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Chapter 1

Introduction

1.1 General Background

Optimal control theory deals with the computation of control strategies for
complex dynamical systems in order to optimize their performance according
to a fixed cost functional. Nowadays, this research area has been growing in
importance since new numerical techniques have become available to solve a
wide class of industrial and financial problems.
In this thesis we will focus on the finite horizon optimal control problems,
the so-called Bolza problems that consists in minimizing the following cost
functional:

Jx,t(u) =

∫ T

t

L(y(s), u(s), s)e−λ(s−t) ds+ g(y(T ))e−λ(T−t) (1.1)

over all the possible solutions of the following controlled dynamical system:{
ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ],
y(t) = x,

(1.2)

where u : [t, T ] → U ⊂ Rm is taken in set of admissible controls U . The
problem can be formulated in the following way:

inf
u∈U

Jx,t(u) s.t. y(s) satisfies (1.2). (1.3)

The optimal control problem (1.3) can be solved with two main approaches:
the Pontryagin Maximum Principle (PMP) and the Dynamic Programming
Principle (DPP). The PMP was formulated in 1956 by the Russian mathemati-
cian Lev Pontryagin ([49]) and provides necessary conditions for the optimality
which lead to a two-point boundary value problem. This approach produces
an open-loop control which is rather unstable in presence of perturbations.
For the purposes of this thesis we will concentrate on the Dynamic Program-
ming approach. The DDP was introduced by Richard Bellmann in the 1950s
([9]) and it provides a synthesis of the feedback control law via the solution of
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a nonlinear partial differential equation (the Hamilton-Jacobi-Bellman (HJB)
equation) that gives a characterization of the value function, Once the value
function is known (or approximated), the synthesis of a feedback control law
can be computed. This approach has been revitalized in the 80’s by the de-
velopment of a theory of weak solutions for the HJB equation, the so-called
viscosity solutions, introduced by Crandall and Lions in the middle of the 80s
(see, e.g., the monographs by Bardi and Capuzzo-Dolcetta ([7]) on determin-
istic control problems and by Fleming and Soner ([34]) on stochastic control
problems). The theory related to this approach is now rather complete and
established giving a complete characterization of the value function as the
unique viscosity solution of the HJB equation for many classical control prob-
lems. It is important to note that even in low-dimension the numerical solution
of HJB equations is a challenging problem since the value function associated
to our control problem is known to be only Lipschitz-continuous also when the
dynamics and the running costs are regular functions. Because of its lack of
regularity, we cannot consider numerical schemes exploiting the regularity of
the solution. Moreover, it is well-known that the DPP approach suffers from
the ”curse of dimensionality”, expression coined by Bellman himself:

”..what casts the pall over our victory celebration? It is the curse
of dimensionality, a malediction that has plagued the scientist from
the earliest days.”

The HJB equation is set in a domain with the same dimension of the dy-
namical system. This dimension could be very high since if is often greater
than 10 in many industrial applications, it can be even greater (order of thou-
sands) when the dynamical system comes from a semi-discretization of an
evolutive Partial Differential Equation (PDE). These difficulties have reduced
the impact of the general theory over real industrial applications.

However, there is a complete literature for low dimensional numerical
methods to solve the HJB equation (see e.g. the monographies by Sethian
[54], Osher and Fedkiw [29] and Falcone and Ferretti [26]). In general all the
PDE methods require a discretization in space, leading to problems in mem-
ory allocations for high dimensional systems.

The starting point of this thesis relies in particular on semi-Lagrangian
schemes. In this context Falcone and Giorgi in [27] presented an approxi-
mation scheme for the evolutive HJB equation arising from optimal control
problems, together with some error estimates. The proposed method works on
a triangulation of a fixed domain and this becomes unfeasible for high dimen-
sion. Several efforts have been made to mitigate the curse of dimensionality. A
possible way to address this problem stands in the splitting of the solution HJB
equation into blocks of reasonable size. In this context we mention [28] for a
domain decomposition method with overlapping between the subdomains and
[14] for similar results without overlapping. This kind of approach deals with
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subdomains with simple geometry, but it introduces computational expensive
boundary conditions. Another way, based on Al’brekht method ([1]), has been
proposed in [47] and it consists in a patchy decomposition. Later in [12] the
patchy idea has been extended creating subdomains which are almost invariant
with respect to the optimal dynamics, avoiding the transmission conditions
at the internal boundaries. More recently other decomposition techniques for
optimal control problems and games have been proposed in [31] where the
parallel algorithm is based on the construction of independent sub-domains
and in [32] where a parallel version of the Howard’s algorithm is proposed
and analyzed. In general, domain decomposition methods enables to reduce
a huge problem into a series of smaller subproblems which can be solved on
different CPU via a parallel method, but the approximation schemes used in
every subdomain are rather standard. An improvement can be obtained using
efficient acceleration methods for the computation of the value function in ev-
ery subdomain, e.g. by fast-marching or fast-sweeping techniques [53, 56]. In
the framework of optimal control problems an efficient acceleration technique
based on the coupling between value and policy iterations has been recently
proposed and studied in [2]. Although domain decomposition coupled with
acceleration techniques can help to solve problems up to dimension 10, we can
not solve problems beyond this limit with a direct approach.

A reasonable solution to attack high-dimensional problems is to apply
first model order reduction techniques, e.g. Proper Orthogonal Decomposi-
tion (POD,[57]). POD technique allows to consider a low dimensional problem
which preserves the most important features of the original system. Consid-
ering a reduced space of dimension d < 5, it is possible to apply the classical
method. The interested reader will find more information on this coupling
in [43] and [5]. In the last chapter we will consider this technique, extending
it in our framework. For the sake of completeness we mention other tech-
niques present in literature to attack the curse of dimensionality. A possible
approach in this context relies on the theory of max-plus algebras ([45, 46]).
This technique avoids the space discretization, considering a particular basis,
the max-plus basis, to express the value function. It is based on the computa-
tion of the coefficients of the basis, whose number increases exponentially in
the number of time steps, restricting the possible applications of the method.
Another technique to solve the optimal control problem is the so-called Model
Predictive Control method. This approach does not solve directly the HJB
equation, but it splits the problem in short horizon sub-problems computing
the optimal trajectory in each subinterval and restarting the procedure. This
method depends on the prediction horizon, which must be chosen properly
in order to get accurate results. We refer the interested reader to the mono-
graph [44] and to the recent introduction to MPC [36]. Finally, we should
also mention that in [21, 22] has been proposed to apply a discrete version of
Hopf-Lax representation formulas for Hamilton-Jacobi equations avoiding the
global approximation on a grid. The advantage of this method is that it can
be applied at every point in the space and that it can be easily parallelized.
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However, this method can not be used for general nonlinear control problems
since the Hopf-Lax representation formula is valid only for hamiltonians of the
form H(Du), whereas the hamiltonian related to optimal control problems is
typically H(x, u,Du).

1.2 Contributions

The aim of this thesis is to introduce a new algorithm to attack the curse
of dimensionality: the Tree Structure Algorithm (TSA, [3]). Our proposed
algorithm does not require the space discretization and the construction of a
grid and this allows to reduce the memory allocations extending the possibility
to apply the DP approach. For the finite horizon problem this can be done
via the construction of a tree-structure that will account for the controlled
dynamics. Considering a discretization of the control set and the application
of a Euler scheme for the dynamics, we can construct a tree which mimic the
possible trajectories and we will solve the HJB equation on the constructed
tree.

The algorithm applies a Euler scheme to solve the equation for the dy-
namical system, but the extension to high-order scheme is straightforward.
Indeed, we provide a Discrete Dynamical Programming Principle for high-
order schemes, as suggested in [25] for the infinite horizon case. It is impor-
tant to notice that the tree structure depends on the dynamics, the number
of steps used for the time discretization and the cardinality of the control set.
This can produce a huge number of branches in the tree, however not all these
branches must be considered to get an accurate approximation of the value
and a pruning criteria has been introduced to reduce the complexity of the
algorithm. Moreover, we consider a post-processing procedure to get a more
accurate feedback reconstruction starting from the creation of a tree with few
controls. Working on the tree has several advantages:

(i) we do not need to define a priori a numerical domain Ω where we want
to solve the problem; the original tree is constructed by the controlled
dynamics;

(ii) we do not need to build a space grid and to make a space interpolation
on the grid nodes, and therefore we do not introduce an interpolation
error in the approximation of the value function;

(iii) the pruned tree allows us to deal with high-dimensional problems.

In conclusion, with respect to the standard space discretization we can
drop the interpolation step that is rather expensive in high-dimension and we
do not need the classical assumptions at the boundary of Ω which classically
requires one to have an invariant dynamics or to impose boundary conditions
(Dirichlet, Neumann, or state constraint). Via the tree structure algorithm we
eliminate these difficulties at least for the finite horizon problem and we can
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directly solve the discrete time HJB equation for high dimension without any
particular assumption on the structure of the problem as in a model reduction
context.

Moreover, we develop an error analysis of the TSA giving precise error
estimates. In particular, as proposed in [16] for the infinite horizon case,
under the assumption of semiconcavity, we improve the order of convergence
provided in [27] for the finite horizon optimal control problem and we extend
the error analysis to the pruned TSA. We refer to [15] for more details on
the property of semiconcavity and its connection with the HJB equation.
Therefore, it is clear that the method is expensive when we deal with PDEs
since it requires to solve many equations for several control inputs. It is then
natural to couple the TSA with POD in order to speed up the method. With
the approach we have four major advantages:

(i) we build the snapshots set upon all the trajectories that appear in the
tree, avoiding the selection of a forecast for the control inputs which is
always not trivial for model reduction,

(ii) the application of POD also allows an efficient pruning since it reduces
the dimension of the problem and provides information on the most
variable components,

(iii) the theory of DPP is valid on the whole state space Rd but, in general,
for numerical reasons we need to restrict our equation to a bounded
domain. Our method avoids to define the numerical domain for the
projected problem, which is a difficult task since we lose the physical
meaning of the reduced coordinates,

(iv) we are not restricted to consider a reduced space dimension smaller than
5 as in e.g. [5], [43], which was a limitation of the method since many
classes of PDEs require more basis functions to capture the essential
features.

In presence of nonlinearities the application of POD is still computationally
expensive since the nonlinear part depends on the dimension of the original
problem. In this case we use the Discrete Empirical Interpolation Method
(DEIM, [17]). Thanks to a computation of the POD basis functions for the
nonlinear part, we obtain a low-dimensional problem completely independent
from the high-dimensional problem. Finally, we provide a-priori error estimate
for the coupling between TSA and model order reduction to validate our
approach.

1.3 Organization of the thesis

The thesis is divided in five chapters.

5



• Chapter 1 recalls the Dynamical Programming Principle and the evo-
lutive Hamilton-Jacobi-Bellman equation. We discuss some properties
of the solution, focusing in particular on the notion of semiconcavity
(see [15] for more details) which constitutes the key point for our er-
ror estimates. Afterwards, we recall some numerical methods present in
literature to solve this problem. First, we present the semi-Lagrangian
scheme proposed in [27] to solve the finite horizon optimal control prob-
lem. This method represents the starting point of our proposed algo-
rithm. Then we pass to consider some techniques which try to mitigate
the curse of dimensionality in particular cases: the Linear Quadratic
Regulator, Darbon-Osher method and the max-plus based algorithm.

• Chapter 2 is the core of the thesis, it introduces the Tree-Strucure
Algorithm (TSA). First, we explain how the algorithm works, explain-
ing step by step the construction of the tree and the resolution of the
HJB equation on the constructed domain. Then we pass to technical
improvements to speed-up the method: the tree structure increases ex-
ponentially in the number of discrete controls and time steps and for this
reason a pruning criteria has been introduced. Based on a neighbour
search, the pruning criteria allows to cut the nodes which are not rele-
vant in the resolution of the HJB equation. Since the neighbour search is
an expensive tool, the pruning procedure has been speeded up thanks to
the application of Principal Component Analysis techniques ([48, 39]).
After the computation of the value function, one can consider some
feedback reconstruction techniques and we present two possible meth-
ods. Finally, we discuss the extension of the algorithm to high-order
schemes, presenting a new Discrete Dynamical Programming Principle
and showing some examples.

• Chapter 3 provides the theoretical framework for the proposed algo-
rithm. We study a-priori error estimate for the TSA, obtaining a first
order convergence. The assumption of the semiconcavity is a key ingre-
dient for the proposed proof. We present also an error estimate which
takes into account the error in the minimization by comparison. Then,
we study the pruning case, getting again a first order convergence under
suitable assumptions on the choice of the pruning threshold. Finally, we
extend the assumptions on the pruning criteria to high-order schemes.
Finally, we present some numerical tests which confirm the theoretical
findings.

• Chapter 4 is dedicated to optimal control problems for PDEs. Since
the problem presents some difficulties for the high dimensionality, we
study the coupling of the TSA with model reduction techniques. First,
we recall the Proper Orthogonal Decomposition and the Discrete Em-
prical Interpolation Method and then we show how to apply them in
our framework. Finally, we study an error estimate for the coupling of
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the two methods. In the section of numerical tests we study the or-
der of convergence of the TSA-POD algorithm and we apply it in the
framework of 2D nonlinear PDEs.

• Chapter 5 provides our conclusions and some future directions.

1.4 Original material

In this section we mention the original contributions behind this thesis.
Chapter 3 is based on the paper [3], published in SIAM J. of Scientific

Computing, and on the published IFAC CPDE conference article [4].
Chapter 4 is based on the paper [51] submitted to SIAM J. of Numerical

Analysis.
Chapter 5 is based on the paper [6] which will appear for a special issue

in Applied Numerical Mathematics.
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Chapter 2

Background

In this chapter we will sketch the essential features of the dynamic program-
ming approach and its numerical approximation which will be useful in the
following chapters. First of all, we introduce the Dynamic Programming Prin-
ciple, which leads in our framework to a first order time-dependent Hamilton-
Jacobi-Bellman equation. We will discuss some properties of the solution of
this equation, focusing in particular on the property of semiconcavity. We will
pass to some numerical approximations present in literature to approach this
kind of problem.

2.1 Programming Principle and Hamilton-

Jacobi-Bellman equation

Let us consider the classical finite horizon optimal control problem. Let the
system be driven by{

ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ],
y(t) = x ∈ Rd.

(2.1)

We will denote by y : [t, T ]→ Rd the solution, by u : [t, T ]→ Rm the control,
by f : Rd × Rm × [t, T ]→ Rd the dynamics and by

U = {u : [t, T ]→ U,measurable}

the set of admissible controls, where U ⊂ Rm is a compact set.
Under the assumptions of boundedness and Lipschitz-continuity of the

vector field f , there exists a unique solution for (2.1) for each u ∈ U . We refer
to e.g. [7] for a precise statement.

The cost functional for the finite horizon optimal control problem will be
given by

Jx,t(u) :=

∫ T

t

L(y(s, u), u(s), s)e−λ(s−t) ds+ g(y(T ))e−λ(T−t), (2.2)
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where L : Rd ×Rm × [t, T ]→ R is the running cost and λ ≥ 0 is the discount
factor. In what follows we will assume that the functions f, L, g are bounded:

|f(x, u, s)| ≤Mf , |L(x, u, s)| ≤ML, |g(x)| ≤Mg,

∀x ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],
(2.3)

the functions f, L are Lipschitz-continuous with respect to the first variable

|f(x, u, s)− f(y, u, s)| ≤ Lf |x− y|, |L(x, u, s)− L(y, u, s)| ≤ LL|x− y|,
∀x, y ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],

(2.4)

and finally the cost g is also Lipschitz-continuous:

|g(x)− g(y)| ≤ Lg|x− y|, ∀x, y ∈ Rd. (2.5)

The goal is to find a state-feedback control law u(t) = Φ(y(t), t), in terms of
the state equation y(t), where Φ is the feedback map. To derive optimality
conditions we use the well-known Dynamic Programming Principle (DPP)
due to Bellman. We first define the value function for an initial condition
(x, t) ∈ Rd × [t, T ]:

v(x, t) := inf
u∈U

Jx,t(u) (2.6)

which satisfies the DPP, i.e. for every τ ∈ [t, T ]:

v(x, t) = inf
u∈U

{∫ τ

t

L(y(s), u(s), s)e−λ(s−t)ds+ v(y(τ), τ)e−λ(τ−t)
}
. (2.7)

Due to (2.7) we can derive the HJB for every x ∈ Rd, s ∈ [t, T ): −∂v
∂s

(x, s) + λv(x, s) + max
u∈U
{−L(x, u, s)−∇v(x, s) · f(x, u, s)} = 0,

v(x, T ) = g(x).

(2.8)
Defining the Hamiltonian

H(s, x, p) = max
u∈U
{−L(x, u, s)− p · f(x, u, s)} ,

we can rewrite (2.8) as{
−∂v
∂s

(x, s) + λv(x, s) +H(s, x,∇v) = 0,

v(x, T ) = g(x).
(2.9)

It is well known that equation (2.9) is in general not well-posed. For this
reason the theory of viscosity solutions was introduced. This theory, initiated
in the early 80’s by the papers of M.G. Crandall and P.L. Lions [19], provides
a convenient framework for dealing with the lack of smoothness of the value
functions arising in dynamic optimization problems. We pass to introduce one
of the possible definitions of viscosity solution.
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Definition 2.1.1. A continuous function u : [0, T ] × Rd → R is a viscosity
subsolution of (2.9) if, for every C1 function Φ = Φ(t, x) such that u−Φ has
a local maximum at (t, x), one has

−∂sΦ(x, s) + λv(x, s) +H(t, x,∇Φ) ≤ 0.

A continuous function u : [0, T ]×Rd → R is a viscosity supersolution of (2.9)
if, for every C1 function Φ = Φ(t, x) such that u−Φ has a local minimum at
(t, x),one has

−∂sΦ(x, s) + λv(x, s) +H(t, x,∇Φ) ≥ 0.

A continuous function u : [0, T ]× Rd → R is a viscosity solution of (2.9)
if it is a viscosity subsolution and a viscosity supersolution of (2.9).

In this setting it is possible to prove that there exists a unique viscosity
solution of (2.9) under suitable assumptions.

Theorem 2.1.1. Assuming (2.3), (2.4) and (2.5), the value function v(x, t)
is the unique viscosity solution of (2.9).

The analytical solution of (2.9) is known just in particular cases, for this
reason we need efficient numerical methods to solve it. Suppose that the value
function is known, analytically or by numerical methods, then it is possible
to compute the optimal feedback control as:

u∗(t) := arg max
u∈U

{−L(x, u, t)−∇v(x, t) · f(x, u, t)} . (2.10)

We will discuss more about the synthesis of the feedback control in the next
chapters.

2.1.1 The infinite horizon case

In the infinite horizon case the cost functional is given in the following form

Jx(u) :=

∫ ∞
0

L(y(s, u), u(s))e−λs ds , (2.11)

where the discount coefficient λ ensures that the integral is finite, under the
assumption of boundedness for the running cost L. In this case we define the
set of admissible controls as:

U = {u : [0,+∞)→ U,measurable}

and the value function as:

v(x) = inf
u∈U

Jx(u) , (2.12)

which satisfies now the following stationary Hamilton-Jacobi-Bellmann equa-
tion:

λv(x) + max
u∈U
{−L(x, u)−∇v(x) · f(x, u)} = 0. (2.13)
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The Dynamic Programming Principle in this case reads as follows

v(x) = inf
u∈U

{∫ τ

0

L(y(s), u(s))e−λsds+ v(y(τ))e−λτ
}
, ∀τ ≥ 0. (2.14)

The DPP (2.14) can be discretized and the numerical solution V (x) can
be found solving the following fixed point problem:

V (x) = min
u∈U
{e−λ∆tV (x+ ∆tf(x, u)) + ∆tL(x, u)}. (2.15)

This problem can be solved numerically via the value iteration method, the
policy iteration method or a coupling of the two techniques. We address the
interested reader to [2] for a complete description of these methods.

2.1.2 The minimum time problem

Another class of optimal control problems is given by the minimum time
problem. In this case the aim is to steer the solution to a target T in the
shortest time. It is possible to define the first time of arrival on the target T
as

tx(u) =

{
min{t : y(t, u) ∈ T } if y(t, u) ∈ T for some t,

+∞ else.
(2.16)

In this case the value function is also called minimum time function and
it is defined by

T (x) = inf
u∈U

tx(u) .

In this context we need to provide the definition of reachable set, i.e. the
domain in which the value function is finite, and then we can introduce the
DPP satisfied by the value function.

Definition 2.1.2. The reachable set is defined as R = {x ∈ Rd : T (x) <
+∞}, i.e. the set of points from which the dynamics can reach the target T .

Proposition 2.1.1 (Dynamic Programming Principle). For all x ∈ R, 0 ≤
t ≤ T (x) (so that x 6∈ T ), the value function satisfies

T (x) = inf
u∈U
{t+ T (y(t, u;x))}. (2.17)

From (2.17) we can derive the following HJB equation

max
u∈U
{−∇T (x) · f(x, u)} − 1 = 0, x ∈ R \ T , (2.18)

coupled with the following natural boundary conditions{
T (x) = 0 x ∈ ∂T ,
lim
x→∂R

T (x) = +∞. (2.19)

For more details and results for the minimum time problem we refer to
[26].
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2.2 Properties of the value function

In this subsection we want to present the main results for the solution of (2.8)
which will be useful to prove error estimates for the algorithm introduced
later on. We will begin with a classical result on the continuity and Lipschitz-
continuity of the value function.

Proposition 2.2.1. Assuming (2.3), (2.4) and (2.5), then

• v is bounded and continuous in Rd × [0, T ], for all T > 0;

• if λ > 0, then v ∈ BC(Rd × [0,+∞]),

• v is Lipschitz continuous on K× [0, T ] for all compact sets K ⊂ Rd and
T > 0.

A proof of this proposition can be found in [7]. An essential ingredient for
the first order error estimates stands on the definition of semiconcavity.

Definition 2.2.1. Given A ⊂ Rd an open set, we say that a function u : A→
R is semiconcave with linear modulus if it is continuous in A and there exists
C ≥ 0 such that

u(x+ h) + u(x− h)− 2u(x) ≤ C|h|2, (2.20)

for all x, h ∈ Rd such that [x− h, x+ h] ⊂ A. The constant C above is called
semiconcavity constant for u.

We denote by SCL(A) the functions which are semiconcave in A with a
linear modulus and by SCLloc(A) for the functions which are semiconcave
with a linear modulus locally in A, i.e., on every compact subset of A. The
interested reader will find all the definitions and results regarding semicon-
cave functions in [15]. It is possible to give different characterizations for
semiconcave functions, as stated in the following result.

Proposition 2.2.2. Given u : A → R, with A ⊂ Rd open convex, and given
C ≥ 0, the following properties are equivalent:

• u is semiconcave with a linear modulus in A with semiconcavity constant
C;

• u satisfies

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ C
λ(1− λ)

2
|x− y|2,

for all x, y such that [x, y] ⊂ A and for all λ ∈ [0, 1];

• the function x→ u(x)− C
2
|x|2 is concave in A;

12



• there exist two functions u1, u2 : A→ R such that u = u1 + u2, with u1

concave and u2 ∈ C2(A) satisfying ‖D2u2‖∞ ≤ C;

• for any η ∈ Rd such that |η| = 1 we have ∂2
ηu ≤ C in A in the sense of

distributions;

• u can be represented as u(x) = infi∈I ui(x), where {ui}i∈I is a family of
functions of C2(A) such that ‖D2ui‖∞ ≤ C, for all i ∈ I.

Under suitable assumptions one can prove that the value function is semi-
concave, as stated in the next theorem.

Theorem 2.2.1. Let us assume f(·, u) and L(·, u) are Lipschitz-continuous
and the control set U is compact. Moreover let us suppose fx(·, u) is Lipschitz-
continuous, g ∈ SCLloc(Rn) and the following assumption on L:

L(x, u) + L(y, u)− 2L

(
x+ y

2
, u

)
≤ λR|x− y|2, x, y ∈ BR, u ∈ U.

Then v ∈ SCLloc([0, T ]× Rn).

We address the interested reader to [15] for a proof of the theorem and
a complete overview on this topic. The property of semiconcavity will be
essential in Chapter 4 since it will allow us to prove a first order convergence
for our proposed algorithm.

2.3 Numerical approximation of HJB equa-

tion

In this section we present the principal methods to solve numerically Equa-
tion (2.8). First of all we introduce the Semi-Lagrangian scheme, which is the
main building block of our algorithm. For the sake of completeness, we men-
tion other techniques for the approximation of the first order time-dependent
Hamilton-Jacobi-Bellman equation.

2.3.1 Semi-Lagrangian scheme

Equaton (2.8) is a nonlinear PDE of the first order which is hard to solve
analitically although a general theory of weak solutions is available in e.g. [7].
Rather, we can solve equation (2.8) numerically by means of finite difference
or semi-Lagrangian methods. In this section we recall the semi-Lagrangian
method. One usually starts the numerical method by discretizing in time the
underlying control problem with a time step ∆t := [(T − t)/N ] where N is the
number of temporal time steps and then projects the semi-discrete scheme on

13



a grid obtaining the fully discrete scheme:
V n
i = min

u∈U
[∆t L(xi, u, tn) + e−λ∆tI[V n+1](xi + ∆tf(xi, u, tn))],

n = N − 1, . . . , 0,

V N
i = g(xi) xi ∈ Ω,

(2.21)
where tn = t+n∆t, tN = T , Ω is the numerical domain and xi is an element of
its discretization, V n

i := V (xi, tn) and I[·] is an interpolation operator which
is necessary to compute the value of V n at the point xi + ∆t f(xi, u, tn) (in
general, this point will not be a node of the grid). The interested reader will
find in [26] a detailed presentation of the scheme. The result of Lipschitz-
continuity of the continuous value function v(x, t) can be extended to its
numerical approximation V (x, t) as explained in the following proposition.
The proof follows closely from the continuous version in [7, Prop. 3.1].

Proposition 2.3.1. Let us suppose the functions f(·, u, t), L(·, u, t) and g(·)
are Lipschitz continuous uniformly with respect to the other variables. Then,
the numerical value function V n(x) is Lipschitz in x

|V n(x)−V n(y)| ≤


|x− y|

(
LL
Lf−λ

(e(T−tn)(Lf−λ) − 1) + Lge
(T−tn)(Lf−λ)

)
,

for Lf > λ,
|x− y|

(
LL(T − tn) + Lge

(T−tn)(Lf−λ)
)
,

for Lf ≤ λ,
(2.22)

∀x, y ∈ Rd and n = 0, . . . , N .

Proof. In the case n = N , we have that V N(x) = g(x), then the estimate
follows directly from the hypothesis on g.
In the case n < N , we fix x, y ∈ Rd and consider the following quantity
V n(x)− V n(y):

V n(x)− V n(y) ≤ e−λ∆tV n+1(x+ ∆tf(x, un∗ , tn)) + ∆tL(x, un∗ , tn)

− e−λ∆tV n+1(y + ∆tf(y, un∗ , tn))−∆t L(y, un∗ , tn)

≤ e−λ∆t(V n+1(x+ ∆tf(x, un∗ , tn))− V n+1(y + ∆tf(y, un∗ , tn)))

+ ∆t LL|x− y|, (2.23)

provided that

un∗ = arg min
u∈U

{
e−λ∆tV n+1 (y + ∆tf(y, u, tn)) + ∆tL(y, u, tn)

}
.

To achieve the desired estimate (2.22), we need to iterate (2.23) starting
from x and y at time tn. Let us first define the whole tree paths {xm}m and
{ym}m as

xm := xn + ∆t
m−1∑
j=n

f(xj, uj∗, tj), ym := yn + ∆t
m−1∑
j=n

f(yj, uj∗, tj),

14



where

uj∗ = arg min
u∈U

{
e−λ∆tV j+1

(
yj + ∆tf(yj, u, tj)

)
+ ∆tL(yj, u, tj)

}
, j = n, . . . ,m−1.

By the discrete Grönwall’s lemma, it is easy to prove the following estimate
for Euler schemes starting from xn = x and yn = y

|xn+k − yn+k| ≤ |xn − yn|ek∆tLf = |x− y|ek∆tLf , k = 0, . . . , N − n. (2.24)

Then, iterating (2.23) we obtain

V n(x)− V n(y) ≤ ∆t LL

N−n−1∑
k=0

e−λk∆t|xn+k − yn+k|+ e−λ(T−tn)|g(xN)− g(yN)|

≤ ∆t LL

N−n−1∑
k=0

e−λk∆t|xn+k − yn+k|+ Lge
−λ(T−tn)|xN − yN |

≤ |x− y|

∆tLL

N−n−1∑
k=0

ek∆t(Lf−λ) + Lge
(T−tn)(Lf−λ)

 ,

(2.25)

where we used (2.24) and the Lipschitz continuity of g.
If Lf > λ, then by (2.25) and the equality (N − n)∆t = T − tn, we get

V n(x)− V n(y) ≤ |x− y|
(

∆tLL
e(T−tn)(Lf−λ) − 1

e∆t(Lf−λ) − 1
+ Lge

(T−tn)(Lf−λ)

)
≤ |x− y|

(
LL

Lf − λ
(e(T−tn)(Lf−λ) − 1) + Lge

(T−tn)(Lf−λ)

)
,

(2.26)

whereas if Lf ≤ λ, noticing that ek∆t(Lf−λ) ≤ 1, we directly obtain

V n(x)− V n(y) ≤ |x− y|
(
LL(T − tn) + Lge

(T−tn)(Lf−λ)
)
. (2.27)

Analogously, it is possible to obtain the same estimate for V n(y) − V n(x)
which leads to the desired result.

We will take advantage of the estimate (2.23) to guarantee the feasibility of
our proposed method. The numerical approximation of the feedback control
follows directly from the SL-scheme (2.21) and reads

un∗ (x) = arg min
u∈U

[∆t L(x, u, tn) + e−λ∆tI[V n+1](x+∆tf(x, u, tn))].
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2.3.2 Linear Quadratic Regulator

In this subsection we present a particular case of optimal control problem in
which we can obtain the solution solving a Riccati differential equation ([50]).
We consider a linear dynamical system{

ẏ(s) = Ay(s) +Bu(s), s ∈ (t, T ],
y(t) = x ∈ Rd,

(2.28)

and a quadratic cost functional

Jx,t(u) :=

∫ T

t

(
y(s)TQy(s) + u(s)TRu(s)

)
ds+ y(T )TFy(T ), (2.29)

with A,Q, F ∈ Rd×d, B ∈ Rd×M and R ∈ RM×M . In this case the value
function is given by v(x, t) = xTP (t)x, where P (t) solves the so-called Riccati
equation

−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q, P (T ) = F (2.30)

Solving (numerically or analytically) (2.30), one obtains the value function
in terms of the matrix P (t) and the feedback control is given by u∗(t, x) =
−K(t)x, where the matrix K(t) ∈ RM×d is computed in the following way

K(t) = R−1BTP (t).

In this particular case we can obtain the information on the optimal tra-
jectory ”just” solving a differential matrix equation. This will turn out to be
useful when we will compute the order of convergence of the proposed algo-
rithm in high-dimension. For recent developments on the treatment of the
Riccati equation in high dimension we refer to [41]. We stress on the fact
that the Riccati equation holds in a particular setting (linear dynamics and
quadratic cost functional). Our algorithm can be used in general frameworks
and we will show in Chapter 5 examples of control for non-linear PDEs.

2.3.3 The Hopf formula and Darbon-Osher method

Now let us consider the following Hamilton-Jacobi equation{
∂ϕ

∂s
(x, s) +H(∇ϕ) = 0,

ϕ(x, 0) = g(x),
(2.31)

where the Hamiltonian H depends only on the gradient of the value function.
In this case it is possible to obtain an explit solution via the Hopf formula
([38]). First we introduce the definition of Fenchel-Legendre transform, then
we present the Hopf formula.
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Definition 2.3.1. Given a convex function f : X → R on a convex domain
X, we define the Fenchel-Legendre transform f ∗ as

f ∗(v) = sup
x∈Rd

(x · v − f(x)) . (2.32)

Proposition 2.3.2. Assume that H is convex, g is Lipschitz-continuous and

lim
|p|→+∞

H(p)

|p|
= +∞ .

Then the solution of equation (2.31) is given by

ϕ(x, t) = − inf
v∈Rd
{g∗(v) + tH(v)− x · v} , (2.33)

where g∗(v) is the Fenchel-Legendre transform of g.

Taking into account (2.33), in [?] Darbon and Osher propose a method to
solve (2.31) mixing the Hopf formula and the split Bregman iterative approach
([35]). In Algorithm 1 we recall the split Bregman iterative scheme.

Algorithm 1 Split Bregman iterative scheme

1: v0 = x, d0 = x and b0 = 0
2: for k = 1, 2, . . . do
3: vk+1 = arg minv∈Rd

{
g∗(v)− x · v + λ

2
‖dk − v − bk‖2

2

}
4: dk+1 = arg mind∈Rd

{
tH(d) + λ

2
‖d− vk+1 − bk‖2

2

}
5: bk+1 = bk + vk+1 − dk+1

The sequences {vk}k and {dk}k are both converging to the minimizer of
(2.33). Steps 3 and 4 in Algorithm 1 need the computation of a minimization
and they can be reformulated as

arg min
w
{αf(w) +

1

2
‖w − z‖2

2}, (2.34)

with f convex function. The unique minimizer w can be found computing the
proximal map of f , i.e.

w = (I + α∂f)−1(z),

where ∂f stands for the subdifferential of f . More details on the proximal
map can be found in [18]. For some particular cases it is possible to derive
explicit expressions for the proximal map (see [?] for some examples).

This technique turns out to mitigate the curse of dimensionality, but it
deals with a particular kind of Hamilton-Jacobi-Bellman equation, e.g. with an
Hamiltonian depending only on the gradient of the solution, and this restricts
the possible applications for the method.
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2.3.4 A max-plus-based algorithm

Another way to solve the HJB equation relies on the theory of the max-plus
algebra. We will consider the max-plus-based algorithm introduced by Flem-
ing and McEneaney in [33]. In the max-plus algebra we define the addition ⊕
and the multiplication ⊗ in R as

a⊕ b = max{a, b}, a⊗ b = a+ b.

We refer to [20] for more details and properties on this topic. Let us consider
a particular dynamics {

ẋ(s) = f(x) + σ(x)w ,
x(0) = x0 ∈ Rd,

(2.35)

where w ∈ L2
loc([0,∞);Rm) is the disturbance in the dynamics, x(t) ∈ Rd

and σ is a d×m matrix-valued function. Introduced the cost criterion of the
form

J(T, xT , w) = φ(x0)− 1

2

∫ T

0

|w(t)|2dt ,

we want to compute the following value function

P (T, xT ) = sup
w∈L2

J(T, xT , w). (2.36)

We know that the value function P verifies the following dynamic program-
ming principle ([33])

P (t+ δ, x) = sup
w∈L2

{
P (t, x(t))− 1

2

∫ t+δ

t

|w(r)|2dr
}
, t ≤ t+ δ ≤ T, (2.37)

where x(t) is given by (2.35) and x(t + δ) = x, The dynamic principle (2.37)
can be rewritten as

P (t+ δ)(x) = Sδ[P (t, ·)](x), (2.38)

where Sδ[P (t, ·)](x) is the solution operator given by the right-hand side of
(2.37). Exploiting the dynamic principle (2.37), the algorithm introduced in
[33] is based on the following three main results:

1. the solution operator Sδ is linear in the max plus algebra;

2. given a function ψ semiconvex, then Sδ[ψ] is semiconvex for each δ > 0;

3. a continuous and semiconvex function ψ, with semiconvexity constant
equal to c, can be expressed in terms of max-plus basis in a ball of radius
R in the following form

ψ(x) =
∞⊕
i=1

[ai ⊗ gi(x)] ∀x ∈ BR,
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where

gi(x) = − ĉ
2
|x− xi|2, ai = −max

x∈BR
[gi(x)−Ψ(x)],

with {xi}i a countable dense set and ĉ ∈ (c,+∞).

Given all these ingredients, we can introduce Algorithm 2.

Algorithm 2 Max-plus based algorithm

1: Fix δ, n, P (0, x) = Φ(x), t0 = 0
2: for ` = 0, . . . , N − 1 do
3: Estimation of the semiconvexity constant c for P (t`−1, ·)
4: Choice of a basis set Bj1 = {gi,j1}i with ĉj1 > c
5: a`−1

i = −maxx∈BR [gi(x)− P (t`−1, x)]
6: Choice of a basis set Bj2 = {gi,j2}i with ĉj2 greater than the semicon-

vexity constants of {Sδ[gj1,i]}ni=1

7: bk,i = −maxx∈BR [gj2,k(x)− Sδ[gi](x)]
8: P (t`+1, x) ≈

⊕n
k=1 [(

⊕n
i=1(bk,i ⊗ ai))⊗ gj2,k(x)]

Exploiting its linearity and semiconvexity, the solution operator can be
expressed in terms of max-plus basis functions, considering the basis repre-
sentation up to n basis elements. We refer to [33] for more details on the
algorithm and its extensions.
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Chapter 3

Tree-Structure Algorithm

In this chapter we will present the core of the thesis: the tree-structure algo-
rithm (TSA, [3]) to solve the HJB equation (2.9). We will present the main
features of the algorithm and some improvements in order to reduce dimen-
sionality problems arising from the tree structure. Finally, we present the
extension of the algorithm to high-order schemes and some numerical tests to
show the efficiency of the algorithm.

3.1 Hamilton-Jabobi-Bellmann on a tree struc-

ture

The DP approach for the numerical approximation of viscosity solutions of the
HJB equation is typically based on a time discretization which is projected on
a fixed state-space grid of the numerical domain. The choice of the numerical
domain is already one bottleneck of the method. In fact, although the theory
is valid in the whole space Rd for computational reasons we need to restrict to
a compact set in Rd which should be large enough to include all the possible
trajectories. That also yields the selection of some boundary conditions which
are not trivial.

In this section we will provide a novel algorithm which does not require a
state-space grid and therefore avoids

(i) the choice of the numerical domain,

(ii) the computation of polynomial interpolation,

(iii) the selection of boundary conditions,

and finally it will allow to solve problems for high dimension, such as d� 5.
Note that dimension 5 was the maximum dimension for SL-schemes based on
a grid on a standard computer (see e.g. [5]).
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3.1.1 Construction of the tree data structure

We build the nodes tree T starting from a given initial condition x and follow-
ing directly the dynamics in (2.1) discretized by e.g. Euler method. Since we
only discretize in time, we set a temporal step ∆t which divides the interval
[t, T ] into N subintervals. We note that T := ∪Nj=0T j, where each T j contains
the nodes of the tree correspondent to time tj. The first level T 0 = {x} is sim-
ply given by the initial condition x. To compute the other levels we suppose
to discretize the control domain U with step-size ∆u. The control set U is a
subset in Rm and in particular we will consider U as a hypercube, discretized
in all directions with constant step-size ∆u, obtaining U∆u = {u1, ..., uM}. To
ease the notation in the sequel we continue to denote by U the discrete set of
controls. Then, starting from the initial condition x, we consider all the nodes
obtained following the dynamics (2.1) discretized using e.g. an explicit Euler
scheme with different discrete controls uj ∈ U

ζ1
j = x+ ∆t f(x, uj, t0), j = 1, . . . ,M.

Therefore, we have T 1 = {ζ1
1 , . . . , ζ

1
M}. We note that all the nodes can be

characterized by their n−th time level, as in the following definition.

Definition 3.1.1. The general n-th level of the tree will be composed by Mn

nodes denoted by

T n = {ζn−1
i + ∆tf(ζn−1

i , uj, tn−1), j = 1, . . . ,M, i = 1, . . . ,Mn−1}.

We show in the left panel of Figure 3.1 the structure of the whole tree T .
All the nodes of the tree can be shortly defined as

T := {ζnj , j = 1, . . . ,Mn, n = 0, . . . , N},

where the nodes ζni are the result of the dynamics at time tn with the controls
{ujk}n−1

k=0 :

ζnin = ζn−1
in−1

+ ∆tf(ζn−1
in−1

, ujn−1 , tn−1)

= x+ ∆t
n−1∑
k=0

f(ζkik , ujk , tk),

with ζ0 = x, ik =

⌈
ik+1

M

⌉
and jk ≡ ik+1mod M , where d·e is the ceiling

function. We note that ζki ∈ Rd, i = 1, . . . ,Mk. On the right panel of Figure
3.1 we show the path to reach for instance ζ4

26 if the control set contains only
three elements. We, again, would like to emphasize that the domain is not
chosen a priori, but constructed following the dynamics.

In what follows we provide two remarks about the properties of the tree
T under some particular assumptions on the dynamics f .
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Figure 3.1: Example of the tree T (left), path to reach ζ4
26 starting from the

initial condition x with U = {u1, u2, u3} (right).

Remark 3.1.1. Let us suppose that the dynamics is affine with respect to u
and that u ∈ [umin, umax] ⊂ R, e.g. the following decomposition holds true

f(x, u, t) = f1(x, t)u+ f2(x, t).

Then, all the nodes in T n will lie on the segment with extremal points given
by the controls at the boundary ∂U = {u1 = umin, uM = umax}. Specifically,

if z ∈ T n this implies z ∈ [ζni1 , ζ
n
iM

]

where ζni1 and ζniM are obtained by using the control u1 and uM respectively.

Remark 3.1.2. Let us suppose that the dynamics is monotone with respect
to u ∈ [umin, umax] ⊂ R:

min
ũ∈{umin,umax}

fj(x, ũ, t) ≤ fj(x, u, t) ≤ max
ũ∈{umin,umax}

fj(x, ũ, t),

∀u ∈ [umin, umax], j = 1, . . . , d.

Then the nodes of the tree will belong to a box with vertices given by the
coordinates of the nodes obtained with the extremal controls umin and umax as
follows:

min
i∈{i1,iM}

ζn
i
≤ ζni ≤ max

i∈{i1,iM}
ζn
i
, i ∈ {i1, . . . , iM},

where the last inequality holds component-wise.
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3.1.2 Approximation of the value function

The numerical value function V (x, t) will be computed on the tree nodes
in space, whereas in time it will be approximated as a piecewise constant
function, i.e.

V (x, t) = V n(x) ∀x ∈ T , t ∈ [tn, tn+1),

where tn = t+ n∆t.
We note that we start to approximate the value function once the tree

T has been already built. Then, we will be able to approximate the value
function V n(xi + ∆tf(xi, u, tn)) in (2.21) without the use of an interpolation
operator on a grid. The reason is that we build our domain according to all
the possible directions of the dynamics for a discrete set of controls and, as
a consequence, all the nodes xi + ∆tf(xi, u, tn) will belong to the grid. It is
now straightforward to evaluate the value function. The TSA defines a grid
T n = {ζnj , j = 1, . . . ,Mn} for n = 0, . . . , N , we can approximate (2.8) as
follows:
V n(ζni ) = min

u∈U
{e−λ∆tV n+1(ζni + ∆tf(ζni , u, tn)) + ∆t L(ζni , u, tn)},

ζni ∈ T n , n = N − 1, . . . , 0,

V N(ζNi ) = g(ζNi ),

ζNi ∈ T N .
(3.1)

We note that the minimization is computed by comparison on the dis-
cretized set of controls U . We refer to [11, 40] for a more sophisticated ap-
proach to compute the minimum in (2.21).

Remark 3.1.3. If the dynamics (2.1) is autonomous, the evolution of the
dynamics will not depend explicitly on tn and the problem can be simplified
since the argument of the minimization in (3.1) will be

e−λ∆tV n+1(ζ + ∆tf(ζ, u)) + ∆t L(ζ, u, tn).

At time tn we have n levels of the tree on the left and N − n levels on the
right (till tN). Since the computation is going backward, to compute the value
function at time tn, we need to do N − n steps in time starting from the final
condition at time T. Once we know V n, this information can also be inter-
preted as a final condition for the sub-tree ∪nk=0T k and, since the dynamics is
autonomous, we can proceed backward computing V n−1 for the nodes belonging
to all the k−th time levels, for k ≤ n− 1. Indeed the nodes ζ + ∆tf(ζ, u) do
not depend explicitly on the time and they can be involved in the computa-
tion of the value function at different time steps (this is not the case for a
non-autonomous dynamics). Thus, we will proceed as follows: first we impose
the final cost g on the whole tree, then we start computing the value function
backward. This procedure leads to a more extensive knowledge of the value
function on the tree.
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3.2 Hints on the algorithm

In this section we will provide further details on the implementation of the
method proposed in Section 3.1. We will explain how to reduce the number
of tree nodes to make the problem feasible, compute the feedback control and
recall the whole procedure.

3.2.1 Pruning the tree

The proposed method mitigates the curse of dimensionality and it allows to
deal with problems in Rd with d � 5, which is absolutely not feasible with
the classical approach. However, we still have dimensionality problem related
to the amount of nodes in the tree T . In fact, given M > 1 controls and N
time steps, the cardinality of the tree is

|T | =
N∑
i=0

M i =
MN+1 − 1

M − 1
,

which is infeasible due to the huge amount of memory allocations, if M or N
are too large. Therefore, we suggest to select the nodes of the TSA neglecting
those very close to each other, assuming that the value function will not be
completely different on those nodes, e.g.

ζni ≈ ζnj =⇒ V (ζni ) ≈ V (ζnj ).

This is a realistic assumption since the numerical value function is Lipschitz
continuous as explained in Proposition 2.3.1. We can introduce the pruning
rule.

Definition 3.2.1 (Pruning rule). Two given nodes ζni and ζnj can be merged
if

‖ζni − ζnj ‖ ≤ εT , with n = 0, . . . , N, (3.2)

for a given threshold εT > 0.

Specifically, if during the construction of the tree, a node ζn−1 has as a
son a new node ζnj which verifies (3.2) with a certain ζni , then we will not add
the new node to the tree and we will connect the node ζn−1 with ζni . We cut
the node which verifies the criteria before going on with the construction of
the tree, in this way we avoid the sub-tree coming out from this node, saving
a huge amount of memory.

The cut of the tree works as follows: during the construction of the n-
th level, the new node will be compared with the previous nodes already
computed at the same level n. If the new node ζnj , whose father is ζn−1,
satisfies the condition (3.2) with a node ζni , the new node will not be added to
the tree and the adjacency list will be uploaded, connecting the node ζn−1 to
the node ζni . Figure 3.2 provides a graphic idea about the application of the
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Figure 3.2: Pruning technique throughout the construction of the tree: when
two nodes are very close (left), we link those nodes in order to prune the tree.

pruning criteria. The choice of the tolerance plays an important role: if εT is
very small, the algorithm will be very slow, whereas if it is too large, we will
not obtain an accurate approximation. A reasonable choice turns out to be
εT = C∆t2, as shown in Chapter 4, where the reader will find a rigorous proof
of this heuristic statement together with convergence results of the proposed
method.

Remark 3.2.1 (Pruning rule in the autonomous case). If the dynamics is
autonomous, as explained in Remark 3.1.3, we can extend the computation of
the value function at time tn even for nodes belonging to the subtree ∪nk=0T k.
Therefore, we can extend the pruning criteria (3.2) as follows. Two given
nodes ζni and ζmj can be merged if

‖ζni − ζmj ‖ ≤ εT , with n,m = 0, . . . , N, (3.3)

for a given threshold εT > 0.

Remark 3.2.2 (Efficient Pruning). The computation of the distances among
all the nodes would be very expensive, especially for high dimensional problems.
Hence, we need an efficient algorithm to compute the distances quickly. One
possible strategy is the Principal Analysis Component ([48],[39]). Our aim
is to project the data onto a lower dimensional linear space such that the
variance of the projected data is maximized. This can be done e.g. computing
the Singular Value Decomposition of the data matrix and taking the first basis.
Once we project the data, the distances will be computed in a lower dimension
space and this turns out to accelerate the algorithm. We will explain better
this point in the numerical simulations. It is also possible to consider directly
a projected dynamical system and this will be the aim of Chapter 5.

3.2.2 Feedback reconstruction and closed-loop control

During the computation of the value function, we store the control indices
corresponding to the argmin in (3.1). Then starting from ζ0

∗ = x, we follow
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the path of the tree to build the optimal trajectory {ζn∗ }Nn=0 in the following
way

u∗n := arg min
u∈U

{
e−λ∆tV n+1(ζn∗ + ∆tf(ζn∗ , u, tn)) + ∆t L(ζn∗ , u, tn)

}
, (3.4)

ζn+1
∗ ∈ T n+1 s.t. ζn∗ →u∗n ζn+1

∗ ,

for n = 0, . . . , N − 1, where the symbol →u stands for the connection of two
nodes by the control u. We note that this is possible because we assume to
consider the same discrete control set U for both HJB equation (3.1) and
feedback reconstruction (3.4). In the next section we will present a technique
which considers a finer control set for the feedback reconstruction.

3.2.3 Algorithm

In what follows we summarize the whole algorithm including the construction
of the tree, the selection of the nodes and, finally, the approximation of the
value function.

Algorithm 3 TSA algorithm with pruning

1: T 0 ← x
2: for n = 1, ..., N do
3: for uj ∈ U , ζn−1 ∈ T n−1 do
4: ζnew = ζn−1 + ∆tf(ζn−1, uj, tn−1)
5: if ‖ζnew − ζ‖ > εT ,∀ζ ∈ T then
6: T n ← ζnew
7: ζn−1 →u ζnew
8: else
9: ζ = arg minζ∈T ‖ζnew − ζ‖
10: ζn−1 →u ζ

11: V N(ζ) = g(ζ),∀ζ ∈ T N
12: for n = N − 1, ..., 0 do
13: V n(ζn) = min

ζn+1:ζn→uζn+1
{e−λ∆tV n+1(ζn+1)+∆t L(ζn, u, tn)}, ζn ∈ T n.

As one can see in Algorithm 3, we first start the construction of the tree
T from 1 to step 10. We note that the pruning criteria is involved in the
steps 5-10 of Algorithm 3. Clearly, a very small tolerance will not allow any
selection of the nodes and we will work with a full tree. Finally, in step 11-
12-13 we compute the approximation of the value function. In the last step,
the computation of the value function V n(ζn) can be extended to the nodes
in the tree ∪nk=0T k in the case of autonomous dynamics.
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3.3 Post-processing: Feedback reconstruction

The Tree Structure Algorithm allows to get the synthesis of the feedback con-
trol directly by the computation of the numerical value function, as explained
in Section 3.2.2. The computational cost for the construction of the full tree
is exponential in the number of discrete controls, for this reason it is better
to consider few controls for the tree construction and for the resolution of
the HJB equation. Once obtained the value function on a tree-structure, it is
reasonable to consider a post-processing procedure which takes into account
a finer control set. This is possible thanks to the formula for the synthesis of
the feedback control

u∗n := arg min
u∈Ũ

{
e−λ∆tV n+1(x+ ∆tf(x, u, tn)) + ∆t L(x, u, tn)

}
, (3.5)

where the argmin is computed on a finer set Ũ with respect to the initial
set U . This minimization can be computed again by comparison, but we
need to reintroduce an interpolation step on scattered data. In low dimension
(i.e. two or three) one can consider a Delaunay triangulation of the data and
then perform an interpolation on the triangulation. In high dimension the
triangulation becomes unfeasible and one has to proceed in different ways,
for example via kernel methods ([52]). In this section we focus on the low
dimensional case, while the high dimensional case will be addressed to the next
future. In Algorithm 4 we present a method for the feedback reconstruction
based on a minimization by comparison on a finer control set.

Algorithm 4 Feedback reconstruction via comparison on a finer control set

1: Computation of the tree T and value function {V k}k with control set U

2: Fix a new control set Ũ ⊃ U and ζ0
∗ = x

3: for n = 0, ..., N − 1 do
4: for uj ∈ Ũ do
5: ζj = ζn∗ + ∆tf(ζn∗ , uj, tn)
6: Compute V (ζj, tn+1) via scattered interpolation with (T n+1, V n+1)

7: u∗n := arg min
uj∈Ũ

{
e−λ∆tV (ζj, tn+1) + ∆t L(ζn∗ , uj, tn)

}
8: ζn+1

∗ = ζn∗ + ∆tf(ζn∗ , u
∗
n, tn)

The interpolation on scattered data can be computed via the MATLAB
function scatteredInterpolant. If the dynamics f is autonomous, by Remark
3.1.3 we know that we can compute at time tn the value function on the sub-
tree ∪nk=0T k. In this case, in step 6 we can compute the scattered interpolation
with ∪nk=0(T k, V k), guaranteeing more information for a more efficient inter-
polation.

Now let us consider a dynamics f affine in the control u ∈ R. By Remark
3.1.1 we know that all the tree sons of a node lay on a segment. In this case
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we can apply one dimensional interpolation, for instance quadratic interpola-
tion if we consider three discrete controls for each iteration. The quadratic
interpolation is a good choice in the Linear Quadratic Regulator case since
we know that the value function is quadratic and then we do not introduce
interpolation error in this case. Moreover let us suppose that the running cost
L is of the form L(x, u, t) = g(x, t) + γ|u|2 + δu. In Algorithm 5 we describe
this procedure based on a quadratic interpolation, fixing λ = 0 for simplicity.
In step 9 the operator PU stands for the projection operator onto the set U .
We will use and compare these two techniques in Chapter 5.5.1, where we will
consider the optimal control for the heat equation.

Algorithm 5 Feedback reconstruction via quadratic interpolation

1: Computation of the tree T and value function {V k}k with control set
U = {u1, u2, u3}.

2: ζ0
∗ = x

3: for n = 0, ..., N − 1 do
4: for uj ∈ U do
5: ζ(uj) = ζn∗ + ∆tf(ζn∗ , uj, tn)
6: Compute V (ζ(uj), tn+1) via scattered interpolation with

(T n+1, V n+1)

7: V (ζ(u), tn+1) ≈ au2 + bu+ c, ∀u ∈ [u1, u3]
8: if a+ ∆t γ > 0 then

9: u∗n = P[u1,u3]

(
− b+∆t δ

2(a+∆t γ)

)
10: else
11: u∗n = arg min

ui∈{u1,u3}
{V (ζ(ui), tn+1) + ∆t L(ζn∗ , ui, tn)}

12: ζn+1
∗ = ζn∗ + ∆tf(ζn∗ , u

∗
n, tn)

3.4 Extension to high-order schemes

In the previous sections we consider the TSA using a forward Euler scheme
which leads to a first order convergence, as we will show later on. In this
section we will show how our approach can be easily extended to high-order
schemes improving previous results. In what follows, we set λ = 0 in (2.29),
without loss of generality. For more details on the topic, we refer to [4].

Let us consider a high-order approximation scheme for the cost functional
(2.29) and for the dynamics (2.1) under the assumptions on L, f and g pro-
vided in the previous sections. As already suggested in [25] for the infinite
horizon problem, we introduce a one-step approximation for the dynamics
(2.1) as follows {

yn+1 = yn + ∆tΦ(yn,U, tn,∆t),

y0 = x,
(3.6)
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where the admissible control matrix U ∈ U∆t ⊂ U × U . . . × U ∈ RM×(q+1)

with U ⊂ RM the discretized control set and q + 1 is the number of stages
of the numerical method for the ODE (it is also possible to consider a time
dependence of U as in [25] but we will avoid this complication here). We
denote by uni the i−th control of U for the n−th column of U.

We further assume that the function Φ in (3.6) is consistent:

lim
∆t→0

Φ(x, ū, t,∆t) = f(x, ū, t), (3.7)

where ū = (ū, . . . , ū) ∈ U for ū ∈ U and Lipschitz continuous:

|Φ(x,U, t,∆t)− Φ(y,U, t,∆t)| ≤ LΦ|x− y|, (3.8)

for any admissible set U and 0 < ∆t < ∆t. Under these assumptions the
scheme (3.6) is convergent. Then, we consider the approximation of the cost
functional

J∆t
x,t (U) = ∆t

N−1∑
m=n

q∑
i=0

wiL(ym+τi , umi , tm+τi) + g(yN), (3.9)

where τi and wi are the nodes and weights of the quadrature formula satisfying:

0 ≤ τi ≤ 1, ωi ≥ 0,

q∑
i=0

wi = 1.

We will suppose that the following ”order assumptions” hold:

1. for any initial condition x ∈ Rd and any measurable u : [0,∆t) → U ,
there exists an admissible matrix U ∈ U∆t and two positive constants
K1 and K2 such that

|y(∆t, u;x)− x−∆tΦ(x,U,∆t)| ≤ K1∆tp+1, (3.10)

∣∣∣∣∣
∫ ∆t

0

L(y(s), u(s), s)ds−∆t

q∑
i=0

wiL(yτi , ui, tτi)

∣∣∣∣∣ ≤ K2∆tp+1, (3.11)

2. for any initial condition x ∈ Rd and any admissible matrix U ∈ U∆t,
there exists a measurable u : [0,∆t) → U such that (3.10) and (3.11)
hold.

In some cases it is possible to define explicitly the set U∆t verifying con-
ditions (3.10) and (3.11). For more details we refer to [30] and [37]. In what
follows we are going to consider affinely controlled system and we assume Cp

regularity for the data and for the optimal control.
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Therefore, we define the numerical value function as

V (x, t) = inf
U
J∆t
x,t (U). (3.12)

Following [25], it is possible to prove the extended DPP which reads:

V (x, t) = inf
U

{
∆t

q∑
i=0

wiL(yn+τi , uni , tn+τi) + V (yn+1, tn+1)

}
. (3.13)

Under our assumptions on L and f , it is easy to check that V is Lipschitz-
continuous and bounded. This will guarantee the convergence of the numerical
scheme.

Note that for q = 0 in (3.13) we obtain the standard formulation with
Euler method:

V (x, t) = min
u∈U
{∆t L(x, u, t) + V (x+ ∆tf(x, u, t), t+ ∆t)} .

For Heun’s scheme, e.g. q = 1, equation (3.13) becomes

V (x, t) = min
(ū0,ū1)∈U×U

{
∆t
2

(L(x, ū0, t)+ (3.14)

L(x+ ∆tΦ(x, {ū0, ū1}, t,∆t), ū1, t+ ∆t)) +

+V (x+ ∆tΦ(x, {ū0, ū1}, t,∆t), t+ ∆t)
}
,

where

Φ(x, {ū0, ū1}, t,∆t) =
1

2
(f(x, ū0, t) + f(x+ ∆tf(x, ū0, t), ū1, t+ ∆t)) .

(3.15)
It is also possible to deal with implicit numerical schemes in equation (3.13)
using e.g. the trapezoidal rule obtaining:

V (x, t) = min
(ū0,ū1)∈U×U

{
∆t
2

(L(x, ū0, t)+ (3.16)

+L(yn+1(ū0, ū1), ū1, t+ ∆t)) + V (yn+1(ū0, ū1), t+ ∆t)
}
,

where yn+1(ū0, ū1) is obtained solving

yn+1(ū0, ū1) = x+
∆t

2
(f(x, ū0, t) +f(yn+1(ū0, ū1), ū1, t+ ∆t)

)
. (3.17)

It is clear that the cardinality of the tree T will significantly increase when
dealing with high order schemes. Therefore, a pruning rule (3.2) is essential.
We will see in Chapter 4 how to choose the pruning tolerance εT to insurance
to the TSA the same order of convergence of the underlying numerical scheme.
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3.5 Numerical tests

In this section we are going to apply the proposed algorithm to show the
effectiveness of the method.

We will present six test cases. In the first we are able to compute the
analytical solution of the HJB equation and, therefore, to compute the error
with our method compared to the classical approach, see e.g. [27]. The second
test concerns the well-known Van der Pol equation and we will compare our
proposed algorithm with Model Predective Control. The third one is about a
non-autonomous dynamics and we will explain better the differences with the
autonomous case. Then, we present the results for two different linear PDEs
which show the power of the method even for large-scale problems. Finally,
we will show the efficiency of high order schemes in the case of an advection
equation.

The numerical simulations reported in this paper are performed on a laptop
with 1CPU Intel Core i5-3,1 GHz and 8GB RAM. The codes are written in
C++.

3.5.1 Test 1: Comparison with an exact solution

In the first example we consider the following dynamics in (2.1)

f(x, u) =

(
u
x2

1

)
, u ∈ U ≡ [−1, 1], (3.18)

where x = (x1, x2) ∈ R2. The cost functional in (2.29) is:

L(x, u, t) = 0, g(x) = −x2, λ = 0, (3.19)

where we only consider the terminal cost g. The corresponding HJB equation
is {

−Vt + |Vx1| − x2
1Vx2 = 0 (x, t) ∈ R2 × [0, T ],

V (x, T ) = g(x) ,
(3.20)

where its unique viscosity solution reads

V (x, t) = −x2 − x2
1(T − t)− 1

3
(T − t)3 − |x1|(T − t)2. (3.21)

Furthermore, we set T = 1. Figure 3.3 shows the contour lines of the value
function V (x, t) for time instances t = {0, 0.5, 1}.

In this example, we compare the classical approach with the TSA algorithm
proposed in Algorithm 1 using both strategies: (i) no selection of the nodes
and (ii) applying criteria (3.2) to select the nodes as explained in Section 3.2.
To perform a fair comparison we projected the value function computed with
the classical method into the tree nodes. We note that it will not modify the
accuracy of the classical approach since the interpolation has to be performed
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Figure 3.3: Test 1: Contour lines for (4.49) with t = 0 (left), t = 0.5 (middle)
and t = 1 (right).

also on a structured grid. We compare the different approximations according
to `2−relative error with the exact solution on the tree nodes

E2(tn) =

√√√√√
∑

xi∈T n
|v(xi, tn)− V n(xi)|2∑
xi∈T n

|v(xi, tn)|2
,

where v(xi, tn) represents the analytical solution and V n(xi) its numerical
approximation.

In Figure 3.4, we show all the nodes of the tree T for the initial condition
x = (−0.5, 0.5), ∆t = 0.05 and different choices of εT = {0,∆t2}. We note
that there is a huge difference between the cardinality of the trees, that is
|T | = 2097151 when the tolerance is not applied whereas we have |T | = 3151
for εT = ∆t2.

-2 -1.5 -1 -0.5 0 0.5
0.4

0.6
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1.2
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1.6

Figure 3.4: Test 1: Tree nodes without tolerance (left) and with tolerance
equal to ∆t2 (right) for x = (−0.5, 0, 5).

In Figure 3.5, we show the behaviour of the error E2 for two different
initial conditions x. We note that its behaviour is very similar using both the
classical approach and the TSA with or without the pruning criteria (3.2) for
the nodes. As already mentioned, we would like to stress that the domain for
the solution of the classical approach is chosen as large as possible to avoid
that the boundary conditions are active, whereas with TSA we do not have

32



this kind of problem, since the domain of the tree constructed according to
the vector field. We note that to compute the value function in the classical
approach we use the following step size: ∆x = ∆t = 0.05.
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0.01

0.015
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0.025

Figure 3.5: Test 1: Comparison of the different methods with initial datum
(−0.5, 0.5) (left) and with initial datum (1, 1) (right) for each time instance
(x-axis).

We will consider again this example in Chapter 4, where we will compute
the order of convergence of the scheme.

3.5.2 Test 2: Van der Pol oscillator

In the second test case we consider the Van der Pol oscillator. The dynamics
in (2.1) is given by

f(x, u) =

(
x2

ω(1− x2
1)x2 − x1 + u

)
u ∈ U ≡ [−1, 1]. (3.22)

We note that the origin is a repulsive point for the uncontrolled dynamics
in (3.22), e.g. u = 0, if ω ∈ (0, 2]. For this example we consider ω = 0.15
in (3.22). It is well-known that Van der Pol oscillator is characterized by its
cycle limit as shown in Figure 3.11 with two different initial conditions.

In this example we want to minimize the following cost functional:

Jx,t(u) =

∫ T

t

(
δ1‖y(s)‖2

2 + γ|u(s)|2
)
ds+ δ2‖y(T )‖2

2, (3.23)

where δ1, δ2, γ are positive constants.

Case 1 We consider the minimization of the terminal cost in (3.24), e.g.
δ1 = γ = 0 and δ2 = 1. Let us consider x = (−1, 1), ∆t = 0.05 and T = 1.
The error is computed with respect to the classical approach with a fine grid
(∆t = ∆x = 0.002).

We will consider Euler scheme with U = {−1, 1} and the tolerance is set
equal to εT = ∆t2 with |T | = 37030. In Figure 3.7 we compare the contour
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Figure 3.6: Test 2: Cycle limit for Van der Pol oscillator with initial point
(-3,3) (left) and with initial point (0.1,-0.1) (right)

lines of the value function computed by the classical approach with a fine
grid and the TSA. We note the approximations show the same behaviour.
Furthermore, we mention that the contour line of the value functions are
obtained by using MATLAB function tricontour, based on a Delaunay’s
triangulation of the scattered data. We remark that we can compute the
value function V n(ζ) for ζ ∈ ∪nk=0T k since the dynamics is autonomous.

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7
0.9

1

1.1

1.2

1.3

1.4

1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7
0.9

1

1.1

1.2

1.3

1.4

1.5

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 3.7: Test 2: Value function with the classical approach (top) on tree
nodes at time t = 0.25 (left), t = 0.5 (middle) and t = 0.75 (right). Value
function with the TSA (bottom) on tree nodes at time t = 0.25 (left), t = 0.5
(middle) and t = 0.75 (right)

The quality of the numerical approximation is confirmed by the error
shown in Figure 3.8. As we can see, pruning the nodes does not influence
the error. For each time step the error is below to 0.05 which leads to an
accurate approximation of the value function.
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Figure 3.8: Test 2: Error in time with TSA without pruning and with pruning
with tolerance εT = ∆t2 for Case 1 (left) and Case 2 (right) with respect to a
value function computed with the classical approach with a very fine grid.

Case 2 We consider the minimization of the cost functional in (3.24) with
δ1 = δ2 = 1 and γ = 0.01. Furthermore we set the same initial condition,
discretization step and tolerance as in the previous case. The contour lines of
the value function are shown in Figure 3.9.

Figure 3.9: Test 2: Value function with the classical approach (top) on tree
nodes at time t = 0.25 (left), t = 0.5 (middle) and t = 0.75 (right). Value
function with the TSA (bottom) on tree nodes at time t = 0.25 (left), t = 0.5
(middle) and t = 0.75 (right)

We note that the results are very similar to the previous case. Our ap-
proach is robust with respect to different cost functionals and initial con-
ditions. The right panel of Figure 3.8 shows the error for each time step
considering the tree algorithm with and without nodal selection.
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Case 3 The third case deals with a two dimensional control space, consider-
ing the parameter ω in (3.22) as a control, e.g. ω ∈ U . Therefore, we consider
as control variables (ω, u) ∈ U × U in (3.22). In the cost functional (3.24) we
consider again δ1 = γ = 0.1 and δ2 = 1, with x = (−0.5, 0.5), ∆t = 0.05 and
T = 1. We consider two different choices for the control set: U = [−2, 0] and
U = [−1, 1]. The control set is discretized with step-size ∆u = 0.2, obtaining
altogether 100 discrete controls for both examples. In Figure 3.10 we show the
results in both situations. We can observe that the tree has a different shape
due to the different control space. Here, we have set the pruning criteria with
εT = ∆t2. Finally, we note that in both situations we are able to steer the
solution to the origin.

Figure 3.10: Test 2: Pruned tree with the uncontrolled and controlled dynam-
ics with U = [−2, 0] (left) and with U = [−1, 1] (right)

Comparison with Model Predective Control Finally, we present a com-
parison with the MPC method for the Van Der Pol oscillator. MPC considers
a localized version of the DPP since it deals only with a given initial condition
and our aim is to show the efficiency of our TSA under the same settings.

For this example we consider ω = 0.15 in (3.22), T = 2,∆t = 0.05. In this
example we want to minimize the following cost functional:

Jx,t(u) =

∫ T

t

(
‖y(s)‖2

2 +
1

100
|u(s)|2

)
ds+ ‖y(T )‖2

2. (3.24)

In Figure 3.11 we show the optimal trajectory using the TSA and MPC
method. TSA has been computed with 8 discrete controls in [−1,−0.4]. This
control space has been selected according to the MPC results. As one can
see, with TSA we are able to achieve the desired state faster than MPC
method. The MPC method here has been computed with a prediction horizon
of N = 30. We choose this setting for MPC1 since it is well-known that the

1We used the MATLAB implementation provided in http://numerik.mathematik.

uni-bayreuth.de/~lgruene/nmpc-book/ correspondent to [44].
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larger horizon the better the algorithm. The evaluation of the cost functional
for the optimal trajectories with TSA is 0.0569, whereas 0.0695 with MPC.
As expected, the TSA method has a lower value. In the right panel of Figure
3.11 we show the optimal controls with both methods.
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Figure 3.11: Test 2: Comparison of optimal trajectory (left) and optimal
control (right).

3.5.3 Test 3: Damped harmonic oscillator

In this third example we consider a non-autonomous dynamical system: a
damped oscillator driven by a sinusoidal external force. The dynamics in
(2.1) is given by

f(x, u, t) =

(
x2

−ωx2 − ω2x1 + sin(ωt) + u

)
u ∈ U ≡ [−1, 1], (3.25)

for x = (x1, x2) ∈ R2. In this example, we aim to show that our approach
works also with non-autonomous dynamics. In this case we can not compute
the value function V n(ζ) on the sub-tree ∪nk=0T k, but only at the n−th time
level T n and we will apply the pruning rule (3.2). The uncontrolled dynamics
(e.g. u = 0) converges asymptotically to the cycle limit:

x1(t) =
1

ω2
sin(ωt+ π/2), x2(t) =

1

ω
cos(ωt+ π/2) .

We used the same cost functional of the previous case with δ1 = γ = 0.1,
δ2 = 1. The parameters are set as follows: ω = π/2, x = (−0.5, 0.5), U =
{−1, 0, 1},∆t = 0.05, T = 1, εT = ∆t2. The cardinality of tree in this case
is 32468. In the left panel of Figure 3.12 we show the tree nodes and the
optimal trajectory computed with Algorithm 1 and the uncontrolled solution.
To show the quality of the controlled solution we evaluate the cost functional
for each time step as shown in the right panel of Figure 3.12. As expected the
controlled trajectory is always below the uncontrolled one. In order to further

37



0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Uncontrolled
Controlled with 3 controls
Controlled with 11 controls
Controlled with 51 controls

Figure 3.12: Test 3: Pruned tree with the uncontrolled and controlled dynam-
ics (left) and comparison of the cost functional on time varying the number
of discrete controls (right)

show the effectiveness of the pruning criteria we have increased the number
of controls up to M = 51 and the horizon up to T = 3. Again, this would not
be possible without a pruning criteria due to the dimension of the tree.

3.5.4 Test 4: Heat equation

The fourth example concerns the control of a PDE. In the first three examples
we showed the accuracy of our method with respect to existing methods for
low-dimensional problems. In what follows we would like to give an idea of
how the proposed method can work in higher dimension.

We want to study the following heat equation:
yt = σyxx + y0(x)u(t) (x, t) ∈ Ω× [0, T ] ,

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ] ,

y(x, 0) = y0(x) x ∈ Ω ,

(3.26)

where the state lies in an infinite-dimensional Hilbert space (see e.g. [24]).
Here, we consider the term y0(x)u(t) to provide a spatial dependence to the
control input. This is a particular choice, but the algorithm has no restrictions
on more general shape functions. To write equation (3.26) in the form (2.1) we
use the centered finite difference method which leads to the following ODEs
system

ẏ(t) = Ay(t) +Bu(t), (3.27)

where the matrix A ∈ Rd×d is the so called stiffness matrix whereas the vector
B ∈ Rn is given by (B)i = y0(xi) for i = 1, . . . , n and xi is the spatial grid
with constant step size ∆x. The cost functional we want to minimize reads:

Jy0,t(u) =

∫ T

t

(
δ1‖y(s)‖2

2 dx+ γ|u(s)|2
)
ds+ ‖y(T )‖2

2,

where y(t) is the solution of (4.51), u(t) is taken in the admissible set of
controls U = {u : [0, T ]→ [−1, 1]} and Ω = [0, 1]. We set δ1 = 1 and γ = 0.01.
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Figure 3.13: Test 4 (smooth initial condition): Uncontrolled solution (top left),
optimal control solution (top right), time comparison of the cost functional of
the uncontrolled solution and controlled solution (bottom).

Smooth initial condition In the numerical approximation of (3.26) we
consider y0(x) = −x2 + x, ∆x = 10−3, ∆t = 0.05, T = 1 and σ = 0.1. The
dimension of the problem is d = 1000. We use an implicit Euler scheme to
integrate the system (4.51) and guarantee its stability. We note that the use
of a one step implicit is straightforward even if we have introduced an explicit
scheme in the previous sections.

The solution of the uncontrolled problem (3.26) with u(t) ≡ 0 is shown
in the top-left panel of Figure 5.4. In the top-right we show the solution of
the controlled problem where the value function is computed with Algorithm
1 and the control is computed as explained in (5.6). We note that feedback
control was computed with the discrete control set U = {−1, 0, 1} as for
the value function. It is extremely interesting to show that we are able to
compute the value function for (3.26) in dimension 1000. Finally in the bottom
panel of Figure 5.4 we show the time behaviour of the cost functional for the
uncontrolled and the controlled solution. As expected, the cost functional of
the latter is lower.

Non-smooth initial condition In this example we consider the following
non-smooth initial y0(x) = χ[0.25,0.75](x), where χω(x) is the characteristic
function in the domain ω, whereas the other parameters are set as in the
previous case.

As one can see from Figure 3.14, we are able to approximate the control

39



0
0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.21 0

-0.2

0

0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.21 0

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
Uncontrolled dynamics
Controlled dynamics

Figure 3.14: Test 4 (non-smooth initial condition): Uncontrolled solution
(top-left), optimal control solution (top-right), time comparison of the cost
functional of the uncontrolled solution and controlled solution (bottom).

problem even if the initial condition is non-smooth. We note that, although
the simple diffusive properties of the problem, a model reduction approach
will not be able to reconstruct such initial condition with a few number of
basis functions. Therefore it will not be possible to solve this problem with a
classical approach. This again shows the effectiveness of the method.

3.5.5 Test 5: Wave equation

For this example we consider a hyperbolic PDE, the wave equation which
reads:

wtt = cwxx + χω(x)u(t) (x, t) ∈ Ω× [0, T ] ,

w(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ] ,

w(x, 0) = w0(x) , wt(x, 0) = w1(x) x ∈ Ω ,

(3.28)

where ω is a subset of Ω. For all initial data (w0, w1) ∈ H1
0 (Ω)×L2(Ω) and

every u(t) ∈ L2(0, T ), there exists a unique solution w ∈ C0(0, T ;H1
0 (Ω)) ∩

C1(0, T ;L2(Ω))∩C2(0, T ;H−1(Ω)) of the Cauchy problem (3.28). We refer to
[24] for more details about this equation. We can rewrite the wave equation
in the following compact form

ẏ(t) = Ay(t) +Bu(t) ,
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defining

y(t) =

(
w(t)
wt(t)

)
, A =

(
0 I
c ∂2

x 0

)
, Bu(t) =

(
0

χω(x)u(t)

)
. (3.29)

Again we apply an implicit Euler scheme to avoid narrow CFL conditions.
We want to minimize the following cost functional

Jy0,t(u) =

∫ T

0

(
ϕ(‖y(s)‖2

2) + γ|u(s)|2
)
ds+ ϕ(‖y(T )‖2

2) ,

with w0(x) = sin(πx), w1(x) = 0, γ = 0.01, T = 1, c = 0.5, Ω = (0, 1) and
ω = (0.4, 0.6), ∆x = 10−3,∆t = 0.05. We note that the dimension of the
semi-discrete problem is d = 2000.

Quadratic cost functional We first consider a standard tracking problem
e.g. ϕ(x) = x in the cost functional. In Figure 3.15 we show the uncontrolled
solution in the top left panel and the controlled solution in the top-right. A
comparison of the evaluations of the cost functional is given in the bottom
panel. As expected the controlled solution is below the uncontrolled one
for each time instance. This shows the capability of the method for high
dimensional problem even for hyperbolic equations.
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Figure 3.15: Test 5: Uncontrolled solution (top-left), optimal control solution
(top-right), time comparison of the cost functional of the uncontrolled solution
and controlled solution (bottom).
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Non-quadratic cost functional Now, we consider a more complicated
example which deals with a non-quadratic cost functional. Let us consider for
example the following cost functional where

ϕ(x) =


sin(π|x|) |x| ≤ 0.5 ,

1 0.5 < |x| ≤ 1 ,

(|x| − 1)2 + 1 |x| > 1 ,

as shown in the top-left panel of Figure 3.16. We consider the same parameters
as in the previous case, which lead to the same uncontrolled solution as shown
in the top-left panel of Figure 3.15. In the top-right of Figure 3.16 one can see
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Figure 3.16: Test 5 (Non-quadratic cost functional): Graphics of ϕ(x) (top
left), optimal control solution (top right), time comparison of the cost func-
tional of the uncontrolled solution and controlled solution (bottom).

the controlled solution and in the bottom panel a comparison of the evaluation
of the cost functional. Again, here we would like to stress the capability of
the method to work with high dimensional problem and with non-smooth cost
functionals.

3.5.6 Test 6: Bilinear control for advection equation

Finally, we are going to test the method dealing with a linear PDE and we show
the effectiveness of high-order methods. We consider the following advection
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equation: 
yt + cyx = yu(t) (x, t) ∈ Ω× [0, T ],

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

y(x, 0) = y0(x) x ∈ Ω.

(3.30)

We consider a finite difference approximation for equation (3.30). Here
we use ∆x = 0.01, ∆t = 0.01, Ω = [0, 3], c = 1.5, T = 1 and y0(x) =
sin(πx)χ[0,1](x). The cost functional we want to minimize is of tracking-type,
i.e. we want to stay close to a reference trajectory ỹ:

Jy0,t(u) =

∫ T

t

(∫
Ω

|y(x, s)− ỹ(x, s)|2 dx+
1

100
|u(s)|2

)
ds+∫

Ω

|y(x, T )− ỹ(x, T )|2 dx. (3.31)

To avoid narrow CFL conditions we are going to consider first and second
order implicit schemes, applying the pruning criteria (3.2) with εT = ∆t2 for
implicit Euler scheme and εT = ∆t3 for trapezoidal rule. In the next chapter
we are going to show that this choice for the pruning threshold will guarantee
the same order of convergence of the underlying scheme.

Figure 3.17: Test 6 (Case1): Uncontrolled (left) and controlled solution (right)
using trapezoidal method.

Case 1: In the first case we consider the following parameters U = [−4, 0]
and ỹ = 0 in (3.31). In Figure 3.17 we show the results of the uncontrolled
solution and the controlled solution using TSA and trapezoidal rule to ap-
proximate the dynamics. We note that the feedback has been built on the
tree structure with the same control set as in the computation of the value
function as explained in (3.4). As expected that the controlled solution goes
to zero faster than the uncontrolled one. Since we do not know the value
function in this case, to show the effectiveness of the method we compare the
values of the cost functionals in the right panel of Figure 3.18 for each time
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instance. As expected trapezoidal rule performs better than Euler method. In
the bottom plot we show the final configuration at T = 1 for both controlled
and uncontrolled solution with Euler and trapezoidal scheme. In Table 3.2 we
compare the two techniques with 4 controls for Euler scheme and 4 couples of
controls with trapezoidal rule. The comparison of the cost functional for the
controlled dynamics may be not sufficient, since Euler scheme contains more
numerical diffusion.
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Figure 3.18: Test 6 (Case 1): Comparison of the cost functionals (left) and
solutions at final time (right).

Method Controls Nodes CPU Jy0,0

Implicit Euler 4 598204 365s 0.1322
Trapezoidal rule 2× 2 348551 111s 0.0632

Table 3.1: Test 6 (Case 1): Comparison of the two methods.

Case 2: In the second case we set ỹ(x, t) = y0(x − ct) in (3.31) to show
better the efficiency of high order schemes. We aim at comparing the solutions
which mimic the exact solution of the advection equation. In this case the
control u ∈ U = [0, 0.5] will balance the numerical diffusion of the numerical
methods. In the left panel of Figure 3.19 we show the results at final time,
while in the right panel we present the computed optimal control for the
Euler scheme with 2 discrete controls and ∆t = 0.00625. Clearly, higher order
method improves the quality of the solution. In Table 3.2 we compare first
and second order method, considering 10 discrete controls for implicit Euler
and 4 couples (u1, u2) for the trapezoidal rule. As expected, we obtain a
better result with lower CPU time in the latter case also considering the lower
amount of numerical diffusion of the method.

In this example we have a nice behaviour for the cardinality of the pruned
tree. In general we are not able to predict the number of nodes for the pruned
tree, but this case shows an exception. The growth of the cardinality for
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Figure 3.19: Test 6 (Case 2): Comparison of the solutions at final time (left)
and and optimal control (right) with 2 discrete controls and ∆t = 0.00625 by
Euler scheme.

Method Controls Nodes CPU Jy0,0

Implicit Euler 10 271105 276s 0.0228
Trapezoidal rule 2× 2 348551 88s 0.0061

Table 3.2: Test 6 (Case 2): Comparison of the two methods.

the methods is shown in Figure 3.20. For the Euler scheme (left panel), the
growth turns out to be linear, leading to a quadratic cardinality of the pruned

tree quadratic in the time steps, e.g |T P | = O(N
2
). For the trapezoidal rule

the growth is quadratic, obtaining a cubic global cost, which is much smaller
with respect to the exponential growth of the cardinality of the full tree. We
aim at exploring better this behaviour, hopefully giving a precise result on
the cardinality of the pruned tree.
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Figure 3.20: Test 6 (Case 2): Number of nodes for each time level for the
Euler scheme (left) and for the trapezoidal rule (right)
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Chapter 4

Error estimates for TSA

In this chapter we will provide an error analysis for the TSA. This result can be
found in the submitted preprint [51]. We will prove the first order convergence
for the TSA considering the full tree and then we will extend the result for the
pruned case, under suitable assumptions on the pruning threshold. Then, we
will extend the assumptions on the pruning threshold to high-order schemes.
Finally, some numerical tests will confirm the theoretical findings.

4.1 Error estimates for the TSA without prun-

ing

In this paragraph we first derive the error estimates for the TSA without the
introduction of the pruning criteria. In the next paragraph we will extend the
result in the pruning case.

We denote y(s) as the exact continuous solution for (2.1) and whenever
we want to stress the dependence on the control u, the initial condition x and
initial time t we write y(s;u, x, t). We further define yn(u) as its numerical
approximation by an explicit Euler scheme at time tn. We will consider the
piecewise constant extension ỹ(s;u) of the approximation such that

ỹ(s, u) := y[s/∆t](u) s ∈ [t, T ], (4.1)

where [·] stands for the integer part. Let us now consider the discretized
version of the cost functional (2.29):

J∆t
x,s(u) = (tn+1 − s)L(x, u, s) + ∆t

N−1∑
k=n+1

L(yk, uk, tk)e
−λ(tk−s) + g(yN)e−λ(tN−s)

=

∫ T

s

L(ỹ(σ, u;x, s), u(σ),
[ σ

∆t

]
∆t)e−λ([

σ
∆t ]∆t−s)dσ + g (ỹ(T, u;x, s)) e−λ(T−s)

for s ∈ [tn, tn+1) and u ∈ U∆, where

U∆ = {u : [t, T ]→ U, such that u(s) =
N−1∑
k=n

αkχ[tk,tk+1)(s)}.
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We define the discrete value function as

V (x, t) := inf
u∈U∆

J∆t
x,t (u)

which can be computed by the backward problem

V (x, s) = min
u∈U
{e−λ(tn+1−s)V (x+ (tn+1 − s)f(x, u, s), tn+1) + (tn+1 − s)L(x, u, s)},

V (x, T ) = g(x), x ∈ Rd, s ∈ [tn, tn+1).

(4.2)

Let us recall the hypothesis introduced in Chapter 2. Let us assume that
the functions f, L, g are bounded:

|f(x, u, s)| ≤Mf , |L(x, u, s)| ≤ML, |g(x)| ≤Mg,

∀x ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],
(4.3)

the functions f, L are Lipschitz-continuous with respect to the first variable

|f(x, u, s)− f(y, u, s)| ≤ Lf |x− y|, |L(x, u, s)− L(y, u, s)| ≤ LL|x− y|,
∀x, y ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],

(4.4)

and finally the cost g is also Lipschitz-continuous:

|g(x)− g(y)| ≤ Lg|x− y|, ∀x, y ∈ Rd. (4.5)

The aim of this section is to find an a priori error estimates for the tree
algorithm and show the rate of convergence of the approximation V . We
show that if the dynamics is discretized by forward Euler method the error is
O(∆t):

sup
(x,t)∈Rd×[0,T ]

|v(x, t)− V (x, t)| ≤ Ĉ(T )∆t (4.6)

where ∆t is the time discretization of (2.1) and v is the exact solution (5.5).
We remark that the estimate guarantees the same order of convergence of the
discretization scheme for the dynamical system (2.1). To simplify the proof of
the main result (4.6) we have splitted the proof into two parts (see Theorem
4.1.1 and Theorem 4.1.2). We note that this result improves the estimate in
[27] under the semiconcavity assumption and it is in line with a similar result
for the infinite horizon problem in [16]. To begin with, we show some estimates
for the Euler scheme which will be useful to prove the error estimates for TSA.
The proposition below follows directly from Grönwall’s lemma and its discrete
version.

Proposition 4.1.1. Let us consider the exact solution trajectory y(s;u, x, t)
and its approximation ỹ(s;u, x, t) of (2.1) for a given control u ∈ U∆. Fur-
thermore, let us assume that assumptions (4.3) and (4.4) hold true. We then
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obtain the following estimates applying the Euler scheme to (2.1):

|y(s;u, x, t)− ỹ(s;u, x, t)| ≤Mf∆te
Lf (s−t), (4.7)

|ỹ(s;u, x+ z, t+ τ)− ỹ(s;u, x, t)| ≤ (|z|+Mfτ)(1 + Lf∆t)
n−k

s ∈ [tn, tn+1) and t+ τ ∈ [tk, tk+1) with τ ≥ 0 s ≥ t+ τ.
(4.8)

Using Proposition 4.1.1 we are able to prove one side of (4.6) as shown in
the following theorem.

Theorem 4.1.1. Let us assume that conditions (4.3),(4.4) and (4.5) hold
true. Then

sup
(x,t)∈Rd×[0,T ]

(v(t, x)− V (t, x)) ≤ C(T )∆t, ∀t ∈ [0, T ], (4.9)

where C(T ) is a constant which does not depend on the time step ∆t.

Proof. First, we have

v(t, x)− V (t, x) ≤ inf
u∈U∆

Jx,t(u)− inf
u∈U∆

J∆t
x,t (u) ≤ sup

u∈U∆

|Jx,t(u)− J∆t
x,t (u)|.

For a given control u ∈ U∆, we use the assumptions in Proposition 4.1.1 to
obtain the following

∣∣Jx,t(u)− J∆t
x,t (u)

∣∣ ≤ ∫ T

t

|L(y(x, s, u(s))− L(ỹ(x, s, u(s))| ds+ |g(y(T ))− g(ỹ(T ))|

≤ LL

∫ T

t

|y(x, s, u(s))− ỹ(x, s, u(s))| ds+ Lg|y(T )− ỹ(T )|

≤ LLMf∆t

∫ T

t

eLf s ds+ LgMf∆te
LfT

≤Mf∆t

(
LL
Lf
eLfT + Lge

LfT

)
.

Then, we obtain the desired estimate (4.9) with C(T ) = Mfe
LfT

(
LL
Lf

+ Lg

)
.

To prove the remaining side of (4.6) we need to assume the semiconcavity
of the functions g, L and a stronger assumption on f . The proof of Theorem
4.1.2 is based on some technical lemmas that are presented below.

Proposition 4.1.2. Let us consider the assumptions of Proposition 4.1.1 and
consider the dynamics f(x, u, t) as a Lipschitz-continuous function in time and
space uniformly in u with the following property

|f(x+ z, u, t+ τ)− 2f(x, u, t) + f(x− z, u, t− τ)| ≤ Cf (|z|2 + τ 2),

∀u ∈ U, ∀x, z ∈ Rd, ∀t, τ > 0,
(4.10)
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then

|ỹ(s;u, x+ z, t+ τ)− 2ỹ(s;u, x, t) + ỹ(s;u, x− z, t− τ)| ≤ C̃(T )(|z|2 + τ 2),

∀s ≥ t+ τ, ∀u ∈ U, ∀x, z ∈ Rd, ∀t, τ > 0,

(4.11)

where C̃(T ) is a constant that depends on T but does not depend on the time
step ∆t.

Proof. Let us suppose that t + τ ∈ [tk, tk+1) for some k > 0, t ∈ [t0, t1) and
t − τ ∈ [t−k−1, t−k). Let us consider s ∈ [tn+1, tn+2), to ease the notation we
will denote

ỹ(s, u, x+ z, t+ τ) := yn+1
+ , ỹ(s, u, x, t) := yn+1,

ỹ(s, u, x− z, t− τ) := yn+1
− , f(y, u, tn) := fn(y),

and we will drop the dependence on the control u since it is fixed for all the
terms considered above. Applying only one step of the forward Euler scheme
with n ≥ k we get

yn+1
+ − 2yn+1 + yn+1

− = yn+ − 2yn + yn− + ∆t
(
fn(yn+)− 2fn(yn) + fn(yn−)

)
.

Thus, from assumption (4.10) we obtain the following

|fn(yn+)− 2fn(yn) + fn(yn−)| =
|fn(yn+)− 2fn(yn) + (fn(yn − (yn+ − yn))− fn(yn − (yn+ − yn))) + fn(yn−)| ≤
|fn(yn + (yn+ − yn))− 2fn(yn) + fn(yn − (yn+ − yn))|+
|fn(yn−)− fn(yn − (yn+ − yn))| ≤ Cf |yn+ − yn|2 + Lf

∣∣yn+ − 2yn + yn−
∣∣ .

Then, applying (4.8) we obtain

|yn+1
+ − 2yn+1 + yn+1

− | ≤ ∆tC1C
2(n−k)
2 + C2|yn+ − 2yn + yn−|, (4.12)

with C1 = Cf (|z| + Mfτ)2 and C2 = 1 + Lf∆t. Then, iterating (4.12) we
obtain

|yn+1
+ −2yn+1+yn+1

− | ≤ ∆tC1C
2(n−k)
2

n−k∑
j=0

C−j2 +Cn−k+1
2 |x+z−2yk+yk−|. (4.13)

Writing the full discrete dynamics for yk and yk−, the right hand side in (4.13)
becomes

∆tC1C
2(n−k)
2

1− C−(n−k+1)
2

1− C−1
2

+ Cn−k+1
2 ∆t

∣∣∣∣∣−2
k−1∑
j=0

f j(yj) +
k−1∑
j=−k

f j(yj−)

∣∣∣∣∣ ≤
C1C

2(n−k)+1
2

Lf
+ Cn−k+1

2 ∆t

∣∣∣∣∣
k−1∑
j=0

(
f j(yj−)− f j(yj) + f j−k(yj−k− )− f j(yj)

)∣∣∣∣∣ .
(4.14)
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Now we want to estimate last term in (4.14). Since the first term f j(yj−) −
f j(yj) of the sum can be obtained as a particular case of the second one, with
k = 0, let us now focus on the last term∣∣∣∣∣

k−1∑
j=0

(
f j−k(yj−k− )− f j(yj)

)∣∣∣∣∣ ≤ Lf

k−1∑
j=0

(∣∣∣yj−k− − yj
∣∣∣+ τ

)
. (4.15)

Using (4.8), we can write∣∣∣yj−k− − yj
∣∣∣ ≤ ∣∣∣yj−k− − yj−

∣∣∣+
∣∣yj− − yj∣∣ ≤ τMf + (|z|+Mfτ)Cj

2 .

Finally we get
|yn+1

+ − 2yn+1 + yn+1
− | ≤

C1C
2(n−k)+1
2

Lf
+ 2Cn−k+1

2 Lf
(
τ 2Mf + Ck

2 τ(|z|+Mfτ)
)
.

Noting that Cn
2 = (1 + Lf∆t)

n ≤ etnLf , we obtain the desired result with

the constant C̃(T ) equal to

C̃(T ) = 2e2T

(
Cf (max{1,Mf})2

Lf
+ Lf (2Mf + 1)

)
. (4.16)

Let us recall some properties for the numerical value function which will
be useful later since the reverse inequality in (4.9) needs the assumption of
semiconcavity for the numerical approximation V . We refer to [15] for a
detailed discussion of the importance of semiconcavity in control problems.

Proposition 4.1.3. Let us suppose that the functions L and g are both Lipschitz-
continuous and semiconcave. Furthermore, let us consider the function f(x, u, t)
as a Lipschitz-continuous function in time and space uniformly in u such that
it verifies (4.10). Then the numerical solution V is semiconcave:

V (x+z, t+τ)−2V (x, t)+V (x−z, t−τ) ≤ CV (|z|2 +τ 2) ∀x, z ∈ Rn, t, τ ≥ 0.
(4.17)

Proof. Given x, z ∈ Rn and t, τ ∈ [0, T ] such that t+ τ ∈ [tk, tk+1), t ∈ [t0, t1)
and t − τ ∈ [t−k−1, t−k), we need to prove (4.17). By the definition of value
function, we can write

V (x+ z, t+ τ) + V (x− z, t− τ)− 2V (x, t) ≤ sup
u∈U
{(tk+1 − t− τ)L(x+ z, t+ τ, u)+

(t−k − t+ τ)L(x− z, t− τ, u)− 2(t1 − t)L(x, t, u)}
+ sup

u∈U∆

(
J∆t
T (x+ z, tk+1, u) + J∆t

T (x− z, t−k, u)− 2J∆t
T (x, t1, u)

)
.

(4.18)
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We can estimate the first term on the right hand side as follows

(tk+1 − t− τ)L(x+ z, t+ τ, u) + (t−k − t+ τ)L(x− z, t− τ, u)− 2(t1 − t)L(x, t, u))

≤ ∆tmax{L(x+ z, t+ τ, u) + L(x− z, t− τ, u)− 2L(x, t, u), 0}.
(4.19)

Without loss of generality, we will consider λ = 0. Given u ∈ U∆ and denoted
by L(y, u, tn) = Ln(y), we have that the remaining right hand side is equal to

∆t

(
N−1∑
n=k+1

(
Ln(yn+) + Ln(yn−)− 2Ln(yn)

)
+

k∑
n=1

(
Ln(yn−)− 2Ln(yn)

))
+

∆t

(
0∑

n=−k

Ln(yn−)

)
+ g(yN+ ) + g(yN− )− 2g(yN).

(4.20)

As already done in the proof of Proposition 4.1.2, exploiting the properties of
L, i.e. Lipschitz-continuity and semiconcavity with constant CL > 0, for the
first summation in (4.20) we have:

Ln(yn+) + Ln(yn−)− 2Ln(yn) ≤ CL|yn+ − yn|2 + LL|yn+ − 2yn + yn−|. (4.21)

Using (4.8), we obtain the following bound for the first term

∆tCL

N−1∑
n=k+1

|yn+ − yn|2 ≤ ∆tCL(|z|+Mfτ)2

N−1∑
n=k+1

(1 + Lf∆t)
2(N−k) ≤

≤ CL
Lf

(1 + Lf∆t)
2N(|z|+Mfτ)2 ≤ 2 max{M2

f , 1}
CL
Lf
e2LfT (|z|2 + τ 2).

(4.22)

Using (4.11), we obtain directly

∆tLL

N−1∑
n=k+1

|yn(x+z, t+τ)−2yn(x, t)+yn(x−z, t−τ)| ≤ TLLC̃(T )(|z|2 +τ 2).

Finally we rewrite the second and third summation in (4.20) in the following
way

∆t
k∑

n=1

[(Ln(yn−)− Ln(yn)) + (Ln−k−1(yn−)− Ln(yn))]

and with the same procedure used in the proof of Proposition 4.1.2 and ap-
plying (4.21) with g, we obtain the desired estimate.

Next, we introduce a further characterization of V which will turn out to
be useful to prove Theorem 4.1.2.
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Proposition 4.1.4. Assume that assumptions (4.3), (4.4), (4.5) hold true.
Then the solution V of (3.1) is bounded (and uniformly continuous). Fur-
thermore, the following estimate holds

|V (y0, s)−V (x0, T )| ≤ C (|y0 − x0|+ (T − tn) + ∆t) , s ∈ [tn, tn+1), ∀x0, y0 ∈ Rn.
(4.23)

The proof of this statement can be found in [27]. Finally, before proving
Theorem 4.1.2 we introduce the following lemma (proved in [16, Lemma 4.2,
p. 170 ]).

Lemma 4.1.1. Let ξ : Rn × [0, T ]→ R satisfy

ξ(y + z, t+ τ)− 2ξ(y, t) + ξ(y − z, t− τ) ≤ Cξ
(
|z|2 + |τ |2

)
,

∀y, z ∈ Rn, ∀t, τ ∈ [0, T ] such that t+ τ, t, t− τ ∈ [0, T ] and

ξ(0, 0) = 0 , lim sup
(y,t)→(0,0)

ξ(y, t)

|y|+ |t|
≤ 0.

Then

ξ(y, t) ≤ Cξ
6

(|y|2 + |t|2) ∀y ∈ Rn, t ∈ [0, T ].

We are now able to prove our main result.

Theorem 4.1.2. Let the assumptions (4.3),(4.4),(4.5) hold true. Moreover,
let us assume that the functions L and g are semiconcave and that the func-
tion f(x, u, t) is Lipschitz continuous in space and time uniformly in u and it
satisfies (4.10). Then

sup
(x,t)∈Rd×[0,T ]

(V (t, x)− v(t, x)) ≤ C(T )∆t , ∀t ∈ [0, T ]. (4.24)

Proof. The first part of the proof follows closely from [27]. We introduce the
auxiliary function

φ(y, t, x, s) = V (y, t)− v(x, s) + βε(x− y) + ηα(t− s),

where βε(x) = − |x|
2

ε2
and ηα(s) = − s2

α2 .
Since v and V are bounded, then for any δ > 0, there exist (y1, τ1), (x1, s1)

such that
φ(y1, τ1, x1, s1) > supφ− δ.

Choosing θ(y, x) ∈ C∞0 (Rd × Rd), with θ(y1, x1) = 1 and 0 ≤ θ ≤ 1,
|Dθ| ≤ 1, such that for any δ ∈ (0, 1),

ζ(y, t, x, s) = φ(y, t, x, s) + δθ(y, x)
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has a maximum point (y0, τ0, x0, s0), with y0, x0 ∈ supp θ and τ0, s0 ∈ [0, T ].
Therefore, if we set

Φ(x, s) = V (y0, τ0) + βε(y0 − x) + ηα(τ0 − s) + δθ(y0, x),

we can observe that (x0, s0) is a local min for v(x, s)− Φ(x, s). By definition
of ζ, we have that

V (y0, τ0)− v(x0, s0) + βε(y0 − x0) + ηα(τ0 − s0) + δθ(y0, x0) ≥
≥ V (y, t)− v(x, s) + βε(y − x) + ηα(t− s) + δθ(y, x).

(4.25)

From (4.25) with x = y = y0, s = s0 and t = τ0, we get

|y0 − x0| ≤ ε2(Lv + δ), (4.26)

and similarly, with x = x0, y = y0 and s = t = τ0:

|s0 − τ0| ≤ α2Lv, (4.27)

where Lv is the Lipschitz constant of v with respect to time and space.
Using (4.25), (4.26) and (4.27), we obtain

V (x, s)− v(x, s) ≤ V (y0, τ0)− v(x0, s0) + (Lv + δ)ε2 + α2Lv + 2δ. (4.28)

Let us now consider three cases as suggested in [27]. We recall that in this
theorem we improve their approximation by means of the semiconcavity which
turns out to be essential in the third case of the proof. However, in the first two
cases we can directly obtain first order convergence. Without this property
we can only prove an order of convergence of 1

2
.

First case (τ0 = T ) In this case V (y0, T ) = g(y0) = v(y0, T ). Thus, using
the Lipschitz-continuity of g we obtain the desired result, setting α = ε =√

∆t.

Second case (τ0 6= T , s0 = T ) In this case v(x0, T ) = g(x0) = V (x0, T ).
Supposing τ0 ∈ [tn, tn+1) and using the estimate (4.23) in (4.28), we obtain

V (x, s)− v(x, s) ≤ C (|y0 − x0|+ (T − tn) + ∆t) + (Lv + δ)ε2 + α2Lv + 2δ.

Since τ0 − tn ≤ ∆t, using (4.27) we can write that

T − tn ≤ Lvα
2 + ∆t,

and using (4.26), finally we get

V (x, s)− v(x, s) ≤ C3ε
2 + C4α

2 + C5∆t+ 2δ.

If we set α = ε =
√

∆t, we get the result, since δ is arbitrary.
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Third case (τ0, s0 6= T ) We know that v is a viscosity solution, this means
that there exists a control u∗ ∈ U such that

−∂sΦ(x0, s0) + λv(x0, s0)− f(x0, s0, u
∗) · ∇xΦ(x0, s0)− L(x0, s0, u

∗) ≥ 0.

Thus, we obtain

∇ηα(τ0 − s0) + λv(x0, s0)+

+ f(x0, s0, u
∗) · (∇βε(x0 − y0)− δ∇xθ(y0, x0))− L(x0, s0, u

∗) ≥ 0.
(4.29)

By the definition of V (5.30), assuming τ0 ∈ [tn, tn+1) we have

V (y0, τ0)− (tn+1 − τ0)L(y0, τ0, u
∗)+

− e−λ(tn+1−τ0)V (y0 + (tn+1 − τ0) f(y0, τ0, u
∗), tn+1) ≤ 0.

(4.30)

Let us introduce

ξ(y, t) = V (y0+y, τ0+t)−V (y0, τ0)+(∇βε(x0−y0)+δ∇yθ(y0, x0))·y+t∇ηα(τ0−s0)
(4.31)

and follows that

ξ(y + z, t+ τ)− 2ξ(y, t) + ξ(y − z, t− τ) =

= V (y0 + y + z, τ0 + t+ τ)− 2V (y0 + y, τ0 + t) + V (y0 + y − z, τ0 + t− τ).

By Proposition 4.1.3, we know that the function V is semiconcave, from which
it follows the semiconcavity of ξ with ξ(0, 0) = 0. Let us now check the last
hypothesis of Lemma 4.1.1. Since (y0, x0, τ0, s0) is a maximum point for ζ, we
obtain

V (y0 + y, τ0 + t)− V (y0, τ0) ≤
≤ βε(y0 − x0)− βε(y0 + y − x0) + ηα(τ0 − s0)− ηα(τ0 + t− s0)+

+ δ[θ(y0, x0)− θ(y0 + y, x0)],

ξ(y, t) ≤ βε(y0 − x0)− βε(y0 + y − x0) +∇βε(x0 − y0) · y + ηα(τ0 − s0)

− ηα(τ0 + t− s0) + t∇ηα(τ0 − s0) + δ(θ(y0, x0)− θ(y0 + y, x0) +∇yθ(y0, x0) · y).

We note that

lim sup
(t,y)→(0,0)

ξ(y, t)

|y|+ |t|
≤ 0.

Applying Lemma 4.1.1 with y = (tn+1 − τ0) f(y0, τ0, u
∗) and t = tn+1 − τ0, we

obtain

V (y0 + (tn+1 − τ0) f(y0, τ0, u
∗), tn+1) ≤

V (y0, τ0)− (tn+1 − τ0)(∇βε(x0 − y0) + δ∇yθ(y0, x0))·
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f(y0, τ0, u
∗)−(tn+1−τ0)∇ηα(τ0−s0)+Cξ(tn+1−τ0)2(1+|f(y0, τ0, u

∗)|2). (4.32)

Inserting (4.32) in (4.30) and dividing by tn+1 − τ0 we obtain

1− e−λ(tn+1−τ0)

tn+1 − τ0

V (y0, τ0) ≤ L(y0, τ0, u
∗)− e−λ(tn+1−τ0)(∇βε(x0 − y0)+

δ∇yθ(y0, x0)) · f(y0, τ0, u
∗) +∇ηα(τ0 − s0)− C(tn+1 − τ0)(1 + |f(y0, τ0, u

∗)|2)).

Finally, subtracting (4.29), we obtain

1− e−λ(tn+1−τ0)

tn+1 − τ0

V (y0, τ0)− λv(x0, s0) ≤ L(y0, τ0, u
∗)− L(x0, s0, u

∗)+

∇βε(y0 − x0) · (−e−λ(tn+1−τ0)f(y0, τ0, u
∗) + f(x0, s0, u

∗))+

∇nα(τ0 − s0)(1− e−λ(tn+1−τ0)) + δ
(
−e−λ(tn+1−τ0)∇yθ(y0, x0) · f(y0, τ0, u

∗)
)

+ δ (−∇xθ(y0, x0) · f(x0, s0, u
∗)) + C(tn+1 − τ0)(1 + |f(y0, τ0, u

∗)|2)

≤ LL(|y0 − x0|+ |τ0 − s0|) + 2(Lv + δ)Lf (|y0 − x0|+ |τ0 − s0|) + 2Lv∆t+

Mδ + C∆t(1 +M2
f ) ≤ L(ε2 + α2) + C∆t+Mδ.

Since δ is arbitrary, choosing α = ε =
√

∆t, we obtain the thesis.

Error estimate in the control space

The previous results do not take into account the error in the minimization
procedure computed by comparison in the discrete set U∆u. For this reason
let us define the value function computed with discrete controls as

V (x, t) = inf
u∈U∆

J∆t
x,t (u), (4.33)

where

U∆
= {u : [t, T ]→ U∆u, such that u(s) =

N−1∑
k=n

αkχ[tk,tk+1)(s)}.

We can obtain an error estimate for the error of the minimization by compar-
ison adding the hypothesis of Lipschitz-continuity for f and L with respect to
the state and the control uniformly in time, i.e.

|f(x, u, s)− f(y, ũ, s)| ≤ Lf (|x− y|+ |u− ũ|),
|L(x, u, s)− L(y, ũ, s)| ≤ LL(|x− y|+ |u− ũ|),

∀x, y ∈ Rd, u, ũ ∈ U ⊂ Rm, s ∈ [t, T ].

(4.34)
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Proposition 4.1.5. Under the assumptions (4.34) and (4.5), then

sup
(x,t)∈Rd×[0,T ]

|V (x, t)− V (x, t)| ≤ C(T,m)∆u, (4.35)

where m is the dimension of the control set U .

Proof. First, we can observe that U∆ ⊂ U∆, then V (x, t) ≤ V (x, t). Then,
supposing t ∈ [tn, tn+1) and imposing λ = 0 for simplicity , we obtain

V (x, t)− V (x, t) ≤ V n+1(x+ (tn+1 − t)f(x, un, t) + (tn+1 − t)L(x, un, t)

−V n+1(x+ (tn+1 − t)f(x, un∗ , t)− (tn+1 − t)L(x, un∗ , t),

where

un∗ = arg min
u∈U

{V n+1(x+ (tn+1 − t)f(x, u, t) + (tn+1 − t)L(x, u, t)}

and un is chosen such that |un − un∗ | ≤
√
m
2

∆u. This choice is possible since
U∆u is a discretization of U with step-size ∆u in all directions. Proceeding in
the same fashion of Proposition 2.3.1, we obtain

V (x, t)− V (x, t) ≤ LL

N∑
k=n

αk
(
|xk − xk∗|+ |uk − uk∗|

)
+ Lg|xN − xN∗ |, (4.36)

where

xk := x+
k−1∑
j=n

αjf(xj, uj, t̄j), xk∗ = x+
k−1∑
j=n

αjf(xj∗, u
j
∗, t̄j),

αj =

{
tn+1 − t j = n

∆t k ≥ n+ 1
, t̄j =

{
t j = n

tk j ≥ n+ 1
,

uj∗ = arg min
u∈U

{V j+1(xj∗ + αjf(xj∗, u, t̄j)) + αjL(xj∗, u, t̄j)}, j ≥ n,

and uj chosen such that

|uj − uj∗| ≤
√
m

2
∆u, j ≥ n.

By Grönwall’s lemma we obtain

|xk − xk∗| ≤ e(tk−t)Lf (tk − t)Lf
√
m

2
∆u, j ≥ n, (4.37)

and finally coupling (4.36) and (4.37)

sup
(x,t)∈Rd×[0,T ]

|V (x, t)− V (x, t)| ≤ ∆u

√
m

2

(
eTLfT (LL + Lg) + TLL

)
. (4.38)
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4.2 Error estimate for the TSA with pruning

In the previous section we presented an error estimate for the TSA where a
first order of convergence is achieved. However, as shown numerically in [3],
one can obtain the same order of convergence in the case of the pruned tree if
the pruning tolerance εT in (3.2) is chosen properly. In this section, we extend
the previous theoretical results to the pruning case. Thus, let us define the
pruned trajectory:

ηn+1
in

= ηnin−1
+ ∆tf(ηnin−1

, ujn , tn) + EεT (ηnin−1
+ ∆tf(ηnin−1

, ujn , tn), {ηn+1
i }i),

(4.39)
where the indices in and jn consider the pruning strategy with

EεT (x, {xn}) =

xk − x if k ∈ arg min
n
|x− xn| and |x− xk| ≤ εT ,

0 otherwise.
(4.40)

The function EεT (x, {xn}) can be interpreted as a perturbation of the numeri-
cal scheme and |EεT (x, {xn})| ≤ εT . As already done in (4.1), we consider the
piecewise constant extension η̃(s;u) of the approximation such that

η̃(s, u) := η[s/∆t](u) s ∈ [t, T ]. (4.41)

First step is to prove that the tolerance must be chosen properly to guarantee
a first order convergence of the scheme. The following result is obtained easily
through Grönwall’s lemma.

Proposition 4.2.1. Given the approximation ỹ(s;u, x, t) of equation (2.1)
and its perturbation η̃(s;u, x, t) expressed in (4.2), then

|ỹ(s;u, x, t)− η̃(s;u, x, t)| ≤ εT
s− t
∆t

eLf (s−t), ∀s ∈ [t, T ]. (4.42)

Finally, to guarantee first order convergence, the tolerance must be chosen
such that

εT ≤ C∆t2. (4.43)

Then we can define the pruned discrete cost functional as

J∆t,P
x,s (u) = (tn+1 − s)L(x, u, s) + ∆t

N−1∑
k=n+1

L(ηk, u, tk)e
−λ(tk−s) + g(ηN)e−λ(tN−s),

(4.44)

for s ∈ [tn, tn+1) and define the pruned discrete value function as

V P (x, t) := inf
u∈U∆

J∆t,P
x,t (u)
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which now satisfies the following equation

V P (x, s) = min
u∈U

{
e−λ(tn+1−s)V P,n+1

(
ηn+1
u (x)

)
+ (tn+1 − s)L(x, u, s)

}
,

V (x, T ) = g(x), x ∈ Rd, s ∈ [tn, tn+1)
(4.45)

where

ηn+1
u (x) = x+ (tn+1 − s)f(x, u, s) + EεT (x+ (tn+1 − s)f(x, u, s), {ηn+1

i }i).

Then, we can prove the following result.

Proposition 4.2.2. Under the condition (4.43), we have

|V (x, t)− V P (x, t)| ≤ C∗(T )∆t. (4.46)

Proof. As done in the proof of Theorem 4.1.1, we can write

|V (x, t)− V P (x, t)| ≤ sup
u∈U∆

∣∣∣J∆t
x,t (u)− J∆t,P

x,t (u)
∣∣∣ .

Then using (4.42) we obtain the desired result as follows:∣∣∣J∆t
x,t (u)− J∆t,P

x,t (u)
∣∣∣ ≤
≤ LL

∫ T

t

|ỹ(x, s, u(s))− η̃(x, s, u(s))| ds+ Lg|ỹ(T )− η̃(T )|

≤ LLC∆t

∫ T

t

s eLf (s−t) ds+ LgCT∆teLfT

≤ TC∆teLfT (TLL + Lg) .

Finally by triangular inequality and using estimate (4.6) and (4.46), we
obtain the desired result:

|v(x, t)− V P (x, t)| ≤
(
C∗(T ) + Ĉ(T )

)
∆t. (4.47)

whenever condition (4.43) holds true.

Pruning threshold for high-order TSA In the last paragraph of Chapter
3 we considered the extension of the TSA for high order schemes. Given the
high-order approximation (3.6), we can define the pruned trajectory in the
following way

ηn+1
j = ηn + ∆tΦ(ηn,Un, tn,∆t) + EεT (ηn + ∆tΦ(ηn,Un, tn,∆t), {ηn+1

i }i).

Under the assumption of Lipschitz-continuity for Φ, it is possible to prove
an estimate similar to (4.42).
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Proposition 4.2.3. Given a one-step approximation {yn}n and its perturba-
tion {ηn}n, if the function Φ is Lipschitz-continuous of constant LΦ, then

|yn − ηn| ≤ n εT
s− t
∆t

eLΦ(tn−t).

Furthermore, to guarantee a convergence of order p, the tolerance εT must
satisfy the condition

εT ≤ C∆tp+1.

By this last result, we understand that the tolerance must scale an order
more than the convergence order of the underlying scheme. We will show in
the numerical tests that the use of higher order schemes leads to more accurate
results in less computational time.

4.3 Numerical Tests

In this section we are going to show numerically the theoretical results proven
in the previous sections. We will present two test cases. In the first example,
provided the analytical value function, we show the order of convergence of
the method for Euler and Heun’s schemes. Furthermore, we emphasize the
importance of the assumptions provided in the previous pages with respect
to the semiconcavity of the value function. The second example deals with a
high-dimensional problem: the control of the heat equation. In this setting we
approximate the value function by a very accurate simulation of the Riccati
equation and, then, compute the order of convergence of our method.

4.3.1 Test 1: Comparison with an exact solution

In this test we compute the order and the error of the TSA in an example
where the exact value function is known analytically. We consider again the
following dynamics in (2.1)

f(x, u) =

(
u
x2

1

)
, u ∈ U ≡ [−1, 1], (4.48)

where x = (x1, x2) ∈ R2 and T = 1. We recall that the solution of the HJB in
this case is

v(x, t) = −x2 − x2
1(T − t)− 1

3
(T − t)3 − |x1|(T − t)2. (4.49)

In this example, we use the TSA for both forward Euler and Heun’s scheme
with and without the pruning criteria (3.2). We compare two different ap-
proximations according to `2−relative error with the exact solution on the

59



tree nodes

E2(tn) =

√√√√√
∑

xi∈T n
|v(xi, tn)− V n(xi)|2∑
xi∈T n

|v(xi, tn)|2
.

TSA easily provides higher order converging methods only modifying the
numerical scheme for ODEs and the quadrature formula for the cost func-
tional. However, the case without pruning criteria becomes unfeasable for
more than 10 time steps since it requires to store O(M22) nodes applying
Heun’s scheme, whereas the application of pruning criteria (3.2) provides a
real improvement. We are going to compute `2− error in time and in space

Err2,2 =

√√√√∆t
N∑
n=0

‖v(xi, tn)− V n(xi)‖2
`2(T n)

‖v‖2
`2(T n)

.

Figure 4.1 shows the order of convergence for forward Euler and Heun’s
method using different εT . We note that we obtain first order of convergence
when dealing with Euler scheme and εT = ∆t2 and second order for Heun’s
approximation with εT = ∆t3. We also show how crucial is the selection of
the tolerance εT .
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Figure 4.1: Test 1: Comparison of the order of convergence for the pruned
TSA with different tolerances (top) with Euler method to approximate (2.1),
(bottom) with Heun’s method to approximate (2.1).

In Table 4.1 and Table 4.2 we present the results of the TSA applying the
Euler scheme for εT = {0,∆t2} respectively. We first note that the pruning
criterium allows to solve the problem for a smaller temporal step size ∆t since
the cardinality of the tree is smaller. The CPU time is then proportional
to the cardinality of the tree. We also note that, as expected, the order of
convergence is 1 in both cases.

In Table 4.3 and Table 4.4 we present the results obtained by means of
the Heun’s method. Similar considerations to the tables which refer to Euler
scheme hold true. However, we note that the order of convergence is improved
as Heun’s method is a second order scheme.

Finally, we note that to reach an error of order O(10−3) using Euler method
with pruning needs 150s,∆t = 0.0125 and |T | = 252620, whereas Heun’s with
pruning requires only ∆t = 0.2, |T | = 160 in 0.35s. This shows that the choice
of the numerical scheme of higher order allows accurate approximations in rea-
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∆t Nodes CPU Err2,2 Order2,2

0.2 63 0.05s 9.0e-02
0.1 2047 0.35s 4.4e-02 1.04

0.05 2097151 1.1s 2.2e-02 1.02

Table 4.1: Test 1: Error analysis and order of convergence for forward Euler
scheme of the TSA without pruning rule (εT = 0).

∆t Nodes CPU Err2,2 Order2,2

0.2 42 0.05s 9.1e-02
0.1 324 0.08s 4.4e-02 1.05

0.05 3151 0.6s 2.1e-02 1.04
0.025 29248 2.5s 1.1e-02 1.005

0.0125 252620 150s 5.3e-03 1.004

Table 4.2: Test 1: Error analysis and order of convergence for forward Euler
scheme of the TSA with εT = ∆t2.

∆t Nodes CPU Err2,2 Order2

0.2 1365 0.29s 3.51e-03
0.1 1398101 3.92s 8.59e-04 2.0316

Table 4.3: Test 1: Error analysis and order of convergence for Heun’s scheme
of the TSA without pruning (εT = 0).

∆t Nodes CPU Err2,2 Order2

0.2 160 0.35s 5.32e-03
0.1 2895 0.61s 8.53e-04 2.65
0.05 58888 60s 1.98e-04 2.11
0.025 1018012 9051s 3.9e-05 2.34

Table 4.4: Test 1: Error analysis and order of convergence for Heun’s scheme
of the TSA with εT = ∆t3.
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sonable time. However, one should also take into account that the comparison
is performed with different pruning criteria. Thus, Euler scheme has order of
convergence O(∆t), whereas Heun’s O(∆t2), which means that the same order
is applied when ∆teuler = ∆t2heun, if we apply ∆theun for Heun’s method. On
the other hand the tolerance for Euler scheme will be ∆t4heun, while for Heun’s
∆t3heun. To summarize Heun’s scheme requires a bigger tolerance to obtain
the same order of accuracy and, clearly, lower CPU time.

4.3.2 Test 2: Heat Equation

In the second test we deal with the control of the linear heat equation.
yt = σyxx + y0(x)u(t) (x, t) ∈ [0, 1]× [0, T ],

y(0, t) = y(1, t) = 0 t ∈ [0, T ],

y(x, 0) = y0(x) x ∈ [0, 1],

(4.50)

and we set T = 1, σ = 0.15 and y0(x) = x − x2. The discretization of (4.50)
with a centered finite difference method leads to a system of ODEs:{

ẏ(t) = Ay(t) +Bu(t),

y(0) = y0

(4.51)

where A ∈ Rd×d is the stiffness matrix and B ∈ Rd is given by Bi = y0(xi) for
i = 1, . . . , d, where xi are the points of the spatial grid. We want to minimize
the following cost functional:

Jy0,t(u) =

∫ T

t

(
‖y(s)‖2

2 +
1

100
|u(s)|2

)
ds+ ‖y(T )‖2

2.

If the control is unconstrained, we can derive an exact solution solving the
problem solving the Riccati differential equation as in (2.30). We will com-
pare the numerical value function computed by the TSA and by the Riccati
equation. We will modify the time steps and the number of controls for the
TSA and compute the following relative errors

Err2 =

∑N
n=0 |V (yn∗ , tn)− v(ynR, tn)|2∑N

n=0 |v(ynR, tn)|2
, Err∞ =

max
n=0,...,N

|V (yn∗ , tn)− v(ynR, tn)|

max
n=0,...,N

|v(ynR, tn)|
,

where {yn∗ }n is the optimal trajectory computed via TSA, whereas {ynR}n
is obtained solving the Riccati equation. For both methods we set the spatial
step size ∆x = 10−2, obtaining a system of dimension d = 100. We consider
a time step equal to ∆t = 10−4 for the Riccati equation to obtain an accurate
solution. To make a fair comparison, we first computed the LQR problem and
then set the control space in the TSA. In this example we set U = [−1, 0].
To accelerate the algorithm, we consider the efficient pruning introduced in
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Remark 3.2.2. We first create a coarse tree with ∆t = 0.1 and only 2 discrete
controls, we compute the SVD of the snapshots matrix and we consider the
first ` columns as basis, the so-called POD basis. After that, during the
construction of the tree with a finer discretization, we project the nodes onto
this subspace which is divided into ”buckets” of lengths equal to the pruning
tolerance. We will compare only the nodes falling in the same bucket. In this
case we choose ` = 1 since the first singular value captures enough information
of the dynamics. It is possible to consider directly a projected dynamics
instead of the full dimensional one. We will discuss this kind of approach in
Chapter 5.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 134 4.7e-09 0.14s 0.279 0.241
0.05 863 1.2e-18 0.65s 0.144 0.118 0.95 1.03
0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 1.40 1.17
0.0125 849717 3.8e-78 1.1e3s 1.6e-2 1.6e-2 1.77 1.42

Table 4.5: Test 2: Error analysis and order of convergence for forward Euler
scheme of the TSA with εT = ∆t2 and 11 discrete controls.

∆t Ratio pruned Ratio Full

0.05 6.44 2.6e10
0.025 17.9 6.7e20
0.0125 984 4.5e41

Table 4.6: Test 2: Comparison between the ratio of cardinality for the full
tree and the pruned tree with εT = ∆t2 and 11 discrete controls.

In Table 4.5, we provide the order of convergence for the TSA with 11
discrete controls. We note that in LQR problem the control space is not
discretized and that may provide some different results as the order of con-
vergence. The table also shows the number of nodes corresponding for each
∆t and the ratio of the number of nodes for the full and the pruned tree. The
full tree grows with an order of O(11

1
∆t ), while the pruned tree grows with a

much smaller order as expressed by the ratio number. Table 4.6 shows the
ratio cardinality between the full/pruned tree with 2∆t and ∆t.

Finally, in the top panel of Figure 5.1 we show the convergence of the cost
functional decreasing the temporal step size ∆t for a given amount of controls.
As it gets smaller, we are closer to what we consider the exact solution. In the
bottom panel we show the optimal policy. Clearly, since our control space is
not continuous, a chattering phenomenon appears, even if it does not influence
the quality of our results.

64



0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

t=0.1
t=0.05
t=0.025
t=0.0125

Riccati

0 0.2 0.4 0.6 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

t=0.025
t=0.0125

Riccati

Figure 4.2: Test 2: Cost functional (top) and optimal control (bottom) with
11 discrete controls.
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Chapter 5

Optimal control for PDEs

In this chapter we are going to treat a topic very useful in terms of applications:
the optimal control of PDEs. We will first present the problem, then we
will pass to introduce the Proper Orthogonal Decomposition (POD) and the
Discrete Empirical Interpolation Method (DEIM). After that, we will study
the coupling of the TSA with POD considering the coupling of the TSA with
POD. Finally, we present a error estimate for the coupled method. We address
the interested reader to [6] for a complete description.

5.1 Formulation of the problem

Let us consider an evolutive PDE and its spacial semidiscretization (though
e.g. finite difference or finite elements methods). It will lead to a (possibly
large) system of ODEs:{

ẏ(s) = Ay(s) + F (t, y(s)) +Bu(s), s ∈ (t, T ],
y(t) = x,

(5.1)

where x ∈ Rd is a given initial data, A ∈ Rd×d, B ∈ Rd×m are given ma-
trices and F : [t, T ] × Rd → Rd is a continuous function in both arguments
and locally Lipschitz-type with respect to the second variable. We are consid-
ering a linear dependence on the control input just for simplicity, but all the
proposed methods can be applied to more general frameworks.

In the same fashion of the previous chapters, we denote by y : [t, T ]→ Rd

the solution, by u : [t, T ]→ Rm the control and by

U = {u : [t, T ]→ U,measurable}

the set of admissible controls where U ⊂ Rm is a compact set. We will assume
that there exists a unique solution for (5.1) for each u ∈ U .

In the numerical approximation of PDEs, the dimension of the problem is
the number of spatial grid points or basis elements and it can be very large.
We will see how to apply model order reduction techniques in order to reduce
the spacial dimensionality.
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To ease the notation we will denote the right hand side as follows:

f(y(t), u(t), t) := Ay(t) + F (t, y(t)) +Bu(t). (5.2)

To select the optimal trajectory, we consider the following cost functional

Jx,t(u) :=

∫ T

t

L(y(s, u), u(s), s)e−λ(s−t) ds+ g(y(T, u))e−λ(T−t), (5.3)

where L : Rd×Rm× [t, T ]→ R is the running cost, g : Rd → R is the final cost
and λ ≥ 0 is the discount factor. We will suppose that the functions L(·, u, t)
and g(·) are Lipschitz continuous. The optimal control problem then reads:

min
u∈U

Jx,t(u) s.t. y(s) satisfies (5.1). (5.4)

The final goal is the computation of the control in feedback form u(t) =
η(y(t), t), in terms of the state equation y(t), where η is the feedback map.
As explained before, we use the Dynamic Programming Principle and the
corresponding HJB equation to obtain the value function, defined for an initial
condition (x, t) ∈ Rd × [0, T ] as:

v(x, t) := inf
u∈U

Jx,t(u). (5.5)

Once the value function has been computed, it is possible to obtain the
optimal feedback control as:

u∗(t) := arg min
u∈U

{L(x, u, t) +∇v(x, t) · f(x, u, t)} . (5.6)

5.2 Model order reduction and POD method

In this section first we recall the POD method for the state equation (5.1) and
later how to apply it to reduce the dimension of the optimal control problem
(5.4).

5.2.1 POD for the state equation

The solution of the system (5.1) may be very expensive and it is useful to deal
with projection techniques to reduce the complexity of the problem. Here we
recall the POD method and we refer the interested reader to [55, 57] for more
details on the topic and to [10] for a review of different projection techniques.

Let us assume we have computed a numerical (or analytical if possible)
solution of (5.1) on the time grid points tj, j ∈ {0, . . . , N} for some given
control inputs. Then, we collect the snapshots {y(ti)}Ni=0 into the matrix
Y = [y(t0), . . . , y(tN)] ∈ Rd×(N+1). The aim of the method is to determine a
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POD basis Ψ = {ψ1, . . . , ψ`} of rank `� min{d,N + 1} to describe the set of
data collected in time by solving the following minimization problem:

min
ψ1,...,ψ`∈Rd

N∑
j=0

∣∣∣∣∣y(tj)−
∑̀
i=1

〈y(tj), ψi〉ψi

∣∣∣∣∣
2

such that 〈ψi, ψj〉 = δij. (5.7)

The associated norm is given by the Euclidean inner product | · |2 = 〈·, ·〉. The
solution of (5.7) is obtained by the SVD of the snapshots matrix Y = ΨΣV T ,
where we consider the first `−columns {ψi}`i=1 of the orthogonal matrix Ψ.
The selection of the rank of POD basis is based on the error computed in (5.7)
which is related to the singular values neglected, i.e.

E(`) =

∑`
i=1 σ

2
i∑min{d,N+1}

i=1 σ2
i

, (5.8)

where {σi}min{d,N+1}
i=1 are the singular values of Y .

However, the error strongly depends on the quality of the computed snap-
shots. This is clearly a limit when dealing with optimal control problems,
since the control input is not known a-priori and it is necessary to have a
reasonable forecast. In Section 5.3 we will explain how to select the control
input u(t) to solve (5.4).

To ease the notation, in what follows, we will denote by Ψ ∈ Rd×` the POD
basis of rank `. Let us assume that the POD basis Ψ have been computed and
make use of the following assumption to obtain a reduced dynamical system:

y(t) ≈ Ψy`(t), (5.9)

where y`(t) is a function from [t, T ] to R`. If we plug (5.9) into the full model
(5.1) and exploit the orthogonality of the POD basis, the reduced model reads:{

ẏ`(s) = A`y`(s) + ΨTF (s,Ψy`(s)) +B`u(s),
y`(t) = x`,

(5.10)

where A` = ΨTAΨ, B` = ΨTB and x` = ΨTx ∈ R`. We also note that
A` ∈ R`×` and B` ∈ R`×m. Error estimates for the reduced system (5.10) can
be found in [42].

In what follows we are going to define the reduced dynamics as:

f `(y`(t), u(t), t) := A`y`(t) + ΨTF (t,Ψy`(t)) +B`u(t). (5.11)

Discrete Empirical Interpolation Method The solution of (5.10) is still
computationally expensive, since the nonlinear term F (t,Ψy`(t)) depends on
the dimension of the original problem, i.e. the variable Ψy`(t) ∈ Rd. To
avoid this issue, the Empirical Interpolation Method (EIM, [8]) and Discrete
Empirical Interpolation Method (DEIM, [17]) were introduced.
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The computation of the POD basis functions for the nonlinear part is re-
lated to the set of the snapshots F (tj, y(tj)), where y(tj) are already com-
puted from (5.1). We denote by Φ ∈ Rd×k the POD basis functions of
rank k � min{d,N + 1} of the nonlinear part. The DEIM approximation
of f(t, y(t)) is given in the following form:

FDEIM(t, yDEIM(t)) := Φ(STΦ)−1F (t, yDEIM(t)), (5.12)

where S ∈ Rd×k and yDEIM(t) := STΨy`(t).Here, we assume that each compo-
nent of the nonlinearity is independent from each other, i.e. we assume that
F (s, y) := [F̄ (s, y1(s)), . . . , F̄ (s, yd(s))], with F̄ : [t, T ] × R → R, then the
matrix S can be moved into the nonlinearity. Again, we refer to [17] for a
complete description of the method and extensions to more general nonlinear
functions. The role of the matrix S is to select interpolation points to evaluate
the nonlinearity. The selection is made according to the LU decomposition
algorithm with pivoting [17], or following the QR decomposition with pivot-
ing [23]. We finally note that all the quantities in (5.12) are independent of
the full dimension d, since the quantity ΨTΦ(STΦ)−1 ∈ R`×k can be precom-
puted. Typically the dimension k is much smaller than the full dimension.
This allows the reduced order model to be completely independent of the full
dimension as follows:{

ẏ`(s) = A`y`(s) + ΨTF DEIM(s, yDEIM(s)) +B`u(s),
y`(t) = x`.

(5.13)

In what follows, we are going to define the reduced POD-DEIM dynamics
as:

f `,DEIM(y`(s), u(s), s) := A`y`(s) + ΨTFDEIM(s, STΨy`(s)) +B`u(s). (5.14)

The DEIM error for a given snapshots set F̃ = {F (tj, y(tj))}Nj=0 and its DEIM

approximation F̃DEIM = Φ(STΦ)−1ST F̃ is given by:

‖F̃ − F̃DEIM‖2 ≤ c‖(I − ΦΦT )F̃‖2, with c = ‖(STΦ)−1‖2, (5.15)

as shown in [17, 23].

5.2.2 POD for the optimal control problem

The key ingredient to compute feedback control is the knowledge of the value
function, which is expressed by a nonlinear PDE whose dimension is given by
the dimension of (5.1). It is clear that its approximation is very expensive.
Therefore, we are going to apply the POD method to reduce the dimension of
the dynamics and then solve the corresponding (reduced) discrete DPP which
is now feasible and defined below. Let us first define the reduced running cost
and the reduced final cost as

L`(x`, u, t) = L(Ψx`, u, t), g`(x`) = g(Ψx`).
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Next, we introduce the reduced optimal control problem for (5.4). For a given
control u, we denote by y`(s, u) the unique solution to (5.13) at time s. Then,
the reduced cost is given by

J `x`,t(u) =

∫ T

t

L`
(
y`(s, u), u(s), s

)
e−λ(s−t) ds+ g`(y`(T ))e−λ(T−t), (5.16)

and, the POD approximation for (5.4) reads as follows:

min
u∈U

J `x`,t(u) such that y`(t) solves (5.10). (5.17)

Finally, we define the reduced value function v`(x`, t) as

v`(x`, t) := inf
u∈U

J `x`,t(u) (5.18)

and the reduced HJB equation: ∂v`

∂s
(x`, s)− λv`(x`, s) + min

u∈U

{
L`(x`, u, s) +∇v`(x`, s) · f `(x`, u, s)

}
= 0,

v`(x`, T ) = g`(x`), (x`, s) ∈ R` × [t, T ).

(5.19)
Alternatively, one could further approximate the nonlinear term using DEIM
and replace the dynamics (5.10) with (5.13) in (5.17), providing an impressive
acceleration of the algorithm as shown in the section of numerical tests.

5.3 HJB-POD method on a tree structure

In this section we explain, step by step, how to use model reduction techniques
on a tree structure in order to obtain an efficient approximation of the value
function and to deal with complex problems such as PDEs. We also provide
an error estimate for the presented method.

Computation of the snapshots When applying POD for optimal control
problems there is a major bottleneck: the choice of the control inputs to
compute the snapshots. Thus, we store the tree T = ∪Nn=0T n for a chosen ∆t
and discrete control set U . This set turns out to be a very good candidate for
the snapshots matrix since it delivers all the possible trajectories we want to
consider. To summarize the snapshots set is Y = T = ∪Nn=0T n.

In the numerical tests, we will use ∆t = 0.1 and 2 controls to compute the
snapshots and it will be sufficient to catch the main features of the controlled
problem.

Computation of the basis functions The computation of the basis Ψ has
been described in Section 5.2. We are going to solve the following optimization
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problem:

min
ψ1,...,ψ`∈Rd

N∑
j=1

∑
uj⊂Uj

∣∣∣∣∣y(tj, uj)−
∑̀
i=1

〈y(tj, uj), ψi〉ψi

∣∣∣∣∣
2

such that 〈ψi, ψj〉 = δij,

(5.20)
where uj = (u1, . . . , uj) ⊂ U j = U × . . .× U and

y(tj, uj) = y0 + ∆t

j−1∑
k=0

f(yk, uk+1, tk).

In this context we have no restrictions on the choice of the number of basis
`, since we will solve the HJB equation on a tree structure. In former works
, e.g. [43, 5], the authors were restricted to choose ` ≈ 4 to have a feasible
reduction of the HJB equation. Here, the dimension of the state variable is
not a major issue. On the other hand, the pruning strategy will turn out to
be crucial for the feasibility of the problem.

It is well-known that the error in (5.7) is given by the sum of the singular
values neglected. We recall that we will choose ` such that E(`) ≈ 0.999, with
E(`) defined in (5.8).

Construction of the reduced tree Having computed the POD basis, we
build a new tree which might consider a different ∆t and/or a finer control
space with respect to the snapshots set. We will denote the projected tree as
T ` with its generic n−th level given by:

T n,` = {ζn−1,`
i + ∆tf `(ζn−1,`

i , uj, tn−1)}Mj=1 i = 1, . . . ,Mn−1,

where the reduction of the nonlinear term f ` can be done via POD or POD-
DEIM as in (5.12). The first level of the tree is clearly given by the projection
of the initial condition, i.e. T 0,` = ΨTx. Then, the procedure follows the
full dimensional case, but with the projected dynamics. We will show how
this approach speeds up the method keeping high accuracy. Even if we have
reduced the dimension of the problem, the cardinality of the tree T n,` depends
on the number of the discrete controls and the time step chosen as in the high-
dimensional case. It is clear that each resolution of the PDE will be faster,
but it is still necessary to apply a pruning rule which reads:

‖ζn,`i − ζ
n,`
j ‖ ≤ εT , for i 6= j and n = 0, . . . , N. (5.21)

As proposed in [3], the evaluation of (5.21) can be computed in a more
efficient way, considering the most variable components by the principal com-
ponent analysis. This technique is incorporated in our algorithm, since we
have already computed the POD basis and the most variable component turns
out to be the first one y`1. It will be sufficient to reorder the nodes according
to their first components to accelerate the pruning criteria.
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Approximation of the reduced value function The numerical reduced
value function V `(x`, t) will be computed on the tree nodes in space as

V `(x`, tn) = V n,`(x`), ∀x` ∈ T n,`. (5.22)

Then, the computation of the reduced value function follows directly from the
DPP. Defined the grid T n,` = {ζn,`j }M

n

j=1 for n = 0, . . . , N , we can write a time
discretization for (5.19) as follows:


V n,`(ζn,`i ) = min

u∈U
{e−λ∆tV n+1,`(ζn,`i + ∆tf `(ζn,`i , u, tn)) + ∆t L`(ζn,`i , u, tn)},

ζn,`i ∈ T n,` , n = N − 1, . . . , 0,

V N,`(ζN,`i ) = g`(ζN,`i ), ζN,`i ∈ T N,`.
(5.23)

Computation of the feedback control The computation of the feedback
control strongly relies on the fact we deal with a discrete control set U . Indeed,
when we compute the reduced value function, we store the control indices cor-
responding to the arg min in (5.23). The optimal trajectory is than obtained
by following the path of the tree with the controls chosen such that

un,`∗ := arg min
u∈U

{
e−λ∆tV n+1,`(ζn,`∗ + ∆tf `(ζn,`∗ , u, tn)) + ∆t L`(ζn,`∗ , u, tn)

}
,

(5.24)
ζn+1,`
∗ ∈ T n+1,` s.t. ζn,`∗ →u∗n ζn+1,`

∗ ,

for n = 0, . . . , N − 1, where the symbol →u stands for the connection of two
nodes by the dynamics corresponding to the control u.

Once the control un,`∗ has been computed, we plug it into the high dimen-
sional problem (5.1) and compute the optimal trajectory.

5.4 Error estimates for the HJB-POD method

on a TSA

In this section we derive an error estimate for the HJB-POD approximation
(5.23) on a tree structure. We recall the hypothesis considered in the previous
chapters. We assume that the functions f, L, g are bounded:

|f(x, u, s)| ≤Mf , |L(x, u, s)| ≤ML, |g(x)| ≤Mg,

∀x ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],
(5.25)

the functions f and L are Lipschitz-continuous with respect to the first variable

|f(x, u, s)− f(y, u, s)| ≤ Lf |x− y|, |L(x, u, s)− L(y, u, s)| ≤ LL|x− y|,
∀x, y ∈ Rd, u ∈ U ⊂ Rm, s ∈ [t, T ],

(5.26)
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and the cost g is also Lipschitz-continuous:

|g(x)− g(y)| ≤ Lg|x− y|, ∀x, y ∈ Rd. (5.27)

Furthermore, let us assume that the functions L and g are semiconcave

L(x+ z, u, t+ τ)− 2L(x, u, t) + L(x− z, u, t− τ) ≤ CL(|z|2 + τ 2),

g(x+ z)− 2g(x) + g(x− z) ≤ Cg|z|2, ∀x, z ∈ Rd, u ∈ U, t, τ ≥ 0,

(5.28)

and assume that f verifies the following inequality:

|f(x+ z, u, t+ τ)− 2f(x, u, t) + f(x− z, u, t− τ)| ≤ Cf (|z|2 + τ 2),

∀u ∈ U, ∀x, z ∈ Rd, ∀t, τ ≥ 0.
(5.29)

We also introduce the continuous-time extension of the DDP

V (x, s) = min
u∈U
{e−λ(tn+1−s)V (x+ (tn+1 − s)f(x, u, s), tn+1) + (tn+1 − s)L(x, u, s)},

V (x, T ) = g(x), x ∈ Rd, s ∈ [tn, tn+1),

(5.30)

and the POD version for the continuous-time extension (5.30) which reads:

V `(x`, s) = min
u∈U
{e−λ(tn+1−s)V `(x` + (tn+1 − s)f `(x`, u, s), tn+1)+

+ (tn+1 − s)L`(x`, u, s)},
V `(x`, T ) = g`(x`), x` ∈ R`, s ∈ [tn, tn+1).

(5.31)

Given the exact solution v(x, s) and its POD discrete approximation V `(x`, s),
we prove the following theorem which provides an error estimate for the pro-
posed method.

Theorem 5.4.1. Let us assume (5.25)− (5.29) hold true, then there exists a
constant C(T ) such that

sup
s∈[t,T ]

|v(x, s)− V `(x`, s)| ≤ C(T )

(∑
i≥`+1

σ2
i

)1/2

+ ∆t

 , (5.32)

where {σi} are the singular values of the snapshots matrix.

Proof. We observe that, by triangular inequality, the approximation error can
be decomposed in two parts:

|v(x, s)− V `(x`, s)| ≤ |v(x, s)− V (x, s)|+ |V (x, s)− V `(x`, s)|. (5.33)
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An error estimate for the first term has been already obtained in Section 4:

sup
(x,s)∈Rd×[0,T ]

|V (x, s)− v(x, s)| ≤ Ĉ(T )∆t. (5.34)

Let us focus on the second term of the right hand side of (5.33). Without loss
of generality, we consider λ = 0. For s = T , the estimate follows directly by
the assumptions on g. Considering x ∈ Rd and s ∈ [tn, tn+1), we can write

V (x, s)− V `(x`, s) ≤

V (xn+1, tn+1)− V `(x`n+1, tn+1) + (tn+1 − s)
(
L(x, un∗ , s)− L`(x`, un∗ , s)

)
≤

V (xn+1, tn+1)− V `(x`n+1, tn+1) + (tn+1 − s)LL|x−Ψx`|, (5.35)

where un∗ , xn+1 and x`n+1 are defined as

un∗ = arg min
u∈U

{
V `(x` + (tn+1 − s)f `(x`, u, s), tn+1) + (tn+1 − s)L`(x`, u, s)

}
,

xn+1 = x+ (tn+1 − s)f(x, un∗ , s), x`n+1 = x` + (tn+1 − s)f `(x`, un∗ , s).

We define the trajectory path and its POD approximation respectively as

xm := x+
m−1∑
k=n

αkf(xk, u
k
∗, t̄k), x`m := x` +

m−1∑
k=n

αkf
`(x`k, u

k
∗, t̄k),

where

αk =

{
tn+1 − s k = n

∆t k ≥ n+ 1
, t̄k =

{
s k = n

tk k ≥ n+ 1
,

uk∗ = arg min
u∈U

{
V `
(
x`k + αkf

`(x`k, u, t̄k), tk+1

)
+ αkL

`(x`k, u, t̄k)
}
, k ≥ n,

with xn = x and x`n = x`. Then, iterating (5.35) we obtain

V (x, s)− V `(x`, s) ≤ LL

N−1∑
m=n

αm|xm −Ψx`m|+ Lg|xN −Ψx`
N
|. (5.36)

Defining

ηm =

{
LLαm m ∈ {n, . . . N − 1}
Lg m = N

,

we can write

V (x, s)− V `(x`, s) ≤
N∑

m=n

ηm|xm −Ψx`m|.
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By triangular inequality and Cauchy-Schwarz inequality, we can write

V (x, s)− V `(x`, s) ≤
N∑

m=n

ηm
(
|xm − P`xm|+ |P`xm −Ψx`m|

)
≤

 N∑
m=n

η2
m

1/2

 N∑
m=n

|xm − P`xm|2
1/2

+

 N∑
m=n

|P`xm −Ψx`m|2
1/2

 ,

(5.37)
where P` = ΨTΨ is a projection operator. Since {xm}m ⊂ T , by the

definition of POD basis we get N∑
m=n

|xm − P`xm|2
1/2

≤

(∑
i≥`+1

σ2
i

)1/2

. (5.38)

Let us denote by Err(`) =
(∑

i≥`+1 σ
2
i

)1/2
the error related to the orthogonal

projection onto V `. Let us focus now on the generic term |P`xm −Ψx`m|:

|P`xm −Ψx`m| ≤
m−1∑
k=n

αk‖P`‖2|f(xk, u
k
∗, t̄k)− f(Ψx`k, u

k
∗, t̄k)| ≤

Lf‖P`‖2

m−1∑
k=n

αk|xk −Ψx`k| ≤ Lf‖P`‖2

m−1∑
k=n

αk
(
|xk − P`xk|+ |P`xk −Ψx`k|

)
.

By the discrete Grönwall’s lemma and noticing that ‖P`‖2 = 1 , we get

|P`xm −Ψx`m| ≤ Lf

m−1∑
k=n

αk|xk − P`xk|eLf (tm−s),

and since αk ≤ ∆t ∀k, we obtain N∑
m=n

|P`xm −Ψx`m|2
1/2

≤
√
T − sLfeLf (T−s)Err(`). (5.39)

Inserting (5.38) and (5.39) in (5.37) we get

V (x, s)− V `(x`, s) ≤ Err(`)

 N∑
m=n

η2
m

1/2 (√
TLfe

LfT + 1
)
.

Finally, noticing that
N∑

m=n

η2
m ≤ (TLL)2 + L2

g,
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we obtain
V (x, s)− V `(x`, s) ≤ C1(T )Err(`),

where
C1(T ) =

(
(TLL)2 + L2

g

)1/2
(√

TLfe
LfT + 1

)
.

Analogously, it is possible to obtain the same estimate for V `(x`, s)− V (x, s)

and, defining C(T ) = max{Ĉ(T ), C1(T )}, we get the desired result.

Remark 5.4.1. The error estimate presented in Theorem 5.4.1 depends strongly
on the initial condition, since the POD reduction is based on the tree generated
by the starting point x. We can extend the error estimate to other initial con-
ditions if we enlarge the snapshots set with these new data and their evolutions
up to the final time T .

5.5 Numerical Tests

In this section we apply our proposed algorithm to show the effectiveness of the
method with three test cases. In the first test we consider the one dimensional
heat equation and we will compute the error and the order according to the
solution of the Riccati equation. We will also consider the techniques for
the feedback reconstruction introduced in Chapter 3.3. The second test deals
with a parabolic PDE with a polynomial nonlinear term, which is usually not
a trivial task when applying open-loop control tools. Finally, we will consider
the bilinear control of the viscous Burgers’ equation.

For the semidiscretization we use a Finite Difference scheme and we inte-
grate in time using an implicit Euler scheme. In presence of non-linearities,
we will apply the Newton’s method with tolerance equal to 10−4. We will
denote by Un the discretized set of U with n equi-distributed controls.

5.5.1 Test 1: Heat equation

In this first example we consider the one dimensional heat equation with
homogeneous Dirichlet boundary condition

∂ty(x, t) = σyxx(x, t) + y0(x)u(t) (x, t) ∈ Ω× [0, T ],

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

y(x, 0) = y0(x) x ∈ Ω,

(5.40)

where the control u(t) is taken in the admissible set U = {u : [0, T ] →
[−1, 0]}, σ = 0.15, T = 1 and Ω = [0, 1]. This example has been considered
also in Section 4.3.2 since we are able to compute the error and the order of
the method comparing the numerical solution with the solution given by the
Riccati equation. First, we create a rough tree with two discrete controls and
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∆t = 0.1. We compute the SVD of the snapshots matrix generated by the
tree and we consider ` = 2 basis, getting a projection error Err = 6.9 · 10−4

and a ratio E(`) = 0.999998. We note that in this case two POD basis get
enough information for a complete description of the system. This is a typical
situation when dealing with parabolic problems. Then, given the reduced
dynamics, we compute the reduced tree structure and value function with 11
discrete controls and we compare the numerical value function computed by
POD-TSA and by the Riccati equation according to the following errors

Err2 =

∑N
n=0 |V (yn∗ , tn)− v(ynR, tn)|2∑N

n=0 |v(ynR, tn)|2
, Err∞ =

max
n=0,...,N

|V (yn∗ , tn)− v(ynR, tn)|

max
n=0,...,N

|v(ynR, tn)|
,

(5.41)
where {yn∗ }n is the optimal trajectory computed via POD-TSA, while

{ynR}n is the solution of the Riccati equation. The results are presented in
Table 5.1. Moreover, in Table 5.2 we recall the values obtained for the full
dimensional problem. The coupling of the TSA with POD leads to better
results in less time. In particular, we see that for ∆t = 0.0125 we obtain a
speed-up of a factor 7 and a reduction of order 4 for the cardinality of tree.
In Figure 5.1 we can observe the convergence of the cost functional and the
approximation of the optimal control.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 134 4.3e-10 0.1s 0.244 0.220
0.05 825 1.0e-19 0.56s 0.102 9.4e-2 1.25 1.22
0.025 11524 2.1e-39 8.74s 3.1e-2 3.0e-2 1.73 1.67
0.0125 194426 7.8e-80 151s 1.0e-2 8.2e-3 1.60 1.85

Table 5.1: Test 1: Error analysis and order of convergence for TSA-POD
method with εT = ∆t2, 11 discrete controls and 2 POD basis.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 134 4.7e-09 0.14s 0.279 0.241
0.05 863 1.2e-18 0.65s 0.144 0.118 0.95 1.03
0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 1.40 1.17
0.0125 849717 3.8e-78 1.1e3s 1.6e-2 1.6e-2 1.77 1.42

Table 5.2: Test 1: Error analysis and order of convergence for forward Euler
scheme of the TSA with εT = ∆t2 and 11 discrete controls.

Feedback reconstruction In this paragraph we are going to apply the
feedback reconstruction techniques introduced in Chapter 3.3. We reconsider
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Figure 5.1: Test 1: Cost functional (top) and optimal control (bottom) with
11 discrete controls.
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2 POD basis and we solve the optimal control problem via POD-TSA with 3
discrete controls. The results for this case are presented in Table 5.3.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 122 4.6e-04 0.02s 0.376 0.283
0.05 689 4.4e-08 0.19s 0.178 0.136 1.08 1.06
0.025 9536 1.7e-16 2.3s 0.107 6.9e-2 0.73 0.98
0.0125 155293 2.3e-34 37s 0.0655 0.0394 0.71 0.80

Table 5.3: Test 1: Error analysis and order of convergence for TSA-POD
method with εT = ∆t2, 3 discrete controls and 2 POD basis.

Then, we pass to the post-processing procedure: we consider Algorithm 4,
computing the optimal trajectory/control with a finer control set. We consider

a control set Ũ with 100 discrete controls. In Table 5.4 we present the errors
and the orders according to the definition (5.41).

∆t CPU Err2 Err∞ Order2 Order∞

0.1 0.03s 0.315 0.250
0.05 0.07s 9.6e-2 0.100 1.71 1.32
0.025 0.74s 2.5e-2 3.1e-2 1.93 1.68
0.0125 25s 1.4e-2 9.0e-3 0.89 1.81

Table 5.4: Test 1: Error analysis and order of convergence for TSA-POD
method with εT = ∆t2, 2 POD basis and reconstruction with 100 controls.

Since we have constructed the tree with three discrete controls, we can
apply also the quadratic feedback reconstruction presented in Algorithm 5.
The results for this case are presented in Table 5.5. In Figure 5.2 we show
the cost functional and the optimal control with all these techniques. In
particular, it is possible to see from the plot of the optimal control that the
quadratic feedback reconstruction is more stable, while the reconstruction by
comparison presents a scattering behaviour.

∆t CPU Err2 Err∞ Order2 Order∞

0.1 0.02s 0.251 0.229
0.05 0.04s 0.109 9.5e-2 1.21 1.27
0.025 0.63s 3.3e-2 3.0e-2 1.71 1.65
0.0125 24s 1.1e-2 5.9e-3 1.58 2.36

Table 5.5: Test 1: Error analysis and order of convergence for TSA-POD
method with εT = ∆t2, 2 POD basis and quadratic reconstruction.
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Figure 5.2: Test 1: Cost functional (top) and optimal control (bottom) with
different techniques for the feedback reconstruction.
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5.5.2 Test 2: Nonlinear reaction diffusion equation

In this example we consider the following bidimensional PDE with polynomial
nonlinearity and homogeneous Neumann boundary conditions


∂ty(x, t) = σ∆y(x, t) + µ (y2(x, t)− y3(x, t)) + y0(x)u(t) (x, t) ∈ Ω× [0, T ],

∂ny(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

y(x, 0) = y0(x) x ∈ Ω,

(5.42)
where the control u(t) is taken in the admissible set U = {u : [0, T ] →
[−2, 0]} and Ω = [0, 1]2. In (5.42) we consider: T = 1, σ = 0.1, µ = 5 and
y0(x1, x2) = sin(πx1)sin(πx2). We discretize the space domain Ω in 31 points
in each direction, obtaining a discrete domain with d = 961 points. As shown
in Figure 5.3, the solution of the uncontrolled equation (5.42) (i.e. u(t) ≡ 0)
converges asymptotically to the stable equilibrium y1(x) = 1.

Figure 5.3: Test 2: Uncontrolled solution for equation (5.42) for time t =
{0, 0.5, 1} (from top-left to bottom).

Our aim is to steer the solution to the unstable equilibrium y2(x) = 0. For
this reason, we introduce the following cost functional

Jy0,t(u) =

∫ T

t

(∫
Ω

|y(x, s)|2dx+
1

100
|u(s)|2

)
ds+

∫
Ω

|y(x, T )|2dx. (5.43)

Case 1: Full TSA We first consider the results using the TSA without
model order reduction. In Figure 5.4 we report the optimal trajectory obtained
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using the full tree structure algorithm with 2 controls. As one can see, we steer

Figure 5.4: Test 2: Controlled solution with TSA for equation (5.42) with full
tree for time t = {0, 0.5, 1} (from top-left to bottom) with U2.

the solution to the unstable equilibrium using U2 = {−2, 0} as discrete control
set.

In the left panel of Figure 5.5, we show the control policy obtained with
2, 3 and 4 discrete controls. In the right panel we show the behaviour of the
cost functional, and it is easy to check that the optimal trajectories are very
similar. An analysis of the CPU time is provided in Table 5.6 and discussed
below.

Case 2: TSA with POD The computation of the full TSA is already
expensive with only 3 controls. For this reason, we replace the dynamics with
its reduced order modeling. Then, we set the number of POD basis ` = 6
such that E(`) = 0.999. Similarly, we consider 6 DEIM basis for the nonlinear
term. In what follows, whenever we will talk about POD, we will refer to
POD-DEIM approach.

The snapshots matrix Y is computed with a full TSA using the discrete
control space U2 and ∆t = 0.1. In the online stage we considered again
∆t = 0.1, a pruning criteria with εT = ∆t2 and different discrete controls.

In the top-left panel of Figure 5.6 we show the optimal policy with a num-
ber of controls varying from two up to five. As one can see comparing the
left panel of Figure 5.5 and the top-left panel of Figure 5.6, there is no differ-
ence in terms of optimal control between the high dimensional case discretized
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Figure 5.5: Test 2: Control policy (left) and cost functional (right) for U2, U3

and U4.

with Finite Difference and the low dimensional case obtained via POD. We re-
mind that the optimal trajectory is obtained plugging the suboptimal control
u`∗ into the high dimensional model. Finally, in the bottom panel of Figure
5.6 we show a zoom of the cost functional Jy0,0 and it is possible to see the
improvement obtained using more controls.

The CPU time, expressed in seconds, is shown in Table 5.6. The online
phase of the TSA-POD is always faster than the full TSA. We tried to compute
the full TSA with 5 controls and we stopped the computation after 4 days.
If we also consider the amount of time to compute the snapshots, the offline
phase, using the TSA with 2 controls and then running online, e.g. the TSA-
POD with 3 controls, we get a speed up of factor 10 with respect to the full
problem, having the same approximation.

U2 U3 U4 U5

TSA 5.8312s 241.5773s 3845.77s > 4 days
TSA-POD 0.5157s 19.7969s 432.0990s 1.0871e+ 04s

Table 5.6: Test 2: CPU time of the TSA and the TSA-POD with a different
number of controls and pruning rule εT = 0.01.

Remark 5.5.1. The offline stage of the proposed method is clearly expensive
due to the cardinality of the tree. We have also tried to compute snapshots for
some given control input setting, e.g. u(t) ≡ u, with u ∈ {−2,−1, 0}. In this
setting we are able to achieve the same results shown in the section, improving
the computational performances of the method in the offline phase.

Remark 5.5.2. Using the same set of snapshots, we can perform the online
simulation with ∆t = 0.05 and U2. The results for the optimal control and
cost functional can be found in Figure 5.7.

83



0 0.2 0.4 0.6 0.8 1
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Control Policy with POD-DEIM

2 Controls

3 Controls

4 Controls

5 Controls

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Cost Functional with POD-DEIM

2 Controls

3 Controls

4 Controls

5 Controls

2 3 4 5

0.0845

0.085

0.0855

0.086

0.0865

0.087

0.0875

0.088

Figure 5.6: Test 2: Optimal policy (top-left), cost functional (top-right) and
Jy0,0 (bottom) for Un with n = {2, 3, 4, 5}.
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Figure 5.7: Test 2: Optimal policy (left) and cost functional (right) with
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5.5.3 Test 3: Viscous Burgers’ equation

In the last example we consider the well-known viscous Burgers’ equation with
homogeneous Dirichlet boundary conditions:
∂ty(x, t) = σ∆y(x, t) + y(x, t) · ∇y(x, t) + y(x, t)u(t) (x, t) ∈ Ω× [0, T ],

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

y(x, 0) = y0(x) x ∈ Ω,

(5.44)
where the control u(t) is taken in the admissible set U = {u : [0, T ]→ [−2, 0]}
and Ω = [0, 1]2. In (5.44) we consider: T = 1, σ = 0.01 and y0(x1, x2) =
sin(πx1)sin(πx2). We discretize the space domain in 41 points in each direc-
tion, obtaining a problem of dimension d = 1681 points. In Figure 5.8 we show
the solution of the uncontrolled equation (5.44) for different time instances.
Our aim is to steer the solution to the steady state ỹ(x) = 0, using the cost
functional (5.43), as in Test 2, using a bilinear control, e.g. controlling the
system through a reaction term.

Figure 5.8: Test 3: Uncontrolled solution for equation (5.44) for time instances
t = {0, 0.5, 1} (from top-left to bottom).

Case 1: Full TSA Let us first consider the results of the full TSA. In
Figure 5.9 we show the results of the controlled problem. As we can see, the
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Figure 5.9: Test 3: Controlled solution with 3 controls for equation (5.44)
with full tree for time t = {0, 0.5, 1} (from top-left to bottom).

solution gets close to ỹ(x) as expected. We also note that for this example
the viscosity term σ is rather low, making the problem hard to be controlled.

In the left panel of Figure 5.10, we show the optimal control computed
to obtain the controlled solution. When the control set is only given by 2
controls, the algorithm uses the control u∗(t) = −2 for 0 ≤ t ≤ 0.7 and
u(t) = 0 for 0.7 < t ≤ 1, whereas with 3 controls we use the control −2 for
0 ≤ t ≤ 0.5 and −1 for 0.5 < t ≤ 1. We can see that passing from 2 to 3
controls, we obtain a slightly better result in terms of cost functional (see the
right panel of Figure 5.10).

Finally, the cardinality of the full tree is reported in Table 5.7. We can
observe that the tree is considerably pruned compared to the previous exam-
ple. This happens when we deal with a bilinear control for both Test 2 and
Test 3.

U2 U3 U4 U5

TSA with εT = 0 2047 88573
TSA with εT = 0.01 1681 17680

TSA-POD with εT = 0.01 1717 17627 48372 83201

Table 5.7: Test 3: Cardinality of the tree for the full TSA and for the pruned
TSA and pruned TSA-POD with εT = 0.01, varying the control sets.
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Figure 5.10: Test 3: Optimal policy (left) and cost functional for U2 and U3

(right).

Case 2: TSA with POD To accelerate and use a finer control set, we
use model order reduction. The snapshots are computed with ∆t = 0.1, U2

and a pruning criteria with εT = ∆t2. For this problem, we only project the
dynamics with POD since the nonlinear term can be written as a tensor and
can be projected offline. We took ` = 8 POD basis to have E(`) = 0.999.
Thanks to the reduced problem, we are able to solve the problem with more
controls, keeping ∆t = 0.1. In the top-left panel of Figure 5.11 we show the
behaviour of the optimal policy. We note that the cases with 2 and 3 controls
are equivalent to the full case (compare with Figure 5.10). The computed
controls show a chattering behaviour which is then reflected in the plot of
Jy0,0 in the bottom panel of Figure 5.11, considering the control space Un for
n = {2, 3, . . . , 11}. In the top right panel, we show Jy0,t for t ∈ [0, 1]. We can
see a rather similar behaviour when increasing the number of controls.

The CPU time is reported in the bottom panel of Figure 5.11 and it is
possible to capture visually the big advantage of using model order reduction.

With the same set of snapshots, we can also decrease the temporal step
size, e.g. ∆t = 0.05, and compute the online stage with Un with n = 2, 3.
We see in Figure 5.12 that the behaviour of the control policy is similar when
dealing with 2 controls, whereas the switch from u = −2 to u = −1 happens
for t = 0.45.

We can also observe that the cost functional is slightly lower when dealing
with ∆t = 0.05 as summarized in Table 5.8.

∆t U2 U3

0.1 0.1106 0.1065
0.05 0.0995 0.0956

Table 5.8: Test 3: Cost functional J `y0,0
with ∆t = {0.1, 0.05}, U2 and U3.

The cardinality of the pruned TSA-POD approach is reported in the last
line of Table 5.7, whereas the first line is still valid for the full TSA-POD
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method. As expected, even when we apply model reduction, we can observe
an impressive pruning if we compare with the unpruned method.
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Chapter 6

Conclusions

We have proposed a novel method to approximate time dependent HJB equa-
tions, related to optimal control problems, via DP scheme on a tree structure.
The proposed algorithm creates a tree structure according to all the possible
directions of the controlled dynamical system for a finite set of controls. This
procedure has several advantages with respect to the DP algorithm based on
the classical time and space discretization. The first advantage is that we
do not need to choose a space grid and a local space interpolation. Further-
more, TSA does not require a priori fictitious numerical domain Ω to set the
numerical scheme and, consequently, there is no need to impose boundary
conditions. Since the cardinality of the tree increases as the number of the
control increases and the time step size decreases, we introduced a pruning
criteria to reduce the complexity and to save in memory allocations and CPU
time. Thus, the complexity of the problem is drastically reduced, cutting all
the branches laying in a small neighbourhood. After the application of the
pruning criteria, the efficiency of TSA is greatly improved in terms of CPU
time. The whole technique can be coupled with a post-processing procedure
allowing for the synthesis of the feedback control via an interpolation step on
the data structure. This approach allows to apply the DP method to high-
dimensional problems as has been shown in the numerical section for both
ODEs and PDEs. We have also considered the extension of the algorithm to
high-order schemes and by numerical simulation we noticed that we achieve
the same order of convergence of the underlying scheme.

Furthermore, we have proved error estimates for the presented algorithm.
In particular, we have shown that with a tree structure we can achieve the
same order of convergence of the numerical method used in the time dis-
cretization of the dynamics. Our error estimate improves previous existing
results on the convergence of the semi-discrete value function. Indeed, in [27]
under the assumptions of Lipschitz-continuity of the data, the authors proved
a convergence of the scheme with order 1

2
. In [51] we extended the previous

result proving a first order convergence under the further assumption of semi-
concavity for the data. We have also shown that if the pruning technique has
a reasonable tolerance, e.g. one order higher of the order of convergence of
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the numerical method of the ODE, we can achieve the same order of the TSA
method without pruning.

Consequently, we have presented a new method that couples model order
reduction with the TSA. The tree structure needs to solve many PDEs for
a given control input and, therefore, model order reduction helps to speed
up its construction and also to work with a finer discretization of the control
set. We have also proved an error estimate to guarantee the convergence
of the method which depends, as expected, on the projection error of the
POD method and on the temporal discretization of the differential equations
considered. We showed through numerical tests the efficiency of the method
and we would like to emphasize that the tree structure algorithm combined
with model order reduction allows to solve numerical optimal control problems
for nonlinear PDEs.

Future directions

Due to its flexibility, the TSA can be extended to stochastic optimal control
problems, exploiting the semi-Lagrangian scheme introduced by Camilli and
Falcone ([13]). Moreover, we plan to analyze the extension of the TSA algo-
rithm to other classical optimal control problems, such as state constrained,
the infinite time horizon problems and the minimum time problem. A further
research direction will be the insurance of robustness with respect to pertur-
bations, since the TSA finds the optimal trajectory only on the tree structure.
Finally, we showed that we can get a synthesis of the feedback control consid-
ering a post-processing step. In this thesis we considered the low-dimensional
case, but we would like to explore the high-dimensional case in the next fu-
ture, considering for instance the interpolation on scattered data based on the
Radial Basis function (see [58, 52] for a detailed description of this method).
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