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Abstract
In this paper we investigate a quasineutral type limit for the Navier–Stokes–
Poisson system. We prove that the projection of the approximating velocity
fields on the divergence-free vector field is relatively compact and converges
to a Leray weak solution of the incompressible Navier–Stokes equation. By
exploiting the wave equation structure of the density fluctuation we achieve the
convergence of the approximating sequences by means of a dispersive estimate
of the Strichartz type.

Mathematics Subject Classification: 35Q35, 35Q30 (76D05, 76W05, 76X05)

1. Introduction

This paper is concerned with the analysis of a vanishing Debye length type limit for a coupled
Navier–Stokes–Poisson system in 3D. Namely, we investigate the behaviour of the solutions
of the following initial value problem on the whole R

3, when λ vanishes to zero,

∂sρ
λ + div (ρλuλ) = 0, (1)

∂s(ρ
λuλ) + div (ρλuλ ⊗ uλ) +

1

γ
∇(ρλ)γ = µ�uλ + (ν + µ)∇ div uλ + ρλ∇V λ, (2)

λ2�V λ = ρλ − 1. (3)

We denote by x ∈ R
3, s � 0, the space and time variable, ρ(x, t) the negative charge

density, m(x, t) = ρ(x, t)u(x, t) the current density, u(x, t) the velocity vector density, V (x, t)

the electrostatic potential and µ, ν the shear viscosity and bulk viscosity, respectively. The
parameter λ is the so-called Debye length (up to a constant factor).

The Navier–Stokes–Poisson system is a simplified model (for instance, the temperature
equation is not taken into account) to describe the dynamics of a plasma where the compressible
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electron fluid interacts with its own electric field against a constant charged ion background
(see Degond [5]). We recall that the Debye length is a characteristic physical parameter related
to the phenomenon of the so-called ‘Debye shielding’. Any charged particle inside a plasma
attracts other particles with opposite charge and repels those with the same charge, thereby
creating a net cloud of opposite charges around itself. This cloud shields the particle’s own
charge from external view; it causes the particle’s Coulomb field to fall off exponentially at
large radii, rather than falling off as 1/r2. This phenomenon was studied by Debye (1912).
The physical meaning of the Debye length λ is the ‘screening’ distance or the distance over
which the usual Coulomb field 1/r is killed off exponentially by the polarization of the plasma.

This type of limit has been studied by many authors. In the case of the Euler–Poisson
system by Cordier and Grenier [4], Grenier [17], Cordier et al [3], Loeper [23], Peng et al [25],
in the case of a Navier–Stokes–Poisson system by Wang [32] and Jiang and Wang [18] and
in the context of a combined quasineutral and relaxation time limit by Gasser and Marcati in
[13–15]. This paper is still a mathematical theoretical approach to this complicated physical
problem which however removes many regularity and smallness assumptions of various papers
in the literature, see for instance Wang [32] and Jiang and Wang [18].

Our approach is based on the idea of estimating the behaviour of the acoustic waves as the
parameter λ goes to zero; in particular, we exploit the structure of the wave equations satisfied
by the fluctuation density. Our singular analysis has some similarities with the low Mach
number limit, see the paper by Lions and Masmoudi [22], Desjardins et al [7], Desjardins and
Grenier [6]. The limiting behaviour analysis is very hard because of the presence of very stiff
terms due to the scaled electric field. In fact, because of the incompressible limit regime it is
necessary to introduce a time scaling but the singularity introduced by the coupling electric
field leads to the acoustic waves. In order to handle these difficulties the system (1)–(3) will be
studied as a semilinear wave equation and we will get uniform estimates in λ by the use of the
Lp-type estimates due to Strichartz [16,19,30]. The particular type of Strichartz estimates that
we are going to use here can be found in the book of Sogge [28] or deduced by the so-called
bilinear estimates of Klainerman and Machedon [20] and Foschi and Klainerman [12]. In this
way we get sufficient bounds in order to study the limiting behaviour of the velocity vector
field. In particular we will separately analyse the limiting behaviour of the divergence free
part and the gradient part of uλ. Similar techniques have already been used in [9]. This paper
is organized as follows. In section 2 we recall the mathematical tools needed in the paper and
recall same basic definitions. In section 3 we set up our problem, explain our approach and
state our main result. Section 4 is devoted to recovering the a priori estimates needed to get
the strong convergence of the approximating sequences and to prove the main theorem. In
section 5 we prove the strong convergence of the velocity vector field. Finally, in section 6 we
give the proof of the main result.

2. Preliminaries

For the convenience of the reader we establish some notation and recall some basic facts that
will be useful in the following.

If F, G are functions we denote by F � G the fact that there exists c ∈ R such that
F � G.

We will denote by D(Rd × R+) the space of test function C∞
0 (Rd × R+), by D′(Rd × R+)

the space of Schwartz distributions and 〈·, ·〉 the duality bracket between D′ and D. Moreover
Wk,p(Rd) = (I − �)−

k
2 Lp(Rd) and Hk(Rd) = Wk,2(Rd) denote the nonhomogeneous

Sobolev spaces, for any 1 � p � ∞ and k ∈ R. Ẇ k,p(Rd) = (−�)−
k
2 Lp(Rd) and Ḣ k(Rd) =

Wk,2(Rd) denote the homogeneous Sobolev spaces. The notation L
p
t L

q
x and L

p
t W

k,q
x will
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abbreviate, respectively, the spaces Lp([0, T ]; Lq(Rd)), and Lp([0, T ]; Wk,q(Rd)). We
denote by L

p

2 (Rd) the Orlicz space defined as follows:

L
p

2 (Rd) = {f ∈ L1
loc(R

d) | |f |χ|f |� 1
2

∈ L2(Rd), |f |χ|f |> 1
2

∈ Lp(Rd)}, (4)

see [1, 21] for more details. We shall denote by Q and P , respectively, Leray’s projectors
Q on the space of gradient vector fields and P on the space of divergence-free vector fields.
Namely,

Q = ∇�−1 div P = I − Q. (5)

It is well known that Q and P can be expressed in terms of Riesz multipliers; therefore, they
are bounded linear operators on every Wk,p (1 < p < ∞) space (see [29]).

Let us recall that if w is a (weak) solution of the following wave equation in the space
[0, T ] × R

d 


(
−∂2

∂t
+ �

)
w(t, x) = F(t, x),

w(0, ·) = f, ∂tw(0, ·) = g,

for some data f, g, F and 0 < T < ∞, then w satisfies the following Strichartz estimates
(see [16, 19]):

‖w‖L
q
t Lr

x
+ ‖∂tw‖L

q
t W

−1,r
x

� ‖f ‖Ḣ
γ
x

+ ‖g‖
Ḣ

γ−1
x

+ ‖F‖
L

q̃′
t Lr̃′

x

, (6)

where (q, r), (q̃, r̃) are wave admissible pairs, namely, they satisfy

2

q
� (d − 1)

(
1

2
− 1

r

)
2

q̃
� (d − 1)

(
1

2
− 1

r̃

)
,

and moreover the following conditions hold:

1

q
+

d

r
= d

2
− γ = 1

q̃ ′ +
d

r̃ ′ − 2.

Beside the Strichartz estimate (6) in the case of d = 3 (see [28]), there is a less standard
estimate, related to an earlier linear Strichartz [30] estimate, namely,

‖w‖L4
t,x

+ ‖∂tw‖L4
t W

−1,4
x

� ‖f ‖
Ḣ

1/2
x

+ ‖g‖
Ḣ

1/2
x

+ ‖F‖L1
t L

2
x
. (7)

This estimate follows from the homogeneous case by a standard application of the Duhamel
principle. It was first obtained by Strichartz [30] (see [28, p 72, formula (4.6)]. Alternatively,
it could be derived by using the bilinear estimates in Foschi and Klainerman [12, corollary
13.4] by following step by step the same computations as in Klainerman and Machedon [20]
(see the proof of theorem 2.2, p 1237) by replacing the inequality in corollary 2.8 with the one
of corollary 13.4 of [12].

It is straightforward to observe that for any s � 0 this estimate also holds:

‖w‖L4
t W

−s,4
x

+ ‖∂tw‖L4
t W

−1−s,4
x

� ‖f ‖
H

1/2−s
x

+ ‖g‖
H

−1/2−s
x

+ ‖F‖L1
t H

−s
x

. (8)

(It is sufficient to apply the operator (I − �)−s/2 to (7)). In conclusion we state the following
elementary lemma that will be used later on.

Lemma 2.1. Let us consider a smoothing kernel j ∈ C∞
0 (Rd), such that j � 0,

∫
Rd j dx = 1,

and let us define

jα(x) = α−dj
(x

α

)
.

Then for any f ∈ Ḣ 1(Rd), one has

‖f − f ∗ jα‖Lp(Rd ) � Cpα
1−d

(
1
2 − 1

p

)
‖∇f ‖L2(Rd ), (9)
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where

p ∈ [2, ∞) if d = 2, p ∈ [2, 6] if d = 3.

Moreover the following Young type inequality holds:

‖f ∗ jα‖Lp(Rd ) � Cα
s−d

(
1
q
− 1

p

)
‖f ‖W−s,q (Rd ), (10)

for any p, q ∈ [1, ∞], q � p, s � 0, α ∈ (0, 1).

3. Statement of the problem and main result

We rewrite here the compressible Navier–Stokes equation coupled with the Poisson equation:


∂sρ
λ + div (ρλuλ) = 0,

∂s(ρ
λuλ) + div (ρλuλ ⊗ uλ) +

1

γ
∇(ρλ)γ = µ�uλ + (ν + µ)∇div uλ + ρλ∇V λ,

λ2�V λ = ρλ − 1.

(11)

As already discussed in the introduction our aim is to study the limiting behaviour of the system
(11) as λ → 0, namely, a quasineutral type limit. Formally, if we set λ = 0, then we obtain
ρ = 1 which is the so-called quasineutrality regime in plasma physics and the behaviour of
the fluid can be described by the incompressible Navier–Stokes system. The present limit
analysis has a very strong analogy with the theory of incompressible limits widely investigated
on mathematical fluid dynamics. In particular low Mach number limits have been studied
by several authors, among which we recall [7, 22, 24]. The quasineutral limit yields to the
introduction of a time scaling because of the incompressible limit regime; in addition there
is an electric potential scaling which is responsible for a very singular term which requires a
more careful analysis of the acoustic waves. The incompressible limit scaling is given by

ρε(x, t) = ρλ

(
x,

t

ε

)
, uε = 1

ε
uλ

(
x,

t

ε

)
, V ε = V λ

(
x,

t

ε

)
, µ = εµ, ν = εν.

(12)

With scaling (12) system (11) becomes


∂tρ
ε + div (ρεuε) = 0,

∂t (ρ
εuε) + div (ρεuε ⊗ uε)+

∇(ρε)γ

γ ε2
= µ�uε +(ν + µ)∇ div uε +

ρε

ε2
∇V ε,

λ2�V ε = ρε − 1.

(13)

Our analysis is performed under the assumption that the previous small parameter ε is related
to the Debye length λ (after suitable renormalization of the physical units) by the power law

εβ = λ2, where β > 0. (14)

To simplify our notation from now on we will set

πε = (ρε)γ − 1 − γ (ρε − 1)

ε2γ (γ − 1)
.

System (13) is endowed with the following initial conditions:

ρε|t=0 = ρε
0 � 0, V ε|t=0 = V ε

0 ,

ρεuε|t=0 = mε
0, mε

0 = 0 on {x ∈ R
3 | ρε

0(x) = 0},∫
R3

(
πε|t=0 +

|mε
0|2

2ρε
0

+ εβ−2|V ε
0 |2

)
dx � C0,

mε
0√

ρε
0

⇀ u0 weakly in L2(R3).

(ID)
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The existence of global weak solutions for fixed ε > 0 for system (13) has been proved in
the case of a bounded domain in [8] and in the case of a whole domain in [10] and [11]. We
summarize this existence result in the following theorem.

Theorem 3.1. Assume (ID) and let γ > 3/2, then there exists a global weak solution
(ρε, uε, V ε) to (13) such that ρε − 1 ∈ L∞((0, T ); L

γ

2 (R3)),
√

ρεuε ∈ L∞((0, T ); L2(R3)),
uε ∈ L2((0, T ); W 1,2(R3)). Furthermore

• the energy inequality holds for almost every t � 0,∫
R3

(
ρε |uε|2

2
+ πε + εβ−2|∇V ε|2

)
dx

+
∫ t

0

∫
R3

(
µ|∇uε|2 + (ν + µ)|div uε|2) dx ds � C0, (15)

• the continuity equation is satisfied in the sense of renormalized solutions, i.e.

∂tb(ρε) + div (b(ρε)u) + (b′(ρε)ρε − b(ρε)) div uε = 0,

for any b ∈ C1(R3) such that

b′(z) = constant, for any z large enough, say z � M,

• system (13) holds in D′((0, T ) × R
3).

For the sake of completeness we recall here some definitions and results concerning our
limiting system, namely, the incompressible Navier–Stokes equations,


∂tu + div (u ⊗ u) − µ�u = ∇p + f,

div u = 0,

u(x, 0) = u0,

(16)

where (x, t) ∈ R
3 × [0, T ], u ∈ R

3 denotes the velocity vector field, p ∈ R the pressure of
the fluid, f ∈ R

3 is a given external force and µ is the kinematic viscosity. Before stating
our main result, let us recall (see Lions [21] and Temam [31]) the notion of the Leray weak
solution.

Definition 3.2. We say that u is a Leray weak solution of the Navier–Stokes equation if it
satisfies (16) in the sense of distributions, namely,∫ T

0

∫
Rd

(
∇u · ∇ϕ − uiuj ∂iϕj − u · ∂ϕ

∂t

)
dx dt =

∫ T

0
〈f, ϕ〉H−1×H 1

0
dx dt +

∫
Rd

u0 · ϕ dx,

for all ϕ ∈ C∞
0 (Rd × [0, T ]), div ϕ = 0 and

div u = 0 in D′(Rd × [0, T ]),

and the following energy inequality holds:

1

2

∫
Rd

|u(x, t)|2 dx + µ

∫ t

0

∫
Rd

|∇u(x, t)|2 dx ds

� 1

2

∫
Rd

|u0|2 dx +
∫ t

0
〈f, u〉H−1×H 1

0
ds, for all t � 0. (17)
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There exist in the mathematical literature several results concerning the existence of Leray
weak solutions to the Navier–Stokes equations; for example, we can refer to the books of
Lions [21] and Temam [31]. The case d = 3 is a major open problem and a considerably more
difficult case than the case d = 2, since the bound on the L2 norm (kinetic energy) provides
only a control on a supercritical norm and does not provide any information concerning the
critical controlling (and scaling invariant) norm L3. Hence we do not know (opposite to the
case d = 2) whether or not the Leray weak solutions are unique, unless (see Serrin [26]) we
assume a control on the L3 norm. Some important regularity results can be found in [2].

Now we are ready to state our main result. The convergence of {uε} will be described by
analysing the convergence of the associated Hodge decomposition.

Theorem 3.3. Let (ρε, uε, V ε) be a sequence of weak solutions in R
3 of system (13); assume

that the initial data satisfy (ID). Then

(i) ρε −→ 1 strongly in L∞([0, T ]; Lk
2(R

3)),
(ii) there exists u ∈ L∞([0, T ]; L2(R3)) ∩ L2([0, T ]; Ḣ 1(R3)) such that

uε ⇀ u weakly in L2([0, T ]; Ḣ 1(R3)),

(iii) the gradient component Quε of the vector field uε satisfies

Quε −→ 0 strongly in L2([0, T ]; Lp(R3)), for any p ∈ [4, 6),

provided β < 1/2,
(iv) the divergence-free component Puε of the vector field uε satisfies

Puε −→ Pu = u strongly in L2([0, T ]; L2
loc(R

3)),

(v) u = Pu is a Leray weak solution to the incompressible Navier–Stokes equation:

P(∂tu − �u + (u · ∇)u) = 0 in D′([0, T ] × R
3), (18)

provided that


β = min

{
1

2
, −2 +

4

γ

}
if γ < 2,

0 < β < min

{
1

2
, µ

(
3

q
− 1

2

)
,

1

6
− 2

3
µ

(
s0 +

7

4
− 3

q

)}
if γ � 2,

where µ > 0, s0 � 3/2 and 4 � q < 6.

Remark 3.4. The hypotheses (ID) do not allow us to recover the energy inequality (17) for the
limiting solution u of the incompressible Navier–Stokes system (16). Moreover if we assume
the following conditions on the initial data, namely, that

πε|t=0 → 0 strongly in L∞([0, T ]; L1(R3)), as εy → 0, (19)

ε
β

2 −1∇V0 → 0 strongly in L∞([0, T ]; L2(R3)), as ε → 0, (20)

then, we are able to recover the energy inequality (17). In fact, now, by using the hypotheses
(ID) with (19), (20) and the weak lower semicontinuity of the weak limits we get∫

R3

1

2
|u(x, t)|2 dx +

∫ T

0

∫
R3

µ|∇u(x, t)|2 dx dt � lim inf
ε→0

∫
R3

(
ρε |uε|2

2
+ πε + εβ−2|∇V ε|2

)
dx

+ lim inf
ε→0

∫ T

0

∫
R3

(
µ|∇uε|2 + (ν + µ)|div uε|2) dx ds

� lim inf
ε→0

∫
R3

(
πε|t=0 +

|mε
0|2

2ρε
0

+ εβ−2|∇V0|2
)

dx =
∫

R3

1

2
|u0|2 dx. (21)
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4. A priori estimates

In this section we wish to establish all the a priori estimates, independent of ε, for the solutions
of system (13) which are necessary to prove theorem 3.3. First of all we recover the a priori
bounds that come as a direct consequence of the energy inequality (15). Then we get stronger
estimates by exploiting the structure of the system. As we will see later on, the density
fluctuation ρε−1

ε
satisfies a wave equation. The use of the dispersive estimate (8) will give us

further bounds.

4.1. Consequences of the energy estimate

In this section we recover all the a priori bounds that are a consequence of the energy inequality
(15). Before going on let us define the density fluctuation

σ ε = ρε − 1

ε
. (22)

Proposition 4.1. Let us consider the solution (ρε, uε, V ε) of the Cauchy problem for system
(13). Assume that the hypotheses (ID) hold, then it follows that

σ ε is bounded in L∞([0, T ]; Lk
2(R

3)), where k = min(γ, 2), (23)

∇uε is bounded in L2([0, T ] × R
3), (24)

uε is bounded in L2([0, T ] × R
3) ∩ L2([0, T ]; L6(R3)), (25)

σ εuε is bounded in L2([0, T ]; H−1(R3)). (26)

Proof. From (15) it follows that πε ∈ L∞([0, T ]; L1(R3)). By taking into account that the
function z → zγ − 1 − γ (z − 1) is convex and by following the same line of arguments as
in [22] we get when γ < 2 that

sup
t�0

∫
R3

{|ρε − 1|2χ|ρε−1|�1/2 + |ρε − 1|γ χ|ρε−1|�1/2
}
(t, x) dx � Cε2 (27)

and when γ � 2,

sup
t�0

∫
R3

|ρε − 1|2(t, x) dx � Cε2, (28)

so we can conclude that σ ε is uniformly bounded in ε in L∞([0, T ]; Lk
2(R

3)), where
k = min(γ, 2). Equation (24) is a consequence of (15). The fact that uε ∈ L2([0, T ]; L6(R3))

follows from (24) and by Sobolev’s embeddings. Now we prove uε ∈ L2([0, T ] × R
3):∫

R3
|uε|2 dx =

∫
R3

{|uε|2χ|ρε−1|�1/2 + |uε|2χ|ρε−1|�1/2
}
(x) dx

� 2
∫

R3
ρε|uε|2 dx + 2‖ρε − 1‖Lk

x
‖uε‖2

L
2k/(k−1)
x

� C0 + ε2/k‖uε‖2− 3
k

L2
x

‖∇uε‖
3
k

L2
x
. (29)

Now, by using (24), we get from (29) the estimate (25). Recalling that γ > 3/2 and by
interpolating we get that uε ∈ L2([0, T ]; L4(R3) ∩ L2γ /(γ−1)(R3)). By using (23) we obtain
that ρεuε is uniformly bounded in L2([0, T ]; L4/3(R3)+L2k/(k+1)(R3)). Therefore by Sobolev’s
embeddings we get (26). �
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We want to complete this paragraph with a remark concerning the regularity of the
initial data.

Remark 4.2. With the same procedure as for σ ε, taking into account (ID) we get that σ ε
0 is

bounded in Lk
2(R

3), hence in H−1(R3), since γ > 3/2. If we rewrite mε
0 in the following way

mε
0 = mε

0√
ρε

0

√
ρε

0χ|ρε
0−1|�1/2 +

mε
0√

ρε
0

√
ρε

0√|ρε
0 − 1|

√
|ρε

0 − 1|χ|ρε
0−1|>1/2,

we get that mε
0 is bounded in L2(R3) + L2k/(k+1)(R3) and hence in H−1(R3). Finally we can

conclude that

σ ε
0 , mε

0 are bounded in H−1(R3) uniformly in ε. (30)

4.2. Density fluctuation wave equation

In this section we wish to recover more refined bounds on σ ε. As we will see, σ ε will satisfy
a wave equation; this will allow us to use the Strichartz estimate (8). First of all we rewrite
system (13) in the following way:

∂tσ
ε +

1

ε
div (ρεuε) = 0, (31)

∂t (ρ
εuε) +

1

ε
∇σ ε = µ�uε + (ν + µ)∇ div uε − div (ρεuε ⊗ uε) − (γ − 1)∇πε

+
σ ε

ε
∇V ε +

1

ε2
∇V ε, (32)

εβ−1�V ε = σ ε. (33)

Then, by differentiating with respect to time equation (31) and taking the divergence of (32)
we get that σ ε satisfies the following nonhomogeneous wave equation:

ε2∂ttσ
ε − �σε = −ε2div (µ�uε + (ν + µ)∇div uε) + ε2div div (ρεuε ⊗ uε)

+ ε2(γ − 1) div ∇πε − ε div (σ ε∇V ε) − div ∇V ε. (34)

Now we rescale the time variable, the density fluctuation, the velocity and the potential in the
following way:

τ = t

ε
, (35)

ũ(x, τ ) = uε(x, ετ), ρ̃(x, t) = ρε(x, ετ),

σ̃ (x, τ ) = σ ε(x, ετ), Ṽ (x, τ ) = V ε(x, ετ). (36)

As a consequence of this scaling wave equation (34) becomes

∂ττ σ̃ − �σ̃ = −ε2 div (µ�ũ + (ν + µ)∇ div ũ) + ε2 div (div (ρ̃ũ ⊗ ũ) + (γ − 1)∇π̃)

−ε div (σ̃∇Ṽ ) − div ∇Ṽ . (37)

Now we consider σ̃ = σ̃1 + σ̃2 + σ̃3 + σ̃4 where σ̃1, σ̃2, σ̃3, σ̃4 solve the following wave equations:{
∂ττ σ̃1 − �σ̃1 = −ε2 div (µ�ũ + (ν + µ)∇div ũ) = ε2F1,

σ̃1(x, 0) = σ̃ (x, 0) = σ̃0 ∂τ σ̃1(x, 0) = ∂τ σ̃ (x, 0) = ∂t σ̃0,
(38)

{
∂ττ σ̃2 − �σ̃2 = ε2 div (div (ρ̃ũ ⊗ ũ) + (γ − 1)∇π̃) = ε2F2,

σ̃2(x, 0) = ∂τ σ̃2(x, 0) = 0,
(39)
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∂ττ σ̃3 − �σ̃3 = −ε div (σ̃∇Ṽ ) = εF3,

σ̃3(x, 0) = ∂τ σ̃3(x, 0) = 0,
(40)

{
∂ττ σ̃4 − �σ̃4 = −div (∇Ṽ ) = F4,

σ̃4(x, 0) = ∂τ σ̃4(x, 0) = 0.
(41)

We are able to prove the following theorem.

Theorem 4.3. Let us consider the solutions (ρε, uε, V ε) of the Cauchy problem for system
(13). Assume that the hypotheses (ID) hold. Then for any s0 � 3/2, the following estimate
holds:

ε− 1
4 + β

2 ‖σ ε‖
L4

t W
−s0−2,4
x

+ ε
3
4 + β

2 ‖∂tσ
ε‖

L4
t W

−s0−3,4
x

� ε
β

2 ‖σ ε
0‖H−1

x
+ ε

β

2 ‖mε
0‖H−1

x

+ ε1+ β

2 T ‖div (div (σ εuε ⊗ uε) − (γ − 1)∇πε)‖
L∞

t H
−s0−2
x

+ ε1+ β

2 ‖div �uε + ∇div uε‖L2
t H

−2
x

+ T ‖div ∇V ε‖L∞
t H−1

x
+ ε1+ β

2 T ‖εβ−2div (σ εV ε)‖
L∞

t H
−s0−1
x

. (42)

Proof. Since σ̃1, σ̃2, σ̃3, σ̃4 are solutions of the wave equations (38)–(41) we can apply the
Strichartz estimate (8) with (x, τ ) ∈ R

3 × (0, T /ε). We start with σ̃1. From (24) we deduce
that F1 ∈ L2

t H
−2
x , so by using (8) with s = 2 we get

‖σ̃1‖L4
τ W

−2,4
x

+ ‖∂τ σ̃1‖L4
τ W

−3,4
x

� ‖σ̃0‖H
−3/2
x

+ ‖∂τ σ̃0‖H
−5/2
x

+ ε3/2T ‖div �ũ + ∇ div ũ‖L2
τ H

−2
x

.

(43)

From estimate (13) we have that σ̃ |ũ|2, π̃ ∈ L∞
τ L1

x , but L1 is continuously embedded in H−s0 ,
s0 � 3/2, so we have that F2 ∈ L∞

τ H−s0−2
x . If we apply (8) to σ̃2 we obtain for any s0 � 3/2

‖σ̃2‖L4
τ W

−s0−2,4
x

+ ‖∂τ σ̃2‖L4
τ W

−s0−3,4
x

� ε3/2T ‖div (div (ρ̃ũ ⊗ ũ) + ∇π̃)‖
L∞

τ H
−s0−2
x

. (44)

Using Poisson equation (33) we can rewrite F3 as F3 = εβ−1(div (∇Ṽ ⊗ ∇Ṽ ) + 1
2∇|∇Ṽ |2).

Taking into account (15), as for F2, we get ε−1F3 ∈ L∞
τ H−s0−1

x , for any s0 � 3/2. Hence σ̃3

satisfies

‖σ̃3‖L4
τ W

−s0−1,4
x

+ ‖∂τ σ̃3‖L4
τ W

−s0−2,4
x

� εT ‖εβ−2div (∇Ṽ ⊗ ∇Ṽ ) + 1
2∇|∇Ṽ |2‖

L∞
τ H

−s0−1
x

. (45)

For F4 = −div ∇Ṽ , using again (13), we have εβ/2−1F4 ∈ L∞
τ H−1

x and so σ̃4 verifies the
following estimate:

‖σ̃4‖L4
τ W

−1,4
x

+ ‖∂τ σ̃4‖L4
τ W

−2,4
x

� ε− β

2 T ‖ε β

2 −1div (∇V )‖L∞
τ H−1

x
. (46)

Summing up (43), (44), (45) and (46), σ̃ verifies

‖σ ε‖
L4

t W
−s0−2,4
x

+ ‖∂tσ
ε‖

L4
t W

−s0−3,4
x

� ‖σ̃1‖L4
τ W

−2,4
x

+ ‖∂τ σ̃1‖L4
τ W

−3,4
x

+ ‖σ̃2‖L4
τ W

−s0−2,4
x

+ ‖∂τ σ̃2‖L4
τ W

−s0−3,4
x

+ ‖σ̃3‖L4
τ W

−s0−1,4
x

+ ‖∂τ σ̃3‖L4
τ W

−s0−2,4
x

+ ‖σ̃4‖L4
τ W

−1,4
x

+ ‖∂τ σ̃4‖L4
τ W

−2,4
x

� ‖σ̃0‖H
−3/2
x

+ ‖∂τ σ̃0‖H
−5/2
x

+ ε3/2T ‖div �ũ + ∇div, ũ‖L2
τ H

−2
x

+ ε3/2T ‖div (div (ρ̃ũ ⊗ ũ) + ∇π̃)‖
L∞

τ H
−s0−2
x

+ εT ‖εβ−2div (∇Ṽ ⊗ ∇Ṽ ) +
1

2
∇|∇Ṽ |2‖

L∞
τ H

−s0−1
x

+ ε− β

2 T ‖ε β

2 −1div (∇V )‖L∞
τ H−1

x
. (47)
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Finally, since

‖σ̃‖Lp((0,T /ε);Lq(R3)) = ε−1/p‖σ ε‖Lp([0,T ];Lq(R3))

and using (30), we end up with (42). �

5. Strong convergence

In this section we will study the strong convergence of the velocity field uε. This will be
achieved by separately studying the convergence of the divergence free vector field Puε and
the gradient vector field Quε.

5.1. Strong convergence of Quε

Here we prove the convergence of Quε to 0. In particular we will use estimate (42) combined
with the Young type inequalities (9) and (10). As we will see, to get this strong convergence
we need to impose some restrictions on the values of β.

Proposition 5.1. Let us consider the solution (ρε, uε, V ε) of the Cauchy problem for system
(13). Assume that the hypotheses (ID) hold and β < 1/2. Then as ε ↓ 0,

Quε −→ 0 strongly in L2([0, T ]; Lp(R3)) for any p ∈ [4, 6) . (48)

Proof. In order to prove proposition 5.1 we split Quε as follows:

‖Quε‖L2
t L

p
x

� ‖Quε − Quε ∗ jα‖L2
t L

p
x

+ ‖Quε ∗ jα‖L2
t L

p
x

= J1 + J2,

where jα is the smoothing kernel defined in lemma 2.1. Now we separately estimate J1 and
J2. For J1 using (9) we get

J1 � α
1−3

(
1
2 − 1

p

)
‖∇uε‖L2

t,x
. (49)

To estimate J2 we take into account definition (22) and so we split J2 as

J2 � ε‖Q(σεuε) ∗ jα‖L2
t L

p
x

+ ‖Q(ρεuε) ∗ jα‖L2
t L

p
x

= J2,1 + J2,2. (50)

For J2,1 we use (26) and (10), so we have

J2,1 � εα
−1−3

(
1
2 − 1

p

)
‖σ εuε‖L2

t H
−1
x

. (51)

From the identity Q(ρεuε) = ε∇�−1∂tσ
ε and by inequality (10) we get that J2,2 satisfies the

following estimate:

J2 = ε
1
4 − β

2 ‖∇�−1ε
3
4 + β

2 ∂tσ
ε ∗ j‖L2

t L
p
x

� ε
1
4 − β

2 α
−s0−4−3

(
1
4 − 1

p

)
‖ε 1

4 − β

2 ∂tσ
ε‖

L2
t W

−s0−4,4
x

� ε
1
4 − β

2 α
−s0−4−3

(
1
4 − 1

p

)
T 1/4‖ε 1

4 − β

2 ∂tσ
ε‖

L4
t W

−s0−4,4
x

. (52)

Now, summing up (50), (51) and (52) we get

‖Quε‖L2
t L

p
x

� Cα
1−3

(
1
2 − 1

p

)
+ CT ε

1
4 − β

2 α
−s0−4−3

(
1
4 − 1

p

)
, (53)

where 1/4 − β/2 > 0 since β < 1/2. Finally, we choose α in terms of ε, for example, in
a way that the two terms on the right-hand side of the inequality (53) are of the same order,
namely,

α = ε
1−2β

17+s0 . (54)

Therefore, we obtain

‖Quε‖L2
t L

p
x

� CT ε
p−1
6p

1−2β

17+s0 for any p ∈ [4, 6). �



A quasineutral type limit for the Navier–Stokes–Poisson system 145

5.2. Strong convergence of Puε

It remains to prove the strong compactness of the incompressible component of the velocity
field. To achieve this goal we need to recall here the following theorem (see [27]).

Theorem 5.2. Let F ⊂ Lp([0, T ]; B), 1 � p < ∞, B be a Banach space. F is relatively
compact in Lp([0, T ]; B) for 1 � p < ∞ or in C([0, T ]; B) for p = ∞ if and only if

(i)

{∫ t2

t1

f (t)dt, f ∈ F
}

is relatively compact in B, 0 < t1 < t2 < T ,

(ii) lim
h→0

‖f (t + h) − f (t)‖Lp([0,T −h];B) = 0 uniformly for any f ∈ F .

The compactness can be obtained by looking at some time regularity properties of Puε

and by using theorem 5.2, but before that we need to prove the following lemma.

Lemma 5.3. Let us consider the solution (ρε, uε) of the Cauchy problem for system (13).
Assume that the hypotheses (ID) hold. Then for all h ∈ (0, 1), we have

‖Puε(t + h) − Puε(t)‖L2([0,T ]×R3) � CT (h1/5 + ε1/2). (55)

Proof. Let us set zε = uε(t + h) − uε(t); we have

‖Puε(t + h) − Puε(t)‖2
L2

t,x
=

∫ T

0

∫
R3

dt dx(P zε) · (P zε − Pzε ∗ jα)

+
∫ T

0

∫
R3

dt dx(P zε) · (P zε ∗ jα) = I1 + I2. (56)

Using (9) together with (25) we can estimate I1 in the following way:

I1 � ‖Pzε‖L2
t,x

‖Pzε(t) − (P zε ∗ jα)(t)‖L2 � α‖uε‖L2
t,x

‖∇uε‖L2
t,x

. (57)

In order to estimate I2 we split it as follows:

I2 =
∫ T

0

∫
R3

dt dxP (ρεzε) · (P zε ∗ jα) + ε

∫ T

0

∫
R3

dt dxP (σ εzε) · (P zε ∗ jα)

= I2,1 + I2,2. (58)

I2,2 can be estimated by taking into account (25) and (26), so we have

I2,2 = ε‖uε‖L2([0,T ];L4(R3)∩L2k/k−1(R3))‖σ εuε‖L2([0,T ];L4/3(R3)+L2k/k+1) � ε. (59)

Now we estimate I2,1. Let us reformulate P(ρεzε) in the integral form by using equation (13)2

and Poisson equation (13)3; hence

I2,1 �
∣∣∣∣
∫ T

0
dt

∫
R3

dx

∫ t+h

t

ds(div(ρεuε ⊗ uε) + �uε)(s, x) · (P zε ∗ jα)(t, x)

∣∣∣∣
+

∣∣∣∣
∫ T

0
dt

∫
R3

dx

∫ t+h

t

dsP

(
σ ε

ε
∇V ε

)
(s, x) · (P zε ∗ jα)(t, x)

∣∣∣∣
=

∣∣∣∣
∫ T

0
dt

∫
R3

dx

∫ t+h

t

ds(div(ρεuε ⊗ uε) + �uε) · (P zε ∗ jα)(t, x)

∣∣∣∣
+

∣∣∣∣
∫ T

0
dt

∫
R3

dx

∫ t+h

t

ds εβ−2 div(∇V ε ⊗ ∇V ε))(s, x) · (P zε ∗ jα)(t, x)

∣∣∣∣ . (60)
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Then, by integrating by parts, using (10) with s = 0, p = ∞, q = 2, we deduce

I2,1 � h‖∇uε‖2
L2

t,x
+

∫ T

0
‖∇zε ∗ jα‖L∞

x
(t, x) dx

∫
R3

∫ t+h

t

(ρε|uε|2 + εβ−2|∇V ε|2)(s, x) ds

� h‖∇uε‖2
L2

t,x
+ Cα−3/2T 1/2h‖∇uε‖L2

t,x

(‖ρε|uε|2‖L∞
t L1

x
+ ‖εβ−2|∇V ε|2‖L∞

t L1
x

)
. (61)

Summing up I1, I2,1, I2,2 and taking into account (15) we have

‖Puε(t + h) − Puε(t)‖2
L2([0,T ]×R3) � C(α + h + hα−3/2T 1/2 + ε), (62)

by choosing α = h2/5, we end up with (55). �

Corollary 5.4. Let us consider the solution (ρε, uε) of the Cauchy problem for system (13).
Assume that the hypotheses (ID) hold. Then as ε ↓ 0

Puε −→ Pu, strongly in L2(0, T ; L2
loc(R

3)). (63)

Proof. Using lemma 5.3, theorem 5.2 and proposition 5.1 we get (63). �

6. Proof of the main theorem (3.3)

(i) It follows from (23).
(ii) It follows from (24).

(iii) It is a consequence of proposition 5.1.
(iv) By taking into account the decomposition uε = Puε + Quε, corollary 5.4 and proposition

5.1 we have that

Puε −→ u strongly in L2([0, T ]; L2
loc(R

3)).

(v) First of all, let us apply the Leray projector P to the momentum equation (132), then it
follows that

∂tP (ρεuε) + P div (ρεuε ⊗ uε) = µ�Puε + P

(
ρε − 1

ε2
∇V ε

)
. (64)

It is a straightforward computation to pass into the limit in the terms ∂tP (ρεuε), µ�Puε,
so, for any ϕ ∈ D([0, T ] × R

3) as ε ↓ 0, we get

〈P(∂t (ρ
εuε) − µ�uε), ϕ〉 −→ 〈P(∂tu − µ�u), ϕ〉. (65)

For the part P div(ρεuε ⊗ uε), if we take into account (i) and (48), we have, as ε ↓ 0,

〈P div(ρεuε ⊗ uε), ϕ〉 = 〈div((ρε − 1)uε ⊗ uε), Pϕ〉
+ 〈div(Puε ⊗ Puε), Pϕ〉 + 〈div(Quε ⊗ Quε), Pϕ〉
+ 〈div(Puε ⊗ Quε), Pϕ〉 + 〈div(Quε ⊗ Quε), Pϕ〉

→ 〈div(u ⊗ u), Pϕ〉 = 〈P div(u ⊗ u), ϕ〉. (66)

The only term missing in the convergence is P
(

ρε−1
ε2 ∇V ε

)
. In order to study it we have

to proceed in a different way if γ < 2 or if γ � 2.

Case 3
2 � γ < 2. From (27) we have that ρε−1

ε
∈ L∞

t Lγ (R3), so it follows that∥∥∥∥ρε − 1

ε2
∇V ε

∥∥∥∥
L∞

t L

2γ
γ +2
x

� 1

ε2
‖ρε − 1‖L∞

t L
γ
x
‖∇V ε‖L∞

t L2
x
� Cε

−2+ 2
γ

+1− β

2

� ε
−1+ 2

γ
+ β

2 −→ 0 as ε → 0, (67)
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provided that β < −2 + 4/γ . It is obvious now that as ε ↓ 0

〈P
(

ρε − 1

ε2
∇V ε

)
, ϕ〉 −→ 0 (68)

Case γ � 2. First of all let us apply inequalities (9) and (10) to f = �−1/2σ ε; in the case
s = s0 + 1, s0 > 3/2, p = 4, for any 4 � q < 6, we have

‖σ ε‖
W

−1,q
x

� α
1−3

(
1
2 − 1

q

)
‖σ ε‖L2

x
+ α

−s0−1−3
(

1
4 − 1

q

)
‖σ ε‖

W
−s0−2,4
x

. (69)

By taking into account (23) and (42) we have

‖σ ε‖
L4

t W
−1,q
x

� Cα
1−3

(
1
2 − 1

q

)
+ Cε

1
4 − β

2 α
−s0−1−3

(
1
4 − 1

q

)
. (70)

Now, if ϕ ∈ D([0, T ] × R
3), we have∣∣∣∣

〈
P

(
σ ε

ε
∇V ε

)
, ϕ

〉∣∣∣∣� 1

ε
‖σ ε‖

L4
t W

−1,q
x

‖∇V εϕ‖
L

4/3
t W

1,q′
x

� 1

ε
‖σ ε‖

L4
t W

−1,q
x

+ (‖∇V ε‖L∞
t L2

x
+ ‖�V ε‖L∞

t L2
x
)‖ϕ‖

L
4/3
t L

2q/q−1
x

. (71)

Using (15) and the elliptic regularity, (71) becomes∣∣∣∣
〈
P

(
σ ε

ε
∇V ε

)
, ϕ

〉∣∣∣∣ � 1

ε

(
α

1−3
(

1
2 − 1

q

)
+ Cε

1
4 − β

2 α
−s0−1−3

(
1
4 − 1

q

))
(ε1− β

2 − ε1−β)

� ε−βα
1−3

(
1
2 − 1

q

)
+ ε

1
4 − 3

2 βα
−s0−1−3

(
1
4 − 1

q

)
. (72)

Now, if we choose α in terms of ε, namely, α = εµ, µ > 0 and β is such that

0 < β < min

{
1

2
, µ

(
3

q
− 1

2

)
,

1

6
− 2

3
µ

(
s0 +

7

4
− 3

q

)}
,

we get ∣∣∣∣
〈
P

(
σ ε

ε
∇V ε

)
, ϕ

〉∣∣∣∣ → 0, as ε → 0, (73)

provided that β < 1/(22 + 16s0). So, using (65) and (66) together with (68) or (73), we
have that u satisfies the following equation in D′([0, T ] × R

3):

P(∂tu − �u + (u · ∇)u) = 0. (74)

provided that


β = min

{
1

2
, −2 +

4

γ

}
if γ < 2,

0 < β < min

{
1

2
, µ

(
3

q
− 1

2

)
,

1

6
− 2

3
µ

(
s0 +

7

4
− 3

q

)}
if γ � 2.
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