay longer.

The input gate, i; is responsible for determining how much of the current input (z;) is
important.

it = O'(WZ * [ht_l, .I't] -+ bl), (25)

where W; and b; represent the weights and bias used by the input gate. The input gate
also uses the sigmoid function, o as in the case of forget gate for ensuring that the value
of iy stays between 0 and 1 this, in turn, indicates the relevance of the current input.

This value is then multiplied with the output of the Cell state, C;.
Cy = tanh(We * [hy—1, x] + bc) (2.6)

Ct = ft * Ct_1 + ’it * Ct (27)

where W and b, represent the weight and the bias used by the cell state. Unlike input
and output gate, the cell state uses tanh function. The reason being the fact that the
output from applying tanh can be -1 or 1 allowing the increase or decrease of the values
in the cell state. The cell state is then updated based on the values of f; and 4;. If
ft gives a value closer to 0 then the previously stored information is not given much
importance and vice versa. On the other hand, if 7; generates a value closer to 0, the
current value of C; is not considered for updating the cell state and vice-versa. Going
back to the word prediction example, the words like ”I”, ”think” will not be given much

importance as they are not really relevant in the context.

The output gate, o, determines how much information (h;) needs to be sent out to other
cells.
Ot = O'(WO * [ht—la .fCt] + bo) (28)

hy = o x tanh * C; (2.9)

where W, and b, represent the weight and the bias used by the output state and hy
represents the output produced by the cell at a time t.



Background 33

The combination of gates inside the LSTM ensures that relevant information is persisted
longer in the network and thereby handles long-term dependency problems in a much
efficient manner. Most of the RNN’s that are used today, particularly in language
translation, stock prediction, etc., are LSTM. In our thesis, we use LSTM to forecast
the expected QoS and behaviour of a given system for performing proactive adaptation.
The generation of forecasts is accomplished by converting the QoS data as sequential
data, specifically time-series data. Time-series data in general is a type of sequential
where the data points are ordered in time [71]. The process of converting QoS into
time-series data and further using them for generating forecasts is explained in detail in
Chapter 4.

2.2.4 Q-Learning

\
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FIGURE 2.10: Reinforcement learning process flow

Quality learning, better known as Q-learning, belongs to the class of reinforcement
learning (discussed in Section 2.2.2) [72]. It is also known as a model-free or off-policy
reinforcement learning algorithm. This is because it does not require any prior model
to perform learning, or rather the algorithm learns by performing actions and gathering

feedback for the actions performed.

Figure 2.10 represents the overall framework of a reinforcement learning process. The
Agent is the central part of any reinforcement learning algorithm. It represents the
process/program which needs to learn. The Environment represents the world, space,
or system with which the agent interacts. As depicted in the figure (fig.2.10), the agent
interacts with the environment by performing an action. For every action performed, the
agent receives a Reward, and it results in the agent moving from one state to another.
Hence, the crucial part of the reinforcement learning process is to divide a given problem

space into states, action, and rewards.
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For example, assume that a robot wants to learn to navigate a given room and reach
a particular destination in the room by avoiding obstacles. The robot in this scenario
represents an agent. The actions it can take in this scenario will be moving left, right,
front, or back. The room in which the robot has to navigate represents the environment.
Every time the robot performs an action, it receives a high reward if it has performed
the correct action (e.g., an action that resulted in a movement in the right direction,
avoiding obstacles, etc.). On the other hand, if the robot performs an action that results
in a robot moving in the wrong direction or hitting an obstacle, it is given a low reward
(penalty). With this feedback in the form of rewards, the robot learns better to navigate
the given space. Further, at each point, it tries to perform the action that maximizes

the reward and thereby reaches the destination.

In the case of Q-learning, the agent will not have any model of the environment, and
it learns by performing actions (There are other types of reinforcement learning tech-
niques known as model-based reinforcement learning techniques where the model of the
environment is explicitly available to the agent [61, 73]). Going back to the example
above, the robot will not have any information on the shape of the room or location of
the obstacles. In Q-learning, the agent achieves the selection of actions through the help

of a simple lookup table known as Q-table.

Q-table: Q-table forms the heart of g-leaning. It is a simple lookup table, an N XM
matrix where N represents the number of states, S, and M represents the number of
actions, A. Each value in a g-table corresponds to a (s,a) pair Vs € S and a € A. This

value is known as @-Value. It denotes the relevance of taking action, a from a state, s.

Selection: As mentioned above, at every point, the agent selects the action that max-
imizes the reward, or in other words, the agent selects the best possible action that will
eventually help the agent to achieve the goal (in the example of robot provided above,
this goal will be to reach the destination without colliding with obstacles). The selection

of optimal action is made possible with the help of the equation:
a’ « argmax,Q(s,a) (2.10)

where a’ represents the new action. This equation represents that every time the agent

selects an action from a state, s such that it has the maximum Q value.
Learning Strategy: An agent using Q-learning performs learning and continuously

improves the selection through effective use of two strategies:

e Exploration: The agent occasionally performs random action as it allows the

agent to explore and discover new states that otherwise remain unexplored during
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the usual selections. This type of exploration is important because it might happen
that a particular action would have given a high reward. The agent then keeps
selecting this action (even if there are better choices), as it would not have the

chance to try any other action.

o Exploiting: The agent uses the learned information to select action using the q-
table given a state, s. The agent then selects the optimal action from the g-table

using the equation presented above.

Q-Function: Every time, the agent performs an action, the Q-table is updated using

a value function better known as Q-function given by the formula:

Q(s1,a1) = (1 — @) x Q(st, ar) + ax (r + 7 x maz(Q(s; + 1, a))) (2.11)

where, 0 < o < 1 represents the learning rate. It controls the exploration phase. The
higher the learning rate more will be, the exploration. This will allow the agent to see
different states. As time progresses, the learning rate can be reduced to move more into
the exploiting phase. On the other hand, 0 < « < 1 represents the discount factor,
which can be considered as the weight given to the next action, r; represents the reward

for the action chosen at step t.

The agent continuously keeps learning through the exploration and exploitation phases,
as explained above, and starts selecting optimal actions as time progresses. Such selec-
tions are ensured by the fact that Q-learning converges over a period of time, allowing

the agents to select the optimal action given any state [74, 75].

In this thesis, We will be using Q-learning to enable systems to perform adaptations
and continuously learn and improve with every adaptation. This part will be further

presented in Chapter 5.

2.3 Quantitative Verification

Quantitative Verification (QV) or probabilistic model checking [76, 77], is a set of formal
techniques used to verify the correctness of a system that exhibits stochastic behaviour.
The correctness is verified based on certain specified properties, which are generally
based on the system’s non-functional requirements. These techniques makes use of
mathematical reasoning to guarantee the correctness. They are exhaustive by design
which implies that they check every possible execution trace of the system to perform

verification.
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These technique support the modeling of the systems and analysis of quantitative prop-
erties that concern costs/rewards (e.g., resource usage, time) and probabilities (e.g., of
an invariant violation, reachability, etc.). Due to QV techniques’ verification capabili-
ties, they are widely used mainly in the safety-critical systems to prove the correctness

of different components in the system [78, 79].

Figure 2.11 shows the overview of the different process involved during QV or proba-
bilistic model checking. As it can be seen, given a system and a set of non-functional
requirements, the first step is to generate a stochastic model of the system based on its
behaviour and to generate the formal specification of the properties to be verified. In
QV, systems are modeled as state-transition systems augmented with probabilities such

as discrete-time Markov chains (DTMC) and continuous-time Markov chains (CTMC).

DTMC: DTMC consists of a set of discrete states where each state represents the
different possible configurations of the system. The transition between the states are

based on a discrete probability distribution.

Definition 2.1. A labelled Discrete Time Markov Chains (DTMC) is a tuple C =
(S, s, R, L), where S is a finite set of states, s; € S is the initial state, R : S x S — R*
is the transition rate matrix, L : S — 24% is a labelling function which assigns to every

state s € S a set L(s) of atomic propositions valid in that state

Each value in R(s,s’) denotes the probability of transition from s to s’. Further each
transition is assumed to occur at a discrete time step. The specifications of the properties
to be verified for the generated DTMC model are written using PCTL (Probabilistic
Computation Tree Logic [80]). The DTMC model along with the specification in PCTL
can be extended with a reward structure that assigns a reward for every transition made
from one state to another as well as for attaining every state. With the help of reward

structure, verification of properties like what will be the expected response time of the
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system after n execution steps, how much energy will be consumed by the system after
n execution steps, etc. can be performed. However, real-time systems like IoT, where
the sensors acquire and communicate the data continuously cannot be modeled using
DTMC as the expression of time is no longer discrete, hence we make use of CTMC for

modeling our system in this thesis. This is further described below.

CTMC: As in the case of DTMC, CTMC also consists of discrete states, However,
the transition from one state to another is not just based on a discrete probability
distribution rather is determined based on a time value, ¢ such that on the lapse of t
units, a transition from s to s’ is enabled with a probability, A where the value of X is
based on a negative exponential distribution. CTMC’s are widely used for performance

and dependability evaluation [81].

Definition 2.2. A labelled Continuous-Time Markov Chain (CTMC) extended with
rewards is a tuple C = (S, s;, R, L, 1), where S is a finite set of states, s; € S is the initial
state, R : S x S — R™ is the transition rate matrix, L : S — 247 is a labelling function
which assigns to every state s € S a set L(s) of atomic propositions valid in that state,
and ¢ : S x S — RT is a transition reward function that assigns a reward every time a

transition occurs in the CTMC.

In the definition above, the transition rate matrix R determines how transitions between
states (e.g., capturing message exchanges between nodes in an IoT system) are triggered
in a CTMC. Concretely, the probability of a transition being triggered within ¢ time units

is equal to 1 — e fi(s:5)t (

a transition of rate 1/t will take on average ¢ time units to be
triggered). Moreover, the reward assignment function can be used to encode rewards
and costs, e.g., in an IoT system, the energy consumed by devices every time a message

is exchanged between two nodes in the network.

System properties are expressed using some form of probabilistic temporal logic, such
as Continuous Stochastic Logic (CSL) [82, 83]. In particular, CSL reward quantification
properties can be employed to analyze different QoS properties in an IoT system de-
scribed as a CTMC. For instance, the class of property R_,[C<=" ¢] allows quantifying
the reward r accrued up to time ¢ across all execution paths, ¢ of the system. An ex-
ample of a property employing this operator for quantifying energy consumption in an
R:[?rgy[c<:600]

ToT system might be , meaning “accrued energy over the next 10 minutes

(600 seconds) across all system execution paths.”

Going back to Figure 2.11, the model of the system generated along with the formal
specification of the properties to be verified forms the input to the model-checking pro-
cess. The model checking process performs an exhaustive verification on the system

model by ensuring that the different properties defined in the specification are verified.
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As an outcome, model checking process provides three different types of output: i) ver-
ification results, which is more like a boolean output which says if the verification of
a given property was successful or not. For example: if an IoT system in the next 10
minutes consumes more than 10 joules or not; ii) quantitative results which provides the
quantified value of the property to be verified for the given time interval. For example,
the expected value of the total energy that shall be consumed by the IoT system over the
next 10 minutes; iii) counter-examples, generate traces of the system that will negate
the property specified. For example, if the property to be verified was if the system
consumes more than 10 joules in the next 10 minutes, then this output will provide the
execution paths in which the total energy consumption is less than 10 joules. The topic
of quantitative verification is very broad and for further reading we refer the readers to
the works in [77, 81, 84].

The concepts presented in this section will be used further in this thesis to verify the
quality of adaptation decisions produced by ML algorithms and demonstrate how effec-
tive the use of these techniques can further allow the ML to converge towards optimal

decisions. This will be presented in detail in Chapter 6.

2.4 Microservice Architectures: An Overview

In this section, we will provide a brief overview of microservice architectures. We then
provide details on two specific techniques used in microservice based systems: 1) Service
Discovery and 2) Service Mesh. We use this further in Chapter 7 to demonstrate the

generalizability of our overall approach.

As defined by Martin Fowler in [85], Microservice architectural style is an approach to
developing a single application as a suite of small services, each running in its process
and communicating with lightweight mechanisms, often an HTTP resource API, accom-
plished using REST. Microservice based architectures (MSA) have gained tremendous
popularity among the industry practitioners and researchers ever since technology giants
like Amazon, Netflix, etc. started adopting them [86, 87]. The main reason for such
popularity is also due to the out-of-the-box features provided by microservices such as
scalability, flexibility, maintainability, agility, etc. crucial for developing any modern

software systems.

Traditional enterprise applications are composed of three tiers, i) A client tier, which
consists of the HTML interface powered by JavaScript or its variants; ii) database, which
consists of the different tables with all the information required by the application,

usually accomplished with the help of a relational database management system and iii)
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a server-side back-end application, which consists of the business logic and is responsible
for interacting with the database and accomplishing the functionalities of the application
by serving the requests of the client. Such a back-end application is usually implemented
using one of the frameworks like J2EE, .NET, etc. by following all the conventions
such as separation of concerns through classes, packages, design patterns, etc. This
type of an application, in general, is referred to as a Monolithic application. However,
many challenges exist: i) The entire code is deployed as one piece and making even
small changes requires the deployment of the entire application back-end; ii) Strong
coupling between the development teams. One team might have to wait for another team
to complete a specific feature, which slows down the overall development process; iii)
Even though horizontal scalability can be achieved by distributing the back-end across
multiple servers, vertical scalability is a big issue as adding new features or components
might lead to modifications in different parts of the application back-end; iv) The entire
application is tied to one language, which reduces flexibility as adding a new feature that
might have native support in other languages is not feasible; v) The complete data is
stored on one database, and this usually has strong coupling with the application code,

which further reduces flexibility and maintainability, and the list goes on.

The challenges of monolithic application listed above have led to the emergence of the
MSA where: i) Each service focuses on addressing specific functionality of the overall
application; ii) The development teams are no longer tied together as each team can be
assigned a particular functionality and can concentrate on developing specific microser-
vices leading to increased business value; iii) Both horizontal and vertical scalability is
supported as adding a new feature means adding microservice or just modifying one
specific service and not the entire application code; iv) Different microservices can be
written in various languages, and the communication between them can be achieved
via REST API’s; v) There is no centralized coordinator, and every service can have its
database (which can, of course, be implemented using different technologies). In fact,

in an ideal MSA, no two microservices share the same database [85].

MSA arises from the broader area of Service Oriented Architecture (SOA) [88], and
there are several noticeable differences between them. For example, MSA’s design is
driven by a share-nothing philosophy to support agile methods and promote isolation
and autonomy. Instead, SOA adopts a share-as-much-as-you-can philosophy to promote
a high degree of reuse. Another significant difference is that MSA mainly focuses on
service choreography, while SOA relies on both service orchestration and service chore-
ography [89]. However, the main difference is the dynamicity of microservices because
each microservice could be deployed and executed using multiple instances in the same
or different servers. The number of locations of running instances could change very

frequently. This issue may happen due to scaling up/down, failure of instances, etc.
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Hence, whenever a client tries to communicate to a specific microservice, it needs to
know which instances are available. This is achieved in MSA using a dedicated mecha-
nism known as Service Discovery. Even though MSA provides many advantages and is
in line with the modern software systems’ requirements, there are also a lot of challenges
that exist when using MSA [90]. These include: i) handling failures of microservices; ii)
integration testing and deployment are challenging as each service release needs to be
properly versioned and managed; iii) service instances might be subjected to resource
constraints, thereby affecting the overall QoS; iv) Inter-service calls over the network
may have a higher cost in terms of network latency and message processing time than

in-process calls within a monolithic service process.

In this thesis work, we will be applying the approach proposed to MSA based system
to solve two specific challenges: i) To perform effective and efficient service discovery in
generic microservice-based systems ii) To develop a self-adaptive architecture to handle
the adaptation needs when MSA is applied to [oT. This approach will be further pre-
sented in Chapter 7. In this next subsections, we will be elaborating on some background

details of two specific MSA mechanisms, which will be later used in Chapter 7.

2.4.1 Service Discovery in Microservices

Service discovery is a mechanism used by MSA, as described above, to enable the

clients/application front-end to discover the location of the available instances of the
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desired microservice. When a client (which can be another microservice itself) needs to
invoke a microservice, using a REST API, it needs to know the network location (IP
address and port) of an instance of the microservice to be invoked. In a traditional
application running on physical hardware, the network locations of service instances are
relatively static. For example, your code can read the network locations from a configu-
ration file that is occasionally updated. However, in a modern, cloud-based microservices
application, this is a much more difficult problem to solve, as shown in figure 2.12. As
we can see, a client (which can be an API gateway, or even a microservice itself) wants
to communicate to microservice A. As per the MSA| the client sends the request to an
API gateway or a router component (which can be a microservice itself), responsible
for routing the request to the concerned microservice. However, as we can see, there
are multiple instances of microservice A. The client(s) will not be able to decide, which
instance the request needs to be routed to (represented by dotted lines in figure 2.12).
This issue arises because every instance, in general, is deployed in a different ports in the
same machine or entirely different machines. Moreover, each instance offers a different
QoS, and this also needs to be considered. Hence the client requires the support of a
mechanism that supports the services to be routed to the respective instances. This is

achieved through the process of Service Disovery.

There are two main service discovery patterns: client-side and server-side [91]. When
using client-side discovery, the client is responsible for determining the network locations
of available service instances and routing requests across them. The client queries a
service registry, which contains a simple registry of available service instances. The
client then uses an algorithm (for example a load-balancing algorithm) to select one of
the available service instances and sends a request to it. In the case of a server-side
discovery, the client sends a request to a load balancer or a secondary component, which
further queries a service registry and routes to one of the available instances based on
some criteria (e.g., load balancing). The usage of both patterns has its advantages
and disadvantages. For instance, in a client-side pattern, the client has the complete
autonomy of selection while there is an overhead that every client needs to be made aware
of the services in their registry. On the other hand, server-side discovery abstracts this
complexity from the client, but this would mean an additional component needs to be

deployed and maintained to handle service discovery.

In Chapter 7, we provide further details on the different challenges in service discovery in
MSA and how using a combination of ML techniques (based on the overall idea presented

in this thesis) can support effective and efficient service discovery.
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2.4.2 Service Mesh

In reality, an industry-grade system based on an MSA may consist of thousands of
microservices replicated to thousands of instances. Each microservice may have to com-
municate with other microservices; few microservices might share a common database,
and the communication with the database needs to be handled reliably; at a given point,
a given microservice might receive a large number of requests or might face some perfor-
mance issues, etc. Besides, each communication between the microservices or between
microservices and databases must be secured. It must happen through an encrypted
channel to satisfy the security requirements. One way to handle this issue is to develop
a microservice with all these features of routing, security, etc. However, this would mean
that all the microservices should implement similar logic and offer the same functional-
ity regarding security, routing, load balancing etc. Such implementation will result in a
massive overhead for the development teams as they would have to focus on handling
the infrastructure level issues in addition to focusing on the business logic. Moreover,
once microservices are deployed, it is challenging to debug and understand the root
cause [90] in case of failures. This is where the role of service mesh becomes important
as it provides all these features out of the box, thereby allowing the development teams

to focus on the business logic.

Service mesh (also known as Sidecar) is a configurable low-latency infrastructure layer
that can reside within each microservice. Figure 2.13 shows the image of an MSA based
system with service mesh (adapted from [92]). It consists of two parts, Data Plane and
Control Plane. The data plane represents the service mesh section, which resides with
the microservices as sidecars and provides the different features. The Control plane, on
the other hand, represents the centralized section of the service mesh, which updates the
sidecars configurations, collects different types of metrics data obtained from sidecars,
etc. It provides a command-line interface (CLI) for the developers/admins to manage
the sidecars. Further, it also provides a GUI for managing the application. Some of the

key features provided by the service mesh are as follows:

Circuit breaker : Service meshes provide inherent support for Circuit breaker pat-
tern [93], which allows identifying and removing unhealthy instances from the main
instance pool. Further, it also can add the instance back to the pool after proper guar-
antees on their status. This service mesh functionality allows the prevention of cascading

failures, which otherwise might affect the overall QoS of the system.

Security: The service mesh provides support for authentication and authorization
mechanisms for requests made from external clients and microservices within the ap-

plication back-end. It thereby ensures that only requests that are validated are passed
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FIGURE 2.13: Overview of Service Mesh

to the instances. Further, to strengthen the security, the mesh also provides mechanisms
to encrypt and decrypt all the requests sent to and responses that go out from the service

instances.

Traceability and Observability: Since every request and any communication made
to/from the instance passes through the service mesh, and it provides a clear trace of
the events allowing the developers or admins to troubleshoot in the event of any failure
or a security breach. Further, the sidecars can collect the different metrics data of each
microservice, such as the response time, network delay, throughput, etc. and this can
be further obtained from the control pane. These metrics can be leveraged to improve

the overall quality, and they can also be visualized using different tools like Grafana*.

The usage of a service mesh is recommended as one of the means to perform self-
adaptation in MSA [90]. We incorporate service mesh to develop a data-driven self-
adaptive architecture for MSA based IoT (MSA-IoT) systems, and this is explained in
detail in the second half of Chapter 7.

2.5 Univaq Street Science Case Study: The NdR

In this section, we will be providing details on the case study, which we will be using to

evaluate the different parts of our approach in Chapters 4, 5, and 6.

The Univaq Street Science is an event organized in the context of the European Re-

searchers Night (Notte dei Ricercatori (NdR)) in L’Aquila. It is a scientific exhibition

“https://grafana.com



Background 44

Automated Parking Control Subsystem

Parking 1 Parking 2

Parkingl
Controller

Parking2
Controller

" — —~

o ~— e = =
Parking Mat Parking Mat Parking Mat Parking Mat

Entrance Exit Entrance Exit

————— e e —— — 4

Parking 1 Parking 2
. _______Dbispy ____________|_______|\______________Dspy _____ a
-
Bl Database | >
Compute
__________________________________________________________ .
Automated Venue Control Subsystem
Venue 1 Venue 2 Venue 3
Venuel Venue2 Venue3
Controller Controller

Controller

185 e i S e

—_————— e e —— —

4 4 4
Handheld ~— People Counter Handheld N People Counter Handheld People Counter
RFID Exit RFID Exit RFID Exit
Reader Reader Reader
Venue 1 Venue 2 Venue 3
Display Display Display
S M M 4

FIGURE 2.14: High-level architecture of the NdR Case study

event organized by the University of L’Aquila °. In this event, the research community
and public are brought together from the morning until late night to share a combi-
nation of entertainment and information. This event takes place throughout the entire
city. As an example of a demonstrative scenario, we will take the NdR held in the
city center, in which performances, lectures, demonstrations, workshops take place in
its squares, main streets, and buildings. From our experience in organizing this event
in the city, we captured some sources of evidence: i) About 35,000 visitors are coming
to the NdR every year; ii) Late hours usually have more crowds than early hours; iii)
The weather (e.g., rain, hot) and its changes influence visitors’ preferences in what to
see and where to stay more; iv) Visitors cannot quickly locate the availability of parking
lots, thus increasing the traffic in the center; v) There are different entertainment events
in various venues with limited capacity, and there is no provision for visitors to get the
seat availability of venues. Our research group has been invited to provide new services
to improve the quality of the visiting experience. Without the loss of generality, in this
chapter, we focus on two such IoT services planned for NdR (Figure 2.14 shows the
overall architecture of the NdR IoT system). These services are related to parking lot

control and venue crowd management.

®https://nottedeiricercatoriaq.it/
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2.5.1 Automated Parking Control

The city center is the most attractive place. Thus, more crowds are found in this
location. However, only two parking lots are available with a capacity of 200 and 150
parking slots, respectively, and these parking lots are created in an ad-hoc way on a day
before the event. This means that the visitors need to be notified about the availability
in a particular parking lot and redirected accordingly to reduce the traffic congestion
in the center. These parking lots are located closer to the main venue, where the most

important event takes place.

2.5.2 Automated Venue Entry Management

During the NdR event, there will be some big events in multiple indoor venues in the city
center. Each of these venues hosts some entertainment as well as infotainment events.
However, there are space limitations in each of these venues, which allows entry to only
a certain number of visitors with entrance tickets at a given instant of time. (In this
work, we focus on three venues located in the city center with a seating capacity of 500,
200, and 200 seats, respectively). This calls for services that can automatically manage
the venue entry by considering the number of people inside the venue and providing

real-time updates to the visitors on venue availability.

One of the important constraints we have in the NdR case (Section 2.5) is the lack of
availability of external power points in the parking lots or the venue entrances. Hence,
we developed an IoT based solution (Figure 2.14) for automated parking control which
uses battery-powered parking mats on the entrance and exit points of each of the parking
lots. It then provides real-time notifications via a display on the parking lots and sends
information to the central database that can be further sent to mobile applications.
Similarly, for the automated venue management, we developed a solution that allows
the venue manager to verify the entrance tickets using hand-held RFID readers. It also
uses people counters at the venue exits to get real-time venue availability. In this way,
the users can be redirected to the nearest parking lot based on their venue preference

and venue availability.

This chapter described the different techniques underlying this thesis. In the next chap-
ter, we provide a detailed overview of the various works done in self-adaptation related

to the work presented in this thesis.



Chapter 3

State of the Art

Self-Adaptive systems, by definition, are systems that can handle different types of
uncertainties. There has been an extensive amount of literature work that has been
done in the area of self-adaptive systems. An elaborate survey on different approaches to
engineer self-adaptive systems was presented by Macias-Escrivd et al. [39] and Krupitzer
et al. [31]. Further, a detailed survey on self-adaptation for Cyber Physical Systems
(CPS) was presented by Muccini et al. [30].

In this chapter, we present the subset of state of the art in the vast domain of self-
adaptive systems related to the overall approach presented in this thesis. Based on
this, we first divide the related works done into three different categories based on the
parts of the approach presented in Chapters 4, 5, and 6. These categories presented
as each subsection in this chapter are as follows: i) Self-adaptation in IoT}; ii) Machine
learning in Self-adaptation; iii) Quantitative verification and Machine learning in Self-
adaptation. Besides, part of the approach presented in Chapters 4, 5 and 6 is applied to
perform context-aware service discovery in MSA, and further to develop a self-adaptive
architecture for MSA based IoT systems (Chapter 7. Based on this two more categories
of related works are presented namely: i) Context-aware service discovery in MSA; ii)

Self-adaptation in MSA based IoT.

3.1 Self-Adaptation in IoT

IoT systems are known for the inherent dynamism primarily due to heterogeneity and
interoperability that exists [22]. Further, they are subjected to different uncertainties
from the environment. Towards this, there have been some works done towards self-

adaptation in IoT systems. These are reported below.

46
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Francisco et al. in his doctoral thesis [94] came up with a Model-Driven Engineer-
ing (MDE) based approach for performing self-adaptation in IoT systems. The work
mainly came up with two new contributions: ii) A new middleware to manage software
updates in IoT systems. This approach uses the concept of models@run.time for per-
forming adaptation at run-time coupled with the Kevoree for IoT framework ' which
is built based on the concepts of Component-based software engineering (CBSE). This
approach is unique in the fact that it takes into account the memory constraints on the
IoT devices as well as energy consumption. The proposed method was also validated
for efficiency using a real use case; ii) Another important contribution was an algorithm
named Calpulli, which will allow the distribution of components in IoT systems from
a central repository in the event where adding/removing of components is necessary.
Such a distribution was again accomplished through the use of models@run.time. Even
though the approach is very efficient and scalable, the approaches have a set of pre-
fixed behaviors/components to replace, and the adaptations are performed reactively.

Moreover, the type of adaptation performed does not improve over time.

Another MDE approach for tackling the challenges associated with IoT architecture
was demonstrated by Cliccozzi et al. in [95]. The proposed approach also uses mod-
els@run.time method to carry out self-adaptation in the event of any uncertainties. The
authors demonstrate the approach’s effectiveness using a smart light use case where
the controller intelligently switches configurations based on an observable event. Even
though the proposed approach was effective in the case study used, the different possible
adaptation scenarios during run-time are modeled into the system at design time. This
may not hold in a practical scenario as it entirely depends on the potential uncertainties
that may arise from the deployment environment. Moreover, as in the previous work,

the adaptation performed is reactive in nature with knowledge gained.

Fahed Alkhabbas et al. came up with the idea of Emergent Configuration (EC)) for
engineering IoT systems [96, 97]. They provide an architecture for EC, which consists
of an adaptation manager responsible for performing self-adaptation in the event of
any uncertainties in the environment or if there is any change in user goals. They use
the MAPE-K loop to achieve self-adaptation, and the adaptation is based on a goal-
oriented approach. The trigger to adaptation is a change in user goals or possible future
events (expressed by messages). The architectural framework supports both proactive
and reactive scenarios based on a set of rules; however, the approach focuses more on
the overall framework and does not discuss how proactive adaptation can be performed.
Moreover, the performed adaptation itself does not improve or evolve with time, and
the adaptation performed is enacted at the application level and not at the level of

architecture.

"http:/ /kevoree.org
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Mirko D’Angelo et al. developed an MDE based framework for self-adaptive CPS [98].
It uses the MAPE-K loop to implement self-adaptation by providing a domain-specific
environment (DSE), which allows the users to specify the desired MAPE-K control loop
model. It also provides a simulation platform for simulating the designed self-adaptive
CPS and produces simulation results which can further be used to improve the system
architecture. The approach is more for performing self-adaptation at design-time. As
the authors describe the fundamental limitations, the adaptation happens at design-
time, the scalability of the framework is not known yet, and performing validations of

the adaptations performed requires more investigation.

An approach to performing self-adaptation in IoT systems using the ActivForms [99]
run-time environment with support for formal guarantees (provided using statistical
model checking) was presented by Iftikhar et al. in [100]. The environment supports
the deployment and execution of MAPE-K based feedback models to realize specific
adaptation goals. Further, the environment supports visualization of the models as well
as run-time updating of models. The approach’s effectiveness was demonstrated by
applying to an IoT system to satisfy energy and packet loss constraints. The adaptation
logic used was reactive in nature. Also, as per the evaluations, the approach takes more
than 2 minutes for executing an adaptation. The time taken is due to the overhead of
run-time model checking. This may not be optimal as the plan is identified and executed

post the goal violation.

A QoS-driven approach to self-adaptive critical IoT systems based on a custom DY-
NAMICO reference model and non-functional properties was proposed by Gatouillat et
al. in [101]. The approach synthesizes a dynamic controller for adaptation using the La-
bel Transition system. States denote the system’s possible failure states. The transition
represents the different rules that allow the system to adapt. The proposed approach
was further evaluated on an e-health based case study with safety as the critical non-
functional properties. The limited evaluation of the approach shows promising results.
The approach is reactive in nature, and this is in line with the target domain. However,
one key concern is the scalability of the overall approach. Also, generating custom rules
for all possible scenarios upfront is a costly process. Also, the adaptations suggested are

reactive in nature and not proactive.

D.Weyns et al. proposed an Architecture-based adaptation approach, MARTAS, to
manage IoT deployments [102]. The approach uses a combination of run-time models
and statistical model checking techniques to accomplish different self-adaptation goals.
The proposed approach was developed to reduce the exhaustive verification in state-of-
the-art techniques to generate adaptation decisions in run-time. The approach’s effec-

tiveness was demonstrated by applying to a real-world IoT system developed for security
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monitoring with energy consumption and packet loss constraints. Even though the ap-
proach was found to be efficient with respect to state-of-the-art exhaustive verification
mechanisms, the approach, as others presented above, performs reactive adaptation.
The time taken is close to a minute on average due to the overhead of run-time model-
checking in reactive setup. Moreover, with every adaptation, the approach does not

gather feedback to automatically learn and improve future adaptations’ effectiveness.

A framework for architectural self-adaptation in IoT, TAS, was proposed by M. T.
Moghaddam et al. in [103]. The approach uses Queuing networks to perform adap-
tations of the architecture. The performed adaptation switches the architecture from
one architectural pattern to another based on the QoS constraints. The approach’s
effectiveness was demonstrated through the simulated version of a real IoT ecosystem
developed for a smart grid system with constraints on response time. The proposed
approach is reactive in nature, and the use of queuing networks makes it more a design-
time approach than a run-time approach. The approach does not improve the selection
of patterns based on historical feedback. Moreover, the correctness of such selection is

not guaranteed.

What listed above are works that are generic concerning the application of self-adaptation
in IoT. There have also been many works that have been done in the field of energy-based
adaptation. These works have been reported in the survey by Moghaddam et al. [104].
The survey also states that only a small number of works focus on energy-based adap-
tation in IoT or CPS in general. In the remainder of this section, we provide some of
the works explicitly related to Energy-based self-adaptation in IoT and CPS domains.
These works also serve as one of the motivations for the part of the approach presented
in Chapter 4.

A generic context-aware adaptive framework for reducing energy consumption in Ma-
chine to Machine communication systems was proposed by cost et al. [105]. The frame-
work uses a set of operational elements such as inter-arrival time, average packet size,
data filter setting, etc. to perform adaptation. The different context information related
to the various machine devices is first fed into a Machine To communication Server
(MTC), responsible for analyzing the information and suggesting modification in the
operational elements to improve energy efficiency. The approach was shown to be ef-
fective in different scenarios. However, the system’s energy efficiency as a whole can
be improved more if it is possible to foresee the energy consumption and perform the

necessary adaptation at an early stage to avoid a possible energy violation.

Moreno-Cano et al. came up with a smart environment management architecture sup-
ported with IoT capabilities to achieve smart and sustainable environments [106]. The

approach mainly uses the user-centric data generated along with the location and context
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information for performing adaptation. These data are then analyzed using data mining
and Al techniques for automatically adjusting the appliance’s operational parameters,
such as automatically reducing or increasing heating inside a room. The approach was
also shown to be effective in a smart building scenario. However, the approach does
not consider the energy efficiency from the architectural perspective but rather from the

operational perspective.

Wunderlich et al. propose a way to improve the performance in communication among
IoT devices and thereby improve energy efficiency using network coding techniques [107].
The approach was evaluated on Big.Little architecture was found to be very effective in
maximizing throughput and minimizing the energy consumption, as it allows schedul-
ing of encoding and decoding of data in multiple threads than restricting to use of
single threads. Though the performed approach was effective in reducing the energy
consumption of the IoT motes, thereby increasing their lifetime, one of the main issues
is an added complexity that needs to be handled due to the encoding and decoding.
In near-real-time systems, this can have an impact on the performance. Moreover, the
encoding and decoding operation, though little, consumes energy. This complexity can
be minimized if the behavioral or structural adaptation performed does not necessarily

add complexity in the executing system itself (managing system).

Massimiliano Raciti et al. proposed an approach based on anomaly detection to detect
security vulnerabilities of a CPS [108]. The approach uses a combination of machine
learning and data-mining techniques to detect anomalies in the system. The approach
was shown to be effective in various scenarios. However, as the authors mention, the
adaptation mechanisms used are rudimentary and require human intervention. Also, the

adaptation is applied specifically to the security aspect and not on the general context.

Seiger et al. propose a self-adaptive workflow for CPS using the MAPE-K loop [109].
They extend the concept of BPM processes to manage workflows in CPS. The approach
applies the MAPE-K loop to monitor and analyze a given system’s execution using sensor
data and context data. The correlation of the collected data and the system’s execution
flow is used to determine the need for adaptation. The approach is further shown to
be effective by applying it in a smart home scenario where the overall approach aims to
ensure optimal lighting conditions in an energy-efficient way. The adaptation performed
is again reactive, and the proposed approach performs adaptation at the application
level (changing lighting condition by increasing or decreasing brightness) and not at the

architectural level.

Differently from the related work reported above and other self-adaptation approaches
in general [31] which are majorly reactive in nature, we have developed an approach

(Chapter 4) that identifies the need for adaptation at an early stage by proactively
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forecasting energy consumption using machine learning models and time-series analysis.
This forecast further leverages the decision-making process. The effectiveness and effi-
ciency and efficiency of the approach were evaluated by applying it to the IoT system
developed for NdR case study (Section 2.5). Moreover, to the best of our knowledge, we
are not aware of any work which extensively discusses with detailed analysis on how the
choice of prediction horizons, along with decision periods, can affect the effectiveness

and efficiency of adaptations in a proactive setup.

3.2 Machine Learning and Self-adaptation

In this section, we report the works which use machine learning for performing self-
adaptation. While this section elaborates only on the works specific to machine learning
and self-adaptation, the next section provides details on the works that use a combination

of machine learning and quantitative verification for performing self-adaptation.

Dongsun Kim et al. provided a reinforcement learning-based approach [37] in planning
dynamic adaptation for architecting self-managed software. The authors categorized
planning into two types, 1) off-line planning, where the developers of the software con-
sider all the possible scenarios that the system may encounter and creates a rule-based
engine which will aid adaptation 2) online planning where the software automatically
learns and understands the relationship between environmental changes and software
configurations. The online planning makes use of Q-learning. The effectiveness of the
approach is demonstrated with the help of a robotic scenario. The adaptation applied is
more at the application level (e.g., enabling the robot to perform better action and not
adapting the robot’s architecture itself). Moreover, as pointed out by the authors, one of
the issues is that the g-leaning may take time to understand the optimal configuration.
Hence, an off-line phase is used. This adds an extra layer of complexity. Moreover, since
the approach is reactive, it takes time to apply the configuration and get the feedback

of the adaptation performed.

Feature oriented self-adaptation framework, FUSION was presented by FEsfahani and
FElkhodary et al. [110, 111]. The approach uses machine learning techniques with support
for online learning to select the best adaptation plan in a user-goal violation. The
approach uses two processes, sharing a knowledge base in the managing system, namely
the learning cycle and adaptation cycle. The former is responsible for determining the
effect of adaptations to create better adaptation plans using machine learning, while the
latter is responsible for detecting any goal/threshold violations to trigger adaptations.
The approach uses features and inter-feature relationships to reduce the configuration

space for performing run-time analysis and planning. It supports different algorithms
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like linear regression, M5 model tree, and regression using SVM [45] to achieve the same.
The effectiveness of the approach is demonstrated through a case study. As described
by the authors, the approach is reactive in nature. It requires the engineers to define
the possible features that can be used for run-time adaptations for various possible

uncertainties.

An Adaptation Approach for Self-Adaptive Sensor Networks using predictions was pro-
posed by Anaya et al. [112]. They proposed a predictive self-adaptation approach
using machine learning and models@run.time techniques for performing architectural
re-configurations. The approach is built on the top of MAPE-K loops, where it uses
predictive models in the Analyze activity to predict the need for adaptation proactively.
The approach was shown to be effective using a case study of forest fires, where the goal
is to predict the increase/decrease in temperature and adapt the sensor configurations.
It uses a classifier built using a Multi-layer perceptron to predict the event of a threshold
violation (we use MLP in Chapter 4 as a baseline). The approach uses the time-series
data produced by the sensors (and not QoS itself) for performing the adaptation. Train-
ing a classifier is a time-consuming process, and the approach uses a pre-trained model
inside the Analyze activity and does not elaborate on how the issues related to concept
drift [113] are handled. Moreover, the adaptation process, as such, does not improve

with every adaptation performed.

Han Nguyen Ho et al. came up with a model-based reinforcement learning for planning
in a self-adaptive software system [114]. The authors point out the fact that many a
time, when a software faces an uncertainty, it is very imperative that it has explicit
information of the possible consequences that might happen when a particular policy
of adaptation is taken. The approach uses a Bayesian-based reinforcement learning
where the different possible uncertainties are taken into consideration at design-time
and whenever an uncertainty happens at run-time, the model performs an adaptation
step, and this will be given a reward. The adaptation is applied if the chosen policy
gets the best reward when applied to the model. This adaptation is then applied to the
system. The approach was demonstrated with the help of a case study, and it was shown
that with the prior knowledge of uncertainties through models, a self-adaptive software
system could achieve higher and more stable performance. The proposed approach is
reactive in nature, where every adaptation before applying on the system is applied to
the model to check the effectiveness. This reactive nature adds to the cost in terms
of the time taken to perform the adaptation after a violation is detected and the QoS
violation that sustains due to the delay. Moreover, as stated by the authors, there is an

added computational complexity of using model-based reinforcement learning.
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Pawel Idziak et al. [115]performed an analysis of different decision-making techniques
in dynamic self-adaptive systems. They considered a use case of a VM placement prob-
lem for performing the analysis. They used three different algorithms for performing
decision making for self-adaptation, Artificial Neural Networks (ANN) and Constraint
Satisfaction Problem (CSP) based method and Q-Learning. It was observed that the
quality of the decision made was good when the training data was good enough in the
case of ANN, and Q-Learning performed better for decision-making than ANN. How-
ever, it was slower, and CSP performed well in terms of speed and decision quality.
However, the proposed approach was reactive. As discussed by the authors, one of the
major limitations is that the approach was implemented for a minimal use case where

the system’s complexity was also very less.

Tao Chen et al. came up with a multi-learner approach for self-adaptive and online
QoS Modeling for Cloud-Based Software services [38, 116]. The authors combined mul-
tiple machine learning algorithms for adaptively modeling QoS function for cloud-based
Software services. They demonstrated the approach using a use-case with a realistic
workload. The basic QoS properties such as reliability, throughput, response time, and
availability were considered for evaluation, and it was found that using multiple learners
to model the QoS function offered better accuracy for different QoS properties. This, in
turn, provides the cloud engineers with detailed predictions on the possible QoS values.
Also, it can be used for auto-scaling of the cloud dynamically, depending on the QoS
predictions. The approach is proactive in nature with a short horizon of 1 time-step and

uses a semi-automated adaptation approach.

Moreno et al. employ time-series forecasts combined with probabilistic model check-
ing [34] and stochastic dynamic programming to perform proactive latency-aware adap-
tations based on a look-ahead horizon considering the uncertainty that may arise from
the environment. The approach’s effectiveness was demonstrated by applying the mRU-
BIS case with a utility-based goal to increase revenue and maintain response time within
a specified threshold. The approach uses time-series forecasts for predicting the request
arrival rate and not the system QoS itself. Moreover, the approach does not use any
feedback to improve the adaptation process continuously. In other words, the approach
itself does not gather the knowledge gained by performing the adaptation to improve

the adaptation process further.

An agent-based framework for performing self-adaptation for IoT application was pro-
posed by do Nascimento et al [117]. The framework consists of three layers and supports
neural networks, evolutionary algorithms, and finite state machine based controllers to

carry out decision making for performing adaptation. The usefulness of the approach is
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demonstrated through use on two different IoT applications. Identifying different learn-
ing algorithms that could be used for self-adaptation is put forward as one of the future
research directions. The proposed approach is reactive in nature, where the adaptation
is triggered in the event of a goal violation. In this work, the adaptation using machine

learning is performed only at the application layer and not at the architectural level.

A self-adaptive mechanism using machine learning and reinforcement learning for adap-
tation in autonomous systems was proposed by Piergiuseppe Mallozzi et al. in an ex-
tended abstract [118]. The approach proposes a reinforcement learning mechanism for
deciding at run-time such that the safety invariants of the system are preserved. Suppose
any decision made by the system violates the invariants. In that case, the monitoring
process prevents the decision from being executed, and this, in turn, is given as feedback
in terms of a reward function by the monitoring process to the decision making process.
This ensures that the system learns and evolves continuously over a while. The concrete
realization of the approach and validation of the approach is something that remains
open. Moreover, similar to [37, 114], this approach uses reactive reinforcement learning
which can be costly due to the exploration phase needed for reinforcement learning (refer
Section 2.2.4).

The related works reported above that use machine learning are mainly reactive in na-
ture. Further, in most cases, the adaptation performed does not use feedback to improve
the adaptation process. Differently to this, our approach identifies the need for adapta-
tion at an early stage using machine learning models. It uses model-free reinforcement
learning techniques (compared to the traditional techniques) to determine the optimal
adaptation strategy. Unlike the reinforcement learning-based approaches presented in
[37, 114, 118], the proactive nature of the approach ensures that any mistakes dur-
ing decision making are handled effectively. This is because the approach allows the
decision to be modified before the actual occurrence of any threshold/goal violation.
The feedback of the strategy selected is used to improve the decision-making process,
thereby enabling the architecture to constantly learn with every adaptation performed
and conversely execute better adaptations due to the gained knowledge. This is further

presented in Chapter 5.

3.3 Quantitative Verification and Machine Learning in Self-

adaptation

This section lists the works which combine machine learning and quantitative verification

to perform self-adaptation. This field of applying the combination of both techniques to
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self-adaptation is relatively new. There has been only less research done so far in this

area to the best of our knowledge. We report these works below.

An approach that uses a combination of machine learning and statistical model checking
for performing effective adaptation was proposed by Van Der Donckt et al. [119]. The
approach is integrated with the Analysis activity of the MAPE-K loop. It uses machine
learning techniques to identify the best set of adaptation options from a larger adaptation
space. These options are further verified using statistical model checking, and the best
option is selected using a cost-benefit based analysis. The approach’s effectiveness is
demonstrated by applying on an IoT system where the approach reduced the adaptation
space by a good margin compared to traditional techniques. The proposed approach
is reactive in nature, where the trigger for adaptation is a violation of any goals or
constraints. The approach does use the feedback to improve the model further, but this
improvement is not immediate in a sense. The approach still requires some adaptation
cycles to train the model. Moreover, this process adds to the time consumed by the

approach for generating an adaptation decision.

Jamshidi et al. [120] describe an approach that uses machine learning techniques with
quantitative planning based on probabilistic model checking for self-adaptation of au-
tonomous robots. The approach was implemented by extending the Rainbow framework
of self adaptation [51]. Machine learning is used in this approach to find a set of Pareto-
optimal configurations from a large configuration space. The identified Pareto-optimal
set is further verified using probabilistic model checking to determine the best adap-
tation strategy. Evaluations show the approach’s effectiveness in a robotic scenario
(adaptation space with million configurations) with a set of goals and constraints. The
approach demonstrated significant improvements over the baselines. However, the ap-
proach is reactive in nature, where it uses learning to aid quantitative verification and
not the other way around. Also, machine learning does not receive feedback to improve

its decision-making based on the results of verification.

Quin et al. presented an approach that enhances the traditional MAPE-K loop to sup-
port the use of machine learning for efficiently analyzing large adaptation spaces [121].
The approach enhances the MAPE-K loop by adding a learning module that is further
used at run-time to reduce the adaptation space consisting of a large set of adaptation
configurations to a smaller subset. This is then fed to an analyzer module, which exe-
cutes the analysis on the reduced subset of configurations. The approach uses statistical
model checking to analyze further and verify the configuration subset to select the op-
timal adaptation plan. Besides, the approach employs online learning to improve the

machine learning model in run-time. It is applied to an IoT system to show the overall
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effectiveness. The approach, similar to other approaches sated above, is reactive in na-
ture. This reactive nature further reduces overall efficiency as the total time to perform
prediction, selection, and further verification is high. Moreover, similar to [119], the

time taken to obtain the feedback and further learning is not an immediate process.

A recent work that employs a combination of deep learning techniques and statistical
model checking for performing self-adaptation was presented by Van Der Donckt et
al.[122]. The approach proposes an architecture based adaptation using the MAPE-K
loop. Similar to [121], this approach extends the MAPE-K loop. However, instead of
traditional machine learning, it leverages deep learning techniques to reduce adaptation
space with a large set of available configurations. The approach works in two steps,
where it first identifies the set of possible adaptation options using a deep learning-
based classifier. The approach then uses a deep learning-based regression model to
rank the adaptation set in the order of preference. This ranked order of a reduced
set of adaptation options is verified by a statistical model checker to identify the first
one satisfying the goal. The approach is evaluated by applying to an IoT system with
multiple adaptation goals. Even though the approach is shown to reduce adaptation
space effectively, one issue similar to other approaches is the approach’s fully reactive
nature. Also, the use of two deep learning models with statistical model checking in real-
time affects efficiency. Although the approach uses feedback to perform online learning,

deep learning usage implies that this time will be higher to further improve the models.

Apart from the one presented by Moreno et al. [34], there has also been some work
done in proactive adaptation. An approach based on model predictive control principles
with analytical models that capture the relation between control parameters and system
outputs was proposed by Angelopoulos et al. [35]. In their approach, models are used to
predict system behaviour and compose adaptation plans. While Moreno’s approach [34,
123] does not use feedback from performed adaptations to continually improve decision-
making, Angelopoulos’ [35] does. However, it focuses on parameter value tuning as

control actions instead of the complex structural changes present in (IoT') architectures.

The final part of this thesis’s overall approach uses a combination of model-free rein-
forcement learning and quantitative verification (using probabilistic model checking) for
proactive decision-making. Unlike all the existing approaches mentioned above, it em-
ploys quantitative verification as a means to verify the feasibility of decisions produced by
reinforcement learning concerning the system context. It further uses the feedback of the
verification to help reinforcement learning achieve faster convergence towards closer-to-
optimal decisions. Moreover, since the approach uses model-free reinforcement learning,
the time taken to adapt is significantly less. Further, the approach uses two-way feed-

back obtained from quantitative verification and the continuous proactive QoS forecasts
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to converge faster towards optimal adaptation decisions. In short, works reported above
that combines machine learning and quantitative verification employ machine learning
as an aid for reducing the decision space for quantitative verification whereas, we use
quantitative verification as an aid for verifying the decision of machine learning. This

part of the approach is described in detail in Chapter 6.

So far, we elaborated on different works done in the field of self-adaptation in the IoT
domain. We further discussed the works that used machine learning to perform self-
adaptation and works that used quantitative verification alongside machine learning to
achieve better effectiveness. As described at the beginning of this chapter, the works
listed so far form state-of-the art for the different parts of the overall approach presented
in Chapters 4,5 and 6. To further show the generalizability of our overall approach, the
combination of the approaches presented in particular Chapter 4 and 5 was extended to
the domain of microservice architectures in 7. In the following two sections, we will be

discussing the works related to the approaches presented in Chapter 7.

3.4 Context Aware Service Discovery in Microservices

Research Works related to the general concept of discovery is manifold and ranges from
architecture (e.g., centralized, decentralized) to matching mechanisms (e.g., QoS-aware,
context-aware, and semantic-aware) and selection criterion (e.g., single objective, multi-
objectives). To the best of our knowledge, most of the literature about service discovery
refers to Service Oriented Architecture (SOA), whereas a little attention has been de-
voted to service discovery for Microservices Architectures. While a large body of work
exists in the context of SOA for each of these categories, we summarize hereafter only

those approaches which consider QoS in conjunction with context.

Contextualization refers to the ability to discover, understand and select services of
interest deployed within the environment. To this end, a key role is played by ontologies,
which have been employed to make service descriptions context-aware [124][125]. These
ontologies have been largely exploited in SOA to extend UDDI registry with annotations,
and to provide matching relying on service signature matching. Such an approach which
exploits signature matching which allows for matching a requested service against the
set of advertised services stored in the registry was presented by Paolucci et al. [126].
Both requested and advertised services are described as a set of required inputs and
provided outputs enriched with context information defined according to ontologies. The
proposed approach was found to be well suited for dynamic discovery of web services.

One of the main short comings is that the approach does not take into account contextual
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parameters implicitly and the discovery does not consider the QoS of the web services

for matching.

A framework named, EASY for preforming dynamic service discovery of web services
in pervasive environment was proposed by S. Ben Mokhtar et al. [127]. The matching
algorithm implemented by EASY exploits the service signature matching method [126]
to rate services according to user preferences on extra-functional properties. It achieves
this by providing two specific languages: 1) EASY-L which supports semantic description
of web services. The context, QoS, functional and non-functional properties can be
represented using EASY-L which will be used further during matching; ii) EASY-M
allows users to define the different conformance relations and further define the order
in which the relations needs to be applied. Both EASY-L and EASY-M are used in
service repository to find the matching web service in the event of a service request.
The approach did improve the state of the art however, the same approach does not fit
well in the context of service discovery in microservice as the QoS keeps changing due to
context influences and using QoS declared by the instance might not yield the optimal

match.

The SAPERE framework [128] that extends the signature matching algorithm to account
for contextual and QoS factors in pervasive networking environments was presented by
Stevenson et al. [129]. The approach makes use of semantic-match degree as a means
to enable communication between the nodes in the network.The approach explicitly
considers both application specific as well as contextual factors while performing the
matching. The effectiveness of the approach was demonstrated through evaluations on
a simulated version of a Smart phone application. Although the approach performs
well, in the case of microservices the dynamism and uncertainty are quite high such that
prefixed matching algorithms cannot be used as the QoS can have a high variance and
the influence of the context also contributes a lot to such variance which makes selection

even more difficult.

GoPrime, a fully decentralized middleware for performing self-adaptive service assembly
was presented by Caporuscio et al. [130]. Every service is encoded with a set of QoS and
structural attributes in the form of a utility function. The goal of the middleware is to
ensure that at every point, the services are assembled in such a way that the local utility
of the involved services as well as the global utility is optimized. It makes use of the
signature matching algorithm for considering contextual factors while discovering and
assembling services of interest satisfying QoS constraints. In particular, the proposed
approach exploits Context-awareness and QoS-awareness for providing a fully decentral-
ized service assembly. The effectiveness of the approach is proven via an e-health case

study. Although the approach performs well for service assembly in SOA, as rightly
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pointed out by the authors, the middleware does not support instances of the same
service (rather services of the same type is supported) while performing the assembly.
This is crucial when it comes to service discovery in microservices (refer Section 2.4).
However, this can be used in combination with service discovery for performing dynamic

service composition.

Machine learning techniques in general, have been already employed for developing rec-
ommendation systems for service discovery in Web Services, and demonstrated to be
effective and efficient. In [131], Nayak et al. propose a number of data mining methods

to improve service discovery and facilitate the use of Web services.

J. Andersson et al. introduce a framework for optimizing service selection based on
consumer experience (i.e., context), and preferences (i.e., utility) [132]. The proposed
approach is mainly used to perform service composition in open market scenario where
performing optimal composition of services is hard due to the difference in the service
quality ensured by the service provider and the service quality experienced by the service
consumer. To mitigate this the framework uses machine learning technique to ensure
optimal service composition (measured in the form of a utility function) based on context
of service consumer. In particular, the framework maintains a set of predefined selection
rules that are evolved at run time by means of a reinforcement learning strategy. The
proposed framework was proved to be effective in performing optimal service composition
by evaluating on a stock market based scenario. Again the focus of this work is on service
composition of services while in microservices the discovery targets instances of the same
microservice that might appear and disappear during the system lifetime making the
uncertainty even higher. This also results in high variability in QoS which also needs to
be handled.

A data-driven approach to service discovery in microservices was presented by Houmani
et al. [133]. The approach uses a hybrid service discovery pattern (combination of client
side and server side discovery pattern, refer Section 2.4 for the process of service discov-
ery. The approach requires the clients to define a data model of the required services
with information on the requested functionality as well the the expected quality profile.
On the server side, each service registering to the service registry will present their data
model. These are further used by the discovery framework to allow service consumers
to discover the available functionalities and microservices and further identify the best
fit by matching the QoS profiles. Further the approach uses custom scaling algorithms
and load balancer to manage the overall process. The approach is demonstrated and
further evaluated using a testbed. The approach does not consider the continuously
changing QoS properties of the instance in microservice which might affect the quality

of selection during the process of service discovery. While the approach considers the
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context information for performing a match, it employs load-balance algorithm to select
the instance following a match but it only considers the declared QoS of the instance
and not the expected QoS. Moreover selection does not take into account the contextual
attributes and the approach does not exploit any online learning to continuously improve

the selection process.

An approach that uses decentralized online learning to perform self-adaptive service as-
sembly was proposed by D’Angelo et al [134]. The approach builds on the top of [130]
with support for online learning and automated load balancing. The approach exploits
MAPE-K loop and makes use of reinforcement learning with a two layer learning strat-
egy to generate a service assembly that maximizes the overall QoS. In a decentralized
setup, multiple nodes might host one or more services of the same type. The approach
uses reinforcement learning in the individual nodes as well as in the selection layer over
multiple nodes to ensure that the QoS of the overall selection is maximized. The ap-
proach is shown to be highly effective by evaluating on a simulated version of a social
sensing application. The approach is reactive in the sense it just considers the momen-
tary QoS and not the expected QoS while making the selection. This aspect plays a
crucial role as the QoS especially in the case of microservice system can continuously

change and proactive approach might provide more guarantees.

Departing from the aforementioned approaches, we make use of a combination of machine
learning techniques for selecting services of interest that fulfill the QoS requirements in
a given context. In particular, we rely on machine learning to mitigate the uncertainty
and variability emerging from frequent changes in services context and QoS profiles.
Specifically, the approach uses deep neural networks to predict the evolution of QoS
for every instances. It then uses reinforcement learning techniques based on the context
information of the service provider as well as the consumer to perform optimal selections.

This is described in detail in Chapter 7 (Section 7.1).

3.5 Self-adaptation in Microservice-Based 1oT

In the previous sections, we have seen different works where self-adaptation and machine
learning have been used in IoT, service assembly for pervasive systems, etc. In this sec-
tion, we discuss in detail the works related to self-adaptation in microservice-based IoT
(MSA-IoT). Applying MSA to IoT brings in many challenges primarily because adapta-
tion concerns can emerge from different levels of the system, architecture, application,
or IoT devices. This is elaborated in Chapter 7. However, to the best of our knowledge,
a full-fledged approach, framework, or reference architecture for self-adaptation that

combines MSA and IoT does not exist. Hence, in this section, we describe the works
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done in the field of self-adaptation for microservices. This further serve as the state of

the art for the framework presented in Chapter 7 (7.2).

GRU, an approach that handles self-adaptation in MSA-based systems through a de-
centralized MAPE loop, was presented by Florio et al. [135, 136]. The approach uses
the concept of multi-agent systems for executing the adaptation where each agent or
rather GRU agent, as stated by the authors, is responsible for controlling a set of docker
containers and managing their adaptation concerns. The agent also receives information
on the QoS metrics of other containers from other agents. The approach uses this while
performing adaptation to ensure that the adaptation does not violate the overall QoS
goals. The approach is further evaluated on an MSA-based video streaming application.
One of the issues with the approach is the use of a decentralized MAPE-K loop. It adds
an extra layer of complexity to every microservice [137]. Moreover, as pointed out by the
authors, it uses only the reactive adaptation method, and the approach could be better
improved if it supports proactive adaptation as well. Moreover, the approach does not

provide support for application-level adaptations.

A reference architecture for self-adaptation in MSA based on SOA’s standard concepts
was proposed by Baylov et al. [138]. The architecture at a high-level uses the concept
of a decentralized MAPE-K loop, as presented above. While the work described above
uses agents for one or more services in a container, in this work, every instance of the
service provider consists of two components, namely the managed component and au-
tonomic manager. The former accomplishes the microservice’s core functionality while
the latter, as the name suggests, handles the adaptation. The approach also uses the
concept of adaptation registry to share common adaptation tactics across different mi-
croservices. Like what stated above, one of the key issues here is the added complexity,
which mandates the developers to ensure that every service is deployed with an adap-
tation layer. As per a recent study [137], MAPE-K based approaches are not the best
suited for self-adaptation in microservices. Further, the close coupling of the adaptation
component with microservice means no overall view of the system QoS. Also, it restricts

the extensibility of the approach.

Khazaei et al. [139], instead, introduced the idea of using self-adaptation as a service
for managing adaptations concerns in microservice-based architectures. The approach
introduced four services, namely, security as a service, configuration as a service, healing
as a service, and optimization as a service. Each of the services performs the MAPE-K
activities and is given specific responsibilities to manage different adaptation concerns.
The approach is further demonstrated through an MSA based IoT application. The
benefit of the approach lies in the fact that the adaptation is handled by an external

service, unlike other approaches. Although this takes away the developer’s overhead from
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implementing the managing system, adding additional services to manage adaptation
implies that adaptation concerns of those four services also need to be handled, which
mandates the need for another managing system. Moreover, the approach is only reactive

and does not add support for adaptation concerns of IoT devices.

To further improve the adaptation process, Kubow, an approach in the form of a tool for
performing architecture-based self-adaptation in cloud-native applications, was proposed
by Aderaldo et al. [140]. The approach leverages the use of the Rainbow framework [51]
for performing the adaptation. It uses two different ADL’s for defining and specifying the
architectural model of the application and defining the specification of the different types
of adaptation tactics. The approach makes use of Kubernetes metrics API to collect the
metrics of the various deployed services, which are further used to trigger adaptation as
per the defined tactics. The tool is demonstrated using a sample cloud-based application.
The approach improves the state of the art as it handles the adaptation logic at the
infrastructure layer. However, the adaptation performed is still reactive in nature and

does not consider the adaptation concerns from the application level.

Further advancing state of the art, Magableh et al. presented a self-healing microservice-
based architecture for systems based on docker [141]. The approach follows a MAPE-K
approach to perform self-healing. It continuously collects the metrics data of the different
microservices and uses a neuroscience-based algorithm to detect anomalies relatively or
predict any unnatural spike in the metric data. This is further used by the approach to
select an adaptation action based on utility scores. The selected decision is also verified
based on a consensus algorithm (to ensure that the adaptation does not affect other
services). The effectiveness of the approach is evaluated on a prototype of an MSA
application in a docker swarm. The approach is very much effective, considering that
it performs both proactive and reactive adaptation. The approach, however, does not
consider the adaptation concerns of the application level. Further, applying this to the
MSA-based IoT system mandates the adaptation concerns because IoT also needs to
be handled. Moreover, the decision-making process used by selecting the adaptation

strategy does not improve over time to better improve the adaptations.

As mentioned at the beginning of this section, to address the different challenges in
MSA based IoT domain, we have developed a data-driven self-adaptive architecture
for MSA-IoT systems. The architecture considers adaptation concerns that may arise
from different levels, such as IoT devices, microservices, and users. It also considers
the adaptation challenges that emerge when IoT devices and microservices are used in
tandem. Furthermore, besides reactive adaptation, the architecture leverages machine

learning techniques to perform proactive adaptation in scenarios where such adaptation
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guarantees high effectiveness. Further details of the architecture is presented in Chapter
7 (Section 7.2).

Summarizing, in this chapter, we have presented state of the art related to the different
parts of the approach presented in this thesis. A brief description of how each part of
the approach differs with respect to state of the art has also been provided at the end
of every section. In the upcoming chapters, elaborate details on different parts of the
approach are provided. As a starting point, in the next chapter, we provide a detailed
description accompanied by extensive evaluations on how our approach uses deep neural

networks to perform effective and efficient proactive adaptations in IoT systems.



Chapter 4

Leveraging Machine Learning for
Proactive Architectural
Adaptation

Self-adaptive architectures have been emerging as a promising solution towards manag-
ing run-time uncertainties in IoT so to improve the overall QoS [29][32]. However, one
of the issues with the existing self-adaptive solutions is that most of them are reactive,
where the adaptation happens in the event of any uncertainty [31](refer Section 1.2).
Figure 4.1(A) shows the generic process flow during such a reactive adaptation setup. As
we can see, the process continuously monitors the system execution data and performs

adaptation as and when a deviation from the goal occurs.
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FIGURE 4.1: Process flow of reactive and proactive adaptation techniques
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Although this works well, one of the main issues is that the adaptation happens only
when the system has already moved to an undesirable state (deviated from the expected
QoS), and this can be costly, particularly in the case of a data-driven or event-driven
systems such as IoT. One way to tackle this issue, as suggested in the literature [142], is
to use proactive adaptation techniques that enable the system to foresee uncertainties
and adapt accordingly. However, as we have seen in Section 1.2, one of the main issues
in using proactive adaptation techniques is that they do not provide the systems the
ability to proactively identify the need for adaptation with good accuracy (which can

save the system from reaching an undesired state)[31].

Hence, in this chapter, we move the focus from a traditional self-adaptation approach
to a machine learning-driven proactive approach, thereby answering the RQ 1 of How to
perform effective and efficient proactive adaptation using machine learning techniques?
Figure 4.1(B) represents the generic process flow of a proactive adaptation mechanism.
As we can see, there is an additional step (as opposed to the reactive adaptation process
flow) that uses the monitored data to forecast the expected QoS. The adaptation is

further carried out based on the forecasts made.

Such a process can be achieved using Machine Learning (ML) techniques as they can
leverage the QoS data to provide accurate forecasts of the expected QoS over a given time
interval. One of the important characteristics of any QoS data, in general, is that it has
a temporal dimension. This property can be exploited to convert energy consumption
data into time-series data. Hence, the problem of foreseeing the uncertainty becomes a

time-series forecasting problem. However, four main challenges exist:

e Traditional time-series forecasting are not the best, particularly when it comes to
long-term forecasts, due to the high-variability of energy consumption trend in IoT

systems;

e The forecasts need to be highly accurate as it might otherwise lead to sub-optimal

adaptations

e Learning the patterns in time-series for generating forecasts is a time-consuming

task and performing this in real-time is not feasible;

e The choice of the forecasting and adaptation interval may affect the effectiveness

of the adaptation.

Towards this direction, in this chapter, we describe the first part of the approach,
which performs machine learning-driven proactive adaptation by extending the tradi-

tional MAPE-K loop to support the learning time required for generating the forecasts.
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It is further applied to an IoT system for continuously monitoring the QoS data, partic-
ularly the energy consumption data, forecasting the expected energy consumption using
deep neural nets, and performing the adaptation of the system architecture based on
the forecast. The adaptation is executed by reconfiguring the sensor components’ data

acquisition frequency based on a greedy algorithm. It offers the following advantages:

1. Training a deep neural network being a time-consuming activity is only performed at
periodic intervals as a batch process and uses pre-trained models for generating forecasts

in real-time

2. It ensures that the system never reaches a state of high energy consumption by

providing abilities to generate accurate short-term and long-term forecasts.

3. The proactive architectural adaptation ensures that the system becomes more energy
efficient as the need for adaptation is detected at a much early stage compared to a

reactive counterpart.

4. Since the adaptation is performed at an early stage, the approach also ensures that
the number of adaptations performed is much less than that needed for reactive based

approaches, thus providing higher efficiency.

4.1 Motivating Scenario: Energy Efficient NdR

One of the important requirements in the NdR case study (refer Section 2.5) is to
ensure that the system is energy efficient as there is no availability of power points in
the parking lots or the venue entrances. The parking mats, hand-held RFID readers, and
people counters being battery powered needs to operate in an energy-efficient manner.
Even though charging can be performed, it might happen that during peak hours, the
charge goes down, and plugging in a new sensor/charging the existing one can be costly

for crowd management. Hence, the challenge for us in this scenario is to create:

e Energy-efficient system which can proactively forecast the possible energy outrages

e Automatically adapt the architecture in the best possible manner such that the

system can stand longer, to avoid recharging as much as possible.

This energy efficiency problem does not just concern this case study, as energy efficiency
has become more of a global concern with ICT expected to consume around 21% of
the world’s electricity by 2030 [143]. Moreover, different policies are coming up at the

international level to reduce the overall energy consumption. This is evident from the
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fact that the EU union has set a target of 20% overall energy savings by the end of
2020 [144]. Therefore, handling energy consumption is extremely important. A recent
systematic literature review focusing on self-adaptation approaches for energy efficiency
shows that self-adaptation can be used as an effective solution for improving energy
efficiency [104]. However, the survey also points out that only a limited number of
approaches focus on self-adaptation to improve the energy efficiency of IoT and cyber-

physical systems (CPS).

4.2 MAPE-K with Machine Learning

This section provides details on how our approach uses ML techniques for proactive
adaptation of the architecture, thereby reducing the energy consumption of a given IoT
system. Figure 4.2 shows an overview of the approach. It is based on the MAPE-K
loop [50]. Hence, it primarily consists of two systems namely the Managed System and

Managing System.
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FIGURE 4.2: Approach Overview

The Managed System represents the running IoT system, which conforms to underly-

ing software architecture. Designing the software architecture of the IoT system means
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we also need to consider the underlying hardware configurations of the different com-
ponents as well as take into account the constraints from the environment in which
these components will be deployed. This is important as each of these decisions impacts
the functionality of the system and the energy consumption of the system. During the
architecture design phase, we define the operational mode of sensor components. This
includes modes like normal mode (sensor components gather data at standard frequency
rate) and critical mode (sensor components gather data at a higher frequency rate). We
also define the conditions for transitions between the different modes during this phase.
For example, we may want a Parking Mat Entrance Sensor to gather data every 1 minute
(normal mode), and there could be a sudden increase in the arrival rate of cars. Hence,
we may need the sensor to gather data every 30 seconds for a higher service accuracy

(critical mode). Here the increase in arrival rate acts as the condition for mode change.

The Managing System is responsible for performing the activities of MAPE-K. It ac-
complishes this with the help of a Machine Learning Engine (MLE). Learning being
a time-consuming activity, the managing system executes MLE as a batch process at

periodic intervals. (represented by dotted lines in the Figure 4.2).

In this chapter, we focus more on the Monitor, Analyze, Knowledge part of the MAPE-
K, and how MLE works in conjunction with each of these activities (Marked in grey
in the Figure 4.2). While this section introduces the conceptual methodology and is
technology-independent, Section 4.3 provides details on the technologies we used for

realizing our methodology.

4.2.1 Monitor activity

As in the case of traditional MAPE-K approaches, the monitor activity is responsible
for continuously monitoring the IoT system. In our approach, we exploit this activity
to monitor and collect the energy consumption data or, in general, QoS data of the IoT
system. This data contains information on the energy consumed by different system
components at every instant of time. The monitor activity ingests these logs into the
QoS Data component, and the Analyze activity then uses this for further processing.
The process of ingesting the data into the QoS Data keeps continuing throughout the
system lifecycle. This means that our approach can be applied to a running system,
and this data can be extracted, assuming that the system provides ways to extract the

desired QoS data. These data are also sent to the MLFE for training the ML models.
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4.2.2 The Machine learning engine

Figure 4.3 shows the ML pipeline of the MLE. It explodes the component presented in
figure 4.2. MLE is the key component of the approach as it is responsible for supporting
the Analysis and Planning activities of the MAPE-K loop. This component is invoked at
periodic intervals to train and build the ML models for predicting the expected energy
consumption. In our approach, we refer to this phase of model building/training as the
Build Phase. The models developed during this phase are updated to the Knowledge
base of the approach. During real-time execution of the IoT system, these trained ML
models are further used to adapt to the architecture proactively. We refer to this process

of using the trained models to make predictions in real-time as the Operational Phase.

During the operational phase, the Build Phase is run in parallel at regular intervals
to ensure that the ML model is up-to-date with new patterns in data, which might
otherwise lead to the problem of concept drift [113]. This process of forecasting and
adaptation keeps continuing. The use of ML models ensures that the system proactively
learns and adapts the architecture, resulting in an energy-efficient IoT system. The

functionalities of different components of the MLE are described below.

4.2.2.1 Data Store and Feature Extractor

The periodic updates of QoS data obtained from the Monitor activity are ingested
into the Data Store component (component 1) inside the MLE. This data contains
information on the energy consumed by different system components at every instant
of time. The intervals of time may not necessarily be uniform. It is based on the
fact that whenever there is any interaction within or between the components during
the simulation/execution, the energy consumed for corresponding interaction is logged.

These logs are then passed to the Feature Extractor component for further processing.
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The Feature Extractor (component 2) is responsible for processing and transforming the
raw data into the form as required for the ML algorithm. It internally consists of four
different processes [145], which include: i) Time series Modeling, ii) Normalization, iii)

Conversion to Supervised learning problem, and the iv) Train and Test data generation.

1. Time Series Modeling: This is the first step in feature extraction. The data stored
in the data store is structured such that we have the amount of energy consumed for
every component at different instants of time. This data has a temporal nature, and
we exploit this property to convert the problem of predicting energy consumption into
a time-series forecasting problem. The energy consumption data with respect to time
forms a continuous time series [71]. For the ease of analysis, we first convert this into
a discrete time series by aggregating the data into 1-minute intervals. This process is
known as temporal aggregation, and it is performed for every component in the system,

thereby resulting in a discrete-time series with equal intervals of time.

For example: let us assume that the given system has N components and has been
simulated for M units of time. Then, the observation at any instant of time ¢ can be
represented by a 2D Vector, E € RMXN where R denotes the domain of the observed
features. The process of temporal aggregation results in formation of a sequence of the
form E1, Es, Es....E;. The problem of forecasting energy consumption is then reduced to
predicting the most likely K-length sequence in future given the previous J observations

which include the current one:

Et+1, ....... s Et—l—k = argmax P(Et+1, ....... , Et+k‘Et,J+1, Et,L]JrQ, ceny Et) (41)

Eiy1,. Eyyg
where P denotes the probability. Since the energy consumed by one component also
depends on other components with which it shares interactions, it is a multivariate
data, and as the forecasting needs to be done for the next K steps, the problem can be

formalized as a multivariate multi-step time-series forecasting problem [71].

2. Normalization: This forms the second step of data transformation. It is one of the
important preprocessing steps before applying any ML technique to ensure uniformity
in the scale of data. This is especially more important in the case of time series data as
the data will have the effects of trend and seasonality [71]. We use feature scaling for

normalizing data to the range [0,1]. This is performed in the following manner.

Let e. representing the energy of a component ¢, Ne.; represent the normalized value of
energy for component ¢ at an instant of time ¢, e.; representing the energy of the compo-

nent ¢ at time t, €., representing the minimum energy consumed by the component,
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and ecpqr representing the maximum energy consumed by the component. Then, the

normalized value Neg; is given by:

Ney = €ct — Cemin (42)

€cmax — €cmin

3. Conversion to a supervised learning problem : The previous step creates a normal-
ized multivariate time series data, which can be considered more like a set of multiple
columns, each containing observations of energy consumption ordered based on time.
However, to facilitate forecasting, we need to clearly define the input and output pat-
terns, which can allow the ML algorithms to understand the relationship between the
input data and the expected forecast. Towards this, the Feature Extractor performs a
shifting operation on the normalized multivariate time series data to model the series
into a primitive supervised learning problem. To formalize this, we use two terms, fore-
casting horizon (H ), which defines the number of steps for which the forecast needs to
be performed from an instant of time ¢, and lag (1), the number of previous time steps
that need to be considered to make a forecast from an instant of time t. For example,
values of H = 10 and [ = 10 would mean that the approach can predict the energy
consumption in the next 10 steps based on the energy consumption in the last 10 steps.

Based on the above, the Feature FExtractor performs the shifting operation as follows:

Let input series, X = {ey, ea, ....., e, } represent the energy consumption of a component
for n intervals of time. The shifting operation will basically create a new series by
advancing the input series, forward by H time steps where H > 1. For example, a value
of H = 1 will basically create the output series, y = {ea, €3, .....,null} and a value of
H = 2 will generate the series y = {es, eq4, .....,null}. The same process can be applied

to recede the series by [ steps where [ > 1.

The choice of values for H and [ affects how the LSTM model is trained. A lag of 10
minutes implies that LSTM can observe the pattern in the last 10-minute data before
making the forecast. This can be made high so as to make better predictions. However,
increasing the lag too much can lead to the problem of over-fitting [66]. Similarly doing

a forecast for too long intervals may affect accuracy.

4. Train and Test data Generation: The next important part of data preparation is
to divide the data into training and testing sets for cross-validation and evaluate the
accuracy of the generated model. The Feature Extractor divides the normalized data
into the standard ratio of 7:3 [146] where 70% of data becomes the training set and the
rest 30% forms the testing set. It further passes the training set to the Model Builder,
and the testing set to the Model Fvaluator.
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4.2.2.2 Model Builder and Model Evaluator

The Model Builder (component 3) forms the key component of the MLE as it is re-
sponsible for building the forecasting model. As the name suggests, it achieves this by
making use of LSTM networks (refer Section 2.2.3.2). LSTM Networks belongs to the
class of Recurrent Neural Networks [70]. They have the ability to handle the problem of
long-term dependency better known in the literature as the Vanishing Gradient Prob-
lem [68] [69], as compared to traditional Recurrent Neural Networks (RNN) [16] (refer
Section 2.2.3.2). Due to this reason, they have shown to be very effective in time series
forecasting [147, 148]. Moreover, existing time-series approaches are not effective when

it comes to multi-variate time-series forecasting [149].
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FIGURE 4.4: Architecture of the LSTM used in our approach

Figure 4.4 shows the overall architecture of the LSTM network used by our approach.
It is similar to the traditional LSTM network architecture (refer Section 2.2.3.2) with
few modifications to support effective multi-variate time-series forecasting. It consists

of four layers, the input layer, hidden, dropout, and output.

The input layer consists of neurons (units) to pass the input data to the hidden layers.
The number of input units, 7 is equal to the number of components in the system where,
for every neuron, the input will be a vector consisting of [ values. In practical terms, this
implies that the past [ energy observations of every component in the system are passed

to the input layer. For example, if the forecasts need to be performed for a system with
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a number of components, C' = 10, with lag value, [ = 10, then the data to the input

layer will be a matrix 10X10(C'X1). This matrix is sent to the hidden layer.

The hidden layer consists of recurrently connected LSTM units (there can be more than
one hidden layer in practice. What represented here is just a high-level view). We use an
additional dropout layer such that the output from the hidden layer passes through this
dropout layer. The number of LSTM units, h in the hidden layer, is decided based on the
experiments as this number depends on the lag value, horizon, the number of features,
etc. The dropout layer’s use randomly drops the effect of the outputs of a few LSTM
units in the hidden layer based on a probabilistic value. The number of dropout units
in the dropout layer is the same as the number of LSTM units, h in the hidden layer
(as every dropout unit determines if the output of a particular LSTM unit needs to be
considered or not). The value of dropout is determined using experiments. For example,
if dropout is assigned with a value of 0.1 is, this layer will randomly drop the output from
10 percent of LSTM units. The dropout layer is added in neural network architectures
to perform regularization and thereby to avoid problems of overfitting [66, 150]. This is
especially crucial in time-series forecasting as this problem can easily cause the trained

model to produce incorrect forecasts in real scenarios.

Finally, the output layer consists of neurons that output the forecasted energy consump-
tion. The number of neurons, o in the output layer determined based on the number of

components in the system (C') and horizon, H using the formula:

no=CxH (4.3)

This number is because, since the problem is a multivariate, multi-step time-series fore-
casting problem, each component’s forecast needs to be done for the next H steps, thus
contributing to n,. As explained above, the number of hidden layers and the number of

neurons in the hidden layers are determined based on experimentation.

During training, the multivariate time series data generated by the Feature Extractor
is passed through the input layer to the hidden layer of LSTM units, which is then
passed through the memory blocks in each of the units. Each of this memory blocks
contains a set of cells and the input to these cells are controlled by three multiplicative
gates namely, input gate i;, output gate oy, and forget gate f; (refer Section 2.2.3.2).
These gates determine the flow of information between the cells. Standard activation
functions, sigmoid, sigmoid and tanh are used for each of the input, output and forget
gates respectively. The training loss is handled using the Mean Absolute Error (MAE)
loss function, which calculates the absolute error between the predicted value from the

output neurons and the expected forecast from the training set. This loss is further
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propagated back to the LSTM units in the hidden layer. The convergence in training is
obtained using the Adam optimization algorithm [65].

The trained LSTM network is further evaluated by the Model Evaluator component

using the test data generated by the feature extractor.

The Model Evaluator (component 4) checks the accuracy of the model on the test data.
It performs this using the test data set to forecast the energy values and compare it with
the actual values. In the case of lower accuracy, the model evaluator retrains the LSTM
network by tuning the network parameters such as modifying the number of hidden
layers, training epochs, etc. The final trained LSTM model is ingested to the Model

Repository component in the Knowledge base of the managing system.

4.2.3 Knowledge

Going back to figure 4.2, the Knowledge acts as central storage for different types of
knowledge required by various components of the managing system for performing the

adaptations. It stores three types of information:

(i) QoS Goals, consists of a set of energy consumption goals/requirements (or QoS goals
in general) that the system needs to meet. The energy requirements define the different
energy thresholds by specifying the system’s acceptable energy consumption for a given
time interval. This includes defining a time interval, ¢t and a threshold set, T consisting
of two energy consumption thresholds for the specified interval where, i) Max Energy
(MEg), denotes the maximum total energy that can be consumed by the sensors for the
given interval, t; ii) Low Energy (Lg), is the total energy limit below which the sensors
operate in high-energy efficiency mode, but this might have an impact on the overall
service accuracy. These thresholds are defined by the respective stakeholders and stored

in the form of a text file.

(ii) ML Models, is a repository consisting of the ML models generated by the MLE. As
explained in Section 4.2.2, the MLE is executed at periodic intervals to generate ML
models. Each such ML model generated by the MLE is versioned and stored in this
component. This versioning is performed to ensure the possibility of rollbacks in case
of any issue with the model in use. The Analyze activity further uses these models for

generating energy consumption forecasts during the system’s operational phase.

(iii) Configurations, consists of the configurations of different components of the IoT
system and the configurations of the managing system. These include configurations

such as the frequency of data acquisition/transfer for various sensor components and the
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decision period, d. The decision period denotes the interval for generating the forecasts.
For this, the approach takes inspiration from Model Predictive Control (MPC) [151],
where the horizon is divided into multiple decision periods. The approach performs
the forecasts of the expected energy consumption at every decision period for the given

horizon, H. These configurations are stored in the form of a configuration file.

4.2.4 Analyze Activity

The Analyze activity is responsible for gathering the real-time energy consumption data
and forecast the expected energy consumption using the trained model available from the
Knowledge activity. During the operational phase, the Analyze activity is responsible
for processing the real-time QoS data gathered by the monitoring activity to generate

energy consumption forecasts. It consists of two main components:

i) The Data Processor component fetches the value of d specified from the Knowledge
activity. It is then responsible for performing the temporal aggregation (as mentioned
in Section 4.2.2.1) of the real-time energy consumption data obtained from the Mon-
itor activity. This is achieved by continuously aggregating the real-time data into a
smaller time series until the number of observations, n, becomes equal to the lag value,
[, as required by the ML model. It further sends this processed data to the Predictor

component at the lapse of every decision period, d.

ii) The QoS Predictor component further passes the processed data available from the
data processor component through the latest trained LSTM model available from the
ML Models repository to forecast the energy consumption of each of the components in
the IoT system for the next H steps. These forecasted values are then passed to the

Decision Maker component in the Ezrecute activity.

For example, if H = 15 minutes, | = 10 minutes and d = 5 minutes then the data
processor component will keep aggregating the last 10 minute data, and every 5 minute,
it will pass this aggregated data to the predictor component which further forecasts the

expected energy consumption of the components for the next 15 minutes.

4.2.5 Plan activity

The primary role of the Plan activity is to select an adaptation plan based on the forecast
generated by the energy predictor of the Analyze activity. This is accomplished with
the help of a Decision Maker component. It implements the algorithm to identify the

best adaptation plan. In reality, this can be achieved using different methods such as by
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using model-checking techniques, classical machine learning techniques, reinforcement
learning, or deep learning techniques, etc. Since this is not the major focus of this work,

we use a greedy approach for identifying the adaptation plan.

Towards this, the decision-maker first classifies the forecast made by the energy predictor
into one of the three categories: {[0, Lg], [Lg, MEg], [ME, ]}, where Mg, L denotes the
thresholds T" as defined in the QoS Goals. Based on this, the decision-maker generates
an adaptation strategy for reconfiguring the data acquisition frequency of the sensor
components. One thing to note is when we reduce the frequency of acquisition, it
actually implies the increase in the time for which the sensor has to wait before it
sends/acquires data. For example, if a sensor S1 is operating at a high frequency of
10 seconds, it means every 10 seconds it is acquiriang some data, now reduction by 10

implies changing the frequency to 20 (10410).

The complete algorithm of decision-maker is presented in Algorithm 1. It first uses
the threshold T as defined in the QoS Goals. It then uses the set of frequencies, F,
which specifies the maximum frequency reduction that can be performed for a sensor
component when operating on a particular mode under a threshold in T (lines 1-3). EF
represent the set of energy forecasts produced by the Energy predictor for each of the
component in the architecture, N represents the set of sensor components in the archi-
tecture, C'F' consists of the set of sensors along with their data acquisition frequencies,
ef, represents the forecasted total energy consumption and n denotes frequency reset

interval.

At any given instant, it first finds the sensor component that is expected to consume
the maximum energy from the set of forecasts (line 9). It then uses this to calculate
the percentage of frequency that needs to be reduced for each sensor component based
on a simple greedy approach (lines 13-16). This is done to ensure that the component
which is expected to consume the most energy gets the maximum allowable frequency
reduction. In this process, the algorithm also identifies the nodes that are running in a
critical mode and adds them to a critical node list, CL (lines 17-19). It then identifies
the system’s current energy state by comparing the forecasted energy value, ef with the
threshold values. If ef falls in the category of [Mpg, o] or [Lg, Mg]|, then the frequency
of the sensor components is reduced based on the corresponding reduction frequency
and reduction percentage values (lines 20-38). If ef falls in the category of [0, Lg]|, then

no action is taken.

At any instant, the frequency is reduced, considering the operational modes of the sensors
by using different reduction frequency values for each mode based on the thresholds
(e.g., fche, fnpe). This is done to ensure that when a sensor is in critical mode, it might

happen that the priority needs to be given more for the service accuracy rather than the
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Algorithm 1 Decision Maker Algorithm

Require: :

1: Thresholds T' = {Mpg, Lg}
2: Reduction Frequency F' ={fnme, fNie, fCmes fCic}
3: Current Frequency CF = {fi1, fa, f3,..fu}
4: Set of energy forecasts EF = {e1, ea, €3, ...}
5. NodeList N = {n1,ng,ns...n,} > set of sensor nodes
6: procedure DECISION-MAKER(T,F,EF ,CF ef ,n)
7 let [ represent the length of N
8: 140
9: let mazc = max(EF) > (Forecast of the component with expected to consume
the maximum energy)
10: CL «+ {} > critical node set
11: R+ ] > reduction percentage array
12: while ¢ <[ do
13: if maxc = EF(NJi]) then > E(NJi]), Energy forecast of NI
14: R[i] + 1
15: else
16: RJi] < (mazxc — EF(NJi]))/100
17: if N[i] in critical mode then
18: Add N[i] to CL
19: 141+ 1
20: if ef > Mg then > ef: [Mpg, 0]
21: 1+ 0
22: while ¢ < [ do
23: if N[i] in CL then
24: CFi] < CF[i] + (feme * R[i))
25: else
26: CFi] < CFi] + (frme * R[3])
27: 1 i+1
28: if ef > L and ef <= Mg then > ef: [Lp, Mg]
29: if ef was in [Lg, Mg]| for last n minutes then
30: reset the frequency to original frequency
31: else
32: 140
33: while i <[ do
34: if N[i] in CL then
35: CFli] < CFi] + (fce * R[i])
36: else
37: CF[Z] — CF[Z] + (fnle * R[Z])
38: 14—1+1
39: if ef <= Lg then > ef: [0, Lg]
40: if ef was in [0, Lg]| for last n minutes then
41: reset the frequency to original frequency
42: else
43: Remain in the same frequency
44: Returns modified CF > The set of frequency reductions for each component in

the architecture
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energy but, it might also happen that the frequency needs to be adjusted so that the

system will still deliver the best service accuracy along with longer power.

In the case of ef > Lp and ef <= Mg, it first checks if the ef value has remained in
the same range for last n minutes. If yes, the frequency of all sensor components is reset
to the original frequency. This is done to ensure that once the system reaches a low
energy state, it needs to be reset to the old configuration else it might happen that the
system consumes lesser energy but delivers a poor service accuracy. If no, the frequency
of nodes executing critical mode is reduced by a factor of fcj. * R[i] and that of nodes

executing critical mode is reduced by a factor of fn;. * R[i] (lines 28-38).

The same procedure is repeated to check if the value of ef is less than Lz, which means
that ef falls in the category of [0, Lg| (lines 39-43). The final frequency values that
need to be assigned to each component in the architecture are then sent as adaptation

decisions in the form of configurations to the Ezecutor component of the Ezecute activity.

4.2.6 Execute activity

The FEzxecute activity is responsible for executing the adaptation and thereby reconfig-
uring the architecture. It achieves this with the help of an Ezecutor component. The
adaptation decisions produced by the Plan activity consists of the details on the data
acquisition frequency for each sensor component in the architecture. These decisions are
sent in the form of configuration files. The Fzxecutor component then performs a simple
check to ensure that the acquisition frequency for the different sensor components has
been correctly specified in the configurations. This is done by ensuring that the con-
figuration file contains a mapping of frequencies for all the sensor components in the
architecture and ensures that the configurations are not malformed. For example, the
file can have configurations like ”S1: 1300, S2: 500, S3: -100....” where S1, S2, and S3
represent the sensor components, and the values represent the frequency. As we can
clearly see, the value of -100 cannot be used. Hence, the adaptation manager performs
necessary validation tests to check for negative values, null values, etc. and avoids to
perform adaptation for that specific component in case of such errors. Once this check
is done, it applies the adaptation on the system by updating the existing configurations
of the architecture with the configurations provided by the Plan activity. It is then the
responsibility of this Fzecutor component to dynamically apply these configurations to

the architecture.

The MLE, together with the Analyze and Plan activities, ensures that the architecture

of the system is adapted proactively by looking for possible energy fluctuations upfront
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and by reducing the data acquisition frequency in a smart manner. Thereby making the

system efficient with respect to the energy consumed.

4.3 Architecture and Implementation
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FIGURE 4.5: Data pipeline view of the approach implementation

In this section, we provide an overview of the implementation of the approach and the
technology stack used for implementation. We consider the NdR scenario mentioned in

Section 4.1 for the explanation of the approach.

Figure 4.5 shows the implementation view of our architecture. It also gives the data
pipeline view of the architecture. We use a traditional layered architecture (based on
lambda architectural model [152]), with enterprise-grade big data stack for the imple-
mentation. We use both java and python for the implementation of the approach. The
architecture consists of 6 layers, namely System, Data Ingestion, Batch, Real-time, Exe-
cution, and Presentation. While the Data Ingestion layer supports the Monitor activity,
the Analyze, Plan, MLE, and Knowledge is accomplished by the Real-time layer in con-
junction with the Batch layer. Finally, the Ezecute part is realized by the execution

layer. A detailed description of each of the layers is as follows.
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4.3.1 System Layer

This layer consists of the running system. It is responsible for the generation of the
simulated /execution data. It uses CupCarbon, which allows simulation of any given IoT

system.

The first part of the implementation is to model the architecture of the IoT system
in CupCarbon [153, 154]. It is regarded as one of the best IoT simulation tools with
high practical use especially for energy simulation [155] [156] [157] (for more details
refer Section A). The tool allows the creation of wireless sensor nodes with predefined
configurations. This results in a total of 22 nodes (as per Figure 2.14 in Section 2.5)
which includes 10 sensor components, 5 controller nodes, 5 display nodes, 1 node each

for data processing, and database.

We use senscript, the scripting language provided by CupCarbon, to implement the sen-
sor logic. As explained in Section 4.2, every sensor component operates in two modes, 1)
normal mode; ii) critical mode. To achieve this functionality, we use the delay feature in
Senscript for scheduling the frequency of data acquisition/transfer. Further, CupCarbon
supports open-street map-based visualization. This feature is modified to add the map
of the city of L’Aquila, and the sensor nodes are placed at different points in the map

to emulate the real-setup.

Two sensors, namely, Parkingl Entrance Mat and Parking2 Entrance Mat, are placed
at the entrance of each of the parking lots. They are responsible for counting the cars
as they enter the parking lots and send it to the respective controllers (refer to Section
2.5). Further, we use senscript to define the functionality for each of these sensors. This
involves defining the logic for the transition between the normal and critical modes. For
instance, in parking lot 1, the sensors send data to controllers every 30 seconds in normal
mode and 10 seconds in critical mode. If the cars’ count in parking lot 1 is more than

20, it is more likely a busy hour, and the sensor moves into a critical mode.

As explained in Section 2.5, we use two parking controllers, one for each of the parking
lot. They are responsible for getting the count from the entrance and exit sensors,
calculating the parking lots’ availability, and sending the information to the display
units placed in the parking lots’ entrance. They also ingest these data in the database

component, which can further be used by the compute component.

For automated venue management, we use the same approach as described above. RFID
readers and people counters are placed in the entrance and exits of each of the venues.
Following this, the condition to switch between normal and critical mode is defined

using senscript. The venue controller component, similar to the parking lot controller,
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is responsible for collecting the data from the RFID readers at the entrances and the
people counters at the exits. This data is then used to provide near real-time statistics
on the availability inside the venue. The readers and people counters further sent this

data to the concerned display unit.

We then define the hardware configurations for each of the sensor components. These
are defined as close as possible to the real system to emulate the real setup. For instance,
the hardware for RFID Reader at the venue entrances follows the Wifi standard, and the
radio radius is 20 meters (the controller is placed accordingly). The sensor uses Texas
Instruments ChipCon 2420RF transceiver for communication, and it uses batteries with
up to 19159 joules capacity. Detailed specifications of each of the sensors can be found

here 1.

We use .json format for defining the energy requirements as needed for the Knowledge
activity. We defined the threshold limits on the energy consumption data. Subsequently,
the architecture is simulated using CupCarbon to generate the energy consumption
logs. These are .csv files, and it contains the energy consumed by the nodes during idle
time, communication, and processing. The other components in the pipeline can further

leverage this for forecasts and adaptation.

4.3.2 Data Ingestion Layer

This layer forms the second layer of our architecture. It is responsible for processing the
events generated during the simulation of CupCarbon. An event represents the creation
of an energy consumption log (or any QoS log in general) for a given instant of time.
This layer is responsible for the processing of real-time events in the form of energy logs.
This layer acts as an aid to the real-time data monitoring process. It consists of two
components: i) Data Streamer, which is responsible for streaming real-time energy logs,

and ii) Data Producer, which is implemented using Apache Kafka [158].

For the predictions to happen in near real-time, the data needs to be processed with high
throughput and lower latency. This essentially means the data as it is being generated
needs to be analyzed and processed in near-real-time. For this purpose, we use Apache
Kafka, which is specifically designed for distributed log processing [158]. It has been
shown to be very effective in building real-time data ingestion pipelines [159]. Other

enterprise-grade tools like Apache Flume could be used for this purpose as well.

The data streamer’s role is to stream the energy consumption logs produced by CupCar-

bon in real-time to the Data Producer. It acts as the bridge between CupCarbon and

"https://tinyurl.com/yco2yqdr
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Kafka. We developed an off-the-shelf component using Python for achieving the same.
Since the logs produced by CupCarbon are .csv files, we created a CSV streamer that

streams the log line by line to a topic in Kafka.

The Data Producer then streams this real-time energy consumption logs to the Data
Processor component in the Real-time layer as well ingests them to the Data Store
component in the Batch layer. In this way, it basically acts as the Data Store of the

Monitor activity of the managing system as defined in Section 4.2.1.

4.3.3 Batch Layer

This layer forms the third layer of our architecture. As the name suggests, it is respon-
sible for performing batch processing and hence directly maps to the activities of the
MLE. The Data store component (maps to the Data Store component of MLE in 4.2
stores the energy consumption data received from the Kafka producer. It is realized
using Elasticsearch [160]. Elasticsearch is widely known for its use as a data store for
time-series data. Hence, we use it for storing the time-series batch data that is obtained
from the Kafka producer. The LSTM Model Generator further uses these data for build-
ing the forecast model. It combines the functionalities of the Feature Fxtractor and the
LSTM component depicted in 4.3. We use Keras with Tensorflow [161] backend for
implementing the LSTM model [162]. The generated model is further evaluated by the
Model Evaluator component implemented using Python. On successful evaluation, the
model is ingested into the model store component that is implemented as a file system-
based storage for storing the forecast models generated. This process is repeated every

4 hours to continuously improve the model.

4.3.4 Real-time Layer

This layer forms the fourth layer of our implementation architecture. This layer’s re-
sponsibility is to perform energy forecasts and generate dynamic architectural adaptation
decisions based on the real-time data received from the Data Ingestion Layer. It achieves
this by using three components: i) the Data Processor implemented using Apache Kafka
[158]; ii) QoS Predictor implemented using Python, and iii) Decision Maker implemented
in Python.

The Data Processor is an Apache Kafka consumer that is used for the batch processing
of real-time energy logs. It is set to consume the message from the topic ”sensor” with
a batch interval of 10 seconds. It first applies a simple pre-processing like splitting the

comma separated data to generate energy consumption data for every component. It
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then converts the data to a time-series data and forwarded to the persistence layer for
storage. The data is also appended to a multi-dimensional array. Based on the lag
value, [, the array is aggregated for 1-minute intervals to generate the past [ minutes
aggregated data. The aggregated data is sent to the QoS Predictor Component at every

decision period, d.

The QoS Predictor component uses the latest trained models available from the Model
Store to generate energy forecasts for every component for the horizon, H. This is then
passed to the Decision Maker component. The Data Processor component, together
with the QoS Predictor in the operational phase, accomplishes the Analyze activity of

the managing system.

The Decision Maker component implements the Plan activity of the managing system.
It uses the forecast of the individual component made by the LSTM model along with
thresholds, T, reduction frequencies, F', and current execution frequencies of the compo-
nents, C'F' as inputs to the decision-maker algorithm (Algorithm 1) as defined in Section
4.2.5 for dynamically generating the re-configurations for every component in the archi-
tecture. The thresholds and reduction frequencies are defined by considering the total

energy available in batteries and the operational constraints we have from the use case.

The generated decisions in the form of a .json are then sent to the Ezecutor in the

Ezecution Layer for executing the adaptation.

4.3.5 Execution Layer

This layer forms the fifth layer of our architecture. This layer is responsible for executing
the adaptation. For performing adaptation, we use an off-the-shelf component, Fzecutor,
which we have developed using Java. It receives adaptation decisions in the form of
dynamic architectural re-configurations that needs to be performed from the Decision
Maker component of the Real-time layer. The role of this component then is to execute
the adaptation by communicating the decisions to the System layer and dynamically
modifying the configurations of the running sensor nodes in the CupCarbon. Thereby,
the dynamical adaptation of the running system architecture is achieved. In order to
perform this, we modified the source code of CupCarbon. CupCarbon allows users
to write custom functions to alter the working of the senscript. We developed a Java
program that enables CupCarbon to read the data acquisition frequency from an external
configuration file. Every time an adaption needs to be applied, this component ensures
that CupCarbon reads the updated configurations as generated by the decision-maker

algorithm (Algorithm 1).
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4.3.6 Presentation Layer

This layer is responsible for providing visualization of the energy consumption data. This
visualization can be leveraged further to improve the configurations of the components
in the architecture. We use Kibana [163] for creating a visualization. For further details

on the technologies used, we refer the readers to the Appendix A.

4.4 Experimentation and Evaluation

In this section, we describe how we evaluated the approach. First, we describe the data
used for the evaluation. Then we evaluate the approach based on its effectiveness and
efficiency. Specifically, we evaluate our approach by answering the following research

questions:

RQ1.1 How accurate and stable are the energy consumption forecasts made by the

approach?

RQ1.2 How much does using this approach save energy as compared to a reactive or

non-adaptive approach?

RQ1.3 What is the quality of adaptation performed in terms of the energy consumed
by the system with respect to the specified thresholds?

RQ1.4 How efficient is the approach in terms of the number of adaptations performed?

RQ1.5 What is the computation overhead of the overall approach?

4.4.1 Experimentation Setup

For experimentation, We integrated our approach with the NdR system modeled us-
ing CupCarbon, and the implementation was done on a High-Performance Computing
Cluster consisting of 4 compute nodes. Each of these nodes runs on a Dell R730 CPU
with an Intel Xeon Processor comprising 20 cores with CPU 256 Gb of RAM. We used
one compute node for running Apache Kafka producer and consumer. Elasticsearch and
Kibana were run on the second and third compute node, with the fourth one being used
to create and test the ML models. This separation was done so as to mimic the real
IoT data pipeline setup. In order to emulate a real-time scenario, we deployed the Cup-

Carbon IoT simulator on a desktop machine running on Intel i5, 2.6-3.2 GHz processor
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with 16 Gb of RAM. The complete implementation, along with the source code, can be

found here 2.

4.4.2 Data Setup

For generating the historical data for the build phase, we simulated the NdR system
using the CupCarbon simulator for a period of 30 days. To emulate the case study’s
real scenario as close as possible, we created a script that generates data for each of the
sensor components using intervals of 60 seconds with arrival rates based on a Poisson
distribution. The distribution mean values were selected through general observations
from the real scenarios of NdR. During the simulation, the sensor data acquisition fre-
quencies were varied randomly. This was done to capture the different types of energy
variations that might happen in the real scenario, while the sensors switch between
different execution modes. The simulation resulted in an energy consumption log file
consisting of the energy consumed by every sensor per second for a period of 2592000
seconds (30 days), amounting to a size of 3.5 Gb. The data were further processed by
feature extractor to generate the aggregated one-minute energy data, thus, resulting in
a dataset consisting of simulation data for 43200 minutes. This data was then divided
into training and testing set in the ratio 7:3, thus, resulting in a training set of 30240
samples and a testing set of 12960 samples. This data was further transformed to su-
pervised learning data as required by the LSTM models, as discussed in Section 4.2.2

for building the forecast models.

4.4.3 Evaluation Candidates

We used the baselines and parameters as recommended by [149] for evaluating the fore-

cast’s effectiveness. The evaluation candidates are as follows:

1. Naive 1: The basic naive forecasting approach which uses the value at time ¢ for

forecast at ¢t + 1.

2. Naive S: In this approach, the forecasts at time, ¢ is equal to the last known obser-

vation of the same seasonal period.

3. Naive 2: This approach is similar to naive 1 but applied on a seasonally adjusted

data.

4. SES: The approach uses Seasonal Exponential Smoothing [164], where the forecasts

at time ¢ are calculated based on the equations as expressed in [165].

https://github.com /karthikv1392/PIE-ML
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5. Holt: The approach uses a traditional holt-winters additive method [166], which is

an extension of SES for time series forecasting.

6. Damped: This approach is similar to Holt, but the trend component is damped,

which allows it to flatten over time [167].

7. Comb: This approach uses a simple arithmetic average of the forecasts made by SES,

Holt, and Damped for generating forecasts.

8. ARIMA: The approach uses traditional ARIMA method [71] implemented with coef-
ficients p =2,g = 1,d = 1 (based on the standard defined in [149]) for forecasting.

9. MLP: The approach uses a simple Multi-Layer Perceptron with a single hidden layer
implemented using the Keras framework for generating forecasts [168]. Adam optimizer

is used for optimization.

10. LSTM: The approach we used for forecasting energy consumption.

For further evaluating the effectiveness in terms of energy consumed, the following base-

lines were used:
1. No Adap: Approach without any adaptation.

2. Reactive: Approach that performs adaptation using the decision maker algorithm

(Algorithm 1) in a reactive manner with thresholds 7', Mg = 1.75 and Ly = 1.12.

3. Proactive_5: Approach that performs adaptation using the decision maker algorithm

in a proactive manner with a horizon, H = 5 minutes, Mg = 5.89 and Lg = 5.2.

4. Proactive_10: Approach that performs adaptation using the decision maker algorithm

in a proactive manner with a horizon, H = 10 minutes, Mg = 11.87 and Ly = 10.62.

5. Proactive_15:Approach that performs adaptation using the decision maker algorithm

in a proactive manner with a horizon, H = 15 minutes, Mg = 17.86 and Lg = 16.88.

6. Proactive_80: Approach that performs adaptation using the decision maker algorithm

in a proactive manner with a horizon, H = 30 minutes, Mg = 35.9 and Lg = 34.36.

The values for Mg and Lg were selected by analyzing the maximum, median, and
minimum total energy consumed by the sensors every H minutes (except for Reactive,
where this calculation is done based on the total energy consumed every minute) in a
regular setup without using any adaptation techniques. Mg was set equal to the median,

whereas Lg is set to the average of median and minimum.
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4.4.4 Evaluation Metrics

To measure the effectiveness of the forecasts we use the following metrics which are

considered as the standard metrics for evaluating forecasts in [149]:

1. RMSE: The Root Mean Square Error value for a dataset with n samples is given by

the formula :

=1

RMSE = % 3 (pi - yi>2 (4.4)

Where p; represents the predicted value and y; represents the actual value. It is a good
estimate of the deviation of the predicted value with respect to the actual value. The

larger the value, the higher, are the prediction outliers.

2. sMAPE: The Symmetric Mean Absolute Percentage Error for a dataset with n

samples is given by the formula:

100% ~ [pi — vs

sMApE — 0% 3 pi =i (4.5)
n = |yl +|pil

It gives an estimate on the overall percentage of error in the forecasts.

3. MASE: Mean Absolute Scaled Error for a dataset with n samples is given by the

formula:

1/H | — | fi
n—1 Zi:l |Yi — Yi—1]
It penalizes errors in large forecasts and small forecasts equally and is not dependant on
the scale of the data. It also gives a measure of how better is the forecast in comparison

with simple naive method.

4.4.5 Results

RQ1.1. How accurate and stable are the energy consumption forecasts made

by the approach ?

We evaluated the forecast accuracy of our approach using the ten different evaluation
candidates, as explained above. For evaluating statistical approaches except for ARIMA
(1 to 7 of Section 4.4.3), the forecastX [169] package of Python was used and for evalu-
ating ARIMA, the statsmodels [170] package was used.

To evaluate the accuracy of prediction, a short-term forecast horizon, H of 5 minutes
was used. (This was selected as most approaches may produce reasonable accuracy with

short-term forecasts. Hence, it’s important to test if our approach using LSTM can
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Approach RMSE | sMAPE | MASE
Naivel 0.95 11.73 1
Naive2 0.83 10.16 0.4
NaiveS 0.75 9.24 0.37

Holt-Winters 1.61 20.06 0.79
Damped 1.13 13.82 0.55

SES 0.82 9.88 0.39

Comb 1.13 13.9 0.55
ARIMA 0.99 12.04 0.48

MLP 5.41 138.24 4.72

Our Approach (LSTM) 0.27 1.57 0.17

TABLE 4.1: Forecast accuracy of different approaches for a horizon value of 5 minutes

provide higher accuracy than state-of-the-art approaches). Each of the approaches was
then used to generate a 5-minute forecast for every observation, o on the testing set
by considering the past observations. For building the LSTM networks with Keras, a
lag value of [ of 5 minutes was used. Further, we used a batch size of 31. This value
was obtained after experimenting with different batch size values to understand the
best fit. Moreover, keeping the batch size low enables the algorithm to more effectively
understand the relationship among the input dataset. We used the standard adam
optimizer offered by Keras for performing optimization, as explained in Section 4.2.2.2.
The model was built with 110 neurons (22 components * lag/horizon of 5 minutes) in
the input and output layers (as defined in Section 4.2.2) and 1 hidden layer with 294
neurons. The model was fit in 120 iterations. Detailed experiments with different values

for iterations, hidden layers, and batch size can be found here 3.

Each of the approaches generated the forecast for the total energy consumed by the
sensor components in the system for a period of 5 minutes to form the forecast vector,
F, for each of the approaches. However, LSTM model being trained on multi-variate
data generated energy forecasts for each of the n components of the architecture. This
was then summed up to generate the total energy forecast of the system, F, based on

the o' observation as:

n H
Total EnergyForecast, F, = Z Z feij (4.7)
i=1 j=1

where, fe;; represent the energy of the ith component in the j** minute forecast. This

was performed for every observation in the testing set to generate a forecast vector, F'.

For computing the actual energy vector, A for each of the approaches, we followed the

same process, but instead of using forecasts provided by the approaches, we computed

S3https://tinyurl.com /ya9ttldq
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Approach H = 10 minutes H = 15 minutes H = 30 minutes
RMSE| sMAPE MASE| RMSE| sMAPE MASE| RMSE| sMAPE MASE

Naive 1 2.04 12.59 1 3.14 12.89 1 6.47 13.28 0.99
Naive 2 1.39 8.51 0.68 1.95 7.9 0.61 3.76 7.46 0.56
Naive S 1.18 7.13 0.57 1.51 6.04 0.47 2.48 4.52 0.33
Holt- 3.99 25.3 1.96 7.27 31.55 2.34 22.92 57.06 3.58
Winters

Damped 2.09 12.8 1.02 3.01 12.33 0.96 5.86 12.02 0.91
SES 1.4 8.5 0.67 1.94 7.86 0.61 3.58 7.23 0.55
Comb 2.36 14.56 1.15 3.85 15.88 1.24 10.26 21.53 1.6
ARIMA 1.81 11.06 0.88 2.64 10.73 1.28 5.05 10.28 0.78
MLP 12.48 180.19 | 7.59 15.74 132.43 | 13.77 | 33.03 143.83 | 6.4
LSTM 0.67 2.0 0.32 0.7 1.3 0.19 0.81 0.61 0.19

TABLE 4.2: Forecast stability of approaches across different horizon values

the actual total energy of the system after 5 minutes based on the current observation,O

This was done as follows :

n H
Total EnergyActual, A, = Z Z €ij (4.8)
i=1 j=1

where, e;; represent the actual energy consumed by the it" component in the j** minute.
We then used these to compute the different evaluation metrics. Table 4.1 shows the
results of evaluation among different approaches. We can clearly see that the use of
LSTM offers the best forecast accuracy in terms of the three measures. It has the lowest
values for RMSE, sMAPE, and MASE. For instance, the RMSE offered by LSTM (0.27)
is about 69% and 73% better than one offered by SES and ARIMA. sMAPE is evaluated
out of 200%, and we can see that SMAPE of LSTM is just 1.57%, thereby producing
the least percentage of errors in forecasts. The MASE score further denotes that LSTM

produces 93% better forecasts compared to the simple naive method.

Figure 4.6 shows the plot between the actual vector (red) and the forecast vector (black)
for 100 samples (for ease of representation). We can clearly see that the prediction made
by the LSTM model is able to clearly follow the curve of actual energy. There are periodic
intervals where the actual values show a trend to go towards 8.5, where the LSTM also
goes down. This is due to the fact that LSTM being a deep neural net, has the ability
to identify the non-linear relationships for energy consumption that may exist between
the different components of the system. Further, being a class of recurrent neural nets,
it also posses the ability to memorize and reproduce this information. Hence, unlike
other standard methods, it does not depend only on the seasonality, trend, or any other

statistical information of the observed time-series.
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FIGURE 4.6: LSTM Forecasts on historical dataset

One of the key attributes of a good proactive approach is that it should have the ability to
provide accurate forecasts for different time horizons. Since a given system/environment
might demand forecast of the different horizons, this leads to the test of forecast stability
among the approaches. To measure the forecast stability offered by the approaches, we
used them to generate forecasts for three different forecast horizons: i) a short-term
horizon of 10 minutes; ii) a medium-term horizon of 15 minutes; iii) long-term horizon
of 30 minutes. Then we repeated the same procedure as above to measure the evaluation
metrics for each of the forecast horizon?. Table 4.2 shows the values obtained during the
evaluation of stability. LSTM can produce long-term forecasts, the forecast accuracy
of LSTM is nearly consistent across varying time horizons. It is also notable that the
RMSE values of other approaches such as ARIMA, SES, NaiveS decrease by a large
margin with the increase in time horizon. For instance, the RMSE offered by ARIMA
for the long-term forecast (5.05) is 174% and 35% higher with respect to the RMSE
offered for the short-term forecast (1.81). However, in the case of LSTM, RSME offered
for the long-term forecast (0.81) is just 18% and 5% higher than the RMSE for the
short-term forecast (0.67). The values of other evaluation matrices for LSTM are also

the least and the most consistent across the time horizons.

Figure 4.7 shows the RMSE plot of actual energy vs. forecasted energy consumption for
each of the chosen horizons. It demonstrates the ability of LSTM networks to provide
accurate forecasts across varying horizons. This is mainly due to LSTM networks’ ability

to learn long-term dependencies, unlike traditional statistical methods.



Leveraging Machine Learning for Proactive Architectural Adaptation 91

16
—— forecasts —— forecasts
—— actual 22 1 —— actual
FRER g
=] =]
S 8 21
C =
2 144 .8
I I
IS £ 20
> =]
g g
8 131 8
> > 19 A
2 2
2 2
w 124 w
18 A
0 20 40 60 80 100 0 20 40 60 80 100
Time Intervals (Aggregated over 10 minutes) Time Intervals (Aggregated over 15 minutes)
(A) LSTM forecasts with horizon 10 (B) LSTM forecasts with horizon 15

—— forecasts

BT — actual

Energy Consumption (Joules)

0 20 40 60 80 100
Time Intervals (Aggregated over 30 minutes)

(¢) LSTM forecasts with horizon 30

FIGURE 4.7: LSTM Energy Consumption Forecasts for different horizon intervals

RQ1.2. How much does using our approach save energy as compared to a

reactive or non-adaptive approach ?

We measured the energy efficiency by simulating the system using each of the six base-
lines mentioned in Section 4.4.3. The simulation was carried out for a period of 1 day
(1440 minutes) so as to emulate the real scenario of NdR (NdR is a one day event,
as presented in Section 2.5). Every sensor components were given an initial energy of
19160.0 Joules which is the default setting of CupCarbon. Further, to evaluate the role
of different decision period intervals, d while using the proactive approaches, we used
three different decision period intervals for each of the proactive approaches namely,
short (sq), medium (mg) and large (Ig). While short denotes, a decision interval very
close to the time horizon (sq = 1, 3, 5 and 5 for H = 5, 10, 15, and 30 respectively),

medium denotes a middle value in between sq and H (mg = 3, 5, 10 and 15 for H =
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Energy Consumed (Joules)

A h
pproac oy g L

NoAdap 1712.42 - -

Reactive 1557.67 - -
Proactive b | 1504.16 | 1497.62 1451.43
Proactive_10 | 1479.44 | 1462.71 1372.18
Proactive_15 | 1492.06 | 1478.03 1394.69
Proactive_30 | 1553.34 | 1505.88 1406.75

TABLE 4.3: Total Energy Consumed by the approaches while using different decision
periods
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FIGURE 4.8: Cumulative Energy Consumed by different approaches with decision pe-
riod, Iq

5, 10, 15, and 30 respectively) and large denotes a decision interval l; = H (mgq = 5,
10, 15 and 30 for H = 5, 10, 15, and 30 respectively). The results obtained during the
system’s simulation while using each of the approach (including the ones obtained using

the three different decision periods) are presented in Table 4.3.

As we can observe from the table, the proactive approach performs better than the
reactive approach. However, the time horizon and decision period used have a big im-

pact on the total energy consumption of the sensors while using each of the proactive
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approaches. In particular, the energy consumed by Proactive_5 and Proactive_30 us-
ing decision period, s4 is very close to the one consumed by Reactive approach. This
is because, when using a short decision period, the LSTM networks don’t get enough
observations to understand the impact of the decision made at the previous decision
period, hence ending up performing sub-optimal adaptations. However, as we increase
the decision periods, we can see that the energy saved also increases. The cumulative
plot of energy consumed by the system while using each of the different approaches is
represented in Figure 4.8. We can also observe that as time progresses, the gap be-
tween the approaches starts increasing. Towards the end of 24 hours, the least energy
consumption is offered by Proactive_10 with a long decision period, l4 (1372.18 Joules),
which is almost 20% and 13% less than the one offered by NoAdap and Reactive respec-
tively. Moreover it is clear from the Table 4.3 and Figure 4.8, the energy consumed by
Proactive_15 and Proactive_30 (to some extent) with decision period lg is very close to
the one offered by Proactive_10 with decision period lz. This is because there is a great
change in the energy consumption rate due to operational modes changes. This implies
that it is important to consider a prediction horizon with a decision period that allows
the proactive approach in analyzing the impact of the adaptation made during the past
decision period. This further enables the approach to make optimal adaptations during
the given decision period. Hence, long forecast horizons with large decision periods or
even short decision periods do not offer the best results. However, suppose this was
a system where the rate of energy consumption change (or any QoS in general) is not
high. In that case, even the short-term horizon with short/medium decision periods may

produce optimal adaptations.

RQ1.3. What is the quality of adaptation performed in terms of the energy
consumed by the system with respect to the specified thresholds ?

The objective of this question is to understand how effective is the adaptation performed
by the approach in-terms of the total energy consumed by the sensors per time interval

with respect to the threshold, Mg. To measure this, we did the following;:

First, we calculated the total energy consumed by the sensors per minute using each
approach. We analyzed the effectiveness of approaches to keep the energy consumption
under the threshold, Mg = 1.75 per minute (The max energy threshold for one minute as
defined for Reactive in Section 4.4.3). Figure 4.9 shows the box plot of the total energy
consumed by the different approaches per minute. pro_h5, pro_h10, pro_h15 and pro_h30
denotes the proactive approaches with decision periods, {5 and horizons 5, 10, 15 and 30
respectively. The average energy consumed by pro_10 per minute is around 0.95, which is
about 14% percent better than its reactive counterpart. There are some instances where

the energy consumed by pro_10 goes as high as approximately 1.80, which is higher than
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the threshold hp for one minute (as defined for the reactive baseline). This is true for
other proactive approaches, as well. However, as we can observe from the plot, most
of the energy values in proactive approaches lie in the lower range of [0.75,1.20] with

pro_h5 consuming the most pro_h10 consuming the least on average.

2.00 A

@

1.75 A (@)

1.50 A

1.25 A

1.00 4

0.75 A

0501 &

Energy Consumption (Joules)

0.25 A

0.00 o o - - -

noAdap Reactive pro_h5 pro_hl0 pro_hl15 pro_h30
Approaches

FIGURE 4.9: Box plot depicting the total energy consumed by the sensors per minute

Second, we measured the total energy consumed within the proactive approaches with
different horizons when using different decision period intervals, d. This was done to
measure the impact of using different decision periods on the adaptation’s effectiveness

to maintain the energy consumption under the threshold, Mpg.

The results are presented in Figure 4.10 in the form of a box plot (y-axis denotes the
total energy consumed for the given horizon interval, H. For instance, when H=5, the
corresponding y-axis denotes the total energy consumed in 5 minutes). As expected,
the approaches, while using a short decision period, s4, on average, consume the most
amount of energy. However, while using the decision period, sg, the variation in energy
consumed is very less. This is because, during a short decision period, adaptations
are performed at more frequent intervals. This does not allow the approach to analyze
the impact produced by every adaptation, thereby resulting in sub-optimal adaptations.
Due to this reason, we can see that, as the decision period changes from s; to mg and

further to l4, the variation or the range in energy consumption increases at the same
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FIGURE 4.10: Box plot depicting the total energy consumed by the sensors using
different decision periods per H minutes

time, the average energy consumption decreases. The average offered by proactive_10
(9.5) is almost 20% less than the corresponding Mg for H=10 (11.87). This value is the
highest compared with other approaches, and the median value is also more balanced in

the case of proactive_10.

Hence, the best energy effectiveness in terms of the total energy consumed and the
adaptation quality in terms of adherence to the threshold (M) is offered by the approach

proactive_10 when using the decision period, I; = 10 minutes.

RQ1.4. How efficient is the approach in terms of the number of adaptations

performed 7

For evaluating the adaptation efficiency in terms of the number of adaptations performed,
we computed the total number of adaptations applied on the system while using each
of the approaches. This was done by parsing the adaptation log files and extracting
the information on the total number of adaptations performed for the total period of
one day. However, each approach uses different decision periods, and due to this, the

number of adaptations performed needs to be measured with respect to the total number
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FIGURE 4.11: Number of adaptations performed by each approach

of adaptation intervals. We define this as the adaptation count ratio A, where,

A # adaptations per formed
T

_ 4.9
Total number of possible adaptations (4.9)

The results are represented in Figure 4.11. The Reactive approach ends up performing
the most number of adaptations, 752 out of 1440 possible adaptation intervals (1440
minutes), and hence, it has the highest value of A,. On the other hand, we can see
that the proactive approaches, except for a few, perform fewer adaptations in general
and have a low A,. The most efficient approach in terms of A, is Proactive_10 with
decision period mg. However, we have observed from our previous analysis that this
does not provide the best effectiveness. Even though Proactive_10 is not highly efficient
with respect to other proactive approaches in terms of the number of adaptations, it still
provides the best effectiveness to efficiency ratio considering all the other approaches.
Thus, we can observe that even though LSTM provides good accuracy for other time
horizons, the decision period’s choice has a big impact on the effectiveness and efficiency

of a proactive adaptation mechanism.
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RQ1.5. What is the computation overhead of the overall approach 7

To evaluate adaptation efficiency in computation overhead, we clocked the average time
required for our approach to execute an adaptation. The results show that, on average,
our approach takes 0.20 seconds for performing the whole process. In this, the major
time is consumed for network communications. The speed can be primarily attributed
to the usage of trained models and efficient data pipeline, which uses some enterprise-
grade big data stack. The training of LSTM with H=10 takes, on average, around
120 minutes. This time changes depending on the time horizon for a fixed number of
iterations, neurons, and the depth of the LSTM used. However, this does not impact
the real-time process as only the trained models are used for performing analysis and

adaptation in real-time.

4.5 Discussion

In this section, we first describe the lessons learned from the evaluation of the approach.

We further present some of the threats to the validation of our approach.

4.5.1 Lessons Learned

Accurate QoS Forecasts: One of the crucial challenges in applying proactive adap-
tation mechanisms, as stated in Section 1.2, has been to generate QoS forecasts with
good accuracy [31]. Towards this, our approach exploited the temporal dimension prop-
erty of QoS data to treat the problem of forecasting QoS as a time-series forecasting
problem. However, as can be seen from Table 4.1, traditional time-series forecasting
methods cannot be used effectively due to the high variability of QoS, especially in the
case of systems like IoT. Moreover, as can be seen from Table 4.2, existing techniques
do not guarantee consistent accuracy across different prediction horizons. This is one
of the key characteristics required for a proactive approach. Sometimes, the adaptation
process can be time-consuming (For example, the use of model-checking techniques on
systems with high variability), which means the approach should have the ability to
perform effective forecasts across different prediction intervals. Our results on the en-
ergy consumption dataset show that high forecast accuracy can be achieved using deep
neural networks like LSTM for prediction intervals ranging from 5-time steps to even
30-time steps. Moreover, sudden mode changes cause an increase/decrease in energy
consumption. To counter this variation, the MLE is executed periodically to update the

models, ensuring that it continuously evolves.
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Learning Enabled MAPE-K: Another main challenge in using ML techniques for self-
adaptation in general concerns the time required for learning. We address this issue in
our approach by extending the traditional MAPE-K loop with a machine learning engine
component. Further to support the learning time required for training the learning
algorithm, the machine learning engine is executed only at periodic intervals to overcome
the issues associated with concept drift [113]. Further, the trained models are made
available in the Knowledge repository to Analyze activity to support real-time analysis

and predictions.

Impact of Adaptation Intervals on Proactiveness Another challenge in using
proactive techniques, as mentioned at the beginning of this chapter, is to identify the
best adaptation interval and forecast interval for adaptation. The results from figures
4.10 and 4.9 shows that the best effectiveness in terms of the energy saved is obtained
when using intermediatory adaptation intervals and medium-term forecast intervals.
When using long-term adaptation intervals, the approach has to wait for a longer dura-
tion to identify possible goal violations. During this time, many violations would have
happened, especially in highly dynamic systems like IoT. This can be clearly seen in fig-
ure 4.10. On the other hand, when using short term adaptation intervals, the approach
does not get enough time to capture the change triggered by the previous adaptation.
Similar is the case with using short-term and long-term forecast intervals. Hence an ideal
choice, as we can observe from the results, is to use medium-term (not too long and not
too short with respect to the time of expected QoS violation) adaptation interval with

medium-term prediction horizon.

Overall effectiveness and efficiency of Proactive technique Most of the existing
self-adaptive mechanisms are reactive in nature [31]. Although they are effective, those
techniques trigger adaptation when some QoS violation happens, which brings down
the overall effectiveness. It can be clearly seen in the results presented above how a
proactive technique can save more energy as opposed to its reactive counterpart. The
energy saved by all the proactive approaches (with different prediction horizon and
adaption intervals) is higher than the reactive approach. These results clearly indicate
the overall effectiveness of a proactive approach for performing self-adaptation, especially

in dynamic systems like IoT.

Near-Real-Time Adaptations One of the characteristics of IoT systems is the amount
of data produced and the speed at which this data is produced. With the help of
enterprise-grade big data stack, we can see that our approach can analyze and perform
adaptation in almost 0.20 seconds. This means that the adaptation process by itself
will not cause interruptions to the general functionality of the system and the overall

approach being proactive ensures that the system never reaches an undesired state. The
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use of a message broker like Apache Kafka ensures that most of the issues related to

reliability, latency, or data availability can be easily handled.

4.5.2 Threats to Validity

1. External Validity: Scalability of our Approach While we have evaluated our
approach on a portion of the NdR case study with 22 components, we believe that
our approach can be easily extended to more complex systems with a larger number
of components. The layered architecture that we have used for the implementation
supports horizontal scalability in terms of the number of architecture components. It
also supports vertical scalability in terms of the amount of data generated. This will
mean just modifying the configurations of the Kafka (to run in streaming context) or
adding a batch streaming component like Apache Spark [171]. This is also true with
the MLE. The ML techniques we have used can be applied easily on larger datasets. It
will be just about fine-tuning the neural network parameters during the model building

process.

2. External Validity: Generality of our Approach Although our approach has
been applied to a specific case study, the techniques used by our approach can be repli-
cated on any case study/use-case. Such replication is possible as long as we can ex-
tract/obtain the energy consumption data either through simulation or from running
instance. This same approach can also be used for any other QoS metric such as data
traffic, response time, throughput, etc. since any of these data can be modeled as
time-series data. Further, the Decision Maker uses the threshold settings and frequency
reduction limits provided by the stakeholders, and this can be easily modified depending
on the case study. Moreover, our approaches use generic machine-learning techniques
that do not use the NdR case study’s specific properties or characteristics. We further
prove this aspect of the approach later in Chapter 7, where we apply the same approach

to accurately forecast response time of microservices.

3. Internal Validity: Incorrect Forecast Any ML process suffers from the problems
of accuracy. The model might forecast high energy consumption, whereas the system
would not have entered such a state (as we have seen in the case of Proactive_5 approach).
We understand this issue, and to avoid this, we suggest using horizons that are not
too short and not too long, along with decision periods that allow LSTM to make
accurate forecasts. Moreover, to improve our model continuously with new data, we keep
performing the model building process mentioned in Section 4.2.2 at regular intervals,

thus ensuring that the model keeps improving with new data.
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4. Construct Validity: Use of Simulated System for the Experiment Even
though we simulated the NdR IoT system, the simulation is performed using a state-
of-the-art IoT simulator (CupCarbon [153]), especially for simulating the energy con-
sumption of sensor nodes. Further, we modified the software, hardware, and spatial
configurations of the sensor components within the simulation tool to be compliant with
the real scenario. This included creating custom sensor scripts, setting the communica-
tion protocols, communication range, placement of sensor nodes in the respective (x,y)
coordinates, setting the elevation of sensor nodes, etc. All these were done to ensure
that the performed simulation respects the configurations of the envisioned real system.
Moreover, with regard to the data used for simulating the sensor components, we used
the sensor data distribution (which includes the number of people arriving at venues,
movement of the car to/from parking lots, etc.) based on real observations from the
NdR event.

5. Construct Validity: Energy savings vs. adaptation cost We are performing
adaptation based on the ML model’s forecast, which is then used for performing decision-
making and adaptation. This adaptation performed can have a cost associated in terms
of the energy consumed for performing the adaptation. While this is true, we need to
consider this cost with respect to the benefit of the gain in the lifetime of the sensor
nodes. Moreover, since prediction and decision making components need not be deployed
in the edge node, they can be placed in the cloud/server used to execute the IoT system,
thereby reducing the adaptation cost in terms of energy consumption. However, this will
be relatively less when compared to the total energy savings. To further save the loss
incurred in communicating the energy consumption data, the edge nodes can append
the energy value to the normal data message (for example, 11.04100.75J where 11.0

denotes the sensor data and 100.75 denotes the energy remaining in joules).

To summarize, in this chapter, we addressed RQ! through a proactive approach that
extends the traditional MAPE-K to support self-adaptation in IoT systems using ML
techniques. It achieves this by leveraging the QoS data in particular energy consump-
tion. We also provided a complete implementation of the approach using a layered
architecture with enterprise-grade big data stack. We performed extensive evaluations
of our approach by applying it to a simulated version of the NdR case study. The results
proved that our approach’s deep neural network (LSTM) outperforms traditional time-
series forecasting models. It provides highly accurate energy consumption forecasts for
prediction horizons ranging from short intervals of 5 time-steps to even long-intervals of
up to 30 time-steps. Further, we also evaluated the effect of different forecast and adap-
tation intervals on the overall adaptation effectiveness. We also proved how a proactive
adaptation mechanism could provide better effectiveness in terms of energy consumption

and efficiency in terms of the number of adaptations than a reactive counterpart.
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While this chapter focused on the Analyze activity of the MAPE-K and used a simple
algorithm for the Plan phase, in the next chapter, we describe how ML can be also used
in the Plan activity to enable architectures to learn and improve. We also describe how

such an approach can handle multiple QoS parameters.



Chapter 5

Learning to Adapt and Adapting

to Learn

In the previous chapter, we saw how we could use machine learning techniques like deep
neural networks to perform effective and efficient proactive adaptations. We further saw

how such a process improves the overall energy efficiency of an IoT system.
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FIGURE 5.1: Learning-driven adaptation

Although the traditional proactive adaptation process works better than the reactive
approach and provides better QoS guarantees, one main issue exists. The performed
adaptation does not necessarily improve the architecture; it may temporally overcome
an impending failure while not preventing the system from entering the same state in
the future. In other terms, the architecture adapts to the current context, but it does

not learn how to react to new families of the same contexts (refer Section 1.2).

102
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Towards this direction, in this chapter, we extend the proactive adaptation approach
with learning capabilities. Figure 5.1 shows the overall process flow such an adaptation
process. As seen from the figure, different from a traditional proactive adaptation process
(which we have seen in our previous chapter), once a possible goal violation is identified,
another condition is checked to see if the approach runs for the first time. If yes, then an
adaptation plan is determined, and the adaptation is executed. But, if it is not the first
execution of the approach, then it obtains the feedback of the adaptation made at the
previous step, learns from it, and then comes up with a new adaptation plan which is
then executed. So as we can see with this process flow, the approach will have the ability
to continuously learn from every adaptation performed. Moreover, the adaptation will
be performed based on the learning obtained in the form of feedbacks. In this manner,
the system will learn how to adapt and further learn with each such adaptation. Such
an approach is used in this chapter to address the RQ2 How can machine learning be

used to continuously improve the adaptation process?

The overall approach is based on the MAPE-K loop. It extends the previous chapter’s
approach by adding a reinforcement learning-based decision-maker in the Plan activity
of the MAPE-K loop. The approach thereby uses a combination of deep neural net-
works and Reinforcement Learning (RL) techniques to enable proactive self-adaptation
driven by continuous learning and vice versa. This approach is further applied to an IoT
system for continuously monitoring and forecasting QoS data, particularly the energy
consumption and data traffic data, and additionally perform adaptations using the dif-
ferent self-adaptation patterns available for IoT systems. More specifically, the approach

offers the following advantages:

1. Continuously monitors the QoS parameters, particularly the energy and data traffic
of the given IoT system. It then uses LSTM networks to build forecast models for

forecasting each of the QoS parameters.

2. The approach performs adaptation based on the generated forecasts. It allows stake-
holders to specify the energy and data traffic constraints the system needs to meet. It
then uses a RL algorithm to select the best adaptation patterns based on contexts using

RL techniques.

3. Uses the generated forecasts as feedback mechanisms to measure the effectiveness of

a selected decision.

4. Continuously performs the loop of forecasts, selection, adaptation, and learning

(through feedbacks) to improve the decision-making process.
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5.1 Motivating Scenarios

This section presents the motivation behind the work described in this chapter through

the NdR case study described in Section 2.5.

Another significant QoS challenges in IoT systems, similar to ensuring energy efficiency
concerns with minimizing the system’s overall data traffic [172]. The impact of data traf-
fic is such that the global carbon footprint is expected to increase with an exponential
increase in ICT data traffic [173]. Considering the increasing use of IoT devices, there
will be a tremendous increase in data traffic generated and energy consumed by these
systems. One re-configuration method to reduce data traffic and energy consumption,
as we have seen in the previous chapter, consists of reducing the sensor data acquisition
frequency. However, such a solution may affect service accuracy since it causes a drastic
reduction in data traffic. Another method consists of reducing the data traffic by using
decentralized architectures, but this might increase the sensors’ energy consumption.
This mandates the use of structural, architectural adaptation techniques that, while
offering the desired energy efficiency, maintain data traffic between the required perfor-
mance thresholds. For this purpose, we rely on three different self-adaptation patterns

for architecting IoT systems proposed in literature (refer Section 2.1.5) [56].

5.1.1 The case of NdR: Handling tradeoff’s

As we have seen in the previous chapter, One of the critical constraints we have in
the NdR case study is to ensure that the sensors can operate in an energy-efficient
manner. This is because they are battery powered and they can run only for half a
day with a normal battery setup. Even though charging can be performed, the charge
could go down, and plugging in a new sensor (or charging the existing one) during peak
hours can be costly. Moreover, we also need to ensure that the system’s overall data
traffic is optimized since high data traffic can affect performance. In contrast, little data
traffic might cause issues with service accuracy. One of the easiest solution to solve
this problem is to use one of the self-adaptation patterns. However, each pattern has
its advantages and disadvantages, especially regarding energy savings and the amount
of data traffic generated. Figure 5.2 illustrates such a scenario. It shows a sample
simulation of the envisioned system using each of the three patterns for a one-hour
duration. The dotted lines in Figure 5.2A) represent the maximum total energy that
can be consumed for 10 minutes. On the other hand, the dotted lines in Figure 5.2B
represent the maximum /minimum limit above/below, which leads to congestion/service

accuracy issues.
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FIGURE 5.2: One hour simulation of NdR architecture

We can see that the CO pattern (lower line in Figure 5.2A) ensures that energy con-

sumption stays within the limit. However, the same pattern does not guarantee a stable

performance as the data traffic of the system goes above the threshold (topmost line in

Figure 5.2B)). This behavior is because CO, being semi-decentralized, has an additional

controller component in between; hence, the sensors’ total energy will be less, whereas

the data traffic in the system will be high. The same is the case with SU and SC pat-

terns: they initially perform reasonably well in terms of data traffic, but towards the

middle, we can see that they go below the minimum threshold, causing potential service

accuracy issues. Thus, those that work well with energy do not work with traffic and

vice versa.
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FIGURE 5.3: Approach Overview

Henceforth, an ideal IoT system should have the ability to proactively predict the con-
sumption and intelligently use different self-adaptation patterns based on the context to
keep the energy and data traffic consumption within limits. Moreover, it may happen
that a particular pattern selected behaves indifferently (due to sudden mode changes/en-
vironmental uncertainties). Thus, the system should have the ability to learn from these

situations and improve the decision-making process.

5.2 Approach Overview

In this section, we first present an overview of the approach. We then provide details
on how it uses different machine learning techniques and the different self-adaptation
patterns to proactively and autonomously adapt the software architecture, thus ensuring

that the architecture learns and improves over a period of time.

Figure 5.3 shows the overview of the approach. It is based on the MAPE-K loop, as we
have seen in the previous chapter. However, while the last chapter focused more on the
Analyze activity of the MAPE-K, in this chapter, we shift the focus to the Plan activity
of the MAPE-K (highlighted using grey boxes in Figure 5.3). Further, we elaborate
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on how the Machine Learning Engine (MLE) along with the Analyze and Knowledge
activity enables the architecture to adapt and learn with every adaptation performed

continuously.

The Managed System represents the IoT system, which has been implemented based on
defined software architecture. In this approach, we model the architecture such that it
will be able to switch between multiple patterns depending on the decision produced by
the plan activity. During modeling, the operational modes of sensor components need
to be defined. We also define the conditions for transitions between the different modes

during this phase.

The Managing System consists of the various activities which use a combination of
deep neural networks and RL techniques to perform adaptations. It is responsible for
analyzing the data produced by the managed system, forecasting the expected QoS
(Analyze Activity), and generating actionable insights in the form of adaptation decisions
(Plan Activity). The decisions generated by are then used for executing the adaptation
(Ezecute Activity). This learning and adaptation loop keeps continuing, thereby enabling

the system to become efficient with respect to the energy and data traffic thresholds.

5.3 Learning-driven Adaptation Approach

In this section, we extend the proactive approach (presented in Chapter 4). This further
enables the architectures to adapt and learn continuously from each adaptation per-
formed. We particularly focus on how the approach i) stores the knowledge, ii) performs

learning, and iii) executes the adaptation.

5.3.1 Knowledge

As explained in the previous chapter, the Knowledge acts as central storage for differ-
ent types of knowledge required by different components of the managing system for

performing the adaptations. It stores four different types of information:

i) QoS Goals: It consists of the energy and data traffic goals that need to be satis-
fied. These goals define the different energy and data traffic thresholds by specifying
the acceptable energy consumed and data traffic generated by the system for a given
time interval. The respective stakeholders define the thresholds through a configuration
file. This process involves defining four variables: i) high energy (he), the maximum
energy that can be consumed by the sensors every 10 minutes; ii) low energy (le), the

threshold below which the sensors save the maximum energy; iii)high data traffic (hd),



Learning to Adapt and Adapting to Learn 108

the maximum allowed traffic to avoid congestion; iv) low data traffic (Id), the minimum

traffic required to maintain service accuracy.

ii) ML Models: It consists of the different trained ML models, which are further used by
the Analyze activity to forecasts the expected QoS. In this chapter, we extend the ML
Models store to support storage and versioning of different types for forecast models: i)

forecast model for energy consumption ii) forecast model for data traffic.

iii) Plan Repository: The plan repository stores the different adaptation plans, in this
case, the different adaptation patterns, and further stores the configurations for each

pattern. The Ezecutor component uses this for executing the adaptation.

iv) Q-table: It is a lookup table generated and used by the Decision Maker component
to identify the best adaptation pattern based on a given scenario. It enables the Decision

Maker to converge towards the selection of better adaptation decisions with time.

5.3.2 The Machine Learning Pipeline

Figure 5.4 shows the overall machine learning pipeline view of the approach (It is the
same as the one presented in Chapter 4, we have represented this pipeline to give an
overview of the overall machine learning flow). It represents the Analysis and Planning
phase of the MAPE-K loop. As we have seen in the previous chapter, the overall process
can be divided into two phases, Build Phase and Operational Phase. The former refers
to the process of building machine learning models for forecasting QoS parameters. The
latter refers to the run-time phase, where the machine learning models are used to
forecast the energy consumption and data traffic based on the run-time data and select
the best adaptation pattern for architectural adaptation. When running the Operational
Phase, the Build Phase is run in parallel (at regular intervals) to ensure that the machine
learning model is up-to-date with new patterns in the data. Further, we provide details

on each of the components of the machine learning pipeline.

5.3.2.1 Data Store and Feature Extractor

The Data Store consists of logs containing information on every interaction that hap-
pens within and between the sensors at every instant of time. The intervals of time
may not necessarily be uniform. Rather it is based on the fact that whenever there is
any interaction within or between the components during the simulation/execution, the
energy consumed for corresponding interaction is logged. The information of the inter-
action can be used to calculate the data traffic by computing the number of messages

exchanged. These logs are then passed to the Feature Extractor for further processing.
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FIGURE 5.4: Machine Learning Pipeline of the Approach

The Feature Extractor (component 2) first splits the data in the Datastore into two
datasets, namely energy data and traffic data. Energy data consists of the amount of
energy consumed for every component in different instants of time. Traffic data consists
of the total data traffic generated in the system for different instants of time. Each of
these data sets is further processed using four steps, as explained in Chapter 4: i) Time
series Modeling, ii) Normalization, iii) Conversion to Supervised learning problem, and

the iv) Train and Test data generation.

Finally, each of these datasets is divided in the ratio 7:3, where 70% of data becomes
the training set, and the rest 30 % forms the testing set. The training sets are passed

to the Model Builder, and the testing sets are passed to the Model Evaluator.

5.3.2.2 Model Builder and Model Evaluator

The Model Builder (component 3) as explained in Chapter 4, forms one of the key
components of the approach as it is responsible for building the forecasting models. It
uses LSTM networks and creates two forecasting models, one for forecasting the total
energy consumption of the sensor components in the architecture and the other for

forecasting the system’s total data traffic.

In our previous chapter (Chapter 4, Section 4.2.2.2), we have shown how LSTM networks
can forecast energy consumption of the sensor components. We have also demonstrated
why LSTM networks are more effective than traditional models like ARIMA, SES, etc.
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This chapter uses the same approach to create the LSTM networks but for both energy

consumption and data traffic forecasting.

The LSTM networks are trained using the training sets to generate forecast models. The
Model Evaluator checks the accuracy of the models on the respective test datasets. This
is performed by using the test data sets to forecast the energy and data traffic values
and comparing it with the actual values. In the case of lower accuracy, retraining is
performed by modifying the network parameters, and the trained models together form
the QoS Predictor (Component 5).

5.3.2.3 Real Time Data Store and QoS Predictor

During the operational phase, the data generated during the execution/simulation is
ingested into the real-time data store (component 6 in Figure 5.4, represents the QoS
Data in Monitor activity, Figure 5.3), and this is immediately sent to the QoS predictor
(component 5 Figure 5.4 represents the QoS predictor in Analyze activity, Figure 5.3).
It keeps aggregating the real-time data until the number of observations, n, becomes
equal to the lag, [ (the number of observations required for the model to forecast). It
then uses the trained LSTM networks to forecast the energy consumption of the sensors

and the data traffic of the system for the next H time steps.

5.3.2.4 Decision Maker (Q-learning)

The Decision Maker component (component 7 in Figure 5.4, represents the Decision
Maker in Plan activity, Figure 5.3) is responsible for selecting the best adaptation pattern
based on the forecasts provided by the QoS predictor. It uses Q-learning, a reinforcement
learning-based technique [61, 73] to perform the decision making. Q-learning is a widely
used method for decision-making scenarios due to their ability to come up with optimal
decisions through a model-free learning approach. For further details on Q-learning refer

to Section 2.2.4.

The problem of selecting the best adaptation strategy can be converted to a famous
"Robot in the Grid World” problem [174], where the running software architecture can
be considered as a robot that has to navigate through a grid where the goal is to reach
to a position in the grid which enables the architecture to become efficient with respect
to energy and data traffic thresholds as defined in QoS Goals (Figure 5.3). Figure 5.5
shows how an adaptation decision making problem can be modeled as a grid problem.
S A denotes the current software architecture of the system. Each grid represents the

combination of thresholds, as defined in 5.3.1. For instance, the grid H EH D represents
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the case when the system is consuming high energy and high data traffic. The objective
of the Decision Maker component at every point will be then to select the best strategy
in the form of patterns such that, given the system’s position, the architecture SA will

eventually move towards the required goal.

HD AD LD
HE | SA
AE
LE

FIGURE 5.5: Grid problem representation of the decision making problem

Figure 5.6 represents the mapping of the decision making problem into a g-learning
problem (refer Section 2.2.4). The Decision maker represents the Agent and the running

IoT system represents the Environment. First part of Q-learning then, is to divide
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(Switch to pattern, py,)
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—_——
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FIGURE 5.6: Decision Making through Q-learning

the problem into set of States, S Actions, A and Rewards, R. The forecasts of the
QoS predictor can be classified into different categories based on the values of forecasts
with respect to QoS thresholds. The state space represents a set that contains all the
categories based on the thresholds combined with each pattern, p available. For example
if there are three patterns {p1,p2,p3}, and QoS thresholds = {he, hd,le,ld} then state
set can be: S = {he_hd_pl, he_hd_p2....,le_ld_p2} Thereby, resulting in total of 27 states
(3 patterns and 9 combination of QoS thresholds). The action space on the other hand,
consists of the possible actions which allow the architecture to move in the grid. Let
P = {pl,p2,..pm} represent the set of available patterns then, action space, A can be
defined as A = {0, 1,....m} where any i € A represents switching to the pattern p; € P.
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Rewards, R consists of a set of integer values which corresponds to every state, s; in S.

It represents the reward for moving to a particular state.

S and A together form an N xM Q-table Matriz or Q-table where N represents the states
and M, the actions. Each value inside Q-table corresponds to a (state s,action a) pair
and it indicates the relevance of taking an action a from state s. At a given instant of
time, ¢, the energy and the data traffic forecast produced by the QoS Predictor along

with the current pattern in use, is used to determine the state, action inside the Q-table.

At every instant of time, t, based on the Q-table, the Decision Maker performs an
action, A; by switching to one of the patterns, P (Figure 5.6). Such a switch moves
the state of the IoT system from one to another, and this is determined by the QoS
categories, as explained above. Further, for every action, a; performed at a time, ¢, the
Decision Maker obtains feedback in the form of Rewards, R, and this is assigned based
on the QoS forecasts obtained at a time, ¢t + 1. This process allows the decision maker

to improve the overall decision making process continuously.

The complete algorithm of Decision Maker is presented in algorithm 2. It first takes
as inputs the states and action, S and A as mentioned above. It then uses the set of
thresholds (line 3 and 4), T' defined by the stakeholder in the form of QoS Goals, the
forecast set, F' produced by the QoS predictor; the Reward list, R, which contains a
set of rewards corresponding to each state; and a pattern mapp,qp which consists of
two-way mapping between an action, a and a pattern, p. The algorithm also takes as
inputs two parameters « and v where 0 < o < 1 represents the learning rate, which
represents the importance given to the learned observation at each step, and 0 < v <1

represents the discount factor, which denotes the weight given to the next action.

It then finds the current state of the system (lines7-9), s based on the forecasts F', and
thresholds, T'. It first identifies the category, C' of the forecast. This is then combined
with the current pattern, p to obtain the state s as C_P. This is followed by identifying
the reward, 7, to be assigned for that state from the reward list, R (line 10). Following
this, the action, a corresponding to the pattern, is identified from the pattern map,
Prap. The algorithm then selects the (state, action) pair from the Q-table with the
maximum Q-value. This is then assigned as the next state and action, ((s',a’)) (line

12). The Q-table is then updated using the Q-Function:
(styar) = (1 — ) * Q(s¢,a¢) + ax (ry + v x max(Q(s¢ + 1,a))) (5.1)

Following this, the pattern p corresponding to the action is selected (lines 14-15). One
of the crucial parts of Q-learning is the effective use of rewards. By assigning negative

rewards (penalties) to states that violate thresholds and positive rewards to states within
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Algorithm 2 Decision Maker Algorithm

Require: :
1. States S = {s1, 52,83, ..., Sn}
2: Actions A = {0,1,2...m} > represents the switch to each m patterns
3: Thresholds T' = {he,le, hd,ld, ...} > Thresholds as per QoS requirements
4: Forecasts F' = {ef,df} > Forecasts of energy and data traffic
5. Rewards R = {r1,72,...,7n} > Reward for each of the state
6: Pattern map Ppqp = {pl:1,p2:2,p3:3...pm:m} > two way mapping between

patterns and actions
7. procedure DECISION-MAKER(S,A,T,F,R,p,P,ca,y ) > Find the state of the system
from the forecasts

8: C <+ identify_category(F,T) > Get Category from Forecasts
: s+ (C,p) > combine category and p to form the state

10: r < R[s] > Reward for attaining the state, s

11: a < Praplp]

12: (s',d’) + argmaz,Q(s,a)

13: Q'(s,a) = (1 —a)*xQ(s,a) + ax* (r+v*max(Q(s',a)))

14: a<a > The action to reach that state

15: P < Ppaplal

16: return p

thresholds, Q-learning ensures that any decision leading to higher energy/higher data
traffic state will get a high penalty in the form of a negative reward. Hence as time
progresses, the Q-table will be filled with values where, given any state, the algorithm
will be able to select the best adaptation pattern, thus ignoring the patterns that can
lead to high penalties.

5.3.3 Execute

The Execute activity is responsible for executing the adaptation and thereby adapting
the architecture. It achieves this with the help of an Ezecutor component. The adap-
tation decisions produced by the MLE basically contains the pattern that has to be
applied. These decisions are sent from the MLE in the form of configuration files. The
adaptation manager then applies the adaptation by dynamically updating the existing

architecture based on the pattern, P given by the Decision Maker component.

The use of machine learning techniques allows the approach to foresee the possible energy
consumption and proactively perform automatic adaptations of the architecture, thus
enabling the IoT system to learn, improve the architecture and become efficient with

respect to the energy and data traffic constraints.
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5.4 Architecture and Implementation

In this section, we provide an overview of the technology stack used for the implemen-
tation. As in Chapter 4, we consider the case study mentioned in Section 2.5 for the

implementation of the approach.

We use the same layered architecture with enterprise-grade big data stack, as explained
in the previous chapter (Figure 4.5) for the implementation of the approach. We use both
Java and Python for the implementation. The development of the NdR case study and
corresponding simulation is performed using the CupCarbon simulator. We use a .json
file for defining the energy and data traffic constraints (Thresholds, T'). The source
code of CupCarbon is also modified to support dynamic pattern switch in run-time
based on the decision produced by the Real-time layer. The Decision Maker component
(Figure 4.5) is modified using native python to implement the algorithm 2. Further, the
Executor component (Figure 4.5) is implemented using core Java to dynamically trigger
the pattern change in CupCarbon based on the decision produced by the Decision Maker
component. The approach automatically executes the batch phase every 3 hours to re-

train the machine learning models for forecasting data traffic and energy consumption.

5.5 Experimentation and Evaluation

In this section, we describe how we evaluated the approach. First, we describe the data
used for the evaluation of the approach. Then we evaluate the approach based on its
effectiveness and efficiency. The effectiveness is measured by answering the following

questions :
RQ2.1. How accurate and stable are the forecasts made by LSTM Networks?

RQ2.2. How much energy and data traffic is saved by the approach as compared to

each individual pattern?

RQ2.3. How much does the adaptation quality improve with time?

The efficiency of the approach is measured by answering the following questions :
RQ2.4. How many adaptations are performed by the approach?

RQ2.5. How much time does the approach takes to perform adaptation?
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Datasets | Simulation | REL Size | AEL Size | RDFL ADFL
Time (MB) (MB) Size (MB) | Size (MB)
(sec)
CcO 2,59,200 704.7 2 702.1 0.10
SU 2,59,200 497.9 2.1 520.2 0.13
SC 2,59,200 469.9 2.1 544.2 0.14
Adap 8,64,000 1771.1 5,8 1720.3 0.34

TABLE 5.1: Summary of Datasets (REL : Raw Energy Logs, AEL : Aggregated Energy
Logs, RDFL : Raw Data Traffic Logs, ADFL : Aggregated Data traffic Logs )

5.5.1 Experimental Setup

For experimentation, we implemented the approach on a high performance computing
cluster consisting of 4 compute nodes (same setup as the one used in Chapter 4). Each
of these nodes runs on a Dell R730 CPU with an Intel Xeon Processor comprising 20
cores with CPU 256 Gb of RAM. We used one compute node to run Apache Kafka.
Elasticsearch and Kibana were run on the second and third compute node with the
fourth one being used for creating and testing machine learning models. This separation
was done so as to mimic the real IoT data pipeline setup. In order to emulate a real-time
scenario, we deployed the CupCarbon IoT simulator on a desktop machine running on
Intel i5, 2.6-3.2 GHz processor with 16 Gb of RAM.

5.5.2 Data Setup

We simulate the architecture using the CupCarbon simulator for a period of 10 days.
The sensor data were generated based on a Poisson distribution with mean values se-
lected based on the case study’s real observations (similar to what was done in Chapter
4). During the simulation, we randomly vary the patterns every 10 minutes. This is
performed automatically by generating random numbers between 0 and 2 and then us-
ing this to select a pattern. This is done to capture the different possible variations in
the data in a real scenario. The same process also generates execution logs (to extract
traffic-related information). These are further processed by the approach to generate
aggregated data sets, which are divided into the ratio 7:3, resulting in a training set of
10,080 samples and a testing set of 4,320 samples. To test the stability of the forecasts
made by the approach, we created three sets of datasets by simulating the architecture
using each of the three patterns for three days. These datasets were then used as vali-
dation datasets. Table 5.1 shows the summary of the validation datasets as well as the
adaptation data set (Adap). These datasets represent distinct scenarios that help us

to evaluate better the stability of the forecast made by our approach using the LSTM
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models. The complete implementation, along with the source code and datasets, can be

found here. 1.

5.5.3 Results

RQ2.1. How accurate and stable are the forecasts made by the LSTM Net-

works?

We use a forecast horizon, H of 10, and lag value, [ of 10, which means that the models
will forecast the energy/data traffic for the next 10 minutes based on the last 10-minute
values. These are selected considering the results obtained from the experiments in
Chapter 4 and considering the overfitting and accuracy issues. We use the Mean Absolute
Error (MAE) loss function and the efficient Adam version of stochastic gradient descent

[65] for optimization of the LSTM networks.

We use the Normalized Root Mean Square Error (NRMSE) of the predictions on the test
sets for measuring the forecast accuracy. This is done to normalize the RMSE values
to a common range, as there are different types of test datasets. Normalized RMSE,

NRMSE for a dataset, Y with n samples is given by the formula:

2
RMSE(Y n
NRMSE = "MSE0) RparsE = \/}in_l (pi — y>
Where, o(y) represents the variance, p; the predicted value and y; represent the actual
value. Since we have two models, one for forecasting the energy consumption and the

second one for forecasting data traffic, we run the accuracy tests on both datasets.

1. Accuracy of energy forecasts: We build the energy forecast model using one hidden
layer consisting of 110 neurons and 220 neurons (22 components * 10-minute forecast
for each, refer Section 4.2.2.2)) in the input and output layers. These numbers were
selected through experimentation and based on principles listed in [175]. The model is
fit in 150 iterations. This model is then used to generate a 10-minute forecast for every
observation, o on the testing set by considering the set o — 10 observations. The model
generates energy forecasts for each of the n components of the architecture. This is
then summed up to develop the total energy forecast of the sensor components in the
system. This is performed for every observation in the testing set to generate a forecast
vector, F'. For computing the actual energy vector, A, we follow the same process,
but instead of using forecasts provided by the LSTM network, we compute the actual
total energy of the system after 10 minutes based on the current observation, O We

then computed the NRMSE between the actual vector, A, and forecast vector, F'. The

"https://github.com /karthikv1392/ToTAdaptaiton ML
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FIGURE 5.7: LSTM Energy Forecasts

NRMSE calculation for the LSTM model resulted in a value of 0.846, which is really
good as the value indicates the NRMSE over a sample size of 4,320. Figure 5.7 shows
the plot of the actual versus forecast vector. We can clearly see that the LSTM model’s

prediction is almost able to follow the curve of actual energy.

2. Accuracy of Data Traffic Forecasts: For creating the data traffic LSTM model, we
follow the same process as explained above by using the data traffic dataset. Since it is
a univariate data, 10 neurons (10-minute forecast) are used in both input and output
layers. The model was fit in 100 iterations. The model is then applied on the testing
set to generate the forecast vector, F, as explained above, except the fact that this is
a univariate data, and the tenth-minute forecast is calculated for the overall system.
We then used the actual vector, A, from the testing set to compute the NRMSE. The
calculation resulted in a value of 0.90. Figure 5.8 shows the plot of forecasts vs actual
vector. In this case, also, we can observe that the model is able to provide forecasts that

nearly follow the actual values.

3. Stability of forecasts: Each of these trained models is then applied to the validation
sets to test the stability of the forecasts made by the respective models. The results
are represented in table 5.2. The model is trained using the Adap dataset. We can

clearly see that the accuracy level of forecasts of both energy and data traffic is mostly
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FIGURE 5.8: LSTM Data Traffic Forecasts

consistent across the datasets The consistent stability is mainly because the training

Dataset | NRMSE Energy | NRMSE Data
Adap 0.87 0.90
CO 0.88 0.75
SU 0.66 1.29
SC 0.50 0.76

TABLE 5.2: NRMSE of the machine learning models on the validation and adaptation
datasets

dataset considers the different possible variations which allow the LSTM’s to provide
accurate and stable forecasts. This is very important as the adaptation is performed
based on the LSTM networks’ forecasts, and inconsistency in accuracy and stability can

make decision-making erroneous.

RQ2.2. How much energy and data traffic is saved by the approach as com-

pared to each individual pattern?

In order to calculate the energy and data efficiency of our approach, we first calculated
the energy consumption and data traffic of the system while using each of the three

patterns (Approaches CO, SU, SC). This was performed by simulating the system with
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Approach | Energy (Joules) | Data Traffic | Max | Min | Max
(# messages) | DE DE EE
CcO 752.43 437885 90 0 0
SU 1995.85 382896 5 20 143
SC 1498.57 398393 14 8 104
Our Approach 1051.38 398294 18 7 8
TABLE 5.3: Energy Consumption and Data traffic of different approaches (DE : Data
traffic Exceedance, EE : Energy Exceedance
Time | DCO | ECO | DSU ESU DSC ESC DR ER #
(H) adap
4 72473 | 123.61 | 63156 | 326.69 | 65959 | 244.92 | 65684 | 167.62 | 10
8 145130 | 247.65 | 126624 | 656.22 | 132081 | 492.12 | 132239 | 351.99 | 20
12 218513 | 373.00 | 191058 | 988.14 | 198939 | 741.41 | 199212 | 531.40 | 13
16 293133 | 500.41 | 256587 | 1326.35 | 266810 | 996.20 | 267202 | 708.82 | 12
20 367397 | 627.00 | 321036 | 1662.16 | 334248 | 1247.13 | 334468 | 881.65 | 10
24 437885 | 752.43 | 382896 | 1995.85 | 398393 | 1488.57 | 398294 | 1045.96 | 14

TABLE 5.4: Adaptation Effectiveness over time (DCO : Data Traffic using CO, ECO

: Total Energy of Sensors while using CO, DR : Data Traffic using our approach,

ER : Energy consumption while using our approach, #adaptations performed by our
approach)

the respective pattern using CupCarbon. The simulation was carried out for a period of
1 day to emulate our case study’s real scenario. Every sensor component was assigned
initial energy of 19160.0 Joules, which is the default setting of CupCarbon. We then
integrated our approach with the existing system as explained in Section 5.4 and the
simulation was performed. We use learning rate o = 0.02 and discount factor, v = 0.2
. We use the thresholds (T' = {he = 10.0,le = 6.0, hd = 3000,ld = 2500}). These
thresholds are defined by considering the operational constraints we have from the case

study.

Table 5.3 shows the total energy consumed by the sensors and total data traffic of the
system while using each of the approaches. It also shows the number of times each of the
approaches exceeded the maximum and minimum thresholds. Although CO consumes
the least energy of 747 Joules and does not exceed the maximum energy limit, the data
traffic amounts to 437885 messages, and it exceeds Max DE around 90 times. On the
other hand, SU and SC amount to lesser data traffic but each of them exceeds the Min
DE 20 and 8 times, respectively. They also end up consuming more energy with SU
consuming more than SC, which is primarily due to the fact that in SU, the controller
is within the sensor component. This also means they exceed the Max EE limit. Our
approach, on the other hand, consumes 1051.38 Joules, which is 944 Joules less than SC
and 153 Joules less than SU. It also exceeds the energy limit just 18 times. Although It

consumes around 300 Joules more than CO, we can clearly see that the data traffic is
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FIGURE 5.9: Bar plot of the normalized energy and data traffic consumption of different
approaches

less than that of CO, and the Max DE is just 18 compared to 90 of CO. This value is a
little higher than that of SU and SC, but we can see that the Min DE is much less than
SU and SC. The normalized values of energy consumption and data traffic while using
each of the approaches is shown in figure 5.9. We can clearly see that our approach is
able to guarantee better energy efficiency without compromising on data traffic(Table
5.3). In fact, the ratio of energy saved to data traffic is almost 1 (0.66/0.7). This shows

the overall effectiveness of the approach.

RQ2.3. How much does the adaptation quality improve with time?

Further, to evaluate how the approach improves as time progresses, we computed the
total energy consumption of the sensors and total data traffic of the system while using
the approach at the intervals of 4 hours to compute how the energy and data traffic
has improved throughout the day. This was then compared with each of the individual
patterns. The results are reported in Table 5.4 as well as in figures 5.10(A) and 5.10(B)
in the form of cumulative energy and data traffic plots. For the first interval, the energy
consumed using our approach (ER) is 167.62 Joules, and total data traffic (DR) is
65684. This data traffic value is 6789 less than that of CO (The pattern with highest
data traffic), and energy is 159 Joules less than SU (the pattern with least data traffic).
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This margin keeps improving and as time progresses we can see that the value of data
traffic becomes much lesser than CO and the energy consumption becomes lesser from
SU. This holds true with SC as well. The reason for this behavior can be attributed
to the ability of the decision-maker to keep improving based on the feedback through
rewards. The approach thus ensures that the system keeps learning and improving with
time by reducing energy consumption while keeping the data traffic within the limits.

For instance, at interval 8 we can observe that the value of data traffic (DR) is 132239
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which is 12891 less than CO and the energy consumption (ER) is 302 Joules less than
SU. This margin keeps improving and as time progresses we can see that the value of
data traffic becomes much lesser than CO and the energy consumption becomes lesser
from SU. This holds true with SC as well. The reason for this behavior can be attributed
to the ability of the decision maker to keep improving based on the feedbacks through
rewards. The approach thus ensures that the system keeps learning and improving with
time by moving towards the goal state of reducing energy consumption while keeping

the data traffic within the limits.

RQ2.4. How many adaptations are performed by the approach?

We evaluate the adaptation efficiency in terms of the number of adaptations by parsing
the adaptation log files and extracting the information on the total number of adap-
tations performed for the total period of one day. We also computed the number of
adaptations performed at an interval of four hours to compare how the number of adap-
tations has progressed with time. The results can be seen in table 5.4 (# of adaptations).
The values indicate the number of adaptations performed in that corresponding 4-hour
interval. For each interval, the average number of adaptation performed amounts to
13, with the total number of adaptations amounting to 79. On the other hand, every
interval amounts to 240 minutes. The approach continuously monitors every 10-minute
data. This implies that the approach can intelligently perform the adaptation only
when required based on the forecast. This can be clearly attributed to LSTM’s ability
to accurately forecast the possible deviations beforehand and that of the Decision Maker
component to generate the adaptation decision proactively, thus preventing the system

from consuming more energy and data traffic with respect to the thresholds defined.

RQ2.5. How much time does the approach takes to perform adaptation?

To measure adaptation efficiency in terms of the time consumed per adaptation, we
clocked the average time taken by the approach to generate the forecast, select a decision,
and execute the adaptation. The results show that, on average, the approach takes 0.23
seconds for performing the whole process. The speed can be primarily attributed to an
efficient data pipeline, which makes use of some enterprise-grade big data stack. The
fact that Q-learning being a model-free technique also contribute to the speed of the
approach. The majority of time is consumed by the adaptation executor, which averages
around 0.13 seconds as it has to transfer the adaptation decision over the network. So,
on thea whole, we can observe that the approach is able to perform adaptations in near

real-time for the given study.
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5.6 Discussion

In this section, we first provide details on the different lessons learned from the experi-

ments and evaluations. Following this, we list down the possible threats to validity.

5.6.1 Lessons Learned

Accurate Forecasts of Different QoS Attributes. In the previous chapter, we
saw how using the right machine learning techniques like LSTM can guarantee accurate
QoS forecasts. In this chapter, we further extended the approach and applied it for
forecasting data traffic as well. Our results show that high accuracy with a very less
NRMSE of 0.8 and 0.9 (Table 5.2) for energy (multivariate dataset) and data traffic
(univariate dataset), respectively can be obtained. They are thus ensuring that the
adaptation is carried out only when necessary. Moreover, the results also indicate how
the forecast accuracy (measured in this chapter using NRMSE) remained consistent
across different datasets. The sudden mode changes cause an increase/decrease in the
energy/data traffic values. The use of LSTM networks and periodic run of the build
phase and model evaluations ensure that the model improves, and these variations are

appropriately handled.

Combination Implies Better Results. Every architectural pattern has its strength
and limitation. The results are visible in Table 5.3, where every pattern has some
advantage for energy/data traffic and some disadvantage concerning either of these.
Given the dynamic nature of the IoT system, the architecture needs to have the flexibility
to intelligently switch between multiple patterns to guarantee the QoS. Our approach
combines these patterns in such a way that based on the context, the pattern that offers
the best energy efficiency satisfying the data traffic requirement is selected. This is
further validated by the results in Table 5.3 and figure 5.9. These principles can also be
extended to enable IoT devices to switch between edge, fog, and the cloud. However,

this is left outside the scope of this thesis work.

Self-Adaptation to Self-Learning. Traditional approaches perform self-adaptation
through Making and not Achieving thereby not improving with time [29]. This work
shows that self-learning can be achieved through continuous self-adaptations using a
combination of machine learning techniques. As described in Chapter 3, there have
been works that exploit the use of RL techniques for performing adaptations [37, 114].
However as we have explained in Chapter 3, either they required clear knowledge of the
environment or they were reactive in nature which increases the error in decisions. The

result from Figure(s) 5.10 and Table 5.4) shows that as time progresses (intervals), our
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approach can save more energy compared to the three patterns, by still keeping the data
traffic within limits. It demonstrates that with time, the systems can learn by better
understanding the contexts and select better strategies, thereby improving the quality
of adaptation. Further, it shows how with every adaptation, it can learn based on the
obtained feedback (in the form of energy and data traffic forecasts obtained in every
step) and how every learning enables the system to perform better adaptations. This is
made possible by the Decision Maker algorithm (algorithm 2), which uses Q-learning to
ensure that any wrong decision is penalized, thereby guiding the architecture to select

proper decisions.

Near-Real-Time Adaptations. One of the characteristics of IoT systems is the
amount of data produced and the speed at which this data is produced. With the
help of enterprise-grade big data stack, we can see that our approach can analyze and
perform adaptation in almost 0.23 seconds. These results indicate that the adaptation
process by itself will not cause interruptions to the general functionality of the sys-
tem. The use of technologies like Kafka ensures that scalability issues, latency, or data

availability can be easily handled.

5.6.2 Threats to Validity

1. Internal Validity: Incorrect Forecasts/Decisions: To improve the accuracy,
the build phase is executed (as mentioned in Section 5.3.2) in parallel at regular intervals.
The incorrect decision issue is handled implicitly by our approach. Since the approach is
proactive, the forecast in the next step will allow the algorithm to improve the decision.
By keeping the reward value for incorrect decisions to be a high negative value, we ensure
those wrong decisions are heavily penalized. To make the decision more accurate, the

architecture can also be simulated upfront to get an initial Q-table matrix.

2. External Validity: Generalizability of the approach: Although our approach
has been applied to a specific case study, the techniques used by our approach can be
replicated in any case study/use-case as long as we have a way to generate the QoS data.
The decision-maker uses the stakeholders’ threshold limits, which can be easily modified
depending on the case study and the corresponding rewards. Moreover, our approaches
use generic machine-learning and techniques that do not use any specific properties or
characteristics of the NdR case study. This is demonstrated later in Chapter 7 where

we apply the techniques presented in this chapter to the domain of microservices.

To summarize, we demonstrated that our approach, by using a combination of proactive

forecasts and RL, can enable systems to learn from every adaptation performed and vice
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versa. The approach therefore handled the challenge of Systems adapting and not learn-
ing mentioned in Section 1.2, thereby addressing RQ2. Such an approach improved the
overall QoS of a given IoT system by handling trade-offs between different parameters,
namely energy consumption and data traffic. It achieves this by providing accurate en-
ergy and data traffic forecasts and further achieves adaptation by selecting appropriate
patterns using a model-free RL technique. We also demonstrated that the approach
can perform effective as well as efficient adaptations. The learning is enabled by the
feedbacks of the forecasts obtained in successive adaptation intervals. The approach is

also made available as a tool [3].

However, we are using machine learning, in particular, Q-learning, for decision making.
This implies that the decisions made, especially in the initial phase, can be erroneous
due to Q-learning’s exploration phase (refer Section 2.2.4). Such incorrect decisions
lead to sub-optimal adaptations. Even though we handle it using proactive feedback,
adaptation might still move the system to an undesirable state. To address the issue of
providing qualitative guarantees to the decisions made by machine learning, we further
extend the Plan activity of MAPE-K with an additional decision verifier component.
It uses quantitative verification to provide guarantees to the decisions and further aids
machine learning to converge towards optimal adaptations. This is further discussed
in the next chapter. Further to address the issue of generalizability, in Chapter 7, we
describe how the approach presented in this chapter is extended to perform service

discovery in microservice-based architectures.



Chapter 6

Verification-aided Learning

In Chapter 5, we had described how a combination of Deep Learning (DL) and Reinforce-
ment Learning (RL) techniques could are leveraged to enable the system to continuously
learn and adapt, thereby allowing the system to converge towards better adaptation de-
cisions. We further saw how it could be leveraged to improve an IoT system’s energy
efficiency developed for the NdR scenario, without affecting the overall performance.

However, one of the issues that exist with the extensive use of these machine learning
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(ML) techniques is that it suffers from learning bias induced from data and algorithms,
which can sometimes result in bad predictions, leading to sub-optimal, or even infeasible

adaptations [40] [41, 176]. For instance, as we already discussed in Chapter 5, we can
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use RL techniques to select the best pattern based on the execution scenario. But one
of the issues with RL is that it has to make many mistakes (wrong decisions) before it
can start selecting the right choices (refer Section 2.2.4). Although we handle this issue
implicitly, as mentioned in (Section 5.6.2), such wrong selection of pattern might lead

to sub-optimal adaptations, thereby affecting the overall QoS of the given system.

This is a problem where the use of Quantitative Verification (QV) techniques (and
in particular, probabilistic model-checking [76]) can improve on the current situation,
complementing the strengths of ML. Figure 6.1 shows the overall flow of such a process
where quantitative verification can add as an aid and support to the machine learning
decisions. As seen from the figure, there is a new activity, differently to learning-driven
adaptation flow presented in Chapter 5 (Figure 5.1). This additional activity, verify the
plan(highlighted in Figure 6.1), verifies the decision on receiving an adaptation plan. If
the verification fails, it sents feedback that is further used by the overall approach to learn
and generate a new adaptation plan. Instead, if the verification is successful, then the
adaptation plan is executed. In this manner, given a decision and a formal description of
the system’s current configuration and its execution conditions, QV can provide feedback
concerning the feasibility of the decisions selected by ML. This feedback, in the form of
quantitative guarantees about expected QoS levels, is used to (i) prevent the execution
of infeasible solutions selected by ML, and (ii) improve the quality of future decisions
made by ML.

Although there are existing self-adaptation approaches that combine the use of ML and
QV [120, 121], these use ML simply as a means to narrow down the decision space,
with information flowing only from ML to QV, and having QV in charge of decision-
making. In contrast, we propose a novel way of combining QV and ML. In this, QV
is used to wverify the decisions made by ML and provide feedbacks to ML, helping it
to achieve faster convergence towards optimal decisions without narrowing down the
solution space, opening up the possibility of finding better solutions than using either
QV or ML in isolation.

Towards this direction, in this chapter, we extend the MAPE-K based approach pre-
sented in Chapter 5 to develop an approach for architecting self-adaptive IoT systems
which use the learning ability of ML and the verification capabilities of QV to identify
and enact optimal adaptations proactively. It thereby solves the RQ3. How to guarantee
the quality of the adaptation performed by such a machine learning process, and how can

such guarantees, in turn, help the machine learning process?

We further apply the approach to the IoT system developed for the NdR case study,
where ML is tasked with selecting the best adaptation pattern for a given scenario. QV

checks the feasibility of the adaptation decision, preventing the execution of unfeasible
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adaptations and providing feedback to RL, which helps to achieve faster convergence
towards optimal decisions. Given a scenario and set of QoS constraints, the approach

offers the following advantages:

1. It uses RL techniques to select an adaptation pattern and uses feedback to improve

the decision making process continuously.

2. It verifies the feasibility of decisions made by the RL with respect to the QoS require-

ments using QV, in particular, probabilistic model checking.

3. Executes the adaptation if the decisions are feasible and otherwise requests a new

decision from RL.

4. QV provides feedback to RL for improving the quality of future decisions. In this
manner, RL obtains feedbacks from both QV as well as QoS forecasts to converge faster

towards optimal adaptations.

6.1 Motivating Scenario

As a motivating scenario, let us consider the NdR case study, which we had presented in
Section 2.5. The two main concerns we have in the NdR, as we have seen in Chapter 5,
are related to ensuring that the overall system operates efficiently with respect to energy
and overall data traffic requirements. We also saw how we could use a combination of
ML techniques to ensure that the overall goals are satisfied. However, due to the bias
and accuracy issues, the decision selected by the ML might not be optimal. For example,
given a context that ML has predicted, there will be a sudden increase in data traffic.
Let us consider that the three patterns, SU, SC,CO are available for performing the
adaptation. Based on this, RL might select SU as the pattern to be used as it has mostly
selected SU in such contexts in the past. However, this might eventually turn out to
be a bad decision with the system consuming more traffic because some sensors had to
operate in critical mode (which means there will be more communication between the
sensors to ensure synchronization). This can then impact the reliability of the system.
This is because RL or, in general, ML has no ways to guarantee with full confidence
that SU is the best pattern for the current situation. Hence, we need QV to ensure
if SU is the optimal pattern given the system execution context. Therefore given the
energy and data traffic constraints, the system should have the ability to decide the best
adaptation pattern and further provide a guarantee on the decision made. This can be

formally defined as follows:
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Given: (i) data traffic constraints Dy,q, and Dy, i.e., the maximum and minimum
data traffic levels acceptable for a given execution period of duration 7, and (ii) Enaq
being the maximum energy that can be consumed for that same 7-period, the goal of
the system is maximizing the following utility function that captures the non-functional

requirements of our scenario and enables us to quantify their satisfaction:
UT = We * E‘r + wq - TT7 with

( maxr ) * Pdov if dT Z Dmaz
TT = d szn if Dmaaz > d‘l’ > szn
( szn) Pdw if dT S szn

Emaa: —€r if er < Emaw
E. =

(E’rnaw - 6-,—) * Pev otherwise

where, e, d, represent the total energy and data traffic consumed by the system for
the 7-period, and w,, wy € RT are weights that capture the priority of energy and data
traffic savings, respectively. T, and E, are piece-wise functions that capture the data
traffic and energy savings respectively where, pe,, psy € RT represent penalties for the

violations of energy and data traffic thresholds, respectively.

6.2 Approach Overview

In this section, we provide an overview of the approach by revisiting some of the concepts
in the previous chapters and describing how it combines ML and QV techniques to

converge towards optimal adaptations.

The approach builds on the MAPE-K pattern, as stated in the previous chapters, with
some additions on each activities keeping more emphasis on the Plan and Fxecute ac-

tivities. It instantiates its different components in the following way (Figure 6.2):

The Monitor activity regularly collects one additional types of data from the IoT system
at run time, in addition to the QoS metrics (e.g., instantaneous traffic, energy consump-
tion) namely, the data collected by sensors. These are continually sent to the Analyze
activity and the MLE. The MLE is responsible for building two types of ML models
using Long Short-Term Memory (LSTM) Networks: (i) QoS models for forecasting the
expected energy consumption and data traffic up to the duration of the planning horizon,
and (ii) forecast models predicting the expected behaviour of every sensor component
up until the planning horizon. The MLFE periodically updates these trained models in
the Knowledge Base.
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FIGURE 6.2: Approach Overview

The Analyze activity is responsible for identifying the need for adaptation based on the
data obtained. It first processes the data as required by the Predictor component using

the Data Processor component.

The Predictor' component uses the processed data to predict the expected QoS of the
system and behaviour of sensors (operational modes) using forecast models from the
Knowledge Base. These forecasts are used to identify the need for adaptation. If adap-
tation is needed, the forecasts are made available to the Plan activity. The Plan activity

mainly consists of two components, (i) Decision Selector and (ii) Decision Verifier.

The Decision Selector selects the best architectural pattern (from those available in the
Knowledge Base) that can be used to perform an adaptation based on the forecasts
received. It performs this selection using RL. This selection is then fed to the Decision
Verifier for further verification. This is to ensure that only decisions that are feasible
with respect to QoS goals defined in the Knowledge Base are executed. In case of an in-

feasible decision, the decision verifier component sends negative feedback to the decision

!This component is different from the QoS predictor presented in previous chapter, Figure 5.3, as it
also performs behavioral forecasts
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selector and requests a new decision. If the decision produced by the decision selec-
tor is feasible, then the decision verifier sends positive feedback to the decision selector
and sends the decision to the Ezecute activity. The Decision Selector collects feedback
from two sources for continuous improvement: (i) the verification results obtained as
the immediate feedback for the decision made, and (ii) for every decision that was sent
to the Ezecute activity, it uses the QoS forecast received in the next iteration of decision

making as an additional source for feedback.

The Ezecute activity is responsible for enacting the selected adaptation obtained from
the Plan activity via effectors embedded at the system level that enable architectural

change in the IoT system.

The Knowledge Base acts as central storage for different types of knowledge required
by different layers for performing the adaptations. It stores four types of information:
(i) @-Table, which is a lookup table used by the Decision Selector to select the best
pattern for adaptation, (ii) QoS goals, which capture the acceptable energy and data
traffic thresholds as defined by stakeholders such as hardware and network engineers,
(iii) Model Repository, which contains the updated ML models for forecasting the QoS
and expected operational modes of sensor components. These models are further used
by the Predictor component of the Analyze activity, and (iv) Pattern Repository, which
contains the set of adaptation patterns available for performing the adaptation and their

definitions.

Our instantiation of the Monitor, Analyze, and the decision making part of Plan activ-
ities, along with the Machine Learning Engine (MLE) have been presented in previous
chapters. In this chapter, we focus further on the Plan and Ezecute activities (enclosed
by grey boxes in Figure 6.2). In particular, we focus on how RL (Decision Selector)
and formal verification (Decision Verifier) via model checking can complement each
other to guide the system towards selecting architectural adaptations that optimize the

guarantees of satisfying acceptable QoS levels.

6.3 Verification-Aided Machine Learning Approach

This section describes how the Plan activity uses RL to select the best adaptation pattern
and further, how it uses QV, in particular, model checking as a guide to continually
improve the decision making process using feedback obtained from verification. The
decision making process, which involves six components, is shown in Figure 6.3. In the
remainder of this section, we first introduce some preliminary definitions used in the

approach, and then we explain each of the components and their interaction in detail.
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6.3.1 Preliminaries

The overall goal of the approach is to ensure that the QoS requirements are satisfied

throughout the execution of the system. These are formalized in QoS goals:

Definition 6.1 (QoS Goal). We define a QoS goal as a pair (u,u), where p € M is a
unique label identifier for a QoS metric, and u = (u;,up) € R? is a pair of threshold

values.

Example 6.1. For the scenario of the NdR case study (refer Section 2.5) mentioned in
Section 6.1, we define two QoS goals:

1. Energy consumption, g. = (energy, (e, ep)), states that the accrued energy consumed
by the system should not exceed a maximum value en. In this goal, e; represents the

threshold below which the sensors save the maximum energy.

2. Data traffic, gq = (traf fic,(d;,dp)) states that the mazimum total traffic allowed in
the system should not exceed dy, and should stay above d;, which is the minimum traffic

to be satisfied by the system to be able to maintain an acceptable service accuracy.

To achieve these QoS goals, our approach works by periodically generating an adaptation
decision that considers predictions (forecasts) about the behaviour of the system over
a time horizon of duration H € R*. We assume a decision period of duration 7 € R™,
and consider H to be a multiple of 7. Hence, for a decision generated for time instant
t: (i) the forecasts employed as model of the environment considered for the decision
cover the period [t,t + H], (ii) the decision made is executed (i.e., change of pattern, if
the selected one is different from the current pattern active in the system), and (iii) the
pattern selected is maintained as active for the time interval [t,¢ + 7]. At that point
(t+7), a new decision is generated for the period [t + 7,4+ 2- 7| that considers forecasts

for the period [t + 7,t + 7 + H]. This sequence is continually repeated each 7-period.

Generating decisions employ two types of forecasts over the lookup horizon: (i) QoS fore-
casts, by leveraging the QoS data and (ii) behaviour forecasts, by leveraging the context

data, which capture the evolution of the relevant system and environment variables.

Definition 6.2. A QoS Forecast a pair (u,u) € M x RT, where p is a unique label
identifier for a QoS metric, and wu is its predicted value of the metric accrued over the

duration of the lookup horizon.

Definition 6.3. A Behaviour Forecast is a sequence (fi,..., fi) where each element
fict.k is a tuple (v,l,u) € V x R? x D(v), where: v is a unique identifier for a sys-

tem/environment variable, and [ is a time interval during which v takes the value u.
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D(v) denotes the domain of v. We assume that the time intervals of the elements in f;

fully cover up to the duration of the lookup horizon H.

Example 6.2. Consider a horizon H = 600 seconds in our system. A sensor s
may operate in a mode captured by variable s.mode, which takes values in the domain
{normal, critical}. A behaviour forecast for the mode in which sensor is operating during
the time interval [t,t+600] like ((s.mode, [0, 100], normal), (s.mode, [101, 600], critical))
captures that sensor s is expected to operate in normal mode for the next 100 seconds,

and in critical mode during the remainder of the time, up until the end of the horizon.
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FIGURE 6.3: Detailed View of Decision Making Process

6.3.2 QoS State Identifier

Our approach assumes a discrete set of QoS categories for each dimension of concern
(e.g., energy consumption, traffic).? The first part of decision making is identifying the
expected QoS state of the system EQ for the next 7-period, i.e., the set of expected QoS

categories for every dimension of concern (Component 1, Figure 6.3).

For each decision period elapsed, the QoS State Identifier receives the set of QoS fore-
casts QF for the next decision period from the QoS Forecaster of the Analyze activity.

Then, QF' is mapped to a set of categories () that identifies the QoS state of the system

2We denote the set of all QoS categories across dimensions by QC.
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for the next decision period. The mapping between QF and E() is obtained based on
the values in QF', and how they meet the thresholds stated in QoS goals.

For instance, let the QoS goal for energy consumption be (energy, (0.5,2)), meaning
that the energy consumption of the system up until the time horizon should stay in the
range 0.5-2 Joules. We can define a mapping function gc : R? — {low, medium, high}
as {[0,0.5] — low, [0.5, 2] — medium, [2, 00| — high} . To identify the QoS state of the
system E'Q, this mapping process is repeated across all quality dimensions of concern for
every element of QF. Once identified, £Q is provided as input to the Pattern Selector
(Component 2, Figure 6.3).

6.3.3 Pattern Selector

The role of the Pattern Selector is to select the best adaptation pattern that can be
applied based on the expected QoS state of the system EQ. It uses, Q-learning [72] as
described in Chapter 5, to decide on the adaptation pattern. However, differently from
the algorithm 2 presented in Chapter 5, Pattern selector uses two-way feedback, both

from the expected QoS forecasts as well as from the results of the verification process.

The state space of our Q-learning algorithm S C 29¢ x P is defined over the set of
possible QoS states, and the set of available patterns P = {1...m}. The algorithm
also assumes a set of actions, A = {aj,as..a,,} that correspond to reconfigurations to
patterns in P, and a reward function p : § — Z that maps states to an integer reward

assigned for moving into a state via a pattern change action.

The algorithm makes use of a lookup Q-table matrix that can be encoded as a function
Q@ : S x A — R, that returns a real number (Q-Value) for any arbitrary state-action pair
(s,a). This value gives an estimation of how valuable it is to select the action a from

state s.

Pattern selection is presented in Algorithm 3. It takes as inputs the states, actions,
expected QoS state and current pattern (S, A, EQ and p). Further inputs are reward
function p, as well as parameters a and v where, 0 < a < 1 represents the learning
rate which captures the importance given to the learned observation at each step, and
0 <~ < 1 represents the discount factor, which can be considered as the weight given
to the next action. It additionally takes two inputs, a verification parameter, V and
verification reward, r,. V takes only Boolean values: 0 denotes the invocation of
the algorithm for a new pattern by the QoS State Identifier, 1 indicates the trigger
for a new pattern from the verification process. On the other hand, r,, represents

the reward(r,, > 0)/penalty (r,, < 0) obtained after the verification process from the
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Decision Verifier. It goes without saying that, r,, is considered only when the value of

V is 1. These parameter are used by the algorithm to decide the reward distribution.

Algorithm 3 Pattern Selection Algorithm

1: procedure PATTERN-SELECTOR(S,A,EQ,p,p,ct, v,V ,7'm) >
States, Actions, QoS state, active pattern, learning rate, discount rate, verification

flag and verification reward
s' + (EQ,p)
al + a,
if V =0 then
rt < p(s)
else
e,
(5t+1> a) A argmax(s,a)eSXAQ(Sv a)
Q'(sta!) = (1—a) - Qst, at) +a - (r' + - Q(s+1, a)
if r,, > 0 then > Successful verification
return 1
else
return a

_ = = =
Wy P2

Before learning begins, @ (function that encodes Q-table) is initialized to an arbitrary
fixed value. The Expected QoS state, E(Q along with the current execution pattern p,
becomes the current state s® and the action corresponding to the pattern p (denoted by
ap) is assigned to the current action a’ (lines 2 and 3). At each time ¢ the agent selects
an action a', enters a new state s*!(that depends on the selected action — line 5), and
observes a reward r! based on V, If V is 1, then it denotes that the verification was
either successful/failure and based on this a reward/penalty 7, is assigned to r (lines
4-7). Following this, @ is updated (line 5-6). The core of the algorithm, as explained
in Chapter 5, is a simple value iteration update, using the weighted average of the old
value and the new information (controlled by the a and ~ parameters, respectively).
The algorithm then checks the value of ry,. If it is greater than 0, it just returns a flag
value indicating the update of the Q-table (lines 10-11). Instead, if the value of r,,, <0,
then the algorithm returns the action a, which corresponds to the selection of the new
pattern. This action maximizes the Q-value that can be obtained by performing the
different actions available for the next state s‘*! (line 8), ensuring that for every time

instant, the best pattern for adaptation according to () is selected.

The pattern selected by the algorithm is sent to the Model checker for verification
through the Configuration Generator.
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6.3.4 Configuration Generator

The Configuration Generator is responsible for creating the configuration of the selected
pattern at run time as required by the CTMC Model Generator. It uses the definitions
of the patterns from the Pattern Repository along with the run-time execution data from
the Analyze activity and the forecasts on the expected behaviour of sensors from the

Sensor Data Forecaster to build the description of the different configurations.

The Pattern Repository contains the static information on the configuration of each
adaptation pattern, which consists of a set of components involved C, and the set of

connectors that exist between the components, K C C' x C.

Sensor components in C are annotated by properties such as the idle energy consump-
tion and frequency of data transfers in different execution modes (for example, during
critical situations such as emergency, sensors might communicate data more frequently,

compared to a normal scenario).

Each connector (¢, ') € K is annotated by properties such as the energy consumed for
sending data from c to ¢, energy consumed by ¢ for processing the data to be sent, and

the energy consumed by ¢’ for receiving the data from c.

Based on the pattern p selected by the Pattern Selector, the static configuration of the
corresponding pattern is retrieved from the pattern repository and annotated with run-
time information about sensor components, which includes the Sensor Data Forecasts
obtained from the Predictor component of the Analyze activity. The Predictor uses
the same principles of LSTM networks used to generate QoS forecasts (as explained in
Chapters 4 and 5) for producing the forecasts of the expected sensor data. For example,
with respect to the NdR scenario, these forecasts consist of the expected number of cars
in the parking lot, the expected number of people entering a given venue, etc. for every
minute of a given horizon. The forecast-annotated version of the configuration is then
passed on to the CTMC Model Generator.

6.3.5 CTMC Model Generator

The CTMC model generator takes as input the configuration description obtained from
the configuration generator, and produces a CTMC model (refer Section 2.3) analyz-
able via model checking. Concretely, the generator takes the specification of the set
of components in the configuration, and for each one of them, it instantiates a process
description using the different patterns shown in Figure 6.4. The mapping between
component types in the class of IoT system we describe, and process types used in the
CTMC models is shown in Table 6.1.
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TABLE 6.1: Component-process type instantiation for patterns

Pattern / Comp. Sensor Database Controller Display
SU Produce-Forward Consume - (in-sensor) Consume
SC Produce Forward Consume  Consume
CcO Produce Consume Forward Consume

The Produce/Produce-Forward process type captures the behaviour of sensors, which
can be in normal and critical mode (states N and C, respectively). Each one of the
modes produces and sends sensor data at different rates (A, and \.) via action msg.
Mode changes can be triggered by an exogenous event mode_chg (modeling, e.g., a
variation in rate of cars entering a parking lot). In the SU pattern, this process type
includes the additional states and transitions required to forward data received from
other sensors (shown in dashed lines in Figure 6.4). In each one of the modes, the
process can receive a message from any component it is connected to in the configuration
(brackets denote multiple transitions), going into the states (N',C'), from which the
message can be forwarded immediately ()\; is a constant that denotes an instantaneous
transition rate). Transitions that do not show a rate have a default value of 1, meaning
that they are only triggered via synchronization on the events they are labeled with.
Concerning reward structures, sending and receiving messages from node i accrues an
energy cost of ! and e’ units in reward structure energy, respectively, and 1 message

for traffic in reward structure messages.

The Consume process type is used to capture data sink nodes in the system (e.g.,
displays, the database in the CO and SU patterns). It just receives messages from any

node in the network it is connected to, consuming energy e’..

Finally, the Forward process type captures the behaviour of intermediate nodes in the
network, which can receive messages from multiple nodes, and forward them to other

nodes (e.g., controller in the CO pattern, database in the SC pattern).

The overall CTMC model results from the standard CSP parallel composition of all the
processes instantiated, which synchronize on shared labels generated from the connec-

tions included in the configuration description.

6.3.6 Model Checker

The model checking component takes as input the CTMC model produced by the CTMC
model generator, and is able to quantify the expected amount of energy consumed, as
well the overall number of messages exchanged in the system for the time frame of

the lookup horizon H. Quantification of each one of these properties is achieved via
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FI1GURE 6.4: CTMC process types for IoT nodes

TABLE 6.2: CSL properties for model checking

Name CSL Formula Description

Pe RES®[C<=H] Efficiency: overall energy
units consumed during H time
units.

IR RTS5€=[C<=H] Traffic: overall number of
messages exchanged during H
time units.

model checking of the CSL properties shown in Table 6.2, for which the component uses
PRISM’s model checking engine [177].

6.3.7 Decision Generator

The Decision Generatoris responsible for deciding the feasibility of the decision produced

by the Pattern Selector based on the results of the analysis obtained from the Model
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Checker. The model checker’s output consists of the expected energy consumption and
data traffic of the system while using the selected pattern. The decision generator verifies
if these values are within the thresholds specified in QoS goals. If the expected energy
consumption is less than the threshold, e; as defined in QoS goal g. and the expected
data traffic is within the thresholds as defined in QoS goal g4. The decision is considered
as a feasible (valid) one, and positive feedback in the form of a reward, r,, > 0, is fed
sent to the Pattern Selector. Otherwise, the decision is considered as infeasible (invalid),
and negative feedback in the form of penalty r,, < 0 is sent back to the Pattern Selector,

along with the request of for a different pattern.

Hence, for every decision made by the Pattern Selector, a verification step is performed
by the Model Checker, improving the chances that only feasible adaptations are executed.
Given an adaptation scenario, this combination provides multiple advantages: (i) it helps
the system to select decisions based on past feedback obtained from the model checker
as well as from the previous forecasts, (ii) it ensures that, even if RL generates a wrong
decision, it does not affect the system execution due to the involvement of the model
checker, and (iii) it ensures that the model checker does not have to perform exploration
of a broader solution space because it just has to analyze system behaviour under the

selected pattern.

6.4 Architecture and Implementation
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FIGURE 6.5: Implementation Pipeline View
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Figure 6.5 shows the implementation view of our approach. It is very similar to the one
presented in Chapter 4 with few modification and additions in the different layers (high-
lighted in blue in Figure 6.5). We consider the NdR scenario for the implementation.
During the simulation using CupCarbon, in addition to the energy and data traffic logs,
the real-time sensor data are also ingested into an Apache Kafka [158] broker. For gen-
erating the forecast models, we employed Python, along with the deep learning library
Keras [162]. The Pattern Selector implementing Q-learning was written in Python. The
Model Checker component in the Decision Verifier is written in Java and makes use of
the PRISM model checker [177] API. The integration between the Decision Maker and
the Decision Verifier was done using JPype [178]. Additionally, a web service imple-
mented in Python using the Tornado framework [179] is used for communicating the
pattern change to CupCarbon. The communication between CupCarbon and the differ-
ent MAPE-K activities is powered by Apache Kafka [158]. For more details on the used
technologies, we refer the reader to the Appendix A.

6.5 Experimentation and Evaluation

The objective of our evaluation is to assess the effectiveness and efficiency of the approach

by answering:

RQ3.1. How effective is the approach with respect to satisfying overall energy and data

traffic goals?

RQ3.2. How much does using model checking along with ML improve satisfaction of

goals over the use of just ML?
RQ3.3. What is the efficiency of adaptations?

RQ3.4. What is the computation overhead of adaptation?

In the remainder of this section, we first describe our experimental setup, as well as the
data and metrics used for the evaluation of the approach, following with a discussion of

the evaluation questions informed by our results.

6.5.1 Experimental Setup

Our testbed was deployed on two VM instances in Google Cloud. The first one runs on
an N1-Standard-4 CPU Intel Skylake Processor comprising 4 vCPU with 16 GB RAM.
This instance was used for running the CupCarbon simulation and the producers for

sending the QoS metrics and Sensor data to the Kafka broker. The second one runs
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on an N1-Standard-8 CPU with Intel Skylake Processor comprising 8 vCPU with 32
GB RAM. This was used for running the Kafka broker and the MAPE activities of our
approach.

To simulate the real scenario of the case study with as much fidelity as possible, we
created a script that generates data for each of the sensor components using intervals of
60 seconds with arrival rates based on a Poisson distribution for a period of 24 hours.
The mean values of the distribution were selected based on observations from real NdR

scenarios.

6.5.2 Evaluation Candidates

We evaluated the approach by performing the simulation of the case study using six
different approaches for a period of 24 hours. Three of the approaches consisted of
simulating the case study, fixing each of the patterns (SU, SC and CO). The other three

approaches are as follows:

1. RL: Adaptation using just Q-learning as described in Chapter 5.

2. MC: Approach which performs adaptation just based on model checking, but without
using Q-learning. For every decision period, it performs model checking to identify the
best pattern by finding which pattern gives the maximum benefit for the thresholds
specified.

8. RLMC: Our approach, which performs adaptation combining Q-learning and model
checking.

Considering the operational constraints we have from the case study, we defined the set of
QoS goals, QG = {(energy, (10.0,6.0)), (traf fic, (2500,3000))}, with energy measured
in Joules and traffic in # of messages exchanged. We consider a horizon H = 600 seconds
and 7 = 60 seconds. We use a learning rate @ = 0.02 and discount factor v = 0.2 for
performing the Q-learning. The complete implementation along with the source code,

datasets and ML models used for forecasts can be found here.?

6.5.3 Evaluation Metrics

To measure the effectiveness of the approach, we introduce four evaluation metrics:
(i) Max and Min DV, which capture the number of violations of maximum (dj) and

minimum (d;) data traffic thresholds as defined in g4 (c.f. Example I), (ii) EV, capturing

Shttps://github.com/karthikv1392/ToT_RLMC/
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Approach | Energy Data Utility # Max DV | # Min DV | # EV
(Joules) | Traffic (# | Score
messages)

CO 752.43 437885 186.89 90 0 0
SU 1995.85 382896 61.11 5 20 143
SC 1498.57 398393 158.11 14 8 104
RLMC 851.35 400239 355.24 17 6 2
MC 1246.43 407107 218.43 26 3 25
RL 1051.38 398294 272.98 18 7 8

TABLE 6.3: Energy Consumption and Data traffic comparison (#DV : Number of Data
traffic Violations, #EV : Number of Energy Violations)

the number of violations of the maximum energy threshold (e;) as defined in g, and
(iii) Utility Score (U) as defined in Section 6.1, using normalized values for energy
consumed e, and data traffic d, for every 7-period. We set we = 2, wg = 5, pey = 0.3,
and pg, = 0.5. We assign a slightly higher weight to the traffic term (and also higher
value to its penalty) because, although saving energy is a priority, we do not want to do

it at the expense of a system that does not operate with the required accuracy.

6.5.4 Results

RQ3.1. How effective is the approach with respect to satisfying overall energy and data
traffic goals?

To measure effectiveness, we calculate the total energy and data traffic consumed during
simulation by each of the approaches. The aggregated results for our evaluation metrics
are reported in Table 6.3. The table shows that CO consumes the least energy, but at
the same time, it maximizes data traffic. This is due to the semi-decentralized nature
of the pattern which results in an increased amount of exchanged messages, resulting
from the presence of extra controller components in the architecture. SU is the pat-
tern that presents the lowest traffic volume, although to a level that is detrimental to
maintain service accuracy (presents more than double Min DV count, compared to other
approaches). SU is also the least energy-efficient. In contrast, SC is more energy-efficient
than SU, but presents a higher data traffic volume with a high count of Max DV. This
is due to the fact that every decision has to be taken by the centralized controller and
hence the sensors need to send information to the database at a faster rate compared
to SU, where sensors are equipped with decision making abilities. MC consumes less
energy than SU and SC, also with lower traffic than CO. It offers better utility com-
pared to fixed patterns because it can choose what is determined to be more adequate
for different decision episodes. However, RL offers much better Utility and consumes

less energy with lower traffic compared to MC. This can be attributed to the ability of
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FIGURE 6.6: A bar plot of the different approaches and their respective normalized
energy and traffic consumption along with overall utility scores

RL to learn from feedback over time. Furthermore, RLMC is the most energy-efficient,
compared to RL and MC and only at a slightly higher traffic volume than RL. This
yields an increment in utility of 39% and 63% with respect to RL and MC, respectively.
This clearly shows the remarkable impact that QV has on RL for decision making. The
normalized values of energy, traffic and utility are shown in Figure 6.6. RLMC scores
the highest utility, being second to CO in energy efficiency. Although RL has lower data
traffic than RLMC, the ratio of energy saved/traffic saved for RLMC (0.78/0.62 = 1.26)
is higher than that of RL (0.62/0.75 = 0.83).

RQ3.2. How much does using model checking along with ML improve satisfaction of
goals over the use of just ML?

To answer this question, we compare the cumulative utility score of all approaches
(Figure 6.7). The plot shows how accrued utility starts diverging marginally during
the initial stage, but then the gap between RL/RLMC and other approaches keeps on
increasing. MC still offers better performance compared to each of the fixed patterns
because it selects what it expects to give the best utility at the start of every decision
period. However, it does not have a way to improve the decision in the next iteration
based on the feedback of the past decision. In contrast, both RL and RLMC have the
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advantage of feedback which allows them to progressively improve their decisions. Unlike
in RLMC, the feedback in RL is obtained only after execution of the selected adaptation,
which might end up being sub-optimal. The effect of these sub-optimal decisions can
be clearly observed in the graph, where RLMC offers initially an increment of just 1%
in utility over RL, but as time progresses, this value increases up to 39% over a span of

24 hours.
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FIGURE 6.7: Cumulative Utility scores for each of the approaches

RQ3.3. What is the efficiency of adaptations?

We evaluate adaptation efficiency in terms of the number of corrections made by the
model checker during each decision period. A scatter plot showing the number of cor-
rections made per interval can be seen in Figure 6.8. The figure shows that in between
intervals, there is an increase in the number of corrections, which goes as high as 6.
At the start of simulation, correction count is high for the first two adaptation cycles
(due to the time required for initial learning). Then, we can observe that the number of
corrections made remains 0 until 160 minutes. This again increases and RLMC is able
to continue without many corrections for some time until the next peak. The next peak
is given when MC identifies that a decision at a given point is not feasible based on the

expected context (behaviour/mode changes of sensors).
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This behaviour illustrates the ability of RLMC to learn and improve from the results
obtained by the model checker, as well as from the feedback obtained from ML forecasts.
On average, the number of corrections amounts to 1, but there are instances where it is
0 and few instances where it is as high as 6 where RL is forced to generate decisions,
incurring high penalties (negative rewards) and additional computation overhead. It is
due to this effect that even with such a high increment in the number of corrections,
RLMUC is still able to continue operating for some time without need for new corrections.
This indicates that RLMC is very efficient with respect to the number of corrections

performed by the model checker.
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FI1GURE 6.8: Number of corrections performed by MC per adaptation

RQ3.4. What is the computation overhead of adaptation?

To evaluate adaptation efficiency in terms of computation overhead, we clocked the time
required to generate adaptation decisions. The results show that on average, RLMC
takes approximately 2 seconds for generating an adaptation decision. From that time,
the fraction employed by RL amounts to approximately 0.23 seconds because it consists
of simple look up operations and state update. Each correction operation from model
checker takes close to 1 second. Despite the overhead introduced by the model checker,

the observed decision times are reasonable in the context of the class of IoT application
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described, showing feasibility of RLMC. Moreover, since the approach is proactive in

nature, the system is not halted during the whole process.

6.6 Discussion

In this section, we provide details on the lessons learned from the evaluations and the

threats to the validity of the evaluation.

6.6.1 Lessons Learned

ML and QV: A match for better decision making. Even though ML has shown
effectiveness and efficiency in performing adaptions based on the data learned, it some-
times suffers from the problem of training/algorithmic bias [40], which can produce
incorrect decisions. Our work demonstrates how using QV techniques can act as a guide
for ML to select closer-to-optimal decisions. Our results indicate that QV can help im-
prove the effectiveness of ML by reducing the error rate of producing infeasible decisions
at least by 50%, increasing the overall utility by 39%. We believe that an effective combi-
nation of ML and QV for decision making can be a path forward for reliably architecting

self-adaptive IoT and other types of adaptive CPS.

Effective self-learning through self-adaptation One of the main issues with re-
inforcement learning techniques such as Q-learning is that they take a lot of time to
converge, leading to a lot of wrong decisions in the initial execution phase. As men-
tioned in Chapter 3, Section 3.3, there have been works that combine QV and ML, but
all are reactive in nature, and the ones that use online learning does not make use of
two-way feedback. Moreover, they take some adaptation cycles before a new model is
generated. In this chapter, we have shown that (Figure 6.8) through the proactive nature
of the approach, the use of QV, and by leveraging regular feedbacks through forecasts
and verification, ML can be guided to auto-correct itself and further produce optimal
decisions through faster convergence. When continued for a longer period, this pro-
cess ensures that ML will gain a significant understanding of the best adaptation to be

performed given a situation, thereby moving a step closer to self-learning architectures.

6.6.2 Threats to Validity

1. Construct Validity: It concerns the decisions made due to incorrect forecasts
which could arise from the Analyze activity. The model might forecast high energy

consumption, whereas the system would not have entered such a state, leading to lower
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utility scores. We understand this issue, and since the same prediction model and sensor
data sets are used for the evaluation for all the three approaches, this does not over-

weights or under-weights the overall utility score of any approach.

2. External Validity: It concerns the generalizability and scalability of our approach.
Although our approach has been applied to a specific case study, it uses techniques that
can be generalized to other classes of IoT systems with similar concerns (energy con-
sumption, performance, availability). Moreover, we believe that our approach can be
applied to more complex systems with a larger number of components with optimization
of reinforcement learning and model checking components (e.g., using statistical model
checking to improve scalability). Besides, the layered architecture used for implementa-

tion supports both horizontal and vertical scalability.

In conclusion, this chapter shows how ML and QV can be combined to architect self-
adaptive IoT systems to optimize the guarantees of satisfying acceptable QoS levels
with respect to energy consumption and network traffic. Further, we saw how this
combination helps the overall approach converge faster towards optimal adaptations
using the two-way feedback mechanisms, from the quantitative verification process and
the forecasts of the succeeding adaptation intervals. Owur evaluation shows that the
approach exhibits a remarkable improvement (39% and 63%) over ML and QV’s use in
isolation. Although the use of QV adds computational overhead concerning using just
ML, our results also show the feasibility of the approach, which can produce decisions
within a reasonable timescale for IoT applications. We therefore tackle the challenge of

Quality assurances to learning described in Section 1.2 and thereby address RQS.

With this chapter, we conclude the core approach presented in this thesis. In the next
chapter, we focus on demonstrating the generalizability of the techniques presented in
the approach by applying it (especially the techniques presented in Chapters 4 and 5) to
solve challenges related to service discovery in microservice-based architectures as well

as self-adaptation challenges in microservice-based IoT systems.



Chapter 7

Data-driven Adaptation: The

Case of Microservices

In previous chapters, we discussed how efficient and effective use of machine learning
techniques enabled proactive adaptation of the architecture and further powered them
to autonomously improve with every adaptation performed, supported with formal guar-
antees. In this chapter, we will see how such techniques, especially the ones presented
in Chapters 4 and 5, can be applied to a more general class of systems, specifically to
Microservice-based systems. Hence, through this chapter, we address RQ4. How can

the approach be generalized to other class of software systems?

Microservice architectures (MSA) have become enormously popular since traditional
monolithic architectures no longer meet the needs of scalability and the rapid develop-
ment cycle of modern software systems (for more details on MSA, refer Section 2.4. The
success of large companies (Netflix among them) in building and deploying services is
also a strong motivation for other companies to consider making the change. The loosely
coupled property of microservices allows the independence between each service, thus
enabling the rapid, frequent, and reliable delivery of large, complex applications. This
is evident from the fact that microservice-based architecture (MSA) is considered as one
of the best possible solutions for architecting data-driven and event-driven systems like
IoT [180]. However, like most transformational trends, architecting and implementing a
microservice-based system poses its own challenges: Hundreds of microservices may be
composed to form a complex architecture; thousands of instances of the same microser-
vice can run on different servers; the number or locations of running instances could
change very frequently [89, 90]. In addition, the set of service instances changes dynam-

ically because of autoscaling, failures, and upgrades. Therefore, one of the challenges in
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a microservice architecture concerns how services discover, connect, and interact with

each other. Consequently, elaborated service discovery mechanisms are required [91].

Moreover, additional challenges arise when microservices-based solutions are applied to
IoT systems as the devices themselves are subjected to different uncertainties. These
refer to the evaluation and maintenance of the Quality-of-Service (QoS) characteristics of
systems (e.g., performance and reliability) due to the uncertainties faced by IoT devices

because of resource constraints (e.g., battery level, network traffic) [22, 24].

In this chapter, we address the two specific challenges mentioned above by i) Applying
the combination of Machine Learning (ML) techniques described in 5 to the service
discovery process to perform context aware, service discovery; ii) Developing a novel

self-adaptive architecture for microservice-based IoT systems.

7.1 Context Aware Service Discovery using Machine Learn-

ing

In this section, we focus on addressing the first challenge of performing effective service
discovery in microservice based systems. Towards this, we use a combination of LSTM
and Q-learning as described in Section 5.3.2 to preform machine learning-driven context-

aware service discovery.

7.1.1 Service Discovery in Microservices: The Challenges

Service discovery mechanisms (refer Section 2.4.1) has continuously evolved during the
last years (e.g., Consul, Etcd, Synapse, and ZooKeeper, etc.). A considerable effort has
been reported to make the service discovery effective and efficient by improving the func-
tional matching capability. This resulted in mechanisms that discovers all the available
instances of a specific microservice very quickly while delegating QoS concerns to exter-
nal load-balancing components (e.g., Elastic Load Balancing!). These solutions do not
take explicitly into account the context and QoSs, which are transient and continuously
change over time for several different reasons. For example, a service consumer/provider
can change its context because of mobility/elasticity; a service provider can change its
QoS profile according to day, time, etc. In this setting, our approach envisages a new
service discovery mechanism that can deal with uncertainty and potential adverse effects

attributed to frequent variability of the context and QoS profile of services.

"https://aws.amazon.com/elasticloadbalancing/
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7.1.2 Motivating Scenario: A Running Example

In this section, we elaborate on the motivation behind the approach through a prototype
microservice-based application developed for managing coin collections of the users. The
application provides different functionalities to the users by allowing them to: i) Register
to the application by providing details such as name, location, etc; ii) Add information
on the coins in hand (this information includes details such as name of the coin, country
of use, etc; iii) Query information about the different types of coins available in the
system; iv) Retrieve information on the different coins of a specific user or of the nearby

users of a given location.

Figure 7.1 shows the high-level architecture of the coin coin collection application. As
depicted in the figure, the prototype consists of five key microservices (excluding the

Service Discovery):

1. User Management microservice is responsible for handling user management related
operations such as adding new users, deleting users, managing user profiles, etc. It uses

a database to store the user profile related information.

2. Authentication microservice provides functionalities to ensure that only authenticated
users have permission to view/manage user-profiles and other user-related information.

It has a simple database to store user credentials.

3. Coin Management microservice provides functionalities to manage coins such as
adding/removing coins to/from the collection. It consists of a database for storing coin

related information.
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4. Coin Directory microservice is a simple directory management service that supports
the coin management service in fetching additional information related to coin from

external APIs.

5. Numismatic microservice accomplishes the key functionality of the application. It
provides features such as retrieving user information, querying a specific user or nearby
users’ coin collection, and adding or removing coins from a user collection. It achieves

these features by interacting with other microservices, as shown in Figure 7.1.

Each of the microservices is replicated as five microservices constituting an applica-
tion consisting of 25 microservices. Further, each of them is geographically located at
different locations and deployed in various types of machines with varying computing
capabilities. External clients interact with the system through the API gateway, which
further checks with the Service Discovery to fetch an instance of the desired microser-
vice. Additionally, every microservice queries the service discovery before interacting
with other microservices. For example, Numismatic service interacts with coin manage-
ment microservice. This implies that every time numismatic service has to interact with
coin management microservice, it first needs to identify the instance that needs to be

invoked using the service discovery process.

However, one constraint that needs to be satisfied is that the clients should be served with
the instance that offers the best QoS. For example, instance of a requested microservice
that offers high throughput, reliability, least response time, etc. This can be challenging
as the QoS of any instance of a given microservice depends on a number of parameters
such as their geographic location, time of invocation, etc. So an ideal service discovery
mechanism should have the ability to predict and select the instance that can guarantee

the optimal QoS based on a given context.

7.1.3 System Model

In this section we introduce the terminology and notation used in the rest of the chapter,
define the model of the system we are considering, and formally define the performance

indexes we will use to measure the effectiveness of our approach.

We consider a set S of distributed services, hosted by different nodes in a networked
system (e.g., edge, fog, or cloud architecture). We denote by s, s; elements of the set S.

A Service s € S is defined as a tuple (i, ¢, p, e), where:
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e s.u € 7 denotes the interface provided by the service, that is the functionality
provided by s. We say that s.i is the interface of s, and denote by i, i; single

elements of the set Z 2.

e s.c € C denotes the context of the service s. We say that s.c is the context of s,

and denote by ¢, ¢; single elements of the set C.

e s.p € P denotes the quality profile of the service s. We say that s.p is the quality
delivered by s, and denote by p, p; single elements of the set P.

e s.e € £ denotes the endpoint of the service s. We say that s.e is the endpoint of

s, and denote by e, e; single elements of the set &.

Let Q be the set of lookup queries. A query ¢ € Q is a touple (i, ¢, p), where

e ¢.i € T denotes the type of interface required by the service consumer.
e g.c € C denotes the context of the service consumer.
e ¢.p € P denotes the quality profile of interest for the service consumer.

Given a query ¢ € Q, and a service set S € 25, the Service Discovery mechanism is

defined according to the following functions, namely match and select:
e match : Q x 25 — 2° is a function that given a query ¢ € Q and a set of services
S C 8, returns a set of services S C S such that S = {s|s.i = q.i}.

o select : Q x 2° — S is a function that given a query ¢ € Q and a set of services
S C S returns a service § € S such that (§.c = q.c) A (Vs # §: 8.p = s.p), where =

and > are defined according to some suitable criterion [130][134].

Therefore, the Service Discovery mechanism can be defined as a function that, given a
query ¢ € Q and a set of services SR C S (Service Registry), returns a service instance

§, such that:
§ < ServiceDiscovery(q, SR) = select(q, match(q, SR))

Example 7.1. Let SR C S be a service registry of the protype application depicted in

Figure 7.1 storing the following services:

s1 = (“Numismatic”, (loc,EU), ((responseTime, 0.5), (throughput, 100)), IP;)

2We use interchangeably the terms interface and type to denote the functionality of a service s



Data-driven Adaptation: The Case of Microservices 153

s9 = (“Numismatic”, (loc,EU), ((responseTime, 0.3), (throughput, 300)), IP,)
s3 = (“CoinManagement”, (loc,US), ((responseTime, 0.2), (throughput, 500)), IP3)

s4 = (“Numismatic”, (loc,US), ((responseTime, 0.1), (throughput, 100)), IP,)

Let ¢ € Q = (“Numismatic”, (loc,FR), responseTime) be a lookup query specifying that
a given service consumer located in France is interested in a Numismatic Service pro-

viding best response time. Hence, applying the aforementioned functions, we obtain:

S = {s1,59,54} + match(q, SR)

§ = 59+ select(q, S)

where, = is defined according to geographical proxzimity (i.e., “close to”), and = is defined
according to a less-is-better relationship (i.e. “<”). Then, sy is the Numismatlic service
providing the “best response time” among those services located “close” to France (i.e.,

s1, and s2).

In order to evaluate our approach, we define a performance index measuring the QoS
delivered by all services. To this end, let SB; C S be the set of services bound at a
given time t. To measure the overall system performance, we define the Average QoS

delivered by all services in SB;:

QoS(SBy) = ’SBt > sp (7.1)

SESBy

7.1.4 ML Based Service Discovery

In this section, we describe how our approach uses the combination of ML techniques

described in Chapter 5 to perform context-aware service discovery.

For each query, ¢ € Q received by the Service Registry component, SR C S from a
service consumer s, the overall goal of the approach is to select the matching service
provider § € SR to maximize the QoS perceived by s with respect to the context of the

service consumer, s as well as with that of s.

Figure 7.2 shows the overall flow of the approach. On receiving a service query, the
Service Registry component first identifies a matching set, S of instances based on the
strategy defined in Section 7.1.3. It then uses a combination of ML techniques to select

the best instance § from S.
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The first part of the select function is to estimate the expected QoS of every instance
in S. This is due to the fact that, based on the change in contexts such as time of the
request, execution memory of instance, etc., there can be variations in the QoS offered
by instances in S and neglecting this can lead to sub-optimal selections. Towards this,
our approach uses deep neural networks that consider the historical QoS data offered by
the instance along with their context data to predict the expected QoS for every instance
in S. The QoS forecasts alone are not sufficient for selection as the perceived QoS of §
changes based on the context of s. In order to accommodate this, our approach further

uses the RL technique to select the best instance 5 from S.

The overall ML process of the approach primarily consists of two phases (as represented
in the figure 7.2) (similar to the approach presented in 4) namely the Batch Phase and the
Real-Time Phase. Training and building ML models for performing forecasts is a time-
consuming process. For this reason, our approach involves periodic execution of Batch
Phase where the historical Quality Profile information of each service s; € SR as well
as their context information are used for training and building models for forecasting
the QoS. The Real-Time Phase, on the other hand, consists of the instance selection
process that happens in real-time. In order to achieve this, it uses the latest ML models
available from the batch phase to forecast the expected Quality Profile continuously of
each service s; € S. It further processes this forecast along with context of s using RL

technique to select, § from S

7.1.4.1 Data Extraction

The Quality Profiles (i.e., s.p) of all the service instances (e.g., response time, through-

put, etc.) as well as the context information (i.e., s.c), which includes details such as
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instance memory, geographical location, etc. are continuously monitored and stored in
a Repository component in the Service Registry. This forms the raw QoS/Context data.
During the batch phase, the Data Extraction process retrieves the QoS/Context data
from the Repository. This raw monitoring data contains the information of different
QoS/Context attributes of every instance for different intervals of time. This data is

sent to Feature Extraction process for further processing.

7.1.4.2 Feature Extraction

This process converts the raw monitoring data extracted during the data extraction

process into a structured set of features as required by the ML technique.

This data has a temporal nature, and we use this to convert the problem of predicting
QoS into a time-series forecasting problem. The QoS data with respect to time forms a
continuous time-series [71]. For the ease of analysis, we first convert this into a discrete

time-series by aggregating the data into uniform time intervals.

Let us assume to have m different service instances si, ..., s, providing a given interface
1 € Z, which have been running for n units of time. Each of these m instances has an
associated d dimensional Context Feature-set Cy C C describing the context of each

running instance s;.

Definition 7.1 (Context Feature-set). We define context feature as a set Cy C C =
{c1,¢2,.., ¢} where ¢ represents a pair (I,v) such that [ is a unique label identifier for

a context attribute, and v denotes the value of the context attribute.

For example, Cy = {(1oc, IT), (day, Mon), (hour, 10), (min, 30)} denotes that a given ser-
vice instance s € S is located in Italy, day is Monday and the current time of invocation
is 10:30.

Then for each instance, the observation at any instant of time ¢ can be represented by a
matrix O € V3™ where V denotes the domain of the observed features. The process of
generating time-series results in the formation of a sequence of the form Oy, O2, Os....O;.
The problem of forecasting QoS values is then reduced to predicting the most likely k-

length sequence in future given the previous j observations that include the current

one:

Ott1;eee ;O = argmaxr P(Ogqq, ... ; Ot1%|0¢—j 41,04 jy2, ..., O)
Ot+41,--Opy

where P denotes the conditional probability of observing Oy 1, ....... , Oy given

Ot—j4+1,0¢—j42,...,0;. Since we also consider the context data for forecasting the QoS
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level of each instance, the observation matrix, O can be considered as a multivariate time-
series dataset and as the forecasting needs to be done for the next k steps, the problem of
time series forecasting becomes a multivariate multi-step forecasting problem [71] (refer
Seciton 4.2.2, Chapter 4).

Each column in O represents a feature vector, v. The process of feature scaling is applied
to each column v such that v; — [0,1] Vo € O. O is then divided into two data sets,
training set, Orqin and testing set, Oyes in the ratio 7:3 respectively. The training set

obtained is further sent to the Training Process.

7.1.4.3 Training

The training process uses the training set, Oy qin to create ML models for forecasting the
expected QoS of every service instance, s; € SR for a given time period known defined

by the forecast horizon, H.

The approach makes use of LSTM for building the forecast models. In Chapter 4, we have
described how LSTM networks (refer Section 4.2.2.2) can be used for forecasting QoS of
the sensor components and why they are more effective when compared to traditional
models. In this approach, we use the same techniques to train the LSTM network for
forecasting the QoS of service instances. The training process results in the creation of a
Model, which is further tested for accuracy using the test set, Os. In the event of low
accuracy, the approach performs retraining by tuning the neural network parameters.

The tested models are further used by the Prediction process.

As explained in the previous chapters, the process of training is executed as a batch
process at regular intervals to constantly update the models so as to avoid the problems

of concept drift [113].

7.1.4.4 Prediction

Prediction is a real-time process responsible for forecasting QoS of the matching in-
stances. For every query, g received by the service registry, the prediction process uses
the trained LSTM models to generate the QoS forecasts for each s; € S < match(q, SR).
The definition of QoS forecasts (as defined in 6 is slightly modified as follows:

Definition 7.2 (QoS Forecasts). We define the QoS forecasts as a set, F' = {p1,p2, .., Pn}
where p; represents the forecasted quality profile. Note that, p; = (a,v) where a iden-
tifies the quality attribute and v € R denotes the forecasted quality value over the

duration of the time horizon h.
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For example, H = (10,sec) and F' = {(responseTime, 0.2), (throughput,200)} for a
given instance s denotes that s is expected to have an average response time of 0.2

seconds and a throughput of 200 requests/second in the next 10 seconds.

These QoS forecasts for each of the service instances s; € S are then sent to the Selection

process for further processing.

7.1.4.5 Selection

The role of selection process is to select the best instance §, such that, § = so «
select(q, S), based on the context of the service consumer as well as the forecasts of the
expected QoS of each instance s; € S . In order to achieve this, we use the Q-learning
based algorithm similar to what used in Chapter 5, algorithm 2. In this approach, the
state space of Q-learning is determined by two important attributes: (i) QoS Categories,

and (i7) Context Feature-set.

Definition 7.3. (QoS Categories) We define QoS category, QC as a discrete set {gc1, gea,
where gc; represents the expected category for the QoS metrics j, obtained by mapping

the values of the QoS forecasts f; to a unique label, [ € L.

Algorithm 4 Instance Selection Algorithm

Require: :
1. States W = {wq,wa, w3, ..., wp }
2: Actions A = {0,1,2....m} > represents the selection of each m instance
3: Labels L = {ly,ls,13,...1,} > Threshold categories
4: Forecasts F' = {f1, fo,..fn} > Forecasts of QoS attributes
5. Rewards R = {r1,79, ..., n} > Reward for each of the state
6: procedure DECISION-MAKER(W ,A,L,F,R,C,ar;y ) > Find the state of the system
from the forecasts and context
QC « identify_category(F, L) > Get Category from Forecasts
w <+ (QC,¢) > combine category and context to form the state
: r < Rlw] > Reward for attaining the state, w
10: (w',a) < argmaz,Q(w,a)
11: Q' (w,a) = (1 —a)*Q(w,a) + ax (r+v*mazx(Q(w',a)))
12: a<a > The action to reach that state
13: return a

For instance, let F' = {(responseTime, 0.3), (throughput, 100)} represent the forecast
vector and L = {lowRt,highRt, lowTh,highTh} denote a set of labels. Then we can
define a simple mapping function for the QoS attribute,

responsetime such that [0,0.2] — lowRt,[0.2,00] — highRt. Similarly, we can de-
fine another mapping function for the QoS attribute, throughput such that [0,40] —
lowTh, [40,00] — highTh. We can then combine this to generate a QoS category set,
QC for the given F' as QC = {highRt, highTh}.

.qCn}
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The state space, W C QC x C is defined over the set of possible QoS categories and the

set of all context features in C.

Action space, A, consists of a set of actions {a1,as,as, .., an} such that a; € A denotes
the selection of instance s; in S. Rewards, R on the other hand is a set {ry,72,..7,}

where r; € Z denotes the reward value for attaining a state, w; € W.

W and A together form a n x m Q-table matrix where n denotes the number of states
and m denotes the number of actions. Each value corresponds in Q-table to a (w,a)
pair and it’s value denotes the benefit for selecting an instance s; given the context of
the service consumer and the expected QoS category of the instance. This property
is leveraged by the selection process to select the best instance during the process of
service discovery. The complete instance selection algorithm based on Q-learning is
presented in algorithm 4. It is similar to algorithm 2 presented in Chapter 5. While
the core algorithm remains the same, the key difference is that instead of just using the
QoS states for identifying the state inside the Q-table, this algorithm also considers the
context features. Moreover, the action space here is about switching between instances

as opposed to patterns leading to an increased action space.

The algorithm first maps the forecasts received from the prediction process, F' into a
set of QoS Categories, QC based on the labels, L. The QC' identified along with the
context of the service consumer, C is combined to identify the current state, w inside
the Q-table (lines 7-8). The algorithm then assigns a reward for attaining the state,
w. Following this, the maximum value of state-action pair, (w’,a’) that can be reached
from the current state is identified (lines 9-10). The Q-table is then updated using the

Q-function (line 11) and the action (instance, §) is returned (lines 12-13).

In this manner for every query, ¢, our algorithm selects the best instance § by selecting
the action that maximizes the reward. By assigning negative rewards (penalties) to
selection of instances that offers sub-optimal QoS, the approach ensures that any incor-
rect selection is penalized in the form of a high negative reward and this means as the
time progresses, given a ¢, the algorithm continuously improves the selection process to

guarantee optimal QoS by ignoring instances that can lead to high penalties.

7.1.5 Evaluation

In this section, we first describe our experimental setup, as well as the data and metrics
used for the evaluation of our approach, followed by a discussion of the results generated
by our approach. We used response time as the key QoS parameter for the evaluation

of our approach. Hence, for each query, ¢ € () requested by the service consumer, s, the
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objective will be to select the instance, § that is expected to provide the best response

time (best response time implies least response time).

Experiment Specification. For experimentation and evaluation, we used the proto-
type application described in Section 7.1.2. The microservices were implemented using
Java Spring Boot. The service discovery module was primarily implemented in Java
while the ML part was implemented using Python (Keras framework with Tensorflow
backend). The module also supports integration with technologies like Zookeeper, Net-
flix Eureka, etc?. For more details on the technologies used, we refer the readers to

Appendix A.

Experimental Setup. Our system was deployed on two VM instances in Google Cloud.
The first one was run on an N1-Standard-4 CPU Intel Haswell Processor comprising
4 vCPU and 17 GB RAM with US-Central-a as the geographical zone. The second
one ran on an N2-Standard-4 Intel Skylake processor comprising 2 vCPU and 28GB
RAM with Europe-West-a as the geographical zone. The microservice instances were
distributed between the two VM instances. This was done to capture the different
context dimensions that may arise from the type of CPU, number of cores, geographical

zones, etc.

Evaluation Metrics. The objective of our evaluation is to assess the effectiveness and
efficiency of the approach. The effectiveness of the approach is evaluated by i) measuring
the accuracy of the response time forecasts produced; ii) calculating the average response
time delivered by all service in SR, QoS(SB;) as defined in Section 7.1.3; iii) computing
the response time offered by the instance, § for every request made. Efficiency, on the
other hand, is measured based on the average time taken to execute the matching and

selection process.

Data Setup. We deployed the system (using standard service discovery mechanism)
for a period of one week, and we developed 10 different clients to send requests to
various microservices based on a Poisson distribution with different mean values based
on the given day of the week. To simulate a different workload between instances of the
same microservice, a delay has been added at each request that depends on the type of
instance and the current time. This was done to emulate the real scenario where the
incoming request rate can vary depending on the day and time. The response time of all
the instances was continuously monitored and recorded. This was then used to create

the LSTM based forecast model with a forecast horizon, H = 5 minutes.

3The complete implementation along with the source code and dataset can be found at https: //
github.com/detomarco/machine-learning-driven-service-discovery


https://github.com/detomarco/machine-learning-driven-service-discovery
https://github.com/detomarco/machine-learning-driven-service-discovery
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Evaluation Candidates. We evaluated the approach by deploying the system inte-
grated with each of the five different strategies for a period of 72 hours. These strategies

form the evaluation candidates:

1. static-greedy (sta_gre): Instances are ranked based on the static response time regis-
tered by the instances during service registration. Selection is performed using a greedy

strategy (select instance with the least response time).

2. linereg-greedy (lin_gre): Prediction of instance response time is performed using linear

regression [15] and selection is performed using a greedy strategy.

3. timeseries-greedy (tim_gre): Prediction of instance response time is performed using

time-series and selection using greedy.

4. linereg-Q-Learn (lin_Qle): Prediction of instance response time is performed using

linear regression and selection using Q-learning.

5. timeseries-Q-Learn (tim_Qle): Our approach, which performs prediction of response

time using time-series and selection using Q-learning.

7.1.5.1 Approach Effectiveness

Forecast Accuracy. The first part of evaluating the approach effectiveness was to
measure the accuracy of the response-time forecasts produced by the LSTM models.
The dataset was divided into training and testing sets consisting of 8903 and 2206
samples, respectively. We build the LSTM model with a single hidden layer consisting
of 60 neurons. This number was selected through experimentation. Mean Squared
Error (MSE) loss function and the efficient Adam version of stochastic gradient descent

were used for the optimization of the LSTM models. The model was fit in 250 epochs
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(Figure 7.3a shows the training vs. testing loss curve). We used Root Mean Square
Error (RMSE) for evaluating the accuracy of LSTM models on the testing set, where
RMSE for a dataset, Oest with n samples is given by the formula:

n

RMSE — % 3 (pi . yi)2 (7.2)

i=1
where p; represents the predicted value and y; represents the actual value.

The calculation resulted in a value of 406.73 ms, which means, on average, there is an
error of 406.73 ms in prediction. Figure 7.3b shows the plot of actual versus forecasted
values. We can see that the LSTM model’s prediction is almost able to follow the curve
of actual response time. This is due to the fact that LSTM, being a deep neural network,
possesses the ability to identify any non-linear dependency that might exist between the

different features such as the context attributes to generate accurate forecasts.

Average QoS Per Minute The second part of measuring the effectiveness was to
calculate the metric, QoS(SB;) as defined in Section 7.1.3. To accomplish this, we

deployed our experiment by integrating the service discovery mechanism using each



Data-driven Adaptation: The Case of Microservices 162

of the evaluation candidates for a period of 72 hours. The batch training phase was
executed every 12 hours. The value of QoS(SB;) was calculated for every minute, and
Figure 7.4 shows the plot of the cumulative QoS(S B;) while using each of the approaches.
We can see that the cumulative QoS(SB;) offered by the different approaches starts
diverging marginally during the initial stages, but as time progresses, the gap between
tim_Qle and other approaches slowly starts increasing. In particular, we can see that
the gap between tim_Qle and the traditional sta_gre keeps increasing steadily after 1900
minutes, thereby resulting in the improvement of tim_Qle (10449 seconds) over sta_gre
(11762 seconds) by 12% at the end of 72 hours. lin_gre, tim_gre on the other hand does
perform better than sta_gre with tim_gre performing better than lin_gre. However, we
can observe that the learning rate of these approaches is still less than tim_Qle, and they
are often inconsistent. This is more evident, especially after 1900 minutes. This is due to
Q-learning’s ability to continuously improve with the help of feedback obtained for every
selection performed. For Q-learning, the feedback for decision at a time, ¢ obtained via
forecast at the time, ¢t + 1. Hence poor forecast accuracy implies that Q-learning favors

the selection of wrong instances, and due to this reason, lin_Qle performs the worst.

Average QoS Per Request To further evaluate the approach effectiveness in terms of
the QoS offered by the instance, §, we measured the response-time of § for every request
made to §. Figure 7.5 shows the box plot of the response time offered by § per request.
The tim_Qle approach offers the least average response time of about 1236.23 ms which
is 20%, 19%, 21% and 16% better than the one offered by sta_gre, lin_gre, lin_Qle and
tim_gre respectively. We can also observe that most of the values fall between the range
of 500 ms and 1800 ms, which is much less compared to other approaches. Although,
there are more outliers in the case of tim_Qle due to the initial phase of Q-learning where
wrong selections are made, on average, the response time perceived by s when using by

tim_Qle is significantly lower compared to the others.

7.1.5.2 Approach Efficiency

The efficiency of the approach was evaluated by measuring the time taken by the whole
service discovery process when integrated with our approach. The results show that, on
average, the approach takes 0.10 seconds for performing the whole process. The speed
can be mainly attributed to the fact that Q-learning being a model-free technique,
performs only a lookup operation in the Q-table. The majority of the time is taken by
the prediction process as although it’s a constant time process, the prediction needs to
be done for service instances in each of the five services. LSTM training, which happens
every 12 hours, takes around 125 minutes to complete, but this does not impact the

real-time process as only the trained models are used for service discovery.
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7.1.6 Threats to Validity

1. Construct Validity: It is related to the use of a controlled experimental setup and
incorrect selections. Even though we performed real-time execution of the system, we
simulated the context and quality change to emulate real-world scenarios as close as pos-
sible. In particular, the context setup such as the server locations, request simulations,
dynamic delays were all incorporated to achieve this goal. To improve the selection
accuracy, the build phase is executed at regular intervals. By keeping the reward for

incorrect selections to a high negative value, wrong decisions can also be penalized.

2. External Validity: This concerns the generalizability and scalability of our ap-
proach. Although our approach has been applied to a system with 25 services, it uses
techniques that can be generalized to more complex microservice systems. We have
already seen this in the previous chapters as we have applied similar techniques to IoT
systems. Moreover, our approach can be catered to large-scale systems by optimizing
Q-learning (for instance, using Deep Q-learning [181]) to solve the effectiveness and

efficiency issue that might arise from the increased state, action space.
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In this section, we proposed a novel service discovery mechanism that takes into account
the frequent variability of the consumers and providers contexts and the QoS profile of
services. Therefore, the overall goal of the approach was to select the matching service
provider § to maximize the QoS perceived by the service consumer s with respect to its
context and with that of §. For this purpose, we developed an approach by extending
the approach presented in Chapter 5. It uses a combination of deep neural networks and
reinforcement learning to select the best instance of §. The approach has been evaluated
in a controlled environment. Experimentation results are encouraging and show how

such an approach is able to outperform traditional service discovery mechanisms.

In the next section, we shift our focus to microservice-based IoT systems and further
elaborate on how the self-adaptation challenges in such a system can be handled using

different techniques presented so far.

7.2 Data-driven Adaptation in MSA-IoT

In this section, we describe our novel self-adaptative architecture for MSA-IoT systems.
The architecture considers the adaptation concerns that arise from different involved
entities such as those from IoT devices, microservices, and the end-user due to changing
user goals. It addresses this by leveraging the different types of data obtained from the
different involved entities and further through a clear separation of adaptation concerns.

The architecture is further explained in the remainder of this section.

7.2.1 MSA-IoT: The Challenges

As discussed at the beginning of this chapter, although MSA’s are turning out to be
the goto solution for architecting modern IoT systems, lots of new challenges arise when
applying MSA for IoT. These challenges can be classified into three levels based on their

origin. These include:

1. Device Level: IoT devices face different uncertainties due to the openness and con-
tinuously evolving environments such as device failures (e.g., hardware issues resulting
in burn out of microcontroller), device damages (e.g., cameras can be damaged due to
some human activity or by other external factors). Moreover, they are also subjected to

various resource constraints arising from the availability of battery, network traffic, etc.

2. Microservice Level: Microservices themselves are subjected to various uncertainties
due to challenges of resource management (e.g., monitoring VMs and containers which

can fail /have resource constraints
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3. Application Level: Apart from devices and microservices, the application itself is
subjected to different uncertainties due to the change in usage contexts or changes in

user goals.

Towards this, Self-adaptation techniques has emerged as one of the potential solutions
due to their abilities to handle the uncertainties. We have already seen in the previous
chapters how leveraging QoS data using machine learning techniques can result in ef-
fective proactive adaptations in IoT based systems. But, increasingly demanding users
with dynamic behaviors, the uncertain nature of microservices (sudden service failures,
memory outages, etc.) coupled with the open nature of the IoT context, call for reactive
adaptation techniques as the uncertainties may not be possible to predict. Concerning
the challenges mentioned above, an ideal MSA-IoT system should have self-adaptive

capabilities to handle the uncertainties both reactively and proactively.

However, a recent study by Mendonca et al. [137] has shown that traditional self-
adaptation techniques that make use of MAPE feedback loops or three layers models,
in general, may not work in MSA. This is due to a fundamental mismatch between the
adaptation needs of microservice-based systems and the support offered by traditional
self-adaptive frameworks and models. Towards this direction, the approach in [137] pro-
poses a service-mesh based approach for handling adaptation. That approach works at
the microservice level only, while MSA-IoT systems expose adaptation needs that can
arise even from the device level as well as the application level, and they might further

impact the adaptation needs of the microservices.

This calls for an adaptation framework that encompasses the adaptation concerns arising

from these different levels.

In this direction, in the remainder of this section, we describe a novel self-adaptive
architecture for microservice-based IoT systems. In particular, the architecture han-
dles proactive adaptation by using machine learning (ML) techniques based on what
is proposed in the previous chapters, and reactive adaptation by exploiting dynamic
microservices composition. Furthermore, it manages the adaptation at different levels
and in a different manner: i) at device level, through the monitoring of QoS data of
IoT devices, through a fog layer, ii) at service level, by continuously monitoring the QoS
data of services and effectively leveraging the use of service mesh; iii) at application

level, employing dynamic QoS-aware service composition, driven by users goals.
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7.2.2 Motivating Scenario: MSA for NdR

In Section 2.5, we have described the high-level architecture designed for the NdR ap-
plication. However, as stated in the description, we had only considered a part of the
NdR application. In the larger context, the NdR application’s requirement is to provide
different functionalities that can improve the overall quality of the visiting experience.
These functionalities include providing information on events, venues, parking lot, local-
ization, etc. using various sensors, i.e., people counter, parking mats, beacons, cameras,
QR code reader, etc. These sensors are deployed mostly in outdoor environments. Based
on this scenario, we plan to develop an MSA-IoT application consisting of microservices
for handling venue booking, venue management, localization, payment, etc. We decided

to go with MSA due to the advantages offered (refer Section 2.4).

In this context, considering the heterogeneity and multitude of involved actors, such
as IoT devices, microservices, and users, different kinds of uncertainties have to be
managed. They can be classified into three levels, corresponding to the involved actors.

For example:

i) application level: Suppose users want to use online booking for both the venue and
desired transport mode. Embedding in the system behavior, all the possible combina-
tions is cumbersome. Possible adaptation than can be to dynamically combine the venue
booking and selected transport mode microservices (e.g., exhibition event and taxi) to

accomplish the user goal.

ii) microservice level: Consider that the booking microservice suddenly gets lots of
requests due to a popular event, and we gather context information from the camera
about the flow of people to venues. This information, along with expected response time,
can be used to perform proactive adaptation by adding new instance(s) of the booking

microservice.

iii) device level: Consider that hand-held QR code reader has limited battery capacity.
ML can be used to predict the battery level and dynamically adapt the data transfer

frequency.

7.2.3 Self-adaptive Architecture for MSA-IoT

The overall architecture as depicted in Figure 7.6 consists of three layers, namely Edge,
Fog and Cloud. While the fog layer handles the device level adaptations specific to
devices in the edge layer, the cloud layer handles adaptations at the microservice and

application levels.
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FIGURE 7.6: Self-Adaptive architecture for microservice based IoT Systems

7.2.3.1 Edge and Fog Layer

The Edge layer represents the set of IoT devices (sensors and actuators) in the system.
Sensors send the data sensed to the Fog layer based on the frequency of data transfer.
They also periodically send their QoS data including information such as battery level,

memory consumption, etc. to Fog Layer.*.

The Fog Layer is responsible for performing the lightweight computations on the sensed
data and further perform architectural adaptations/re-configurations on the IoT devices
if required based on the QoS data. It consists of multiple Compute Node consisting of a
Compute component and an Adapter component. The former is responsible for perform-
ing preliminary computations on the sensed data such as data aggregation, cleaning,
etc. The later is responsible for leveraging the QoS data obtained from the devices,
by using ML models to perform proactive adaptations of the IoT devices. The adapter
applies some pre-processing such as feature scaling, normalization, etc. on the real-time
QoS data of the IoT devices. It then uses ML models to predict the expected QoS for
a given time interval (Similar to the role of Predictor in the Analyze activity of our
overall approach). These models are periodically received from the cloud layer. The

Adapter then selects an adaptation plan, to be used if any QoS issue is forecasted, and

4In Figure 7.6 two IoT devices are shown to communicate to one compute unit in the Fog. This is
shown for ease of understanding. In reality depending on the use case these numbers can change
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communicates it to the compute component. The selected plan is then used to perform
device-level adaptation, such as reduce the sensor data transfer frequency, modify the
communication protocol, etc (eg. device level in Section 7.2.2). The Fog Layer further
communicates the data received, which includes the QoS data as well as the sensed data,

to the Cloud Layer through the Message Broker.

7.2.3.2 Cloud Layer

This layer performs heavyweight computations. It consists of four main layers. (Despite
the ordering depicted in Figure 7.6, we describe, in the order, microservice, management,

adaptation and application infrastructure layers, for comprehensiveness).

1) Microservice Layer: It consists of the set of microservices implementing the function-
alities of a given IoT system. For monitoring the individual microservices and further
use this for performing adaptation, we use the concept of service-mesh/sidecar, as sug-
gested by Mendonga et al. [137, 182] (for more details on service mesh, refer Chapter
2, Section 2.4.2). The service-mesh provides ways to monitor various QoS parameters
of each microservice, such as traffic, response time, etc., that can be obtained from the

Service Mesh Control Plane in the Management Infrastructure layer.

2) Management Infrastructure Layer: It handles the discovery of microservices, pro-
vides information on their status, manages them and executes adaptation if needed. It
consists of three main components: i) Service Management, it is responsible for exe-
cuting the architectural adaptation of the microservices, e.g., increasing the memory of
the microservice instance, automatically add an instance, etc. based on the adaptation
decision provided by the lower layer. It is also responsible for providing information on
the status of the microservices upon request to the ii) Service Mesh Control Plane, it
regularly monitors the QoS level of every microservice. These QoS data are further sent
to the Adaptation Infrastructure layer for processing; iii) Service Discovery, it routes the
requests from the A PI Gateway to the respective instances of microservices. The discov-
ery can be performed by leveraging the service instances’ QoS data using the machine

learning technique described in Section 7.1.

3) Adaptation Infrastructure Layer: This is a dedicated layer providing mechanisms for
effectively supporting adaptations at different levels. It is responsible for collecting the
context and QoS data from the Fog and Management Infrastructure layers. It leverages
these data to generate learning models for QoS prediction and further decide on the best

adaptation strategy based on the context. It consists of the following:

i) IoT QoS Store, ii) Service QoS Store and iii) Context Store stores information such

as device-level QoS, service level QoS, and sensor data from Fog Layer, respectively.
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iv) ML Engine is the key component as it is responsible for leveraging the data obtained
to create forecast models that can predict the expected QoS of IoT devices and mi-
croservices. It is same as the Machine Learning Engine of the approach presented in the
previous chapters. It mainly uses two data sources, IoT and Service QoS Stores. These
data form time-series datasets consisting of the QoS values for different intervals of time.
ML Engine applies pre-processing steps on these datasets, such as feature scaling, data
aggregation, etc. These pre-processed data are then used for creating forecast models,
by using LSTM networks [70] as defined in Chapter 4. This process is repeated period-
ically to ensure continuous update of the models thereby avoiding the possible issue of
concept drift [113]. It results in the creation of two types of models: 1) for forecasting
the QoS of IoT devices, which are communicated periodically to the Fog layer, and 2)

for forecasting the QoS of microservices, which are sent to the Context Analyzer;

v) Context Analyzer is responsible for identifying the need for adaptation of microser-
vices based on the QoS forecast models from the ML engine and the data from the
context Data Store. It follows a two-step process. First, at every instant of time, it
obtains the latest Service QoS data to forecast the expected Service QoS for a given
interval of time, using the forecast model. This is then used to identify any possible QoS
issues in any of the microservices. Second, it uses the context data to gather specific
information (refer Section 7.2.2 (microservice level). It combines these data to identify

the need for adaptation and triggers the decision-maker if an adaptation need arises.

vi) Decision Maker is responsible for identifying the best adaptation technique based on
the information from the context analyzer. It uses a set of adaptation techniques that
consists of adaptation options, such as dynamically scaling microservices, auto-rollback
and restarting microservices, etc. These techniques can also be combined to form more
complex strategies. In particular, to this end, we can exploit the combination of Q-
learning and quantitative verification as defined in Chapter 6 or Al planning as defined
by Bucchiarone [183]. For instance, in the (microservice level) scenario in Section 7.2.2,
the Context Analyzer can trigger the adaptation based on the forecasted response time
of the booking service and context data. Based on this, a new instance can be added.

This decision is then communicated to the Adaptation Initiator.

vii) Adaptation Initiator acts as a bridge between the decision-maker and the Manage-

ment Infrastructure layer, by forwarding the adaptation request to the higher layer.

4) Application Infrastructure Layer: Its purpose is to execute application-level adapta-
tion based on their goals. In fact, some of the functionalities provided by the application
are specified only as abstract goals (e.g., an application-level scenario in Section 7.2.2)
that can be dynamically refined at runtime, through a composition of microservices

whose execution allows users to achieve the goals. It consists of three main components:
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i) User Goal Parser: it parses the abstract goals and translates them to the format as
required by the Service Composer. Goals can be specified through various goal models
available in the literature, for instance, the one used in [184]. ii) Service Composer: it
uses the QoS data/forecasts available from the lower layer to decide on the best com-
position of microservices, driven by the abstract goals from the user goal parser. The
composition can then be performed, for instance, by using an Al planning method as
suggested by De Sanctis et al. [184]. The instance selection of such composed services
can be performed using a combination of machine learning techniques as described in
Section 7.1. The identified composition of microservices is sent back to the user appli-
cation, which then uses the API gateway to invoke the respective microservices. For
those scenarios where the service composition is not required, e.g., login operation, the
user request is directly routed to the API Gateway. iii) API Gateway: it performs the
routing of the requests from the user to the corresponding instances of the microservices

through the service discovery component.

The approach can be realized by using a combination of various technologies. The
message broker can be implemented using Apache Kafka [158]. For implementing the
service mesh, technologies like Istio can be used [185]. The microservices can be deployed
and managed by building them as docker containers [186]. Further for implementing
the different data stores in the Adaptation Infrastructure Layer, Elasticsearch can be
used [160]. The metrics collected from Istio regarding the QoS of the microservices, as
well as the QoS of IoT devices, can be visualized using Grafana or Kibana [163]. Finally,

as in the previous chapter, machine learning models can be developed using Keras [162].

In this section, We proposed a self-adaptive architecture for microservice-based IoT sys-
tems to handle the different types of self-adaptation challenges faced by these classes
of systems. Further concrete realizations and validations are required to show the ef-
fectiveness and efficiency of the architecture. The approach uses the IoT system’s data
as the primary driver for adaptation and uses different machine learning techniques to

ensure that the architecture improves over a while.

To summarize, the chapter’s main focus was to tackle RQ4 and describe how the over-
all approach presented in this thesis can be generalized to more generic systems. To-
wards this, we applied the techniques presented in this thesis to solve two challenges in
microservice-based software systems i) Context-aware service discovery using machine
learning and ii) developing an architecture for enabling self-adaptation in MSA-IoT sys-
tems. As regards the former challenge, we proposed a novel context aware machine

learning-driven service discovery for microservice based architecture. It was achieved by
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extending the core parts of the approach presented in Chapters 4 and 5. The later chal-
lenge was handled by developing a data-driven self-adaptive architecture for managing

the different types of adaptation challenges in MSA-IoT systems.



Chapter 8

Conclusions and Future Work

”We can only see short distance ahead, but we can see plenty there that needs

to be done” — Alan Turing

8.1 Conclusions

In this thesis, we have taken into account the different architecting challenges faced
by modern software systems with a focus on IoT systems. We also elaborated on how
these challenges lead to various types of uncertainties, affecting the overall quality of
service (QoS). The field of self-adaptive systems has been focusing on addressing these
challenges. However, we described the different challenges within the research domain
for applying this technique to IoT systems or any modern software system in general. To
address these challenges, we came up with an overall goal of developing a data-driven
approach that, when applied to a software system with QoS constraints, allows it to
automatically learn and improve the architecture by leveraging the different types of
data generated using machine learning techniques. This overall goal was further broken

down into four main research questions:

RQ1. How to perform effective and efficient proactive adaptation using machine learning

techniques?

We addressed this question by developing a proactive machine learning-driven approach
for architecting self-adaptive IoT systems by extending the traditional MAPE-K loop.
The approach was used to improve the IoT system’s energy efficiency by proactively fore-
casting the expected energy consumption using deep neural networks. We also performed
evaluations to demonstrate how such techniques can accurately generate short-term and

long-term forecasts and offer higher energy savings than their reactive counterparts.
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Further, we also extensively evaluated the choice of adaptation and prediction intervals

in a proactive setup.
RQ2. How can machine learning be used to continuously improve the adaptation process?

As an answer to this question, we extended the MAPE-K based proactive approach to
support decision making using model-free reinforcement learning techniques. We showed
how such an approach could perform adaptation by handling multiple QoS goals. The
approach enabled the IoT system to optimize energy as well as data traffic consumption.
We further demonstrated how a combination of machine learning techniques in a proac-
tive adaptation setup enables the system to learn from the feedback of the succeeding

forecasts and continuously improve the architecture.

RQ3. How to guarantee the quality of the adaptation performed by such a machine

learning process and how can such guarantees in turn help the machine learning process?

We leveraged the use of quantitative verification techniques to address this question.
To realize this, We integrated the proactive decision-making approach with quantitative
verification, in particular probabilistic model checking. The approach enabled the IoT
system to optimize energy and data traffic through proactive adaptations supported with
qualitative guarantees. The approach provided quantitative guarantees to the machine
learning process and enabled the learning to converge towards optimal adaptations. This
was made possible by the two-way feedback mechanism from the verification process and

succeeding forecasts after each adaptation.
RQ4. How can the approach be generalized to other class of software systems?

We first extended the approach of combining proactive forecasts with model-free rein-
forcement learning to perform service discovery in microservice-based architectures to
address this question. The approach was applied to a prototype microservice applica-
tion. The evaluation demonstrated how such an approach could perform better than
state-of-the-art approaches. Further, we also extended some of the techniques used to

develop a data-driven self-adaptive architecture for microservice-based IoT systems.

To summarize, Figure 8.1 represents the activity diagram of the overall approach pre-
sented in this thesis. The highlighted area represents the key contributions of the thesis.
As it can be seen given an IoT system, our approach continuously monitors the QoS data
as well as the context data. Based on the data, the approach: i) proactively forecasts the
expected QoS as well as the expected context data using deep neural networks (Chap-
ter 4); ii) selects the best adaptation strategy using reinforcement learning techniques
(Chapter 5); iii) verifies the selection using quantitative verification techniques (Chap-

ter 6); iv) uses the feedbacks of the verification process as well as the feedbacks of the



Conclusions and Future Work 174

First run ?
— > No.

T }

( .
|y Collectecution [ " Gettstbucof
L ) previous decision
Identify adaptation

i plan
e 0 v
- Analyze the data & LA
(& ) v r+ Perform learning ’

No #
( H  Verify the plan
-+ Generate Forecasts
J
i Bad plan ?
i : Yes

Possible goal violations No

v

‘ -+ Execute adaptation

l
®

FIGURE 8.1: Overall Approach (Highlighted activities denote the thesis contributions)

forecast in successive adaptation intervals to continuously improve the decision-making
process (Chapter 6). Applying the approach to the microservices domain resulted in a
novel approach for performing machine learning-driven context-aware service discovery
in microservice architectures (Chapter 7). Further, applying the approach to the domain
of MSA-IoT resulted in the development of a novel data-driven self-adaptive architecture
for MSA-IoT systems (Chapter 7).

Therefore, we advance the state-of-the-art by developing a data-driven approach for ar-
chitecting self-adaptive systems, which in principle shifts focus from self-adaptive archi-
tectures to self-learning architectures. It achieves this using machine learning techniques
to leverage the different types of data generated to ensure that the architecture learns
from every adaptation and improves its architecture over time, thereby improving the
overall QoS.
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8.2 Future Work

We believe that what we have presented in this thesis is just a starting point and
shall pave the way for more research in this direction to build self-learning software
architectures just like self-driving cars. There are many more works that need to be
done concerning different parts of the approach in the future. These include but not

limited to:

Effective use of long-term forecasts: We have shown in Chapter 4, how we can
use techniques like LSTM to generate long term forecasts to prediction horizon as long
as 30-time steps. However, we also saw that the adaptation performed with such a
long horizon might not be optimal. Towards, this we are working towards extending the
three-layer approach proposed by Kramer et al. [52] with support for long-term forecasts
and short-term forecasts. In this manner, the system will have the ability to adapt as

per the short-term goals and long-term goals.

Evaluation with more deep learning techniques: The field of deep learning
has been expanding very rapidly, and recently techniques like Convolution neural net-
works [187], LSTM with convolution layer [188], Resnet [189], etc. have been used for
performing time-series forecasting. However still, most of them have been applied to
univariate time-series data. Towards this we plan to expand our evaluations to perform

comparisons (presented in Chapter 4), with these techniques.

Adaptations using fine-grained topologies: In Chapters 5 and 6, we were adapting
the IoT system using three different architectural patterns. As future work, we plan to
consider more fine-grained patterns instead of the more general, coarse-grained patterns
that we are currently using. This will enable us to explore a much richer solution space,
in which systems exhibit hybrid topologies with respect to the patterns considered (e.g.,
some IoT devices might prefer to perform computation in the edge, while others may
prefer to use an intermediary controller node or a central controller), potentially leading

to closer-to-optimal solutions with respect to the existing approach.

Scalability of the machine-learning aided verification: One of the immediate
research avenues that we plan to explore with respect to the approach presented in
Chapter 6, is scalability. This will entail considering more QoS parameters and pat-
terns, extending and validating the adaptation approach by identifying more patterns
and factoring into a learning-aided verification problem. This also involves taking into

account the trade-offs between multiple QoS parameters.

Robustness of the approach: Our approach currently assumes that forecasts can

be produced with acceptable accuracy. We plan on assessing the robustness of our
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approach with respect to uncertainties that affect the accuracy of the forecasts employed
for decision making, studying how the quality of the decisions degrades with higher levels
of uncertainty and devising extensions to mitigate the degradation of decision quality.
Further, we also plan to extend the approach with reactive adaptation capabilities to

ensure stability in the event of a sudden unforeseen situation.

Extending the verification-aided machine learning to more generic systems:
In Chapter 6, we presented how the use of quantitative verification techniques along
with machine learning, can enable the system to converge towards optimal adaptations.
As our next step, we plan to extend this approach to generic systems like cloud based
systems, microservices, etc. As a first step, we are in the process of applying learning-
aided verification to the SWIM exemplar [190]. Initial results are promising, and we

believe this would pave the way for more advanced research in this area.

Machine learning-driven service discovery for large scale systems: We plan
to apply the machine learning-driven service discovery mechanism presented in Chap-
ter 7 to microservice systems with a larger number of instances. This would mean
that the instance selection algorithm based on reinforcement learning would have to
handle larger action space complexity. Towards this, we plan to leverage the use of
deep Q-learning [181]. Further, we also plan to explore the possibility of using transfer

learning [191] to make the approach more robust across different classes of systems.

Realization of Data-driven Self-adaptive Architecture for MSA-IoT: The ar-
chitecture presented in Chapter 7 (Section 7.2) was more a conceptual architecture and
lacked concrete realization. We are currently in the process of realizing the architec-
ture by applying into the microservice-based NdR case study presented in Chapter 7,
Section 7.2.2. The approach’s effectiveness shall be measured based on the accuracy of
predictions made, energy saved for IoT devices, the degree of user goals achieved, the
average response time of microservices, etc. The efficiency shall be measured based on
the quality of the adaptations performed. The implementation shall also be extended
to consider different challenges such as DevOps integration, testing, etc. as mentioned
in [182].
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FI1GURE A.1: Overall Technology Stack

This section provides the details of the various technologies used to realize the different
parts of the approach presented throughout this thesis. Figure A.1 shows the technology
stack diagram consisting of the different technologies used for the implementation of
various parts of the approach presented in this thesis. The technologies used have been

categorized into different parts based on their use.

IoT Simulation

We used CupCarbon Simulator to simulate the IoT system of NdR to evaluate our
approaches further. CupCarbon is an open-source IoT and Wireless Sensor Networks
(WSN) simulator [153] [154]. It is especially considered as an excellent tool for simulating
the energy consumption of IoT systems [155] [156] [157]. The tool can be used for both
educational and scientific purposes. It allows users to design IoT networks with sensors

and other IoT components. The tool also provides an open street map, which allows
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FI1GURE A.2: Screenshot of the NdR case implemented in CupCarbon

the designers to design, prototype the IoT system, and deploy the sensors directly on
different locations on the map. This network can then be simulated for both educative
and analytic purposes. It comes with a scripting language, senscript, which allows users
to program and configure each of the sensor nodes individually. It allows users/designers
to create a scenario, deploy the sensor network and simulate different parameters such
as energy consumption, data traffic, battery level, etc. of the sensor components of a
given IoT system. Figure A.2 shows the screenshot of the CupCarbon simulator with
the NdR case. The image in the background depicts the map of L’Aquila. The sensor
nodes are placed in locations, as in the case of L’Aquila. As seen in the image, the tool’s
left side panel provides different options to configure the simulation. These include:
i) assigning each sensor with a script (based on senscript); ii) configuring their radio
and communication channels (like WiFi, LoRa, etc.); iii) assigning energy consumption
models (CupCarbon provides standard energy consumption models[153] for defining the
energy consumption models for each sensor nodes); iv) defining initial battery level
(in joules); v) defining the data distribution for each sensor nodes, it also provides a
mechanism to upload custom data (we use this facility to upload the data for the sensors
which were created using a Poisson distribution based on the real observations from the
case study), and the list goes on. Figure A.3 shows the screenshot of the CupCarbon
tool during the simulation of the NdR case. The directed red arrows indicate the flow of
data from one sensor node to another, the arrow also contains a value indicating the data
being sent. Further, CupCarbon allows generating code for hardware platforms such as

Arduino/XBee with a single click. CupCarbon also stores the simulations’ data in log
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FIGURE A.3: Simulation view of NdR in CupCarbon

files, which may be used for further analysis. During the simulation, the logs generated

are processed in real-time in our approach for providing adaptation capabilities.

One of the main parts of the approach presented in this thesis, in particular, the one
shown in Chapter 5, is also available as a tool, Archlearner® [3]. The tool aids machine
learning-driven proactive architectural adaptation. It uses the three self-adaptation
patterns [56] to perform the adaptation. The tool leverages machine learning techniques
implemented on an enterprise-grade big data stack. It enables the IoT system to i)
automatically identify the need for adaptation at an early stage; ii) perform automated
decision making for generating the best adaptation strategy; iii) gather the feedback
of the selected decision for continuous improvement. It also provides a visual interface
for i) defining the QoS thresholds; ii) visualizing the adaptation process; iii) specifying
the forecasts and related adaptation configurations; iv) visualizing real-time QoS; v)

adding/editing the machine learning related configurations.
Cloud Provider

Some parts of the approach, particularly those in Chapters 6 and 7 were implemented

on Google Cloud Platform. Google Cloud also supported these researches under the

Yhttps:/ /mysat.gitlab.io/archlearner-web/
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Google Cloud research credits program.?. Out of the many services offered by Google
Cloud, we made use of the Infrastructure as a Services (Iaas) to launch our custom
Virtual Machines (Compute Engine Service®). These were used to deploy the different
components of the approach presented in Chapter 6. The virtual machines allowed
us to easily manage the generated machine learning models and host web-services and
CupCarbon simulator without any issues. Further, we launched two virtual machines in
different geographical zones and different hardware and CPU configurations to simulate

the contextual changes for the approach presented in Chapter 7.
Machine Learning and Adaptation

For developing the different machine learning models (LSTM models) in the approach,
we made use of the Keras deep learning API with Tensorflow backend (Tensorflow ver-
sion 1.15. However, the model building process can easily be extended to the current
version of 2.0). Keras is one of the most popular and widely used deep learning APIs.
Due to the native support for machine learning, Python was used for the implementation.
Keras provides stable APIs for developing machine learning models based on most of the
state-of-the-art deep learning algorithms. In particular, for developing the LSTM mod-
els, we made use of the Sequential model? library of the Keras API. It allows one to define
and train LSTM models easily. For example, a one-line command, model = Sequential()
allows us to define a sequential model (Indeed, the libraries need to be imported). Fur-
ther model.add(LSTM (294, input_shape=(10, 10]),return_sequences=False)) defines an
LSTM model with with 294 LSTM units in the hidden layer and input shape of [10,10].
This implies a multi-variate input series with lag value, 10, and a number of features,
10. Further, we exploit the different features of Keras to develop other machine learning
models. These were deployed in machines as a cronjob to perform the training periodi-
cally. After every training cycles, the models that are validated are versioned and stored

in the Model store (see Figure A.1)

For executing the adaptations, we developed a Python script that sends the decision
made (as a pattern to be used in the case of the approach presented in Chapter 5 and
6 and the sensor frequency for the approach presented in Chapter 4) to the CupCarbon
simulator by writing the decision in a configuration JSON file. We also developed a
web-service using the Python Tornado framework®. Further, we modified the source
code of CupCarbon using Java to continuously read the configuration JSON file by
continually sending a REST request to the web service. In this manner, any decision

made is immediately used to reconfigure/adapt the architecture.

Zhttps://edu.google.com/programs/credits/research/
3https://cloud.google.com
“https://keras.io/guides/sequential_model/
Shttps://www.tornadoweb.org/en /stable/
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As stated in Chapter, 6, we used PRISM® model checker for implementing the verified
to verify the decision produced by the g-learning algorithm. The biggest challenge, in
this case, on the implementation side, was to integrate the machine learning process
(implemented in Python) with the model-checking process in run-time and perform
continuous verification. The model checker is written as a separate component in Java.
To facilitate integration with Python, this was wrapped under a custom class importing
Jpype” libraries to support the execution of the model checker via socket call. This was
further deployed as an executable jar in a server. The decision-making process used a
custom Jpype based python script to communicate with the model checker via socket

call.
Data and Model Management

For the works mentioned in Chapter4, 5 and 6, Elasticsearch is used to store the QoS
data as well as the sensor data (behavioral data, in case of Chapter 6). Elasticsearch is
an open-source distributed REST-based search and analytics engine which is commonly
used for performing log analytics, full-text search, security intelligence, etc. It is also
widely known for its use as a data store for time-series data. Due to this property, we
use it to store the different time-series data used by our approach. Elasticsearch uses the
concept of indexr and documents. The index is akin to a table in a traditional database,
and a document is similar to a row in a table. Fach document is nothing but a JSON
consisting of multiple fields. For storing the energy and data traffic consumed by the
system, we created an index, ”"adaptive” with document types ”energy” and "traffic.”
We created an index ”sensor” with document type “data” for storing the sensor data.
The id was set to auto-increment, and we kept adding the data received. This data
was further used to visualize the near real-time energy, data traffic consumption, and
sensor data (of different sensors to get occupancy in parking lots, venues, etc.). It is also
used for further off-line training of the machine learning models to keep improving the
models with more and more data during the build phase, as defined in Section 4.2.2. For
storing and versioning the machine learning models, we used the traditional file-based
storage as Model store, where the machine learning models were structured in different
folders depending on their type. For instance, versions of energy forecast models were
stored under the folder "energy” then traffic models under the folder ”traffic”, so on
and so forth. In future versions, we intend to use miflou® for handling the versioning
and deployment of machine learning models. MySQL? was used as the database for the
microservices in the prototype application used in Chapter 7. MySQL is one of the most

popular open-source database platforms, and it provided all the required functionalities

Shttp://www.prismmodelchecker.org
"https://jpype.readthedocs.io/
Shttps://mlflow.org
“https://www.mysql.com
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for managing the data of the prototype application. We use separate databases to align
with the core principle of microservices (refer to Section 2.4). Since all the data used

were in a relational form, there was no need to use an additional NoSQL database.

Data Streaming and Processing For streaming the QoS logs and the sensor data
logs from CupCarbon to different components, we made use of Apache Kafka'®. At the
core, Apache Kafka is an open-source distributed event streaming platform. In other
words, Kafka is a distributed publish-subscribe system that is scalable, robust, and fast
by design. Kafka is one of the most widely used platforms for building real-time data
pipelines to transfer data between heterogeneous components or for handling streaming
data. It was first developed at LinkedIn to handle the issues associated with real-time
notifications [159]. Like many publish-subscribe messaging systems, Kafka maintains
feeds of messages in topics. Producers write data to topics, and consumers read from
topics. Since Kafka is a distributed system, topics are partitioned and replicated across
multiple nodes. It provides API for all major languages like Python, Java, Scala, etc.
We used the python API, kafka-python'! for the implementation. To facilitate real-
time streaming of QoS and sensor data logs, we create three topics in Kafka, namely
"energy”, "traffic”, and ”sensor”. Further, we write data producers using a simple
Python script to stream data from CupCarbon to the corresponding Kafka topic, which
is then pushed/pulled by a consumer. As stated in Chapters 4, 5 and 6, we used
Kafka based consumer implemented using Python to consume the message ingested in
the different Kafka topics. The consumer further aggregates the data as required for
performing the forecasts. For example, suppose the lag, [, is 10 for energy forecasts. In
that case, the consumer keeps aggregating the data in an array until it has reached 10
data points, and this is further sent to the machine learning components to make the
prediction. Once sent, the data is flushed out (based on decision intervals) to handle

the new data set.

For the tool, Archlearner [3], we made use of Apache Spark instead of Apache Kafka
for processing and aggregating the data (the role of the consumer). Apache Spark
is an open-source real-time distributed analytics and big data processing engine. It
supports real-time processing of batch data via dedicated streaming API, known as
Spark Streaming'?. Spark, written in Scala, also provides API's to support different
languages like Python, Java, etc. We used PySpark's, (the Spark API for Python)
to implement the real-time data processing module of the tool. We wrap this using
a python module that executes spark in a streaming context. The spark streaming is

set to consume the message from the topic ”sensor”, ”energy”, "traffic”, etc. with a

Ohttps://kafka.apache.org

"https://pypi.org/project /kafka-python/

2https:/ /spark.apache.org/docs/latest /streaming-programming-guide.html
Y3https://spark.apache.org/docs/latest /api/python/index.html
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batch interval based on the decision interval of adaptation as well as the lag value for
performing the forecasts. It first applies a map operation with a split of the raw data
into features required by the machine learning process. It then converts the data to
time-series data, and this data is sent to Elasticsearch for storage. This batch is also
appended to a pandas data frame. The data frame is aggregated for 1-minute intervals
to generate the aggregated lag data at the decision period interval. This aggregated lag

data is used for prediction.

To manage Kafka and Spark’s different instances, we make use of Apache Zookeeper'*.

Zookeeper is an open-source centralized coordination service for enabling better coor-
dination in a distributed computing environment. It is responsible for maintaining the
configurations of the list of active nodes, provide naming service (which allows nodes to
lookup active nodes in the cluster), better synchronization support, etc. In our imple-
mentation, the zookeeper is responsible for maintaining active Kafka and Spark nodes,

which are then used by the Python modules to establish connections.
Microservices

The implementation of microservices for the approach presented in Chapter 7, was
achieved using the Tornado web framework'® (Python) and Java Spring'®. Tornado
is a web framework for developing Python-based web services. It provides an in-built
web server and supports asynchronous non-blocking calls. Due to this reason, it can be
easily used at scale to support a bulk amount of requests. Java Spring, on the other
hand, is a framework for developing enterprise applications in Java. It provides a model
view controller (MVC) framework for easily developing and marinating web applications.
The microservices implementing the different functionalities of the case study mentioned
in Section 7.1.2 has been developed using the Java Spring framework. Further, we repli-
cated this to multiple instances by creating multiple copies of this web service deployed
on different ports. Every microservice requiring data access were connected to their own
MySQL database. The service discovery itself was implemented using Java Spring, and
service for building and managing machine learning models for the QoS forecasts was

implemented using the Python Tornado framework.
Visualization and Presentation

For the visualization and presentation, we made use of JavaFX'" and Kibana'®. JavaFX
provides a platform for creating rich GUI applications based on Java. It is mainly

used for creating desktop applications and provides extensive support for custom styling

Y“https: //zookeeper.apache.org
Yhttps://www.tornadoweb.org/en/stable/
Yhttps:/ /spring.io

"https://openjfx.io
Bhttps://www.elastic.co/kibana
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of the user interfaces. We use JavaFX for developing the user interface (UI) of our
tool Archlearner. The developed Ul allows users to visualize the real-time energy and
data traffic graphs and the different machine learning models’ accuracy plots. The Ul
provides detailed views on how the adaptation is performed. It also allows stakeholders
to define the respective configurations required for performing the adaptation and the

QoS thresholds that the system has to maintain.

Kibana is an open-source visualization plugin that allows us to visualize and navigate
the data on the elastic search cluster. It also provides dedicated support for visualizing
time-series data. We use Kibana for creating multiple dashboards, based on the real-time
QoS data from Elasticsearch. The Elasticsearch data is connected to Kibana by mapping
the different Elasticsearch indexes, "energy”, "traffic”,”adaptive”, etc. to the Kibana
cluster. It supports creating multiple dashboards, and this option is used to create near
real-time dashboards for the energy consumption data of different components in the

system as well as dashboard for real-time sensor data and data traffic information.

The working demo of the tool, Archlearner, can be found here!'”

Yhttps://www.youtube.com/watch?v=BrRsQ6PYyVY
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