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avanti e per aver creduto sempre e comunque in me quando io stesso ero sfiduciato e
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Abstract

The capability to reach a wider audience and the possibility to disseminate news faster

are the main reasons for the growing importance of Online Social Media (OSM) whose

usage has undoubtedly reshaped the way news are written, published and disseminated.

However, due to the technical limits of online fact-checkers and to an uncontrolled con-

tent publishing, there is a high risk of being misinformed through fake news. Although

automated accounts known as bots are considered the main promoters of mis-/dis- infor-

mation diffusion, those who, with their actions, change the current events (e.g., welfare,

economy, politics, etc.) are human users. Some categories of humans are more vulnera-

ble to fake news than others, and performing mis-/dis- information activities targeting

such categories would increase efficacy of such activities. Furthermore, recent studies

have evidenced users’ attitude not to fact-check the news they diffuse on OSM and thus

the risk that they became themselves vectors of mis-/dis- information.

In this document, using Twitter as benchmark, we devote our attention to those human-

operated accounts, named “credulous” users, which show a relatively high number of

bots as followees (called bot-followees). We believe that these users are more vulnerable

to manipulation (w.r.t. other human-operated accounts) and, although unknowingly,

they can be involved in malicious activities such as diffusion of fake content. Specifi-

cally, we first design some heuristics by focusing on the aspects that best characterise

the credulous users w.r.t. not credulous ones. Then, by applying Machine Learning

(ML) techniques, we develop an approach based on binary classifiers able to automati-

cally identify this kind of users and then use regression models to predict the percentage

of humans’ bot-followees (over their respective followees). Subsequently, we describe

investigations conducted to ascertain the actual contribution of credulous users in the

dissemination of potential malicious content and then, their involvements in fake news

diffusion by analysing and comparing the fake news spread by credulous users w.r.t. not

credulous one.

Our investigations and experiments, provide evidence of credulous users’ involvement in

spreading fake news thus supporting bots’ actions on OSM.
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Chapter 1

Introduction

Communication has always been among the basic needs of humanity. Since its first

appearance in history (think of the prehistoric rock paintings) humans have wished to

share information about their activities and interests with other fellow human beings.

The progress of technologies for information production and dissemination has played

a pivotal role not only in improving communication effectiveness and dissemination

but also in speeding up the processes of civilisation and modernisation. The invention

of the modern press (Gutenberg 1455) has revolutionised and speeded up (compared

to the amanuenses of that time) the information (hence, knowledge) production and

dissemination fashion, access to which was considered a prerogative of clerical society

(that had full control on it). All subsequent discoveries in (tele)communications, such

as radio and television, have further expanded and strengthened not only the ways of

informing and being informed but also the range of the audience. Then, with the birth

of the World Wide Web, the Digital Era began and, with it, the unbounded spreading

of information in the Digital World.

In the early days of the Internet, access to the network was limited to only those users

who could afford purchasing a PC and an ISP (Internet Service Provider) subscription.

In those years, these obstacles were far from trivial; but, over the years, the progress of

technology and the creation of ad hoc infrastructures have allowed an increasing number

of people to use the Net.

The growing community of internauts, combined with the possibility of communicating

immediately regardless of users’ geographical location, contributed to the appearance of

social networking services to stimulate the aggregation of virtual communities, charac-

terised by the possibility to relate users and allow them to exchange information. These

platforms are known as Online Social Media (OSM).

It is under the definition of OSM that all those Web 2.0 [19] internet-based platforms fall,

1
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given that they are offering users services able to facilitate the “[. . . ] starting, sharing

and exchanging of information and ideas in virtual communities and networks” [125].

Nowadays, the widespread use of mobile devices, combined with the ease and cheapness

of being connected, are the most important factors increasing the usage, and hence the

importance, of OSM as a means of communication [122]. The pervasiveness of OSM

and their ease of use (facilitated by user-friendly applications) have lead to new ways

for people to get informed. In fact, domestic users of popular social networking services,

such as Twitter and Facebook, can keep up with the news effortlessly, while routinely

checking out their own social channels of interest.

Several studies [40, 121–124] recently confirmed a growing trend (see Fig. 1.1), especially

among young people [123] (see Fig. 1.2), in the use of OSM as the favourite information

platform at the expense of traditional mass media, such as radio, newspaper and TV.

Figure 1.1: Mass Media usage trend in the last 7 years (image source [123]).

Figure 1.2: Comparison of media usage by users according to age (image source [123]).

Although these are very important advantages in a mass media, issues about con-

tent/news veracity, circulating on OSM, began to arise. The rapid proliferation of
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user-generated content, the lack of tools capable of automating the fact-checking pro-

cess, as well as the news sources reliability (as it happens in professional journalism

in the most important newspapers or TV news), have allowed the publication and un-

controlled circulation of fake news. The use and abuse of these misleading and (often)

harmful contents have led to the growth of mis- and dis- information phenomena.

Generally, the term “fake news” encompasses several types of totally or partially false

news. Fake-news include, but are not limited to: satire, false connection, misleading con-

tent, false context, imposter content, manipulated content and fabricated content [173].

They are the building blocks to carry out campaigns of misinformation and disinfor-

mation. While the former uses fake news to arouse humour (e.g., satire, parody and

stereotypes), therefore without any intention to harm, the latter (disinformation) aims

to damage the image/reputation of a target. Alongside these two ways of misleading

people, there is another one called malinformation. Sharing the same malevolent goals

of disinformation, this kind of campaigns are orchestrated to damage the reputation

or image of people, governments or organisations, through news from leaks (therefore

potentially genuine but not officially confirmed) [174]. The differences between fake

news, and the concepts of mis-/dis-/mal- information are explained in more detail in

Section 2.2.1.

According to the 2019 report ‘Weapons of mass distractions’ [66], strategists of fake

news can exploit (at least) three significant vulnerabilities of the online information

ecosystem: i) the medium, ii) the message, and iii) the audience. As a matter of fact,

the diffusion and the propagation of deliberately misleading information for harmful

purposes is quite recurring in OSM, but the effectiveness of misinformation campaigns

strongly depends on the ability to (i) attract people’s interest by appropriate messages,

and (ii) disseminated information.

The information diffusion on OSM is often supported by automated accounts totally

(bots) or partially (cyborg) controlled by ad hoc software applications [71, 166]. In

some cases, bots have been programmed for benevolent purposes, like: calling volun-

teers in case of emergencies [6, 144] or spreading academic events such as conferences

and/or papers [75, 105], but these are only exceptions. Unfortunately, the dominant and

worrisome use of these entities is far from being benign. Skillfully designed to mimic

human behaviour online, such automated accounts interact (social bots [61]), under fic-

tive identity, with genuine (in terms of being human) users and share/produce contents

of doubtful credibility. Recent work [147, 183] demonstrates that bots are particularly

active in spreading low credibility content and amplifying their significance. Typically

operating in well-organised groups (called botnets), through the dissemination of mis-

leading content, bots aim to pursue malicious purposes, e.g., to encourage hate speeches,
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misconception, discontent and, more in general, to induce a bias within the public opin-

ion [61, 88, 159, 183]. In fact, whatever the strategy adopted for spreading false news,

this is only effective in presence of an audience willing to believe them.

In the survey ‘A Report on the Spread of Fake News’1,2 commissioned on 2017 by Zignal

Labs (i.e., SaaS-based media intelligence software service company3) and conducted on

2,000 respondents, it is reported that:

1. 86% of respondents do not always fact check the articles they read via social media;

2. 61% of respondents are likely to comment on, like, or share content published by

a friend;

3. 27% of respondents admittedly do not fact-check the articles they themselves share.

Moreover, from the findings in [89], where models for influence propagation in OSM

have been studied by means of graphs, a strong correlation emerged between the tar-

get nodes (to influence) and the role of their neighbours (social contacts). Taking the

above into consideration, it would not be preposterous to suspect that, depending on

the activities of their social contacts, these users may well end up contributing actively,

although unknowingly, to mis-/dis- information spreading; supporting, in such a way,

bots’ malicious activities on OSM. Moreover, let us consider the case where the human

users’ social contacts are mainly constituted by malicious bots; undoubtedly, this is a

very worrisome scenario, especially if mis-/dis- information is performed in a targeted

fashion by focusing such activities to an audience that, potentially, is easier to influ-

ence/deceive than another one (targeted disinformation).

Due to the impact that targeted disinformation can have on people, several govern-

ments began to consider it as a national security affair. In 2019 a team, working for

USA Department of Homeland Security (DHS), provided the report ‘Combatting Tar-

geted Disinformation Campaigns’4 where this phenomenon has been deeply investigated

and formalised in a framework, known as Disinformation Kill Chain, which outlines the

seven basic steps by which these campaigns are carried out (see Fig. 1.3).

Once a threat actor (e.g., botnet’s masters) defines the goal of its disinformation cam-

paign, the framework requires she/he performs the following steps resumed below:

• Reconnaissance: individuation of target audience, the medium (e.g., which OSM

platform to use) and the arguments to exploit;

• Build : design and implement the infrastructure to use in the campaign (e.g., bots);

1A Report on the Spread of Fake News (survey): https://tinyurl.com/ybk3j55y
29 out of 10 Americans don’t fact-check news they read on OSM: https://tinyurl.com/s67sq96
3Zignal Labs: https://zignallabs.com/
4Combatting Targeted Disinformation Campaigns: https://tinyurl.com/ybr4ntw2

https://tinyurl.com/ybk3j55y
https://tinyurl.com/s67sq96
https://zignallabs.com/
https://tinyurl.com/ybr4ntw2
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Figure 1.3: Disinformation Kill Chain (image source 4).

• Seed : creation of fake/deceptive content and initial spreading (seeding) on OSM;

• Copy : production of content which refers to the original story, hence acting as an

“information laundering”, and making them to appear as authentic distribution;

• Amplify : making sure that the story ends up in the communication channels of the

targeted audience. Bots and inauthentic accounts can help provide momentum,

aiming to stimulate dissemination by other witting and unwitting agents. Suc-

cessful amplification is achieved in case other unwitting agents and especially the

target audience contribute to diffusing fake news to their peers;

• Control : pilot and manipulate the reactions of the targeted audience through in-

terventions in conversations and debates to stimulate conflicts or obtain consensus;

• Effect : target audience begins to behave in line with the threat actor’s objectives.

The action of audience targeting is quite recurring in psychological warfare (i.e., a branch

of information warfare [99, 100]), also referred as psychological operations. This term is

referred “to denote any action which is practiced mainly by psychological methods with

the aim of evoking a planned psychological reaction in other people” [163]. Targeted

disinformation is usually employed against ordinary people to cause some effect in their

country’s governments or also to ‘stimulate’ the population of other countries by means

of technology and media [171]5,6,7.

The Oxford Internet Institute, in its study on the Global Inventory of Organised Social

Media Manipulation (conducted in 2019), reports an increase of 150%in the number of

countries using organised social media manipulation campaigns over the last two years:

bot accounts are being used in 50 of the 70 investigated countries [22]; governments are

not always the victims but, in some cases, also the (threat) actors8 (in red in Fig. 1.3).

5What We Know—and Don’t Know—About Facebook, Trump, and Russia: https://tinyurl.com/
y7pfwhhu

6US spy operation that manipulates social media: https://tinyurl.com/jftugvn
7Operation Earnest Voice (wikipedia): https://tinyurl.com/q8egn3z
8Twitter (2020): https://tinyurl.com/ybwq4fau

https://tinyurl.com/y7pfwhhu
https://tinyurl.com/y7pfwhhu
https://tinyurl.com/jftugvn
https://tinyurl.com/q8egn3z
https://tinyurl.com/ybwq4fau
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Although the practice of targeted disinformation is not a novelty, it was only after

the events surrounding the Facebook-Cambridge Analytica (CA) scandal9 that the use

and effectiveness of such mass ‘manipulation’ tools began to attract public attention.

Given the sensitivity and importance of the application domain in which the above men-

tioned company operated, several electoral events passed under the magnifying glass

suspecting external interventions to influence the results. For instance: the Brexit ref-

erendum [80], the US Presidential election in 2016 [17], the elections in France [60],

Mexico [21], Kenya [112]. CA’s executives stated that “Cambridge Analytica and its

parent company, Strategic Communications Laboratories (SCL), have worked in more

than 200 elections across the world, including Nigeria, Kenya, the Czech Republic, In-

dia and Argentina”10. These are few well-known examples of how and to what extent

bots and disinformation can damage democracy, with the risk of leading to diplomatic

affairs between nations11 [119].

Unfortunately, the effectiveness of conducting disinformation against a targeted audi-

ence is not limited to the electoral, political or governmental field. Even sectors such as

the economy [14, 59], climate change [113], human rights [140] and, especially at present

time, health (e.g., anti-vaccine movements [27, 87] and currently COVID19 [25, 35, 131]),

are not spared by campaigns of disinformation.

Governments12, academics [187] and OSM administrators13,14 are struggling to control

these problems. Although studies for fake news detectors are reaching remarkable ob-

jectives, the detection of such malicious content still remains an open problem in the

scientific community [38, 152]. Moreover, due to the inaccuracy of the current fake

news detectors [151] and the risk of leading to censorship, the most widely used ap-

proach for avoiding misinformation still consists in identifying malicious accounts, bots

in particular. Despite the efforts spent by OSM administrators in removing suspicious

accounts15,16,17, and by researchers in improving bot detection techniques [4, 118], this

plague is far from being eradicated. In fact, according to a 2017 estimate, there were

23 million bots on Twitter (around 8.5% of all Twitter accounts, in [166] they are es-

timated to range between 9% and 15%), 140 million bots on Facebook (up to 5.5% of

all Facebook accounts) and approximately 27 million bots on Instagram (8.2% of all

Instagram accounts)18. This has motivated a vast body of work on bot recognition in

9Facebook–Cambridge Analytica data scandal (wikipedia): https://tinyurl.com/y9rorxln
10Cambridge Analytica: The data firm’s global influence (BBC):https://tinyurl.com/yxlo8f3u
11U.S. Accuses Russian Military Hackers of Attack on Email Servers (source The New York Times):

https://tinyurl.com/yae3k674
12https://tinyurl.com/yym2xa3v
13Facebook: https://tinyurl.com/yac7lsn6
14Twitter: https://tinyurl.com/ybx5tn4o
15Facebook (2019): https://tinyurl.com/y3yzvpah
16Twitter: https://tinyurl.com/y3efs8s5
17Twitter (2020): https://tinyurl.com/ybwq4fau
18Combatting Targeted Disinformation Campaigns: https://tinyurl.com/ybr4ntw2

https://tinyurl.com/y9rorxln
https://tinyurl.com/yxlo8f3u
https://tinyurl.com/yae3k674
https://tinyurl.com/yym2xa3v
https://tinyurl.com/yac7lsn6
https://tinyurl.com/ybx5tn4o
https://tinyurl.com/y3yzvpah
https://tinyurl.com/y3efs8s5
https://tinyurl.com/ybwq4fau
https://tinyurl.com/ybr4ntw2
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social media [29, 68, 155, 160]. In particular, recent approaches to bot detection on

Twitter rely on directly observing specific features, such as the ratio of friends over

followers of a registered user, the quantity or frequency of their interactions, the expres-

siveness of their comments, the presence of a name, face photo, address, biography or

any additional information on the profile [34, 44, 48, 166]. Although bot detection is

undoubtedly effective in fighting misinformation, the risk of being faced with the hy-

dra effect is real. In fact, also due to the cheapness and legitimacy of bots’ purchasing

and selling19, when some of them get detected, and then suspended or removed, a new

generation of more sophisticated ones can come into play with the ability of avoiding

detection (even updating those bots who survived to detection) [47].

The role of human beings in this field does not seem to have received as much attention.

Indeed, most of the work in the literature dealing with fighting fakes and mis-/dis- in-

formation is focused on studying their effects. the best of our knowledge, just a few of

them [116, 169, 170] are aimed at facing the challenging problem of proactively identi-

fying fakes. More specifically, in [169], the authors investigate the features of genuine

users starting to interact with a social bot. Instead, in [170] the authors addressed

the problem of singling out those features useful to predict whether a user is likely to

interact with a bot. Finally, in [116] a comprehensive categorisation scheme for social

bot attacks in Twitter has been proposed by modelling the different attack dimensions

(i.e., targets, account types, vulnerabilities, attack methods and results) claiming evi-

dence about the impact of social bots in link creation between targeted human-operated

accounts in Twitter.

In this thesis we devote our attention to those human users on OSM which follow a

relatively large number of bots (bot-followees); by abuse of language, we call those

human-operated accounts credulous users. In our opinion, it makes sense to think that

the risk of being exposed to deceptive content (e.g., fake news) increases proportionally

to the number of (potential) malicious entities, such as bots and bot networks, a user

is following. From this perspective, credulous users can be an easy prey for mis-/dis-

information campaigns, especially those targeted to a selected audience (targeted dis-

information). For the purposes of this thesis work, we do not consider essential the

evaluation of the intent for which (false) information is generated; therefore, the con-

cepts of mis-/dis-information have to be considered exclusively as a consequence of the

activities of credulous users on OSM.

With the aim to improve users’ awareness of the threats arising from what users read,

disseminate and believe to be true on OSM, we will work out an approach capable of

singling out credulous users, supported by Machine Learning (ML) techniques. Then,

19Compra-seguidores: https://tinyurl.com/y9hs482s

https://tinyurl.com/y9hs482s
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we will thus investigate the behaviour of credulous users by focusing on the actions they

perform on OSM. In particular, we will analyse the involvement of credulous users in

supporting potential harmful activities, for instance, by bouncing bot-originated content

and/or disseminating fake news.

Given the importance of the addressed issues, several stakeholders (e.g., OSM adminis-

trators, governments, academicians, etc.) can benefit from our findings. For instance,

progresses in this topic can be useful to: (i) identify potential targets of mis-/dis- in-

formation campaigns in advance, (ii) protect human users from attacks performed by

malicious OSM entities (e.g., bots), (iii) limit mis- /dis- information phenomena on

OSM, (iv) increase usefulness, credibility and effectiveness of social media (hence also

the content published in such platforms), and (v) safeguard democracy.

RESEARCH QUESTIONS. To achieve our goals, the following research questions

have been formulated, and they drive the investigation and analysis performed in the

following chapters.

The suspects about the role of bots in polarization phenomena of human users through

dis-/mis- information, have led us to direct our attention to those human users (namely

credulous) following many automated accounts on OSM. This may be due to the inability

of some users to distinguish human from automated accounts; we refer to this inability

with the term of users’ gullibility. Our first research question is:

RQ1 – Among human Twitter users, which type of social relationship (e.g.,

following or being followed) is the most influential, and why? Does it make

sense to assign a gullibility score to human users? Which user-related aspects

should be taken into account in such a score? Does a clear separation between

credulous and not credulous users exist? Or, simply, is one user more credulous

than another? (see Chapter 3)

Reasonably, the identification of credulous users implies inspecting the (many potential)

contacts the users are following. To avoid this computationally expensive task, we ask

our second research question:

RQ2 – How effectively Machine Learning (ML) techniques can be in distin-

guishing credulous and non-credulous users? Is it possible to avoid in depth

inspection of human users’ social contacts in order to lighten the complexity of

identifying credulous users? What is the loss in terms of accuracy when per-

forming their identification? What are the features of Twitter accounts that

can facilitate this distinction? Are the features used for bot detection beneficial

also for identifying credulous users? (see Chapter 4)
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Although on the one hand, the automatic identification of users in social relationships

with a considerable number of bots (credulous users) is important, on the other hand,

knowing (or at least trying to estimate) the amount of bots a human user follows is

definitely valuable. This brings to the third research question.

RQ3 – Is it possible to predict the number of bots a human user is following

(bot-followees)? Are the features, used for credulous classification, useful also

for this task? Which measures can be adopted to estimate the quality of

such predictions in absence of well-defined benchmarks in the literature? (see

Chapter 5)

As further investigation, we started to understand whether credulous users actually

behave differently (in terms of actions performed on OSM) w.r.t. not credulous users.

Besides, it would be valuable to investigate the level of involvement that credulous users

have in bouncing (potentially malicious) content produced by bots. Finding an answer

to the following fourth research question should shed light on these aspects.

RQ4 – Is it enough to compare the different types of activities (i.e., retweets,

quoted tweets, replies and posting new content) between credulous and not

credulous users to significantly differentiate them? Can bot-followees influence,

in terms of content production, the activities of credulous users more than not

credulous ones? How to measure the effectiveness of such an influence? Do

credulous users bounce bots’ content? And to what extent with respect to not

credulous users? (see Chapter 6)

Investigating how and to what extent credulous users bounce content produced by bots

undoubtedly provides useful information about their level of involvement in supporting

potential malicious bots activities. To understand if credulous users contribute to spread

fake content, we analysed those users who posted news, through their favourite social

media channels, whose fake nature is undoubted. To this end, we aim to provide an

answer to our fifth research question.

RQ5 – Do credulous users contribute to fake news spreading? What is their

level of involvement compared to that of not credulous users and bots? Is it

possible to provide evidence of credulous users contributing to misinformation?

Can we take advantage of credulous users detection for fake news detection?

(see Chapter 7)

CONTRIBUTION. The main contributions of this thesis can be summarised as

follows:
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1. we provided an approach to rank human-operated accounts by measuring their

gullibility, i.e., by using introducing some heuristic rules (e.g., seniority on OSM),

and a method to single out an initial list of credulous users;

2. we refined the credulous users’ identification process by training some decision

models (by means of ML algorithms) to distinguish credulous from not credulous

users among human-operated accounts;

3. we conducted a feature analysis investigation to determine which are the most

discriminant ones for credulous users using as a stating point the feature sets

defined in literature [44, 49];

4. we generalized the credulous detection approach to all humans by training regres-

sion models capable of estimating the percentage of bots that a human user is

following;

5. we conducted a behavioural analysis to investigate the activities of users in terms

of actions performed on their dashboard, with the goal of understanding the dif-

ferences between the users identified being credulous from those being not;

6. taking into account the source of the content bounced by credulous and not credu-

lous users, we provided evidence that the former is more prone to diffuse potentially

misleading (or anyway unreliable) content. We carried out statistical tests to check

the significance of these results, and to reinforce this evidence;

7. we investigated the harmfulness of credulous users, always compared to not cred-

ulous ones, in terms of fake news dissemination. We performed the analysis by

focusing on: (i) the number of fake news, (ii) the number of published tweets (cor-

responding to fake news), and (iii) the amount of users involved in their spreading;

8. we provided some datasets of credulous and not credulous users20 that are publicly

available to the scientific community.

Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 provides the background

knowledge; precisely, Social Media Mining, Misinformation (in all of its forms), and

ML are explained to furnish the reader with some concepts that can be useful to better

understand the investigations, the experiments and the analysis performed in this thesis.

Chapter 3 discusses how to identify credulous users and which aspects may be useful

for their categorisation with respect to other human users. Chapter 4 exposes a study

20Credulous users datasets: https://github.com/AlessandroBalestrucci/Credulous

https://github.com/AlessandroBalestrucci/Credulous
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on a larger dataset of humans (w.r.t. Chapter 3). We try to automate the recognition

process of credulous users by means of learning algorithms building decision models.

Further, we try to figure out which features distinguish credulous users best. Chapter 5

generalises the problem of identifying credulous users by extending the study to all

human-operated accounts. The goal is build predictive models that quantify how many

bots (in percentage terms) are infiltrated among the social friends of human-operated

accounts. Chapter 6 deals with behavioural analysis conducted on credulous and not

credulous users, to find differences between these two typologies of human-operated

accounts. In particular, two kinds of analysis were conducted at a different level of

detail. The first analysis takes into account only the actions performed by users (in

terms of posting types). The second analysis focuses on the authors of content bounced

by humans, to establish the actual involvement of credulous users in spreading content

originated from bots. Chapter 7 exposes our most relevant findings. We provide evidence

about the dangerousness of credulous users as active entities on OSM when spreading and

amplifying disinformation. Chapter 8 conclude this work by resuming the main findings

from our investigation, some possible practical usage and future research directions.



Chapter 2

Background

This chapter aims to provide the reader with the basic concepts and knowledge useful

for a better understanding about the topic, main concepts and experiments which the

research of this doctoral thesis.

Section 2.1 introduces online social media (OSM). In Section 2.1.1, an overview of the

research field called Social Media Mining (SMM) is provided. In Section 2.1.2 it will

be explained what is Social Media Analytics (SMA) and the differences with SMM.

The intent is to better frame the research direction decided for the next chapters of this

thesis. A brief overview on the typology of the different OSM will be provided, by mainly

focusing on the description of our operational context, i.e., Twitter in Section 2.1.3. More

in detail, it will be presented which are the basic Twitter features, the type of actions

and relationship between users in such media.

Section 2.2 discusses the principal domains (like business, public security and political

communication) where the analysis of Social Media data represent a key factor, and con-

sequently, the research is very active and important. In Section 2.2.1, special attention

will be given in exposing what is defined as the main problem on social media, i.e., the

misinformation. Specifically, what misinformation is, which forms can assume, who is

responsible of this phenomenon and how it spreads over the social media.

Section 2.3 provides a brief introduction on Machine Learning (ML) and its sub-areas,

detailing more those concepts useful for understanding the performed experiments. A

brief description will be given on the machine learning techniques most used in SMA,

and more specifically in misinformation fighting. This chapter ends by describing the

ML tasks needed for this research, the followed experimental methodology and the tools

that have been used to achieve the planned objectives.

12
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2.1 Analysis on social media

The rise of social media in the digital world has increased and certainly revolutionised

the ability to socialise and interact among people [120, 161]. Since their first appear-

ance, dating back to the last decade of the previous millennium, social media have been

positively appreciated by people, especially by youngsters1. Year by year, users of all

ages and from everywhere started to get increasingly closer to these social interaction

platforms by routinely interacting with their friends. Initially, Social Media had the

objective of fostering and facilitating communication and sociality among users, inter-

connecting them with each other regardless of geographical distances. In fact, to define

such web platforms for people interconnection, up to not so much time ago, the term

Social Network sounded more common than Social Media. But nowadays, especially

among non-expert users, the difference between these two terminologies is negligible

and used as synonyms2. It is worth to say that, from a technical point of view, social

media and social network do not identify the same concept. Indeed, the term social

media refers to that specific set of technologies of Web 2.0 that allow users to generate

content and establish social relationships between them; forming the social network.

Therefore, we can say that the social network can be built thanks to the social media3.

Furthermore, the representation of the social network depends by the types of relation-

ship may occur between the users; e.g., in most of cases, a real social network (consisting

of strong ties among users) or of a so-called conversation graph (especially in the case of

social platforms where relationships are built around discussion topics of interest). The

capability to support users’ interconnection has undoubtedly been the strongest point of

social networks, but being tied to a single strategy would not allow such web platforms

to survive so long in the digital world. Let us think to the evolution from FaceMash to

TheFacebook, e.g., to the delayed introduction of the Wall and its further evolution in

Timeline 4 [134]. The key factor, that boosted the usage and the importance of social

networks, has been to stimulate their subscribers to produce content (user-generated

content), e.g., the introduction of hashtags in Twitter (one year after its launch)5. In

such a way, social network began to be considered a means of communication like tv,

radio or newspaper, and in many cases more effective of the other media [122, 123]. This

feature, maybe not too much considered previously, has become the strongest point of

these platforms. This gave them greater visibility, but also enlarged the range of users.

This was also beneficial for companies that can exploit social media in their market

strategies, thus to widen the audience and reduce advertising costs. The increasing

1Facebook: https://tinyurl.com/ycm8xomn
2Powerthesaurus: https://tinyurl.com/y7b3aq7x
3Social Media and Social Network differences: https://tinyurl.com/y6eko2sq
4Facebook’s features: https://tinyurl.com/yxuaw2qt
5Twitter hashtag: https://tinyurl.com/y72vjjtl

https://tinyurl.com/ycm8xomn
https://tinyurl.com/y7b3aq7x
https://tinyurl.com/y6eko2sq
https://tinyurl.com/yxuaw2qt
https://tinyurl.com/y72vjjtl
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number of active users, which social media can boast of, is in the order of billions. It

is obvious that such a multitude of users produce an uncountable amount of data, from

which it is possible to derive useful information [176]. The burden of data crawling

(from the social platforms) falls to a research field called Social Media Mining (SMM);

whereas, the transformation of data into information concerns to another research field

called Social Media Analytics (SMA), strongly connected with SMM [157, 185].

2.1.1 Social Media Mining (SMM)

Social media mining is an emergent research field, whose main task is to obtain User-

Generated Content (UGC) resulting from social interaction (e.g., posts, retweets, replies,

etc.) on Online Social Media [185]. What differentiates Social Media Mining from other

forms of mining, such as data-, text-, web- mining, is the peculiarities of the data cir-

culating on Social Media. First of all, with respect to what is generally supposed in

data mining, it is not possible to assume that in OSM the data respect the i.i.d. prop-

erty (independent and identically distributed [36]) because: (i) in most of the cases,

data show a power-law distribution [185] and (ii) they can be dependent/linked each

other, e.g., replies to other posts or content in pages/channels/lists. Another aspect of

Social Media data is what can be called as content’s sociality. This concept has noth-

ing to do with concepts such as Social Big Data [73] or Social Media Big Data [107],

whose issues mainly concern problems of Big Data and hence, at least in part, outside

the scope of this work. Usually, it is common to mainly divide the data in two cate-

gories [7]: structured data, i.e., highly-organised and formatted (e.g., data in relational

databases), and unstructured data, i.e., without pre-defined format or organisation (e.g.,

text). In Social Media there exist both these categories; for instance: structured data

may be relational data, explaining the relationship between users (e.g., mutual friend-

ships, followers, followees, etc.), unstructured data may be users’ text (e.g., posts, tweets,

comments, replies, etc.). Furthermore, users can add another kind of data that falls un-

der the definition of multimedia data (from the web mining field); such as: web site

url(s), pictures, videos and vocal messages. But what differentiates the data in Social

Media from the others, it is the possibility to generate content, through “keywords/key

symbols”, e.g., hashtags (#), mentions/tags (@), and so on, with links to other OSM

entities such as other users, pages, channels, etc. We refer to this peculiarity as sociality

of data. Due the plethora of data types and sociality existing in OSM, it is mandatory

to consider Social Media Mining an interdisciplinary research field, whose methods and

theories encompass among multiple fields such as social science, ethnography, statistics,

machine learning, social network analysis, mathematics, and statistics [185]. Moreover,
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from these peculiarities, Zafarani et al. derived some challenges that Social Media Min-

ing has to deal with, grouped in four tasks/definitions: Big Data Paradox, Obtaining

Sufficient Samples, Noise Removal Fallacy and Evaluation Dilemma [185].

Big Data Paradox. Although at first glance the amount of data on Social Media

may seem abnormal (and indeed they are), from an operational point of view this

is not really true. In fact, the mining phase is preventively designed to answer

certain research questions concerning a very restricted context and population

among OSM’s entities. However, this sort of filtering can also result in a very large

amount of data to process/elaborate, but much smaller with respect to consider

the entire Social Media system. SMM faces this issue by exploiting the structure of

social media and its multidimensional, multisource, and multisite data, information

is aggregated to increase the efficiency and effectiveness of the mining phase.

Obtaining Sufficient Samples. To automatically collect data from OSM, Ap-

plication Programming Interfaces are made publicly available by the provider of

social platforms. But, despite this method makes the download easy and conve-

nient, some constraints and limits are posed by OSM administrators to protect

their data, the privacy of their users and, of course, for cybersecurity issues (like

DDOS attacks). About the mining, both researches and developers face with a

common problem: only a limited amount of data can be downloaded (e.g., per day

or number of requests). Due to such restrictions and the missing knowledge about

OSM users’s distribution, SMM has also to verify that the amount of downloaded

samples are sufficiently representative of the social population data, or at least

of that portion of users under investigation. This is a very important issue to

guarantee the robustness of the findings resulting from related data analysis.

Noise Removal Fallacy. In several machine learning applications it is normal to

find fallacy data, known as noise (e.g., outliers). Noise removal is an important step

in data preprocessing phase to increase the quality of datasets and, consequently,

the reliability of subsequent findings. In SMM this process is complex due to the

nature of social media data, they can include a not negligible quantity of noise.

The removal of noise, especially without well defined criteria, can led to flimsy

experimental scenarios, because the removal process can also delete data that,

despite assumed as noisy, can contain valuable information. Another issue is given

by the definition of noising data because it is relative and strongly dependent by

the domain of application, the problem and the operational context.

Evaluation Dilemma. As well known, the starting point of the Knowledge

Discovery in Databases (KDD) process is some kind of ground-truth, mainly con-

stituted by a dataset from which it is possible to derive new information under the
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form of patterns in data. Then, the dataset is divided in two parts: train and test

sets. Roughly, learning algorithms are executed by considering training data only

to produce decision/clustering models. After, the models’ performance are evalu-

ated by means of the test set, to measure the reliability of such models with unseen

data. Sometimes, the ground-truth is divided in three parts: train, evaluation and

test sets. This happens when the learning process needs to be iterated multiple

times [117]; for instance, in hyper-parameter tuning (called iteration) and deep

learning (epochs). The learning is always performed on the train data and, at the

end of each iteration, the models’ performance are evaluated with the evaluation

data that acts as an “online” test set. Then, learning algorithm’s parameters are

tuned and the learning phase is repeated. When the trained model’s performance

achieves good scores, such model is finally tested with test data. In SMM, the

availability of a ground-truth is not a foregone. This makes Evaluation Dilemma,

perhaps, the most challenging task. The public availability of ground-truth in

SMM strongly depends on: (i) the domain, (ii) the data availability, and mostly

(iii) the advances in the state of the art (w.r.t. the context and problem).

2.1.2 Social Media Analytics (SMA)

In the literature, there are several definitions about Social Media Analytics (SMA).

In [186], SMA is defined as “an emerging interdisciplinary research field that aims on

combining, extending, and adapting methods for analysis of social media data”. In [156],

SMA is considered as “the art and science of extracting valuable hidden insights from

vast amounts of semi-structured and unstructured social media data to enable informed

and insightful decision making”. In [157], SMA is described as “as an emerging interdis-

ciplinary research field [. . . ] for gathering, modeling, analysing, and mining large-scale

social media data in order to make business, economic, social, and technical claims from

both research and practical perspectives”. To generalise the approaches for different do-

mains and purposes, in [157] SMA is modelled as a process composed by four steps (see

Figure 2.1): Discovery, Tracking, Preparation and Analysis.

In the discovery phase, it is set the domain and the problem to face by collecting all the

related information and the knowledge from the state of the art. This way, it is possible

to restrict the investigation by focusing on the most relevant data only.

In the tracking phase, it is decided: the social platform (i.e., the source of data), the

data crawling methods (e.g., APIs), the approach to query the OSM and how to store

the downloaded data (w.r.t. the type of data).
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Figure 2.1: Social Media Analytics processes as described in [157]. In the left box
(red), there are the steps we considered belonging to Social Media Mining field. In the

right box (blue), the issues related to Social Media Analytics tasks.

In the preparation phase, problems related to data consistency, quality and reliability

have to be addressed. In particular such problems concern how to deal with noisy or

incomplete data that can affect the obtained findings.

In Figure 2.1, these three steps are grouped together because, from what we learnt about

Social Media Mining in Section 2.1.1, they mainly overlap with the aims and challenges

of Social Media Mining.

The last step of SMA process is called Analysis (see Figure 2.1), and we can consider it as

the core step of the whole SMA process. In this phase, with respect to the objectives and

the domain, it is decided the approach to achieve the goals (e.g., community detection,

sentiment/opinion discovery, trend investigation) and the proper method (or more than

one, method mixture) of analysis. This way, it is possible to produce new and non trivial

knowledge that may be quickly used (e.g., in decision making processes).

From the several definition of SMA in literature, two are the concepts on which there is

an agreement: to consider SMA as an (i) interdisciplinary field and (ii) the essentiality

of this process to derive new and non trivial knowledge from the analysis of Social Media

Data. On the other hand, what differentiates these definitions is how many and what

tasks the SMA has to accomplish before performing the data analysis.

Summarizing, SMM and SMA can be considered as two distinct but symbiotic research

areas. SMM concerns data retrieval and management, SMA concerns approaches that

allow to extract knowledge from data (obtained via SMM).
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2.1.3 Operational context: Twitter

In literature [3, 86, 185] social media are divided into categories according to certain

criteria that take into account (but not limited to): the type of content managed (user-

generated content), the type of (social) relationships (between users), the interaction’s

capability.

Some of the most well-known social media categories are detailed below:

Blogs: websites where the published content appears in a chronological fashion

and the signed users/visitors can read and comment (e.g., The Huffington Post);

Microblogs: similar to blogs but with constraints on the length of posting. Users

can also keep up with news from other users (e.g., Twitter);

Collaborative projects: platforms that foster and stimulate cooperation between

users with different skills/knowledge, but who share has the objective of developing

a public utility project and making it available to the public (e.g., Wikipedia);

Social networks: the interactions between users derive from a real mutual knowl-

edge existing from the real world or the sharing of interests such as partici-

pation/organisation in events. Such platforms can incorporate features of pho-

to/video sharing and instant messaging (e.g., Facebook and LinkedIn);

Products/services review : platforms where users share/publish their reviews about

products and services and the reliability of the shops/sellers (e.g., Amazon, Ebay,

Tripadvisor);

Photo/Video Sharing : websites that offer services such as uploading, hosting, man-

aging and sharing of photos and videos (e.g., Instagram, YouTube, TikTok);

Social gaming : online gaming platforms requesting a (social) interaction between

the players/users (e.g. World of Warcraft);

Virtual worlds: online digital environment where the signed users can impersonate

an avatar, explore places and interact/socialise with others (e.g., Second Life).

In this research we focused on Twitter, a popular social networking service on which the

interaction and the posting activities, among users, is via tweet(s). A tweet is a message

that can contain text, links, visuals or a mixture of them. There is a limit for the tweet’s

length of 280 characters (before it was 140). This OSM allows to unregistered users to

read tweets only, registered users instead have access to the complete publishing features

as: post/tweeting, like, and retweet/quote other tweets. People make connections by

following other people’s twitter feeds. Once a user clicks the follow button in the main
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page of another user, anything that person or organisation tweets will appear on its

timeline.

The reasons behind our choice to consider Twitter as a benchmark are basically three: (i)

the brevity of the content posted, which therefore does not tire/yearn users in reading

(in fact, this feature is considered to be the most successful factor of microblogging

platforms), (ii) the ways in which connections are established between users, in fact to

access content published by a user is not necessary a reciprocity of the relationship (e.g.,

in Facebook); and, (iii) an ease in downloading data from the platform and dataset

availability in the literature.

The kinds of tweet and social relationship

Tweet. A message posted by a registered user containing text, photos, a GIF, and/or

video. It is necessary to insert/link the content and push the tweet button (Figure 2.2).

Figure 2.2: Tweet.

Retweet. A tweet published by other users and automatically shared on their timeline.

In Figure 2.3, it is possible to see two retweeting modes. The first immediately shares

the original tweet without modifications. The second allows to make a quoted (tweet).

Figure 2.3: Retweet modes.

Quote. It is a retweet with own added comment to the tweet another person’s tweet.

In Figure 2.3 it is possible to see the sentence Retweet with comment which refers to

this kind of tweet. In Figure 2.4 it is reported the button in such case reports the text

retweet as a confirmation of a particular type of retweet.
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Figure 2.4: Quote (tweet).

Reply. It is a tweet to respond to another person’s tweet. In Figure 2.5 it is possible

to see that on the button it is written reply.

Figure 2.5: Reply.

Mention. It is a tweet containing another account’s Twitter username, preceded by

the ”@” symbol, see Figure 2.6.

Figure 2.6: Mention (tweet).

Social Relationships: Followers and Followees. As mentioned before, social me-

dia also differ from each other by the way they represent/implement their own social
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Figure 2.7: Followers and followees counters

network. A social network is built through the connections that users establish between

each other and these connections are developed by following certain types of relation-

ships that exist between users. In general, as explained in [72], these relationships can be

generated on strong ties (e.g., friendships that from real life are transferred to the digital

platform) or weak ties (e.g., users who do not know each other but share interests).

In Twitter there are two types of social relationships among users: followers and fol-

lowees. The followers are those users that are interested about the update of a certain

account, and all the tweets she/he produces will be shown on the followers’ main page

(namely home timeline). This way, a Twitter account shows its interest to follow a

user’s activity in the social. On the other hand, the followees relation expresses the

interest of a user to receive, in its own home timeline, all the tweets produced by the

accounts she/he is following (in Twitter web site, the word following is used to define

the followees). In Figure 2.7 it is possible to see the amount of followers (right box)

and followees (left box, namely following). From this we can define that the followees

relationship is the one that most expresses the concept of interest in something; on the

other hand, there would be no followers if someone did not decide to follow someone.

Moreover, the Twitter recommendation system only suggests (logically) whom to follow

(i.e., followees); therefore, although strong links may take place on this social media, we

believe that the social network in Twitter mainly bases on weak ties [16, 135]. That is

not a disadvantage, as one of the main findings in [72] is that “in marketing, information

science, or politics, weak ties enable reaching populations and audiences that are not

accessible via strong ties”. Due to its semantic meaning and properties, the followees

relationship is a key concept in this research work.
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2.2 Research in social media

Taking into account the amount of audience and the high impact on the real world,

in [157], among several topics and domains treated in Social Media’s discussions, three

have been identified as the most important ones: (i) business, (ii) public security and

(iii) political communication. Governments, academicians and OSM administration are

the principal stakeholders on the related research that becomes increasingly topical.

The research related to the business domain mainly concerns about private compa-

nies for purposes related to the improvement of their business. In particular, for this

kind of stakeholders, the analysis of Social Media, and related investigations, are useful

for several reasons: to check and improve the company’s external reputation (e.g., by

protecting against bad advertisements, improving the company’s public image) [32], to

detect the rising of new trends, to improve their marketing campaigns and place new

products [13], and to improve the communication with their customers [53], especially

in the case when they need assistance.

For what concerns research in public security domain, the stakeholders are individuated

in the governments and public organizations/agencies. A smart usage of Social Media

during emergency situations, as happened in several recent events, can represent a very

important factor to better guarantee the safety of people, especially during a situation

of crisis (e.g., natural disaster). The data obtained from Social Media (e.g., geolocation,

images, videos and so on), if properly analyzed, can provide prompt and previously un-

known information when an emergency situation arises. Furthermore, w.r.t. traditional

mass media, governments and emergency management agencies can quickly diffuse life-

saving information and directives to a wider audience, monitor the current status and

the sentiment/opinion of the involved people; e.g., natural disasters [92] and covid-19

pandemic [177].

In political communication the main stakeholders are the political parties, governments

and communication agencies (both private and public). Especially during election cam-

paigns, people discuss on Social Media their concerns, proposing actions and solutions

that should be taken into accounts from politicians and/or governments. By analysing

such data, political parties can easily reach a wider audience and perform an ad-hoc po-

litical campaign in order to gain consensus among the active electorate, hence to design a

smarter political campaign. By using their official social channels, both governments and

politicians can define better strategies to gain more visibility and, consequently, more

followers on their political opinions especially increasing the interaction with them. Tex-

t/opinion mining joint with social network analysis are the principal methods with which
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to derive important findings and to improve the efficiency and effectiveness of a political

campaign , e.g., US election in 2016 [179]).

Another important line of research, recently emerged because of its negative effects, is

what has been defined in [129] as “the dark side of social media”. With this term, the

phenomenon of misinformation is referred, it damages not only the reliability of OSM

as information sources, but it also affects the users attempting to change their opinion

or generate misconception. This increasingly widespread phenomenon is caused by the

production and dissemination of unreliable and/or misleading content, known as fake

news. The dangers and effects misinformation produces in the real world are widely

recognized by academics, governments and OSM administrators, who are constantly

struggling to face this issue. Brexit and the US Presidential election in 2016 are just

some of the most studied scenarios recently under investigation by scientists. For these

reasons, methods and approaches for effective and quick detection of fake news are a hot

and challenging topic in the scientific community research.

2.2.1 Mis-/Dis-information and spreaders in OSM

The result of mis-/dis-information containment strategies strictly depends on the effec-

tiveness of intercepting and eradicating fake news on OSM. In [94], fake news are defined

as all those information that are untrue, fabricated or in any case unverified/supported

by a fact checking process to ensure their accuracy and credibility, e.g., clickbaits, hoaxes,

rumors, urban legends and so on. In [173, 174], a categorization of fake news has been

proposed according to the increasing degree of intentionality to deceive/polarize the

users, as reported hereafter.

1. Satire or parody. Category of news created just for entertainment purposes to

stimulate humour in the readers. With this kind of news, there are no harmful

goals, but for those who do not understand the satirical purposes, they have the

potential to deceive, especially if the news look like a reliable source. This can

happen when the reader has low confidence with the treated topic. Examples are

web sites like Lercio or Butac (in Italy) or The Onion (in USA);

2. False connection. News where headlines, visuals or captions do not support the

content. The main goal, about their production and dissemination, is to attract

user’s clicks for profits, obtained by the advertisements shown in the redirected

web sites. When people start reading the full article, they realize of being deceived.

A well-known example of this type of content is Clickbait headlines. For instance,

on Facebook is know the usage of visuals or captions to this end, i.e., users scroll

them without clicking but headlines can be deceptive;
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3. Misleading content. When news production is engineered by making misleading

use of information to frame problems or attack individuals, aiming to attract

(often) public support. Cutting photos, choosing quotations or selecting statistics

wisely, are just some of the methods used by applying what is referred as Framing

Theory to induce a bias in readers’ perception [55]; This kind of content is popular

especially when politicians want to decrease the credibility of their opponents;

images are the favourite mean because of their immediateness;

4. False context. The content of the news is genuine but not the context to which

it refers. Examples are the use of images of disasters (from different periods or

places) referring to current situations, or more generally, to a different context;

5. Imposter content. Content created from a fictitious source with characteristics

(e.g., logo, site name and themes) very similar to those of a reliable one and

attempting to “impersonate” it;

6. Manipulated content. Original contents (e.g., stories or imagery) are manipulated

for deception purposes. Half-truth can be attributed to this category;

7. Fabricated content. News ad-hoc fabricated and completely false, created and

disseminated to deceive/polarize people and do harm.

By considering the intentionality (of fake news) to deceive (or not), it is possible to

distinguish disinformation from misinformation [174].

Misinformation includes all those fake news information disseminated by people without

harmful intention. According to the previous fake news typology, satire/parody, false

connection and misleading content fall in this category. As opposite, disinformation

refers to all false information produced and spread with harmful intent, like to induce

bias in public opinion, hate speeches, to generate misconception and so on. False context,

Imposter-, Manipulated- and Fabricated- content fall into this category and is widely

used especially during political campaigns. Furthermore, in [174], it is also exposed the

concept of malinformation as the leakage, and subsequent dissemination of “genuine”

information to cause image damage and increase discontent. In this category fall some

data leaks, harassment and hate speech. Recent events are the Hillary Clinton’s emails

leakage, during US presidential election in 2016, and Macron’s emails leakage in 2017.

To increase the effectiveness of misinformation, fake news need to be disseminated as

much as possible, and this is pursued by some OSM users. Mainly, there are two cate-

gories of users: human-operated and automated accounts, also known as bots. Human-

operated accounts, as the name suggests, are all those OSM accounts managed by real

persons. As opposite, bots are those accounts managed instead by ad-hoc software able
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to perform actions in OSM. Accordingly to what they do and the extent of their inter-

action capability, several types of bots exist in OSM [71]:

Web robots are those automated accounts known as crawlers and scrapers. They

do not interact with users but are mostly used to automatize the download of

Social Media data to obtain datasets for SMM or SMA puroposes;

Chatbots [50] are entities in OSM (but not only there) able to interact through

simple natural language (text or speech). They can be defined as dialogue systems

with a lexical interface. Vocal assistants like Apple’s Siri and Amazon’s Alexa are

examples of the highest evolution of this category of bots, they are widely used

also by companies and public offices to improve their consulting services (e.g.,

automatic response);

Spambots [18] show clear malicious purposes like viral marketing, private informa-

tion theft, harassment of legitimate users and so on. Their principal activity is to

catch the attention of users, by increasing their visibility, to bomb them with un-

reliable information transmitted by private instant messaging, posting often using

links, visuals or videos, email and so on;

Sockpuppets [15, 26] are those accounts that in disguise perform malicious activities

such as expressing provocative opinions, targeting individuals, manipulating public

opinion and spreading misinformation by using a posting protocol;

Social bots [61], also called sybils, are OSM accounts controlled by ad-hoc software

applications, able to mimic the behaviour of human users (in term of content

production activities). Sometime they are used for benign purposes, but most of

the cases they are created (and used) to harm other users (especially, the humans)

in order to manipulate, deceive and/or polarize them. Due to their interaction

capability to relate with genuine users, they are widely applied for malicious goals

like stealing personal data, driving political conversations, manipulating marketing

campaigns, and especially spreading mis- and dis-information.

About human-operated accounts, a categorization is indeed not a trivial task. But,

looking at the interaction that human accounts have with malicious entities (e.g., bots

or fake followers [44]), and/or deceptive content on OSM, we can single out the following

categories of human/genuine users:

susceptible [169] – interact with social bots giving, in some way, visibility to bots’

activities and cooperating with them;

gullible [149] – accounts replying to known fake news;
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I credulous [11] – follow a considerable amount of bots in Twitter (called bot-

followees).

A further category of OSM users is represented by hybrid-accounts or cyborgs [33]. It

includes those accounts showing characteristics of both automation, typical of bots, and

human behavior. The main issue, in dealing with this kind of users, concerns how to

quantify their level of automation so that such users are recognized of being cyborg.

Because of this ambiguity, these users are often referred as “bot-assisted humans” or

“human-assisted bots”.

2.3 Machine learning: a brief overview

The term machine learning (ML) have been introduced for the first time by Samuel in

1959 [142]. A formal definition of machine learning, under an operational point of view,

has been provided by Mitchell in [115]: “A computer program P is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its

performance a tasks in T, as measured by P, improves with experience E.”

The ML algorithms, starting from a set of data (or a sample), build mathematical models

able to intercept patterns in the data. Such models are mostly used to: make predictions,

provide support in decisions, identify groups, implement strategies and much more.

Depending on the type of task and the problems being addressed, three basic categories

of ML can be identified [141], i.e.:

supervised learning is an automatic learning technique that, starting from a set

of observations/instances, whose category/class is known a priori (labelled in-

stances), allows to build predictive models. In this category we can mainly iden-

tify two types of tasks: regression, i.e., the prediction output is a value (integer

or real), and classification, i.e., the prediction refers to a category/class. With re-

spect to the number of categories we can have binary classification tasks, when the

instances can be assigned in two classes (e.g., spam vs. not spam mail), or multi-

class tasks, when the number of classes is greater than two. More specifically, in

the multi-class task we can identify both single-label and multi-label multi-class

approaches [164]. The former approach concerns the instances categorisation into

only one of more than two classes; instead, in the latter multi-class problem, there

is no constraint on the number of classes that can be assigned to each instance;
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unsupervised learning involves all the tasks that deal with unlabelled instances

aiming to find structures and groups in the set of observations. Its main applica-

tion is related to clustering problems. When the observations in the dataset are

partially labelled, we fall into a category called semi-supervised learning;

reinforcement learning [162], unlike the two previous categories, concerns with

problems of sequential taking decisions, especially when agents have to achieve a

specific goal by interacting into an unknown environment or to face opponents.

The most common domains of applications, but are not limited to, for this type

of learning, are automatic driving systems and the production of strategies (e.g.,

gaming). The building process, for this kind of models, is pursued through a

rewards-based mechanism. Every time the agent does an action useful to reach

the goal a reward is given, otherwise, a penalty is assigned.

To extractnew and non-trivial knowledge from data, the well-known process called

Knowledge Discovery in Database is used [58].

Figure 2.8: Knowledge Discovery in Database (KDD) process [58]

As shown in Figure 2.8, the KDD process is mainly constituted by five sequential steps:

Selection – Starting from the whole data at our disposal, the first step aims to select

only those relevant to the type of analysis to conduct, by taking into account the

variables to observe and the knowledge we want to derive on. The output is a

precise (and reduced) set of data, called target data;

Preprocessing – This step deals with all the operations needed to improve the

quality of the target data; this is possible by removing outliers, handling data-

noise (hence, to define the concept of noisy data) and deciding strategies to deal

with missing data;
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Transformation – This phase involves all the activities referred to feature engineer-

ing [28]. Accordingly to the specified goal’s task, from the raw data are derived

the features, through which the entries will be represented (dimensional space of

representation). Dimensionality reduction methods (like attribute/feature selec-

tion algorithms) are also used to reduce the number of variables to consider for the

model training phase. After this step it makes more sense to refer to the entries

of our (target) data as instances;

Data Mining – Depending on the task at hand (e.g., classification, regression, clus-

tering, etc.), this step concerns about the method(s) selection, hence the learning

algorithm(s), to be employed to single out patterns among the instances. At this

stage, it takes place the learning process by using a portion of the whole set of

instances, called train set. The rest of the instances, called test set will be used

in the next phase to evaluate the trained models. Over the years, various types

of ML models have been discovered; the mainly used are: Artificial Neural Net-

works [127] (specially used in Deep Learning [70]), Decision Trees [138], Support

Vector Machines [39], Bayesian Networks [65] and many others;

Interpretation/Evaluation – In this phase, the trained models are evaluated by

means of the test set, to check how a trained model behaves when previously

unknown instances are supplied to it. The model’s evaluation strictly depends

on the learning task (e.g., classification, regression, clustering); according to the

task, different metrics are calculated to quantify the effectiveness of the predictive

model. For instance, for tasks’ classification the most used evaluation measures

are: accuracy (the quantity of instances correctly classified), the precision, the

recall, the F1 measure [110], the Matthews Correlation Coefficient (MCC) [111],

the Area Under the Receiver Operating Characteristic curve [56] (AUC). This

latter measure is very useful in case of unbalanced datasets.

2.3.1 Machine learning and misinformation diffusion in social media

The application of ML techniques to perform analysis on Social Media is wide and

mainly intended to derive non-trivial and previously unknown knowledge [1]. One of

the most important and more recent challenges is on the spread/limitation of misin-

formation and fake news. The amount of published work devoted to this challenge via

the use of ML techniques is high. To mention few works, although established in the

scientific community, would be reductive and would not convey the idea of efforts and

achievements in this field. For this reason, we prefer to mention some of the most recent

and comprehensive comparative study of current research on the use of ML techniques
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for dis-/mis- information detection.

In [41], the authors analysed the problem of mis-/dis-information in the domain of

review spam detection. Firstly, they provided an overview of feature engineering per-

formed in several studies from both review-centric (i.e., features obtained by the text)

and reviewer-centric (i.e., features derived by the review’s author) perspectives. This

overview lists all the features that have been mostly used by different works. Further-

more, a discussion on the various ML techniques, proposed for the detection of online

review spam, is provided by comparing the corresponding results. Besides, the effec-

tiveness of supervised, unsupervised and semi-supervised methods is discussed. Also

in [128], supervised, unsupervised and semi-supervised learning techniques are exhibited

and compared in the domain of fake review detection. But, with respect to [41], ap-

proaches that, in addition to the features derived from the text or the authors, take into

account behavioural and relational features. In [168], the authors provided an overview

of approaches proposed in the state-of-the-art to (automatically) assess the credibility

in social media. The concept of credibility is described as the quality perceived by

individuals to be able to independently discern the genuineness/falsity of information

(both sources of information and information itself). Most of the considered approaches

in the survey are based on data-driven models, therefore via ML techniques; but, also

model-driven and graph-based approaches (especially those works focusing on credibility

propagation) are increasingly gaining consideration by scientists. The tasks that mostly

concern credibility issues, and on which the authors have carried out this survey, are:

(i) detection of opinion spam in review sites (similarly to [41, 128]); (ii) fake news/s-

pam detection in microblogging (e.g., Twitter); and, (iii) assessment of online (both on

websites and social media) health information. In their final considerations, the au-

thors point out the lack of predefined benchmarks, gold standard datasets and how the

mining of large quantity of data is complicated. Another well-know survey concerning

methods to identify fake news is provided in [187]. An interesting novelty of this survey

w.r.t. similar works, is the inclusion of multi-disciplinary research works. Furthermore,

with respect to other surveys where the fake news detection methods are categorised

by looking to the adopted ML techniques or by the usage of social context information,

the authors of [187] opt to catalogue the works on fake news detection, considered in

their literature review, from four perspectives: knowledge-based (i.e., methods based on

fact-checking), style-based (i.e., which include methods that focus on the analysis of the

news content to discover some patterns or writing styles in fakes), propagation-based

(i.e., methods based on the study of graphs) and source-based which mainly deal with

work for assessing credibility based on news authors, publishers and social media users.

The works included in this latter perspective most match with topic of the previous

mentioned work in [168].
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Moreover, in [182] three tasks have been identified to better understand and fight the

misinformation phenomenon: diffusion, detection and intervention.

In misinformation diffusion the focus is on who is spreading fake news (called spreaders)

and in which ways misinformation can spread on OSM. For instance, in this context, ML

techniques are used for bot detection. Roughly, a bot detector is a decision model that

discerns whether an account is automated (hence a bot) or human-operated. Usually,

these kinds of models are binary classifiers where the response is calculated based on

a feature space through which OSM accounts are represented. For the construction

of this type of models it is essential to have a dataset of OSM accounts where the

knowledge of who are the bots and humans is known a priori. The quality, quantity,

and diversity of data are key factors for an effective bot detector. Another way, to

understand misinformation diffusion, is to focus on human spreaders. Here the analysis

is a bit more complex due to the heterogeneity of humans’ behaviour. With respect to

bot detection, the role of human users in misinformation spreading did not receive much

attention [11]. Some human users can become the target of bots’ malicious activities

because, w.r.t. other humans, can be reputed more prone to believe and/or bounce

unreliable content (fake news).

Misinformation detection involves all those approaches and techniques able to identify

unreliable content such as fake news. This category of methods faces the problem of

fake news interception in a more direct way. The analysis of the content, context and

information sources represent the start point to evaluate the truth/reliability of what

is circulating on OSM. The most important tasks fall in this category mainly concerns

fake news detection. Even in this case, the usage of ML techniques (e.g., text mining,

sentiment analysis, semantic analysis, etc.) represent the promising way to pursue this

goal [152]. Similarly to a bot detector, a fake news detector is roughly a binary classifier

able to judge if news/posts/tweets, given in input, are true or not. Nowadays, fake news

detection still remains a very challenging task. The basic idea under fake news detection

is to provide, in an automatic fashion, effective fact-checker for an “online” reliability

verification of the circulating content.

Misinformation intervention concerns those approaches able to mitigate the spreading

of unreliable content on OSM and/or to improve users’ awareness of the content they

read on the social platforms. Preventive measures like misinformation -immunization,

-isolation and -antidotes are employed to fight against fake news. An example of misin-

formation immunization is to send warnings to specific target people (e.g., those most in

danger of misinformation attack by bots). Measures of misinformation isolation are the

removal or suspension of malicious users on OSM (like bots), and this can slow down the

spreading of fake news to general users, thus preventing them from being “infected” [130].
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Misinformation antidotes involves easy but, sometimes effective, solutions like official

communication by the authorities to disprove misinformation and disinformation that

has already been rampant among people to effectively terminate the spread. A real case

history, from some years ago, concerns the rumours on Twitter about the presence of

Ebola in Iowa, that started to worry people. Then, the Iowa state government had to

release an official communication to ensure the population that no cases of Ebola were

in the state.

2.3.2 ML @ work

In the following chapters ML techniques are often used to achieve the research objectives.

Hereafter we provide a detailed explanation on how the experimental sessions were

designed, the adopted validation strategies, the used methods and tools.

The type of ML experiments, involved in this research work, refers mainly to the su-

pervised learning category, specifically, classification and regression tasks. The exper-

imental sessions were planned to train, and subsequently compare the performance,

predictive/decision models using the well-known algorithms in the literature.

To evaluate the models’ performance a strategy called cross-validation has been adopted.

This method divides the set of instances into a certain number (k) of disjointed sub-

sets called folds. k-1 folds are used for the training phase while the k-th fold is used

for the model’s test phase. Depending on how the instances in the k-th fold have been

classified (correctly or not), the following information are derived: (for instance in binary

classification task like bot detection): true positive (TP), i.e., the bot instances correctly

recognized as bots; true negative (TN ), i.e., the humans correctly recognized as humans;

false positive (FP – type I error) i.e., the human accounts wrongly recognized as bots and

false negative (FN – type II error) i.e., those bots accounts wrongly classified as humans.

These four sets constitute the confusion matrix by which classification measures can be

calculated. Briefly, TP and TN indicate the number of instances correctly classified,

while FP and FN the instances wrongly classified. The most well-known and used

metrics are:

accuracy (acc): TP+FN
TP+FP+FN+TN ;

precision (P): TP
TP+FP ;

recall (R): TP
TP+FN ;

F1 [110]: 2× P×R
P+R ;
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A further important indicator of the model’s effectiveness in classification, especially in

case of unbalanced datasets, is the Receiver Operating Curve (ROC) [56]; more precisely,

in the score called Area under ROC (AUC ) whose value ranges from 0 (bad classification

performance) to 1 (good classification performance). This process is repeated k times

and the final result is given by the arithmetic mean calculated on the output scores

obtained from the measurements on each k-th test fold.

In certain cases, the problem to be addressed is not the classification into categories

but the prediction of a numerical value; in this case we refer to regression tasks. For

this category there are specific learning algorithms, very different from those used for

classification tasks, able to build a mathematical function/model to predict numerical

values. Although the model validation methodology remains valid, the measures to

evaluate the effectiveness of such predictors are not. In fact, it is not possible to use the

measures listed above but others must be used. In these tasks, the most used measures

are based on the quantification of the error between the values predicted by the model

and the actual values of the dataset, the most known are: Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE).

For both classification and regression tasks, once found the learning algorithm that

produces the best results (e.g., accuracy and F1 in case of balanced datasets or AUC

for unbalanced ones), it is possible to further improve the outcomes through a process

called hyper-parameter tuning. Almost all learning algorithms, both in regression and

classification tasks, have parameters that, if properly set, can lead to a considerable gain

in model performance. In the case of neural networks based on multi-layers perceptrons,

for example, the number of hidden-layers, the number of neurons per layer, the activation

function within neurons and the number of epochs, are just some of the parameters that

can be tuned. Each learning algorithm has specific parameters and only a knowledge of

the algorithm can allow the experimenter to proceed for a successful tuning phase.

In our experiments we adopt the well-known ML framework called Weka [74]. In this

framework we mainly used two items called: explorer and experimenter. The former

concerns all the steps of KDD process described in the beginning of this section. It is

possible to: handle data, train and test models (both classifiers and regressors), (hyper-

parameter) tune the models, perform investigation on the extracted features and many

other activities (like visualisation of models and performance). The latter allows to

perform more complex experiments. In particular, it is possible to conduct compara-

tive analysis among several learning algorithms (and/or datasets) to understand their

performance and to see which models perform better than others. Roughly, the com-

parison between models is possible by setting up an algorithm (and consequently, the
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related trained model) as baseline and, according to a specific (of aforementioned) mea-

sure, to observe if other models perform better than the baseline. To assess whether

the difference, between the baseline and the other algorithms, is statistically significant

the framework uses the paired t-test. It is also possible to perform two versions of the

statistical test, i.e., “corrected” and “uncorrected”. The latter assumes that the samples

are independent. However, due to the way cross validation works in the framework, this

assumption is not always valid. Disregarding this, by using the uncorrected version, we

can get type I errors. As opposite, the corrected t-test uses a fudge factor to counter the

dependence between samples, resulting in more acceptable type I errors6. In general, it

is strongly recommended to use the most reliable corrected version.

The way to set a baseline (to compare the trained models) mainly depends on the

presence (or not) in the literature of a already defined baseline for the studied problem

(e.g., the accuracy of the bot detectors). If possible, the baseline to be used is derived

from the state of the art. Otherwise, a classic approach, used to evaluate a good predictor,

has to be applied. This is the case when new problems are faced, and the scientific

literature does not have a solid and comprehensive background. In such situations,

pseudo-predictors are used to predict the mean value (for regression task) or the mode

(for classification task), in Weka it is called ZeroR7. If the own trained models achieve

performance statistically better than the baseline, the models are reputed good.

6https://weka.8497.n7.nabble.com/Paired-T-Tester-corrected-in-Experimenter-td21849.html
7ZeroR: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html

https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html
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Identification of Credulous Users

on Twitter

3.1 Introduction

In this chapter we aim to acknowledge the existence of a class of users, namely cred-

ulous, and provide a technique to automatically rank them by inspecting the nature

(bot or human) of their followees. The conducted experiments and related results will

contribute to give an answer to our first research question. It is worth noticing that the

content reported in this chapter have been published in [11].

The effectiveness of bots in influencing public opinion is confirmed in the literature [57,

97, 98] and the will to fight these malicious entities has stimulated a vast body of work on

bots recognition in social media [29, 68, 155, 160]. Moreover, it has been observed that

the majority of genuine users normally do not check the reliability of articles they read

and/or share from OSM [51]. Depending on the activities of their contacts, these users

may well end up actively contributing, although unknowingly, to spreading (unchecked)

potentially harmful content.

As explained in Section 2.1.3, in Twitter there are two types of social relationships:

being followed by someone (i.e., followers) or following someone (i.e., followees). As

far as users’ influence issue is concerned, it is not useful to consider followers because

being followed by other accounts cannot be considered as an active action, unlike fol-

lowing someone. For this reason, taking into account the followees relationship makes

more sense, since it expresses the interest of a user to keep up with content’s updates

of other ones. In fact, when a followee publishes something, this content is immediately

displayed on the dashboard of those accounts following it (its followers).

Starting from this chapter, we deliberately draw attention to human operated accounts

34
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in OSM, precisely to those users particularly exposed to the malicious activities planned

by bot networks, with a higher risk to become potential consumers of targeted disinfor-

mation. The key feature of such human users is to own and follow an unreliable network

of social contacts, more specifically, regarding their followees. A user following a great

amount of bots (i.e., being a bot-followees) runs more the risk to see content published

by bots on their own dashboard, that could harmful in case of malicious/deceptive con-

tent. By abuse of language we refer to such category of human-operated accounts as

credulous users [11].

3.2 Proposed methodology

For the identification of credulous users on Twitter we designed an approach composed

of two processes.

The first process aims to produce a refined decision model for bot detection which will

be applied in the second process for the classification of human users’ followees. The

refined decision model is built upon an existing bot detector along with its dataset of

Twitter users [166], where to each user is associated a label indicating whether it is a

genuine user (in other words, a human-operated account) or a bot. During this process,

data crawling from Twitter is performed to update the initial dataset. Such information

is then converted into a set of representative user features. Multiple subsets of these

features are then used to experiment with different machine learning algorithms [52] and

maximise prediction accuracy. Finally, the best combination (of features and algorithm)

is selected to obtain an improved decision model for bot detection. Section 3.2.1 describes

this process in detail.

The second process deals with our main task of identifying credulous users. We start

from the updated dataset, considering the users previously labeled as humans only, and

extend it with additional information about the followees of those users. We then exploit

the revised decision model (obtained by the first process) to label each followed account

as a bot or a human. We also introduce a set of rules to determine whether a genuine

user is a credulous one. This process is described in detail in Section 3.2.2.

3.2.1 Revisited bot detection

Our study starts by considering a publicly-available supervised dataset of Twitter users

along with a bot detector trained on it [166] (see Figure 3.1).
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Figure 3.1: Revised Bot Detection.

Bot detectors have the tendency to gradually become obsolete and to loose precision,

because bots evolve continuously [114], and existing datasets degenerate as time goes

by, for instance due to suspended accounts. To partially overcome this issue, we de-

cided to derive an improved decision model after updating the initial dataset. We run

different machine learning algorithms on different sets of features, in order to compare

their prediction accuracy. We eventually adopt as our refined decision model the best

performing alternative among the considered ones on the basis of their accuracy.

Due to Twitter’s policy restrictions1, the initial dataset we relied on only contains the

user IDs and the associated labels, indicating whether a given account corresponds to

a human user or a bot. The IDs represent Twitter accounts, which we refer to as basic

users. We implement data crawling on top of the Twitter API2 to retrieve further

information on those basic users (see 1 in Figure 3.1).

For each basic user, our crawler fetches the following data :

• the tweets: the content in form of text, photos, etc. published by the user on his

or her main page);

• the mentions: the tweets not published by the user, but where the user has been

tagged by other users;

• the list of contacts: the list of the IDs of the users involved in any social relations

with the considered user, i.e., followers and followees of a given user;

• other details: the screen name, the description, the status count, and other public

information about a Twitter account.

During this step we also filter out from the initial dataset all the entries that are no

longer valid, such as suspended or deleted user accounts.

After updating the initial dataset, the data preprocessing step (see 2 in Figure 3.1)

transforms the user data into a suitable format for querying the inspector. Requests to

the inspector include the following user’s data: ID, tweets, mentions, and screen name.

1Twitter Developer Policy: https://goo.gl/BiAG16
2Twitter API: https://goo.gl/2FXfi5

https://goo.gl/BiAG16
https://goo.gl/2FXfi5
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The inspector returns as output the probability of the user being a bot, along with a

bag of features, i.e., a representative set of feature-value pairs (see 3 in Figure 3.1). For

this task we rely on the Botometer web service3.

To obtain our revisited bot detector we perform data analysis (see 4 in Figure 3.1). We

thus compare the prediction accuracy in human-bot classification of different machine

learning algorithms on multiple subsets of the features. The combination (of features

and algorithm) showing the highest accuracy becomes our revised bot detector, i.e., the

decision model of Figure 3.1.

To determine the probability of a Twitter account being a bot, the bot detector relies

on six categories of features [166]:

1. user-based : the number of followees and followers, the number of tweets produced

by the users, profile description and settings;

2. friends: the used language, local time, popularity, etc., extracted from followers-

followees (i.e., retweeting, mentioning, being retweeted, and being mentioned);

3. network : the different types of communication (i.e., retweet, mention, and hashtag)

weighted considering the frequency of interactions or co-occurrences;

4. temporal : the user activity (e.g., production of tweets) over different time intervals;

5. content : the natural language used and the length and the entropy of the text;

6. sentiment : the attitude or mood of a conversation, e.g., arousal, valence, and

dominance scores.

At the time these experiments were carried out (in 2018), Botometer was at its first

version. In that version Botometer produced as output only two scores: the so-called

english score (ES) that relies on the six categories above and the universal score (US)

that ignores sentiment and content features, being them English-specific.

We performed four different evaluations, see Table 3.1.

Features
Algorithms

C4.5 + RF R NN

ES 78.00 77.96 78.78 79.70
US 77.60 77.05 77.41 78.05
ES+US 78.23 73.02 78.65 79.83
Bag of features 81.16 81.71 81.30 82.26

Table 3.1: Percentage of correct prediction (accuracy) - bot detection.

3Botometer web interface: https://goo.gl/uyhG5c

https://goo.gl/uyhG5c
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The first three rows of the table refer to the outcome of the experiments based on the two

scores (ES and US) separately and on their combination (ES+US ). The fourth, more

effective, experiment considers not only the values assigned by Botometer to the above

six categories but also the numbers of tweets and mentions as further features. These

eight features constitute our bag of features. The columns of the table list the considered

algorithms: C4.5 [138], based on decision trees, random forests (RF) [23], RIPPER

(R) [37], and neural networks (NN) based on the multilayer perceptron model with back

propagation [70]. These algorithms are all well-known in the literature [44, 48, 166, 167];

moreover, the random forest algorithm has proven to be a rather accurate classifier

for bot detection [166]. For the tests, we used the implementations available in the

Weka tool-suite [52]. The values in the table represent the achieved prediction accuracy

(expressed as a percentage) of models validated by means of the 10-fold cross validation.

The highest value of 82.26% (bold text in the table) is obtained by using neural networks

trained with the selected bag of features.

For clarification purposes, we would like to point out that the revised bot detector is

composed of the model trained using the bag of features and based on a neural network.

Unlike Botometer (merely used to obtain our bag of features), which returns only a

(numerical) score indicating the probability of being a bot or human, our bot detector

is able to assigns a class to each account. For this reason we called the resulting bot

detector as “revised”. It is used in the next process to determine whether a Twitter

account, more precisely a user followed by a basic user, is a bot or a genuine one.

3.2.2 Identification of credulous users

The process used for identifying credulous users is shown in Figure 3.2.

Figure 3.2: Identification of credulous users.

It starts by considering the human users of the same dataset [166] previously used in

Section 3.2.1. This time, however, we are interested in analysing the followees (i.e., the

users followed by a basic user, see Section 2.1.3) of these humans.



Chapter 3 39

Let us denote by U the set of basic users in the initial dataset, by Hb the set of basic

humans in U , and by Bb the set of basic bots in U . We additionally denote by F (h)

the set of users that are followed by a basic human (the human’s followees) h, and by

F (Hb) the union set of the followees over all the basic humans in Hb. Therefore:

U = Hb ∪Bb , Hb ∩Bb = ∅

F (h) = {f : h ∈ Hb ∧ f is followed by h}

F (Hb) =
⋃

h∈Hb

F (h)

Due to the rate limits of the Twitter APIs and to prevent the overall number of (many

potential) followees |F (Hb)| from growing excessively, we only consider the subset H ′b of

Hb whose users have at most 400 followees [12] on Twitter:

H ′b = {h ∈ Hb : |F (h)| ≤ 400}.

This threshold has been primarily chosen not only to control computational cost reasons,

i.e., to avoid a sharp increase in the number of followees to analyse. Further factors have

been considered behind this choice, specifically: (i) the Twitter’s limit in the number

of accounts that can be followed per day4,5 and (ii) the median number of accounts

followed by the most active6,7 Twitter users, i.e., 456 followees.

The data enlargement step (see 5 in Figure 3.2) consists in building, for this restricted

set of basic human users, the overall list of followees to consider, i.e., F (H ′b). The sub-

sequent data crawling step (see 6 in Figure 3.2) is performed on the list of users F (H ′b)

produced above. This step is similar to the crawling step described in Section 3.2.1, ex-

cept that here the list of contacts is not fetched. We perform a data preprocessing step

that prepares the requests for our revised bot detector (see 7 in Figure 3.2). Specifically,

information related to the followees of a genuine user (i.e., account details, tweets and

mentions) is given as input to our revised bot detector module. For each followee, it first

calculates the features via Botometer web-service (called inspector), then after adding

the number of tweets and mentions through which Botometer derived the features, it

builds the bag of features. The resulting instance is then processed by the decision model

trained in the previous process in Section 3.2.1 (see 8 in Figure 3.2). This way, we com-

pute a prediction p (i.e., 0 for humans, and 1 for bots) for each newly fetched user. In

4400 Twitter Statistics and Facts: https://tinyurl.com/y4flufbg
5About following on Twitter: https://tinyurl.com/y9ffq8lp
6Sizing Up Twitter Users (PEW research center): https://tinyurl.com/v3233b9
7With the term ‘most active’ Twitter users We refer to that 10% of Twitter users responsible for 80%

of all tweets created by US users. See previous footnote of PEW research center.

https://tinyurl.com/y4flufbg
https://tinyurl.com/y9ffq8lp
https://tinyurl.com/v3233b9
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the end, we are able to derive the set BF (h) of bot-followees for every given human user

h, and the overall set B(H ′b) of bots for the whole set of basic humans users:

BF (h) ={f ∈ F (h) : h ∈ H ′b and p(f) = 1}

B(H ′b) =
⋃

h∈H′
b

BF (h)

In the following, we discuss the rules to rank the human users in H ′b. Each of these rules

determine separate ranked lists of users that are eventually combined to build the set of

credulous users.

The first rule (R1) calculates, for a given basic human user, the ratio between the number

of its bot-followees over the total number of its followees. Intuitively, this captures the

observation that a user with a high number of bots in the list of followees is more likely

to be influenced. This is expressed as follows:

R1 =
|BF (h)|
|F (h)|

, h ∈ H ′b

The second rule (R2) ranks users according to the normalized ratio between the number

of bot-followees and the overall number of followees. Normalization is introduced to

capture cases where humans have a high ratio of followed bots over their followees, but

the actual number of followees is low in comparison to other users of the same dataset.

The rule is:

R2 =

bot normalization︷ ︸︸ ︷
|BF (h)|

|BF (hmaxB)|
∗

followees normalization︷ ︸︸ ︷
|F (h)|

|F (hmaxF |)

h, hmaxB, hmaxF ∈ H ′b

where hmaxB represents the human with the highest number of bots among its followees,

and hmaxF denotes the human with the highest number of followees.

The third rule (R3) aims at giving relevance to the seniority, or experience of a user.

Intuitively, more experienced users tend to follow new accounts by selecting them more

carefully. For each basic user, the rule calculates the ratio between the value calculated

by R1 over the age (in months) of the account, denoted as agem:

R3 =
R1

agem(h)
, h ∈ H ′b



Chapter 3 41

The fourth rule (R4) considers the normalized relation between the number of bot-

followees, followees, and age. The idea in this case is to capture the increased ability of

younger accounts to effectively filter out more bots. Specifically:

R4 = R2 ∗

age normalization︷ ︸︸ ︷
agem(h)

|agem(hmaxA)|
, h, hmaxA ∈ H ′b

where hmaxA represents the eldest human in H ′b.

On the basis of the above rules, we obtain four ranked lists of the users in H ′b in descend-

ing order. We additionally combine the four rules to understand which characteristics

are more relevant.

We first study the usefulness of normalization, with two rules that embed normalized

factors in their specification:

R13 considers the set of users selected by both R1 and R3. The idea is to prioritize

users with a considerable amount of bots among their followees, but also take into

account the percentage of bots with respect to their seniority. These two rules do

not include normalized factors.

R24 considers the set of users selected by both R2 and R4. The rationale is to prioritize

the normalization related to bots, number of followees, and age of a basic human.

We also investigate the usefulness of considering the age of the user accounts:

R12 considers the users selected by both R1 and R2. By doing so, we prioritize the

information on the number of bots and followees, intentionally excluding the age.

R34 considers the set of users selected by both R3 and R4. Here we jointly consider

the number of bots, the number of followees, and the age.

Finally, we combine all the four rules as follows:

R1234 considers the users jointly selected by all the rules combined together, so to observe

the highest-ranked users with respect to all the provided rules.

The credulous discerner step (see 9 in Figure 3.2) applies all the rules reported above

and produces ranked lists of users. Note that selecting the topmost users from these

lists yields different sets of credulous users. We would like to point out that this process

is not a decision model for classifying credulous users, it can be rather considered as a

set of rules that contribute to understanding if a human is more exposed to bots than

others. This represents an empirical investigation for building a preliminary dataset of

credulous users. In the next section, we apply these rules to our dataset and discuss

some experimental results.
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3.3 Experimental results

In Section 3.2 we introduced and implemented a method to rank genuine users on the

basis of their ‘gullibility’, so to isolate the most credulous ones from the rest. In the

following we report our experimentation whose main purpose is to validate our gullibility

ranking and its usefulness to single out credulous users. During our experiments, we

noticed some other interesting findings that we discuss in the following.

We rank the genuine accounts according to the rules defined in Section 3.2 and generate

different ranked lists for each rule. We thus obtain different sets of potential credulous

users by selecting the topmost elements of these ranked lists. To quantify the usefulness

of these sets, we define a measure of efficacy as the ratio between the number of detected

bots over the total number of followees for the considered set of credulous users. We

recall that these sets represent a first source of knowledge to further investigate the

features of the user accounts, and single out credulous users.

Having applied the selection criteria from Section 3.2.2, we obtain from the dataset [166]

754 human users to be considered. This is our dataset D1. Furthermore, in order to

check that the obtained results are not dependent on the specific dataset, we build

from D1 two smaller datasets, D2 and D3, by randomly extracting (obviously, without

re-injection) a half and a quarter of the elements of D1, respectively.

We performed a preliminary investigation on these three datasets by measuring the

efficacy for all the humans. The 754 human users in D1 turned out to have about

126k followees, 17k of which were marked as bots, leading to an efficacy of 0.14; D2

includes 377 humans, 65k followees, and 8k bots, for an efficacy of 0.13; D3 has 188

humans, exposing 35k followees, and 4k bots, hence the efficacy is 0.13. An interesting

observation is that all these values confirm that the claim about roughly 15% of Twitter

users being bots [61, 166] holds also for the induced network of followees in the considered

dataset. Another thing worth noticing is that our approach is expensive, as it required

scanning about 126k user accounts to determine gullibility of 754 genuine users only.

Tables 3.2–3.5 report our experimental results. The datasets are reported in the leftmost

side of the tables, where columns size and id report the number of users and their

identifiers, respectively. Each table corresponds to a different group of experiments.

The first one investigates the efficacy associated to the evaluation of the four rules of

Section 3.2.2 in isolation and the related results are shown in Table 3.2.

To calculate efficacy, we introduced some cutoffs on the number of genuine users to be

considered as (potential) credulous users. For example, for the D1 dataset, we set three

cutoff values to 200, 150, and 100 (shown in column cred of Table 3.2). By setting the

cutoff to the topmost 200 users, the four rules yield an efficacy of 0.275, 0.197, 0.265, and
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Datasets
cred

Specific rules (eff.)
id size R1 R2 R3 R4

D1 754
200 0.275 0.197 0.265 0.189
150 0.303 0.217 0.289 0.204
100 0.344 0.236 0.324 0.228

D2 377
100 0.273 0.183 0.270 0.173
75 0.305 0.199 0.291 0.183
50 0.350 0.224 0.326 0.214

D3 188
48 0.276 0.197 0.264 0.191
36 0.308 0.223 0.293 0.213
24 0.353 0.247 0.333 0.233

Table 3.2: Efficacy scores – Rules in isolation.

0.189, respectively. We remind the reader that these values represent the ratio between

the amount of analysed users’ bot-followees over the total number of their followees.

This means that, for example, by applying rule R1 with the largest cutoff, 27% of these

users followees turn out to be bots.

We can observe an increasing trend in the efficacy values for smaller cutoffs (i.e., 150

and 100). For example, in Table 3.2 we can see that the efficacy values are 0.275, 0.303,

and 0.344 when considering 200, 150, and 100 credulous, respectively. We also observe

similar trends for all the other specific rules (i.e., R2, R3, R4). Among all the efficacy

values for the four specific rules, it is possible to see that the best values are obtained

by considering rule R1 with a cutoff value of 100. Using R3 leads to similar values.

After considering the different rules separately, we study some possible combinations of

them. We select the topmost users (again with cutoffs at 200, 150 and 100 elements)

from the ranked lists separately produced by the specific rules, and then consider as

credulous those users obtained by intersecting the lists involved in all the considered

combinations.

Datasets Normalization

id size
R13 R24

cred eff. cred eff.

D1 754
152 0.296 174 0.200
114 0.308 125 0.218
71 0.367 82 0.243

D2 377
78 0.302 86 0.184
59 0.324 59 0.202
37 0.368 42 0.228

D3 188
36 0.304 40 0.204
31 0.315 31 0.221
18 0.368 21 0.248

Table 3.3: Efficacy scores – Rules dataset independent vs. rules dataset dependent.
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The values reported in Table 3.3 are concerned with the second group of experiments.

Here the goal is to investigate the dataset-independence capability of our ranking rules.

To this purpose, we compare the efficacy of the conjunction of rules R1 and R3 (denoted

by R13 in Table 3.3) that do not use normalization and the conjunction of the remaining

two rules R2 and R4 (denoted by R24 in Table 3.3) that instead rely on normalization.

It is worth remarking that the rules with normalization are dataset dependent because

some factors have been obtained from a specific user having (in our dataset) the highest

number of bot-followees or followees or age (in months). We have that the best efficacy

values are obtained in the absence of normalization. For example, considering the dataset

named D1, with the initial dataset of 200 potential credulous users, R13 spot out a set

of 152 credulous users, with an efficacy of 0.296. With the same dataset, R24 instead

selects 174 users as credulous. In this case, the achieved efficacy of 0.2 is sensibly lower

than R13. The value of efficacy still reflects the same trend observed before, i.e., more

permissive (initial) cutoffs lead to lower efficacy.

Datasets Seniority

id size
R12 R34

cred eff. cred eff.

D1 754
101 0.271 67 0.284
66 0.303 42 0.304
36 0.337 23 0.350

D2 377
45 0.273 28 0.299
31 0.303 18 0.315
18 0.344 13 0.342

D3 188
24 0.278 18 0.288
18 0.309 13 0.315
9 0.368 8 0.340

Table 3.4: Efficacy scores – Seniority relevance in rules.

In the third group of experiments, we investigate efficacy of the combination of rules R1

and R2 (denoted by R12 in Table 3.4) that do not consider seniority of users account

w.r.t. the combination of rules R3 and R4 (denoted by R34 in Table 3.4) that, instead,

consider the longevity (in months) of accounts. We notice that the best efficacy values

are obtained by the rules that take seniority into account. For example, with the initial

dataset (D1) of 200 potentially credulous users, R12 builds a set of 101 credulous users

with an efficacy of 0.271. With the same dataset, R34 singles out 67 credulous users,

and the efficacy is 0.284, only slightly larger than that of R13. The efficacy values for

all entries of R12 and R34 are very similar, despite the considered number of credulous

users that instead are much less for R34. For example, considering the topmost 150

potentially credulous users from the ranked lists of rules in isolation, rule R12 selects 66

credulous users with an efficacy of 0.303 (2nd line in Table 3.4), whereas rule R34 only
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considers 42 credulous users, but with basically the same efficacy. This suggests that

considering seniority is useful for the dataset under analysis, but has a limited impact.

Datasets All rules

id size
R1234

cred eff.

D1 754
63 0.294
37 0.320
19 0.370

D2 377
27 0.304
17 0.323
9 0.378

D3 188
16 0.309
13 0.315
6 0.376

Table 3.5: Efficacy scores – Selected credulous users.

In the fourth group of experiments, we evaluate the combined efficacy of all the four rules;

the related results are reported in Table 3.5. We selected the topmost 200, 150 and 100

potentially credulous users in ranked lists produced for the specific rules separately (from

Table 3.2) and then considered their intersection (D1 in Table 3.5). This cuts down the

number of selected credulous users to 63, 37, and 19, respectively. Such a large reduction

of the dataset size, due to the intersection, shows that each specific rule has the effect

of classifying as credulous different genuine users. By observing the columns of efficacy

values in the tables, we can see that by combining all the four rules we obtain the best

results. Furthermore, the observation about the increase in efficacy for smaller cutoffs

is still valid. In conclusion, the larger efficacy for smaller cutoffs, consistently observed

over all our experiments, substantiates the validity of our proposed gullibility ranking.

3.4 Discussion

Being aware that in OSM human users’ opinion can be biased by the malicious activities

of bots, in this chapter we focused on defining a method for singling out a particular

category of genuine (human) users. Specifically, we focused on those users that can be

the potential subjects of targeted mis-/dis- information, calling them credulous users.

The harmfulness of this kind of genuine users mainly rely on their gullibility about the

nature (human or bot) of accounts they follow on OSM, leading them to own a consid-

erable amount of bot-followees.
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In this chapter, we have proposed an approach that identifies, via a ‘gullibility’ ranking,

the most credulous users out of a set of human-operated Twitter accounts. The experi-

mental results and the related evaluation procedure confirm the validity of our ranking

mechanism both in terms of efficacy and shows that its not dataset dependent. The

efficacy score can be assumed to be very close to what could be defined as a gullibility

measure. We thus provide an answer to the RQ1 below.

RQ1 – Among human Twitter users, which type of social relationship (e.g.,

following or being followed) is the most influential, and why? Does it make

sense to assign a gullibility score to human users? Which user-related aspects

should be taken into account in such a score? Does a clear separation between

credulous and not credulous users exist? Or, simply, is one user more credulous

than another?

ANSWER – On Twitter the followees relationship, unlike followers, is the best expres-

sive one (i.e., being influenced by other users) because it manifests the interest of an

user to be updated about some other accounts, therefore to their content production.

Since the high efficacy value, that indicates the bot-followees density among the credu-

lous users’ followees, we are confident about the usefulness of a gullibility score because

it can interpreted as indication (to malicious OSM entities) about the convenience in

performing mis-/dis- informative attacks on a user. Among the many aspects, useful

for the identification of credulous users, we considered the ratio between the number of

bot-followees and followees and the seniority; then, implementing them in the form of

rules (i.e., R 1, R 2, R 3 and R 4).

Considering the rules in isolation (Table 3.2), it is not possible to make a clear distinc-

tion between credulous and not credulous users. The thresholds of potentially credulous

users (namely, topmost users in each ranked list) have been chosen empirically, there-

fore they can only provide a rank where, according to the considered rule, one user can

be defined more credulous than another. But, when the rules are jointly considered (by

means of intersections among lists, e.g., Table 3.5), the difference between credulous and

not credulous users is much clearer because of the large reduction in the number of users

(credulous for all rules).

In the light of what emerged from these first investigations, it is advisable to highlight

some details and limitations. First of all, it is worth to specify that being credulous is a

non-observable state of the user, which the value of followed bots may help to infer. For

this reason, we are cautious in stating that all the accounts identified by this method

are credulous in the strictest sense (i.e., they follow bots only because of their naivety

or incapability to distinguish them) due to the possibility that some accounts, created

for bot monitoring purposes, may be identified as credulous.
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However, it is worthwhile to remark that the robustness of this approach is strongly

affected by the performance of the used bot detector in the task of classifying users’

followees. In this context, restricting our investigation to only (human) users with at

most 400 followees can be considered a further limitation. This threshold, even if set

taking into account some (in our opinion deemed sensible) factors, can be reported as a

parameter to be tuned. Indeed, it would be interesting to study how the variation of this

threshold can influence the quality (in terms of efficacy) of the identified gullible users.

Moreover, the application of this approach is very expensive both in terms of data (i.e.,

it requires scanning the potentially many users’ followees), and computational time (i.e.,

mainly due to the Twitter API policy constraints). This limitation will be faced in the

next Chapter 4. Furthermore, at this stage, we do not take into account to what extent

these genuine users disseminate content and which accounts represent the sources of the

propagated content. We will address this in Chapter 6.
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Automatic Detection of

Credulous Twitter Users

4.1 Introduction

In the previous chapter we assessed the effectiveness and usefulness of identifying cred-

ulous users. However, we also remarked that the whole process is very expensive. In

fact, checking all the accounts’ followees implies high computational costs, and it may

be unfeasible in case of a large amount of human-operated accounts.

Being aware of this limitation, in this chapter we explore the effectiveness of ML tech-

niques to perform the same task (i.e., the identification of credulous users). Precisely,

through the training of a set of decision models, we automate the recognition of cred-

ulous users. To this purpose, we investigate the relevant features of Twitter accounts

that are able to distinguish credulous and not credulous users.

As mentioned in Section 2.3, in a typical supervised learning task, the starting point

is the formation of a ground-truth. In this specific case, it is represented by human-

operated accounts, labeled as credulous users or not. To the best of our knowledge, there

are no publicly-available datasets of such a kind of Twitter users, and the one presented

in Chapter 3 is no large enough. In this chapter, we overcome this issue by reapplying

the approach introduced in Chapter 3, but starting from a much larger dataset.

The robustness of the credulous identification approach, used here to build a ground-

truth of credulous users, depends on the capability of the employed bot detector in

determining the human/bot nature of the humans’ followees. Given the low performance

of the bot detectors shown in the previous chapter (see Table 3.1), part of this chapter

is aimed to train a more accurate bot detector.

48
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The investigation conducted hereinafter focuses on the second research question. Some

of the results shown in this chapter have been published in [12].

4.2 Approach

We set up three sequential processes: bot detection, credulous identification, and cred-

ulous classification. The first activity aims at training a binary classifier to recognise

bots and human-operated accounts, with the goal to improve the performances shown in

Section 3.2.1 (see Table 3.1). The second task focuses on the identification of credulous

human-operated accounts, via the approach presented in Chapter 3, to build a ground-

truth of credulous and not credulous users. The third step classifies human-operated

accounts as credulous or not, by using the built ground-truth. Before detailing the three

processes, we introduce the datasets used in this study.

4.2.1 Datasets

Besides the dataset used in the previous Chapter 3 (VR17 below), we consider two

further publicly available datasets1, specifically:

CR15 presented in [44], it includes three smaller datasets. The first one has been collected

for scientific purposes over a period of twelve days in December 2012, precisely from

a research initiative named @TheFakeProject. It was created and advertised with

the help of National newspapers. A specific Twitter account was created showing

in its bio the motto “Follow me only if you are NOT a fake”. Furthermore, to

check if a follower is really a human, a verification phase has been conducted. In

particular, an URL to a unique CAPTCHA has been sent to each follower as a

direct message. Among the 574 accounts that started to follow it, 469 successfully

pass a verification phase consisting in resolving a unique CAPTCHA. These 469

Twitter accounts were certified as human-operated. The second one was collected

to carry on a sociological study focused on the strategic changes in the Italian

political panorama between 2013-2015. 84,033 unique Twitter accounts used the

hashtag #elezioni2013 in their tweets: by performing a random sampling, 1,488

accounts were subject to a manual verification and labeled as genuine users. The

third subset is composed of 833 fake accounts, bought from three different Twitter

accounts online markets;

CR17 firstly appeared in [42]. Following a hybrid crowd-sensing approach [6], the authors

randomly contacted Twitter users by asking simple questions in natural language.

1Bot Repository Datasets: https://goo.gl/87Kzcr

https://goo.gl/87Kzcr
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All the replies were manually verified and 3,474 Twitter accounts were certified as

human-operated ones. Furthermore, the dataset contains 6,609 social spambots

(e.g., spammers of job offers and advertising products on sale at Amazon);

VR17 firstly introduced in [166]. It consists of 2,573 Twitter accounts. A manual anno-

tation was performed by inspecting the profile details and the produced content.

Overall, 1,747 accounts were annotated as human-operated and 826 as bots.

From the merging of the three datasets, we obtain a unique labeled dataset (human-

operated/bot) of 12,961 accounts - 7,165 bots and 5,796 humans. We use this dataset

to train a bot detector, as shown in Section 4.2.2. To this end, we use the Java Twitter

API2, and for each account we collect: tweets (up to 3,200), mentions (up to 100), IDs

of followees and followers (up to 5,000).

First, we need to detect the amount of bots which are followed by the 5,796 human-

operated accounts. To do so, we need to crawl information (profile details, tweets and

mentions) about the followees of such accounts. Due to the rate limits of the Twitter

APIs, the huge amount of followees possibly belonging to the aforementioned human-

operated accounts and faithfully acting like in Chapter 3, we consider only those accounts

with a list of followees lower than or equal to 400 [11]. This leads to a dataset of 2,838

human-operated accounts, called Humans2Consider hereafter. By crawling the data

related to their followees, we overall acquire information related to 406,810 Twitter

accounts that represent the selected humans’ followees.

4.2.2 Bot detection

A bot detection phase is required to discriminate bots and genuine accounts in the

dataset of the 406,810 followees. The literature offers a plethora of successful approaches,

based, e.g., on profile- [44, 143], network- [103, 172, 184], and posting-characteristics

[29, 45, 67] of the accounts. However, also due to the capabilities of evolved spambots to

evade detection [42, 43, 145], the performances of the diverse techniques degenerate over

time [114]. Furthermore, some bot detectors are available online, but not fully usable

due to restrictions in their terms of use (e.g., DeBot3 [29]). To overcome these issues, we

design and develop a supervised approach, which mixes features from popular scientific

work and the ones introduced in Chapter 3 (see bag of features the Section 3.2.1).

In detail, we consider two sets of features listed in Table 4.1, where each feature is

denoted by F and a number corresponding to its ID. The first one derives from the most

updated version of Botometer [166, 183], precisely, the 3rd version 4. In addition to the

2Twitter API: https://goo.gl/njcjr1
3DeBot api restriction: https://tinyurl.com/yapppq89
4Botometer: https://botometer.iuni.iu.edu/

https://goo.gl/njcjr1
https://tinyurl.com/yapppq89
https://botometer.iuni.iu.edu/
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original Botometer features [166] (i.e., the six categorical features listed in Section 3.2.1 –

F20 - F25), we also include: the CAP scores5 (namely, Complete Automation Probability,

the novelty of the 3rd version – F28 and F29), the Scores6 (F26 and F27), the number

of tweets (F30) and mentions (F31); it is worth noting that the latter two features and

the six categorical features constitute the bag of features used in Chapter 3. We call

Botometer+ this augmented set of features (F20-F31).

The second feature set is inherited from [44], where a classifier was designed to detect

fake Twitter followers. We use almost all their ClassA features7, except the one about

‘duplicated profile picture’ (F13), (we have no means to verify whether the same profile

picture is used twice in the whole Twitter-sphere). We call ClassA- this reduced set of

features (F1-F19 w\o F13).

In the following, the conjunction of the two sets of features is referred as ALL features.

Lbl Feature Name Description

ClassA-’s features

F1 #friends/#followers2 The ratio between the number of friends and
the squared number of followers

F2 age (in months) The number of months since the creation of
the account

F3 #tweets The number of tweets, retweets, replies and
quotes of the account

F4 has a Name True if a name is specified in the account’s
profile

F5 #friends (Alias #followees): The number of accounts
a user is following

F6 URL in profile True if a URL is specified in the account’s
profile

F7 following rate The number of followees over the sum of fol-
lowees and followers

F8 default image after 2m True if the account did not change the default
image provided by Twitter in the account’s
profile after 2 months of its creation

F9 Belong to a list True if the account is member of, at least,
one list

F10 Profile has image True if the account has an image in its profile

F11 #friends/#followers ≥ 50 True if the ratio between the number of
friends and followers is greater than or equal
50

F12 ‘bot ’ in bio True if there is a clear declaration of being a
bot in the account’s profile

5Complete Automation Probability scores (eng) and (uni): https://tinyurl.com/yxp3wqzh
6English and Universal scores: https://tinyurl.com/y2skbmqc
7ClassA features require only information available in the profile of the account [44].

https://tinyurl.com/yxp3wqzh
https://tinyurl.com/y2skbmqc
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F13 Duplicate profile pictures True if the profile’s image is the same of that
of other accounts (never considered)

F14 2 x #followers ≥ #friends True if twice the followers is greater than or
equal the number of followees

F15 #friends/#followers ' 100 True if an account is following a number of
accounts that is about 100 order of magni-
tude the number of accounts that follows it

F16 profile has address True if a location is specified in the account’s
profile

F17
no bio, no location,
#friends ≥ 100

True if: the account has no description in the
bio and location fields of its profile and the
number of friends is greater than or equal 100

F18 has biography True if the biography is specified in the ac-
count’s profile

F19 #followers The number of the account’s followers

F20 Sentiment ranging from 0 to 1, this score relates to the
emotion conveyed by a piece of text [166]

Botometer+’s features

F21 Friend ranging from 0 to 1, this score relates to
the interconnectivity between users in terms
of retweeting and mentioning between each
other. It does not take into account Fol-
lowee/follower information [166]

F22 User ranging from 0 to 1, this score is calculated
by considering user meta-data; relates [166]

F23 Content ranging from 0 to 1, this score extracted by
processing tweets by looking to their entropy
and lenght; relates [166]

F24 Temporal ranging from 0 to 1, this score relates on
the users’ activity, e.g.,time elapsing between
tweets and their distribution [166]

F25 Net ranging from 0 to 1, this score relates to the
different type of communication linking users
by means of mentions, retweets and hashtag
realizing a net for each type [166]

F26 Score (eng) ranging from 0 to 1, this score indicates if an
account to be most human-like (0) or bot-like
(1), by considering also text analysis (english
language)

F27 Score (uni) ranging from 0 to 1, this score indicate if an
account to be most human-like (0) or bot-
like (1), without considering also text analy-
sis (english language

F28 CAP (eng) ranging from 0 to 1, this score represents an
updated version of Score (eng) feature
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F29 CAP (uni) ranging from 0 to 1, this score represents an
updated version of Score (uni) feature

F30 #Tweets4WS number of tweets sent to Botometer web ser-
vice on which it calculates the features (F20-
F29)

F31 #Mentions4WS number of mentions sent to Botometer web
service to calculate the features (F20-F29)

Table 4.1: Features list and description.

For our experimentation, we adopt nineteen well-known learning algorithms. We run

them on the Humans2Consider instances, trying the three sets of features (i.e., Botome-

ter++, ClassA- and ALL features). The classification capabilities of the trained bot

detectors is validated by means of 10-fold cross validation. Then, the classification per-

formances are evaluated by considering the following metrics (presented in Section 2.3.2):

accuracy, precision, recall, F1 [110], and Area Under the ROC Curve (AUC ) [56]. The

classifier showing the best accuracy score will pass through Hyper-Parameter tuning to

single out the best parameters configuration (an algorithm-dependent procedure). This

is to further improve the classifier’s bot recognition skills. The tuned classifier will then

used to label the humans’ followees in Humans2Consider dataset (Section 4.2.1). All

experimental results are presented and explained in Section 4.3.

4.2.3 Identification of credulous Twitter users

The identification of credulous users can be performed with multiple strategies, since

there are various aspects that may contribute to spot those users more exposed to

the malicious activities of bots. As anticipated in Section 2.2.1, there are not so many

approaches focusing only on human-operated users, since most of the related work target

the detection of bots, see, e.g., [46, 69]. However, it has been demonstrated [22, 147]

that bots represent one of the primary means for diffusing and letting fake news become

viral. Besides, on the very first phase of the news diffusion, human-operated accounts

significantly contribute to the spreading of such news [51].

To discern whether a genuine user is a credulous one, we apply the approach described

in Section 3.2 to the Humans2Consider dataset (2,838 human-operated accounts) and

we get as output four lists of ranked human-operated users, one list for each rule.

Then, regarding each single rule (i.e., R1, R2, R3, R4), we select as ‘potential’ credulous

users the topmost 753 from each ranked list (this selection is also referred as cut). The

reason behind the cut ’s cardinality comes from a simple proportional calculation. In

the previous Chapter 3, with a dataset of 754 humans, we set the cut to the first 200

users for each ranked list. Proportionally, here, with a dataset of 2,838 humans, the cut

have to be set at the 753rd user of each list. We consider as credulous users, all those
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contained in the intersection between ‘potential’ credulous, on each ranked list (see All

rules in Table 3.5). At the end of this procedure, we identify as credulous 316 users

in Humans2Consider. This set represents the ground truth for the classification task

presented in the next section.

It is worth to highlight that, to analyse 2,838 users, we needed 421k users’ account

information and 833 million of tweets; this corresponds to 3Tb of data in our DBMS.

4.2.4 Classification of credulous Twitter users

In this section we consider several decision models and learning algorithms, to find the

most suitable to automatically classify a Twitter account as credulous or not. By using

classifiers instead of the process described in Chapter 3, we can save further data gath-

ering related to the humans’ followees. Our ground truth, built in Section 4.2.3, involves

316 credulous and 2,522 not credulous users.

We perform the experiments as in Section 4.2.2. Specifically, we experiment the same

learning algorithms, by training them with the instances of the Humans2Consider datasets

and considering the same feature sets as those in Section 4.2.2 (i.e., Botometer+, ClassA-

and ALL features). The classification performance are evaluated by means of 10-fold

cross-validation.

It is worth to stress that, unlike Section 4.2.2, where the dataset was almost balanced,

now the learning algorithms take as input a very unbalanced ground truth, showing an

unbalancing factor of 1:8 (namely, for 1 credulous instance there are 8 not credulous

instances). In the literature, several strategies have been provided to deal with unbal-

anced datasets in machine learning tasks; the most popular are oversampling [30] and

undersampling [104]. Roughly, oversampling fabricates new, artificial data, by taking

into account the data distribution of the minority class. Well-known techniques for over-

sampling are: random (just duplicating instances), SMOTE [30] and ADASYN [76]. At

first sight, this solution could seem suitable to overcome the drawback of the composi-

tion of the ground truth, but we decide not to apply this technique. The reasons are as

follows:

1. few instances in the minority class (only 316 credulous users). This means we

would have to produce more than 2,000 new instances;

2. the generated data do not always respect the data type semantics. For instance, in

case of natural numbers (e.g., #tweets), real numbers could be produced instead;

3. features are somehow semantically linked between each other, e.g., the numbers

of followees, or the tweets, could depend by the seniority of the account. By

generating instances in such a way, it could be possible to have accounts with
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thousands of tweets and/or followers in a few days: this is not realistic and it can

bias the learning phase (generation of outliers);

Undersampling methods select, among the majority classes, the same number of in-

stances of the minority classes. The most known techniques of undersampling are:

random (just selecting instances), cluster [102], Tomek links [165] and ensemble learn-

ing [188].

In our case, the selection of only 316 not credulous instances over 2,522 would lead

to a dangerous loss of information about the not credulous population. Therefore, in-

spired by the under-sampling iteration methodology introduced for strongly unbalanced

datasets [96], we avoid to work with unbalanced datasets by adopting the following

strategy. From the majority class (not credulous users), we randomly select a number

of instances equal to the number of credulous ones (i.e., 316), without reinjection. This

subset is then unified with the set of credulous users producing a balanced ‘subdataset’

hereinafter referred to as fold. Then, we repeat this process on previously unselected

instances of not credulous set, until there are no more instances (see Figure 4.1). This

way, we split the sets of not credulous users into smaller portions unifying each one with

a copy of the credulous users sets to obtain a collection of balanced subdatasets.

Figure 4.1: Adopted strategy to avoid an unbalanced set as ground truth. The
credulous user set unified (U ) with one of the not credulous users subsets produces

(->) one fold.

For the sake of clarity, we detail the properties of folds as follows. Let us denote with n

as the floor8 of the ratio between the number instances in not Credulous users set (NC)

over the number instances in Credulous users set (C). Let us define:

GroundTruth := C ∪NC;

and

NCi := {u ∈ NC : |NCi| = |C|} for i ∈ N 1 ≤ i ≤ n
8The Floor function gives in output the integer part of a ratio.
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and

NCn+1 = NC \
n⋃

i=1

NCi

such that NCi satisfy

n+1⋃
i=1

NCi = NC and NCi

⋂
NCj = ∅ for 1 ≤ i < j ≤ n+ 1.

Let us define

Foldi = C
⋃
NCi; for 1 ≤ i ≤ n+ 1.

It is trivial to obtain

n+1⋃
i=1

Foldi = C
⋃

(
n+1⋃
i=1

NCi) = C
⋃
NC = GroundTruth

and
n+1⋂
i=1

Foldi = C

Each learning algorithm is trained on each fold. To evaluate the classification per-

formances on the complete dataset, and not just on individual folds, we compute the

average of the values related to the folds composing each subdataset, for each considered

evaluation metric.

4.3 Experimental results

All the experiments are performed with Weka [181], i.e., a tool providing the implemen-

tation of several machine learning algorithms. In the following, we present the main

results obtained for bot detection and credulous classification.

The first column of Tables 4.2 and 4.3 shows the set of features considered for learning

(i.e., ALL features, Botometer+ , ClassA-, see Section 4.2.2). The second column re-

ports a subset of the adopted machine learning algorithms whose name is abbreviated

according to the Weka’s notation. The whole set of tested algorithms is as follows:

IBk: K-nearest neighbours [2], NB: Naive Bayes [85], SMO: Sequential Minimal

Optimization [136], JRip: RIPPER [37], MLP: Multi-Layer Perceptron [127], RF:

Random Forest [24], REP: Reduced-Error Pruning [137], 1R [79]
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While the tables show the results of the most performing learning algorithms only, it

is worth noting that 19 algorithms were used in the experimental phase. We refer the

reader to the complete version of the experiments in the Appendix A.1.

The remaining columns in the tables report the values of the evaluation metrics (de-

scribed in Section 2.3.2).

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

IBk 97.34 0.97 0.98 0.98 0.97
NB 97.03 0.98 0.97 0.97 0.98
SMO 98.04 0.98 0.98 0.98 0.98
JRip 97.92 0.99 0.98 0.98 0.99
RF 98.33 0.99 0.98 0.98 1.00

Botometer+

IBk 97.05 0.97 0.97 0.97 0.97
NB 97.17 0.98 0.97 0.97 0.99
SMO 97.64 0.98 0.98 0.98 0.98
JRip 97.61 0.98 0.97 0.98 0.98
RF 97.97 0.98 0.98 0.98 1.00

ClassA-
IBk 91.03 0.91 0.93 0.92 0.91
NB 64.37 0.89 0.42 0.54 0.77
MLP 85.01 0.89 0.84 0.86 0.91
JRip 94.38 0.96 0.94 0.95 0.96
RF 95.84 0.98 0.95 0.96 0.99

Table 4.2: Results for bot detection

Looking at the metric values, there is not a relevant difference in preferring a certain

set of features over another. Albeit at a higher computational cost in features calcu-

lation, we prefer to adopt the features set that gives the highest performances. This

choice is motivated by our need to apply the classifier to the humans’ followees in the

Humans2Consider dataset, with hundreds of thousands of accounts. Every single per-

centage point that we loose in accuracy translates into thousands of wrongly classified

followees (in our case precisely 4k followees, since we have 406k followees – Section 4.2.1).

Random Forest is the algorithm obtaining the best performances; with ALL features (see

the shaded line in Table 4.2), it achieves an accuracy = 98.33%, F1 = 0.98 and AUC

= 1.00. After the hyper-parameter tuning phase, we obtain a slight improvement in

accuracy of 98.41%.

In Table 4.3 are reported the performance results values obtained by running the learning

algorithms on the Humans2Consider dataset, for the credulous classification task. It

is worth noting that there are 316 Twitter accounts labelled as credulous users. At a

first glance, we can see how ALL features and ClassA- show to have good and quite

similar classification performances, contrary to Botometer+. Both ALL features and
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evaluation metrics
alg accuracy precision recall F1 AUC

ALL features
IBk 89.69 0.74 0.73 0.90 0.96
BN 80.26 0.91 0.89 0.76 0.91
SMO 78.77 0.80 0.78 0.78 0.79
1R 93.27 0.99 0.88 0.93 0.93
REP 93.07 0.99 0.88 0.93 0.94

Botometer+
IBk 65.03 0.61 0.60 0.63 0.70
BN 61.02 0.67 0.62 0.49 0.69
MLP 64.72 0.67 0.58 0.61 0.69
JRip 66.42 0.67 0.67 0.66 0.67
RF 67.81 0.68 0.69 0.68 0.73

ClassA-
IBk 92.59 0.74 0.73 0.92 0.97
BN 82.77 0.98 0.88 0.79 0.93
JRip 93.05 0.99 0.87 0.92 0.93
1R 93.27 0.99 0.88 0.93 0.93
REP 93.09 0.98 0.88 0.93 0.95

Table 4.3: Results for credulous detection – 316 Credulous users.

ClassA- demonstrate their efficacy to discriminate credulous users. On the contrary, the

Botometer+’s features properly work for bot detection tasks only. Going into deeper

details, in Table 4.3 we can notice that the 1R algorithm obtains the best accuracy

percentage (93.27% with σ = 3.22) and F1 (0.93).

As for the bot detector phase, Table 4.3 reports a part of the experiments. The full

version is available in Table A.2, see Appendix A.2.1.

Finally, it is worth noting that the performances of the 1R algorithm are the same when

considering ALL features and ClassA-. This means that the algorithm selects ClassA-’s

features only, the ones from Botometer+ are useless in this case. This is a successful

result, since we recall that ClassA- features refer to the profile of accounts only, and it

is less expensive to calculate them.

4.3.1 Features analysis

This section extends the credulous classification analysis to assign each ClassA-’s feature

an ‘index of ability’ to distinguish credulous from not credulous users.

Weka’s tools assess the discriminatory importance of a feature in a set through the so

called attribute selection. For the sake of reliability, we consider three attribute selec-

tor algorithms that evaluate the value (in terms of importance) of each attribute with
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different methodologies: (i) OneRAttributeEval9 uses the OneR classifier, (ii) Symmetri-

calUncertAttributeEval10 measures the symmetric uncertainty with respect to the class

and (iii) InfoGainAttributeEval11 considers the information gain [90] against the class.

Rank OneR SymmetricalUncert InfoGain

1 F1 (1.000) F1 (1.000) F1 (1.000)
2 F14 (0.977) F14 (0.896) F14 (0.894)
3 F19 (0.889) F19 (0.509) F19 (0.620)
4 F3 (0.768) F5 (0.299) F3 (0.323)
5 F5 (0.720) F7 (0.235) F5 (0.273)
6 F7 (0.712) F3 (0.218) F7 (0.255)

Table 4.4: Top most relevant ClassA-’s features (rank).

Table 4.4 shows the ranking of the first six most important features, according to the

three evaluating algorithms. The remaining features have been estimated to impact with

a lower relevance, in fact at least one of the evaluators estimated a value lower than 0.1,

this happens for the seventh feature in the rank (i.e., F9) estimated as follows: 0.631

(OneRAttributeEval), 0.101 (SymmetricalUncertAttributeEval) and 0.085 (InfoGainAt-

tributeEval). From Table 4.4, we can see that all the attribute evaluators confirm the

relevance of the same features in the first six positions.

4.3.2 Further experiments

In the previous sections, we have proved the capability of ML techniques to successfully

classify credulous users, thanks to the right selection of the discriminant features too. To

further reinforce the latter findings, we decide to extend our experiments. The following

experiments and related results are not included in [12].

What differentiates the following experiments from the previous ones is the number of

users considered of being credulous in the Human2Consider dataset. In Section 3.2.2,

starting from the four ranked lists (calculated by means of the four rules), 316 accounts

were identified as credulous by intersecting the individuals in all the four lists. For each

list, we consider as potential credulous users the first 753 users. The augmentation of

this last value (potential credulous users) allows us to extend the number of credulous

users. Since the number of the considered human-operated accounts remains unchanged

(i.e., 2,838 in Humans2Considered), and what changes is the number of instances for

each class (credulous vs not credulous users), we will refer to the next obtained ground-

truths by calling them ‘configuration’. The first cutoff is performed by selecting the first

946 users, i.e., considering one third of the accounts in Humans2Consider as potentially

9OneRAttributeEval: https://tinyurl.com/qtl3nox
10SymmetricalUncertAttributeEval: https://tinyurl.com/wcgccoz
11InfoGainAttributeEval: https://tinyurl.com/ve99qt8

https://tinyurl.com/qtl3nox
https://tinyurl.com/wcgccoz
https://tinyurl.com/ve99qt8
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credulous users. Then, by intersecting on the four ranked lists, we singled out 443

credulous users (the remaining 2,395 accounts are considered not credulous users). We

call this configuration of the Humans2Consider dataset, cut946. Similarly, to obtain at

least 500 instances of credulous users, we select the topmost 1,030 accounts as potential

credulous users, producing a further configuration with 502 credulous users (and 2,336

not credulous users). We refer to this configuration as cut1030.

With these further experiments we aim at demonstrating that: (i) the introduction of

‘fake’ credulous users adversely affects the overall performances of the trained classifiers

w.r.t. the results shown in Section 4.3 (see Table 4.3), (ii) ClassA- still remain the

best set of features, and (iii) Botometer+ features are still useless (given the very low

accuracy values) for a credulous classification task.

Albeit in reduced form, cut946 and cut1030 suffer of unbalanced classes. Therefore, we

apply the same strategy (i.e., iterative undersampling) to deal with this issue.

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

IBk 86.07 0.72 0.71 0.85 0.94
BN 79.12 0.86 0.85 0.75 0.89
SMO 78.48 0.80 0.74 0.77 0.78
JRip 89.92 0.97 0.82 0.88 0.91
REP 89.79 0.96 0.82 0.88 0.92

Botometer+

IBk 64.54 0.59 0.58 0.60 0.69
BN 61.23 0.65 0.57 0.53 0.68
MLP 64.84 0.66 0.56 0.60 0.69
JRip 66.16 0.65 0.64 0.64 0.66
RF 66.36 0.66 0.64 0.65 0.71

ClassA-

IBk 88.98 0.72 0.70 0.88 0.94
BN 81.73 0.95 0.82 0.77 0.91
RF 89.65 0.94 0.84 0.89 0.95
JRip 90.08 0.98 0.81 0.88 0.91
REP 89.91 0.94 0.82 0.88 0.92

Table 4.5: Results for credulous users detection – 443 Credulous users (cut946 )

Tables 4.5 and 4.6 show part of the experimental results related to the two additional

datasets with 443 and 502 credulous users, respectively. For the complete version of

the whole experimental learning sessions, we invite the reader to read the appendix:

Table A.3 for experiments on cut946 (Appendix A.2.2) and Table A.4 for experiments

on cut1030 (Appendix A.2.3).

For the configuration with 443 credulous users (namely, cut946 – Table 4.5), JRip per-

forms better than the other algorithms, with an accuracy of almost 90% (89.92) using



Chapter 4 61

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

IBk 85.23 0.71 0.70 0.84 0.93
BN 78.24 0.84 0.84 0.75 0.89
SMO 78.28 0.79 0.72 0.75 0.78
JRip 88.45 0.95 0.79 0.86 0.89
RF 88.31 0.92 0.81 0.86 0.94

Botometer+

IBk 66.31 0.57 0.57 0.61 0.70
BN 60.87 0.65 0.58 0.55 0.68
MLP 65.16 0.64 0.57 0.59 0.69
JRip 67.27 0.65 0.62 0.63 0.67
RF 66.87 0.65 0.62 0.63 0.71

ClassA-

IBk 87.25 0.71 0.70 0.85 0.93
LAD 88.32 0.94 0.80 0.86 0.94
RF 87.86 0.92 0.81 0.86 0.94
JRip 88.70 0.96 0.79 0.86 0.89
REP 88.39 0.94 0.80 0.86 0.92

Table 4.6: Results for credulous users detection – 502 Credulous users (cut1030 )

ALL features and 90.08% using ClassA-. Once again, ClassA-’s features perform bet-

ter than Botometer+’s ones (and slightly better than ALL features). Compared to the

dataset in Section 4.2.4, we can notice a slight degradation in the accuracy score, around

3%. Concerning the F1 and AUC, Random Forest (RF) obtains the best performances,

slightly better than those corresponding to JRip; precisely 0.89 (F1) and 0.95 (AUC).

Recalling that AUC is the best indicator to look at in case of unbalanced datasets (see

Section 2.3.2), here we prefer to look to accuracy values because of the strategy adopted

to overcome the issue of unbalanced datasets.

We conclude the section with comments on the performances obtained on the last config-

uration (cut1030 – Table 4.6). This last configuration is the one with the larger number

of credulous users (precisely 502). JRip obtains the best percentages of accuracy (88.45

with ALL features’s features and 88.70 with ClassA-’s features). As before, we confirm

the usefulness of ClassA-’s features. Moreover, we assist to a further reduction of the

best accuracy score w.r.t. the previous case. The highest F1 in ALL features belongs

to RF and JRip with an equal score of 0.86; in ClassA- F1 shows the same score with

RF, LAD, JRip and REP. Concerning AUC, in ALL features RF performs best (0.94)

and in ClassA- the best score belongs to LAD and RF (0.94). As explained above, we

consider as the best the algorithms showing the highest accuracy.

The results of these further experiments confirm our earlier expectation of a degrada-

tion about the classification performances related to the forced enlargement of credulous

users. Furthermore, these results confirm that the ClassA-’s features are the most dis-

criminatory ones. Despite the similar scores achieved by considering the union of features
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sets (namely, ALL features), the cheapness of ClassA-’s set is preferable, even if there

was a slight degradation of the classification performances.

4.4 Discussion

The results shown in Tables 4.3-4.6 highlight the capability of our approach to auto-

matically discriminate those Twitter users with a large number of bot-followees, namely

credulous users.

We experimented two different feature sets (namely, ClassA- and Botometer+), plus

their union set (called, ALL features). ClassA- and Botometer+ features need a very

different amount of information for the feature engineering phase. In fact, Botometer+

requires, for each user, all its tweets and mentions; while ClassA- needs the data in the

user’s profile, so called user’s metadata12. On the latter set of features, we got the best

classification results. The Botometer+ set resulted to be less suitable to accomplish the

credulous classification task.

Note that none of the adopted features have been derived by processing information re-

lated to the followees of the human-operated accounts (e.g., their tweets, mentions and

profile data): this would have implied a high cost in terms of data gathering, storing

and processing. These data have been only used to re-apply the approach in Chapter 3

(in order to get a larger ground truth of credulous users). This meant to retrieve infor-

mation for more than 421k user accounts and 833 millions of tweets. On the contrary,

the credulous detector, trained with ClassA-’s features, requires to gather the profile in-

formation of 2,838 accounts only. We underline that the features useful to discriminate

credulous accounts are features belonging to the account profile only.

Even if the design of a bot detector was not our primary target, but only a mean through

which building the ground truth for training the credulous classifiers, we notice that,

compared to the performances reported in [42, 183], our bot detector achieves very good

classification performances. This strengthens the robustness of the ground truth ob-

tained in Section 4.2.3.

The findings in Sections 4.3 provide the answer to RQ2, shown below for convenience.

RQ2 – How effectively Machine Learning (ML) techniques can be in distin-

guishing credulous and non-credulous users? Is it possible to avoid in depth

inspection of human users’ social contacts in order to lighten the complexity of

identifying credulous users? What is the loss in terms of accuracy when per-

forming their identification? What are the features of Twitter accounts that

12Twitter User Object: https://tinyurl.com/y5s5kpuw

https://tinyurl.com/y5s5kpuw
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can facilitate this distinction? Are the features used for bot detection beneficial

also for identifying credulous users?

ANSWER – ML techniques have been proved to be effective in classifying credulous

users. The classification results are very promising (e.g., in terms of accuracy and AUC

values). This effectiveness pairs with great savings, both in terms of computational and

time costs. The very effective features given as input to the classifier not only can be

obtained by looking at the user’s profile data only, but also they avoid the scan of the

(potentially many) followees of the target account. This is a big advantage due to sav-

ings of computational costs (feature engineering phase) and time costs (data crawling).

Although we tested several feature sets, we discovered that the most effective ones can be

calculated from a user’s profile information only (ClassA-). Through an evaluative anal-

ysis of those features we were able to single out the most determinant ones by checking

several feature evaluation methods (see Table 4.4). The classification models have some

limitations in terms of accuracy; but their achieved accuracy on average is 93.27% with

σ of 3.22 (Table 4.3). We argue that such loss in accuracy can be considered more than

acceptable. Lastly, we found that features designed for the bot detection task resulted to

be useless for credulous users classification (Botometer+).

However, although models based on RF achieve predictive accuracy values slightly lower

than the best score (i.e., 93.27% with 1R model), it is worth to notice that, by considering

the ClassA- features set, RF models get the best AUC scores (e.g., 0.97 in Table A.2,

0.95 in Table A.3, and 0.94 in Table A.4). An interesting aspect is that RFs perform well

for both malevolent actors (e.g., bots as seen in Table 4.2) and victims (e.g., credulous

users). The effectiveness of RFs in working well with profiles that exhibit a kind of

stability is well-known in the literature [49, 146, 154]. This suggests the existence (for

both roles) of some common features that are hard to disguise.



Chapter 5

Guessing the Number of

Bot-followees

5.1 Introduction

In the previous chapter we mainly dealt with a classification task of supervised learning

and we provided evidence of the effectiveness of Machine Learning (ML) techniques

in automating the identification process of credulous users. In this chapter, starting

from the definition of credulous users, we instead use ML techniques to determine, as

precisely as possible, the quantity of bots a human-operated account is following, i.e.,

its bot-followees. Clearly, this task will be based on regression analysis.

Since credulous users are characterised by the fact that they follow many bots, it is not

unreasonable to assume that the more bots a user is following, the more she/he is likely

to read their misleading content, hence the more she/he is exposed to their potentially

malicious activities. Guessing of the number of humans’ bot-followees can be see as an

extension to the credulous identification task and also as its generalisation since it aims

to look for potential credulous users (see Section 4.2.3).

By using ML techniques, we aim at defining a regression model for predicting, the

percentage of bot-followees of a human-operated account.

Having to deal with a problem that is conceptually different from a classification task,

some of the learning algorithms (along with their performance measures), that will

be used to train regression models, differ from the ones used in Chapter 4. What

remains unchanged are the feature sets (namely, Botometer+, ClassA- and their union

‘ALL features’) representing the dataset’s entries, and the dataset itself (in the previous

chapter those were called Humans2Consider – Section 4.2.3). Changing the type of

supervised learning task also changes the information associated with the dataset entries.

64
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In fact, there is no longer useful now the information associated with being credulous or

not (categorical class value), but rather, the percentage of bot-followees of each human-

operated account (over its total followees).

We experiment on two “versions” of the Humans2Consider dataset. Firstly by con-

sidering the credulous users only, precisely the set with 316 instances, henceforth called

credulous-only (see Section 4.2.3), and then on the whole set of human-operated accounts

(with 2,838 instances, named all humans). Despite all humans contains all the entries

in Humans2Consider, we use the latter name to refer at a simple set of human-operated

Twitter accounts (just IDs, without any other information), and to the former name as

the same set but with the added information concerning the bot-followees percentage

(for each user). Although the main goal of this chapter is to determine the effectiveness

of ML techniques in predicting the amount of bot-followees of a (human) user, we also

find interesting to see whether knowing the information of being credulous (for a user)

leads to more precise regression models.

Moreover, as done in Section 4.3.2, further investigations have been carried out by ex-

tending the experimental session running the learning algorithms also on to the other

two groups of credulous users; i.e.,: cut946 (with 443 credulous users) and cut1030 (with

502 credulous users).

At the end of this chapter we provide our answer to the third research question. We want

to let the reader know that the following experimental results and the related finding

have been published in [8].

5.2 Experimental setup

This section explains the dataset, the features and the experimental design; specifying

the metrics used to evaluate the performance of the trained models.

5.2.1 Dataset and features

In these experimental session, we adopt the dataset built in Chapter 4 and called Hu-

mans2Consider (see Section 4.2.1; we recall that it is composed of 2,838 IDs of human-

operated accounts on Twitter [12] (publicly available 1). Since now our task is to build

regression models, that aims to forecast a numeric value instead of a categorical one, the

information needed for each instance is not about being credulous but rather about the

percentage of bots that each human user is following on Twitter (bot-followees). Recall-

ing the data crawled from Twitter, here we do not rank human users (as done by means

1Dataset: https://tinyurl.com/y4o98c7l

https://tinyurl.com/y4o98c7l
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of the rules in Section 3.2.2) but associate to each of them the respective percentage

of bot-followees over the total number of contacts they are following (followees). This

information can be obtained using the first rule (R1) applied to the Humans2Consider

dataset in Section 4.2.3. The difference between the ground-truth used in the previous

Chapter 4 and the one experimented here (called all humans2) is that the former reports

binary values (about being a credulous user or not), whereas the latter includes Twitter

accounts associated to the percentage of their bot-followees.

5.2.2 Experimental design

Our experiments start by setting up the data; precisely, by transforming the information

related to the entries of our dataset accordingly to the three sets of features (namely

Botometer+, ClassA- and their union set ALL features).

Afterwards, to train regression models, 14 algorithms have been employed. To set up the

experimental session and perform the experiments the machine learning framework called

Weka [74] has been used. It is worth to notice that, by default, the results obtained by

the experimenter in the weka framework are cross-validated. Accordingly to the notation

adopted by the tool, the algorithms are: ZeroR3 (used to obtain a baseline value against

which to compare the performance of the other models), REPTree [137], LinearRegres-

sion [95], k-Nearest Neighbour (IBk) [2], LWL [5], AdditiveRegression [64], Regres-

sionByDiscretization [62], M5Rules [139], DecisionStump [84], GaussianProcess [108],

SMOreg [150], MultilayerPerceptron [127], MLPRegressor4, RandomForest [23].

As anticipated in the introductory section, we experiment on two versions of our dataset.

The first one includes credulous users only, i.e., those 316 singled out in Section 4.2.3.

We refer to this ground-truth by the name credulous-only. Then, we experiment on all

the human-operated accounts (all humans).

Driven by the same motivation that led us to experiment on the set credulous-only and

by simple curiosity, similarly to what we did in Section 4.3.2, we further extend our

investigation to the other two sets of credulous users; precisely, by performing the same

type of experiment on those users deemed credulous in cut946, with 443 entries, and in

cut1030, with 502 entries (we used the same names in Section 4.3.2).

Results evaluation To the best of our knowledge, few papers address this problem,

and even fewer approach it as a regression task [149, 169]. Because of this, no well-defined

baseline is available from the literature to assess our results. To deal with this issue, we

adopt the classic approach used to evaluate effectiveness of a predictive model [117], and

2Ground-truth (all humans) : https://tinyurl.com/tcjjmbu
3ZeroR weka: https://tinyurl.com/y4hdhp54
4MLPRegressor weka: https://tinyurl.com/y5krc6d2

https://tinyurl.com/tcjjmbu
https://tinyurl.com/y4hdhp54
https://tinyurl.com/y5krc6d2
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described in the last paragraph of Section 2.3.2. Applying that approach to the current

context, we can compare the performance of the trained regression models (obtained from

the aforementioned algorithms) with the score related to a pseudo-predictor obtained via

ZeroR5 method. This allows to predict the mean for a numeric class calculated on values

into the ground-truth. Two metrics that are widely used for regression tasks6 [117]

have been considered to evaluate models’ performance, namely Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE). MAE measures the average of errors in

a set of numerical predictions, between the real values and the predicted ones (MAE =
1
n

∑n
j=1 |yrealj − ypredj |). RMSE measures the error too, and stresses more the prediction

error by raising the square of the difference between the real values and the predicted

ones (RMSE =
√

1
n

∑n
j=1 (yrealj − ypredj )2).

By using the experimental-result analyser, embedded in Weka [52], we performed sta-

tistical test (paired T-Test [82] with α = 0.05) to determine which algorithm performs

better than the baseline, relatively to each set of features.

5.3 Experimental results

We organise the experimental results in two sub-sections each centered on a specific

dataset version. Section 5.3.1 reports the results about the experiments performed on

the set with the 316 credulous users only (credulous-only). Section 5.3.2 shows the out-

comes of the experiments with all the 2,838 human-operated accounts (all humans).

Tables 5.1-5.4 have the same structure, but differ for the considered evaluation met-

ric and the ground-truth version under investigation. The first column lists the algo-

rithms mentioned in Section 5.2.2, while the remaining columns show the scores (related

to the evaluation metric considered in the table) obtained when dataset’s instances

are represented according to a specific feature set; namely Botometer+, ClassA- and

ALL features. The first row of the table contains the baseline obtained through the

ZeroR method. The star symbol, associated to some tables’ entries, indicates that the

score is significantly lower than the baseline, according to the paired t-test performed

by Weka (see results evaluation in Section 5.2.2). In In all tables, the lowest score is

reported in bold.

5ZeroR: https://tinyurl.com/wejh3vq
6https://tinyurl.com/yd9ljcmj

https://tinyurl.com/wejh3vq
https://tinyurl.com/yd9ljcmj
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5.3.1 Credulous-only

Table 5.1 reports the scores related to RMSE. The baseline offered by ZeroR shows a

score equal to 6.73%.

Algorithms
Feature sets

Botometer+ ClassA- ALL features

→ ZeroR ← (baseline) 6.73 6.73 6.73
REPTree 6.92 6.86 6.86
LinearRegression 6.52 ↓ 8.52 8.62
IBk 8.71 8.95 8.02
LWL 6.84 6.10 ↓* 6.26 ↓
AdditiveRegression 6.79 6.30 ↓ 6.20 ↓
RegressionByDiscretization 8.43 7.47 7.78
M5Rules 6.53 ↓ 9.20 7.44
DecisionStump 6.90 6.15 ↓* 6.15 ↓*
GaussianProcesses 6.48 ↓ 7.34 7.55
SMOreg 6.62 ↓ 7.70 7.71
MultilayerPerceptron 10.79 11.97 11.82
MLPRegressor 7.59 7.50 6.86
RandomForest 6.60 ↓ 6.15 ↓* 6.21↓

Table 5.1: RMSE scores – credulous-only

Note that in the column headed Botometer+, there are no starred values. Despite some

of them are lower than the baseline (i.e., LinearRegression, M5Rules, GaussianProcesses,

SMOreg and RandomForest), their values have not been considered significantly lower

by Weka, in fact they are slightly better than the baseline. Among all values, the lowest

one belongs to GaussianProcesses (6.48%) followed by LinearRegression (6.52%).

Differently from the Botometer+ case, in the column headed ClassA- there are some

starred values. Both DecisionStump and RandomForest achieve a RMSE score of 6.15%;

but, the lowest one (6.10%) belongs to LWL, which also is the best RMSE score reported

in Table 5.1.

The last column of Table 5.1 contains only one starred value which is also the column’s

lowest RMSE score (DecisionStump). Like for the preciding column, also here there are

some values lower than the baseline (AdditiveRegression with 6.20% and RandomForest

with 6.21%), but not enough to be starred.

Table 5.2 exposes the scores related to MAE. The indicated baseline is of 4.84%.

Looking at Botometer+’s features, the values lower than the baseline are: 4.83% (LWL,

AdditiveRegression, DecisionStump), 4.68% (LinearRegression, M5Rules), 4.66% (Gaus-

sianProcesses) and 4.32% (SMOreg, starred). The latter is the lowest MAE.

When considering ClassA- features, the values lower than the baseline are: 4.78% (Lin-

earRegression), 4.64% (SMOreg), 4.55% (AdditiveRegression), 4.54% (RandomForest)
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Algorithms
Feature sets

Botometer+ ClassA- ALL features

→ ZeroR ← (baseline) 4.84 4.84 4.84
REPTree 4.91 4.78 ↓ 4.77 ↓
LinearRegression 4.68 ↓ 5.18 5.19
IBk 5.88 6.17 5.44
LWL 4.83 ↓ 4.36 ↓* 4.40 ↓*
AdditiveRegression 4.83 ↓ 4.55 ↓ 4.39 ↓*
RegressionByDiscretization 5.88 5.22 5.54
M5Rules 4.68 ↓ 5.18 4.90
DecisionStump 4.83 ↓ 4.36 ↓* 4.36 ↓*
GaussianProcesses 4.66 ↓ 4.90 4.95
SMOreg 4.32 ↓* 4.64 ↓ 4.67 ↓
MultilayerPerceptron 6.91 8.17 7.92
MLPRegressor 5.16 5.19 4.78 ↓
RandomForest 4.86 4.54 ↓ 4.44 ↓

Table 5.2: MAE scores – credulous-only

and 4.36% (DecisionStump and LWL, both starred).

When regression models are trained by using all features (column headed ALL features),

the values lower than the baseline are: 4.78% (MLPRegressor), 4.77% (REPTree), 4.67%

(SMOreg), 4.44% (RandomForest), 4.40% (LWL, starred), 4.39% (AdditiveRegression,

starred), 4.36% (DecisionStump, starred).

5.3.2 All humans

Here we report the results related to the experiments performed on all human-operated

accounts (2,838 instances).

Table 5.3 reports the values concerning RMSE, with a baseline value of 6.25%. In the

second column (Botometer+), almost all the RMSE scores are lower than the baseline

and starred, with the exception of IBk (7.73%), RegressionByDiscretization (6.32%) and

MultilayerPerceptron (7.67%). With a score of 5.77%, LinearRegression has the lowest

column’s RMSE (and the second better one in Table 5.3). Concerning the third column

(ClassA-), the situation is slightly worse. Despite nine values have better scores than

the baseline, only three of them are significantly lower: 6.02% (REPTree, the lowest)

and 6.06% (DecisionStump and MLPRergessor both). The forth column (ALLfeatures)

shows a situation close to Botometer+’s case. In fact, with exception of four cases

(i.e., IBk, RegressionByDiscretization, MultilayerPerceptron and MLPRegressor), all the

other entries have significantly better values w.r.t. baseline (starred table’s entries). The

lowest RMSE of 5.72% is achieved by using RandomForest and it is the best score of

Table 5.3.
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Algorithms
Feature sets

Botometer+ ClassA- ALL features

→ ZeroR ← (baseline) 6.25 6.25 6.25
REPTree 5.96 ↓* 6.02 ↓* 5.93 ↓*
LinearRegression 5.77 ↓* 6.14 ↓ 5.80 ↓*
IBk 7.73 8.58 7.59
LWL 5.91 ↓* 6.08 ↓ 5.99 ↓*
AdditiveRegression 5.84 ↓* 6.07 ↓ 5.80 ↓*
RegressionByDiscretization 6.32 6.43 6.83
M5Rules 6.02 ↓* 6.16 ↓ 5.84 ↓*
DecisionStump 5.96 ↓* 6.06 ↓* 6.02 ↓*
GaussianProcesses 5.79 ↓* 6.13 ↓ 5.83 ↓*
SMOreg 5.91 ↓* 6.36 5.96 ↓*
MultilayerPerceptron 7.67 6.53 9.47
MLPRegressor 5.89 ↓* 6.06 ↓* 6.84
RandomForest 5.92 ↓* 6.09 ↓ 5.72 ↓*

Table 5.3: RMSE scores – all humans

Finally, Table 5.4 presents the MAE outcome. The calculated baseline is 4.21%.

Algorithms
Feature sets

Botometer+ ClassA- ALL features

→ ZeroR ← (baseline) 4.21 4.21 4.21
REPTree 3.95 ↓* 3.94 ↓* 3.87 ↓*
LinearRegression 3.84 ↓* 4.08 ↓ 3.83 ↓*
IBk 5.07 5.43 4.95
LWL 3.97 ↓* 4.00 ↓* 3.98 ↓*
AdditiveRegression 3.89 ↓* 3.93 ↓* 3.76 ↓*
RegressionByDiscretization 4.16 ↓ 4.24 4.36
M5Rules 3.91 ↓* 3.96 ↓* 3.82 ↓*
DecisionStump 4.06 ↓ 3.99 ↓* 4.07 ↓
GaussianProcesses 3.87 ↓* 4.09 ↓ 3.87 ↓*
SMOreg 3.67 ↓* 3.84 ↓* 3.62 ↓*
MultilayerPerceptron 4.90 4.39 5.14
MLPRegressor 3.88 ↓* 3.93 ↓* 4.07 ↓
RandomForest 3.96 ↓* 3.96 ↓* 3.77 ↓*

Table 5.4: MAE scores – all humans

At first sight, regardless of the feature sets, almost all the entries are lower than the

baseline; and most of them are starred. When considering Botometer+’s features, the

exceptions are: IBk (5.07%) and MultilayerPerceptron (4.90%); RegressionByDiscretiza-

tion (4.16%) and DecisionStump (4.06%) are not lower enough to gain the star. For

Botometer+, the lowest MAE is 3.67% (the second better value in the table) achieved

by the model built with the SMOreg algorithm.

Similarly, when analysing the values of the column headed ClassA-, the values higher

than the baseline are: 5.43% (IBk), 4.24% (RegressionByDiscretization) and 4.39%
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(MultilayerPerceptron). The remaining values are significantly lower than the one in

the ZeroR’s row but 4.08% (LinearRegression) and 4.09% (GaussianProcesses). Even

in this case, the lowest score (3.84%) belongs to SMOreg.

Like in the previous cases, even when all features are taken into account, almost all

values are lower, not only compared to the baseline, but also compared (line by line)

to the values corresponding to the other two feature sets. The values overcoming the

baseline are: 5.14% (MultilayerPerceptron), 4.95% (IBk) and 4.36% (RegressionByDis-

cretization). Apart for MLPRegressor and DecisionStump (both 4.07%), all the other

entries have significantly better MAE values (starred). Once again, SMOreg outper-

forms the scores of the other algorithms for ALL features, with a MAE of 3.62%; the

lowest in Table 5.4.

5.3.3 Additional investigations

Although Tables 5.1–5.4 show that the information of being credulous is not only useless

but also counterproductive, in this section we extend our experimentation to understand

if this is due to randomness or to the set of credulous considered. To this end, like in

Section 4.3.2, we further extend our experimental setting to the other two set of credulous

users, i.e., cut946 (443 users) and cut1030 (502 users).

Algorithms
Feature sets

Botometer+ ClassA- All features

→ ZeroR ← (baseline) 6.68 6.68 6.68
REPTree 6.95 6.84 6.37 ↓
LinearRegression 6.38 ↓ 7.20 7.07
IBk 8.31 7.91 8.22
LWL 6.34 ↓ 6.57 ↓ 6.45 ↓
AdditiveRegression 6.26 ↓ 6.04 ↓ 5.93 ↓
RegressionByDiscretization 7.84 7.34 8.47
M5Rules 6.81 7.17 8.38
DecisionStump 6.28 ↓ 6.47 ↓ 6.47 ↓
GaussianProcesses 6.37 ↓ 7.01 6.73
SMOreg 6.55 ↓ 7.00 6.65 ↓
MultilayerPerceptron 8.26 9.01 11.06
MLPRegressor 8.21 7.35 8.07
RandomForest 6.40 ↓ 6.03 ↓ 5.96 ↓

Table 5.5: RMSE scores – cut946

Table 5.5 reports the results related to the 443 credulous users (cut946 ) when RMSE

is taken into account as evaluation measure. Although some of the values are lower

than the baseline (e.g. AdditiveRegression with the lowest value of 5.93) these were

not considered to be significantly lower (by the weka t-test). This is unlike Table 5.1,

where, albeit few, there are some significantly lower values. Concerning MAE values, in
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Algorithms
Feature sets

Botometer+ ClassA- All features

→ ZeroR ← (baseline) 4.64 4.64 4.64
REPTree 4.73 4.50 ↓ 4.40 ↓
LinearRegression 4.51 ↓ 4.72 4.56 ↓
IBk 5.45 5.11 5.38
LWL 4.41 ↓ 4.49 ↓ 4.46 ↓
AdditiveRegression 4.43 ↓ 4.27 ↓ 4.17 ↓
RegressionByDiscretization 5.31 4.86 5.50
M5Rules 4.67 4.72 4.84
DecisionStump 4.40 ↓ 4.51 ↓ 4.51 ↓
GaussianProcesses 4.54 ↓ 4.66 4.56 ↓
SMOreg 4.16 ↓* 4.28 ↓ 4.13 ↓*
MultilayerPerceptron 5.64 6.14 6.79
MLPRegressor 5.29 4.72 5.04
RandomForest 4.63 ↓ 4.26 ↓ 4.33 ↓

Table 5.6: MAE scores – cut946

Table 5.6, the situation is not much better. We got just two values significantly lower

than the baseline and both of them were obtained with the same algorithm SMOreg, i.e.

the algorithm by means of which we got the best MAE score in Table 5.2.

Algorithms
Feature sets

Botometer+ ClassA- All features

→ ZeroR ← (baseline) 6.57 6.57 6.57
REPTree 6.27 ↓ 6.34 ↓ 6.73
LinearRegression 6.27 ↓ 6.49 ↓ 6.14 ↓
IBk 7.91 8.10 8.22
LWL 6.14 ↓ 6.54 ↓ 6.43 ↓
AdditiveRegression 6.28 ↓ 6.27 ↓ 5.98 ↓
RegressionByDiscretization 7.42 6.50 ↓ 7.42
M5Rules 6.47 ↓ 7.18 7.26
DecisionStump 6.16 ↓ 6.62 6.66
GaussianProcesses 6.24 ↓ 6.56 ↓ 6.14 ↓
SMOreg 6.47 ↓ 6.74 6.26 ↓
MultilayerPerceptron 9.01 7.76 9.91
MLPRegressor 8.11 7.17 8.72
RandomForest 6.21 ↓ 6.05 ↓ 5.99 ↓

Table 5.7: RMSE scores – cut1030

Table 5.7 reports the RMSE values obtained when the regression models are trained

on the set with 502 credulous users (cut1030 ). Also in this case, we did not get values

lower than the baseline despite some of them are under the baseline threshold. Finally,

in Table 5.8, similarly to Table 5.6, the only values we got, that are significantly lower

than baseline, are those related to the SMOreg algorithms.
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Algorithms
Feature sets

Botometer+ ClassA- All features

→ ZeroR ← (baseline) 4.51 4.51 4.51
REPTree 4.41 ↓ 4.46 ↓ 4.45 ↓
LinearRegression 4.39 ↓ 4.46 ↓ 4.27 ↓
IBk 5.21 5.28 5.26
LWL 4.25 ↓ 4.45 ↓ 4.43 ↓
↓ AdditiveRegression 4.40 ↓ 4.27 ↓ 4.09 ↓
RegressionByDiscretization 4.99 4.55 5.09
M5Rules 4.45 ↓ 4.67 4.51
DecisionStump 4.29 ↓ 4.57 4.60
GaussianProcesses 4.40 ↓ 4.41 ↓ 4.27 ↓
SMOreg 4.08 ↓* 4.08 ↓* 3.96 ↓*
MultilayerPerceptron 6.16 4.94 6.49
MLPRegressor 5.10 4.67 5.10
RandomForest 4.50 ↓ 4.23 ↓ 4.28 ↓

Table 5.8: MAE scores – cut1030

5.4 Discussion

In general we can state that better results are obtained when the full version of the

dataset (all humans) is considered rather than the version with credulous users only,

in terms of both quantity, as number of models with performance better (hence, lower

scores) than the baseline and quality, as the statistical significance of such scores. Such

a situation can be explained by the fact that, performing a pre-classification phase (here

in credulous and not credulous users), can somehow cut out some easy instances (useful

to build an improved regressor) and worsen its overall performance.

However, focusing on baseline (1st line ZeroR of each tables) values of each metric, the

highest ones (hence the worst) are observed in the version credulous-only. This is due

to a higher distance between the real values (the right percentages of bot-followees) and

the average value calculated on them. The fact that all humans’s baselines have lower

values than credulous-only indicates that the (bot-followees) percentages related to not-

credulous users are more close to the average value than credulous users instances.

Considering RMSE, we got very few significant values lower than the corresponding

baselines in both all humans and credulous-only. Because of this and of the findings

reported in [180], we prefer to assign more importance to MAE scores than to RMSE.

Considering the MAE metric, the models generated by the SMOreg algorithm are the

most accurate ones, regardless of the considered dataset version. This concordance

is limited exclusively to the algorithm, as these results have been obtained with two

different feature sets: 4.32% by using Botometer+ for credulous-only version (with 316

users) and 3.62% with All features for the All humans (which includes Botometer+’s

features), cut946 (4.13%) and cut1030 (3.96%). While, considering the dataset with
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all instances (all hum), and looking to the MAE’s scores obtained by SMOreg (with

Botometer+’s features), we can see that the value is very similar (3,67%, the second-

best result). This 0,05% loss (3,62 vs 3,67) can be overlooked due to the advantage

of not having to calculate the ClassA- features (included in ALL features). Therefore,

at least as far as MAE metrics are concerned, a representation in Botometer+ features

combined with the use of the SMOreg algorithm can be considered the best choice.

In some cases, with the same algorithm, the score obtained by using All features is

identical (or very similar) to the one for ClassA- or Botometer+. This happens when

the algorithm, during the construction and training phases of the predictive model, finds

the features of a given set more effective than those of another one. Some examples are

given by: DecisionStump in Tables 5.2 and 5.1, GaussianProcesses in Table 5.4 and

REPTree in Table 5.1.

Further findings can be provided by studying, for each evaluation metric, the extent to

which the choice of a feature set can affect the overall performance. Regardless of the

cost to calculate a feature set, the experimental results do not show a great impact in

preferring one feature set over another. Therefore, as far as the ”MAE” is concerned,

the previous assertion of preferring Botometer+’s features remains valid.

The outcomes of the above experiments allows us to provide an answer to our third

research questions.

RQ3 – Is it possible to predict the number of bots a human user is following

(bot-followees)? Are the features, used for credulous classification, useful also

for this task? Which measures can be adopted to estimate the quality of such

predictions in absence of well-defined benchmarks in the literature?

ANSWER – From the fact that the results in Tables 5.1–5.8 are considered sta-

tistically significant by the adopted experimental ML framework (namely, Weka [74] –

experimenter), we are quite convinced that the estimation of how many bot-followees a

human-operated account is following (on Twitter) is far from being impossible.

Although sometimes the features used for credulous classifications produce good results

(see the starred values within column ClassA- in Tables 5.1–5.4,5.8), we should note

that they are not our best achievements. In fact, the best performance scores are reached

when ClassA-’s features (useful in credulous detection 4.3) and Botometer+’s features

(designed for bot detection [49, 166]) have been jointly considered.

To the best of our knowledge, there are no well-defined benchmarks in literature with

which to compare those obtained by us. For this reason and considering the claims

in [180], we decide to adopt the MAE as main reference measure.

Although a priori classification did not lead to a more precise regression (in terms of

MAE), it would be interesting to conduct further investigations in order to infer the
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quantity of bots a genuine account is following; e.g., by considering the use of a joint

approach between the classification and regression learning tasks (joint learning), suc-

cessfully applied in age prediction [31].



Chapter 6

Credulous Users as Spreaders of

Bot-originated Content

6.1 Introduction

In this chapter we start exploring the involvement of credulous users in supporting, even

if unknowingly, bots’ activities. We will compare the behaviour of credulous users with

that of not credulous ones and provide evidence of a greater involvement of credulous

users in the dissemination of content originated by bots.

Specifically, we will first perform a coarse-grained analysis to determine whether be-

havioural differences in terms of content production between C and NC users exist.

More specifically, we will compare statistics and distribution, for each population, by

focusing on their tweeting, replying and retweeting (considering quotes as retweets) be-

haviour/rate.

Then, we will conduct a fine-grained analysis by focusing on each tweet posted by C

and NC users. Precisely, we will analyse all the tweets that the users in our dataset

bounced via quotes, retweets and replies. For each kind of these tweets, we will trace

back the Twitter author who first posted the original tweet and then check whether is is

a bot or not. In this way, we will assess the level of engagement of C users in spreading

potential malicious content (because bot-originated) with respect to NC users. We will

use statistical tests to validate the significance of the behavioural differences between

the population of C and NC users, if any.

Moreover, this analysis has the dual purpose of verifying the effectiveness of the credulous

identification method (developed in Chapter 3 and used in Chapter 4) as well as the

reliability and usefulness of the credulous classifier trained in Chapter 4.

76
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In the following we present the experimental results and the related findings that rely

on [9].

6.2 Behavioural analysis

(a) Pure Tweets ratio (b) Retweets ratio

(c) Replies ratio

Figure 6.1: Activities of credulous users (vs not) – Distributions and stats.

In this section, we shed light on the activities of credulous accounts, in terms of tweets

originated by users (hereinafter called pure tweets) (Figure 6.1a), retweets (Figure 6.1b),

and replies (Figure 6.1c). It is worth noting that, in this first analysis, quoted tweets

have been considered as retweets1. Results are shown in Figure 6.1. For each type of

content, each subfigure reports statistics about the users’ activities for the 316 C users

(leftmost bar and points in each subfigure – in blue), the 2,522 NC users (bar and points

in the middle in each subfigure – in red), and a random sample of NC users of the same

number of C ones, 316 (rightmost bar and points in each subfigure – in green).

1On Twitter, a quoted tweet is a retweet with an extra text inserted by the retweeter.
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Figure 6.1a reports the information related to pure tweets. Considering the overall

amount of tweets, C users (blue points) produced, on average, the 56.44% of tweets

(horizontal blue dashed line), with a standard deviation (dashed blue rhombus) of 26.4%.

The totality of NC users (red points) feature an average tweets production that is lower

than C users, precisely 46.49% (σ=25.45%). Looking at a sample of NC users (green

points), we notice an even lower average (31.13%, σ=24.85%). The analysis of this first

graph suggests that those accounts classified as credulous tweet more original content

than the others.

Figure 6.1b reports the information related to retweets and quotes (w.r.t. the overall

amount of tweets). In this case, the difference between C and NC users is less marked.

C users (blue points) show a retweets-tweets ratio equal to 0.29(σ=0.24), while for

NC users (red points) the ratio is 0.32 (σ=0.26).Very similar scores are obtained when

considering the NC users’ sample (green points) with average ratio =0.31(σ=0.25).

Similar findings have been obtained for replies, see Figure 6.1c. The replies-tweets ratio is

equal to 0.14 (σ=0.124) for C users (blue points). The same ratio for the NC population

(red points) is higher, with a value equal to 0.19 (σ=0.16). For the NC users’ sample,

we have a 0.18 (σ=0.16) ratio.

When considering retweets and replies it is more difficult, w.r.t. the case of pure tweets,

to find differences between the two populations, as the relative average values are similar.

Although for both retweets and replies the averages of C users are lower than those of

NC users, we cannot say that the differences are as significant as in the case of pure

tweets.

Therefore, the main result of this first (coarse-grained) analysis is that the posting

behaviour, between C and NC users, is statistically distinguishable only in one case,

the one in which tweets are produced by users themselves. On the contrary, no clear

distinction can be made when retweets and replies are examined. Table 6.1 resumes in

a numerical format the stats of Figure 6.1.

Pure Tweets Retweets Replies
µ σ µ σ µ σ

Credulous (C) 0.56 0.26 0.29 0.24 0.14 0.12
Not Credulous (NC) 0.46 0.25 0.32 0.26 0.19 0.16
NC (sample) 0.31 0.25 0.31 0.25 0.18 0.16

Table 6.1: Numerical overview of the stats pictorially reported in Figure 6.1.

For a deeper investigation, we will consider separately the quoted tweets and retweets,

and then we will analyse the nature (human or bot) of the accounts that originated the

tweets after the have been retweeted, quoted or commented by C and NC users.
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Precisely, for each of the 2,838 human-operated accounts in our dataset, and for the

three types of actions (i.e., quoted tweets, retweets and replies), we will calculate the

percentage of content originated by bots. Considering, for example, the case of retweets,

it is possible to retrieve the ID of the original tweet. Consequently, from the tweet ID, it

is possible to retrieve the tweet author. We can then evaluate if that author is classified

as bot or not. The same procedure is repeated for replies and quoted tweets.

For the bot classification phase, we adopt the bot detector presented in Section 4.2.2.

The authors of the original tweets retweeted and quoted by our human-operated ac-

counts, or to which they responded, are 1,22 million different users. Among them,

104,000 (8.5%) have been classified as bots.

6.2.1 Retweets

Figure 6.2 gives two different views of the same phenomenon. In both the subfigures, C

users are represented in purple, while NC users are in green.

Figure 6.2a gives, on the y-axis, the percentage of retweets whose original tweets have

been originated by bots2. On the x-axis, instead of reporting the Twitter ID of each

users (which is a long string of numbers), we prefer to indicate them with consecutive

numbers. Such choice is useful not only for the sake of readability but also to count

the number of users with a percentage of byBot-retweets greater/lower than a certain

threshold.

It is worth reminding that the original NC set is composed of 2,522 users; hence in the

figure, for sake of a fair comparison, we consider just a (representative) sample of NC

users, equal to the number of our C users (i.e., 316). To obtain a representative sam-

ple, we first built 20 samples of 316 NC users - each sample was obtained by randomly

selecting instances from the original set, without re-injection. Then, for each sample,

we computed the average and standard deviation on the percentage of byBot-retweets.

Finally, we computed the Euclidean distance between the averages and standard devia-

tions of the samples and we compared them to the ones calculated over the entire NC

population. We identified as more representative the sample with the smallest distance.

Looking at Figure 6.2a, we can notice that almost all the purple points (C users) are

over the green ones (sample of NC users). The average percentage of byBot-retweets

by C users is 16.45 (σ = 11.84%), while the average percentage for NC users is lower,

13.41 (with σ = 10.58%). The percentage of byBot-retweets have been calculated over

the total amount of retweets. Some of the human-operated accounts in our dataset do

not retweet at all. We call such accounts outliers. In Figure 6.2a, the outliers are shown

2Hereafter we will denote such retweets as ‘byBot-retweets’.
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(a) Percentage of ‘byBots’-retweets posted by C and NC (sample) users.

(b) % of populations w.r.t. the % of ‘byBots’-retweets.

Figure 6.2: Comparative analysis between C and NC users w.r.t. ‘byBots’-retweets.
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under the zero on the y-axis: 12 C users and 7 NC users are outliers. Moreover, the

users lying exactly on the y-axis are those users who retweet only tweets originated by

human-operated accounts.

Figure 6.2b compares the whole C and NC populations. The values on the x-axis are the

same of those on y-axis in Figure 6.2a. Instead, on the y-axis, we report the percentage

of the population having byBot-retweets (in percentage) greater or equal to (for C users

– purple dots) or lower than (for NC users – green dots) the values on the x-axis. The

aim of the graphs in Figure 6.2b is conveying a measure of population coverage, i.e.,

fixing the number of byBot-retweets as threshold, so that we know the percentage of C

users whose byBot-retweets is larger or equal to the threshold, and the percentage of

NC users which retweets is less than the threshold. In Figure 6.2b, the data related to

NC users refer to all of them (2,522). It is important to stress that, both here and in the

following figures of this same type, the abscissa point where the two data series intersect

has no particular meaning and its values is not the one of max population coverage. The

concept of max population coverage is strongly linked with a specific value on the x-axis,

determined in the following way. For each percentage value on the x-axis, we sum the

two corresponding percentage values on the y-axis, which correspond to the percentages

of C and NC users population. The value on the x-axis where this sum assumes the

absolute maximum (threshold) represents the point of max population coverage. This

allows us to define the two biggest subsets of C and NC users where the former post

more ‘byBots’ content than the latter. In this particular case, such a threshold point

is The green and purple curves intersect at the abscissa 15.59. The 43.75% of C users

has a percentage of byBot-retweets ≥ 15.59 (coordinates 15.59, 43.75 – purple dots).

The 71.04% of NC users has a percentage of byBot-retweets < 15.59 (coordinates 15.59,

70.04 – green dots).

Going further with the analysis, Figure 6.3 provides two aggregation perspectives, by

grouping the C and NC users according to the number of their byBot-retweets. In

Figure 6.3a, the x-axis reports the intervals (deciles) of byBot-retweets and the y-axis

reports the number of users falling in each interval. Since the two sets (C and NC) have

the same number of users (316), we prefer to report the real number of users, instead

of the percentage. The sample of NC users is the same used for the results shown in

Figure 6.2a. Figure 6.3b considers all the NC users. Since they are 2,522, we report the

percentage (y-axis). When considering the whole population of NC users, we can notice

that the comparison trend, for each decile,is preserved. This suggests that the subset of

316 NC users is a good representative of the NC population (Figure 6.3a). Finally, in

both the subfigures of Figure 6.3, the users in the last group, i.e., the outliers, do not

retweet any tweet. The users in the 0 group are those retweeting tweets originated by

human-operated accounts only.
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(a) Deciles of Figure 6.2a

(b) Deciles of C and all NC users

Figure 6.3: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-retweets

Findings From Figure 6.2, we can appreciate a difference in users’ behaviour between

C and NC users. On average, C users feature a higher percentage of retweets whose

original tweets have been originated by bots. The difference between the standard

deviation values for the two populations is negligible, indicating a behavioural similarity

between C and NC users (Figure 6.2a). Since C and NC users are human-operated

account, the similarity of standard deviations was expected. Both the subfigures in

Figure 6.3a show a larger presence of C users in almost all the deciles; the only relevant

difference is for the [10,0[ group. In this group, there are more NC users than C users.
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6.2.2 Replies

Figures 6.4 and 6.5 report the analysis related to the replies.

Figure 6.4a shows a quite clear difference between C and (a sample of) NC users. C

users have an average percentage of replies to bot’s tweets equal to 13.77 (σ = 15.10%),

while NC users show a mean’s value of 10.28 ( σ = 11.68%). As for the retweets, the

number of outliers is quite low (9 and 12 accounts for C and NC users, respectively).

Figure 6.4b shows that the maximum percentage of covered population is achieved on a

replies percentage value equal to 27.96 (x-axis). Specifically, the 11.40% of C users reply

to bot’s tweets more than the 91.56% of NC users. Considering the average percentage

value of replies for C users in Figure 6.4a, the population percentage is 35% for C users

and 75% for NC users.

Like in the previous subsection, Figures 6.5a and 6.5b report the bar graphs related to

the analysis of replies. The outcomes are very similar to those of the retweets analysis.

Due to the low number of users, up to the group [50,40[, there is no a clear distinction

between C and NC users (bot in Figure 6.5a and 6.5b). Instead, from [40, 30[ to [20,

10[, the number of C users is increasing more and more compared to NC users. This

holds at least until the [20, 10[ group where NC users overcome C users.

Findings Similarly to what unveiled in the previous subsection, the replies analysis

confirms that, on average, C users feature a higher percentage of replies to bots. Looking

in more detail to the number of replies (the ‘group analysis’ in Figure 6.5, the groups

with higher ‘replies-to Bots’ are not enough populated to allow relevant considerations.

Instead, from the group named [40, 30[ up to the [20, 10[ one, we can notice a certain

superiority of C-users in replying to tweets created by bots compared to NC users.

6.2.3 Quoted tweets

Figures 6.6 and 6.7 are concerned with results about quoted tweets.

Subfigure 6.6a, concerned with the percentage comparison of quoted tweets ‘byBots’

between C and NC users, shows that not always the purple points (C users) are above

the green dots (NC users). This is different from the cases of replies and retweets

discussed in the two previous subsections and might be due to the high presence of

users that did not quote tweets at all, the outliers, in both populations, i.e., 125 C

users (purple points under the y-axis zero) and 78 NC users (green points). From a

numerical point of view, the average (in percentage) of quotes originated by bots is 18.8

(with a σ=24.96) for C users and 13.66 (with a σ=18.01) for NC users. Of course, the
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(a) Percentage of replies to bot’s tweets posted by C and NC (sample) users.

(b) % of populations w.r.t. the % of replies to bot’s tweets

Figure 6.4: Comparative analysis between C and NC users w.r.t. the replies to bots’
tweets.
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(a) Deciles of Figure 6.4a

(b) Deciles of C and all NC users

Figure 6.5: Analysis using deciles – C vs. NC users w.r.t. the replies to bots’ tweets.

percentage of quotes originated by bots have been calculated over the total amount of

quoted tweets, now considered no longer as retweets, as in Figure 6.1b, but as a different

type of tweet. It is worth to remark that the users lying on the y-axis zero are those

users whose quoted tweets have been originated by human-operated accounts only.

When considering Figure 6.6b, we found that the 44.5% of C users has a percentage

of quotes ‘byBots’ ≥ 13.64%, while the 68.78% of NC users has a lower percentage.

This represents the percentage of maximum coverage for both populations. If we would

plot the same graph of Figure 6.6a, while considering only the users belonging to that

percentages, we would obtain a clearer separation between C and NC users.
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(a) Percentage of ‘byBots’-quotes posted by C and NC (sample) users.

(b) % of populations w.r.t. the % of ‘byBots’-quotes.

Figure 6.6: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes.
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(a) Deciles of Figure 6.6a

(b) Deciles of C and all NC users.

Figure 6.7: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes

The behavioural analysis, related to quoted tweets, concludes with the bars in Fig-

ures 6.7a and 6.7b. Similarly to retweets and replies, also here two aggregation perspec-

tives are reported, by grouping the C and NC users according to the number of quotes

originated by bots. In Figure 6.7a, the sample of NC users is the same one we used for

Figure 6.6a. While, in Figure 6.7b we consider all the NC users. When considering the

whole population of NC users, we can notice that the comparison trend is preserved,

and thus indicates the representativeness of the subset of 316 considered NC users (in

Figure 6.7a). Finally, in both the subfigures of Figure 6.7, the bars falling in the last

group (headed outliers) count the amount of users who did not quote any tweets. The

bars belonging to the zero groups reports the amount of users whose quoted tweets have

been originated by human-operated accounts.
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Findings Looking at Figure 6.6a, we see that there is not a big difference between C

and NC users, when considering the quotes of messages whose original tweets have been

produced by a bot account. Qualitatively, the curves representing the two populations

are rather close. However, from a quantitative point of view, a difference emerges when

looking at the statistical descriptors of the two populations: although the standard

deviations are similar, we have that, on average, C users quote more tweets originated

by bots than NC users. Although investigating about the harmfulness of the original

tweets is out of scope in this work, we cannot ignore the attitude of C users to give

visibility to content that, being generated by bots, can be potentially malicious.

If we look more in depth at the behavioural activities of certain portions of the two

populations (see Figure 6.6b), we can precisely identify the threshold value (percentage

of bot-originated quoted tweets) that maximises the number of users to be considered

for both populations.

Instead, in Figure 6.7 we can notice a dominance of C users in terms of amount of

quotes whose tweets are originated by bots, in comparison with both a sample of NC

users (Figure 6.7a) and all NC population (Figure 6.7b). The numerical dominance of

C users is preserved until the group/decile [40,30[, which includes those users with a

percentage of quoted tweets originated by bots ≥ of 40% and < 30% (in Figure 6.7a);

the same for the decile [30,20[ in Figure 6.7b. The different trends in the two figures

is mainly due to the high numbers/percentage of outliers. In fact, this represents the

main limitation of the analysis performed on this particular kind of tweets.

6.2.4 Significance of the behavioral differences between C and NC

users

As shown above (see Figure 6.2a for retweets, Figure 6.4a for replies and Figure 6.6a for

quotes), there are behavioural differences between the C and NC populations. In this

subsection, we aim at assessing whether these differences can be considered statistically

significant. For this purpose, we perform statistical tests over groups of C and NC users,

considering the same set of users.

Type of tweets
Kolmogorov-Smirnov

Test of Normality
C (Res.) NC (Res.)

Replies × ×
Retweets × ×
Quotes × ×

Table 6.2: Kolmogorov-Smirnov test (Test of Normality).
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Type of tweets
T-Test

(α=0.05)
ANOVA
(α=0.05)

Res. t-value p-value Res. f -ratio p-value

Replies X 3.001 0.001 X 9.04942 0.002738
Retweets X 3.190 0.001 X 10.17804 0.001496
Quotes X 2.472 0.138 X 6.11248 0.13812

Table 6.3: Parametric Statistical tests: T-test and one-way ANOVA.

Table 6.2 shows the results of the first statistical tests known as the Kolmogorov-

Smirnov’s test [101] (also know as Test of Normality). It is a non parametric test that,

given a certain number of observations (in our case the percentages ‘byBots’), checks

whether such observations are normally distributed. Hence, the null -hypothesis claims

that “there is no significance in data to state they are following a normal distribution”.

We perform this first test both on C and NC (sample) users. If the test is successful, then

we can rely on the outcomes obtained by performing parametric statistical tests on C

and NC users’ data; in particular the T-test [158] and one-way Analysis of Variance [81]

(ANOVA). Unfortunately, as indicated in the column headed Res., both populations did

not pass the test (symbol ×). This means that there is not enough grounds to reject

the (aforementioned) null hypothesis. Therefore, information obtained by parametric

statistical tests is thus useless in our situation. Anyway, just for sake of curiosity and

completeness, we also reported in Table 6.3 the outcomes obtained by conducting both

parametric tests for each type of tweets. However, these outcomes will not be considered

further.

Type of tweets
Mann-Whitney

(α=0.05)
Kruskal–Wallis

(α=0.05)
Res. z -score p-value Res. H -value p-value

Replies X 3.37056 0.00038 X 11.36 0.00075
Retweets X 3.3 0.00048 X 10.89 0.00097
Quotes × -1.20349 0.11507 × 1.5 0.22017

Table 6.4: ANOVA and Mann-Whitney (not parametric) tests.

Because of the outcomes of the Kolmogorov-Smirnov test (see Table 6.2), we prefer to

rely on non-parametric statistical tests. In Table 6.4, we report the outcomes of two well-

known non-parametric statistical tests which correspond to the non-parametric version

of T-test and ANOVA; precisely, the Mann-Whitney [109] and Kruskal–Wallis tests [91].

For both of them, the test is reputed to be successfully passed if there is enough grounds

to reject the null hypothesis. Roughly, in both tests, the null hypothesis states that

“there is no difference in means” (of ‘byBot’ content) between the different populations

(in our case C and NC users).

As we can see in Table 6.4, only two types of tweets (i.e., replies and retweets) successfully

pass both tests; instead, for quoted tweets, it is not possible to reject the null hypothesis.
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These results suggest that when replies and retweets are considered, C users interact

more with bots than NC users and this behavioural difference is not due to chance.

6.2.5 Retweets and quoted tweets: an aggregated view

Now, we further investigate the behavioural differences between C and NC users when

quoted tweets are considered as retweets, exactly as done in the coarse-grained analysis

at the beginning of this section (see Figure 6.1). Like in Sections 6.2.1-6.2.3, we report

the outcomes concerned with the bounced ‘byBots’ tweets.

In Subfigure 6.8a, we compare the percentage of content ‘byBots’ that C and NC users

quote or retweet. Almost all points related to C users (purple dots) overpower the NC

users’ ones (green dots). Unlike the quoted tweets analysis in Section 6.2.3, here the

number of outliers is more similar to the retweets case (Section 6.2.1); precisely, we have

12 C users and 6 NC users as outliers. The average of content ‘byBots’, related to C

users, is 16.22% (σ=11.6%), while the one corresponding to NC users is lower, 13.41%

(σ=10.48).

Considering Subfigure 6.8b, we found that the maximum percentage of population cov-

erage is associated with 19.01% of content ‘byBots’. In particular, we can see that the

percentage of C users, whose ‘byBots’ content exceeds such threshold, is 32%; while,

81% of NC users have in their timeline less than 19% of the tweets originally posted by

bots.

The subfigures in Figure 6.9 report the bar graphs related to the aggregation perspective

(deciles). Figure 6.9a and 6.9b are very similar, and this still confirms that the NC

sample is representative of our NC population. We can immediately see that up to the

[10,0[ group, both the number (Fig. 6.9a) and the percentage (Fig. 6.9b) of C users

exceed that of NC users. In this case, due to the low number of outliers, we have

more observations to analyse reinforcing the reliability of the claims derived from these

last charts with respect to the case where quotes have been considered in isolation (see

Seciont 6.2.3).

We will do the statistical tests of Section 6.2.4 also for this new behavioural analysis.

The normality tests (Kolmogorov-Smirnov) fail again for both C and NC populations,

demonstrating the non-uniform data distribution and thus the lack of information that

a parametric test can give for statistical purposes. Instead, both T-test and ANOVA

successfully passed (T-test: t-value= 3.145 and p-value= 0.001 – ANOVA: f-ratio= 9.894

and p-value = 0.002 ). For quoted tweets considered as retweets, we repeat the Mann-

Whitney and Kruskal-Wallis tests, both of them performed with a significance level of
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(a) Percentage of ‘byBots’-quotes and retweets (jointly) posted by C and NC (sample) users.

(b) % of populations w.r.t. the % of ‘byBots’-quotes and retweets (jointly).

Figure 6.8: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes
and retweets (jointly).
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(a) Deciles of Figure 6.8a.

(b) Deciles of C and all NC users.

Figure 6.9: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes and
retweets (jointly).

α = 0.05. In the former, we get a z -score = 3.498 and a p-value = 0.0002; in the latter,

we obtain an H -value = 12.239 and a p-value = 0.0005.

In this case, both the non parametric tests reject the null hypothesis, unlike the case of

considering quoted tweets by themselves.

Findings Unlike the case where quoted tweets were observed in isolation, here, thanks

to the support of statistical tests, we can say that there is a difference between the

populations of C and NC users, and that such a difference is statistically significant.
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6.3 Further analysis

In the following, we extend the analysis to two additional sets of C users, namely: cut946

and cut1030, as they have been called in Section 4.3.2. Here, we summarise the results in

a tabular mode. The complete graphs are in Appendix B and referred in the tables. We

assign priority to the analysis related to the percentage of content ‘byBots’ (subfigures a)

in previous subsections) and population coverage (subfigures b) in previous subsections).

The graphs related to the groups analysis (deciles) can be found in Appendix B, for the

sake of completeness.

We start to show the results of this analysis by considering 443 human-operated accounts

as C users (namely, the set called cut946 in Section 4.3.2). The number of non-credulous

users is 2,395.

Types of
tweets

C NC* (sample) Deciles (Fig.)
Fig. µ (%) σ (%) out.(#) µ (%) σ (%) out.(#) NC* NC

Retweets B.1a 16.44 12.41 13 12.37 10.24 12 B.2a B.2b
Replies B.3a 12.98 14.33 11 10.08 11.85 13 B.4a B.4b
Quotes B.5a 18.15 24.27 162 11.88 16.51 107 B.6a B.6b
QuPlusRw B.7a 16.16 12.34 13 12.16 10.08 11 B.8a B.8b

Table 6.5: Mean, standard deviation, and # outliers per content originated by bots
– 443 C users vs. 2395 NC users (cut946 ).

Table 6.5 reports, for both C and NC users, the average, the standard deviation and

the number of outliers related to content ‘byBots’ posted by both C and NC users. It

is worth considering that, like the analyses in previous sections, the NC users are a

(representative) sample of the whole population. Similarly to the previous case, when

the set of C users consisted of 316 human-operated accounts, here we can appreciate

that, regardless of the type of tweet, the values corresponding to the averages of ‘byBots’

content of C users (column µ in Table 6.5) overcome those related to (the sample of)

NC users. This confirms a greater attitude of C users to spread content originated by

bots, with respect to NC users.

Types of
tweets

‘byBots’(%)
max

C (pop %)
≥ max

NC (pop %)
< max

Fig.

Retweets 15.59 42.56 71.62 B.1b
Replies 13.81 32.21 76.68 B.3b
Quotes 3.51 65.84 29.82 B.5b
QuPlusRw 18.82 31.18 79.96 B.7b

Table 6.6: Populations coverage analysis (resume) – cut946

Like for the population coverage analysis performed in previous subsections, in Table 6.6

we perform the same analysis on cut946. For this analysis all the 2,395 NC users are
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taken into account. In general, by looking at the percentages referred to the C and NC

users, we can appreciate a good coverage of C users w.r.t. the NC users population.

We conclude our further analysis by experimenting with the largest set of C users

(namely, cut1030 in Section 4.3.2) that includes 502 accounts and 2,336 NC users.

Types of
tweets

C NC* (sample) Deciles (Fig.)
Fig. µ (%) σ (%) out.(#) µ (%) σ (%) out.(#) NC* NC

Retweets B.9a 16.15 12.10 13 13.85 12.26 21 B.10a B.10b
Replies B.11a 12.81 13.86 12 11.25 14.30 18 B.12a B.12b
Quotes B.13a 17.23 23.16 174 14.49 19.59 135 B.14a B.14b
QuPlusRw B.15a 15.90 12.02 13 13.56 12.13 19 B.16a B.16b

Table 6.7: Mean, standard deviation, and # outliers per content originated by bots
– 502 C users vs. 2336 NC users (cut1030 ).

Table 6.7 shows that C users post (on average) more content originated by bots than NC

users. We do notice a decreasing gap (in terms of difference between averages) between

the µ(C) and µ(NC) when compared to the cut946 case. Moreover, by better looking

at (and comparing) the µ(C) values of the cut946 case with the current µ(C) values, we

can see that the values decrease, but this decrease is not so evident, because of the few

users (69) who have become part of the C users.

Types of
tweets

‘byBots’(%)
max

C (pop %)
≥ max

NC (pop %)
< max

Fig.

Retweets 15.59 41.92 71.85 B.9b
Replies 6.81 65.11 52.12 B.11b
Quotes 10.77 48.48 60.97 B.13b
QuPlusRw 11.84 55.83 59.24 B.15b

Table 6.8: Populations coverage analysis (resume) – cut1030

As in the previous case (Table 6.6), by looking at Table 6.8, we can notice (3rd column)

that a considerable part of C users bounce more ‘byBots’ content than a high percentage

of NC users (last column) for each type of tweet. This

Findings Regardless of the number of C users, they resulted to bounce more ‘byBot’

content than NC users. However, when enlarging the number of C users, the gap (in

terms of mean of byBot content) with respect to NC users decreases; such a trend further

strengthens the validity of our method of singling out credulous users. In fact, if in the

last two cases the gap between C and NC users increased rather than narrowed, it would

have meant that the set of 316 users, identified of being credulous and experimented in

Section 6.2, could not be considered well-defined. This may be due to the presence of

some users, considered as being not credulous, but to be so in cut9476 and cut1030, that

exhibit behaviours that (by definition) were attributed to credulous ones (i.e., bouncing



Chapter 6 95

content created by bot). Consequently, even the method used to single out the credulous

users (in Chapters 3 and 4) was to be considered fallacious.

6.4 Discussion

This chapter investigated the harmfulness of C users on social media for spreading po-

tentially malicious content from bots. To identify behavioural differences, we compared

C and NC users behaviour looking at different types of tweets, i.e.,: pure tweets or

self-originated tweets, replies and retweets. Except for the pure tweets case, where C

users proved to be much more prolific than NC users on average, the analysis (defined

as coarse-grained) did not show significant differences between these two populations of

human users. To this purpose, a fine-grained analysis has been conducted. Precisely,

we inspected the nature (human or bot) of the originators of contents. In this analysis

retweets and quoted tweets have been examined separately. A more marked difference

was observed, in fact on average C users resulted to bounce more bot originated content

than NC users.

To ensure that this difference is statistically significant, non-parametric tests have been

performed to assess whether these behaviours of C and NC users are indeed different.

These tests were conducted for each type of tweets and confirmed the statistical signif-

icance, except for quoted tweets case. Therefore, the analyses have been repeated, by

considering retweets and quotes together, and statistical tests proved that C and NC

populations behave differently.

Similar to previous chapters, here we also extended our investigation to larger sets of

credulous users, and on average C users resulted to bounce more content from bots than

NC users, but with smaller differences (in terms of average between C and NC users).

This investigation gives us sufficient ground to provide an answer to the forth research

question, reported below for the convenience of the reader.

RQ4 – Is it enough to compare the different types of activities (i.e., retweets,

quoted tweets, replies and posting new content) between credulous and not

credulous users to significantly differentiate them? Can bot-followees influence,

in terms of content production, the activities of credulous users more than not

credulous ones? How to measure the effectiveness of such an influence? Do

credulous users bounce bots’ content? And to what extent with respect to not

credulous users? (see Chapter 6)
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ANSWER –From the high similarity of the statistical descriptors (see Fig. 6.1), related

to the credulous and not credulous users and calculated on the different types of tweets,

we can deduce that it is not possible to single out significant dissimilarities between

these two categories of users via a coarse-grained analysis (except for the pure tweet

case). The influence of bots-followees on credulous users, in terms of manipulation of the

disseminated content, emerges from a more in-depth analysis conducted on the authors of

the tweets (subsequently bounced by other human-operated accounts, both credulous and

not-credulous users). Thanks to this fine-grained analysis, we can appreciate behavioural

differences between the two populations highlighting that, on average, credulous user

bounce more bot-originated content than not credulous ones.
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Credulous Users and Fake News

7.1 Introduction

Inspired by the findings from the previous chapter, where we provided the evidence

about credulous users’ involvement in spreading bot-originated contents (therefore po-

tentially malicious), in this chapter the focus is on the relationship between credulous

users and fake news. Investigating such a relationship can provide us, not only with fur-

ther evidence about the (harmful) contribution of credulous users to the dissemination

of malicious content, but it can be seen as an indirect and alternative way (credulous

users centered) to deal with mis-/dis- information.

Usually the problem of fake news is addressed in a ‘direct’ way, i.e., by trying to es-

tablish whether a news is true or not. On this direction, several approaches have been

developed to counteract the spread of this phenomenon [20, 148]; for instance, by using

Natural Language Processing (NLP) techniques [126] to analyse the actual content in

messages. Unfortunately, despite the great progress made by the scientific community

on this matter, the current fake news detectors lack in the recognition effectiveness [151].

Given that, instead to apply a fake news detector to the content published by the Twit-

ter accounts in our dataset (i.e., Humans2Consider), we prefer to consider as starting

point a (publicly available1) dataset of news already annotated as fake or real [151]. The

authors of such news will be analysed (to distinguish the credulous from not credulous

users) and the proportions of fake news spread by these two categories evaluated (e.g.,

the number of tweets containing fake or real news).

With this chapter, we takes in charge the issues related to the fifth research question.

It is worth to notice that the obtained findings have been published in [10].

1https://tinyurl.com/uwadu5m

97
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7.2 Experimental setup

In this section, we start by describing the employed data (their source and meaning),

then the adopted approach is presented. Finally, we explain the target of our analysis

and the considered perspectives to derive our findings.

7.2.1 Dataset

As mentioned before, our investigation starts by considering a publicly available dataset

of fake news, called FakeNewsNet2 [151–153]. For each item the following information

are provided: a unique identifier (id), the publisher (in url form), the content of the

news (title), a list tweets (as Twitter ids) containing the news and the information

about its “veracity” (fake or real). To label the news, the authors in [151] used two

fact-checking websites: PolitiFact3 and GossipCop4. In the former, fact-checking was

performed by politics experts (e.g., journalists) labelling news as fake or real. In the

latter, a numerical scores was assigned to news to indicate their reliability, ranging from

0 (fake) to 10 (real).

News Tweets

Original Retrieved Original Retrieved

P
ol

it
ic F
ak

e

432 392 165,356 141,421

R
ea

l

622 407 417,072 357,655

G
os

si
p

F
a
ke 5,323 5,135 598,299 518,502

R
ea

l

16,817 15,759 881,627 812,719

Table 7.1: FakeNewsNet Dataset: original and retrieved content

Table 7.1 outlines the dataset’s details. The original dataset contained 432 fake and 622

real political news (see in row Politic the column Original). However, on Twitter we

were only able to find tweets of 392 (91%) fake and 407 (65%) real news (column headed

Retrieved); while 9% of the false news and 35% of the real news was no longer available.

The number of tweets (column titled Tweets) containing such news was initially of

165,356 on fake and 417,072 on real news; but we could find only 141,421 (86%) tweets

related to fake news and 357,655 (86%) tweets related to real ones. The untraceable

2FakeNewsNet Dataset: https://tinyurl.com/uwadu5m
3https://www.politifact.com/
4https://www.gossipcop.com/

https://tinyurl.com/uwadu5m
https://www.politifact.com/
https://www.gossipcop.com/
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tweets are 14% concerning both real and fake news. The numerical mismatch between

the original and the retrieved data is almost certainly due to deletion.

Regarding the other topic, (row headed Gossip), out of 5,323 fake and 16,817 real news,

we got 5,135 (96%) and 15,759 (94%) news, respectively. Not retrieved news are 4%

and 6% for true and false news, respectively. Such news are contained in 1,331,221

tweets, 518,502 (87% but n.a. 13%) related to fake news and 812,719 (92% but 8% n.a.)

containing real news. Obviously, in our study, we only use retrieved data.

7.2.2 Approach

To shed light on the credulous users’ involvement in fake news dissemination, we single

out three sequential tasks: (i) tweets’ authors identification, (ii) distinction between

automated (bots) and human-operated authors, and (iii) distinction between credulous

and not-credulous users among the human-operated authors.

Tweets’ authors identification

We aim to identify the Twitter accounts that published the tweets listed in FakeNewsNet

dataset (referred as authors). Starting from the tweets IDs and using Twitter API5, we

collected 1,731,422 tweets out the original list of almost 2 million. It might be worth

noting that some tweets contain more than one news, and thus some tweets are counted

more than once in Table 7.1. This explains the numerical mismatch between the collected

tweets and retrieved ones (sum of the values in 4th column).

At the end of this phase, in addition to tweets’ data, we collected the profile’s data6 of

536,513 Twitter accounts, i.e., the authors of all the retrieved tweets.

Bot detection

Here the goal is to distinguish, among the set of authors spotted out in the previous

phase, between human-operated accounts and bots. To this purpose, we used a bot

detector (i.e., a decision model able to recognise automated accounts) introduced in our

previous work [12] and described in Section 4.2.2. We recall that the classification model

is based on Random Forest [23], achieving an accuracy (instances correctly classified) of

98.41% and an area under the ROC curve (AUC) of 1.00. It relies on a set of 30 features

(called ALL features) obtained by combining the feature sets of Botometer+ and ClassA-

, see Chapter 4 for further details. For each user, we retrieve Botometer+ features

5Twitter API libraries: https://tinyurl.com/rfte3k2
6Twitter User Object: https://tinyurl.com/y5s5kpuw

https://tinyurl.com/rfte3k2
https://tinyurl.com/y5s5kpuw
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considering the timeline (the list of published tweets) and its mentions (the tweets that

mention the user). ClassA-’s, instead, relies on users’ profile data to determine their

features6. This way, 479,569 authors have been classified as human-operated accounts.

Credulous classification

This task aims at singling out credulous users among the human-operated authors. To

this purpose, a refined version of the approach presented in [12] has been adopted.

Instead of classifying authors using the best classifier (trained with just one fold in [12]

– see Section 4.2.4), we use all the eight credulous classifiers, and classification perfor-

mances are reported in Table 7.2.

evaluation metrics
Fold alg accuracy prec. rec. F1 MCC AUC

1 OneR 98.26 0.98 0.98 0.98 0.97 0.98
2 OneR 95.73 0.96 0.96 0.96 0.92 0.96
3 OneR 94.15 0.95 0.94 0.94 0.89 0.94
4 JRip 90.67 0.92 0.91 0.91 0.83 0.89
5 RepTree 91.93 0.93 0.92 0.92 0.85 0.90
6 OneR 90.35 0.92 0.90 0.90 0.82 0.90
7 OneR 90.93 0.92 0.91 0.91 0.83 0.91
8 OneR 96.65 0.97 0.97 0.97 0.93 0.97

Table 7.2: The eight Credulous Classifiers

This way, each author is classified by means of the classifier trained on the fold most

“similar” to it. Hence, for each human author singled out in Section 7.2.2, the distance

between author’s feature representation and the centroids of each fold is computed. The

author is then classified using the classifier trained on the fold whose centroid is closest

to it. Classifiers selection is performed with a specific tool we have implemented; and

350,622 human authors have been classified as credulous users.

7.2.3 Investigation targets

At this stage, we have all the information to investigate on a potential relationship

between fake news and credulous users. Three different perspectives are considered.

First, we look for numerical differences between the amount of fake and real news pro-

duced/diffused by the three categories of user/author (namely, credulous/not-credulous

and bots) and on both news’ topic (i.e., gossip and politics). Second, we are interested

to compare the quantity of fake/real tweets, i.e., the tweets containing a fake/real news,
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by looking at first bots and humans and then credulous and not-credulous7. Third, we

quantify the authors’ level of involvement in fake news spreading/production by count-

ing, for each category, how many of them are authors of tweets containing: at least one

fake news, at least one real news, only fake news and only real news.

7.3 Experimental results

Table 7.3 shows the results obtained for bot and credulous detection (Section 7.2.2).

First column lists the different types of Twitter users investigation; in the first macro-

row the difference is based on the “automation” of an account (human or bot). In

the second macro-row it is reported the numbers of human-operated accounts labeled

as credulous or not-credulous users by using the classification approach described in

Section 7.2.2. Each column reports the number of users which tweeted about a certain

topic with the exception of the last one (namely Union) where the total number of users

for each category of account (e.g., bot and human) is reported. It is worth specifying

that, for each user category (corresponding to the single row in the table), the sum of the

values between the first and second column (i.e., Politic and Gossip) does not coincide

with the value reported in the third one since some accounts have tweeted the news in

both topics. Note that our classifier was not able to classify 396 accounts due to lack of

information (empty answer) from the Botometer web service.

Politic Gossip Union

#Bot 27,137 34,160 56,548

#Human 256,561 247,113 479,569

#Credulous 185,196 178,715 350,622

#Not-Credulous 71,365 68,398 128,947

Table 7.3: Detectors outcomes

Table 7.4 shows the results obtained by a news-centered perspective. Precisely, here we

observe the amount of news that each category of users, i.e., credulous/not-credulous

users and bots (1st column) covers with their tweets over the total number of retrieved

news. By looking the data under this perspective, we aim to assess a sort of news’

interest, grouping them by the topic (Politic or Gossip). It is very important to keep in

mind that this perspective does not take into account how many times a specific news

7To avoid that the numerical unbalancing between fake and real tweets (e.g., see in Table 7.1 political
retrieved tweets) may lead to inaccurate observations, we will also consider a randomly selected subset,
among the set of real-news tweets, with the same number of fake-news tweets.
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Politic Gossip

Fake Real Fake Real

Credulous 373 364 4,121 14,486
NotCredulous 361 366 4,768 13,418
Bot 350 332 4,470 15,050

Table 7.4: Users’ topic coverage by their tweets

has been bounced (e.g., how many tweets it received) but just if it has been tweeted. For

instance, regardless to the topic or the veracity, let consider two different news (newsA

and newsB), if newsA has been tweeted 100 times and newsB just 2, both contribute

to count just one in the table. The 2nd and the 3rd column, (macro-column headed

Politic), indicate the amount of political news, respectively fake and real, that users

have used in their tweets. The 4th and 5th column, instead, indicate the number of real

and fake news about the gossip, respectively.

With their tweets, credulous users cover 373 fake and 364 real political news. The

number of news covered by not-credulous users is 361 fake and 366 real political news.

For the sake of completeness, the same information is reported for bots too; the amount

of news covered by them is 350 fake and 332 real political facts. Taking into account the

number of retrieved political news (see Table 7.1), and by comparing credulous vs. not

credulous users, we can see that the tweets produced by credulous users cover 95% of

the retrieved fake news concerned with politics, while those produced by not-credulous

cover 92%. Instead, for non fake news, credulous users “talk” about the 91% of the total

retrieved, which is almost the same of not-credulous users.

When considering Gossip news, starting from a retrieved set of 5,135 fake news, we have

the following situation: 4,121 published by credulous users, 4,768 by not-credulous users

and 4,470 by automated accounts (bots). For real news, we retrieved 15,759 tweets of

which 14,486 come from credulous users, 13,418 from not-credulous and 15,050 from

bots. We can see a decreasing about news percentage coverage of credulous users in

fake gossip; indeed, the percentage of fake news covered by credulous users’ tweets is of

80%, while the one related to not-credulous users’ tweets is of 93%. This reduction can

be explained either as a lesser interest that credulous users have in fake gossiping or as

their greater caution with respect to fake policy news. On the other hand, not-credulous

users “talk” of 86% of the retrieved true news, while the coverage of credulous users is

of 92%. The fact that credulous users seem to diffuse a higher percentage of real news

vs not credulous users may appear a counter-intuitive result. However, we have to stress

that fake news represent the problem, not the real ones. Credulous users result not only

interested in fake news but also in real ones.
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Below, we show the results related to the tweeting perspective, from which we got the

most relevant findings of our analysis. By this perspective, it is possible to investigate

how many times fake news have been bounced and by which kind of users. Tables 7.5

and 7.6 provide a more detailed view of our experiments and shed light about the

level of involvement of credulous users in misinformation activities. For each category

of users (i.e., credulous, not credulous users and bots), it is reported: the number of

tweets containing fake news (column FN ) and real news (column RN ) for both politics

(Table 7.5) and gossip (Table 7.6). In both tables, the 4th column (called RNrnd ) and

5th column (called RN*rnd) are introduced to mitigate the unbalance between fake and

real tweets, in accordance with the discussion in Section 7.2.3. With RNrnd we denote a

subset of RN whose entries have been randomly selected, from the original list of tweets

of Table 7.1, in order to have |RNrnd| = |FN |. While in RN*rnd, tweets are taken from

the retrieved list of Table 7.1. The values in parenthesis express the percentage of fake

news over the total fakes (according to the topic) with respect to each kind of users.

FN (%) RN RNrnd RN∗rnd

Tot. 165,356† 417,072 165,356 141,421
Bot 19,888 (12.03†) 45,924 18,120 18,013
n.a. 23,935 (14.47†) 59,417 23,519 0
Human 121,533‡ (73.50†) 311,731 123,717 123,408

Credulous 84,362 (69.41‡) 197,454 78,528 ↓FN 77,994 ↓FN

Not Credulous 37,171 (30.59‡) 114,277 45,193 ↑FN 45,414 ↑FN

Table 7.5: Number of tweets about political fact

FN (%) RN RNrnd RN∗rnd

Tot. 598,299† 881,627 598,299 518,502
Bot 116,398 (19.45†) 486,907 330,425 310,810
n.a. 79,797 (13.34†) 68,908 46,552 0
Human 402,104‡ (67.21†) 325,812 221,322 207,692

Credulous 244,690 (60.85‡) 209,579 142,246 133,518
Not Credulous 157,414 (39.15‡) 116,233 79,076 74,174

Table 7.6: Number of tweets about gossip fact

Table 7.5 presents the information related to the tweets on political fact. Almost 20k fake

tweets have been produced by bots, more than 121k fake tweets have been produced by

human-operated accounts; while for 24k fake tweets it has not been possible to retrieve

their information from Twitter (row named n.a.). When considering human users, we

can see that the number of fake tweets (FN ) published by credulous users (i.e., 84k)
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overcomes the number of those published by not-credulous ones (i.e., 37k).

Although the tweets in RN (total set) are more numerous than FN, the number of FN

tweets authored by credulous users overcomes (69.41%) that of not-credulous (30.59%)

ones.But, because the #RN humans’ tweets are almost three times (∼311k) the #FN

ones (∼121k), looking to the values related to RNrnd and RN*rnd columns can led to

a fairer comparison. In fact, we can note that the number of real tweets published by

credulous users (in 4th and 5th column) are similar but in any case lower than in FN

(see ↓FN in Table 7.5).

When bots are concerned, despite RN ’s value seems higher then FN, the amount of fake

and real tweets is more or less the same (see the 4th and 5th column). Regardless of

news’ veracity, from Table 7.5, the low number of tweets made by bots compared to

human-operated accounts attracts attention; just 12.03% of FN and 10.99% of RN. In

our opinion, these low values are mainly due to the disproportion between the amount of

bots and humans (see Table 7.3), that confirms the statement in [166], i.e., the percentage

of bots in Twitter is estimated to range from 9% to 15% (10.52% in our case).

Switching to the case of tweets containing gossip news (Table 7.6), we can notice that,

like Table 7.5, also here there is a superiority in tweet’s production by credulous users.

In particular, by focusing on the fake tweets column (FN ), we can see that even for

this topic the amount of tweets published by credulous users (245k, the 60.85% of FN

tweeted by human-operated accounts) is greater than not-credulous users (157k, just the

39.15%).

Since the number of FN tweets (402k) is quite similar to the number of RN tweets

(326k), this time is useless to do analysis on the 4th and 5th columns, reported just for

sake of completeness w.r.t. Table 7.5. By looking at bots, they authored a lot of real

tweets, precisely 468,907 (RN ), that represents more than the 50% of all real tweets;

conversely, they published only 116,398 fake tweets (FN), less than the 20% of Tot.–FN.

In our opinion, this is the reason because the amount of not-credulous users’ real tweets

does not overcome the number of the fake ones (2nd column). However, we want just to

emphasise the threat of the fake news, and even in this case the credulous users “win”

for number of fake tweets by a margin of 20 percentage points (higher in the political

topic, where the margin is of 39%).

The last perspective we consider is related to observe the number of credulous users

that tweeted fake news w.r.t not credulous users. It is important to stress that with this

kind of analysis we aim to see if the number of credulous authors spreading fake news

is higher than the number of not credulous users in the same task.

Tables 7.7 and 7.8 present the results by looking to what extent, for each topic, the

three categories of users (macro-columns’ headers in both tables), are participating.
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Credulous NotCredulous

#Users Average St.Dev. #Users Average St.Dev.

#Fake News≥ 1 54,828 1.54 2.79 19,525 ↓C 1.90 5.05
#Real News≥ 1 138,113 1.43 2.91 57,839 1.98 10.22
Only Fake News 47,083 1.40 2.15 13,526 ↓C 1.60 4.61
Only Real News 130,368 1.37 2.53 51,480 1.78 10.25

Bot

#Users Average St.Dev.

#Fake News≥ 1 9,622 2.07 4.53
#Real News≥ 1 45,924 2.36 9.11
Only Fake News 7,658 1.79 3.78
Only Real News 17,515 2.15 8.80

Table 7.7: Users that tweeted in political topic

Credulous NotCredulous

#Users Average St.Dev. #Users Average St.Dev.

#Fake News≥ 1 147,158 1.66 8.01 56,451 ↓C 2.79 33.56
#Real News≥ 1 39,528 5.30 143.59 19,047 6.10 88.26
Only Fake News 139,187 1.45 6.97 49,351 ↓C 1.81 6.51
Only Real News 31,557 1.35 2.96 11,947 1.52 4.72

Bot

#Users Average St.Dev.

#Fake News≥ 1 25.818 4.51 22.00
#Real News≥ 1 14,620 33.30 606.39
Only Fake News 19,540 2.39 12.79
Only Real News 8,342 2.19 10.95

Table 7.8: Users that tweeted in gossip topic
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Specifically, it is reported the amount of users that are authors of: at least a fake tweet

(1st row, #Fake News≥ 1 ), at least a real tweet (2nd row, #Real News≥ 1), only fake

tweets (3rd row, #Only Fake News) and only real tweets (4th row, #Only Real News).

For each of these four cases, the average and standard deviation have been calculated in

both tables to show the fake/real tweet’s rate and the uniformity of the users belonging

to each of the aforementioned cases.

The results reported in Table 7.7 are referred to the topic of political news. The amount

of credulous users tweeting at least a fake news (1st row) is 54,828, with a publishing

rate of 1.54 (tweets per user) on average, and a standard deviation of 2.79. Moreover, we

found that 138,113 credulous users published at least a real news (2nd row); and despite

they are more numerous than previous case, their related tweeting rate (on average) is

slightly lower (1.43) with an higher standard deviation (2.91).

As regards the amount of credulous users publishing only fake/real news (3rd and 4th

line), we can observe a small numerical decrease in quantity. There are 47,083 credulous

authors with a publishing rate of 1.40 tweets fake news on average and the standard

deviation is of 2.15. In the other case (4th row), 130,368 credulous users posted only

tweets of real news showing almost the same average (1.37) as in its dual case (only fake

news) but with an higher standard deviation (2.53).

About not-credulous users, we can notice that the authors posting at least a tweet

containing a real news (2nd row) are 57,839, so almost 3 times more than the quantity

of not credulous users that at least tweeted a fake news (1st row), i.e., 19,525 (highlighted

with ↓C in Table 7.7, w.r.t. the credulous users’ value). The averages are similar in both

cases, 1.98 for Real News and 1.90 for Fake News, but the respective standard deviations

assume very high values, 5.05 (1st row) and 10.22 (2nd row). This makes us suspicious

about the presence of a group of users that tweets a lot. By observing those authors

tweeting only fake/real news (3rd and 4th line), we can observe a similar trend to the

same case of credulous users, but with a much lower level of participation. In fact, despite

the not-credulous authors posting only tweets of real news (51,480) are more than the

ones publishing only fake tweets (13,526), these latter authors are only a third of the

number of credulous users who only publish fake news. Furthermore, the not-credulous

users’ tweeting rate of real news (average) is also higher than the one referred to the

ones posting only fake news.

For sake of comparison to human accounts, in Table 7.7 we report the results related

to bots. We can see a certain disparity between the number of bots tweeting Fake News

(i.e, 9,622 as indicated in 1st row) and Real News (i.e., 45,924 as indicated in 2nd row).

On the other hand, by comparing the data of this case (i.e., at least a fake/real tweet)

with the ones related to bots authoring only fake/real news (3rd and 4t line), we can see:

(i) a reduction equal to more than 2 times about bots tweeting only real news (17,515 in
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4th line w.r.t the case in the 2nd line), and (ii) a little reduction for what concerns the

amount of bots sharing only fake news in their tweets (7,658 in 3rd line, w.r.t. 1st line).

The tweeting averages per bots are upper than the values corresponding both human’s

cases (i.e., credulous and not credulous users), but not so much; the standard deviations

have higher values when referred to real news (9.11) and only real news (8.80).

The outcomes concerning to gossip topic are presented in Table 7.8. Starting by the

1st macro-column (headed, credulous), we can see a big amount of authors having at

least one fake-news tweet (147,158), and this numerical superiority (w.r.t. the number

of credulous users tweeted real news) occurs even when we count the ones tweeting only

fake news (139,187). Indeed, about the authors of real news’ tweets, 39,528 credulous

users have at least one and 31,557 published only real tweets.

By looking at the details of not credulous users, we can see a good downsizing of fake

news’ authors (highlighted with ↓C in Table 7.8, w.r.t. the credulous users’ value).

Precisely, there are 56,451 users that tweeted at least one fake news, and 49,351 users

that published only fake news in their tweets. Moreover, we observed the same decreasing

trends also in both cases of real news published by not-credulous authors. In particular,

the authors publishing at least one real news are 19,047 (2nd row), whereas the ones

publishing only real news are 11,947.

About the automated accounts (bot, 3rd macro-column), the tweeting bots of at least a

fake news are 25,818 and those ones publishing only fake are 19,540; more than the ones

publishing real news which are 14,620 (2nd row) and 8,342 (4th row).

It is worth to stress that in Table 7.8, with regard to the average and standard deviation,

the values are very high compared to the other lines, especially focusing on the values

reported in the 2nd row. As already suspected in the previous case of political news,

here we are almost certain of the presence of a very small group of users who tweet

compulsively and that are responsible of such strange values, but at least they are

publishing just true news (hence harmless). However, this little drawback does not

overshadow the fact that credulous users, compared to the not credulous ones, are more

involved in posting fake news.

Overall, the averages of the bots is higher than both credulous and not-credulous users,

regardless the news’ veracity in their tweets. The fact that the statistical descriptors’

values (of fake and real news) are similar and not too much higher than the values related

to humans, may mean some bots strategy to avoid detection, i.e., by mimicking, in such

a way, human’s behaviour.
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7.4 Discussion

The experimental results described in this chapter shed light on the connection between

fake news and credulous users, and on the extent they are involved in fake news spread-

ing on Twitter. We investigated such connection under three perspectives in order to

have a wider view. The best and the most important findings come from the tweeting

perspective. We found that the tweets authored by credulous users are always more (in

quantity) then those published by not credulous accounts. This was expected about fake

news; however, it was unexpected for the real news. Fake news actually represent the

problem, real one are harmless, and it would be a bit extreme to expect that credulous

users are active exclusively on fake news. Moreover, about fake news, we discovered

a considerable involvement of credulous users in spreading tweets containing fake news

(especially about politics). From the news perspective, it seems that credulous users

are less interested in fake gossips (only 80% of fake news) with respect to fake politics

(95%). In the last perspective, we had some difficulties to evaluate the participation of

users because of uncommon posting activity of some users. As far as fake tweets are

concerned, more credulous users participate than the not credulous ones.

Inspired by these encouraging results, we are able to give an answer also to the following

research question.

RQ5 – Do credulous users contribute to fake news spreading? What is their

level of involvement compared to that of not credulous users and bots? Is it

possible to provide evidence of credulous users contributing to misinformation?

Can we take advantage of credulous users detection for fake news detection?

ANSWER – Mis-/dis- information is driven by the production and circulation of fake

news, and we can say that credulous users are very active entities on OSM in spreading

them (see Tables 7.5 and 7.6).

Observing the high percentage of fake news tweeted by credulous users (61% in politics

and 70% in gossip), we can point out the harmfulness they constitute for their followers.

To have an idea about how to benefit from credulous detection, let us assume to suspend

or remove (extreme case) credulous users’ accounts from Twitter; in this case, the 61%-

70% of fake news produced by human-operated accounts would automatically disappear.

This first evidence that credulous users (and not only bots) are involved, even if un-

consciously, in supporting malicious activities (spreading disinformation) can inspire

further research in this direction. For instance, by using tweets’ provenance to enhance

the effectiveness of fake news detector, tweets from credulous users should have a higher

probability to be fake news. In such a way, it would be possible also to study the

credibility [168] of credulous users as a source of information.
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Conclusion

As highlighted by the Reuters Institute [123] and recent literature [132, 166, 178, 189],

social media are gradually becoming a very effective means of information mainly used

by people to keep up with news, especially by the youngsters. There are two main

factors that characterise OSM’s effectiveness in communication: (i) faster news dissem-

ination, and (ii) capability to reach large audiences, with respect to traditional mass

media such as television, newspapers and radio. In fact, domestic users of such services

can keep up with the news effortlessly, while routinely checking out their social channels

of interest. Unfortunately the lack of effective methods for the automatic fact-checking,

together with an impressive rate of posting on social platform, favoured the rise up

of mis-/dis- information phenomena through the increasingly use of fake news; hence,

exposing OSM’s users at an important risk of being misinformed. Mis-/Dis- informa-

tion becomes even more effective when it is targeted towards certain categories of users

(targeted misinformation). Since the Facebook-Cambridge Analytica scandal, several

other events start to attract the attention of academicians due to the suspect of external

intervention to bias the results, like Brexit (in 2016), US Presidential Election (in 2016),

Kenya elections (in 2013 and 2017) and many others1.

Academics, governments and OSM administrators agree that responsible of the pro-

duction and proliferation of fake news are (social) bots. They are (totally or partially)

automated accounts in OSM that, by acting under fictitious identities and mimicking

human’s behaviour on social networks, actively interact with genuine human users to

capture their interests. The goal is to pursue malicious purposes like: hate speeches,

generate discontent and misconception and, in general, to induce a bias within their

opinion to affect their mood.

1https://tinyurl.com/yxlo8f3u
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The role of bots is to influence human users by means of misinformation and fake news.

In [51] it has been highlighted that the human users do not pay attention when sharing

and publishing news. As consequence, although sometimes unknowingly, such users

contribute to mis-/dis-information activities of Social Media malicious entities.

Misinformation may largely affect the opinion of human users in several (real-world)

domains, along with the malicious activities continuously carried on by malevolent so-

cial media entities (e.g.., bots). In this thesis, by using Twitter as a benchmark, we

deliberately draw attention to those human users who are particularly exposed to fake

news attack (targeted misinformation attacks) performed by (net of) bots.

In Section 1 we formulated five research questions that were driving our research’s in-

vestigations. The experiments and analyses (see Chapters 3–7) provided some answers

to shed the light on the effectiveness of misinformation when conducted in a targeted

manner, and on a particular category of human users.

In Chapter 3, we answered to the first research question reported hereafter.

RQ1 – Among human Twitter users, which type of social relationship (e.g.,

following or being followed) is the most influential, and why? Does it make

sense to assign a gullibility score to human users? Which user-related aspects

should be taken into account in such a score? Does a clear separation between

credulous and not credulous users exist? Or, simply, is one user more credulous

than another?

In that chapter, by abuse of language, we have provided the definition of credulous users

as all those human-operated accounts on Twitter who follow a high percentage of bots

(bot-followees, which means being follower of a bot) with respect to total number of their

followees. Trivially, following a high number of bots may increase the probability to see

on the own dashboard the content (potentially deceptive) they publish. To identify the

credulous users we set up a method, based on four heuristics, to rank human users by

analysing the nature (human or bot) of their followees. The effectiveness of this ranking

method has been tested by means of an efficacy measure, i.e., the ratio between the bot-

followees of a group of users (single out as credulous) over the total number of bots in our

dataset. We found that on average credulous users have a bot-followees concentration

ranging from 30% to 36% that, compared to what stated in [61] (i.e., bot accounts in

Twitter range from 8 to 15%), is around the double. By using this method, we provide

a first dataset of credulous users that constitutes a preliminary ground truth of such

human-operated accounts. However, the limitation of this approach is that it is rather

expensive due to the need of retrieving information of many (potentially) followees.
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In Chapter 4 we tried to overcome this limitation by using ML techniques. Decision

models were built to recognise credulous users avoiding the followees inspection. Below

we recall the second research question we addressed.

RQ2 – How effectively Machine Learning (ML) techniques can be in distin-

guishing credulous and non-credulous users? Is it possible to avoid in depth

inspection of human users’ social contacts in order to lighten the complexity of

identifying credulous users? What is the loss in terms of accuracy when per-

forming their identification? What are the features of Twitter accounts that

can facilitate this distinction? Are the features used for bot detection beneficial

also for identifying credulous users?

To answer these questions, we built a larger ground-truth constituted by 316 credulous

and 2,522 not credulous users. By means of an extensive experimentation (with 19

learning algorithms), we obtained a credulous classifier that (on average) achieve the

93.27% of instances correctly classified (accuracy) and an AUC of 0.93. When looking

at the usefulness of features, users’ profile data only resulted to be the most relevant. We

also investigated the effectiveness of features designed for bot detection but we obtained

bad classification results, showing they are uselessness for this task. We found also some

very useful features that emphasise the difference between credulous and not credulous

users; i.e.,: #friends/#followers2, #friends, following rate, 2 x #followers ≥ #friends,

and #followers. Despite it was not our primary target, we also obtained very good

classification performance in bot detection, i.e., an accuracy of 98.41% (AUC 1.00) that

is slightly better than values of various bot detectors reported in [42].

In Chapter 5 we tried to predict the percentage of bots a human user is following. The

motivation for such an investigation is to find a methodology able to identify, in a purely

preventive way, human users who may end up in the target of misinformation attacks

by bots. This investigation contributed to answer to our third research question.

RQ3 – Is it possible to predict the number of bots a human user is following

(bot-followees)? Are the features, used for credulous classification, useful also

for this task? Which measures can be adopted to estimate the quality of such

predictions in absence of well-defined benchmarks in the literature?

By adopting the same features used for credulous classification task, we have not ob-

tained good results. To improve the regression performance, we considered the union of

two feature sets, i.e., the ones designed for bot detection, in addition to the ones used

for credulous detection. This way, we obtained an acceptable margin of error (Mean Ab-

solute Error) when predicting the bot-followees percentage a human-operated account
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is following. Since [149, 169] we can confirm it is a challenging task and, despite we got

a regression model performing significantly better than the baseline (provided by the

ZeroR2), it would be nice to compare our results with the literature. At best of our

knowledge there is no a clearly defined baseline.

In Chapter 3 and 4 (and marginally in 5), we designed strategies to identify credulous

users, but balancing between need of data and computational costs. In Chapter 6 we

started to investigate the behaviour of credulous users with the goal to understand

if they actively participate in bouncing content from bots and therefore potentially

malevolent. The fourth research question helped to target our analysis by focusing on

users’ behavioural aspects.

RQ4 – Is it enough to compare the different types of activities (i.e., retweets,

quoted tweets, replies and posting new content) between credulous and not

credulous users to significantly differentiate them? Can bot-followees influence,

in terms of content production, the activities of credulous users more than not

credulous ones? How to measure the effectiveness of such an influence? Do

credulous users bounce bots’ content? And to what extent with respect to not

credulous users?

To find differences between the two categories of users, we conducted a coarse-grained

analysis in which the activities (i.e., retweets, replies and handmade tweets) of credulous

and not credulous users have been compared in statistical terms. Excluding the case of

handmade tweets (called pure tweets), where we found a very different tweet-production

rate, by observing the statistics of the other types of tweets (i.e., replies and retweets) no

significant behavioural differences emerged. Such a behavioural similarity (in this coarse-

grained analysis), between the two populations, is mainly due to the human nature that

both credulous and not credulous users share. Indeed, behavioural differences concerning

the activities on OSM are more marked/evident when human and bot accounts are

compared; and often adopted to train bot detectors [45].

Conversely, by performing a fine-grained analysis we got relevant differences between

credulous and not credulous users. Precisely, we found that credulous users bounce

more bot-originated content than not credulous ones on average. Such differences have

been tested by performing non-parametric statistical test (e.g., ANOVA and Mann-

Whitney), revealing a significant difference between the two populations.

The findings obtained from the fine-grained analysis allow us to claim that some relevant

differences between credulous and not credulous users exist. In particular, from the

analysis carried out on each type of tweet, we can state that the credulous users’ tweets

2ZeroR: a classifier that predicts the mean in case of numeric/real class values.
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production is significantly influenced by bots activities on OSM. In fact, a considerable

percentage of contents posted (retweeted, quoted or replied) by credulous users (unlike

not credulous users) come from automated (and potentially malicious) accounts.

These findings confirm our suspect about the involvement of credulous users in sup-

porting bots activities in terms of content dissemination (potentially malicious). Our

credulous classifier is helpful in single out those human-operated accounts active in this

business. In Chapter 7 we shed light on the harmfulness of content spread by credulous

users. The fifth research questions has been addressed by the analysis conducted on

Chapter 7.

RQ5 – Do credulous users contribute to fake news spreading? What is their

level of involvement compared to that of not credulous users and bots? Is it

possible to provide evidence of credulous users contributing to misinformation?

Can we take advantage of credulous users detection for fake news detection?

Starting from a publicly available fake news dataset (FakeNewNet) where, for each news,

a list of tweets ids containing that news was provided, we traced back to the Twitter

accounts posting that news. We firstly applied our bot detector, to filter out the bots,

and then, on the remaining accounts, we applied our approach for credulous detection.

We found that a large percentage of tweets containing fake news have been posted

by credulous users (61%-70% of the fake news diffused by human-operated accounts).

This result provides evidence of the level of involvement that credulous users have in

misinformation activities, w.r.t. not credulous ones, on Social Media.

As far as bots are concerned, we detected few automated accounts (bots) if compared

with the number of human users. Therefore, we repute the number of tweets authored

by these bots not so high to perform a fair comparison with the categories of human

users (i.e., credulous and not credulous users). Anyway, on average, we noticed that

bots’ tweeting rate is larger than the humans’ one, even if not too much. Furthermore,

we observed that the bots tweeting rate is similar between fake and real news. We

suspect that both the similarity with the humans’ posting rate (thus mimicking human

behaviour [106]) and the balancing of fake/real news rate are part of a strategy to

avoid their (bot) detection on Social Media. Another interesting detail emerged from

our analysis of bots concerns the percentage of automated accounts, out of the total

number of users we considered. The percentage of bots we detected, by means of our

bot detector, is of 10.55%, supporting what stated in [61] about the percentage of bots

active on Twitter (ranging from 8-15%).

The analysis conducted in this thesis shows a active humans’ participation in spread-

ing fake news, demonstrating the strong involvement of credulous users in mis-/dis-
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information dissemination. There are several benefits on identifying credulous users, for

instance, they can be considered as natural honeypot to attract/study and remove bots.

A possible application can be the inspection of the data stream published by credulous

users’, with targeted fact-checking. This way, it is reduced the set of human users to

scrutiny and, indirectly, the number of tweets, to perform targeted fact-checking. To

narrow the group of credulous users to analyse, it might be helpful to implement pri-

ority measures that consider the content production’s rate of credulous users (to pay

more attention on the most active ones), or the number of followers (i.e., other potential

victims). OSM administrators represent one of the stakeholders of such systems inter-

ested to credulous users’ activities (e.g., content re-posting). They can slow down the

propagation of malicious information, contributing not only in fake news fighting, but

also in improving the credibility and effectiveness of their platforms as a mass media.

8.1 Future research directions

Despite these encouraging and promising results, additional efforts are needed to improve

users’ awareness in news trustworthiness. In the following we propose some interesting

future research directions:

(i): observe the variations of credulous users’ followees and check, by considering an

observation time frame, the (human/bot) nature of those started of being followed

(new followees), those stopped of being followed, and those remaining longer in

their followees lists. Also looking at the amount of changes in profile data (in a

given time frame) can be interesting, recalling their employment as the most effec-

tive features for credulous detector are calculated (ClassA-’s features). Thereby,

we can investigate their ability to detect potentially malicious accounts and derive

further features for credulous classification;

(ii): initially started in Chapter 5, it would be proficient to develop approaches for

credulous detection also to those human-operated accounts with more than 400

followees. Investigations in this direction would further contribute to shed light on

users’ influence mechanisms; for example, to understanding whether the proportion

of suspicious users that a credulous user follows is proportional to the number of

followees.

(iii): initially started in Chapter 7 through the consideration of two topics (politics and

gossip), it would be interesting to relate the topic of (fake) news to the level of

involvement of credulous users considering, for example, more current and topical

news than gossip, such as healthcare and science;
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(iv): since the concept of credulous users is strongly connected to the type of relationship

between users on a specific social platform, it would be interesting to produce

or at least adapt the concept of credulous users for other OSM platforms (e.g.

Facebook). Depending on the type of social relationships that the platform offers,

the concept of being interested in content published by an account also changes;

this makes the latter direction of research very challenging, maybe the most one.
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Automatic Detection of

Credulous Users on Twitter –

Complete Results

The adopted machine learning algorithms can be grouped in five categories. The first

category is called bayes and it includes: Hidden Markov Models (HMM) [54], Bayesian

Networks (BN) [65], and Naive Bayes (NB) [85]. The second category is named lazy,

and we only use the K-nearest neighbours (IBk) [2]. The first category, namely func-

tions, includes: Neural Networks with back propagation of error to learn a multi-layer

perceptron (MLP) [127], Voted Perceptron [63] (VP) and Sequential Minimal Optimiza-

tion (SMO)[136]. Rules is the fourth category including: RIPPER (JRip) [37], 0R and

1R [79]. Finally, there is a category called trees that comprises: C4.5 (J48) [138], Ho-

effding tree (HT) [83], Random Decision Tree (RT) [77], Consolidated Tree Construction

(J48c) [133], Grafted C4.5 Decision Tree (J48g) [175], a decision tree builder using the

LogitBoost strategy (LAD) [78], Logistic Model Tree (LMT) [93], another one using in-

formation gain/variance and Reduced-Error Pruning with backfitting (REP) [137] and,

Random Forest (RF) [24].

116
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A.1 Bot Detection - complete results

Table A.1 reports the complete results of the experimentation that has been performed

for bot detection.

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

HMM 55.28 0.55 1.00 0.71 0.50
IBk 97.34 0.97 0.98 0.98 0.97
BN 96.98 0.98 0.97 0.97 0.99
NB 97.03 0.98 0.97 0.97 0.98
VP 81.24 0.83 0.83 0.83 0.81
MLP 97.91 0.98 0.98 0.98 0.99
SMO 98.04 0.98 0.98 0.98 0.98
JRip 97.92 0.99 0.98 0.98 0.99
1R 95.29 0.96 0.96 0.96 0.95
0R 55.28 0.55 1.00 0.71 0.50
J48 97.75 0.98 0.98 0.98 0.98
HT 96.66 0.97 0.97 0.97 0.97
RT 96.85 0.97 0.97 0.97 0.97
J48c 97.78 0.98 0.97 0.98 0.98
J48g 97.88 0.98 0.98 0.98 0.98
LAD 97.44 0.98 0.98 0.98 0.99
LMT 98.15 0.99 0.98 0.98 0.99
REP 97.67 0.98 0.98 0.98 0.99
RF 98.33 0.99 0.98 0.98 1.00

Botometer+

HMM 55.28 0.55 1.00 0.71 0.50
IBk 97.05 0.97 0.97 0.97 0.97
BN 96.99 0.97 0.97 0.97 0.99
NB 97.17 0.98 0.97 0.97 0.99
VP 93.52 0.97 0.91 0.94 0.94
MLP 97.78 0.98 0.98 0.98 0.99
SMO 97.64 0.98 0.98 0.98 0.98
JRip 97.61 0.98 0.97 0.98 0.98
1R 95.25 0.96 0.96 0.96 0.95
0R 55.28 0.55 1.00 0.71 0.50
J48 97.53 0.98 0.97 0.98 0.98
HT 96.72 0.97 0.97 0.97 0.97
RT 96.52 0.97 0.97 0.97 0.96
J48c 97.49 0.98 0.97 0.98 0.98
J48g 97.60 0.98 0.97 0.98 0.98
LAD 97.32 0.98 0.97 0.98 0.99
LMT 97.79 0.98 0.98 0.98 1.00
REP 97.45 0.98 0.97 0.98 0.99
RF 97.97 0.98 0.98 0.98 1.00

ClassA-

HMM 55.28 0.55 1.00 0.71 0.50
IBk 91.03 0.91 0.93 0.92 0.91
BN 87.15 0.93 0.83 0.88 0.94
NB 64.37 0.89 0.42 0.54 0.77
VP 80.07 0.82 0.82 0.82 0.80
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ClassA-

MLP 85.01 0.89 0.84 0.86 0.91
SMO 68.58 0.76 0.63 0.69 0.69
JRip 94.38 0.96 0.94 0.95 0.96
1R 84.51 0.88 0.84 0.86 0.85
0R 55.28 0.55 1.00 0.71 0.50
J48 94.30 0.96 0.94 0.95 0.96
HT 84.48 0.90 0.81 0.85 0.88
RT 92.48 0.93 0.94 0.93 0.92
J48c 94.36 0.96 0.93 0.95 0.96
J48g 94.41 0.96 0.94 0.95 0.96
LAD 89.19 0.93 0.87 0.90 0.94
REP 93.96 0.96 0.93 0.94 0.97
LMT 94.33 0.96 0.94 0.95 0.97
RF 95.84 0.98 0.95 0.96 0.99

Table A.1: Complete results for bot detection

A.2 Credulous Detection - complete results

A.2.1 Main experiments

Table A.1 reports the complete results of the experimentation that has been performed

for credulous users classification (316 Credulous vs. 2,522 Not Credulous users).

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

HMM 50.06 0.50 1.00 0.67 0.50
IBk 89.69 0.74 0.73 0.90 0.96
BN 80.26 0.91 0.89 0.76 0.91
NB 73.41 0.91 0.68 0.73 0.73
VP 68.68 0.72 0.63 0.67 0.70
SMO 78.77 0.80 0.78 0.78 0.79
MLP 77.76 0.79 0.77 0.78 0.85
JRip 92.80 0.99 0.87 0.92 0.93
1R 93.27 0.99 0.88 0.93 0.93
0R 49.51 0.49 0.65 0.66 0.50
J48 91.62 0.94 0.90 0.91 0.94
HT 80.21 0.91 0.68 0.76 0.90
RT 86.33 0.87 0.86 0.86 0.86
J48C 91.73 0.94 0.90 0.92 0.94
J48g 91.82 0.94 0.90 0.92 0.94
LAD 92.38 0.95 0.90 0.92 0.97
LMT 91.63 0.95 0.88 0.91 0.96
REP 93.07 0.99 0.88 0.93 0.94
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RF 92.16 0.96 0.88 0.92 0.97

Botometer+

HMM 50.06 0.50 1.00 0.67 0.50
IBk 65.03 0.61 0.60 0.63 0.70
BN 61.02 0.67 0.62 0.50 0.69
NB 60.44 0.68 0.42 0.60 0.60
VP 56.45 0.61 0.64 0.54 0.59
SMO 64.63 0.68 0.59 0.61 0.65
MLP 64.72 0.67 0.58 0.61 0.69
JRip 66.42 0.67 0.67 0.66 0.67
1R 63.54 0.63 0.65 0.64 0.64
0R 49.51 0.49 0.65 0.66 0.50
J48 66.02 0.68 0.63 0.63 0.66
HT 61.05 0.67 0.47 0.51 0.68
RT 60.93 0.61 0.61 0.61 0.61
J48C 65.67 0.67 0.64 0.63 0.66
J48g 66.16 0.68 0.63 0.63 0.67
LAD 65.79 0.67 0.65 0.65 0.69
LMT 67.20 0.69 0.62 0.65 0.72
REP 65.75 0.66 0.66 0.66 0.68
RF 67.81 0.68 0.69 0.68 0.73

ClassA-

HMM 50.06 0.50 1.00 0.67 0.50
IBk 92.59 0.74 0.73 0.92 0.97
BN 82.77 0.98 0.88 0.79 0.93
NB 73.00 0.97 0.69 0.73 0.73
VP 68.68 0.72 0.63 0.67 0.70
SMO 75.32 0.74 0.80 0.77 0.75
MLP 80.08 0.81 0.81 0.80 0.87
JRip 93.05 0.99 0.87 0.93 0.94
1R 93.27 0.99 0.88 0.93 0.93
0R 49.51 0.49 0.65 0.66 0.50
J48 92.58 0.97 0.88 0.92 0.94
HT 83.28 0.96 0.71 0.80 0.93
RT 88.88 0.89 0.89 0.89 0.89
J48C 92.68 0.97 0.88 0.92 0.94
J48g 92.64 0.97 0.88 0.92 0.94
LAD 92.38 0.96 0.89 0.92 0.97
LMT 92.66 0.98 0.88 0.92 0.96
REP 93.09 0.98 0.88 0.93 0.95
RF 92.71 0.97 0.89 0.92 0.97

Table A.2: Complete results for credulous detection – 316 Credulous users
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A.2.2 Additional experiment - cut to 946 users

Table A.3 reports the complete results of the experimentation that has been performed

for credulous users classification by considering 443 users as credulous.

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

HMM 48.31 0.48 1.00 0.65 0.50
IBk 86.07 0.72 0.71 0.85 0.94
BN 79.12 0.86 0.85 0.75 0.89
NB 72.29 0.87 0.69 0.71 0.72
VP 67.94 0.70 0.62 0.65 0.69
SMO 78.48 0.80 0.74 0.77 0.78
MLP 76.19 0.76 0.75 0.75 0.83
JRip 89.92 0.97 0.82 0.88 0.91
1R 89.42 0.97 0.80 0.88 0.89
0R 51.42 0.40 0.56 0.53 0.50
J48 88.04 0.90 0.85 0.87 0.90
HT 78.19 0.87 0.70 0.75 0.89
RT 83.33 0.83 0.83 0.83 0.83
J48C 88.23 0.90 0.85 0.87 0.91
J48g 88.44 0.91 0.85 0.88 0.90
LAD 89.01 0.92 0.84 0.88 0.95
LMT 88.83 0.93 0.83 0.88 0.94
REP 89.79 0.96 0.82 0.88 0.92
RF 89.58 0.94 0.84 0.89 0.95

HMM 48.31 0.48 1.00 0.65 0.50
IBk 64.54 0.59 0.58 0.60 0.69

Botometer+

BN 61.23 0.65 0.57 0.53 0.68
NB 60.15 0.66 0.48 0.58 0.60
VP 58.63 0.64 0.53 0.45 0.59
SMO 64.34 0.67 0.57 0.59 0.64
MLP 64.84 0.66 0.56 0.60 0.69
JRip 66.16 0.65 0.64 0.64 0.66
1R 64.59 0.64 0.62 0.63 0.64
0R 51.42 0.40 0.56 0.53 0.50
J48 65.74 0.65 0.62 0.63 0.66
HT 61.07 0.66 0.45 0.52 0.66
RT 59.49 0.58 0.58 0.58 0.59
J48C 64.77 0.63 0.64 0.63 0.65
J48g 65.85 0.66 0.62 0.63 0.66
LAD 65.37 0.65 0.62 0.63 0.69
LMT 66.76 0.68 0.59 0.62 0.71
REP 64.92 0.65 0.63 0.63 0.66
RF 66.36 0.66 0.64 0.65 0.71

ClassA-

HMM 48.31 0.48 1.00 0.65 0.50
IBk 88.98 0.72 0.70 0.88 0.94
BN 81.73 0.95 0.82 0.77 0.91
NB 72.35 0.94 0.70 0.71 0.72
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ClassA-

VP 67.88 0.69 0.62 0.65 0.69
SMO 73.73 0.73 0.77 0.74 0.74
MLP 80.31 0.81 0.80 0.80 0.87
JRip 90.08 0.98 0.81 0.88 0.91
1R 89.42 0.97 0.80 0.88 0.89
0R 51.42 0.40 0.56 0.53 0.50
J48 89.44 0.94 0.84 0.88 0.92
HT 80.55 0.92 0.72 0.77 0.91
RT 85.36 0.85 0.85 0.85 0.85
J48C 89.40 0.94 0.84 0.88 0.92
J48g 89.49 0.94 0.84 0.88 0.92
LAD 89.69 0.94 0.84 0.89 0.95
LMT 89.39 0.95 0.83 0.88 0.94
REP 89.91 0.96 0.82 0.89 0.92
RF 89.65 0.94 0.84 0.89 0.95

Table A.3: Complete results for credulous detection – 443 Credulous users (cut946 )

A.2.3 Additional experiment - cut to 1030 users

Table A.4 reports the complete results of the experimentation that has been performed

for credulous users classification by considering 502 users as credulous.

evaluation metrics
alg accuracy precision recall F1 AUC

ALL features

HMM 46.92 0.47 1.00 0.64 0.50
IBk 85.23 0.71 0.70 0.84 0.93
BN 78.24 0.84 0.84 0.75 0.89
NB 72.87 0.83 0.73 0.70 0.72
VP 68.60 0.70 0.59 0.64 0.69
SMO 78.28 0.79 0.72 0.75 0.78
MLP 76.95 0.76 0.74 0.75 0.84
JRip 88.45 0.95 0.79 0.86 0.89
1R 87.49 0.96 0.76 0.84 0.87
0R 52.93 0.38 0.60 0.50 0.50
J48 86.11 0.87 0.83 0.84 0.89
HT 75.58 0.83 0.66 0.72 0.85
RT 82.43 0.81 0.81 0.81 0.82
J48C 86.28 0.87 0.83 0.85 0.89
J48g 86.50 0.87 0.83 0.85 0.89
LAD 87.84 0.91 0.81 0.86 0.94
LMT 87.49 0.91 0.80 0.85 0.93
REP 87.99 0.94 0.79 0.85 0.91
RF 88.31 0.92 0.81 0.86 0.95
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Botometer+

HMM 46.92 0.47 1.00 0.64 0.50
IBk 66.31 0.57 0.57 0.61 0.70
BN 60.87 0.65 0.58 0.55 0.68
NB 60.00 0.64 0.54 0.57 0.59
VP 60.43 0.56 0.55 0.46 0.60
SMO 64.81 0.63 0.46 0.47 0.62
MLP 65.16 0.64 0.57 0.59 0.69
JRip 67.27 0.65 0.62 0.63 0.67
1R 67.14 0.65 0.61 0.63 0.66
0R 52.93 0.38 0.60 0.50 0.50
J48 66.16 0.64 0.60 0.61 0.65
HT 62.66 0.63 0.38 0.44 0.65
RT 59.33 0.56 0.57 0.56 0.59
J48C 64.34 0.61 0.64 0.62 0.64
J48g 66.32 0.65 0.60 0.61 0.65
LAD 66.33 0.64 0.61 0.62 0.69
LMT 67.70 0.68 0.58 0.62 0.71
REP 66.05 0.64 0.60 0.61 0.67
RF 66.87 0.65 0.62 0.63 0.71

HMM 46.92 0.47 1.00 0.64 0.50
IBk 87.25 0.71 0.70 0.85 0.93
BN 82.99 0.92 0.81 0.80 0.91
NB 72.76 0.90 0.76 0.70 0.72
VP 68.54 0.70 0.59 0.63 0.69
SMO 73.58 0.72 0.76 0.73 0.73
MLP 80.94 0.82 0.78 0.79 0.88
JRip 88.70 0.96 0.79 0.86 0.89
1R 87.49 0.96 0.76 0.84 0.87

ClassA- 0R 52.93 0.38 0.60 0.50 0.50
J48 87.67 0.92 0.81 0.85 0.91
HT 78.76 0.88 0.72 0.75 0.89
RT 83.74 0.82 0.82 0.82 0.83
J48C 87.54 0.91 0.81 0.86 0.90
J48g 87.72 0.92 0.81 0.85 0.91
LAD 88.32 0.94 0.80 0.86 0.94
LMT 88.03 0.94 0.79 0.86 0.93
REP 88.39 0.94 0.80 0.86 0.92
RF 87.86 0.92 0.81 0.86 0.94

Table A.4: Complete results for credulous detection – 502 Credulous users (cut1030 )
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Behavioural Analysis: Extended

Investigation Results

B.1 cut946

B.1.1 Retweets

(a) Percentage of ‘byBots’-retweets posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-retweets.

Figure B.1: Comparative analysis between C and NC users w.r.t. ‘byBots’-retweets.
Here, the set of C users includes 443 humans (namely, cut946 ).

(a) Deciles of Figure B.1a.
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(b) Deciles of C and all NC users.

Figure B.2: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-retweets. Here,
the set of C users includes 443 humans (namely, cut946 ).

B.1.2 Replies

(a) Percentage of replies to bot’s tweets posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of replies to bot’s tweets.

Figure B.3: Comparative analysis between C and NC users w.r.t. the replies to bots’
tweets. Here, the set of C users includes 443 humans (namely, cut946 ).

(a) Deciles of Figure B.3a.



Appendix B 127

(b) Deciles of C and all NC users.

Figure B.4: Analysis using deciles – C vs. NC users w.r.t. the replies to bots’ tweets.
Here,the set of C users includes 443 humans (namely, cut946 ).

B.1.3 Quotes

(a) Percentage of ‘byBots’-quotes posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-quotes.

Figure B.5: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes.
Here, the set of C users includes 443 humans (namely, cut946 ).

(a) Deciles of Figure B.5a
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(b) Deciles of C and all NC users.

Figure B.6: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes. Here, the
set of C users includes 443 humans (namely, cut946 ).

B.1.4 Retweets and quotes: aggregation

(a) Percentage of ‘byBots’-quotes and retweets (jointly) posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-quotes and retweets (jointly).

Figure B.7: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes
and retweets (jointly). Here, the set of C users includes 443 humans (namely, cut946 ).

(a) Deciles of Figure B.7a
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(b) Deciles of C and all NC users.

Figure B.8: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes and
retweets (jointly). Here, the set of C users includes 443 humans (namely, cut946 ).

B.2 cut1030

B.2.1 Retweets

(a) Percentage of ‘byBots’-retweets posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-retweets.

Figure B.9: Comparative analysis between C and NC users w.r.t. ‘byBots’-retweets.
Here, the set of C users includes 502 humans (namely, cut1030 ).

(a) Deciles of Figure B.9a
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(b) Deciles of C and all NC users.

Figure B.10: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-retweets. Here,
the set of C users includes 502 humans (namely, cut1030 ).

B.2.2 Replies

(a) Percentage of replies to tweets originated by bots.
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(b) % of populations w.r.t. the % of replies to bot’s tweets.

Figure B.11: Comparative analysis between C and NC users w.r.t. the replies to
bots’ tweets. Here, the set of C users includes 502 humans (namely, cut1030 ).

(a) Deciles of Figure B.11a.
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(b) Deciles of C and all NC users.

Figure B.12: Analysis using deciles – C vs. NC users w.r.t. the replies to bots’ tweets.
Here,the set of C users includes 502 humans (namely, cut1030 ).

B.2.3 Quotes

(a) Percentage of ‘byBots’-quotes posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-quotes.

Figure B.13: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes.
Here, the set of C users includes 502 humans (namely, cut1030 ).

(a) Deciles of Figure B.13a
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(b) Deciles of C and all NC users.

Figure B.14: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes. Here,
the set of C users includes 502 humans (namely, cut1030 ).

B.2.4 Retweets and quotes: aggregation

(a) Percentage of ‘byBots’-quotes and retweets (jointly) posted by C and NC (sample) users.
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(b) % of populations w.r.t. the % of ‘byBots’-quotes and retweets (jointly).

Figure B.15: Comparative analysis between C and NC users w.r.t. ‘byBots’-quotes
and retweets (jointly). Here, the set of C users includes 502 humans (namely, cut1030 ).

(a) Deciles of Figure B.15a
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(b) Deciles of C and all NC users.

Figure B.16: Analysis using deciles – C vs. NC users w.r.t. ‘byBots’-quotes and
retweets (jointly). Here, the set of C users includes 502 humans (namely, cut1030 ).
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