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Chapter 1 - Introduction

1.1 Cardiovascular hemodynamics: background and
motivations

The understanding of the most basic principles of the cardiovascular system
has been a hard conquest for the scientific community, achieved as the outcome
of extensive medical studies over many centuries.

In ancient times the greatest obstacle for a correct knowledge of the heart
and its system was represented by Aristotle and his belief that the role of this
organ was of being the source of body heat, then transferred by blood vessels
to the whole organism.

We have to wait the birth and proliferation of Christianity in order to see
considerable advances; these have been possible thanks to the contribution
of the Greek physician Galen, lived in the first centuries. He was the first
to observe the presence of blood in vessels, instead of air as according to
the conviction of his time, and to recognize the existence of two circulatory
systems, the venous and the arterial one. Even though his work contained
relevant scientific errors, such as his conjecture that blood was generated in
the liver and its circulation began from the gastric and intestinal vessels, his
theories dominated and influenced western medical science for almost 1500
years.

Only much later, in the 17th century, Sir William Harvey inaugurated mod-
ern cardiovascular research with his treatise entitled De Motu Cardis. Basing
on his many years of experiments and observations as a scientist and physician,
he finally established that blood circulates while the heart acting as a pump,
providing the first accurate description of the human cardiovascular system.
All those spiritualistic functions conferred to the heart until that time had been
finally wiped out in favour of the awareness of its correct role, which consists
of supplying oxygenated blood to the whole body and then transporting the
de-oxygenated blood to the respiratory system for oxygen replenishment. It
is a muscular organ composed of two separate volumetric pumps, the left and
the right, each one comprising an atrium and a ventricle and two valves, the
aortic and the mitral, which ensure the correct flow direction, as shown in
figure 1.1. The atria receive blood from the veins, while the ventricles pump
it out of the heart and through the circulatory system. More precisely the
right atrium is responsible for collecting de–oxygenated blood from the vena
cava, and then passes it via the tricuspid valves; the blood goes into the right
ventricle for pumping into the lungs through the pulmonary valve and via the
pulmonary artery for oxygenation; the oxygenated blood returns via the pul-
monary vein into the left atrium and then is squeezed into the left ventricle
through the mitral valve, which is fastened to its walls by chordae tendineae
and papillary muscles; the left ventricle is the strongest chamber of the heart
as it provides the oxygenated blood to the rest of the human body. Therefore,
due to the high pressure it has to withstand, it represents the part of the
heart most exposed to damages, which in case of severe impairing may lead
to cardiac pathologies, such as myocardial infarction, heart failure, valvular
disease, cardiomyopathy.

According to the Heart Disease and Stroke Statistics Update presented by
the American Heart Association (Benjamin, 2017) by 2030 almost 44% of the
US adult population is projected to have some form of cardiovascular disease.
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Figure 1.1: Schematic of the structure of the human heart, with its four cham-
bers and valves. On the right a focus on the left ventricle is given.

Moreover these diseases, accounting for an estimated 17,3 of 54 million total
deaths in 2013, corresponding to approximately 31, 5%, are still considered
the leading cause of death in developed countries.

Despite the effort in improving diagnostic procedures and intervention
measures to reduce this rate of mortality, the predicted scenario does not
present enhanced outcomes in the forthcoming years. In fact the occurrence of
cardiovascular diseases has been proved to be strongly correlated with several
risk factors, such as age, overweight and obesity, physical inactivity, diabetes
smoking and tobacco use, whose incidence rate is going to show an increasing
trend in the imminent future, as depicted in figure 1.2. Furthermore the high
costs of such treatments, which in 2013 made cardiovascular diseases to have
the greatest burden on total health expenditure around 14%, are projected to
triple reaching almost an alarming trillion dollars by 2030.

Figure 1.2: Trends of the main risk factors in cardiovascular diseases over the
next decades (http://www.census.gov/population/age/ (Mittal et al., 2016)).
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Chapter 1 - Introduction

This unfavourable prospected tendency needs to be reverted, starting from
the research of new investigation tools and the development of new technologies
able to improve treatment outcomes without concurrently increasing the cost
of medical diagnosis and therapies. A significant change is being produced by
the recent continuous progress of computational engineering: on one hand the
medical community relies heavily on digital imaging techniques and computer
aided procedures, on the other hand the unprecedented availability of fast and
massively parallel computers allows for multi–physics computational models to
be run on realistic configurations that are of direct interest for clinical applica-
tion. The way it is going through is to develop a computational cardiovascular
hemodynamics, meaning to realize a numerical model which could replicate
cardiac pathologies and provide insights in order to alter their progress. There
are several reasons to resort to computational modeling to study hemodynam-
ics. First of all novel technological solutions, such as prostheses or surgical
procedures, can be tested by simulations, thus avoiding the extensive use of
hardware models or in vivo experiments on animals. Then computer simula-
tions provide virtually unlimited access to hemodynamics data and dynamical
features of the system that would be exceedingly difficult or even impossible
to obtain otherwise. Finally from the huge time– and space–resolved database
produced by a numerical simulation it is possible to synthetize all the signals
of medical imaging (MRI, CT–scan, ultrasound), thus allowing to refine the
diagnostic power of medical tools and to train medical doctors by virtual scans.
With regard to computational modeling, it is useful to separate cardiovascu-
lar hemodynamics into cardiac hemodynamics and vascular hemodynamics.
While the former relates to blood flow in the left and right ventricles and atria
of the heart, the latter relates to the blood flow in the vessels which trans-
ports blood to and from these chambers to the rest of the body. It has to be
highlighted that while the field of computational modeling of vascular hemody-
namics has been extensively investigated by several studies and translated to
clinical applications (Taylor et al., 2013), cardiac hemodynamics still presents
several challenging problems for its computational modeling that need to be
addressed (Mittal et al., 2016). Motivated by the above considerations, in this
thesis we deal with computational modeling of cardiac hemodynamics. More
precisely we decide to focus on the whole system of the left ventricle since, as
mentioned above, it plays the most important and delicate role in all the car-
diovascular system. The main challenges are related to the large scale motion
and complex deformation of the entire structure, made by the valves and the
ventricle itself, and also to the dynamics of the blood flow inside it owing to
the interaction with valves. The main goal to address in order to construct a
reliable model, which could be even taken advantage of by the medical com-
munity, is to provide a synergistic functioning of all elements, thus reflecting
the real behaviour of the human heart.

1.2 State of the art and challenges in computational
cardiac hemodynamics

The earliest computational modeling of cardiac hemodynamics can be traced
back to Peskin in the first ’70; he developed a first two–dimensional model for
the left ventricle using the immersed boundary method (IBM) introduced in
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1.2 State of the art and challenges in computational cardiac hemodynamics

Peskin (1972). In this method, the flow was solved on a fixed Cartesian grid
and elastic fibers immersed in the fluid grid were used to simulate the car-
diac wall; these fibers moved with the local flow velocities and their effect was
transmitted through a smooth delta–function to the fluid. However this func-
tion had the limitation of reducing the accuracy in resolving hemodynamics in
proximity of the walls of the ventricle. Later Peskin and McQueen extended
such a model in order to study three–dimensional cardiac flow inside the left
ventricle (Peskin, 1977; Peskin & McQueen, 1989).

From then on the challenging field of cardiac hemodynamics has been inves-
tigated following essentially two different approaches in the modeling process:
a patient–specific approach, based on medical imaging data, and a multi–
physics approach, based on direct numerical simulations.

The former method intends to extract a realistic geometry of the heart over
the entire cardiac cycle from high–resolution medical images (MRI, CT–scan,
ECHO), then go back to the dynamics of the ventricle and finally run the fluid
dynamics simulations. Earlier computational models based on this approach
were quite simplified, supplying only the realistic shape of the ventricle without
many surface details, and not including physical valves but simulating their
presence prescribing ad–hoc boundary conditions (Saber et al., 2003; Schenkel
et al., 2009). Later models were provided with better segmentation procedures,
which enabled to improve previous deficiencies (Mihalef et al., 2011). Despite
this patient–specific approach appears to be a promising research field, whose
great potentiality lies on the visual realism given by imaging techniques, it is
still far from becoming a relevant numerical tool for the medical community:
first of all because each simulated case is specific of a single person and cannot
be generalized so easily; moreover until now this procedure has revealed itself
to be very time consuming, thus not in compliance with required diagnostic
timing.

The alternative approach does not start from medical imaging data but
rather develops from scratch a geometry for the heart, even if more simplified
than the real one, and use it as simulation set–up for modeling cardiac hemo-
dynamics. In the last decade several research groups tackled this approach,
but with the limitation of focusing each one separately on a specific component
of the ventricle and making simplifying assumptions on boundary conditions
related to other aspects. In Domenichini et al. (2005) they employed a sim-
plified shape for the geometry of the left ventricle, like a prolate spheroid,
with moving walls to study the dynamics of intraventricular flow during filling
phase. The motion of the ventricle was imposed and forced to coincide with
the wave–form profile of the incoming fluid. The formation and evolution of
a vortex ring was investigated by varying governing parameters, and for all
values a well–defined structure of vorticity was found out. The same research
group also applied such a model to understand the effect of some ventricular
pathologies like dilated cardiomyopathy (Baccani et al., 2002) and myocar-
dial infarction (Domenichini & Pedrizzetti, 2011) on the vortex formation and
direction during filling phase. Some other works (Georgiadis & Pasipoular-
ides, 1992; Nakamura et al., 2003) paid specific attention to the flow structure
inside the left ventricle. Later also Seo and Mittal performed direct numer-
ical simulations to analyze the effect of intraventricular flow patterns on the
pumping efficiency and the blood mixing of the left ventricle (Seo & Mittal,
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2013). Their simulations indicated that intraventricular blood flow patterns
have a physiologically insignificant effect on the pumping efficiency. However,
diastolic flow patterns were recognized to influence the blood mixing as well
as the residence time of blood cells in the ventricle.

Despite the useful insights all these works provided in studying cardiac
flow, some relevant features like the simulation of the complete cardiac cycle
(inflow/outflow) and the inclusion of valves inside the ventricle modeling were
still missing. Furthermore a crucial point that needed to be addressed was
the construction of a standing alone model, since in the human left ventricle
the fluid (blood) and the structure (ventricle and valves) coexist and strongly
interact among themselves. Considering only part of the entire system still
led to oversimplified models which produced unsatisfactory results and, even
worse, contributed to make the medical community sceptical with respect to
the effectiveness of computational engineering and its applications. Including
Fluid–Structure Interaction (FSI) procedure started to become a challenging
but desirable result to achieve.

Regarding the modeling of left ventricle valves, but not yet accounting for
the effect of the ventricle on them, two contributions have to be mentioned.
For the aortic valve, direct numerical simulations of the pulsatile flow through
a bileaflet mechanical valve were first carried out by de Tullio et al. (2009),
under physiological conditions and in a realistic aortic root geometry. The
motion of the valve leaflets was computed from the forces exerted by the fluid
on the structure, considering both as a single dynamical system. He made use
of the IBM, combined with a FSI algorithm, which turned out to be a reliable
and accurate technique for such complex flows. On the other hand, almost
concurrently, the first three–dimensional FSI model of the mitral valve includ-
ing leaflets and chordae tendineae was presented by Kunzelman et al. (2007).
Physiological valve was first assessed, then the leaflet and chordal strain and
the papillary muscles force were determined. The obtained numerical results
well agreed with a wide range of available in vivo and in vitro data.

The merit of integrating valves in the dynamics of intraventricular flow has
to be attributed to Seo et al. (2014): they employed computational hemody-
namics simulations to understand the effect of mitral valve leaflets on diastolic
flow including the left ventricle geometry. In a perspective of modeling the
synergistic functioning of the whole left ventricle, the choice of focusing on the
mitral valve instead of the aortic one was dictated by the fact that, while the
latter does not affect intraventricular flow as it operates passively, the former
heavily influences it. Their simulations were performed with both a diode
type valve model and a physiological one in order to asses the effect of mitral
valve leaflets on the flow inside the ventricle. Their study suggested that a
normal physiological mitral valve enforces the formation of a circulatory flow
pattern in the ventricle; in addition its leaflets increase the strength of the
apical flow, thus enhancing apical washout and mixing of ventricular blood.
However, it has to be underlined that the leaflets motion was prescribed, thus
the synergistic interaction between flow and structure dynamics was imposed
rather than captured by the solution.

In this thesis we aim to go one step further and try to overcome such
limitations. We propose to perform direct numerical simulations, with the
least possible simplifying assumptions, provided with a full FSI algorithm to
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1.3 Governing equations and numerical details

couple flowing blood, left ventricle and mitral valve in such a way the dynamics
of the whole system is univocally computed: the valve and ventricle dynamics
are determined by their interaction with the flow which, in turn, depends on
the motion of the structure. The numerical model, validated with an ad–hoc
constructed experimental set–up (figure 1.3), seems to be able to replicate with
high–fidelity the physical processes of such a complex system, thus resulting
efficient and reliable.

Figure 1.3: Two different approaches in facing the left ventricle modeling:
(left) numerical simulations and (right) experimental measurements.

1.3 Governing equations and numerical details

The backbone of the computational model employed for numerical simulations
in this thesis is a direct numerical simulation solver for the fluid dynamics.
The motion of the blood, considered as an incompressible and viscous fluid,
is described by the incompressible Navier–Stokes equations, which in non di-
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Chapter 1 - Introduction

mensional form read as follows

∂u
∂t

+ u · ∇u = −∇p+∇ · τττ + f ,

∇ · u = 0,
(1.1)

where u is the velocity; p is the pressure; Re = UL/ν is the Reynolds number
defined from a characteristic length scale L, a velocity scale U and f is a
specific body force term, linked to the immersed boundary technique, used to
impose the correct boundary condition at the interface. Along the thesis the
blood is assumed to be Newtonian meaning that the viscous term of equation
(1.1) reads ∇ · τττ = ∇2u/Re, as it is known that its non–Newtonian nature
strongly occurs only in vessels of diameter smaller than 15− 20 red blood cell
diameters (∼ 80−100 µm), (Siginer et al., 1999), which is far from the ventricle
case. However, since the non–Newtonian feature is implemented in the code,
in chapter 3 it will be investigated and the numerical results obtained will be
compared with the ones of the Newtonian model.

The spatial discretization of the Navier–Stokes equations is performed with
an energy conserving second–order centered finite–difference scheme with ve-
locities on a staggered grid; explicit Adams–Bashforth scheme is used to dis-
cretize the non–linear terms, while an implicit Crank–Nicholson scheme is
used for the viscous terms. The resulting system leads to a large sparse ma-
trix whose inversion is avoided by an approximate factorization and the sparse
matrix is then transformed into three tridiagonal matrices (one for each direc-
tion) and solved using Thomas’ algorithm. Time integration is performed via
a self starting fractional step third–order Runge–Kutta (RK3) scheme. These
schemes have already been tested and described extensively previously for a
variety of flow related problems; thus we refer to Verzicco & Orlandi (1996)
and van der Poel et al. (2015) for a detailed dissertation.

The integration of the Navier–Stokes equations on a complex geometry
time–dependent domain with moving and deforming boundaries would be a
formidable computational task without the help of the IBM. The great ad-
vantage of this approach is that it avoids body–fitted meshes, which on com-
plex and deforming geometries would require difficult and computationally
demanding procedures. Any boundary condition can be virtually applied at
the immersed surface, still retaining the ease and efficiency of computational
fluid dynamics in simple and structured meshes. The fundamentals of the
IBM employed in this thesis can be found in Fadlun et al. (2000) and Vanella
& Balaras (2009).

The structure configuration is solved by imposing the local instantaneous
equilibrium between the inertia forces induced by the accelerations, the in-
ternal forces, the body forces and the external hydrodynamic loads, using a
spring–mass model based on an interaction potential approach, firstly intro-
duced in Fedosov (2010). The structure surface is discretized with triangular
elements and the total mass is uniformly distributed on the vertices; then the
total potential energy is computed and transformed into nodal force by apply-
ing first spatial derivative. The outcome is a system of ordinary differential
equations that can be solved very efficiently even for a large number of struc-
ture elements in order to get the instantaneous structure configuration. All
the details on this new approach will be given in the following chapters.
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1.4 Outline of the thesis

As already mentioned previously, a loose coupling FSI algorithm is imple-
mented in order to simulate the synergistic working of all components, thus
getting a reliable modeling of the whole left ventricle.

1.4 Outline of the thesis
The thesis is structured so that each chapter is self-consistent, basing on papers
that have been already published, submitted or that are still in preparation.
In details it is organized as follows.

In chapter 2, first we present the development of the structure of the com-
putational model in all its parts from the description of the employed fluid
solver to the detailed analysis of the new approach for the structural solver
based on an interaction potential method. Moreover the IBM with the moving
least squares interpolation and the coupling procedure of fluid dynamics and
structure deformation are illustrated. Then we show two feasible applications
of the model in two different research fields: the former is related to turbu-
lence processes, proving how the interaction potential approach can be used
to model liquid–liquid interface problems in order to study the deformation
of drops/bubbles, coupling the flow with the interface morphology; the latter
refers to cardiac hemodynamics of the left ventricle, investigating the interac-
tion between flow dynamics and structure deformation both with numerical
simulations and experimental validations.

In chapter 3, we investigate how the inclusion of three different types of
mitral valve (natural, biological and mechanical prosthetic) influences left in-
traventricular flow, in both a physiological and a pathological case. In addition
we assess their effectiveness in terms of hemodynamics performances in order
to have clinical insights in the process of valve replacement.

In chapter 4, we enhance our computational model by adding chordae
tendineae to natural mitral valve in order to evaluate how their physical pres-
ence differently affects the flow dynamics inside the left ventricle with respect
to the non chorded case. Although it implies a substantial increase in nu-
merical and modeling complexity, this procedure avoids the use of numerical
constraints to mimic their functionalities and allows to achieve a much more
realist description of the interaction between fluid and structure.

In chapter 5, we give a medical application of our numerical model, by
studying the cardiac pathology of hypertrophic cardiomyopathy. First we aim
to replicate the patho–physiology of the disease; then we perform a parametric
study of different severity levels of hypertophy of the left ventricle to assess
clinical risks involved to each one; finally we simulate the surgical procedures
of leaflets plication and septum myectomy in order to give insights on the
efficiency and reliability of such intervention measures.

In chapter 6, we conclude our dissertation with a summary of the main
contributions achieved and an overview on the ongoing works and future per-
spectives.
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Chapter 2
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tial approach coupled with the immersed boundary method for deformable interfaces and
membranes’, Journal of Computational Physics, 348, 567-590, 2017.
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Chapter 2 - A parallel interaction potential approach coupled with the
immersed boundary method for deformable interfaces and membranes

2.1 Introduction

The interaction between fluid flow and an immersed elastic body (fluid or
solid) has been studied extensively over the last few decades due to its wide
range of applications, for example, bubbles and drops dispersed in a turbulent
flow (Balachandar & Eaton, 2010; Tryggvason et al., 2013), red blood cells
flowing through blood vessels (Freund, 2014), pumping motion of ventricles
and valves in the heart (Mittal et al., 2016; Sotiropoulos et al., 2016), oscilla-
tion of large structures such as aircraft wings and high–rise buildings (Dowell
et al., 2004). While the source of elasticity of the immersed body in each of
these phenomena is different, the interplay between a deformable body and
a surrounding inhomogeneous time dependent flow can result in a complex
non–linear system where they determine each other’s behaviour in a coupled
manner. In addition the presence of multiple bodies with different static and
dynamic properties interacting with each other gives rise to a wide range of
control parameters which makes these systems extremely challenging to study.
Over the last few decades tremendous amount of effort has been devoted to the
modeling and simulation of such systems which are often classified in literature
as fluid–structure interaction (FSI) problems. Among a variety of techniques
developed to tackle FSI problems, the immersed boundary method (IBM)
(Mittal & Iaccarino, 2005; Peskin, 1972, 2002) has gained immense popular-
ity and has been instrumental in making efficient and accurate simulations of
several complex flow systems possible; for example cardiac and vascular hemo-
dynamics (Mittal et al., 2016; Sotiropoulos et al., 2016), suspensions of rigid
spheres (Fornari et al., 2016; Picano et al., 2015; Prosperetti, 2015; Uhlmann
& Doychev, 2014), deformable bubbles or drops (Schwarz et al., 2016), vehicle
aerodynamics (Iaccarino & Verzicco, 2003; de Tullio et al., 2011b) etc.

One of the biggest advantages of IBM is that it relies on the use of a
single underlying mesh for the fluid flow (hereafter referred to as Eulerian
mesh) which does not have to conform/adapt with the moving/deforming im-
mersed body (Mittal & Iaccarino, 2005; Peskin, 1972, 2002). This eliminates
the complex and computationally expensive procedure of Eulerian mesh re-
generation every time step as the immersed body moves or deforms, resulting
in the decoupling of the mesh required for the flow solver from the position
and morphology of the immersed body. The surface of the immersed body
is discretized independently of the Eulerian mesh and is often called a La-
grangian or a structural mesh. The influence of the immersed body on the
flow can be achieved through a volume averaged body force in the fluid gov-
erning equations after a careful transfer of information between the Eulerian
and Lagrangian meshes. Moreover the time invariant nature of the Eulerian
mesh makes IBM promising for parallelization on multiple distributed mem-
ory computing processors and this has led to breakthroughs in simulations of
highly turbulent flows around complex geometries. However, the inclusion of
deformability into the immersed boundary framework to study the motion of
liquid–liquid interfaces or elastic membranes is not straightforward and this is
the focus of this chapter.

In the field of multiphase flows several techniques have been developed
to understand the motion and influence of particles, drops or bubbles in a
turbulent flow (e.g. point–particle, volume of fluid, level–set, front tracking)
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(Prosperetti & Tryggvason, 2007). When the inherent surface tension forces
in the bubbles or drops are not strong enough, they deform according to local
flow conditions and also alter them simultaneously. The challenge in direct
numerical simulations of such flows arises from the wide range of length, time
scales and regimes involved (Crowe et al., 1996; Magnaudet & Eames, 2000;
Tryggvason et al., 2013). Numerically handling a sharp boundary between
different phases and the singularity of the surface tension term in the gov-
erning equations is non–trivial (Scardovelli & Zaleski, 1999). Additionally,
since the density is not uniform in the flow domain, the pressure cannot be
computed using fast Poisson solvers, but through relatively slower iterative
methods. The complex algorithms and procedures put in place to tackle the
above mentioned issues have restricted the scale of multiphase flows that can
be studied; for example, state of art parallel simulations can only reach up
to O(102) deformable drops/bubbles in a reasonably turbulent flow (Tryg-
gvason et al., 2013). In order to scale up numerical simulations of dispersed
multiphase flows, there is a need for development of alternative methods are
relatively computationally inexpensive and still account for the various active
physical mechanisms in the flow.

In the first part of this chapter we show the validity and use of a new phe-
nomenological approach to replicate the deformation of closed liquid–liquid
interfaces under given flow conditions. The main advantage of this approach
is the computationally inexpensive nature of the deformation algorithm which
allows for simulations of large scale dispersed multiphase flows. The deforma-
bility of any immersed drop or bubble is replicated by solving for the dynamics
of a three–dimensional spring network spread over its surface. Hereafter we
refer to this technique as the interaction potential (IP) model. The Navier–
Stokes equations which govern the fluid motion inside and around the im-
mersed body are solved using direct numerical simulations (DNS), while IBM
is used to enforce the interfacial boundary conditions (for example no–slip or
free–slip). Thus the fluid motion and the effect of an immersed interface on
the flow is fully resolved, while the deformability is captured through a stable,
versatile, easy to implement and computationally inexpensive IP model. In
later sections we will further discuss why the IP model is able to sufficiently
replicate the dynamics of deforming liquid–liquid interfaces. This model has
been used previously by de Tullio & Pascazio (2016) within the immersed
boundary framework to simulate elastic bodies with arbitrary thickness, such
as flapping flags, leaflets of heart valves, thin elastic sheets.

In the second part of this chapter we show how this approach can be
extended to more complex FSI problems by performing a three dimensional
simulation of the flow in the left heart ventricle with mechanical and biolog-
ical valves. In particular, we focus on the simulation of the left ventricle of
the human heart along with a physical mitral valve in both pathological and
physiological conditions. IBM has been a front runner in the field of cardiovas-
cular hemodynamics, as it has been evidenced in several previous studies (Choi
et al., 2015; Seo & Mittal, 2013; Seo et al., 2014, 2013; de Tullio et al., 2011a,
2009; Vedula et al., 2014; Zheng et al., 2012). A main impulse in developing
this research field from a computational fluid dynamics point of view is the
increasing demand from the medical community for scientifically rigorous and
quantitative investigations of cardiovascular diseases. Again, the major bot-
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tleneck in conducting fully resolved simulations of the complete human heart
is created by the complex deformation dynamics of the various ventricles and
valves which interact with the pulsatile blood flow (Mittal et al., 2016).

Various approaches have been employed over the years to achieve realis-
tic and reliable cardiac hemodynamic simulations. One approach is to use
available models of the heart functionality along with the biophysical com-
ponent of cardiac electromechanics. This has been used in the ‘Living Heart
Project’ (Baillargeon et al., 2014), where a fully coupled electro–mechanic and
hemodynamic simulation is realised, and more recently by Choi et al. (2015),
who coupled a multi scale model for electromechanics with the Navier–Stokes
equations for the flow dynamics. Zheng et al. (2012) and Seo & Mittal (2013)
focused on intraventricular flow and the accompanying pathologies under the
effect of a diastolic flow pattern, while Seo et al. (2014) studied the effect of the
mitral valve on the flow dynamics. In all these simulations the deformation
cum motion of the left ventricle and the valves are imposed either through
kinematic models or derived through imaging, but not through a fully coupled
FSI simulation. The motivation in employing kinematic models to describe
the motion of ventricles and valves instead of a full FSI simulation is to elimi-
nate the massive computational cost in solving the three dimensional Cauchy–
Navier equations for the immersed elastic body along with the Navier–Stokes
equations. Although numerical simulations with predefined ventricle/valve
motion is a challenging task in itself, in reality the motion of the ventricle and
the valves, and the fluid are coupled to each other and can govern each other’s
motion.

The FSI simulation of the left ventricle with a physical valve, which is de-
scribed in detail later, is performed within the equivalent of 48 CPU hours on a
single processor with an Eulerian grid of 150x150x150 and a Lagrangian mesh
of approximately 50000 elements on the ventricle which shows the computa-
tionally inexpensive nature of the IP approach. Moreover these simulations
were compared and validated with in–house ad–hoc laboratory experiments
to ensure the reliability of the results. While we do not solve for computa-
tionally challenging coupled three dimensional Navier–Stokes Cauchy–Navier
equations, we take a step further from employing kinematic models towards
having full FSI between the flow, the ventricle and the mitral valve. In order
to further throw light on the computational time gained by the IP approach,
a relatively simpler problem of flow across an aortic valve within a deformable
aortic root which used 106 nodes for the fluid solver and 103 triangular elements
for the structure (de Tullio et al., 2011a) required the same computational time
as that of the IP approach to model the full left ventricle with physical mitral
valve. In comparison to the FEM solver, the IP approach needs only 3% of
the CPU time per time step for the structural solver.

The IBM described in this chapter makes use of the moving least squares
(MLS) approximation which is crucial when the system involves moving and
deforming boundaries. However, the computational cost of MLS increases
rapidly with increase in the resolution of the immersed bodies. New algo-
rithms or a parallel implementation of the computation on distributed memory
processors thus become an invaluable tool in scaling up fully resolved flows in-
teracting with several moving/deforming immersed bodies. In particular, par-
allelization is an attractive prospect given the increasing availability of cost–
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efficient high performance computing facilities. A parallel implementation
of a flow solver involving multiple deforming bodies is not a straightforward
task due to many algorithmic complexities. The challenge lies underneath the
fact that two different meshes (Eulerian and Lagrangian) are required for the
complete solution and different parallelization strategies would be required to
make use of multiple processors effectively.

In the last part of the chapter we describe a parallelization scheme designed
to track the time evolution of several deformable bodies (e.g. vesicles, drops,
biological tissues) immersed in turbulent flows. This strategy is built upon
the already underlying parallelization scheme implemented for the fluid solver,
thus reducing the downtime of overall code development. In particular, the
benefits of the parallelization is oriented towards simulation of dispersed phase
systems with several thousand deforming drops, bubbles, vesicles or bodies
moving in a highly turbulent carrier fluid phase.

The novelty of the current work is threefold. We first discuss the extension
of the algorithm to liquid–liquid interfaces which is not straightforward. From
a theoretical point of view we take advantage of the fact that the deformation
of any immersed interface or membrane are both based on the fundamental
principle of minimum potential energy. This has not been taken advantage
of in its full extent for liquid–liquid interfaces in previous works and, given
its computational efficiency and ease of implementation, it can be extremely
beneficial for studies involving large scale dispersed multiphase flows where
traditional techniques become too expensive. We also demonstrate that the
method is extremely versatile and that the approach can not only handle sim-
ple elastic structures but also tackle complex FSI problems; for example flow
in the left heart ventricle with mitral valves. This is a step forward in the
field of cardiovascular simulations where the conventional approach is to de-
rive the motion of the ventricle from kinematic models or imaging techniques.
Although this approach is computationally inexpensive, parallelization is in-
evitable for handling thousands of immersed bodies in a turbulent flow, which
is discussed in the last part of the chapter.

In the next section we give an overview of the governing equations for
the solution of the fluid phase, implementation of the IBM using MLS and the
interaction potential approach for computing the deformation of elastic bodies.
In section 3, we show how the interaction potential approach can be used to
study deformation of drops/bubbles where the flow is dynamically coupled
with the interface morphology. These results are validated with analytical
solutions and experimental measurements taken from literature. In section 4,
we describe the simulation of the full left ventricle with both mechanical and
natural mitral valves in addition to comparing the results from our simulations
with ad–hoc in–house experiments. In section 5, we discuss the data structures
required and also the parallelization strategy to scale up the problem to study
several thousand deforming immersed bodies. Finally, we provide a summary
and outlook in section 6.
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2.2 Governing equations and numerical scheme

2.2.1 Fluid phase

For the fluid phase we solve the Navier–Stokes equations governing incom-
pressible flow in a Cartesian box as given in equations (2.1). In the following
text, velocity and force fields on the Lagrangian and Eulerian meshes are rep-
resented by upper case and lower case symbols, respectively.

∂u
∂t

+ u · ∇u = −∇p+ 1
Re
∇2u + f,

∇ · u = 0.
(2.1)

Reynolds number of the flow is defined based on a characteristic length scale
L and velocity scale U as Re = UL/ν, where ν is the kinematic viscosity of
the fluid. u, p are the velocity and pressure in the flow, while f is the volume
averaged force arising from the IBM and is included to enforce the interfacial
boundary condition.

A conservative second–order centered finite–difference scheme with veloc-
ities on a staggered grid is used for spatial discretization; explicit Adams–
Bashforth scheme is used to discretize the non–linear terms, while an implicit
Crank–Nicholson scheme is used for the viscous terms. Treating all the viscous
terms implicitly results in a large sparse matrix which is avoided by an approx-
imate factorization of the sparse matrix into three tridiagonal matrices (one
for each direction) which are solved using Thomas’ algorithm. Time integra-
tion is performed via a self starting fractional step third–order Runge–Kutta
(RK3) scheme. The pressure required to enforce mass conservation is com-
puted by solving a Poisson equation for a pressure correction. The code for
single phase flows has already been tested extensively in previous studies for
a variety of flow configurations and additional details of the numerical scheme
can be found in Rai & Moin (1991), Verzicco & Orlandi (1996) and van der
Poel et al. (2015).

2.2.2 Dispersed phase: immersed boundary method

We now describe the procedure of constructing the Lagrangian mesh and the
schemes used to transfer flow quantities between the Lagrangian and Eulerian
mesh which is a crucial ingredient in IBM. The details of the methodology are
reported in de Tullio & Pascazio (2016) and are included here for convenience.
In figure 2.1 we show a schematic of the various Lagrangian meshes used in
this study. Any given surface (closed or open) is discretized into triangular
elements where each element is composed of three vertices (v1, v2, v3) which
are connected by edges (e1, e2, e3). Under the condition that the mass is
uniformly distributed on the triangular element, the position of the centroid
(c1) of each triangular element is computed based on the coordinates of the
vertices. Figure 2.1a shows a sphere discretized into triangular elements along
with a schematic showing the composition of each triangle. In figure 2.1b we
can see the discretized geometry of the left ventricle and figure 2.1c shows the
remaining auxiliary components.
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Figure 2.1: Schematic of the Lagrangian mesh. a) A sphere discretized using
triangular elements; on the right a single triangular element is decomposed
into three vertices v1,v2,v3 (circles), three edges e1,e2,e3 and one centroid c1
(square). b) Full structure of the left ventricle with a zoomed–in area showing
the triangulated network. c) Rest of the components of the full left ventricle
structure; the left panel shows the leaflets of prosthetic mechanical mitral
valve, the middle panel shows the natural mitral valve and the right panel the
channels for mitral and aortic valves.

Following the idea of Uhlmann (2005) the force required to enforce the
interfacial boundary condition is first computed on markers laid out on the
Lagrangian mesh and then transferred to the Eulerian mesh. Here we consider
the triangle centroids to be the Lagrangian markers, which are responsible for
enforcing the interfacial boundary condition. The vertices and edges of the
discretized triangular elements play a role in the deformation dynamics and
will be explained later.

The next step is to build a transfer function around each Lagrangian
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marker (here the centroid ci) which would be used to exchange information
between the Eulerian and Lagrangian mesh. As noted previously, we adopt
the MLS approach (Lancaster & Salkauskas, 1981; Liu & Gu, 2005), which
is part of the class of meshless approximations and has been used previously
in several fields such as element free Galerkin methods (Atluri et al., 1999;
Belytschko et al., 1994, 1996; Hegen, 1996; Krongauz & Belytschko, 1996),
computer graphics (Fleishman et al., 2005; Kobbelt & Botsch, 2004; Kolluri,
2008; Schaefer et al., 2006; Zeng & Lu, 2004), and also recently for IBM
(de Tullio & Pascazio, 2016; Vanella & Balaras, 2009). In order to compute
this transfer function we first need to build a support domain centered around
each Lagrangian marker which consists of all Eulerian grid nodes closer than a
threshold value in each direction. By taking a threshold value of ri = 1.5∆xi
in each direction, a three–dimensional support domain consisting of Ne = 27
(3x3x3) Eulerian nodes is built around each Lagrangian marker. In figure 2.2a
we show a schematic of a two dimensional support domain consisting of nine
Eulerian cells around the centroid c1. The next step is to use these Eulerian
cells and build a transfer function through which any quantity qi defined on
the Eulerian nodes can be interpolated on the Lagrangian marker (i.e centroid
of each triangular element). The same transfer function can be used to ex-
trapolate the force computed on the Lagrangian markers (Fi) to the Eulerian
mesh (fi).

Figure 2.2: a) Schematic of a two–dimensional support domain around the
centroid c1 (red squares) consisting of nine Eulerian cells; arrows show the
position of Eulerian velocities in a staggered formation. b), c) Schematic of
the direction of the various elastic forces acting on the triangular elements.
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The MLS interpolation of qi at a Lagrangian marker (ci) is defined as
follows

Qi(xxxl) = pppT (xxxl)aaa(xxxl) =
m∑
j=1

pj(xxxl)aj(xxxl),

where Qi is the quantity interpolated on the Lagrangian marker, while pppT (xxxl)
is a basis function vector with dimension m. xxx is the position vector of the
Lagrangian marker. In this work we consider a linear basis function with
pppT (xxxl) = [1, x, y, z], i.e. m = 4, which is cost–efficient and also able to repre-
sent the gradients in the Eulerian field with second order accuracy. aaa(xxxl) is
the vector of coefficients obtained by minimizing the weighted L2 norm J as
follows

J =
Ne∑
k=1

W (xxxl − xxxk)[pppT (xxxk)aaa(xxxl)− qki ]2. (2.2)

Here W (xxxl −xxxk) is a weight function; we use the exponential weight function
which is given as follows

W (xxxl − xxxk) =
{
e−(rk/α)2

rk ≤ 1,
0 rk > 1,

where α is a constant of shape parameter and rk is given by

rk = |x
xxL − xxxk|

ri
,

where ri is the size of the support domain in the ith direction as defined
previously. Other commonly used shape functions are the cubic spline and
quadratic spline functions and a spline function with any order of continuity
can be constructed using the steps detailed in Liu & Gu (2005). Minimizing
J in equation (2.2) leads to AAA(xxxl)aaa(xxxl) = BBB(xxxl)qqqki where

AAA(xxxl) =
Ne∑
k=1

W (xxxl − xxxk)ppp(xxxk)pppT (xxxk),

BBB(xxxl) = [W (xxxl − xxx1)pppT (xxx1)...W (xxxl − xxxNe)pppT (xxxNe)],

qqqi = [q1
i ...q

Ne
i ]T .

Combining all the above equations, the interpolated quantity Qi can be ex-
pressed as follows

Qi(xxxl) = φφφT (xxxl)qqqi =
Ne∑
k=1

φlk(xxxl)qki (2.3)

where φφφT (xxxl) = pppT (xxxl)AAA−1(xxxl)B(xxxl) is the transfer function containing the
shape function coefficients for each Lagrangian marker. This shape function
is used to interpolate the value of the intermediate Eulerian velocity ûi at the
exact location of all Lagrangian markers and the volume force in each direction
is calculated as Fi = (V b

i −Ui)/∆t, where V b
i is the desired velocity boundary

condition on the Lagrangian marker (ci) and Ui is the Eulerian flow velocity
interpolated on the Lagrangian marker using MLS. Under the assumption
of a no–slip boundary condition on the interface, the desired velocity V b

i is
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equal to the velocity of the corresponding centroid. This force needs to be
transferred back to the Eulerian mesh using the same transfer function built
for interpolation in equation (2.3) under the constraint that the total force is
conserved during the extrapolation. The force to be included in the Eulerian
mesh is written as fkb,i =

∑NL
k=1 clφ

L
kF

L
i , where NL is the number of Lagrangian

markers associated with a Eulerian point k. cl is a scaling factor obtained by
imposing the condition that there is no net–gain/loss in the IBM force while
transferring flow information from the Lagrangian mesh to the Eulerian mesh
which results in the following

cl = ∆V l∑Ne
k=1 φ

l
k∆V K

,

where ∆V L is the forcing volume associated with each Lagrangian marker and
is computed as ∆V l = Alhl. Al is the area of the triangular element associated
with the Lagrangian marker (area composed by v1, v2, v3 in figure 2.1) and
hl = 1/3

∑Ne
k=1 φ

L
k (∆xk+∆yk+∆zk). ∆V k is the volume of the Eulerian cell k

involved in the support domain. Here it is important to note that the transfer
functions built using this approach conserves momentum on both uniform and
stretched grids while reasonable accuracy is retained for torque equivalence on
slightly stretched grids (de Tullio & Pascazio, 2016; Vanella & Balaras, 2009).
For example, Vanella & Balaras (2009) report that with 10 % grid stretching,
the net loss/gain in torque conservation is less than 0.5 %.

The calculation of hydrodynamic forces (pressure and viscous stresses) act-
ing on the surface of any dispersed body in an IBM simulation is not straight-
forward as the Lagrangian and the Eulerian meshes do not necessarily align
with each other at a given time instant. Since the surface of the dispersed
bodies are discretized using triangular elements, the local pressure and viscous
forces are first computed on the Lagrangian markers (centroids of triangular
elements); the total external force on a triangular element with area Al and
surface normal nnnl is calculated as FFF lext = (−plnnnl + τττ l · nnnl)Al. To evaluate
pl and τl, which are the pressure and viscous forces acting on a triangular
element l, respectively a probe is sent along the normal of each triangular
element with its centroid as the origin. The length of the probe hl is equal to
the mean local grid size and the MLS interpolation described above is used to
interpolate both pressure and velocity gradients at the end point of the probe.
The velocity gradients can also be computed from the derivatives of the shape
functions (Liu & Gu, 2005). The value of the pressure gradient along this
normal is computed from the momentum equation normal to the triangular
element which gives dp

dn = −DUUUL
dt ·nnnL. The pressure on the Lagrangian marker

(centroid) is then computed as follows

pl = p∗l + hl
DUUU l
Dt
·nnnl,

where p∗l is the pressure at the probe endpoint and DUUU l
Dt is the acceleration

of the Lagrangian marker (de Tullio & Pascazio, 2016; Vanella & Balaras,
2009; Yang & Balaras, 2006). The shear stress τττ l on the Lagrangian marker is
computed based on the velocity gradients interpolated at the probe endpoint.
This holds true under the assumption that the velocity of the fluid near the
surface of the body varies linearly. An important note here is that when the
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nature of the immersed body is such that fluid loads on either side of the
interface are relevant, the pressure and viscous forces need to computed on
both sides of the surface thus requiring two probes sent along the normal to
every triangular element, one each along the positive and negative normal,
respectively i.e. FFF lext = [(−(p+

l − p
−
l )nnn+

l + (τττ+
l −τττ

−
l ) ·nnn+

l )]Al; the subscripts +

and − represent quantities evaluated on the end points of the probe on either
side of the surface (de Tullio & Pascazio, 2016; Vanella & Balaras, 2009; Yang
& Balaras, 2006).

2.2.3 Interaction potential approach for deformation

As mentioned above, the dynamics of deformation is computed based on a
minimum energy concept which we describe here briefly. The surface of any
immersed body is first discretized using triangular elements (see figure 2.1) the
edges of which are composed of hypothetical linear/non–linear springs thus re-
sulting in a two–dimensional network of springs. Under the influence of exter-
nal forces such as pressure fluctuations or viscous stresses, the spring network
undergoes deformation thus storing potential energy into the system. The po-
tential is converted to nodal forces acting on individual triangular vertices by
differentiating the potentials with respect to its corresponding displacement.
The force acting on each triangular vertex is converted into an acceleration
and integrated based on Newton’s second law of motion. The position of each
individual vertex is then accordingly.

The first form of potential is the in–plane elastic potential (We) which
comes from the work done by an external force parallel to the plane of a
triangular face and is converted into elastic energy stored into every spring
connecting the triangle. We also consider an out–of–plane deformation (Wb)
for which the total potential is computed based on a bending spring connecting
the centroids of two adjacent triangular faces. This out–of–plane bending
potential is stored in a pair of two faces sharing an edge and is a function
of the contact angle between them. Additional potentials can be included
which constrain the geometrical properties of the overall immersed body. For
example, we can include a volume or area potential (Wv or Wa) which is a
function of the change in volume/area of a single element with respect to an
initial reference state. All the individual potentials are formed as given in the
following equations

We = 1
2kex

xx2 (2.4)

Wb = kb(1− cosθ) (2.5)

Wv = 1
2kv

(
V − V0
V0

)2

V0 (2.6)

Wa = 1
2ka

(
A−A0
A0

)2

A0 (2.7)

In the above equations, ke, kb, kv, and ka are the elastic constants for in–plane
deformation, out–of–plane deformation, volume constraint and area constraint
potentials, respectively. xxx is the change in length of a single edge; θ is the
angle between the normals of two triangular faces sharing an edge; V0, V and
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A0, A are the corresponding reference and deformed volumes and areas of
each triangular element, respectively. While the equations (2.4)–(2.7) can be
used to simulate homogeneous isotropic materials, the interaction potential
approach can also used for inhomogeneous anisotropic materials by changing
the functional form of the elastic potentials (de Tullio & Pascazio, 2016).

In figure 2.2bc we show a 2D and 3D schematic, respectively of the forces
originating from these potentials on the vertices of the triangular elements.
FFF e is the in–plane elastic force and it acts along the edges connecting two
vertices; FFF b and FFF v are the out of plane bending and volume constraint forces
which act along the normal at the centroids of each triangular element. FFF a is
the force originating from the area constraint potential and is directed towards
the centroid of the triangular element.

Once the forces on each of the triangular vertices are known, individual
nodes are moved based on the equation mẍxxvi = F vi

ext + F vi
int; F

vi
ext and F vi

int are
the external and internal forces acting on the triangular node vi, ẍxx and m are
the acceleration and mass of individual nodes. In the previous section Fext
was calculated on the centroid of each triangle. This force is transferred to an
individual triangular vertex as F vi

ext =
∑nfi

j=1(1/3)F cj

ext; where nfi is the number
of faces each vertex is connected to and F cj

ext is the external force computed on
the triangle centroid (Lagrangian marker) cj . The calculation of m, which is
the mass of individual triangular node is straightforward for surfaces made of
materials where the density and thickness is known a priori. In cases where the
immersed bodies are drops or bubbles, calculating m of the triangular nodes
becomes tricky as there is no physical definition of the density and thickness
of a liquid–liquid interface. In such a case m of the triangular nodes becomes
a free parameter and to overcome this we fix the value of m = 1 and then
correspondingly tune the elastic constants. This is detailed more in the next
section.

Computing the individual potentials according to equations (2.4)–(2.7)
in the interaction potential approach requires selection of several parameters
(ke, kb, kv, ka). Once again, this step is straightforward for membranes where
the elastic moduli are already known (de Tullio & Pascazio, 2016). In a later
section where we show simulations of flow in the heart ventricle we will further
show how we compute the elastic constants from the physical properties of
the material that is used. In addition it is important to note that when
the surface is discretized with non–uniform triangles such that the lengths
of the edges of triangle vary, ke should be computed based on the model
proposed by Van Gelder (1998). This is to ensure that at the rest state of
the elastic structure the properties of all the springs connecting the vertices
are equivalent. On the other hand, simulating liquid–liquid interfaces using
the interaction potential approach would require the use of ad–hoc elastic
constants as again there is no direct physical correlation between the elastic
constants and the surface properties of a liquid–liquid interface. The procedure
of estimating these ad–hoc elastic constants will be described in detail in the
next section.

Here it is important to note that modeling an elastic membrane or an in-
terface using the interaction potential approach is a discrete formulation of the
elasticity governing equations and thus a simplification of the existing contin-
uum models. It has been shown in previous studies that through a careful
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design of the spring network and the selection of appropriate elastic constants
the mechanics of several elastic membranes can be exactly reproduced (Chen
& Boyle, 2014; Fedosov et al., 2010; de Tullio & Pascazio, 2016). While such
a formulation is useful and necessary for complex simulations of several im-
mersed deformable bodies owing to its simplicity and lower computational
cost, it has its limitations. In particular for liquid–liquid interfaces, when
the drops/bubbles deform to such an extent that they approach the critical
Capillary/Weber number for breakup, the Lagrangian resolutions become ter-
minally high. Such scenarios are better handled with techniques such as VOF
or level set. When the Capillary/Weber numbers for the drops/bubbles are
well below their breakup limit, the IP model provides a viable alternative to
simulate large scale dispersed multiphase flows with realistic computational
expenses. Here we would like to note that the derivation of the interaction
potential approach is not unique to this work and variants of this method have
already been used previously to predominantly study red blood cells (Chen
& Boyle, 2014; Dupin et al., 2008; Fedosov et al., 2010; Krüger, 2016). In
this work we show how this approach can also be extended for more complex
cases such as large scale flows with dispersed deforming drops/bubbles and
also biological membranes with full FSI, for example flow in heart ventricles
with valves. In the case of biological tissues, the deformable membranes can
be hyperelastic and orthotropic. The versatility of the IP model easily allows
us to extend the method to such materials by changing the formulation of the
potentials and deriving the corresponding elastic constants. Additionally elec-
trophysiology can also be implemented into the IP model (this is currently in
progress) by solving a constitutive equation for an electric potential along the
surface of the membrane. Here the flow in the heart ventricle is driven using
an inflow–outflow boundary condition to facilitate comparison with in–house
experiments. Thick boundaries (i.e. with thickness larger than the local Eule-
rian resolution) or volumetric structural elements cannot be handled with the
present approach, given the membrane/shell–like formulation of the model.

Another important issue in the simulations involving FSI problems is the
type of coupling used i.e. loose (explicit) versus strong (implicit). In the
loosely coupled (explicit) case, the fluid and the immersed body governing
equations are solved separately one after the another with a transfer of infor-
mation between them every time step. On the other hand, in the strongly
coupled (implicit) case the governing equations are solved in an iterative man-
ner for each time step using a predictor corrector scheme until sufficient con-
vergence is achieved. A detailed solution procedure for a strongly coupled
IBM–FSI Navier Stokes solver with the provision for the interaction potential
approach is given in de Tullio & Pascazio (2016), where the governing equa-
tions are solved using a Hammingś fourth order predictor–corrector scheme.
In our code, we have provisions for both a strong (implicit) and weak (explicit)
coupling between the fluid and the immersed body. For the simulations shown
in the following sections, loose coupling is used given its computationally in-
expensive nature. Also it has to be remembered that strong coupling is only
needed when added mass effects from the immersed body become important
and the recent work by Schwarz et al. (2015) gives insights into how this can
be tackled smartly while there is still loose coupling between the fluid and the
immersed body. We now move on to combining DNS of the fluid governing
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equations along with a moving least squares IBM coupled with the interaction
potential approach to simulate deformable drops/bubbles and heart ventri-
cles/valves.

2.3 Liquid–liquid interface dynamics using the po-
tential approach

In order to replicate the deformation dynamics of drops or bubbles using the
IP model, we first need to devise a method to compute the elastic constants
of a given spring network which can represent a liquid–liquid interface with a
given surface tension. As mentioned earlier, this is not straightforward since
there is no direct physical correlation between the elastic constants and the
surface tension of a liquid–liquid interface. Here we use a reverse–engineered
approach and perform a single simulation with a set of intuitively chosen elastic
constants and estimate the surface tension of the immersed drop by comparing
its morphology with previously known analytical solutions. By using the same
set of elastic constants but for different flow conditions we also show that such
an approach is self–consistent and reliable. Our goal here is to show that the
IP model for deformation can be used to replicate the deformation dynamics
of liquid–liquid interfaces under given flow conditions.

Before we analyse the results, it important to understand from a theoretical
point of view why the IP model can be expected to mimic the deformation
behaviour of drops/bubbles. When an initially spherical drop is immersed
in a fluctuating flow field, the viscous and pressure stresses tend to deform
the drop while the surface tension forces tend to resist the deformation and
bring it back to its original spherical shape. During deformation, the total
potential energy of the deformation stored in the drops surface is given by
W =

´
[(pi−po)−0.5γ(1/R1+1/R2)]dn·dA, here pi, po are the pressures inside

and outside the drop, γ is the surface tension while R1, R2 are the principal
radii of curvature (Landau & Lifshitz, 1959). Under the action of external
forces, the shape of the drop adjusts itself such that the total displacement
potential energy W tends to a minimum. The shape of the deformed drop can
be computed by parametrising the surface in such a manner that it satisfies
the above condition under certain constraints (for example an ellipsoidal shape
or more complex shapes using spherical harmonics) (Emans & Zenger, 2005;
Schwarz et al., 2016). The IP model is mathematically analogous in a way that
the forces on each triangular vertex (see figure 2.2bc) act such that the total
potential energy of deformation Π = We+Wb+Wv+Wa tends to a minimum.
Although the IP model for deforming drops is not an exact representation of
the surface tension phenomena it can be considered as a phenomenological
approach which can mimic the drop deformation characteristics given the fact
that both the exact representation and the IP model rely on the fundamental
principle of minimum potential energy.

2.3.1 Deformation of a neutrally buoyant drop in shear flow

For the first test case we choose a neutrally buoyant drop deforming in a
laminar shear flow which has a simple configuration and a limited set of con-
trol parameters. Variants of this problem have been studied for a long time
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and several analytical and phenomenological models already exist in literature
which can accurately predict the deformation dynamics of the immersed drop
(Maffettone & Minale, 1998; Taylor, 1932, 1934). For this simulation, we use
a Cartesian box which is wall–bounded in the vertical direction (êz) and fully
periodic in the horizontal directions. The top and bottom walls move in the
opposite direction parallel to each other with the same velocity to generate a
laminar shear in the domain. A triangulated sphere as shown in figure 2.1a
is positioned in the flow at a distance 0.5Lz from the walls (Lz is the gap
between the walls).

The degree of deformation and orientation of a viscous drop in the presence
of a velocity gradient depends on the Capillary number Ca = µfRγ̇/σ, where
R, γ̇, σ and µf are the drop radius, local strain rate, surface tension and fluid
viscosity, respectively. For these simulations the viscosity ratio of the droplet
and the carrier phase is set to 1, i.e. µ̂ = µd/µc = 1. Since this simulation will
be used to ‘tune’ the elastic constants to replicate a liquid–liquid interface, we
assume that the immersed drop is very small in comparison to the distance
between the walls and the immersed boundary forcing fff in equation (2.1) is
set to zero. This is done so that the immersed sphere only experiences the
forces generated due to the laminar shear from the moving walls and not due
to any wall effects. It also facilitates in quickly tuning the elastic constants
due to the ease in setting up such a simulation. Here it is important to point
out that while we choose the system of a neutrally buoyant deforming drop
any other flow with known solutions can be used.

To estimate the ad–hoc surface tension value for any given spring network
the following steps are undertaken. We first fix the Lagrangian resolution i.e
the number of vertices on the surface of a sphere and initialize a spherical
drop under a given shear rate γ̇ with a set of elastic constants. For the first
set of elastic constants, ke and ka are fixed to large values in comparison to
kb thus resulting in an extremely stiff drop. kv is chosen to be much larger
than the rest of all constants as this ensures incompressibility of the immersed
drop. Once the first set of elastic constants are chosen the drop is allowed to
deform under the action of the velocity gradient γ̇ according to the potential
approach described in the previous section. If the final state of the drop is
close to spherical, the elastic constant ke and area constant ka are reduced
simultaneously which reduces the overall stiffness resulting in deformation of
the spring network. Here it is important to note that if both kv and ka are
fixed to a large value, which would imply conservation of both the volume and
total area, the triangulated sphere would represent a vesicle. To represent a
drop, both ke and ka are reduced to a low enough value such that the drop
deforms approximately into an ellipsoid as shown in figure 2.3ab. The initial
and final states of the triangulated sphere shown in figure 2.3ab are for two
different Lagrangian resolutions i.e the spheres are discretized using 320 and
1280 triangular elements (faces), respectively.

We now give an estimate of the elastic constants used for the following
analysis. For any given spring network with a prescribed elastic modulus and
mass distribution, the ratio kel2e (le is the mean edge length on the sphere)
should be independent of the number of triangular elements (Van Gelder,
1998). For the sphere shown in figure 2.3a, kel2e = 3× 10−3 and le/L = 1.5×
10−2. The bending constant is set as kb = ke/10.0 while the volume constant is
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set to a very large value; in this case kv = αvke where typically αv ∼ 104−105

is sufficient to ensure that incompressibility of the sphere is ensured. The
area constant ka is set equal to that of the elastic constant. As discussed
previously, when simulating other systems (for example vesicles) which also
require surface area conservation along with volume conservation the area
constant ka is also set to relatively large value similar to the volume constant
kv. On changing the Lagrangian resolution the elastic constants should also be
scaled in a way that the product kel2e remains unchanged. This ensures that the
physical properties of the spring network remains similar and is independent
of the resolution used. The time step for the following simulation is set to
∆t = 10−4/γ̇ (γ̇ is the imposed strain rate) and the convergence criteria is
such that the change in the total surface area of the sphere in successive time
steps is less than 10−6.

Once the deformation of the sphere has reached a steady state under a
laminar shear flow, we compute its semi–major axis (L) and semi–minor axis
(B). Next, we use a phenomenological model proposed by Maffettone &Minale
(1998) (hereafter called ‘MM’ model) to estimate the Capillary number Ca
for which a neutrally buoyant immersed drop would have the same final state
under similar flow conditions. The model proposed by Maffettone & Minale
(1998) predicts the deformation of a drop in an arbitrary velocity field under
the assumption that the drop is ellipsoidal in shape. For a simple flow field
such as a laminar shear flow the model can be analytically solved to give the
steady state values of the semi–major (L) and semi–minor axis (B) of the
deformed drop as given below.

L2 =
f2

1 + Ca2 + f2Ca
√
f2

1 + Ca2

(f2
1 + Ca2)1/3(f2

1 + Ca2 − f2
2Ca

2)2/3 ,

B2 =
f2

1 + Ca2 − f2Ca
√
f2

1 + Ca2

(f2
1 + Ca2)1/3(f2

1 + Ca2 − f2
2Ca

2)2/3 ,

where f1 and f2 are constants which depend on the viscosity ratio (µ̂) and Ca
is the Capillary number

f1 = 40(µ̂+ 1)
(2µ̂+ 3)(19µ̂+ 16) f2 = 5

2µ̂+ 3 .

This model has already been used in other studies; for example to predict
hemolysis of red blood cells (de Tullio et al., 2012) and also deformation and
orientation statistics of drops in turbulent flows (Biferale et al., 2014; Spandan
et al., 2016). Additionally experimental studies have shown that under mod-
erate deformations the steady–state droplet shape can be very well described
by an ellipsoid (Guido & Villone, 1998; Torza et al., 1972).

In figure 2.3cd we plot the analytical solutions (MM model – solid lines)
in the form of the lengths of the semi–axes and the orientation angle of the
major axis (corresponding to the axes with length L) with the stream–wise
direction versus the Capillary number. Using this as a reference, we check the
position of overlap of the semi–axes lengths computed through the IP model
with the MM model to estimate the corresponding Capillary number. This
match is shown through a vertical dotted line in figure 2.3c and since the flow
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Figure 2.3: Deformation of a neutrally buoyant drop in a laminar shear flow
using the IP model. Lagrangian resolution of a) Nfaces = 320, b) Nfaces = 1280.
In both cases, the viscosity ratio is set to µ̂ = 1. c) Comparison of the semi–
axes lengths versus the Capillary number. d) Comparison of the angle formed
by the major–axis in the shear plane with the velocity direction.
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configuration such as drop radius, viscosity and shear rate are already fixed
in the simulation, this Capillary number can be directly used to estimate the
ad–hoc surface tension value for the chosen elastic constants. The left and
right panels in figure 2.3 correspond to different Lagrangian resolutions. The
important point to observe here is the reasonably good match between the
semi–axes lengths computed from the IP model and the MM model. Small
differences in the semi–axes lengths could arise due to multiple reasons: (i)
lack of sufficient Lagrangian resolution, since in the IP model the surface of the
sphere is discretized using markers; (ii) MM model assumes a perfectly shaped
sphere which deforms into an ellipsoid, while the IP model has no constraint
of deforming into an ellipsoid; (iii) the elastic constants would need further
tuning.

Next we keep the elastic constants the same and change the Capillary
number which can be done by either changing the shear rate or the viscosity
of the fluid. As shown in figure 2.3cd again the semi–axes lengths computed
from the IP model agree reasonably well with the analytical solutions from the
MM model. This shows that the ad–hoc surface tension computed by fitting
the results from a single simulation using the IP model with MM model is
reliable to extend the approach to other flow conditions. A good agreement
with the MM model is found also for the orientation angle of the semi–major
axes as shown in figure 2.3d. At higher Capillary numbers (Ca = 0.2) there is
some difference found in the lengths computed from the IP model as compared
to MM model (left panel of figure 2.3c). However, this is just an effect of
the Lagrangian resolution and can be corrected by increasing the number of
vertices on the surface of the sphere, as can be seen in the right panel of 2.3d.

2.3.2 Dynamics of a liquid–liquid interface deforming in cross–
flow

In the previous subsection we demonstrated that by tuning the elastic con-
stants for a single flow configuration to compute an ad–hoc surface tension, the
IP model can be used to reliably simulate a neutrally buoyant drop deforming
in a laminar shear flow. We now move on to simulating a more dynamic prob-
lem where the interface is strongly linked to the local flow conditions. In order
to do this we take the same test case as done by Schwarz et al. (2016) and have
a drop immersed in a cross flow and compute the mean shape arising from the
resulting flow conditions. For such a flow, the aspect ratio of the deforming
drop depends strongly on the Weber number We = ρfU

2
refdeq/σ, which is the

ratio of inertia forces acting on the drop in comparison the surface tension
forces (Loth, 2008). The cross–stream set up in the domain is influenced by
the interface of the spherical drop leading to the development of a boundary
layer on the drop surface and a corresponding wake.

The computational domain is taken to be of size L = (10, 5, 5)deq, deq is
the diameter of the drop in its initial spherical shape. The spherical drop
is triangulated with Nv = 2562 nodes and is placed at xxx = (0.5, 0.5, 0.5)Lz.
The vertical direction (êz) is wall bounded with stationary free–slip walls; êy
direction is periodic in nature and a uniform flow of UUU = Uêx is imposed in
the êx direction.

The control parameters for such a problem are the Reynolds number,
Re = Udeq/νf and the Weber number, We = ρfU

2
refdeq/σ. The response
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of the system can be measured through the quantification of the wake of the
drop and also through the morphology of the drop. The combined action of
the dynamic pressure acting on the faces of the drop and the shear stresses
generated from the boundary layer development on the surface of the drop
leads to its deformation. In figure 2.4 we show the wall–normal component
of the velocity field (uz) and the corresponding deformed drop represented
through the triangulated spring network. The two snapshots shown in figure
2.4 are at two different instants showing the starting up phase and the deform-
ing phase. To quantify the shape of the immersed drop we compute the mean
aspect ratio of the bubble measured as the ratio of the lengths of the drop
bounding box in the wall–normal and stream–wise directions i.e. X = lz/lx,
where X is the aspect ratio and lz, lx are the lengths of the box surrounding
the deformed drop in the êz, êx directions, respectively.

Figure 2.4: Left panels show the contours of velocity in êz direction along
with the deforming drop at two different time instants. Right panels show the
corresponding drop in the form of the deformed triangulated spring network.
The Reynolds number of the flow based on the initial drop diameter is set to
Re = 150, while the elastic constants chosen correspond to a Weber number
We = 2.

In figure 2.5 we plot the inverse of the measured aspect ratios of the de-
formed drop versus the corresponding Weber number and compare it with
experimental data from multiple measurements (Loth, 2008). For these sim-
ulations the Reynolds number is fixed to Re = 150 and the Weber number is
changed by modifying the elastic constants for each simulation. A very good
match is found between the aspect ratios computed from the IP model and the
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several experimental measurements of drop shapes found in literature. These
simulations further show that the IP model can be reliably used to simulate
deformation in liquid–liquid interfaces under given flow conditions.
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Figure 2.5: Comparison of the inverse aspect ratio (X−1) of the deformed
drop versus Weber number at Re = 150, with data from Loth (2008) for
contaminated drops or bubbles.

2.4 Dynamics of the left heart ventricle

We now move on to simulating the flow inside the left ventricle of the heart
where the motion of the ventricle and the valves are fully coupled to the flow
dynamics. The results from the numerical simulations are compared against
ad–hoc experiments where the ventricle is made up of silicone rubber.

The various structures used for this simulation are shown in figure 2.1 and
it is important to note that each structure is made up of a different material
i.e. each material has a different elastic property. The left ventricle and the
natural mitral valve can move and deform based on the local flow; the leaflets
of the mechanical mitral valve, while rigid in shape, can move depending on
the forces acting on their faces and more specifically on the moments of the
pressure and viscous forces about the hinges of the leaflets; the channels for
the aortic and mitral valves are completely rigid, fixed in space and provide a
passage for the influx and outflux of the flow. The aortic valve is not simulated
explicitly in these simulations but only through an opening/closing mechanism
that is imposed by the immersed boundary depending on the phase of the
cycle. While this has been done to limit the computational effort, it has
no major consequences on the results because we are only interested in the
ventricular flow and the aortic valve influences flow mainly in the ascending
aorta. The dynamics of the aorta could affect the ventricular flow because of
the timing of the opening and closure of the aperture, but it is driven by the
impedance of the circulatory system downstream and its simulation is much
more complicated and out of scope of this chapter.
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In reality, the configuration of the left ventricle is determined by the dy-
namics of the myocardium contraction and relaxation along with the defor-
mation of the valves and vessel walls. The complete structure adjusts to the
forces induced by the hydrodynamic loads (pressure and shear stresses), body
forces, internal damping and the internal elastic forces. In our simulations, the
flow into the ventricle is governed through an inflow–outflow channel rather
than a myocardium contraction to facilitate comparison with experiments.
Similar to the experiments, the ventricle is assumed to be made of a homoge-
neous material i.e. silicone rubber. With minor modifications the IP approach
works equally well for hyper elastic or inhomogeneous (orthotropic) materials
as discussed in section 2.2.

2.4.1 Experimental and numerical set–up

In figure 2.6a we show a CAD rendering of the experimental apparatus used
to replicate the dynamics of the left ventricle with a mechanical mitral valve
and results from this will be used to validate the numerical model. An electric
motor is used to drive a cam which imposes a prescribed displacement in time
of the pneumatic piston/cylinder. The cylinder is directly linked to a Plexiglass
box which is transparent and allows for the observation of the evolution of the
left ventricle model inside. The time law imposed by the pneumatic cylinder
is replicated by the fluid in the tank in which the left ventricle is immersed
and is the only deformable element. Moreover the evolution of the flow rate
imposed by the motion of the cylinder is captured versus time and this is
used as a boundary condition in the numerical simulations. This is shown in
figure 2.7 where we plot the flow rate versus time. As can be seen, the first
part of the cycle has one strong peak (E–wave) and a secondary weak peak
(A–wave) which is the result of the shape of the cam. The shape of the cam
can be modified to achieve any desired flow rate profile. In the case shown
here the ratio of amplitudes of E–wave to the A–wave is approximately 20:3.
The profile of the cam is chosen in such a way that the flow rate resembles
that of an inefficient and failing left ventricle and is generally observed in old
people or heart patients. In a healthy condition, the time evolution of the flow
rate versus time is similar to that shown in figure 2.7 but with an amplitude
ratio of A–wave to E–wave of approximately 0.5. The efficiency/healthiness
of the ventricle can also be quantified using ejection fraction (EF ) which
quantifies the pumping efficiency of the ventricle and is calculated as EF =
(V ∗M − V ∗m)/V ∗M ; V ∗m and V ∗M being the minimum and maximum values of the
volume of the left ventricle, respectively during the cycle.

The left ventricle is transparent and made up of silicone rubber, fixed to
the upper surface of the box by a rigid plate and consists of a mechanical mi-
tral and aortic valves. The fluid (deionized water here) inside the left ventricle
is pumped into the aorta which then flows into the hydraulic circuit composed
of two branches. In one, the windkessel, there is a box connected in series to
simulate the vascular capacitance while there are gate valves to regulate the
impedance of the systemic circulation or to exclude one branch or another.
The fluid after passing through the hydraulic circuit returns into the ventricle
through the duct and a new cardiac cycle starts. In order to compare ex-
perimental measurements and numerical simulations we make use of Particle
Image Velocimetry (PIV) measurements (Falchi et al., 2006) where the fluid is
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Mechanical

Mechanical

Figure 2.6: a) CAD rendering of the experimental set–up built for validating
the numerical approach. b) Cartesian computational box with the inflow–
outflow channel, mitral valve and the left ventricle. Individual components
are shown in figure 2.1.
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seeded with tracer particles (10 µm diameter pine pollen) and illuminated by
a laser sheet. The motion of the particles is captured using a high–speed cam-
era and a robust algorithm is used to compare image windows in subsequent
frames and estimate the velocity field in the flow on a regular grid.

In figure 2.6b we show the computational domain and the set–up of the
complete left ventricle along with the mechanical mitral valves and the chan-
nels for the aortic and mitral valves. The geometry of the structures, the ma-
terial properties and the boundary conditions have been chosen to replicate
the experimental conditions as close as possible. The channels connected to
the mitral and aortic valve perform the function for allowing the influx/outflux
of the fluid into/from the ventricle. Since we use the IBM formulation for rep-
resenting any immersed body, the whole domain is filled with a single fluid.
The domain is periodic in all the directions êx, êy and while it is confined in
the êz direction it allows for inflow–outflow boundary conditions on selected
regions.

The flow rate evolution shown in figure 2.7 is used as the boundary con-
dition on the inflow/outflow channels and is linked to an amplification factor
that regulates its amplitude, i.e. the higher the amplitude the higher the ejec-
tion fraction of the left ventricle. In the numerical simulations we set the value
of EF to 30% which is what is imposed in the experiments in order to study
the flow in a severe failing left ventricle.
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Figure 2.7: Flow rate (scaled by the diameter d of the opening to the mitral
valve) versus time (normalized using time T required for one cardiac cycle). It
regulates the expansion (positive flow–rate or diastolic phase) and relaxation
(negative flow–rate or systolic phase) of the ventricle.

After performing grid independence tests, a resolution of 150x150x150 was
chosen for the Eulerian field. The surface of the ventricle is discretized with
51142 triangular elements; mechanical valves with 2578 elements and the nat-
ural valves with 3794 elements each. Both experiments and the simulations
are performed in dynamic similitude with a real left ventricle i.e. since the
dimensions in the experiments and simulations are set to a 1:1 ratio in compar-
ison with a real left ventricle and water is four times less viscous than blood,
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the total system is pulsated four times slower to maintain the same Reynolds
number. The characteristic Reynolds number in the flow based on the mitral
orifice diameter and maximum inflow velocity is around 5000. For a nearly
isotropic membrane, the elastic constants used in the spring network can be
computed using the model by Van Gelder (1998) as ke = Eh(A1 +A2)/l2o and
kb = 2B/

√
3; E and B are the Young’s modulus and bending stiffness of the

membrane, respectively while h is the local membrane thickness and A1, A2
are the areas of the triangles sharing an edge with initial length lo. The ex-
periments discussed in the work use rubber silicon as the membrane material
and the elastic constants for the simulations are directly computed from the
physical properties of rubber silicon.

We first look at the large scale flow structures created inside the ventricle.
In figure 2.8 we plot the instantaneous snapshots of the flow velocity vectors
in the mid–Y plane at certain time instants. All the left panels correspond to
numerical simulations while the right panels show the measurements from the
PIV experiments. It can be seen that the large scale flow dynamics can be
reliably captured in the numerical simulations as compared to the experiments.
During the initial part of the cardiac cycle i.e. the diastole, the jet from the
mitral valve passes through the prosthetic mechanical leaflets which starts to
open. The flow over the two leaflets results in the propagation of two vortices
into the ventricle, one close to the left wall and the other in the center. The
two vortices are directed towards the apex of the ventricle, but since in both
the simulations and experiments we reproduce the dynamics of a failing left
ventricle the vortices soon dissipate into small scales and the mitral jet is not
able to penetrate down to the apex and wash out the stagnant fluid. This will
be shown more clearly later.

We now compare the mean position of the left ventricle in the êx and êz
directions to further validate the dynamics of the deforming ventricle from the
numerical simulations. This is shown in figure 2.9 where the mean position
x/d and z/d is plotted against time. The fluctuations in the mean x–position
of the left ventricle occurs due to its asymmetrical geometry with respect to
the mitral jet. The fluctuations seen in the numerical simulations are entirely
physical as we consider full FSI without any kinematic models to govern the
motion of the ventricle. The oscillations seen in the numerics cannot be fully
resolved in the experimental measurements. The positions obtained from the
numerical simulations have reasonably good agreement with its experimental
counterpart except from small oscillations which cannot be captured in the
experiments. This shows that not only the large scale flow structures, but
also the dynamics of the deforming left ventricle which is modelled using the
interaction potential approach can be simulated with reasonable accuracy.
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2.4 Dynamics of the left heart ventricle

Figure 2.8: Snapshots of the flow inside the ventricle during the diastolic
phase in the cardiac cycle: (left panels) numerical simulations; (right panels)
experimental measurements.
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Figure 2.9: Comparison of the mean position of the left ventricle in the êx and
êz directions versus time.

2.4.2 Mechanical and natural mitral valve

An important element affecting the dynamics and nature of the flow is the
presence of the mitral valve. To understand the effect of the mitral valve we
couple our computational model of the left ventricle with two kinds of mitral
valve: prosthetic mechanical valve and natural valve. While the former is
structurally rigid, the latter is similar to a flexible membrane and can deform
based on the local flow conditions (see figure 2.1). In figure 2.10 we show
both the mechanical and natural valve during their initial state and when
they are close to being fully open. Here we would like to again emphasize that
since the numerical set up uses a FSI approach, the valve dynamics are solely
determined by the hydrodynamic loads and any geometrical constraints set
up by the user. The panels on the right in figure 2.10 show a clear difference
in the shape of the ventricle. The shape of the ventricle depends heavily on
the hydrodynamic loads exerted on it from the fluid inside it. The mechanical
and natural mitral valves lead to different flow structures inside the ventricle
and thus a different shape of the ventricle. We now show the difference in flow
structures arising from the different valves used.
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Figure 2.10: The left panels show snapshots of a) mechanical and b) natural
valves at two different time instants in the diastolic phase of the cardiac cycle.
The right panels show the full set up of the ventricle along with the valves and
the inflow/outflow channels.

First we consider the case of a prosthetic mechanical mitral valve which
in a sense obstructs the flow through the mitral orifice. For the dynamics
of the full valve, we allow each leaflet to rotate around a fixed axis which is
symmetric about a plane situated in the center of the mitral orifice. In figure
2.11 we show the dynamics of the leaflets which go in opposite directions and
close asymmetrically since the backward flow induced by the systole comes
from different regions of the ventricle for the anterior and posterior leaflets.
The opening phase starts at the beginning of the diastole as the flow starts
accelerating and finishes before the end of the flow acceleration when the fully
open position is reached. The closing phase starts when the flow rate reaches
its peak and ends when the minimum negative value of the flow rate function
is achieved, thus positioning the leaflets in the fully closed position.
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Figure 2.11: Axial position of the center of mass of prosthetic mechanical
leaflets for a healthy left ventricle in a single cardiac cycle. The solid line and
dashed line represent two different leaflets. d is the diameter of the mitral
orifice, while T is the time taken for one full cardiac cycle.

In figure 2.12 we show instantaneous velocity fields during the diastolic
phase of the cardiac cycle with both a prosthetic mechanical and natural
mitral valve. In the case of mechanical valves (top panels of figure 2.12),
the leaflets start rotating during the early opening phase and destabilize the
mitral jet. In the bottom panels of figure 2.12 we show the flow structure in
the presence of a natural mitral valve which is also made up of two leaflets
but has different dynamics due to the inherent deformability of the natural
valves. In the presence of the mechanical valve, the flow is split into three
different jets thus causing high vorticity regions in the wake of the valve.
This results in the mitral jet not reaching the bottom of the ventricle as
desired. It is evident that the disturbance generated by the mechanical leaflets
destabilizes the mitral jet, creating vortex rings thus further decreasing its
capability to penetrate the ventricular region. The flow soon degenerates into
small scales that are dissipated during the diastatic phase of the cycle. Unlike
the prosthetic mechanical valves, the natural valves can deform based on the
local hydrodynamics forces allowing for a much smoother flow of the mitral jet
into the ventricle. Due to this the natural valves evolve differently resulting
in a different flow structure in the ventricle which reaches the bottom of the
ventricle which is a desired flow condition.

From the discussion of figure 2.12 it is clear that the behaviour of the
flow inside the left ventricle depends strongly on the kind of mitral valve used.
Overall, we have been able to show that the complete dynamics of the left heart
ventricle with either mechanical or biological valves can be simulated reliably
using IBM coupled with an interaction potential approach for deformation.
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Figure 2.12: Snapshots of the flow inside the ventricle at the two different
time instants (left and right panels) in the diastolic phase of the cardiac cy-
cle. Top panels show the ventricle with a mechanical natural valve while the
bottom panels show the ventricle with a deformable natural valve. The colour
represents the iso–surface of the velocity magnitude of the flow inside.
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2.5 Parallel performance

In this section we describe the parallelization strategy implemented and the
data structures required for parallelizing the algorithms described in previ-
ous sections. For dealing with a suspension of spherical particles, Uhlmann
(2004) proposed a ‘master’ and ‘slave’ strategy, where each particle is allo-
cated an individual ‘master’ processor which is responsible for all the compu-
tations related to it. Additional ‘slave’ processors may be allocated to help
the ‘master’ processor. Wang et al. (2013) employ a ‘gathering–scattering’
strategy where a single master processor is responsible for the computation
of the Lagrangian force on the immersed bodies and advecting them and this
information is scattered to the slave processors which solve the Navier–Stokes
equations in parallel. While both parallelization approaches have been shown
to produce reasonable performances, there exist some drawbacks and chal-
lenges. The strategy implemented by Uhlmann (2004) requires continuous
exchange of control on the Lagrangian mesh by the processors which may lead
to a complex programming environment. The approach of Wang et al. (2013)
eliminates this issue leading to a simple structure of the code while increase
in the memory usage on the master processor and data transfer between the
master and slaves are some hurdles. In this work, we propose a different easy
to implement parallelization approach for the IBM where the information of
all triangle nodes is present with all processors. But the computation required
for each Lagrangian node/structure is performed only by specific processors
depending on the type of computation that needs to be performed. In other
words the allocation of processor for the IBM depends on the task that needs
to be performed which results in a task–based parallelism for the FSI–IBM
computation.

We first describe in brief the parallelization strategy employed for the flow
solver and later explain the data structures and parallelization implemented
for the FSI–IBM in the appendix. For the flow solver we employ domain
decomposition and split the Cartesian box into slabs i.e. ‘one–dimensional
slab’ parallelization. It is also possible to use a Cartesian box decomposed with
‘two–dimensional pencil’ parallelization as shown in van der Poel et al. (2015).
In such a fluid solver, the viscous terms are computed explicitly in the periodic
directions to take advantage of the reduced ALL–to–ALL communications.
This may prove fatal dispersed deforming bodies in the flow since we also
need to resolve the boundary layers over the immersed bodies which have
dominant velocity gradients. With pure MPI, slab based codes already give
good scalability up to 103 cores and this can be further enhanced to 104

cores by having a hybrid MPI+OpenMP type parallelization which is already
sufficient to tackle a large scale of problems.

In addition to the slabs, each processor needs to store information from the
neighbouring processors which would be required for computing the derivatives
and is stored in what is called as a ‘halo/ghost’ layer. Since the flow solver
employs a second–order finite difference spatial discretization at most one halo
layer is required on each side of a slab for single phase flows. However, as we
explain later when this solver is coupled with a FSI–IBM solver for finite–size
bodies which makes use of MLS interpolations, multiple halo layers become
necessary. It is important to keep in mind that an unrestricted increase in
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the number of stored halo layers would automatically result in an increase in
the communication time which may deteriorate the overall performance of the
code. For the MLS interpolations which need a support domain of 27 (3x3x3)
Eulerian points at most 3 halo layers are necessary.

Figure 2.13: Schematic of two bodies immersed in a flow. Flow solver is 1D
slab parallelized. êz is the wall–normal direction.

We consider two arbitrarily shaped deformable bodies immersed in a flow
as shown in figure 2.13, where the squares represent the Lagrangian mark-
ers/centroids of the triangular elements. The allocation of Eulerian slabs to
each processor is straight forward as the Eulerian mesh stays fixed in time and
this is done at the start of the simulation. For the flow solver each processor
with identity myid is allocated the task of solving equation (2.1) on a slab of
[1:N_1,1:N_2,N_3_start:N_3_end]. Given below are the steps undertaken
to complete one full time step of the simulation. As given below there are four
major steps and multiple sub–steps involved in completing one full iteration.
The steps shown here are applicable for a loosely coupled approach which has
been used for the simulations in this chapter; details on the strongly coupled
approach are elaborated in the paper by de Tullio & Pascazio (2016).

1. Compute the indices of all markers/centroids on the Lagrangian mesh
relative to the Eulerian mesh.

2. Compute the properties of the Lagrangian mesh, i.e. surface areas and
normals of each face of the Lagrangian mesh.

3. Compute flow configuration along with IBM forcing i.e. all three sub–
steps of RK3 integration.

(a) Compute intermediate fluid velocity under the RK3 framework.
(b) Interpolate velocity on the centroids of the Lagrangian mesh using

MLS interpolation.
(c) Communicate the forces in the halo cells to neighbouring processors.
(d) Correct intermediate velocity using the MLS–interpolated force.
(e) Solve pressure correction equation and compute the pressure and

solenoidal velocity field.
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4. Compute external and internal loads on the immersed body.

(a) Compute the external loads which is the sum of pressure and viscous
forces on each face using MLS interpolation.

(b) Sum up external loads on all faces across all processors.
(c) Compute internal loads which are derived from the potentials de-

scribed in section 2.2.
(d) Sum up internal loads across all processors.
(e) Update the nodes of the triangles using Newton’s law of motion.

2.5.1 Data structures and pseudo code for Lagrangian mesh
parallelization

Here we give the details on the data structures and the pseudo code for the
parallelization of the IBM–IP solver.

The Lagrangian meshes shown in figure 2.1 are unstructured and are ex-
ported in the form of a GTS (GNU Triangulated Surface) data format which
contains information about the spatial positions of the vertices of the triangu-
lar elements, the various vertices which are connected by edges and also the
edges which constitute a face. Using this information we construct additional
auxiliary arrays which will be required while computing the total force acting
on the triangle nodes based on the potentials described in the section 2.2. The
total number of vertices, edges and faces on a single immersed body is stored
in N_vert, N_edge, N_face, respectively while N_particle is the total num-
ber of immersed bodies to be simulated and N_edge_vert is the maximum
number of edges that any single vertex can be connected to. A brief overview
of the required auxiliary integer arrays is given below.

1. vert_of_edge[2, N_edge, N_particle] : Contains pairs of vertices
sharing a single edge.

2. face_of_edge[2, N_edge, N_particle] : Contains pairs of faces shar-
ing a single edge.

3. vert_of_face[3, N_face, N_particle] : Contains the three vertices
that constitute a single face.

4. edge_of_face[3, N_face, N_particle] : Contains the three edges
that constitute a single face.

5. vert_of_vert[N_edge_vert, N_vert, N_particle] : Contains all the
vertices that a single vertex is connected to.

6. edge_of_vert[N_edge_vert, N_vert, N_particle] : Contains all the
edges that a single vertex is connected to.

7. v1234[4, N_edge, N_particle] : Contains all the four vertices that is
contained in two faces sharing an edge.

8. pind[3, N_face, N_particle] : Stores the [N_x,N_y,N_z] indices of
each centroid relative to the Eulerian mesh and tells us inside which
Eulerian computational cell the centroid resides in. This array is updated
every time step.
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9. bboxind[6,N_particle] : Stores the indices of the bounding box of
each immersed body.

In the first step, we compute the indices of all the centroids on every tri-
angular element and store it in a global array pind. In addition to the axial
index of every triangular element we also compute the mean axial index of
every immersed body i.e for an immersed body i the mean axial index is
bboxind[1:3,i]=0.5*(max(pind[1:3,:,i]+min(pind[1:3,:,i])). In step
2, we compute the geometrical properties of the triangulated mesh (i.e. sur-
face areas and normals of each triangular element). Both steps (1 and 2) are
done by all processors (i.e. MPI_COMM_WORLD) on all immersed bodies and at
the end of this operation every processor has information on all three indices
[pind(1:3,N_face,N_particle)] of every centroid immersed in the flow, sur-
face areas and normals of every triangular element.

For steps 3(a), 3(d) and 3(e) each processor performs all the operations
required on its respective slabs. Step 3(b), which consists of interpolation using
MLS and computing the IBM force has to be performed on the Lagrangian
markers (centroids here) and this is done only on the centroids lying within
the processors slab (see right panel of figure 2.13). This allocation is regardless
of which immersed body it belongs to. This is achieved by first performing
a check on the axial index of every centroid (stored in pind[3,:,:] and
computed in step 1); for example, if the processor Ci is responsible for the slab
[1:N_1,1:N_2,N_3_start:N_3_end] the following procedure is undertaken.

do i=1,N_particle
do j=1,N_face

if pind(3,j,i) >= N_start(myid).AND.pind(3,j,i) < N_end(myid)
- Perform MLS interpolation around the centroid.
- Compute IBM forcing.

end if

end do
end do

As explained in section 2.2, MLS interpolations require a support domain
built from 3 Eulerian grid nodes in each direction. Thus the forcing computed
from a centroid lying right next to a processor boundary would be stored in
a halo layer and this is communicated to the neighbouring processors in step
3(c). Every processor adds the IBM forcing received from the halo cells of the
neighbouring processors to the already existing forcing thus accounting for the
forcing from the centroids lying on processor boundaries.

Step 4(a) involves computing the external forces on the immersed body
(i.e. pressure and viscous forces) which are performed following the procedure
described in section 2.2. The allocation of processor for computing the exter-
nal processors is done in a similar manner to step 3(b). Here it is important to
note that for centroids lying on the processor boundaries the probes may lie
in the neighbouring processor. For example, a centroid belonging to processor
Ci may have an axial index of N_3_start and the axial index of the corre-
sponding probe would be N_3_start-1. Building a support domain around
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N_3_start-1 would require information from [N_3_start-2, N_3_start-1,
N_3_start] i.e. at least two halo layers need to be stored by each processor.

do i=1,N_particle
do j=1,N_face

if pind(3,j,i) >= N_start(myid).AND.pind(3,j,i) < N_end(myid)
- Compute probe and build support domain around the probe.
- Perform MLS interpolation around the probe.
- Compute pressure and viscous forces on faces.
- Distribute the forces from faces to nodes.

end if

end do
end do

In step 4(b), we reduce the external forces (FFF ext) over all the triangle nodes
immersed in the flow. MPI_ALLREDUCE is used to perform this operation which
results in all the processors having information on the external forces acting
on all triangular nodes. Here it is important to remember that the efficiency
of the MPI_ALLREDUCE operation may depend on the system architecture and
checks are necessary before proceeding to large scale runs with this algorithm.
The total force acting on each triangular node is computed as the summation
of the external forces (pressure + viscous) and the internal forces arising from
the elastic potentials i.e. FFF = FFF ext +FFF int; for the first time step the immersed
body is in its reference state and all internal forces are equal to zero and in
every succeeding time step Fint is the internal elastic forces computed in the
previous time step. With this step every processor updates the position of the
triangle nodes based on the total force.

Step 4(c) involves computing the internal elastic forces derived from the
potentials on each immersed body. Since this requires the full body to be
treated as a whole, we compute the location of the mean axial index of every
individual immersed body from the information in the array pind. The pro-
cessor responsible for this axial index takes care of computing all the internal
elastic forces (i.e. in–plane deformation, out–of–plane deformation, volume
constraint and area constraint) and computing the net internal force acting
on each node belonging to its allocated immersed body. While computing
the internal forces on each immersed body does not require any information
from the Eulerian mesh, such an allocation ensures the computing load is dis-
tributed evenly across all processors. Also it is important to note that MLS
interpolations which are the computationally expensive steps in this FSI–IBM
code are still performed only by processors containing the Lagrangian markers.
The pseudo code for this operation is given below.

do i=1,N_particle

if z_ave(i) >= N_start(myid).AND.z_ave(i) < N_end(myid)
- Compute forces from in-plane deformation.
- Compute forces from out-of-plane deformation.
- Compute forces from volume potential.
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- Compute forces from area potential.
- Sum up forces from all potential on the nodes.

end if

end do

In step 4(d), we reduce the internal forces (FFF int) over all triangle nodes
with an MPI_ALLREDUCE operation similar to the operation in 4(b). With this
we complete all the steps required for one full iteration of the flow solver and
the IBM coupled with the deformation.

2.5.2 Scaling

In figure 2.14 we show the computational performance of the parallelization
strategy just discussed. These simulations were performed on the thin nodes
of the Dutch supercomputing facility ’Cartesius’ where each node is composed
of 2x12 core 2.6 GHz Intel Xeon E5–2690 v3 CPU’s. As can be seen from the
plots in figure 2.14 strong scaling is achieved up to 1000 cores. The Eulerian
resolution was set to 720x720x3840 with a total of 25000 spherical particles
each discretized using 320 faces, i.e. a total of 8 Million Lagrangian mark-
ers were simulated simultaneously. Due to global storage of the geometrical
features and meta data of the Lagrangian markers, the memory consumption
by the IBM–IP part of the flow solver for such simulation is approximately
600MB.
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Figure 2.14: a) Scaling plot showing the time step for one full iteration of the
solver versus the number of cores used. b) Corresponding speed up versus the
number of cores.

For a given flow solver, the costliest steps in the IBM part of the solver
are the ones involving MLS interpolation since each interpolation requires the
construction of multiple coefficient matrices and a subsequent inversion of a
4x4 matrix (in 3D). For each Lagrangian marker (centroid) immersed in the
flow two MLS interpolations are required; one at the Lagrangian marker itself
to compute the IBM forcing and another at the position of the probe projected
from the centroid which is used for the computing the value pressure and
velocity gradients. Additional matrix operations are required for the velocity
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gradients since instead of the shape function we need to compute the derivative
of the shape function (Liu & Gu, 2005). On a single processor, increasing the
number of Lagrangian markers by two times can result in a three to five fold
increase in the simulation time. It is thus crucial to see how the parallel code
performs with increase in the total number of Lagrangian markers or triangular
faces.

In figure 2.15 we plot the non–dimensional time taken for one full itera-
tion with increasing total number of faces for two different types of simula-
tions. The time is normalized using the time taken for the first data point
i.e. Nface = 320. For these simulations the Eulerian grid is kept fixed to
120x120x720 and a total of 120 cores were used. In the left panel of figure
2.15, the immersed bodies are kept fixed in position and shape i.e. the compu-
tation of the structural solver is fully eliminated. Such simulations are useful
to compute the hydrodynamic forces acting on stationary bodies with a mean
flow imposed in the domain. As can be seen, with increase in the number of
faces there is negligible increase in the computational time. In comparison
to simulations involving moving and deforming objects, IBM simulations with
stationary and fixed bodies require only one MLS interpolation and this is
the reason for the negligible time increase. On the right panel we show the
increase in time for simulations involving both moving and deforming bodies.
These simulations require an additional MLS interpolation at the probe and
also the computation of shape function derivatives. For such simulations, a
100 times increase in the number of faces results in approximately 1.3 times
increase in the computational time. This shows that the increasing cost of
MLS interpolations on the Lagrangian markers can be offset by parallelizing
the task over multiple processors.
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Figure 2.15: Time taken for one full iteration normalized using the time taken
for the first data point versus the total number of triangular elements or faces
immersed in the domain. In the left panel the immersed bodies are stationary
and fixed in shape, while in the right panel the bodies can both move and
deform.
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2.6 Summary and outlook
In this chapter we have described the implementation of a finite–difference
based flow solver capable of handling several deforming membranes where the
deformation dynamics is computed through an interaction potential approach.
An IBM based on MLS interpolation is used to enforce the boundary condition
at the interface on the underlying flow, while the deformation dynamics is
computed through minimizing the potential energy of a spring network spread
over the surface of the immersed surface. The advantages of this approach,
in comparison to conventional techniques, are its computationally efficiency
and its great versatility. First we have discussed how it can be used to study
multiphase flows involving deformation of thousands of drops and bubbles
in highly turbulent flows; then we have shown another possible application
to hemodynamics problems related to the deformation of the left ventricle
coupled with mitral valve. In this latter case we have just introduced the
subject that will be deeply analyzed in the following chapter, where we will
study in detail the effects of different types (native and prosthetic mechanical
or biological) of mitral valve on the intraventricular flow structure, paying
attention to the valve dynamics and ventricle deformation.
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Chapter 3

Flow structure in healthy and
pathological left ventricles
with natural and prosthetic
mitral valves

Based on: Valentina Meschini, Marco D. de Tullio, Giorgio Querzoli & Roberto Verzicco,
‘Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral
valves’, to appear on Journal of Fluid Mechanics.
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3.1 Introduction

The human heart is made of two separate volumetric pumps, the right and
the left, respectively, shaded in blue and red in figure 3.1. The former is
responsible for the pulmonary circulation, which controls the blood flow to and
from the lungs, and therefore works with limited pressure differences≈ 2000 Pa
(15 mmHg). The left heart is instead the strongest since it feeds the systemic
circulation that brings oxygenated blood to the whole body (except for the
lungs and the heart itself). This implies that the left part has to withstand
the largest pressure differences, between atrium and ventricle, that are in the
range 1.6− 2.1× 104 Pa (120− 160 mmHg).

The valves ensure the correct flow direction and prevent blood regurgita-
tion. Those of the right heart are subjected to small fluid dynamic loads and
usually are not impaired. In contrast, the aortic and mitral valves, that direct
the blood from the ventricle to the aorta and from the atrium to the ventricle,
respectively, are the most subjected to damage.

A very simple schematic of the whole heart is given in figure 3.1; here we
limit the description to the dynamics only of the left part.

Figure 3.1: Schematic description of the heart functioning. (Picture adapted
from www.texasheart.org)

During diastole the blood from the left atrium enters, through the mitral
valve, the left ventricle and recirculates in it. As systole starts the myocardium
contracts and the blood is ejected, through the aortic valve, from the left ven-
tricle to the aorta from which it is distributed to the body. Although several
surgical procedures are available to repair and remodel the natural valves, in
some cases their replacement is unavoidable and, in those cases, choosing the
optimal prosthesis is crucial. Worldwide 280000 valve replacements are per-
formed each year and this number is constantly increasing with a projection
of about 800000 by 2050 owing to the increasing age of the population and a
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growing percentage of it accessing advanced medical care. Aortic and mitral
valve replacement are almost equally distributed, (Pibarot & Dumesnil, 2009).
However, while the former has already been the topic of extensive medical and
scientific research, the latter has been less explored and its post–operative ef-
fects on the left ventricle dynamics still need to be analysed in details. The
main reason for this difference is that the outflow of the aortic valve goes di-
rectly into the aorta that, even if a very complex and vital ‘organ’, operates
passively. In contrast, the flow produced by the mitral valve interacts directly
with the left ventricle whose dynamics is the result of the interaction between
the active contraction/relaxation of the myocardium and the surface loads
produced by the blood. Furthermore, the structure of the tissues composing
the ventricular wall, and the ventricle as a whole, develop and change in re-
sponse to the solicitations exerted by the intraventricular flow. This implies
that any change in the flow through the mitral valve, either natural or pros-
thetic, produces an altered blood flow that, in turn, can lead to pathological
conditions and ventricle impairing.

Accordingly, we aim to investigate how the flow structure inside the left
ventricle is altered by a mitral valve replacement for different fractions of vol-
ume ejected by the left ventricle. This requires the simultaneous consideration
of different prosthetic valve models (figure 3.2) and various levels of ventricle
pumping efficiency. Concerning the first point two alternatives are available:
Biological and mechanical valves. The former (figure 3.2b) are prosthetic de-
vices made of biological tissues (bovine pericardium or porcine heart valves)
and have three flexible leaflets differently from the native mitral valve which
is made by two, asymmetrical, leaflets. These valves have good hemodynam-
ics and reduced propensity to damage the blood cells (hemolysis) or produce
clots (thrombogenesis), therefore they do not need lifelong anticoagulant treat-
ments. The drawback is, however, that their lifetime is around 15− 20 years
and they need to be replaced beyond this operating time. The semilunar
mechanical valves (figure 3.2c), instead, are made of pyrolytic carbon. They
regulate the flow direction by two rigid leaflets hinged to an annular frame.
The main advantage of mechanical valves is their lifelong duration (about 80
years). Therefore they are indicated for patients with life expectation beyond
15 years. Their main drawback is the altered hemodynamics (Querzoli et al.,
2010; de Tullio et al., 2009) which re res a lifelong anticoagulation therapy,
to prevent clot formation, with its accompanying risk of bleeding and hemor-
rhagic events.

a) b) c)

Figure 3.2: Different geometries of the mitral valve: a) natural, b) biological,
c) mechanical.
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The pumping function of the ventricle can be quantified by its ejection
fraction (EF ). Let V ∗(t) be the volume of blood in the ventricle during the
heart cycle with a maximum V ∗M at the end of the diastolic phase, when the
myocardium is fully relaxed, and a minimum V ∗m at the end of the systolic
phase, when the myocardium ends its contraction. The difference V ∗M − V ∗m is
the amount of blood ejected from the ventricle during one cycle and the ratio
(V ∗M − V ∗m)/V ∗M = EF is the ejection fraction. Although this parameter has
some variation among individuals, values 50% ≤ EF ≤ 70% are considered
physiologic, 40% ≤ EF ≤ 50% pathological and EF ≤ 35% life threatening.

Owing to the synergistic interaction between the mitral flow and the ven-
tricle dynamics, it is natural to conjecture that the flow alterations induced by
a prosthetic valve will have different impacts on the ventricular flow depending
on its pumping efficiency. In the literature there is plenty of studies focusing
on specific aspects of the mitral flow or on the mitral valve dynamics. Among
many, Faludi et al. (2010), Querzoli et al. (2010) and Pedrizzetti et al. (2010)
have underlined the strong influence the mitral valve has on the diastolic flow
structure, and Einstein et al. (2005b), Griffith et al. (2009) and Wattona et al.
(2008) have focused on the dynamics of mitral valve leaflets. Moreover Mc-
queen & Peskin (2000) and Mihalef et al. (2011) have studied the effect of
combining realistic intraventricular flow with physiological mitral valve using
patient specific models without FSI. Vukićević et al. (2012) underlined the role
of the asymmetrical structure of the native mitral valve and investigated the
flow generated by a mechanical, asymmetrical prosthesis. Recently, Seo et al.
(2014) have analysed how the morphology and kinematics of the mitral valve
can affect the left ventricular flow using a physiological mitral valve. The mo-
tion of the leaflets was however prescribed, thus the synergistic interaction of
flow and structure dynamics is imposed rather than captured by the solution.

In order to fill this gap and to simulate the complete system with the
minimum number of assumptions, in this chapter a full FSI model for the left
ventricle and the mitral valve is used, obtaining a more realistic representation
of the phenomenon. In this way, both, the valve and the ventricle dynamics
are determined by their interaction with the flow which, in turn, depends on
the motion of the boundaries. To limit the computational effort we focus on
two representative values of EF , 60% and 40%, respectively, for healthy and
pathological ventricles. Each case is simulated over several heart cycles (10
for all production runs and 5 for the refined cases) and the system dynamics
is phase averaged. First the configuration with the natural mitral valve is
investigated, either for healthy and for impaired ventricles, and it is used as
a reference case. Then the flows with a prosthetic biological and a mechan-
ical bileaflet valves are analysed and their dynamics compared. By running
additional dedicated simulations we assess also the differences between New-
tonian and non–Newtonian fluid models for the blood and the sensitivity of
the dynamics to the material properties of the valve leaflets. We believe that
this study can give an important contribution to the assessment of the per-
formance of biological and mechanical prosthetic valves for different ventricle
efficiencies and this is a crucial information for the surgeons in the decision
process of the heart valve replacement.

The structure of the chapter is as follows. In the next section the problem,
the numerical model and its experimental counterpart are described. In the
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same section also the the flow parameters, the validation and the convergence
checks are given. In section 3 the results are presented and discussed, starting
from the physiological flow produced by a natural valve. This will serve as a
reference case against which evaluating the flows generated by biological and
mechanical valves. In the same section additional simulations are presented
to assess the robustness of the reference results to the specific fluid model
(Newtonian vs shear–thinning non–Newtonian), to the thickness and material
properties of the leaflets and to the geometrical lumen of the mitral channel. A
general comment of the results is given in section 4 together with a discussion
in the context of the clinical literature. The closing remarks, some comments
about how the present physical model compares with the real flow in the heart
and the perspectives for future studies are given in the final section.

3.2 The problem

3.2.1 Numerical and experimental set–up

The set–up of the problem is given in figure 3.3 showing the experimental
realization and its numerical counterpart. Figure 3.3b focuses on the core of
a pulse duplicator of the systemic circulation described in section 2.4.1; on
an AC electrical motor, controlled by an inverter, is splined a cam that, in
its rotary motion, pushes a piston driving water into a sealed plexiglass tank
with a periodic mean velocity U∗(t) (figure 3.4a). This flow induces a passive
variation of the total volume of the system that, owing to incompressibility, is
copied by the ventricle (figure 3.4b). The time evolution of U∗(t) in figure 3.4a
is that of a pathologic elderly heart in which the passive filling phase (E–wave)
is much stronger than the active counterpart (A–wave) when the left atrium
contracts. The cross–section of the piston and the law U∗(t) determine the
stroke volume that, in the experiments is fixed at V ∗e = 90 cm3; the minimum
ventricle volume V ∗m, in contrast, can be varied continuously by adding or
removing water from the sealed Plexiglas box. In this way the ejection fraction
EF = V ∗e /(V ∗e + V ∗m) can be adjusted to the desired value.

The ventricle is a 2− 3–millimeter thick membrane made by a transparent
silicon rubber of density ρ∗s = 1.04 gr/cm3 and Young modulus E∗ = 1.5 MPa.
The density of the rubber is almost identical to that of the myocardium
(1040 Kg/m3 vs 1060 Kg/m3) while it is three times stiffer than the biological
tissue (E = 1.5 MPa vs max E = 0.5 MPa) and this difference has been com-
pensated by making the ventricle thickness (≈ 2−−3 mm) about three times
smaller than that of the myocardium (≤ 1 cm). This is however still far from
the real case when considering that the myocardium is anisotropic, because
of the fiber orientation, and hyperelastic (nonlinear). In addition during the
heart cycle the myocardium changes its stiffness from 0.02 up to 0.5 MPa and
it contracts actively rather than passively adapting to the imposed inflow as
in the present study.

The ventricle is connected to two rigid pipes of inner diameter 19 mm and
24 mm that mimic, respectively, the aortic and mitral channels. The distal
extrema of the pipes accommodate two rigid rings (dashed line in figure 3.3b)
in which different valves can be fit; any of the valves of figure 3.2, or a simple
check valve, can be used in both positions. For the present experiments a
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Figure 3.3: a) Numerical set–up for the left ventricle. The bullets indicate the
position, in the symmetry x–z plane, of some relevant numerical probes: the
red one is the ‘apex’ probe used to detect the apical flow stagnation; the yellow
ones are used to compute the transvalvular pressure drop and the velocity in
the mitral jet; the green one is located at the ventricle centroid (x = 0.1,
y = 0, z = 1.15), at the end–systole configuration. b) Experimental set–up
containing the left ventricle.
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Figure 3.4: a) Time evolution of the inflow/outflow velocity U∗(t) over a
cardiac cycle. b) Time evolution of the volume V ∗(t) of the left ventricle.
Both plots are in dimensional units.
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check valve was used in aortic position whereas a model of the native valve,
made of silicon rubber, was placed in mitral position.

The working fluid is water whose kinematic viscosity ν∗ = 1.2×10−−6 m2/s
is about four times smaller than that of the whole blood (considered as a
Newtonian fluid and with a hematocrit, the volume fraction of solid cells over
the total volume, of 45 %). Being the Reynolds number Re = U∗MD

∗/ν∗,
and Wo = D∗/

√
T ∗ν∗ the Womersley number, with U∗M the maximum of

U∗(t) over the diastolic phase, T ∗ the period of the cardiac cycle and D∗ the
diameter of the mitral channel, with a full scale model (D∗ = 24 mm) the
velocity U∗M has to be four times smaller than in a real heart if we have to
operate in dynamic similarity. In our experiment this implies that the cam
frequency must be four times smaller than that of the heart in order to operate
in dynamic similarity. Accordingly, the rotation rate was fixed to 15 rpm on
order to reproduce a heart at 60 beats per minute. For an ejection fraction
EF = 60% we have Re = 4229 and Wo = 11 which are typical values for a
physiologic condition.

The fluid was seeded with pine pollen particles and the system illuminated
by a laser sheet so that the flow in the vertical x–z symmetry plane could
be recorded by a high–speed camera at 1000 fps. An advantage of having
an experiment running four times slower than the real phenomenon is the
higher time resolution of the flow measurements achievable within a given
frame rate of the available camera. This time stretch, however, affects also
the fluid/structure interaction that, is not in dynamic similitude unless the
elastic properties of the material are changed. We note that in the present
set–up all the structures are very thin and the deformable ones relatively soft;
this implies that their dynamics is dominated by the balance between external
loads and added mass (see the results of section 3.3.3) and not on the density
and stiffness of the material. Of course the latter would change considerably
the magnitude and distribution of the structural internal stresses that have
not been investigated in this study. Images (1024 × 1280 pixels, 0.11 mm
per pixel) have been processed by the variant of the classical PIV algorithm,
described in details in Falchi et al. (2006), in order to compute the two–
dimensional, instantaneous velocity field. The final size of the interrogation
windows was 31 × 31 pixels, with a 50% overlap. The uncertainty in the
particle displacement measurement was about 0.1 pixel. An evident advantage
of having an experiment running four times slower than the real phenomenon
is the higher time resolution of the flow measurement achievable within a given
frame rate of the available camera.

The computational model is aimed at reproducing as close as possible
the above described experiment. In the set–up of figure 3.3a it is shown the
computational domain that is periodic in the two horizontal directions and
allows for inflow/outflow in the vertical ones. Over the upper surface the
inflow is imposed through the mitral channel according to U(t) when it is
positive and an outflow through the aortic channel when U(t) is negative.
The flow rate through the bottom wall is adjusted at each time step so to
ensure the incompressibility and to preserve the total fluid volume. In the
numerical model all the variables are presented in non dimensional form with
the velocities scaled by U∗M , the lengths byD∗ and the times by the cycle period
T ∗; the non dimensional variables are indicated without the superscript ∗.
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The mitral and aortic channels together with the valve planes (in red in
figure 3.3a) are modeled as a rigid structure that is used as a frame to anchor
the deformable ventricle and the valve leaflets, respectively in gray, green and
blue in 3.3a.

In the experimental set–up a simple check valve was placed in aortic posi-
tion. In order to replicate this simple behaviour we have used a porous medium
in the aortic channel with a time–dependent porosity (de Tullio et al., 2011c).
During diastole the medium porosity goes to zero thus obstructing the duct
and preventing the fluid from entering the aortic channel, during systole the
porosity tends to infinity and the fluid can leave the ventricle to enter the
aorta.

The reference frame is as shown in figure 3.3a with the positive z pointing
vertically downward and the origin z = 0 at the mitral annulus. The x–z
plane at y = 0 is a symmetry plane for the system.

The flow volume is disseminated with 36 numerical probes that provide
a continuous pointwise sampling of all velocity and vorticity components and
of the pressure. The most relevant are the ‘apex’ probe (the red bullet in
figure 3.3a at z = 2.5), the ‘centroid’ probe (the green bullet in figure 3.3a at
x = 0.1, y = 0, z = 1.15) and the three ‘mitral’ probes (the yellow bullets at
z = 0, 0.75 and 1.5) that are used to analyse the time evolution of velocity
and pressure.

3.2.2 The numerical method

The computational model is basically that described by de Tullio & Pascazio
(2016) and Spandan et al. (2017), which consists of a flow solver two–way
coupled with a structure solver; the resulting assembly is computationally effi-
cient and flexible enough to allow for the solution of a wide range of problems
ranging from multiphase flows to turbulence in complex geometries. All the
details of the algorithms, the validations and the convergence checks can be
found in the above references, only the main features are summarized here.

In this study the package has been used for a bio–fluid–dynamic problem,
namely the blood dynamics in a realistic left heart ventricle with several dif-
ferent types of mitral valves and physiological flow parameters. The flow is
incompressible and viscous thus its motion is described by the Navier–Stokes
equations, which in non dimensional form read:

∂u
∂t

+ u · ∇u = −∇p+∇ · τττ + f ,

∇ · u = 0.
(3.1)

Here u is the velocity, p is the pressure and f is a specific body force term
that is used, within the immersed boundary context, to enforce the boundary
condition at the various fluid–structure interfaces. In the present study for
all but one case the blood has been considered as a Newtonian fluid since
it is known that its non–Newtonian features become relevant only in vessels
of diameter smaller than 15 − 20 red blood cell diameters (∼ 80 − 100 µm)
(Siginer et al. (1999)): in these cases the viscous term of equation (4.1) reads
∇ · τττ = ∇2u/Re. The flow solver, however, can simulate also more complex
constitutive relations as already done in De Vita et al. (2016). In one case,
described in section 3.3.2, in order to show that indeed for the present problem
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the non–Newtonian nature of blood plays only a minor role on the overall
dynamics, the Carreau–Yasuda shear–thinning model has been used. In this
fluid the kinematic viscosity ν depends on the magnitude of the rate–of–strain
tensor S = |S| = |∇u+∇uT |/2 according to ν(S) = ν∞+(ν0−ν∞)[1+(λS)2]b.
This function gives a decreasing viscosity for increasing shear stresses with the
plateau ν0 and the asymptotic values ν∞, respectively, for the limiting cases
S → 0 and S →∞. With this fluid model the viscous term of equation (4.1)
becomes ∇ · τττ = ∇ · [2ν(S)S]/(ν∞Re), the Reynolds number being computed
using the ν∞ viscosity. As already done in De Vita et al. (2016), also in the
present study we have selected the parameters of the fluid model to mimic
an adult healthy male with an hematocrit (ratio of the cell volume to the
whole blood volume) of 40% which yield λ = 3.313s, b = −0.3216, ν∞ =
3.7× 10−6m2/s and ν0 = 4.3ν∞.

The structure deformation is solved using a spring–mass method which is
based on an interaction potential approach (Tanaka et al., 2012) and applied
to different problems by de Tullio & Pascazio (2016) and Spandan et al. (2017).
Here, the wet surfaces of the ventricle and mitral valve are discretized using
triangular elements with a uniform distribution of the body mass on their
vertices. The nodes are connected by springs of elastic constant ke and two
triangles sharing an edge have a bending stiffness kb. When the resulting
network deforms owing to external forces, internal potential energy is stored
into the system according to W = ke(`− `0)2/2 + kb(1− cos (θ − θ0)) where `
and θ are, respectively, the vector connecting two vertices of an edge and the
angle between the normals of two triangles sharing that edge; `0 and θ0 are the
same quantities in the reference stress–free configuration (figure 3.5). Once the
potential energy for each node is known the internal forces in the structure can
be computed through Fint = −∇W that, together with the external forces Fext

(hydrodynamics loads, gravity and other body forces), allows for the solution
of the second Newton’s law for each node mnẍ = Fint + Fext with mn the
mass associated to the node. From the acceleration, by successive integrations
the velocity ẋ and the position x of the nodes is computed thus yielding the
updated configuration of the structure.

2

2

1

θ

θ0

0

1

Figure 3.5: (left) Undeformed and (right) deformed configuration of the struc-
ture.

In the present study, in which the structures are essentially isotropic mem-
branes, the elastic constants ke and kb are computed using the Van Gelder
model (1998) via ke = Eh(A1 + A2)/`20 and kb = B2/

√
3 being E and B, re-
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spectively, the Young modulus of the material and the bending stiffness of the
structure, h the local membrane thickness, A1, A2 the area of the two triangles
sharing the edge `0. As shown in de Tullio & Pascazio (2016) the method can
be extended to non–linear as well as anisotropic materials; this is certainly
the case of the biological tissues that are hyperelastic and orthotropic. In this
investigation, however, with reference experiments performed with rubber sil-
icon as membrane material this additional feature was not necessary and it
has not been activated in our simulations.

The presence of the structure on the fluid, and vice versa, is enforced
through IBM that avoid body fitted meshes and handle moving and/or deform-
ing boundaries within the ease and efficiency of simple meshes. The present
problem involves rigid as well as deformable structures therefore two different
IBM are implemented in the code; the direct–forcing of Fadlun et al. (2000)
is used for the rigid, still parts since the method is robust, computationally
inexpensive and it does not require a fine and even triangulation of the surface.
On the other hand, for the moving and deformable surfaces the MLS approach
of Vanella & Balaras (2009) is used because, even if computationally more ex-
pensive, it yields smooth hydrodynamic loads at the immersed interfaces that
result in a more accurate description of the structure dynamics.

All the ingredients described above are controlled by a FSI algorithm that
is implemented either in the ‘strong’ and in the ‘loose’ coupling mode. In the
former, the fluid and structure problems are solved together as a single large
dynamical system through an iterative procedure, while in the latter the fluid
is solved first and the generated hydrodynamic loads are used to update the
structure in which the fluid evolves at the successive time step. The strong
coupling is robust and reliable although it is computationally demanding since
it requires iteration steps (typically 2− 4) between fluid and structure solvers
(de Tullio et al. (2009)). In contrast, the loose coupling approach is consid-
erably faster although it can easily become unstable especially when used for
problems, like the present one, where the added mass plays an important role.
After an extensive series of preliminary simulations, convergence checks and
validations, it has been determined that the most effective strategy is a loose
coupling approach combined with a time substepping for the structure dy-
namics. In few words, from the flow and structure at the time tn the flow at
the new time (tn+1 = tn + ∆t) is computed; the hydrodynamic loads at the
old and new time are then used to advance the structure with a time substep
∆ts = ∆t/S, S being the number of substeps, until the time tn+1 is reached.
This procedure needs the flow solution and the IBM only once per time step
and requires multiple solutions only of the structure part that, being much
faster than the rest, does not penalize the overall performance.

Since the present problem involves the dynamics of membranes in a fluid,
an important component of the simulation is the model of their contact. A
common practice is to introduce a repulsive force that increases as the distance
between two bodies decreases (Tanaka et al., 2012) to induce a ‘rebound’
when they get close enough. This would be very easy to prescribe in these
simulations owing to the definition of forces through potentials. However,
when a heart valve closes, the leaflets must stay in contact in order to prevent
the regurgitation and the approach based on the repulsive force generates
instabilities and stiffens the numerical problem. As an alternative we have
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defined, over the computational mesh, an array that is null in the fluid phase
and assumes a specific (integer) value in the cells occupied by each body.
Its values are updated every time step and when, during the integration, a
triangle ends up in a non null cell it means that the position is already occupied
by another triangle. In this case the velocities of both surface elements are
set to their average so that they can still freely move together in space but
cannot compenetrate. On the other hand, when the system dynamics brings
two contacting triangles far apart they can evolve according to the computed
trajectory; we will see in the following that this approach allows the valve to
close without prescribing a contact surface but, at the same time, it prevents
the compenetration between the leaflets and between leaflets and ventricle.

Before concluding this section, we wish to mention that at the initial stage
of this study, in order to save computational time, we have tried to prescribe
the motion of the valve leaflets and to limit the FSI only to the ventricle dy-
namics. This approach resulted in considerable computational savings (above
60 − 70%) but it yielded results that were strongly dependent on the plau-
sibility of the assigned (guessed) leaflet motion. Any mismatch between the
true and the assigned leaflets position resulted in the generation of vortex
structures that were shed from the valve and propagated into the flow. In
addition we will see that there is a substantial cycle–to–cycle variation in the
flow, therefore even if the valve dynamics is properly guessed in a cycle, it
might be not in another thus spoiling the overall quality of the solution.

3.2.3 Simulation parameters, grid convergence and experimen-
tal validation

All the numerical simulations discussed in this chapter have been run for a
set–up as in figure 3.3a on a mesh of 1293 nodes evenly distributed in all three
directions. The ventricle has been discretized by 3 × 104 triangles while the
two leaflets of the natural mitral valve (figure 3.3a) have a total of 8 × 103

triangles. The Lagrangian (triangle) resolution is about 70% the local Eulerian
grid spacing, in order to correctly impose the boundary conditions on the
bodies. The time integration has been performed at constant Courant number
CFL = 0.2 with a dynamic time step that adjusts during the integration
so to maintain the CFL constant. The substepping for the integration of
the structure is fixed at S = 50. The specific values of the time step size
depend on the ejection fraction of the ventricle; typical figures for EF = 40%
(EF = 60%) are 1.5×104 (3×104) time steps per cycle with a single–processor
equivalent CPU time of ≈ 20 h (≈ 40 h). The computational load increases
steeply as the simulation is refined: For a run at EF = 60% on a mesh of
1933 nodes with 4.2 × 104 triangles for the ventricle and 1.2 × 104 for both
leaflets the number of time steps per cycles ramps up to 5 × 104 and the
single–processor equivalent CPU time to ≈ 170 h. For the same physical case,
in a further refined simulation, the number of computational nodes has been
increased to 2573, the triangular elements for all the structures to 6.8 × 104

and the required number of time–steps per cycle increased to ≈ 9.2 × 104

and the single–processor equivalent CPU time slightly smaller than 2000 h.
Owing to the large computational cost of the refined cases the simulations on
the 1933 and 2573 grids have been run ‘only’ for 5 heart cycles while all the
other production cases for 10 heart cycles.
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As an aside we note that the steeply increasing CPU time requirement for
more refined Eulerian and Lagrangian meshes makes the parallelization of the
computational method unavoidable as detailed in Spandan et al. (2017).
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Figure 3.6: a) Instantaneous values of x–velocity component at the probe
placed at the apex of the left ventricle. b) Kinetic energy of the flow inside
the left ventricle. grid with 2573 nodes, grid with 1933 nodes,

grid with 1293 nodes. Inflow/outflow curve as in figure 3.4a.

Figure 3.6 shows the time series for the x component of the velocity sam-
pled at the ventricle apex probe (see figure 3.3a) and of the kinetic energy of
the flow inside the ventricle: the results are shown for the very fine (2573), re-
fined (1933) and the basic (1293) cases. There is substantial agreement among
the results although it can be noted a considerable cycle–to–cycle variation
that makes difficult the instantaneous comparison of the various quantities.
This is due to the dynamics of the small scales that are produced by the
turbulent cascade transferring energy from the largest flow scales up to the
smallest dissipative structures. The small flow scales tend to have chaotic dy-
namics and can only be described statistically. In the present case, in order
to filter out these turbulent fluctuations, the data have been phase averaged
over 10 cycles (5 for the finer grids) and the results are reported in figure
3.7ab evidencing an improvement of the agreement that, however, still shows
non negligible differences. For this reason, in figure 3.7a, in addition to the
phase averaged data, three instantaneous profiles from each case are reported
in the background. It can be noted that the amplitude of the instantaneous
fluctuations can be up to five times bigger than the differences between the
phase averaged profiles thus suggesting that it is the insufficient statistical
convergence rather than the inadequate spatial resolution that produces the
discrepancies. As a confirmation of this conjecture we note that the largest
deviations occur in those parts of the cycle where the fluctuations are the
largest and not all over the cycle. Additional evidence of the resolution qual-
ity comes from the instantaneous flow snapshots and the spatial profiles (later
shown in this chapter) which do not evidence the δ–waves (or wiggles) that
typically appear when an energy–conserving integration scheme is employed
with coarse spatial resolution.

Since in these simulations not only the flow but also the structure dy-
namics is part of the solution, in figure 3.7cd we report the time evolution of
the X– and Z–centroids of the ventricle obtained from spatial averages over
instantaneous configurations and phase averages over the cycles.
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Figure 3.7: a) Phase–averaged values of x–velocity at the apex probe. b)
Phase–averaged kinetic energy of the flow inside the ventricle. c) Phase av-
eraged X–centroid of the ventricle contour. d) Phase averaged Z–centroid of
the ventricle contour. grid with 2573 nodes, grid with 1933 nodes,

grid with 1293 nodes. Inflow/outflow curve as in figure 3.4a.
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Figure 3.8: a) Instantaneous values of the velocity magnitude at the probe
placed at the ventricle centroid (green probe of figure 3.3a). b) The same
as a) but for phase–averaged velocity. c) Phase–averaged Z–centroid of the
posterior leaflet of the mitral valve. grid with 2573 nodes, grid
with 1933 nodes, grid with 1293 nodes. Inflow/outflow curve as in figure
3.4a.

An additional quantity that has been monitored in this grid refinement
check is the evolution of the velocity magnitude at the probe located at the
centroid of the ventricle and the instantaneous as well as the phase–averaged
values are reported in figure 3.8. Again, it can be noted a considerable cycle–
to–cycle variation of the dynamics that makes the instantaneous values diffi-
cult to compare quantitatively even if the qualitative behaviour looks similar.
Nevertheless, when the data are phase–averaged, the large fluctuations cancel
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out and similar values are obtained. Also in this case the agreement between
the three cases is more than satisfactory thus giving us confidence that the
mesh for the simulations was adequate for the investigated parameter range.
Also the motion of the valve leaflet results properly captured by the the com-
bination of Eulerian/Lagrangian meshes of this study as shown in figure 3.8c
for the posterior mitral leaflet. Of course an even better agreement could be
obtained by increasing the number of simulated cycles to further smooth the
phase averaged profiles; on account of the computational cost of the more re-
fined cases however computing more than 5 cycles has not been a practical
option.

Figure 3.9: Comparison between experimental measurements (a), c)) and nu-
merical results (b), d)) of the flow inside the left ventricle, respectively at the
peak of the E-wave t = 0.2 and late systole t = 0.9. Inflow/outflow curve as
in figure 3.4a.

Before concluding this discussion on the grid refinement check, it is worth-
while to mention that the Reynolds number Re = 4229 of the flow is computed
using the peak velocity of the E–wave (figure 3.4a) that lasts only for a small
fraction of the cycle. In this problem the cycle–averaged velocity is zero and
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its rms is only 0.158 Vpeak with the Reynolds number reduced proportion-
ally. In addition the flow is pulsatile and the time window during which the
Reynolds number remains large is too short to allow the flow to transition to
fully developed turbulence (in which the energy cascades down up to the Kol-
mogorov scale). This implies that the usual order of magnitude estimates used
for homogeneous isotropic turbulence of for statistically steady flows do not
apply directly here and the only reliable check is a grid refinement as above
described.

Of course, even if the output of the numerical code is grid independent this
does not imply that the results are physically reliable and that they reproduce
correctly the intended problem. For this reason we have also compared the
numerical data with an ad hoc laboratory experiment run for identical dy-
namical conditions. We measured the instantaneous two–dimensional velocity
field in the x–z symmetry plane and the shape of the ventricle that are shown
for representative phases of the cycle in figures 3.9–3.11. It can be observed
that the dynamics of the main jet and the main recirculations are satisfactorily
matched and also the motion of the ventricle compares well.

Also satisfactory can be considered the comparison of the horizontal pro-
files of vertical velocity extracted at the symmetry plane y = 0 in a section
at z = 1 during the diastole and systole (figure 3.10). When evaluating the
quality of the agreement it should be considered that while the numerical data
are phase averaged over 10 cycles, the experimental points are extracted from
a single snapshot since quantitative acquisitions were run only for one cycle.
This implies that for a phase of the cycle when the flow rate is stagnant or fur-
ther downstream in the ventricle where the fluctuations dominate the velocity
field, the same comparison as in figure 3.10 gives less satisfactory results.

As already evidenced in figure 3.6, the small–scale dynamics shows some
differences that, however, should be ascribed to cycle–to–cycle variations rather
than to mismatches between the numerical simulations and the experiment.
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Figure 3.10: Comparison between experimental measurements (◦ ) and numer-
ical results ( ) for velocity profiles in the symmetry plane (y = 0). Top,
horizontal section at z = 1: a) E-wave t = 0.25, b) peak systole at t = 0.8.
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3.3 Results

In this section the results obtained for two different ejection fractions and
three types of mitral valves are discussed and compared. The first reference
case, that will be used as a guideline to distinguish between physiologic and
pathologic behaviours, is that of an efficient ventricle (EF = 60%) with a
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natural mitral valve (figure 3.2a) that is the normal condition for a healthy
human being. In this case the flow rate during the cycle is that shown in figure
3.12 with a ratio of the inflow peaks at the E– and A–waves ≈ 0.5.

In a successive section the same healthy ventricle configuration will be sim-
ulated with a non–Newtonian shear–thinning (Carreau–Yasuda) fluid model
in order to validate the Newtonian fluid assumption used for the rest of the
chapter.

Section 3.3.3 is devoted to assess the sensitivity of the solution to the
material properties and membrane thicknesses used to model the natural and
biological valves. This analysis has been performed since there is a lot of
variability among individuals of the biological tissue properties and if the
solution were too sensitive to a specific set of values any conclusion should be
limited only to that specific case and would not be general. In the same section
also the effects of a reduced section available to the flow (stenotic valve) are
briefly described to further stress the importance of comparing different valve
models within the same mitral orifice area.
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Figure 3.12: Flow rate in the ventricle U(t) during the cycle. EF = 60%,
EF = 40%. The ◦ on the EF = 60% line indicate the representative

times of the cycle in which the solution is shown later.

The flow in a ventricle with low pumping efficiency (figure 3.12, dashed
line) will be then considered in order to assess the effect of a deteriorated
ejection fraction, characterizing an unhealthy ventricle, on the system dynam-
ics. As already mentioned the Reynolds number for EF = 60% is Re = 4229
and it is based on the dimensional peak velocity at the E–wave. If the same
velocity were used to compute the Reynolds number at EF = 40% a smaller
value would be obtained (≈ 2000). However, in order to have a more immedi-
ate comparison between the two cases, we have decided to leave the Reynolds
number fixed at Re = 4229 and to rescale the inflow/outflow velocity profile
as in the dashed line of figure 3.12.

Both ventricle conditions have been then evaluated either with a trileaflet
biological and with a bileaflet mechanical mitral valve to analyse the effects of
a prosthetic valve on the ventricle and flow dynamics.

It is worth mentioning that all the valves (figure 3.2abc) are such to fit into
a mitral orifice of D∗ = 24 mm and their geometries have been obtained by
drawings and anatomical sketches. In reality, depending on the specific valve
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model (stented or stentless, curved or straight leaflets, etc.) and on the surgi-
cal implantation technique (balloon–expandable transcatheter or open heart)
different valve sizes can be positioned within a given D∗. It is possible to im-
plant different valve sizes in the same patient also by resorting the ‘oversizing’
practice (Blanke et al., 2014) or by positioning the valve in ‘supra–annular’
position (Sung et al., 2008). This implies that the present results should be
interpreted as a general trend of the system rather then as a performance as-
sessment of a specific device; for the latter a one–to–one geometric replica of
the device and the exact knowledge of its positioning are necessary.

3.3.1 The reference case: Healthy ventricle and natural valve

The reference case consists of a left ventricle with an ejection fraction of 60%
and a natural mitral valve with the anterior leaflet, the one closer to the aortic
channel, slightly longer than the posterior (figure 3.2a).

Following the curve of figure 3.12 we see that at the beginning of the dias-
tole the E–wave strengthen, the flow rate through the mitral orifice increases
and the valve opens, thus producing an intense jet. Owing to the asymmetry
of the leaflets, the jet is initially directed towards the ventricle wall where it
starts sweeping the endocardium (figure 3.13a). Once the peak of the flow rate
is reached, the valve leaflets open wider and the jet points vertically downward
reaching the ventricle apex (figure 3.13b) and generating a strong recirculation
(figure 3.13c). The process repeats during the A–wave with a new injection of
momentum that further strengthens the large–scale vortex. This recirculation
lasts for a large fraction of the cycle (about 50%) and it is very beneficial for
the hemodynamics since it constantly sweeps the endocardium and prevents
the formation of stagnant flow regions (Fortini et al., 2013). When the systole
starts, the flow leaves the ventricle both from the aortic and mitral channel.
The orientation of the mitral leaflets, however, is such to prevent a contin-
uous regurgitation and the low pressure, induced by the incipient back flow
accelerating between the leaflets, seals them (figure 3.13e). Beyond this point
the flow can leave the ventricle only through the aortic channel, the ventricle
shrinks and the outflow decreases until the initial volume is recovered and the
ventricle is ready for a new cardiac cycle.

Similar features, in a somehow more quantitative way, can be deduced from
figures 3.14 and 3.15 showing phase averaged mean and rms vertical velocity
profiles along the horizontal sections z = 1 and z = 2 in the symmetry plane
y = 0. In the sake of conciseness the profiles are shown only for the peaks of
the E– and A–waves when the strongest mitral jets are produced; for these
instants of the cycle the position of the sections is evidenced by dashed lines in
figures 3.13b,d. Figures 3.14–3.15 show the same quantities also for a biological
trileaflet and a mechanical bileaflet prosthetic valve in order to compare the
different flow behaviours: each case will be discussed in each dedicated section.

The natural valve, at the peak of the E–wave (figures 3.14a and 3.15a),
produces a smooth and regular jet that induces a ventricle flow recirculation
evidenced by the negative velocity region to the left of the jet. Despite the rel-
atively large excursions of the valve leaflets, discussed later in this section, the
mitral jet remains compact in space thus providing, within a fixed momentum
(in turn depending on the ejection fraction) the highest penetration capability
and the smallest pressure losses among all the valves (see also the discussion
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in Section 3.4): both features are beneficial to prevent flow stagnation inside
the ventricle.

b)

c) d)

e) f)

a)

Figure 3.13: Snapshots of the velocity vector in the x–z symmetry plane and
contours of vertical velocity (range is −2 ≤ vz ≤ 2 from blue to red) at
EF = 60% with natural mitral valve. The different instants of the cardiac
cycle are indicated in figure 3.12 by the symbol ◦ a) early E–wave, b) peak
of the E–wave, c) diastole, d) peak of the A–wave, e) peak systole, f) end of
systole. The lines of panels b) and d) evidence the sections at z = 1 and
z = 2 over which the velocity profiles in figures 3.14 and 3.15 are reported.
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Figure 3.15: The same as figure 3.14, but for the section z = 2.
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This strong jet assures the presence of a persistent vortex during most of
the heart cycle that constantly sweeps the ventricle surface and avoids the
formation of regions of stagnant fluid, a phenomenon referred to as blood
stasis. The latter is a particularly undesired condition since the blood in dead
recirculations tends to coagulate and produce clots that, once again in the
systemic circulation, can obstruct vital arteries and cause infarction or stroke
(Cordero et al., 2015).

In order to monitor the motion of the fluid during the cycle we report
in figure 3.16a the time evolution of the velocity magnitude sampled at the
apex probe shown in figure 3.3a. It can be noted the peak of the velocity at
t = 0.2, caused by the maximum of the E–wave (t ≈ 0.16), followed by the
velocity decay during the diastasis (0.3 ≤ t ≤ 0.5); even at the end of the
diastasis, however, the fluid is not at rest and the occurrence of the A–wave
(t ≈ 0.56) produces a new velocity peak although with reduced magnitude.
Similar information is obtained by the kinetic energy of the fluid within the
ventricle shown in figure 3.16b; here we note also that during the systole
(0.65 ≤ t ≤ 1) the energy of the fluid increases again owing to the intense
velocities in the region around the aortic channel. The sudden energy drop
at t ≈ 0.78 indicates the fast closure of the mitral valve that prevents the
blood regurgitation toward the left atrium and allows the flow only through
the aorta.
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Figure 3.16: a) Phase–averaged evolution of the velocity magnitude u at the
apex probe with the natural mitral valve. b) Kinetic energy of the flow inside
the ventricle. EF = 60%, EF = 40%, EF = 60% with
non–Newtonian fluid model.

The plot of figure 3.17 confirms the above argument by showing the strong
leaflets retraction during the closing phase that occurs approximately at 78%
of every cycle. It is also evident a strong cycle–to–cycle variability caused
by the transitional nature of the flow; the latter is characterized by explo-
sive bursts of turbulence, produced during the flow decelerations, separated
by turbulence decay phases during the quiescent parts of the cycle (Fortini
et al., 2015). Another important feature evidenced by figure 3.17a is the very
different mobility of the anterior and posterior leaflets; although both of them
are made by the same tissue and have the same thickness, their different cur-
vature and shape make the posterior leaflet stiffer and this is evidenced by the
reduced vertical excursion, Z l, during the cycle with respect to the anterior
one. Similar dynamics is observed also for the mean horizontal coordinate,
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X l, not shown here in the sake of shortness. It is worth mentioning that this
effect is independent of the chordae tendineae that, in the real heart, connect
the edges of both leaflets to the myocardium through the papillary muscles.
The chordae, in fact, only act at the end of the closing phase by exerting a
tension that prevents the leaflets from everting into the mitral channel. The
kinematic effect of the chordae tendineae has been modelled in our numerical
simulation by freezing the vertical dynamics of the leaflets during the systole
once the valve had closed.
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Figure 3.17: Time evolution of the mean vertical coordinate Z l of the a)
anterior and b) posterior leaflets of the natural mitral valve. EF = 60%,

EF = 40%, EF = 60% with non–Newtonian fluid model.

3.3.2 Healthy ventricle with natural valve and non–Newtonian
fluid model

In this section we briefly report the results obtained for the same configu-
ration as in the previous section (EF = 60% and natural valve) but for a
non–Newtonian shear–thinning fluid. The comparison between the two cases
is shown in figures 3.16–3.18 confirming that either globally and locally the dif-
ferences are minor and very likely due to cycle–to–cycle variation or marginal
time convergence of the local phase averaged statistics. In particular, the dy-
namics of the valve leaflets as well as the kinetic energy of the flow hardly show
any difference while the mitral jet at the peak of the E–wave (figure 3.18a)
looks slightly more compact than its Newtonian counterpart (figure 3.13b).
The effect on the velocity magnitude at the apex probe is to maintain the
peak value for a slightly longer time (figure 3.16a) even if the features of ven-
tricular flow have very similar cycle evolution. A similar conclusion had been
drawn in De Vita et al. (2016) for the flow through a mechanical bileaflet valve
in a realistic aortic root. In that study the large–scale dynamics of the flow
was found independent of the fluid model and the only feature that showed
appreciable sensitivity was the hemolysis which turned out about 15% larger
for the shear–thinning fluid than for the Newtonian one.

3.3.3 Healthy ventricle with stiffened or stenotic natural valve

As mentioned previously the membrane mechanical properties in the numer-
ical simulations have been taken from the companion experiment in which a
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a) b)

Figure 3.18: The same as figure 3.13, but for non–Newtonian fluid model. a)
Peak of the E–wave, b) early systole.

two component transparent silicon rubber was used to realize the ventricles
and the natural valve. This material is linear elastic and isotropic, therefore
totally different from the biological tissues which are normally hyperelastic and
anisotropic (usually orthotropic depending on the orientation of the fibers).
We believe that this difference is not very important for the ventricle since
its volume evolution in time depends on a flow rate that is prescribed as a
boundary condition and therefore independent from the structure dynamics,
(figure 3.4). The situation is more delicate for the valves, whose dynamics
is determined by the fluid structure interaction and, thus on the mechanical
properties of the leaflets. Since in this chapter we aim at studying the flow
changes induced by different mitral valves it is crucial to separate the effects
of the deliberately modified geometry from those of the less known material
properties. In order to asses the effects of the latter factor, we have run an
additional simulation identical to the reference case of section 3.3.1 but with
the mitral leaflets doubled thickness (from 0.1 to 0.2) and considering a higher
elastic constant for the material (three times larger than the one of the refer-
ence case).

The results of figures 3.19–3.21, show that the solution is relatively insen-
sitive of the specific leaflet properties, at least for the range of parameters
explored here. This is true either for the global integral quantities, like the
flow kinetic energy (figure 3.21c), and for the more local ones as the lateral
displacement of the leaflets (figure 3.21d) and the pressure drop across the
valve (figures 3.20ab). Although at a first glance this insensitivity might seem
surprising it can be easily estimated that for a rectangular (a× b) membrane
of thickness s of density approximately equal to that of the ambient fluid,
the added mass overcomes the membrane mass for s < 4b/10. On the other
hand the external pressure moments exceed the internal structural reaction
for s < (5∆pa2b/E)1/3 with, ∆p the maximum pressure difference in the fluid.
Since in these membranes it results s� a, b and the elastic constant at most
one order of magnitude bigger than the pressure difference (E ≈ 2 × 105 Pa
and ∆p ≈ 2 × 104 Pa for the human mitral valve) the above conditions are
always satisfied and the leaflet dynamics is determined mainly by the external
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a) b)

Figure 3.19: The same as figure 3.13 at the peak of the E–wave for a) stiffened
natural valve, b) stenotic natural valve.

loads.
A further quantitative measure of the little sensitivity of the solution to the

specific properties of the valve leaflets is given by the mean transvalvular pres-
sure drop that is ∆p ' 0.49 and ' 0.45 (3.66 and 3.38 mmHg), respectively,
for the reference and ‘stiffened’ mitral valve.

A more relevant parameter for this problem is instead how the valve leaflets
are connected (constrained) to the structure. In the physiological condition the
deformable leaflets are attached to a fibrous ring that behaves very much like
a rigid frame. For the prosthetic valves the conditions can vary since there are
models (stented) in which the leaflets are connected to a rigid or flexible frame
while in other models (stentless) there is no frame and the leaflets are stitched
directly to the fibrous ring. Other pathologic constrains may be present in
the natural and prosthetic valves because of calcification that occurs at the
junction between the leaflets and the fibrous ring: the progressive growth of
the calcium deposit reduces the section available to the flow and limits the
mobility of the leaflets (valve stenosis). For all the simulations performed in
this chapter we have constrained the deformable leaflets to the frame (the
red structure in figure 3.3) only by keeping fixed in time the position of the
triangle edges crossing the rigid plate. Therefore regardless of the specific valve
type in all the cases the lumen of the mitral channel is the same. However,
in order to test the effects of more constrained leaflets or the occurrence of
stenotic conditions, we have simulated also a case in which all the triangle
nodes whose vertical coordinate is smaller than z = 0.5 are kept fixed in time;
this condition prevents the motion of the portion of the leaflets within the
dashed line of figure 3.20c and reduces the area of the mitral channel by 72%.
Figures 3.19–3.21 now indicate that relevant changes are produced in the flow
and the limited mobility of the leaflets is accompanied by a higher velocity of
the mitral jet (given the imposed constant flow rate) that in turn produces
higher kinetic energy of the ventricular flow. The faster jet however is not as
efficient as the physiological one since, while its velocity is ≈ 3.4 times bigger
than the reference case, the apex peak velocity is only ≈ 16% more intense
(figure 3.21d). On the other hand the stenosis generates a larger pressure drop
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across the valve (figure 3.20c) whose mean value is ∆p ' 3.05 (22.93 mmHg)
much larger than ∆p ≈ 0.5 obtained for the above valves with full mobility.
It should be pointed out however that while the described trends are general
the specific values depend heavily on the detailed geometry of the obstruction
(calcification) that, not only can reduce the available area but also induce
asymmetries.

c)a) b)

Figure 3.20: Instantaneous snapshots of the pressure field at the peak of the
E–wave (EF = 60%) for a) physiological natural valve, b) stiffened natural
valve, c) stenotic natural valve. The line highlights the region where the
valve is forced to maintain a fixed geometry in order to mimic the stenosis.
The colors range from dark blue pmin = −1.5 to purple pMax = 2.
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Figure 3.21: a) Instantaneous mean horizontal coordinate X l of the anterior
mitral valve leaflet. b) the same of a) but for the posterior mitral valve leaflet.
c) Phase–averaged kinetic energy of the flow inside the left ventricle. d) Phase–
averaged velocity magnitude at the apex probe. physiologic natural
valve, stiffened valve, stenotic valve.
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3.3.4 Pathological ventricle with natural valve

In order to isolate the effect of a reduced ejection fraction, here we consider
the same case as in the previous section except for the ejection fraction that
is reduced to the lower end of the pathological value EF = 40%. The com-
parison between the panels of figure 3.13 and 3.22 immediately evidences the
weakened flow within the ventricle that, however, can still reach the apex of
the ventricle and ‘wash’ that region. A similar picture emerges from the apex
probe in figure 3.16a and the kinetic energy in figure 3.16b. An important
difference with the case at EF = 60% is that now the recirculation dies out
during the diastasis therefore the A–wave, rather than reinforcing the vortex
previously generated by the E–wave, produces a new weaker recirculation that
is expelled from the ventricle during the systole. The time evolution of the
leaflets motion of figure 3.17b is consistent with the described picture: Again
the posterior leaflet moves less than the anterior one and there is some cycle–
to–cycle variability. In this case, however, the displacements are quite small
and the reduced momentum of the mitral jet is not enough to open completely
the valve. From a comparison of figures 3.13e and 3.22b we note that, in this
case, the weak contraction of the ventricle during systole can still close the
valve although does not squeeze the leaflets one against the other; this could
cause some valve leakage known as mitral insufficiency. Phase averaged pro-
files, as in figures 3.14 and 3.15, not reported here for the sake of shortness,
show a similar behaviour as in the case of section 3.3.1 although with reduced
amplitude for the mean and rms velocity profiles. The smaller level of fluctu-
ations is consistent with the fact that an ejection fraction of EF = 40% yields
a peak Reynolds number about half of the case at EF = 60% (see the curves
of figure 3.12).

a) b)

Figure 3.22: The same as figure 3.13, but for EF = 40%. a) Early E–wave,
b) early systole.

3.3.5 Ventricle with mechanical bileaflet valve

As mentioned above, if the mitral valve has to be replaced, and the life expec-
tation of the patient goes beyond fifteen years, the most common choice is a
mechanical bileaflet valve as that in figure 3.2c. In this device, two semilunar
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rigid leaflets are hinged to a circular frame and they passively rotate about
the pivots as a result of the pressure and viscous forces exerted by the fluid on
their surfaces. The kinematics of this prosthesis is such that the leaflets always
occupy part of the mitral channel, even when the valve is fully open (figure
3.23c) and this is a crucial difference with respect to the natural and biological
prosthetic valves in which the flow pushes the flexible leaflets towards channel
boundary leaving the orifice completely clear (figure 3.23ab). The problem is
further exacerbated by the necessity of giving the rigid leaflets in fully open
position an inclination (≈ 10o) in order for the incipient reverse flow to gener-
ate a moment closing the valve. This implies that the leaflets do not behave
as thin flat plates but rather as obstacles shedding unstable shear layers and
vortices in the flow that are responsible for the poor hemodynamics of the
prosthesis. In a few words, the increased turbulence level downstream of the
valve produces augmented mechanical stresses on the corpuscular part of the
blood that cause red blood cells damage (hemolysis) and platelets activation
Grigioni et al. (2001). These phenomena both concur to the formation of clots
whose aggregation is countered by a lifelong anticoagulant therapy that, in
turn, increases the risks of bleeding and hemorrhagic events.

f)

a) b) c)

d) e)

Figure 3.23: Snapshots of the three different mitral valves: natural (a,d),
biological (b,e) and mechanical (c,f), respectively in fully open and closed
position in the case of a healthy left ventricle (EF = 60%).

The altered flow dynamics is shown in figure 3.24 for an ejection fraction
EF = 60% which models a healthy ventricle. It is evident that the mitral
jet during the E–wave is much less regular and smooth with respect to the
analogous field in figure 3.13a and the augmented turbulence enhances the
lateral spreading of the jet to the detriment of its vertical penetration. A more
quantitative view of this phenomenon can be obtained by the time evolution
of the phase averaged velocity magnitude at the apex probe (figure 3.25a)
showing a strongly fluctuating signal with a mean component that is much
weaker than in the case of the natural valve (figure 3.16a). Another important

75



Chapter 3 - Flow structure in healthy and pathological left ventricles with
natural and prosthetic mitral valves

difference is that the mitral jet, that has lost part of its momentum into small–
scale fluctuations, generates a weak large–scale recirculation whose intensity
hardly lasts up to the A–wave as confirmed by the velocity signal during
the diastasis that decreases continuously. The A–wave, on the other hand,
undergoes a dynamics similar to that previously described but now, being
weaker, produces an effect at the ventricle apex of the same order as the
underlying velocity fluctuations. This picture is confirmed by the evolution of
the kinetic energy of the flow within the ventricle evidencing a less energetic
flow throughout the cycle (figure 3.25b).

a) b)

Figure 3.24: The same as figure 3.13, but for a mechanical valve at EF = 60%.
a) Early E–wave, b) early systole.

The velocity profiles of figures 3.14 and 3.15 reinforce the analysis made
above. In particular the panel 3.14a evidences the typical 3–jet configuration
of the mean flow whose peak velocity is the smallest among all valves. Being
the flow rate identical for all the valves (and imposed as a boundary condi-
tion) a smaller peak velocity suggests a larger lateral spreading and a weaker
ventricular recirculation as indicated by the small amplitude negative velocity.
The same dynamics is observed farther downstream in figures 3.15ac (z = 2)
with the mean flow still maintaining more than one peak and the vanishing
ventricular recirculation.

The dynamics during the A–wave (figure 3.14bd and 3.15bd) partly bene-
fits from the fact that, differently from the natural and biological valves, the
leaflets remain in fully open position during all the diastole and no inflow mo-
mentum is used for the valve opening. Nevertheless, the disturbances of the
leaflets on the ventricular flow are still visible from the highest level of fluc-
tuations in figure 3.14d and the weakest mean and rms flow shown in figure
3.15bd. The fact that even within a healthy ventricle (EF = 60%) the flow
with the mechanical valve has a reduced intensity at the section z = 2 suggests
that an impaired ventricle with a mechanical valve could generate regions with
stagnant flow; that indeed this is the case will be shown in the remaining part
of this section.

It is worth mentioning that the above described dynamics occurs for a
prescribed inflow, as that in figure 3.12, which is exactly the same as that
used for the cases with the natural mitral valve. This implies that the energy
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and momentum injected into the system is the same in both cases and the
differences must be ascribed only to the different interaction between incoming
flow and structure dynamics.

As anticipated above the scenario considerably worsens if the pumping
efficiency of the ventricle drops below the healthy range; in this chapter we
have considered the case at EF = 40% whose results are reported in figures
3.25–3.26. The dynamics is similar to the case at EF = 60% with the fun-
damental difference that now the reduced momentum of the inflow, combined
with the perturbations introduced by the valve leaflets, further decreases the
penetration capability of the mitral jet and produces a stagnant fluid region
at the ventricle apex. This is quantitatively confirmed by the velocity sampled
at the apex probe that shows negligible values over the whole cycle and by the
time evolution of the flow kinetic energy (figure 3.25b) that results at least
twice lower than the analogous flow with the natural valve.
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Figure 3.25: The same as figure 3.16, but for a mechanical valve. EF =
60%, EF = 40%, EF = 40% with the valve in the anti–anatomical
position.

a) b)

Figure 3.26: The same as figure 3.13, but for a mechanical valve at EF = 40%.
a) Early E–wave, b) early systole.

In some studies (Choi et al., 2014; Machler et al., 2004) it has been inves-
tigated whether the implantation of the mechanical valve in anti–anatomical
position, i.e. with the leaflets orthogonal with respect to the natural configu-
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ration, could give a better hemodynamics with respect to the latter implan-
tation. The issue has been the subject of many discussions among cardiac
surgeons and a clear evidence of some advantage has not emerged. Here we
have simulated the anti–anatomical configuration in the case of a ventricle at
EF = 40%, the critical case that would benefit most from some improvements.
We have found that, consistently with the available literature, no appreciable
differences have been observed with respect to the standard case. In fact,
apart from the obvious different orientation of the jet leaving the valve (figure
3.27), the velocity magnitude at the apex probe is even smaller than the case
of anatomical implantation as observed in Choi et al. (2014). Anyway, the
flow velocity at the apex remains negligible during all the cycle and also the
kinetic energy of the ventricular flow is essentially the same as the original
case (figure 3.25).

Figure 3.27: The same as figure 3.26, but for a mechanical valve at EF = 40%
in anti–anatomical position at the early E–wave.

3.3.6 Ventricle with biological valve

The same simulations as in the previous sections are repeated here with a
trileaflet biological prosthesis, as that of figure 3.2b, in mitral position. As
shown in figure 3.23 when this valve opens the lumen remains free from ob-
stacles and the mitral jet enters the ventricle as a compact vertical stream
capable of penetrating the ventricle volume up to the apex. However, since
the three leaflets are all identical they open in a nearly symmetric way and
the emerging jet always points vertically downward during all the E–wave in-
jection (figure 3.28a). This is a relevant difference with the natural valve that,
owing to the leaflets asymmetry, initially produces a jet pointing laterally to
the sidewall (figure 3.24a) and only at the peak of the E–wave is bent vertically
(figure 3.24b) and directed towards the ventricle apex. It is worth pointing
out that, during the implantation, a surgeon could, in principle, position the
trileaflet prosthesis with some tilting angle so to obtain an inclined mitral jet.
The latter, however, would always point in the same direction during all the
diastole and a variable pitch jet, as emerging from a natural valve, could not
be obtained.

The fact that, with a trileaflet valve, the mitral jet constantly points to-
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wards the ventricle apex is further confirmed by looking at figures 3.16a and
3.30a; although in both cases the inflow is the same (EF = 60% of figure 3.12)
the peak velocity at the apex probe occurs earlier for the prosthetic than for
the natural valve. Comparing these results with those of the mechanical valve
(figure 3.25a) it is evident that the hemodynamic performance of the bio-
logical valve is better than the mechanical prosthesis although both of them
produce strong enough recirculations to avoid ventricular hemostasis during
the diastolic part of the cycle.

For the present trileaflet valve the velocity profiles of figures 3.14 and 3.15
show flow features that are comparable to those of the natural valve and with a
definitely better hemodynamics than that of the mechanical prosthesis. More
in detail, the present valve can produce relatively compact mitral jets capable
of penetrating the ventricle up to the apex and generating the beneficial recir-
culation (figures 3.14a and 3.15ab) that prevents the hemostasis. This suggests
that the biological valve might operate adequately even in an impaired ven-
tricle with a reduced ejection fraction that generates low momentum mitral
jets.

In fact, when a mitral biological valve is combined with a pathologic ven-
tricle (EF = 40%), the superiority with respect to the mechanical valve is
amplified and, differently from the latter, the former still operates correctly
with a hemodynamics similar to the natural one.

More in detail as shown in figure 3.29a, although the mitral jet has a
reduced momentum, the ventricular recirculation still extends up to the apex
and the peak of the E–wave has a distinct signature in the probe signal (figure
3.30a).

The time histories of the ventricular kinetic energy (figures 3.16b, 3.25b
and 3.30b) tell a similar story with the biological prosthesis that outperforms
the mechanical one for all ejection fractions. It is however well known that the
better hemodynamics of the biological valves comes at the price of a durability
of the order of 15− 20 years to be compared with a lifetime of 80 years of the
mechanical devices (Hoffmann et al., 2008). This is a crucial decision factor in
the valve replacement when a choice has to be made between the two classes
of artificial valves; presently the common practice is to implant biological
valves in those patients whose expectation of life is less than 15 − 20 years
and mechanical valves in all other cases (apart from particular conditions like
diseases or women pregnancy). In this study we have however shown that
the pumping efficiency of the ventricle could be another relevant factor that
should be taken into account when selecting the valve to be implanted.
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a) b)

Figure 3.28: The same as figure 3.24, but for a biological valve at EF = 60%.
a) Early E–wave, b) early systole.

a) b)

Figure 3.29: The same as figure 3.28, but for EF = 40%. a) Early E–wave,
b) early systole.
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Figure 3.30: The same as figure 3.16, but for a biological valve. EF =
60%, EF = 40%.
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3.4 Discussion

The main finding of this investigation is summarized by the snapshots of figure
3.31 showing the streamtraces in the x–z symmetry plane at the end of the
diastole (t = 0.69) when the ventricle attains its maximum volume. All three
flows are computed for an ejection fraction of 40%, an inflow curve as that of
figure 3.12 and for otherwise identical conditions except for the type of mitral
valve. It is evident that the large–scale recirculation is strongly determined by
the specific valve model and in the case of a mechanical valve the large–scale
vortex does not reach the ventricle apex. It is worth mentioning that for all
the three cases of figure 3.31 the E–wave propagation index (EPI) described
in Harfi et al. (2017) would be nearly identical since it is given by the ratio
of the propagation length of the mitral jet LMJ and the vertical length of the
ventricle at the maximum expansion LLV . As shown by Harfi et al. (2017), for
all practical purposes, LMJ can be estimated in a echocardiography through
the velocity time integral V TI =

´ TE

0 VM (t)dt being TE the duration of the
early wave and VM the jet velocity at the mitral leaflets. Since all the inflows
are identical and LLV depends on the ejection fraction, in all cases the E–wave
propagation index is the same and indeed a direct calculation for EF = 40%
yields EPI = 1.24, 1.35, 1.31, respectively, for the natural, biological and
mechanical valve.

a) b) c)

Figure 3.31: Streamtraces in the x–z symmetry plane at the end of the diastole
(t = 0.69) for EF = 40%. a) natural valve, b) biological valve, c) mechanical
valve.

This is fully consistent with the time evolution of the vertical velocity
component (as obtained from the mitral probes of figure 3.3b) at the center of
the jet and halfway of the mitral leaflets z = 0.75 (figure 3.32a) showing a very
similar evolution for all mitral valves. On the other hand, the same quantity
further downstream at z = 1.5 (figure 3.32b) indicates a different evolution of
the mitral jet with the natural valve that produces the largest velocity and the
mechanical valve the smallest. This is due to the disturbances induced by the
valve on the flow whose momentum tends to cascade to the small scales because
of turbulence. The velocity profiles of figure 3.32b might be more relevant for
the clinical diagnosis than those of figure 3.32a since in the echocardiography
the mitral flow Doppler is not measured at the base of the valve but rather at
a downstream section. The EPI computed with these profiles yields EPI =
1.52, 1.38 and 0.69, respectively, for the natural, biological and mechanical
valve thus confirming all the discussion of the previous sections.

As an aside, we note that during the systole, the intensity of the back
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Figure 3.32: Phase–averaged vertical velocity at the a) ‘mitral’ probe z = 0.75
and b) ‘tip’ probe z = 1.5 for EF = 40%. natural valve, biological
valve, mechanical valve.

flow in figure 3.32a is different for the various valves and it is the smallest
for the mechanical prosthesis; the reason is that as the flow accelerates in the
retrograde direction, the semilunar leaflets quickly rotate about the hinges
and seal the mitral orifice without deformations. In contrast, the natural and
biological valves, even after having sealed the leaflets, keep deforming and
retract towards the mitral channel thus inducing a local backward velocity
that, however, does not produce a valve leakage: this phenomenon is referred
to as ‘false regurgitation’.

To provide further evidence of the above described dynamics also the wash–
out curves for a passive scalar have been computed. Taking as initial condition
a ventricle filled with a passive scalar at concentration q = 1 the flows have
been evolved injecting ‘clean’ fluid (q = 0) from the mitral inflow and the time
evolution of the total scalar Q =

´
Vv
qdV , (Vv being the time–dependent ven-

tricle volume) has been computed for all the cases. The convection/diffusion
equation for the scalar concentration has been integrated using the velocities
from the previous numerical simulation and the Schmidt number of the scalar
has been set to Sc = 1.

In figures 3.33ab instantaneous snapshots of q are reported for a represen-
tative case showing the incoming jet of the clean fluid that eventually partially
mixes with the q–concentrated fluid inside the ventricle. During the diastole
(figure 3.33a), although the mean q concentration decreases, owing to the di-
lution with the clean fluid, the total scalar remains constant. In contrast,
during the systole (figure 3.33b), the mixed fluid is ejected from the ventri-
cle through the aortic channel and Q decreases in time. Figure 3.33cd shows
that this behaviour is common to all the mitral valves although the amount
of wash–out is different. This is especially true for the cases at EF = 40%
for which it is confirmed that the mechanical valve produces the minimum
ventricle wash–out.

The fact that each valve perturbs the mitral jet by a different amount is
confirmed also from figure 3.34 showing the histograms of the peak pressure
drops across the valve during the cycle which occurs at the peak of the E–wave;
it is evident that the mechanical valve in the fully open position produces the
biggest pressure losses that are responsible for the velocity drop observed in
figure 3.32 and for the disgregation of the initially coherent jet into small
incoherent flow scales.
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Figure 3.33: (Top) Instantaneous distribution in the x–z symmetry plane of a
passive scalar q for a bileaflet mechanical valve and EF = 40%: a) beginning
of the diastole (t = 0.1); b) end of diastole (t = 0.9). The colour contours
of the passive scalar range from q = 0 (blue) to q = 1 (red). (Bottom)
Time evolution of the normalized total scalar Q/Q0 during a heartbeat (Q0 is
the initial value of Q), bileaflet mechanical valve, biological valve,

native valve; c) EF = 40%, d) EF = 60%.
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Figure 3.34: a) Snapshots of the pressure field values of left ventricle with nat-
ural mitral valve at early diastole. The two bullets indicate the representative
positions among which the pressure drop is evaluated. b) Maxima pressure
drops at the peak systole for the natural, biological and mechanical mitral
valves in both cases of EF = 60% and EF = 40%.

A popular quantity used to characterize the valve performance is the ef-
fective orifice area (EOA) defined as the ratio of the peak flow rate to the
maximum velocity (averaged over the jet section) that can be interpreted as
the minimum cross section of the mitral jet that is smaller than the geometrical
area because of vena–contracta effects. Depending on the flow kinematics the
EOA can be quite different from the lumen of the mitral orifice; for example,
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in the present case the lumen area is A = π/4 = 0.785 (4.52 cm2) while for
the effective orifice area it results EOA = 0.628, 0.445 and 0.550 (respectively
3.62, 2.56 and 3.17 cm2) for the natural, biological and mechanical valves. The
fact that mechanical valves have EOA generally larger than biological pros-
thesis is consistent with the clinical literature (Pibarot & Dumesnil, 2012);
this quantity, however, takes into account only the geometry of the valve and
the continuity equation therefore it might not be adequate to characterize the
dynamic performance of the valves. In fact, the transvalvular pressure drop
(referred to as ‘pressure gradient’ within the clinical community) shown in
figure 3.34b, does not correlate with the EOA since its value depends also on
the balance of momentum in the flow.

A final global view of the above described dynamics is given in figure 3.35
showing the time integrated circulation of the ‘core’ ventricular flow. More
in detail, in the symmetry x–z plane we have (arbitrarily) isolated the square
region S (−0.5 ≤ x ≤ 0.5 and 1.0 ≤ z ≤ 2.0), far enough from the boundaries,
and integrated the out–of–plane vorticity component ωy to obtain a circulation
Γy(t) =

´
S ωydS. This quantity has been time–averaged over the cycle through

Ω(t) = (
´ t

0 Γy(τ)dτ)/t and the result is reported for the three mitral valves at
EF = 40% in figure 3.35. The strongest mean flow rotation is produced by
the natural valve while the biological prosthesis misses the initial peak. The
reason for this difference is that the jet from the natural valve initially points
to the right towards the sidewall (figure 3.22a) and induces a clockwise rota-
tion in all the ventricle. The mitral jet from the biological valve, in contrast,
points always vertically downward (figure 3.29a) thus inducing counterclock-
wise vorticity to its right region and weakening the overall circulation. Again
the mechanical valve is the one inducing the weakest large–scale rotation of
the core flow because of the flow transition to small scales that cross diffuse
one into another and prevent the formation of a strong coherent vortex.
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Figure 3.35: Time evolution of the averaged circulation Ω(t) of the ventricular
flow at EF = 40%. natural valve, biological valve, mechanical
valve.

Before concluding this discussion we wish to comment on how the present
findings relate to the clinical literature according to which the free event sur-
vival curves of mitral valve replacement in a five–year follow–up (but also ten–
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or fifteen–years) are very similar for mechanical bileaflet and bio–prosthetic
valves despite the superior hemodynamics of the latter claimed in this study.
In the paper by Chikwe et al. (2015) a cohort of 3433 patients, all in the age
50 − 69 and with mitral disease requiring valve replacement, showed that in-
deed ‘No survival difference was observed between use of mechanical prosthetic
and bioprosthetic mitral valves’. However the break–up of the data evidenced
that the causes of deaths are very different for the two classes of prostheses
with ‘the incidences of stroke and bleeding events ... significantly higher in
those who received mechanical prosthetic mitral valves’ and ‘the incidence of
reoperation ... lower in the mechanical prosthesis group’ (Chikwe et al., 2015).
More quantitatively, for the bileaflets implantation strokes account for 15% of
the lethal events while for bioprosthetic valves they are only 6.8%, thus evi-
dencing a higher propensity of the mechanical valves to generate clots. The
other relevant difference is the bleedings that are 14.9% for mechanical valves
and 9% for the biological ones; the increased bleeding is a consequence of the
lifelong anticoagulant therapy that the recipients of mechanical valves have to
take to prevent clot formation. On the other hand, bioprosthetic valves degen-
erate more rapidly especially in non elderly patients and the deaths caused by
reoperation amount to 5% for the mechanical and 11% for the bioprosthetic
valves. It appears that these numbers miraculously balance so that the overall
fatality rate is roughly the same (Chikwe et al., 2015).

Analogous figures come from Hammermeister et al. (2000) that analysed
two groups of 88 and 93 patients who had the mitral valve replaced, respec-
tively, with a mechanical or a biological prosthesis. The follow–up at 15–years
showed that the fatality rate from any cause was almost the same (81% vs
79%) although the single causes were different with 53% of bleeding events
for the mechanical valve and 31% for the bioprosthesis, but 25% vs 50% for
reoperation and 5% vs 40% for primary valve failure.

Unfortunately, the analyses of Chikwe et al. (2015) and Hammermeister
et al. (2000) do not distinguish the patients for different ejection fractions while
Qiu et al. (2010), who consider mechanical and biological mitral valve replace-
ments in dysfunctional ventricles, do not separate the deaths occurred with
different valve models. Nevertheless, the statistics reported in Cen et al. (2001)
confirm that for physiological ejections fractions (in the range of 50%) both
the mechanical and the prosthetic valves perform adequately while De Bacco
et al. (2009) report that in mechanical mitral valve replacement, a low ejection
fraction ventricle is one of the most negative prognostic factors: both results
are consistent with our findings.

As a relevant point we note that the acceptable performance of the me-
chanical valves comes at the cost of a heavy anti–coagulant therapy that has to
be carefully tuned in order to prevent clot formation but, at the same time, to
avoid hemorrhagic events: in developed countries, even under a close surveil-
lance, it induces a 2% fatality event rate per year (Cannegieter et al., 1994,
1995). At present, this therapy aims at maintaining the INR (‘international
normalized ratio’ an indicator of the blood coagulation time) above a given
threshold whose value depends on the presence of a mechanical valve prosthe-
sis but it does not change for different ejection fractions of the left ventricle;
it might be possible that if the anti–coagulant dose were tailored also to the
ventricle efficiency some of its negative side effects could be mitigated.
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3.5 Closing remarks

In this chapter the flow in the left ventricle with different types of mitral
valves has been analysed, by high–fidelity numerical simulations, for different
pumping efficiencies of the system. The reference case, obtained for a natural
valve, has evidenced the highly synergistic nature of the flow with an inter-
play between the ventricle and valve dynamics that prevents the formation of
stagnant flow regions considered as a negative predictive factor for infarction
and stroke.

The results have shown that for a healthy ventricle with an ejection frac-
tion EF = 60% either the biological and the mechanical prostheses perform
adequately even if the former has a better hemodynamics than the latter.
Both of them produce a mitral jet that is strong enough to penetrate up to
the apex of the ventricle and generates a beneficial large–scale recirculation
that ‘washes’ the inner ventricular wall (endocardium). In contrast, in a ven-
tricle with a reduced efficiency (EF = 40%), which is a possible condition
when a valve replacement is required, the mitral jet has a reduced momentum
and the perturbations induced by the prostheses can decrease the penetration
of the jet below the required level. This is the case of the mechanical bileaflet
valve that produces the highest transvalvular pressure drop and causes the
transition of the coherent mitral jet to incoherent small scales; this prevents
the jet from reaching the ventricle apex and causes blood stagnation (Badas
et al., 2016).

This observation could be a novel factor to be taken into account when
deciding whether a biological or a mechanical prosthetic valve should be used
for a mitral valve replacement. Presently, the best practice, gives the highest
weight to the balance between the life expectation and the prosthesis durabil-
ity: since a biological valve is expected to perform for 15− 20 years, patients
with a life expectation beyond 15− 20 years receive a mechanical valve. The
results of the present investigation suggest that among the decision factors
also the efficiency of the ventricle should be considered since a mechanical
valve implanted in a ventricle with ejection fractions of 40% or below, might
lead to flow stasis and the formation of dangerous clots.

These findings are fully consistent with the clinical literature that, even if
report nearly identical fatality rates for the follow–up of mitral replacement
with mechanical valves or bioprostheses (Chikwe et al., 2015; Hammermeister
et al., 2000), indicate that the causes of deaths are very different. In addition
Cen et al. (2001) confirms that for ejections fractions in the range of 50%, both
the mechanical and the prosthetic valves perform adequately while De Bacco
et al. (2009) states that an impaired ventricle is among the most negative
prognostic factors for a mitral valve replacement with a mechanical prosthesis.

As mentioned at the beginning of Section 3.3 the shapes of the natural and
prosthetic mitral valves have been reconstructed from anatomical sketches or
available designs and it has been assumed that all of them could fit into a
D∗ = 24 mm diameter annulus. While these geometries reproduce the main
features of generic devices, in reality there is plenty of different models each one
with its own peculiarities and with different hemodynamic performance. The
picture is further complicated by the possibility for the surgeons to implant
the prostheses in slightly different positions or to accommodate, within the
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same annulus, valves of different sizes. This suggests that the present results
should be intended as guidelines for the behaviour of different classes of valves
and not as the performance assessment of a specific device.

Before concluding this chapter we wish to make a few comments about
the similarities and the differences between our computational model and the
real ventricular flow. As mentioned in section 3.2.1 the development of the
numerical model was initially guided by the companion experimental appara-
tus of which the former is a digital replica. The final result is a quite complex
numerical tool that can cope with a full FSI with rigid and deformable bod-
ies within realistic geometries and flow parameters. Despite the considerable
computational effort, still there are relevant differences between the present
model for the left ventricle and the intended real of the human heart that
should be taken into account when applying the results to clinical cases.

For example, the model has a fixed mitral plane and a movable apex while
real left ventricles have a movable mitral plane and (nearly) fixed apex. Since
the (base–apex) pressure gradient is proportional to the time derivative of the
velocity, this might introduce differences between the present model and the
real flow. However if, by a linear extrapolation, we assume that the apex
displacement is twice that of the centroid, from figures 3.7cd we can estimate
a maximum non dimensional apex acceleration of aA ≈ 8 (a maximum dis-
placement of 0.54 unit lengths in 1/4 of the cycle period). On the other hand,
from figure 3.12, using a sine to approximate the inflow curve during the first
1/3 of the cycle, it can be computed a non dimensional acceleration for the
fluid at the inflow of aF = Upeak2π/(0.3T ) ≈ 25. The fluid acceleration at the
ventricle base must be 4–5 times bigger since that the flow further accelerates
through the mitral valve and the peak velocities in the ventricle are 4–5 times
bigger than at the inflow (see figure 3.14). According to these estimates, the
apex acceleration is at lest one order of magnitude smaller than the acceler-
ations induced in the fluid by the imposed inflow/outflow and we expect the
effect of the former to be minor.

Another difference is that in our model the mitral annulus is planar and
rigid while in the real heart the shape changes during the heartbeat and it as-
sumes a saddle shape. According to different papers in the literature, (Levine
et al., 1987; Mahmood et al., 2010; Salgo et al., 2002; Votta et al., 2008), the
mitral annulus is flat during diastole and it becomes saddle shaped only during
systole. In particular Salgo et al. (2002); Votta et al. (2008) found that the
annulus non–planarity affects mainly the mobility of the posterior leaflet and
facilitates the valve closure. In this paper however we are mainly concerned
with the diastolic phase when the mitral valve opens and the ventricular flow
is generated, therefore we expect this feature not to affect significantly our
conclusions. A similar argument can be used to assess the effects of the differ-
ent dimensions of the anterior and posterior leaflets of a native mitral valve:
in our model the vertical length of the leaflets is comparable while in the real
heart the posterior is about 1/3 shorter.

Moreover also the smooth surface for the left ventricle modelled here is far
from the inner structure of the endocardium that is characterized by irregular
grooves (trabeculae). As shown by Vedula et al. (2016) the flow within the
trabeculae is closely linked to the active contraction of the myocardium but
this feature affects mainly the near wall region and much less the large–scale
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features that we have analysed here.
Another difference is the presence, in the natural valve, of the chordae

tendineae, flexible and inextensible ’filaments’, that link the leaflets tips to
the myocardium through the papillary muscles; these structures tense during
the systole and prevent the leaflets from everting into the atrium. In this chap-
ter only their kinematic effects on the leaflets dynamics of the natural valve
has been simulated using ’numerical artifices’ without considering their phys-
ical interaction with the ventricular flow. The physical inclusion of chordae
tendineae in the 3D geometry of the natural mitral valve and the investigation
of their effects on the flow dynamics and ventricle deformation will be the
focus of the next chapter.
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Effects of chordae tendineae
on the flow in the left heart
ventricle

Based on: Valentina Meschini, Marco D. de Tullio & Roberto Verzicco, ‘Effects of chor-
dae tendineae on the flow in the left heart ventricle’, submitted to European Journal of
Physics E special issue on Fluids and Structures: Interaction and Modeling.
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4.1 Introduction

The left side of the heart, and especially the left ventricle, is the most exposed
to cardiac pathologies, like valve failure or myocardium impairing, because
of the high pressure differences it has to withstand (120–160 mmHg or 1.6–
2.1 × 104 Pa). Accordingly, among all hearth diseases, those of the left side
account for most of the direct and morbidity related deaths.

Thanks to advances in surgical techniques and diagnostic tools the prog-
noses for these disorders have considerably improved over the last decades and
research has given a fundamental contribution. Unfortunately the ageing of
the population and a growing percentage of it accessing advanced medical care
is projecting the health care costs to worrisome figures and innovative tools
are needed to revert this unfavourable tendency, Mittal et al. (2016). The
combination of computational engineering and medical research has the po-
tential to help in this direction by producing new technologies and improving
treatment outcomes without concurrently increasing the costs.

Motivated by the above arguments, in this chapter we present the results
of a computational model geared towards complex cardiovascular flows. Here
we consider the left ventricle with the mitral valve and both structures are
two–way coupled with the fluid that is evolved in physiological conditions.

In the heart, the left ventricle has two valves: the aortic that assures the
correct direction of ventricular flow to the aorta and the mitral that guides
the atrial flow into the ventricle. The former regulates the outflow while the
latter is responsible for the inflow therefore it has the strongest influence on
the intra–ventricular flow, Sacks et al. (2009); for this reason in this chapter
we focus on the analysis of the mitral valve features and their effects on the
flow dynamics.

The mitral valve, of which a cartoon is given in figure 4.1, is the most
complex of the four heart valves. It is a bi-leaflet valve located between the
left atrium and the left ventricle. The two leaflets are asymmetric, with the
anterior one longer than the posterior, and they extend into the left ventricle
where they are fastened to the papillary muscles by the chordae tendineae,
Millington S. et al. (1998). These consist of a complex web of chords that
depart from the leaflets edge and prevent their prolapse into the atrium during
systole. The functioning of the chordae is assisted by the papillary muscles,
protrusions of the myocardium, which relax during isovolumic systole and
contract during the ejection (diastolic) phase.

Different computational models for the mitral valve have been proposed
in the literature. The first finite element three–dimensional model to simulate
both healthy and impaired mitral valves was developed by Kunzelman et al.
(1993, 1997a,b); then Prot et al. (2009) used that model to study also the effect
of the shape of the valve annulus on the flow dynamics. The main limitation
of those works was the assumption of a symmetric valve whose real shape is
crucial to determine the correct intra–ventricular flow. This topic was partially
addressed by Lim et al. (2005) who analyzed how the annulus profile and
papillary muscles evolve in time, using in vivo data from sheep. Nevertheless
this paper, as well as the other ones, was mainly concerned with structural
mechanics and missed the fluid–structure interaction (FSI) that characterizes
the valve dynamics. Einstein et al. (2005a, 2003); Kunzelman et al. (2007)
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Figure 4.1: Sketch of the mitral valve apparatus (adapted from
http://www.oncologynurseadvisor.com/anesthesiology/mitral-valve-
replacement/article/580656/).

presented a realistic model with the three–dimensional coupling of fluid and
structure although the valve was considered isolated and its interaction with
the ventricle was neglected. Watton et al. (2008) analyzed the dynamics of
a chorded mitral valve by assigning the kinematics of the chordal–ventricle
attachment points according to data obtained by high–resolution magnetic
resonance image: in this case the chordae/ventricle interaction was properly
accounted but the intra–ventricular flow could not be described.

Recently, in Meschini et al. (2017), it has been underlined that the mitral
valve interacts directly with the ventricle through the flow and the leaflet
dynamics results from the interaction with the surrounding flow that, in turn,
is determined by the leaflet configuration. In order to cope with this coupled
dynamics a full FSI computational tool has been developed and the flow has
been analyzed considering either the native mitral valve and the deformable
left ventricle. The mitral valve in Meschini et al. (2017), however, was modeled
without chordae tendineae and their functionalities were replaced by ad hoc
kinematic conditions; these mainly prevented the leaflets from everting into
the mitral channel during systole and the flow from regurgitating into the
‘atrium’.

In this chapter we aim at moving one step further towards an uncom-
promised model of the ventricle by adding physical chordae tendineae to the
mitral valve and removing the ad hoc conditions; this allows the model to
be self–consistent and to fully capture the synergistic mechanisms within the
ventricle.

The chapter is structured as follows. In the next section the model and
the flow parameters are described and its experimental validation is given.
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In section 4.3 the results for the chorded mitral valve are presented and the
comparison with the non chorded one is shown. The closing remarks and the
perspectives for future studies are given in the final section.

4.2 The model

4.2.1 The numerical method

The computational model consists of two–way coupled flow and structure
solvers, wand it is essentially that described by de Tullio & Pascazio (2016),
Spandan et al. (2017) and Meschini et al. (2017). For a detailed description of
the specific algorithms and the convergence checks of the model we refer to the
previous references; here we report only the features of the building blocks.

The motion of the blood is described by the Navier-Stokes equations which,
in non dimensional form, read:

∂u
∂t

+ u · ∇u = −∇p+ 1
Re
∇2u + f ,

∇ · u = 0.
(4.1)

Here u is the velocity, p the pressure and Re the Reynolds number, later
defined. f is a specific body force, related to the immersed boundary (IB)
technique, used to impose the correct boundary condition at the immersed
surface. Even though the blood is a non-Newtonian fluid, here it is assumed
Newtonian since it is known that its non–Newtonian nature is relevant only
in vessels of diameter smaller than 15–20 red blood cell diameters (∼ 80–
100 µm), Siginer et al. (1999). In Meschini et al. (2017) it has anyway been
shown by direct numerical simulations that the above statement applies also
to the present flow.

An interaction potential approach is employed to capture the structure
dynamics. This idea was introduced in Tanaka et al. (2012) and then applied
to several phenomena in de Tullio & Pascazio (2016), Spandan et al. (2017)
and Meschini et al. (2017). The structures are discretized by a triangular mesh
and the vertices are connected by elastic springs, the total mass of the body
is distributed on the vertices of the triangles. When this complex network
deforms it stores potential energy (given by elastic, bending, area and volume
energy) whose gradient yields the internal forces. These, summed to the local
hydrodynamic loads and other external forces (like gravity), are used to evolve
the dynamics of each network node according to the second Newton’s law.
By successive integrations, from the acceleration, the velocity and then the
position of the nodes is computed and the structure configuration updated.

The effect of complex–geometry bodies on the flow is imposed by the IB
method and two different techniques are employed. For the moving and de-
formable structures we rely on the moving–least–squares approach of Vanella
& Balaras (2009) since, despite the computational cost, it yields smooth hy-
drodynamic loads at the interface thus resulting in accurate structure defor-
mations. In contrast, for rigid structures the computationally inexpensive
direct–forcing approach of Fadlun et al. (2000) is adopted.

The core of the model is the fluid–structure interaction algorithm and a
loose coupling approach, in which the fluid is solved first and the hydrodynamic
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loads are used to evolve the structure, has been selected after extensive conver-
gence checks. The procedure can be outlined as follows: starting from the flow
and structure at the time tn, the flow is advanced at the time (tn+1 = tn+∆t).
The new flow field is used to compute the hydrodynamic loads by the pressure
and the wall shear stresses. Interpolating the loads between tn and tn+1 the
structure can be evolved up to tn+1 with a time substep ∆ts = ∆t/S, where
S is the number of substeps.

4.2.2 The set–up

As already evident from figure 4.1 the mitral valve is a very complex struc-
ture and this is stressed in figure 4.2 where the circumferential geometry is
represented on a plane. It can be noted that although there are two main
leaflets, the anterior and the posterior, these have characteristic regions called
segments and various chordae tendineae depart from each segment to the pap-
illary muscles. The precise description of such an involved structure would be
very difficult and also of reduced use on account of the high physiological vari-
ability among different individuals. We have therefore decided to extract the
essential features of the valve by modeling the anterior and posterior leaflets
of different dimensions and to gather all the chordae tendineae into four main
bundles as in figure 4.2. Each chorda, which is essentially a band with zero
thickness, departs from the edge of a leaflet and connects directly to the ven-
tricle without the papillary muscle. The resulting geometry is close enough
to the native valve to retain the main functionalities but, at the same time,
simple enough to be handled within a simulation in which also the ventricle
and the three-dimensional flow are considered.

papillary muscle
Anteromedial
papillary muscle

Posteromedial
papillary muscle

Chordae
tendineae

Chordae
tendineae

leaflet
Anterior

leaflet
Posterior

Posteromedial

Figure 4.2: Sketch of the mitral valve geometry used in this study. In the
background it is reported, for comparison, the geometry of a real native mitral
valve.
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a)UU b)

c)

Figure 4.3: a) Numerical set-up for the chorded mitral valve with attachment
points to the left ventricle wall. b) 3D mesh of the posterior leaflet provided
of chordae tendineae. c) 3D mesh of the anterior leaflet provided of chordae
tendineae

The overall assembly is shown in figure 4.3 in which the deformable valve
and ventricle are both attached to a rigid frame which mimics the fibrous
trigone of the real heart. The two ducts above the frame, referred to as mitral
and aortic channels, are used to drive and extract fluid into the ventricle
according to the profile of figure 4.4. This physiological law has two phases: the
inflow made of two positive pulses, the E–wave and the A–wave, corresponding
to the diastole of the left ventricle, and the outflow phase, the systole, when
the fluid leaves the left ventricle through the aortic channel.

The inflow/outflow function is scaled to reproduce the function of a healthy
left ventricle which is characterized by an ejection fraction 55% ≤ EF ≤ 70%.
Let V (t) be the volume of blood in the ventricle during the heart cycle with
a maximum VM at the end of the diastole and a minimum Vm at the end of
the systole. The difference VM − Vm is the volume of blood ejected from the
ventricle and the ejection fraction is defined as the ratio EF = (VM−Vm)/VM :
in this chapter we run all the simulations for an ejection fraction of 60%.

Similarly to Meschini et al. (2017) we do not model the aortic valve since
it only regulates the flow between the ventricle and the ascending aorta and
has a negligible influence on the ventricular flow and mitral valve dynamics.
Nevertheless, in order to mimic the opening and closing of the aortic channel
we fill the latter with a porous medium whose porosity tends to zero during
diastole, thus obstructing the duct, and to infinity during systole to allow the
fluid to leave the ventricle.
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Figure 4.4: Time evolution of the inflow (positive values) and outflow (negative
values) boundary conditions during a heart cycle.

4.2.3 Simulation parameters and experimental validation

The time integration of the model is performed with a variable time step which
dynamically adjusts during the integration so to maintain the Courant number
constant at CFL = 0.2. All the flow parameters and material properties are
made dimensionless; the scaling length is the mitral orifice D = 24 mm while
the velocity U ' 0.75 m/s is that at the peak inflow. As a result the Reynolds
number is Re = 4200 for a blood with kinematic viscosity ν = 4.5×10−6 m2/s.
A heart rate of 72 bpm has a period T = 0.833 s that corresponds to Tad = 25
non–dimensional time units; throughout the chapter the phases of the cycle
will be always scaled by Tad so that they range in between 0 and 1.

All the simulations are run for a minimum of 5 heart cycles and the data
collected for phase averages.

All the numerical simulations are run on a mesh of 1293 nodes evenly
distributed in all three directions. The grid spacing of 1293 is chosen after
convergence check analyses extensively discussed in Meschini et al. (2017). In
that paper the case with the native valve without chordae has been run also
on meshes 1933 and 2573 obtaining a substantial agreement. We add that
although a mesh of 1293 nodes might look coarse for a flow at Re = 4200 we
should keep in mind that this is just the peak Reynolds number attained only
in one instant of the cycle and the same parameter computed with the rms
velocity is only Rerms = 660. In addition, as shown in figure 4.4, the flow rate
is pulsatile with accelerations, decelerations and stagnant phases therefore the
flow is never forced for a long enough time to allow the energy to cascade from
the largest to the smallest (Kolmogorov) scales.

A mesh of 1293 nodes allows the modeled chordae tendineae to be dis-
cretized by 4–5 Eulerian cells and this has been found to be the marginal
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resolution to capture their interaction with the flow. We wish to point out
that an advantage of gathering several chordae into a single bundle is that
the resulting structure has a bigger transversal (cross) section and a coarser
Eulerian resolution can be used to describe its interaction with the fluid. Even
within this simplifying hypothesis, a simulation with a chorded valve resulted
30–40% more expensive than the analogous without chordae the reason being
a larger number of triangular elements for the structure and a smaller time
step size for the system integration.

The ventricle is discretized by 3 × 104 triangles, while the two leaflets of
the native mitral valve, including the four chordae tendineae, have a total of
9 × 103 triangles. These triangles are as close as possible to equilateral and
the edges are about 70% of the local Eulerian grid spacing, in order to have
the optimal efficiency of the immersed boundary method de Tullio & Pascazio
(2016).

Even if the numerical results are grid independent this does not imply
that they correctly describe the intended problem. For this reason we have
performed an experimental validation of the numerical model by realizing a
laboratory replica of the numerical set–up. Details of the experimental ap-
paratus and measurement techniques can be found in Meschini et al. (2016,
2017); Spandan et al. (2017); here we show only the key element of the exper-
iment in figure 4.5, The ventricle evolves into a sealed Plexiglas box which,
when illuminated from the side, allows for measurements of the velocity field
in a vertical symmetry plane by particle–image–velocimetry (PIV). If the same
box is lighted from below the characterization of the mitral valve dynamics
can be performed by recording the phenomenon from above.

In figure 4.6 we report the comparison of the velocity field for one repre-
sentative instant of the cycle that, considering the cycle–to–cycle variability,
is satisfactory.

Since the focus of this study is on the mitral valve we have also compared
the time evolution of the mitral orifice area and the instantaneous results are
illustrated in figure 4.7 for two representative phases of the cardiac cycle. The
mitral orifice area is defined as the area delimited by the leaflets edges. We
have scaled the instantaneous values to the maximum attained in the fully
open position. The results are given in figure 4.8 and the agreement between
numerical and experimental measurements is more than satisfactory. This is
an important point to support the robustness of our computational model as
well as the reliability of the numerical results.
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2

1

3

Figure 4.5: Detail of the experimental set–up with the left ventricle; by illumi-
nating the system from below (2) it is possible to follow in time the dynamics
of the mitral valve from above (1). Illuminating the ventricle from the side
(3) the velocity field inside the ventricle in the vertical symmetry plane can
be measured.
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a) b)

Figure 4.6: Two–dimensional velocity field in the vertical symmetry plane at
t = 0.25 of the heart cycle: a) numerical simulation, b) laboratory experiment.

a) b)

c) d)

Figure 4.7: Instantaneous snapshots for the mitral valve dynamics during two
phases of the cycle: a) and c) peak of the E–wave, b) and d) peak systole. a)
and b) experimental visualization, c) and d) numerical simulation
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Figure 4.8: Comparison of the geometric orifice area (GOA) over a cardiac
cycle between experimental measurements (continuum red line) and numerical
results (dotted black line).

4.3 Results
We take as a guideline the curve in figure 4.4 to describe the different ventricu-
lar flow features in the cycle; during early diastole the E–wave accelerates the
flow through the mitral orifice opening the valve and producing a strong jet.
This jet is initially bent towards the ventricle surface owing to the asymmetry
of the leaflets and it sweeps the lateral wall (figure 4.9a). In this part of the
cycle the chordae are inactive since when the leaflets open the chordae can
not resist compression and they crumple. As the peak E–wave is attained,
the leaflets open wider and the jet points vertically downward to reach the
ventricle apex (figure 4.9b) and generating a strong recirculation (figure 4.9c).
During the A–wave another jet is produced and the previous process repeats
although with weaker intensity. During late diastole (t = 0.65) the ventricle
attains its maximum volume and the chordae their maximum elongation. At
the beginning of systole, the fluid leaves the ventricle both, from the aortic
and the mitral channel. However, the low pressure induced by the acceler-
ating back flow through the mitral leaflets seals them thus closing the valve
and preventing further leakage (figure 4.9e). In this phase, the same pressure
force that keeps the leaflets pressed one against the other would also evert
them into the mitral channel if a reaction force did not oppose. The chordae
tendineae, with their pull back tension, have exactly this function; they assure
the perfect closure of the leaflets and maintain the correct valve configuration
all over the systole. With the mitral valve closed the flow can leave the ventri-
cle only through the aortic channel, the ventricle shrinks and also the chordae
tendineae shorten (figure 4.9f) until the initial configuration is recovered and
a new cardiac cycle can start.
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a)

e)

b)

d)

f)

c)

Figure 4.9: Snapshots of the velocity vector in the x–z symmetry plane and
contours of vertical velocity (range is −2 ≤ vz ≤ 2 from blue to red) at
EF = 60% with chorded mitral valve: a) early E–wave, b) peak of the E-
wave, c) peak of the A-wave, d) early systole, e) peak systole and e) end of
systole.
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a) b)

Figure 4.10: Snapshots of the velocity vector in the x–z symmetry plane and
contours of vertical velocity at EF = 60% with non chorded mitral valve: a)
peak of the E–wave, b) peak–systole.

We compare these results with those obtained for a non chorded mitral
valve. In figure 4.10 two snapshots, respectively, at the peak E–wave and
peak systole are shown: figures 4.10a and 4.10b therefore correspond to the
same instants as in figures 4.9b and 4.9e. It can be noted that, thanks to the
pulling action of the chordae tendineae, the mitral valve opens wider while
during systole the leaflets get closer to each other. Another difference is the
shape of the ventricle that is more elongated axially for the non chorded valve.
Since at any instant the volume ventricle is fixed by the flow rates of figure
4.4 the different shapes are clearly due to the presence of the chordae. In fact,
the same pulling force that keeps the leaflets in place during systole reduces
also the axial deformation of the ventricle during diastole. It is worthwhile to
point out, however, that this result deserves further investigation in order to
separate the real effects on the heart from the artifacts of the present model; in
the latter, in fact, the ventricle is modeled as a thin membrane that passively
adapts to an imposed flow rate while the myocardium has an average thickness
of ≈ 1 cm and contracts actively owing to an electrical signal that propagates
from the apex along a complex spiraling path. This implies that the traction
of the chordae is likely to have different effects on the two systems and a more
realistic ventricle model should be implemented before drawing conclusions.

The above description of the mitral leaflet dynamics is confirmed by the
time evolution of the leaflets centroids shown in figures 4.11 and 4.12; clearly
the most relevant differences with the non chorded valve occur during the
closure since for the chorded valve the pulling back of the chordae keeps the
leaflets in place while for the non chorded valve the prolapse is prevented by
imposing a kinematic condition that ‘freezes’ the leaflet position immediately
after the initial systolic closure up to the end of the cycle. Figures 4.11 and
4.12 also show that the posterior leaflet is the one most affected by the action
of the chordae whereas the dynamics of the anterior one is hardly influenced
except for the part of the cycle when the valve is closed.
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Figure 4.11: Mean z–displacement of the anterior mitral leaflet: non
corded–, corded–valve.
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Figure 4.12: Mean z–displacement of the posterior mitral leaflet: non
corded–, corded–valve.
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In figure 4.13 the phase averaged velocity magnitude sampled from a probe
located at the ventricle apex is shown; although the behaviours are similar,
the velocity for the chorded valve is more intense either during the E–wave
and the A–wave thus indicating a more efficient ventricle ‘washing’ produced
by the chorded valve. The stronger apical flow is beneficial for the ventricle
physiology since it avoids the blood stagnation (referred to as hemostasys)
that could generate clots, Badas et al. (2016).
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Figure 4.13: Time evolution of the velocity magnitude at a probe in the ven-
tricle apex: non corded–, corded–valve.

Although the apical flow is stronger with a chorded valve, the presence of
the chordae within the ventricle generates additional dissipation and this is ev-
idenced in figure 4.14 with the phase averaged kinetic energy of the ventricular
flow within a cycle. It can be noted that, even if the flow rates are identical
for the two cases, the flow with the chorded valve is constantly less energetic
than for the other case. This is especially true during the peak E–wave when
the velocities the strongest and the drag exerted by the chordae presumably
the highest.
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Figure 4.14: Time evolution of the kinetic energy of the intra ventricular flow:
non corded–, corded–valve.

4.4 Closing remarks
In this chapter, the flow in the left ventricle coupled with chorded mitral
valves has been studied by FSI numerical simulations for a healthy left ven-
tricle with an ejection fraction EF = 60%. The model has been proven to
be computationally efficient and to yield reliable results which are consistent
with the experimental. It has been found that, even thought the function of
the chordae tendineae on the mitral valve leaflets can be replaced by ad hoc
kinematic conditions, their effects on the whole system is more complex and
it involves either the fluid dynamics, with a better apical washing and a more
dissipative recirculation, and a different ventricle deformation caused by the
pulling action of the chordae on the myocardium. This is consistent with the
view of the heart as a highly synergistic system in which every part works in
combination with the others and influence each other dynamics.

We believe that the inclusion of the chordae tendineae in an already com-
plex left ventricle models is an important step forward an uncompromised
model of the heart. However, it is worth mentioning that still there are fea-
tures that need to be accounted for and the model development is a restless
process. A natural extension would be the inclusion of the papillary muscles
which tether the chordae tendineae to the ventricle wall and also to replace
the passive adaptation of the ventricle to an imposed inflow with an active
contraction driven by the propagation of the electrical stimulus. This will
contribute to the realization of a much more realistic and reliable model: we
are already working in these directions and the developments will be the topic
of forthcoming papers.
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Chapter 5

Flow–induced mitral leaflets
motion in Hypertrophic
Cardiomyopathy

Based on: Valentina Meschini, Rajat Mittal & Roberto Verzicco, ‘Flow–induced mitral
leaflets motion in Hypertrophic Cardiomyopathy’, in preparation.
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5.1 Introduction

Hypertrophic cardiomyopathy (HCM) is a complex but relatively common
form of genetic heart disease that occurs in 1 out of 500 people, (Maron et al.,
1995), even if it often goes undiagnosed in the community. It represents one
of the most common cause of cardiac sudden death in people under 30 years,
especially in young sportive men. From medical imaging techniques it is found
that its occurrence comes together with the thickening of the septum between
the left and right ventricles, as shown in figure 5.1 at different severity levels,
and also combined with the abnormal growth of part of it inside the left
ventricle, thus obstructing blood flow into the aorta during systole and causing
sudden death.

Figure 5.1: Schematic of a) physiological left ventricle, b) hypertrophic
left ventricle (http://www.mayoclinic.org/diseases–conditions/hypertrophic–
cardiomyopathy/home/ovc–20122102).

Moreover the majority of patients affected by HCM presents elongated
anterior and posterior mitral leaflets with respect to normal subjects, (Maron
et al., 2014). On echocardiography it has been noted that these elongated
leaflets extend into the left ventricle cavity well above the plane of the mitral
annulus. This is crucial in understanding the cause of obstruction of the left
ventricle outflow tract which has been identified in the systolic anterior motion
of the mitral valve leaflets. The pathophysiology of systolic anterior motion
consists in the movement of the anterior or both leaflets of the mitral valve
towards the intra ventricular septum; this is induced by the low pressure and
accelerating flow in the obstructed region of the left ventricle near the outflow
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tract. The understanding of the cause of leaflets migration has been the topic
of debates among cardiac surgeons and still has to be understood whether it is
a push/pull mechanism of the leaflets or a sort of Venturi effect in the outflow
responsible for this phenomenon.

Different levels of obstruction of the left ventricle are identified by the
medical doctors using the transvalvular pressure gradient as reference quan-
tity. The difference between the pressure values inside the left ventricle (be-
hind the aortic valve) and the ones close to the outflow tract (above the aortic
valve) is measured; if this value is < 30 mmHg medical doctors refer to HCM,
while if it is ≥ 30 mmHg they refer to obstructive HCM (OHCM), Naidu
(2015). Although HCM is a chronic disease without a known cure, a num-
ber of treatments are now available to alter its course. Typical therapies for
HCM/OHCM are septal myectomy, that is surgical removal of the abnormal
grown portion inside the ventricle, and mitral leaflet plication thus resulting in
shortened leaflets, (Feins et al., 2014). Both these possibilities have their risks
and advantages; a choice between them is made by the surgeons analyzing the
specific clinical case on the base of echocardiography and Doppler ultrasound,
(Mittal et al., 2016).

The above considerations underline the potentialities of efficient computa-
tional models able to capture the dynamics of HCM which could significantly
advance the diagnosis process and treatments efficacy of such disease, thus
leading to improved outcomes for patients and reduced health care costs.

To this purpose in this chapter we present a FSI computational model for
the left ventricle and mitral valve aiming at describing the patho–physiology of
HCM/OHCM and focusing on the ventricular flow and systolic mitral leaflet
dynamics. A parametric study is performed for different levels of ventricle
hypertophy starting from the physiological case up to a severe hypertrophic
ventricle, and for two valve leaflets lengths, pathological and physiological. In
addition to give a complete overview a case with the maximum severity of
hypertrophy but reduced pumping efficiency is set up in order to evaluate the
effects of these parameters on HCM occurrence. Finally the surgical proce-
dures of leaflets plication and septal myectomy are simulated and comparisons
between the resulting flow and leaflets dynamics are made in order to assess
the efficiency and reliability of these surgical procedures.

This chapter is organized as follows. In the next section the numerical
set–up, the numerical algorithm and the flow and structure parameters are
given. In Section 3 the results obtained for different levels of hypertrophy,
physiological and elongated leaflets, and the two surgical interventions are
presented and analysed. The closing remarks are given in the final section.

5.2 The computational model for Hypertrophic Car-
diomyopathy

5.2.1 The numerical set–up

In this study in order to capture the general dynamics of the system all the
computational geometries have not not been extracted from specific clinical
images but are rather realized using modeling software.
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Figure 5.2: Three geometries for the left ventricle: physiological ventricle (blue
shaded), a first level of hypertrophy left ventricle (green shaded), a second level
of hypertrophy left ventricle (red solid).

In figure 5.2 the three different ventricle geometries are shown: the phys-
iological left ventricle (blue shaded) with an initial non–dimensional volume
V0 = 4.3 and no thickening of the septum; a ventricle with a first level of
hypertrophy, a thickening t1 and a smaller volume V1 = 2.9 (green shaded); a
ventricle with a severe thickening of the septum t2 and an even smaller volume
V2 = 2.2 (red solid). The contraction and relaxation of the ventricles are not
active and they passively adapt to a flow rate function, as shown in figure
5.3. This function is composed of a first inflow phase, the diastole, where
U(t) is positive and the flow is pumped inside through the mitral channel. In
the second outflow phase, the systole, in which U(t) is negative and the fluid
leaves the left ventricle through the aortic channel. The level of health of the
left ventricle can be quantified by its ejection fraction (EF ); let V ∗(t) be the
volume of blood in the ventricle during the cardiac cycle with a maximum V ∗M
at the end of the diastolic phase, when the myocardium is fully relaxed, and
a minimum V ∗m at the end of the systolic phase, when the myocardium ends
its contraction; the difference V ∗M − V ∗m is the amount of blood ejected from
the ventricle during one cycle and the ejection fraction is defined as the ratio
EF = (V ∗M − V ∗m)/V ∗M . This parameter has some variation among individuals
but values 55% ≤ EF ≤ 70% are considered physiological; in this study we
impose an ejection fraction of 60%.
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Figure 5.3: Flow rate function U(t).

The mitral and aortic channels together with the valve planes (in grey in
figure 5.2) are modeled as a rigid structure that is used as a frame to anchor
the deformable ventricle and the valve leaflets.

The numerical set–up is completed by the leaflets of the mitral valve which
are found to be elongated in case of HCM; the two geometries of figure 5.4, one
for the physiological 5.4a and another for the pathological case 5.4b, are used
for comparison. Since we use deformable membranes a crucial point that needs
to be addressed is the modeling of the contact mechanism between the ventricle
and the leaflets of the valve and especially between the two leaflets. We model
each structural element by a triangular mesh whose nodes are evolved in time
according to the equations of membranes, as already described in chapter 3,
to model the contact of deformable structures we use an array that is null in
the fluid and assumes a specific integer value, different for each body, in the
cell occupied by the nodes of a specific body. The value in the cell is updated
every time step and if a triangle ends up in a non null cell, meaning that the
position is already occupied by another triangle, then the velocities of both
surface elements are set to their average so that they can still freely move
together in space but cannot compenetrate. The same procedure is used to
model the contact between the leaflet and the ventricle, but once a triangle
ends up in a non null cell the velocities are reversed in sign to induce a sort
of re–bound. We have found that this approach is efficient and allows the
valve to close without prescribing a coaptation zone but, at the same time,
it prevents the compenetration between the leaflets and between leaflets and
ventricle.

Finally we want to underline that we do not model a physical aortic valve,
since it regulates the outflow of the ventricle and has a minor impact either
on the intra-ventricular flow and on the mitral valve dynamics. For this rea-
son, in order to reduce the computational load we only introduce a numerical
procedure to mimic its opening and closing. We simulate the presence of a
porous medium in the aortic channel whose porosity tends to zero during di-
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astole thus preventing the fluid from exiting the left ventricle and to infinity
during systole so that the fluid can leave the ventricle.

a) b)

Figure 5.4: Anterior leaflet (blue) and posterior leaflet (red) of the mitral valve
in the a) physiological case and b) pathological HCM case.

5.2.2 The numerical method

The numerical scheme consists of a flow solver two–way coupled with a struc-
ture solver, which is essentially the one presented by de Tullio & Pascazio
(2016), Spandan et al. (2017) and Meschini et al. (2017). We refer the previ-
ous references for a detailed description of the method, the convergence checks
and the experimental validation of the model; here we report only the main
features.

The Navier–Stokes equations are employed to describe the motion of the
blood as an incompressible and viscous fluid, which in non dimensional form
read

∂u
∂t

+ u · ∇u = −∇p+ 1
Re
∇2u + f ,

∇ · u = 0,

where u is the velocity, p is the pressure and f is a body force term related
to the immersed boundary technique. It has to be mentioned that despite
the blood is a non–Newtonian fluid, here it is assumed Newtonian since it is
known that its non–Newtonian nature does not arise in large vessels. How-
ever in our code the non–Newtonian feature is already implemented with the
Carreau Yasuda model and in section 3.3.2 a simulation with non–Newtonian
blood is carried out; it is shown that there is substantial agreement in the
intraventricular flow and also the dynamics of the mitral valve is correctly
represented.

The structure deformation is solved using an interaction potential approach
with a spring–mass model. This idea was first introduced in Tanaka et al.
(2012) and then applied to study different fluid–dynamics phenomenon in
de Tullio & Pascazio (2016), Spandan et al. (2017) and Meschini et al. (2017).
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The immersed surfaces of the ventricle and mitral valve are discretized using
triangular meshes composed of almost equilateral triangular elements. Elastic
springs are used to connect among them the vertices of the triangles, where
the total mass of the body is uniformly distributed. The system appears as a
complex network which deforms according to the external forces and internal
reactions, given by elastic, bending, area and volume energy which is stored
into the system. Assuming the structure as an isotropic membranes, the model
constants are computed based on the material properties following the Van
Gelder model, (Van Gelder, 1998).

Two different IBM are employed to simulate the influence of the structure
on the fluid and vice versa. For the moving and deformable bodies we use the
moving least square approach of Vanella & Balaras (2009) because, despite
the computational cost, it gives a more precise computation of the struc-
ture deformations; while for rigid structures a much computationally cheaper
direct–forcing approach of Fadlun et al. (2000) is employed.

A loose coupled FSI algorithm is employed to describe the synergistic in-
teraction of fluid and structure components of the model. Moreover it is
combined with a time substepping procedure to advance the structure defor-
mation: starting from the flow and structure at the time tn, the flow at the
new time (tn+1 = tn + ∆t) is computed; then the structure is advanced with
a time substep ∆ts = ∆t/S, using the hydrodynamic loads at tn and tn+1,
typically a value S = 100 is used in all the simulations.

5.2.3 Simulation parameters and convergence checks

As discussed in chapter 3, after a careful grid independence study a grid res-
olution of 1293 is used in all simulations performed in this chapter. In order
to maintain the optimal ratio between the Lagrangian (triangular) and the
local Eulerian meshes of about 70%, (de Tullio & Pascazio, 2016), the left
ventricle has been discretized by 3 × 104 triangles while the two leaflets of
the natural mitral valve have a total of 8× 103 triangles. The material prop-
erties and flow parameters are made dimensionless using the mitral orifice
diameter D = 24 mm, the velocity U ' 0.75 m/s at the peak inflow and the
fluid density ρ = 1000Kg/m3. Considering a blood with kinematic viscosity
ν = 4.5 × 10−6 m2/s, the resulting Reynolds number is Re = 4200. A heart
rate of 72 bpm has a period T = 0.833 s that corresponds to Tad = 25 non–
dimensional time units. The time integration has been performed at constant
Courant number CFL = 0.2 with a dynamic time step that adjusts during
the integration so to keep the CFL constant.

We refer to sections 3.2.3 and 4.2.3 of this thesis in which two different
one–to–one experimental validations are provided on the flow dynamics inside
the ventricle, on the structure deformation and on the mitral valve dynamics
comparing the numerical and experimental orifice area of the mitral valve.
As a result in both validations the matching of experimental measurements
and numerical results is obtained for the large scale features of the ventricle
deformation, mitral valve and flow dynamics.
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5.3 Results

In this section we report the results obtained for the three different geometries
of the left ventricle, each one with a different hypertrophy level, and for two
lengths of mitral valve leaflets: normal, referring to a physiological case, and
elongated, related to the pathological HCM. The reference case which is used
as a guideline to replicate the pathological behaviours of the HCM is the one
shown in figure 5.5, where we can see medical imaging from an ecocardiography
of a patient affected by HCM. Four sequential snapshots are extracted at some
representative instants so to introduce the dynamics of the flow, the ventricle
and mitral valve deformation.

d)

a) b)

c)

Figure 5.5: Snapshots of the ecocardiography of a patient affected by HCM in
selected instants of the cardiac cycle: a) peak of the E–wave, b) peak of the
A–wave, c) mid–systole, d) end–systole.

The blood from the left atrium is pumped into the left ventricle through
the mitral orifice, the valve starts opening until the peak of the E–wave is
reached and the maximum opening position is attained, figure 5.5a; then the
fluid starts recirculating inside the left ventricle and the valve leaflets tend
to get closer until a new injection is produced by the A–wave opened again
by the incoming mitral jet, figure 5.5b. Then systole starts and the leaflets
of the mitral valve begin to close until they seal, figure 5.5c, because of the
counter pressure. After mitral valve closes the flow leaves the ventricle through
the aortic channel where, because of the pathologically thickened septum,
has a strong acceleration that produces abnormal local low pressure. The
mitral leaflets, therefore experience an anomalous lateral pressure gradient
that moves them to the left up to the thickened septum, figure 5.5d.

We start from these clinical data as reference and perform a parametric
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study better investigate under which conditions this pathological behaviour
is observed. In order to have a range of behaviours we analyze the following
configurations: a first hypertrophic ventricle, with an EF of 60% and elon-
gated leaflets (section 5.3.1); a second hypertrophic ventricle with an increased
thickening of the septum and elongated leaflets (section 5.3.2); a physiologi-
cal ventricle with no hypertrophy but with elongated leaflets (section 5.3.3).
Moreover in the second case of more severe hypertrophy and longer leaflets we
also run a simulation with reduced pumping efficiency (EF = 40%), in order
to assess its effects on HCM (section 5.3.4). Finally the surgical interventions
of leaflets plication and septal myectomy are analysed in the case of severe
hypertrophy and simulated to evaluate their effectiveness in reducing the mi-
gration of mitral leaflets and the consequent obstruction of the outflow aortic
tract (section 5.3.5).

5.3.1 HCM: a first case of left ventricle hypertrophy with elon-
gated leaflets

We start by presenting the flow and the leaflets dynamics for a case of hyper-
trophic ventricle with EF = 60%. The numerical set–up is the one described
in section 5.2.1 and illustrated in figure 5.4b: the leaflets are elongated and the
ventricle has an initial volume V1 = 2, 9 with a relative volume with respect
to the non hypertrophic case of V1

V0
= 67%. In figure 5.6 four instantaneous

snapshots of the velocity vector field colored with the values of the vertical
velocity at the same representative instants as in figure 5.5 are shown for make
comparisons. The blood from the left atrium enters the left ventricle and is
injected through the mitral channel by the inflow function of figure 5.3. As
the flow rate evolves, the elongated leaflets of the mitral valve drift apart and
the mitral jet, due to the asymmetry of the leaflets, initially points transver-
sally to the lateral wall, figure 5.6a; then it sweeps up to the ventricle apex
and starts recirculating inside it until a second weaker jet of incoming fluid
is produced, figure 5.6b. As the fluid is pumped inside the ventricle owing to
the synergistic functioning of fluid and structure, the left ventricle expands
less than in the physiological case because of the thickened septum. As systole
starts, the ventricle contracts and the fluid initially leaves the ventricle both
from aortic and mitral channels until the mitral valve closes, figure 5.6c. After
this point the fluid continues to exit only from the aortic channel. The thick-
ened septum reduces the outflow region which, in turn, induces abnormal high
velocity and low sub–valvular aortic pressure; this results in the migration of
the mitral leaflets towards the aortic channel (figure 5.6d) which is referred to
as systolic anterior motion. In the most severe cases the leaflets can attach
to the ventricle septum thus producing the obstruction of the aortic valve.
It is worth mentioning that in this movement the mitral leaflets could also
open and produce mitral regurgitation; in this case, even if the leaflets slightly
open in the region next to the mitral annulus, mitral regurgitation does not
occur since they remain sealed at the tips. The time evolution of the leaflets
motion is shown in figure 5.7 for the x–centroid, X. As in the physiological
case, the posterior leaflet moves less than the anterior up to the point of full
closure (t ≈ 0.76) then both leaflets experience a steeply decrease of X which
indicates the abrupt migration towards the ventricle septum. Once the leaflets
get close the septum they remain in that pathological position up to the end
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of systole when the fluid stops leaving the ventricle and the pressure recovers
physiological values.

This dynamics is consistent with the above clinical picture and the occur-
rence of systolic anterior motion is confirmed for the selected configuration.

d)

a) b)

c)

Figure 5.6: Snapshots of the velocity vector in the x–z symmetry plane and
contours of vertical velocity at EF = 60% at different instants of the cardiac
cycle: a) peak of E–wave, b) peak of the A–wave, c) mid–systole, d) end–
systole.

5.3.2 HCM: a severe case of left ventricle hypertrophy with
elongated leaflets

In order to evaluate the role of the septum thickening on the patho–physiology
of HCM, the same set–up as before is adopted here except for the ventri-
cle geometry which has a more pronounced hypertrophy (red shape of figure
5.2). This severely hypertrophic ventricle is characterized by an initial volume
V2 = 2.19, corresponding to half the physiological value (V2/V0 = 50%). In
figure 5.8 four snapshots of the velocity vector fields coloured with vertical
velocity, at the same instants as figure 5.6, are reported showing a dynamics
similar to the previous case. The most important difference is that the se-
vere hypertrophy level brings the leaflets in contact with the ventricle septum
thus further obstructing the aortic channel (figure 5.8d). Looking at figure 5.9
it can be noted that X attains, at the end of the cycle, smaller values than
for the previous case (figure 5.7) implying that the leaflets move less to the
left. However, because of the thicker ventricle septum, they come anyway in
contact and prevent the blood from freely flowing into the aorta.
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Figure 5.7: Time evolution of the mean horizontal coordinate X of the pos-
terior ( ) and anterior ( ) leaflet of the natural mitral valve for the
first level of ventricle hypertrophy.

d)

a) b)

c)

Figure 5.8: The same as figure 5.6, but for a different ventricle geometry
characterized by a greater degree of thickening t2 and a smaller initial volume
V2.
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Figure 5.9: The same as figure 5.7, but for a more severe level of left ventricle
hypertrophy.

In the clinical practice, an easy quantity used to characterize the HCM
pathology is the aortic transvalvular pressure drop (TPD) which is the pres-
sure difference upstream and downstream the aortic valve at peak systole.
This quantity is referred to as ‘transvalvular pressure gradient’ by the med-
ical community and it is widely used in this context (Maron et al. (1995);
Naidu (2015)) owing to its simplicity and correlation with the pathology. Car-
diac surgeons define obstructive the hypertrophic cardiomyopathy if TPD≥ 30
mmHg and non–obstructive if it is < 30 mmHg. In our model this threshold
corresponds to the non–dimensional value TPDad ≈ 6 and we have obtained
TPDad = 6.1 for the first ventricle (section 5.3.1) and 6.4 for the present case.

5.3.3 Physiological ventricle with elongated leaflets

According to (Maron et al., 1995) the thickening of the ventricular septum
often occurs together with an excessive length of the mitral valve leaflets and
this combination can produce the obstruction of the aortic channel during
systole. Here we want to test whether these long leaflets in a physiological
ventricle (blue shaded in figure 5.2) are still able to produce systolic anterior
motion. Simulations are carried out for the same parameters as subsections
5.3.1 and 5.3.2, except for the ventricle geometry. The snapshots of figure
5.10 show how during diastole the left ventricle deformations are different
although the flow has similar features. However, during systole, when the
mitral valve closes, the leaflets do not move towards the aortic channel and
no obstruction of the outflow tract is measured. Further confirmation of this
behaviour comes from figure 5.11 where there is no evidence of the sudden X
decrease for t ≥ 0.76 evidencing the systolic anterior motion.
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a) b)

c) d)

Figure 5.10: The same as figure 5.6 and 5.8, but with the geometry of a
physiological left ventricle with elongated leaflets.
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Figure 5.11: The same as figure 5.7, but for a physiological left ventricle with
elongated leaflets.

117



Chapter 5 - Flow–induced mitral leaflets motion in Hypertrophic
Cardiomyopathy

5.3.4 HCM: a severe ventricle hypertrophy with elongated
leaflets and reduced ejection fraction EF=40%

In order to isolate the effect of the ventricle pumping efficiency in HCM, a
case with pathological ejection fraction (EF = 40%) is analysed using the
set–up with severe HCM discussed in section 5.3.2. The rationale behind this
test is that it appears that the systolic anterior motion is triggered by the low
pressure induced in the aortic channel by the abnormal flow conditions. In the
previous sections we have shown that this requires a combination of septum
thickening and mitral leaflets elongation to produce the ventricle obstruction.
However, the pathologic low pressure in the aortic subvalvular region can not
be produced if the systolic flow rate, or in other words the ejection fraction,
is high enough and it is reasonable to speculate that impaired ventricles are
less keen on producing blockage.

A comparison of figures 5.8 and 5.12 reveals that it is indeed the case and a
weakened flow with a reduced ejection fraction does not generate obstruction.
The mitral valve opens less during E–wave and A–wave (figures 5.12ab) and
the weak systole does not allow a perfect mitral valve closure (figure 5.12c).
In the remaining part of the cycle no anterior systolic motion is observed with
the leaflets that maintain their mean X position (figure 5.13).

d)

a) b)

c)

Figure 5.12: The same as figure 5.8, but with a reduced ejection fraction of
40%.
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Figure 5.13: The same as figure 5.9, but with a reduced ejection fraction of
40%.

5.3.5 Testing surgical techniques for HCM: leaflets plication
and septal myectomy

As mentioned in the introduction, HCM is a disease without a known spe-
cific cure, even though drug therapy (essentially beta–blocking agents aimed
at reducing the systemic blood pressure that, in turn, decreases the aortic
transvalvular pressure drop) works reasonably well for most of the people.
There are however patients who may be intolerant to the drug or develop se-
vere HCM symptoms after a few years on medications and alternative surgical
procedures must be considered for them. Mitral leaflets plication and septal
myectomy are the most effective procedures; the former consists of shortening
the elongated leaflets to their physiological length, while the latter implies the
removal of the abnormal growth of the thickened septum protruding inside
the left ventricle, as shown in figure 5.16a. Both are aimed at eliminating the
systolic anterior motion and the obstruction of the aortic channel.

These surgical measures are simulated here using the same set–up as in
the previous sections. The leaflet plication is mimicked using the same con-
figuration as in subsection 5.3.2 but with the physiological leaflets of figure
5.4a. Figure 5.14 reports the snapshots of the velocity field at the same in-
stants as figure 5.8 and the the only relevant difference is the absence of mitral
leaflet migration at the end of the cycle (figure 5.14d). This is confirmed by
figure 5.15, in which no rapid decreasing of the x–centroids can be observed
at t = 0.76. The transvalvular pressure drop in the present case is TPD= 3.8
which is clearly below the pathologic threshold of TPDth = 6 which induce
ventricle outflow obstruction.
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d)

a) b)

c)

Figure 5.14: The same as figure 5.8, but with shortened leaflets.
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Figure 5.15: The same as figure 5.9, but in the case of leaflet plication.
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The other surgical intervention of septal myectomy is also numerically
simulated and, since it consists of removing the overgrown septum (figure
5.16a), a new the left ventricle geometry has been used in combination with
elongated leaflets (figure 5.16b).

a) b)

Figure 5.16: a) Sketch of septal myectomy intervention. b) Numerical set–up
for the simulation of septal myectomy.

The results are summarized in figure 5.17; as for the previous case, the
system dynamics is similar to that of figure 5.8 during diastole, whereas no
migration of the elongated mitral leaflets is observed during systole. Again the
leaflets centroids X do not show the sudden decrease at t = 0.76 that indicates
the anterior systolic motion (figure 5.18) and also the transvalvular pressure
drop, around 4, is sufficiently far from the pathological threshold TPDth = 6).

In both cases the numerical results support the effectiveness of the surgi-
cal procedures and this is an additional confirmation of the reliability of the
model which could be used to improve the current intervention techniques
and to predict the outcome of innovative procedure of to fine tune the risk
stratification of the patients.
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d)

a) b)

c)

Figure 5.17: The same as figure 5.8, but with a geometry of the left ventricle
which replicates septal myectomy.
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Figure 5.18: The same as figure 5.9, but in the case of septal myectomy.
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5.4 Discussion and closing remarks
In this chapter we have presented a computational model that can cope with
the patho–physiology of hypertrophic cardiomyopathy of the left ventricle.
This tool has proven to be reliable for replicating the flow, the mitral valve
dynamics and especially the migration of the leaflets towards the septum,
which has been identified as the cause of sudden death. Once the reliability
of the package has been assessed, a full parametric study has been performed
to identify the factors responsible of the systolic anterior motion.

The systolic anterior motion has been indeed observed in both cases with
elongated leaflets and hypertrophic ventricles, even though at different sever-
ity levels. In contrast a physiological ventricle with elongated leaflets has not
shown the pathological systolic anterior motion. In an additional test it has
been found that in order for the pathology to be effective, not only the hy-
pertophy has to be severe and the mitral valve leaflets elongated but also the
ventricle ejection fraction must be within physiologic values. In fact a case
with EF = 40% has shown the flow to be too weak to produce a strong enough
aortic subvalvular pressure to induce the leaflets migration.

Finally the two standard surgical procedures of leaflet plication and septal
myectomy have been numerically tested and their effectiveness in eliminating
the mitral leaflet migration has been verified.

All the numerical results have indicated that the occurrence of patholog-
ical behaviours in HCM are related to the combined effects of thickened and
abnormal growth of the septum, elongated leaflets of the mitral valve and phys-
iological values of the ejection fraction; if one of these factors is missing the
systolic anterior motion does not occur. A further confirmation has been ob-
tained from the evaluation of the transvalvular pressure drop (or transvalvular
pressure gradient for the medical community), which gives an immediate quan-
tification of the obstruction level of the outflow tract: in both cases showing
obstruction this quantity has been found to exceed the threshold of 30 mmHg.
In contrast when no systolic anterior motion is observed the pressure drop is
always below the threshold.
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Conclusions

The achievement of a computational model able to provide a high–fidelity
description of cardiac hemodynamics, reflecting also its accurate biology and
chemistry, is still a challenge. However, several advances in modeling have
been made in the last decades in overcoming the common practice of con-
sidering only separate parts of the entire complex cardiac system, thus lead-
ing to oversimplified models and consequently producing unreliable compu-
tational results far from clinical findings and medical needs. The necessity
of having a self–consistent model in which all the cardiac elements work in a
synergistic way, starting from the fluid/structure interaction has become un-
avoidable. Motivated by these arguments, in this thesis we have developed
a multi–physics computational model for the flow inside the left ventricle of
the human heart, coupling the fluid and structure dynamics. The core of our
model has been a direct numerical simulation solver for the time dependent
incompressible flow which essentially discretize the Navier–Stokes equations in
space using second–order finite–difference schemes, with all the viscous term
treated implicitly and the convective ones explicitly. In a complex deform-
ing computational domain like the left ventricle the time integration of the
Navier–Stokes equations would be very difficult without the use of immersed
boundary methods (IBM). These methods make things easier because they
avoid body fitted meshes, handle moving boundaries and deforming domains
and, equally important, they have a reduced computational cost. To compute
the structure dynamics a structural solver based on an a interaction potential
approach has been employed. The ultimate purpose of simulating the syner-
gistic functioning of all the elements of the left ventricle has been achieved
thanks to a loose coupling FSI algorithm with a substepping procedure for the
structure dynamics.

The resulting complex computational model has been validated using an
ad–hoc experimental set–up: a one–to–one comparison between numerical re-
sults and experimental measurements for the flow dynamics, the ventricle de-
formation, the behaviour of mitral valve has given a first confirmation of the
modeling reliability, which has represented a fundamental step for daring fur-
ther investigations in different related problems.

In chapter 3, the computational model has been employed to asses the
performance of different types of mitral valves (natural, prosthetic mechanical
or biological) on the flow structure inside the ventricle. It has been found that
the ventricular flow is heavily affected by the specific type of mitral valve,
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whose effects are more pronounced for a ventricle with reduced pumping effi-
ciency. More precisely, if the ejection fraction of the ventricle (EF ) is in the
physiological range (50−70%), independently from the mitral valve geometry,
the mitral jet sweeps up to the ventricle apex thus preventing apical blood
stagnation. On the other hand for pathological values of ejection fraction
(around 40%) the coupled effect of the weakened flow and the disturbances
introduced by prosthetic devices results in a reduced penetration capability
of the mitral jet thus originating a region of stagnant fluid. From a medical
point of view these outcomes translate into the occurrence of heart attacks or
more generally cardiac pathologies. These findings could be used as additional
elements in the prosthesis selection for valve replacement, since presently the
main decision factor between a biological or mechanical prosthetic device is
the life expectation of the patient.

Despite the useful insights achieved with this model, it has to be mentioned
that the geometry of the natural valve employed in chapter 3 had a simplified
shape, since chordae tendineae were not physically included in the model and
their kinematic effect has been replaced by numerical constraints. In order to
fill this gap in chapter 4 a new geometry for a chorded mitral valve has been
analysed. Even though the whole network of chordae tendineae is much more
complex, we have decided to model them as only four bands, since this has
been considered sufficient to reproduce their function. As a result, a double
interaction between fluid and structure has been obtained, since the mitral
valve opens and the left ventricle expands not only thanks to the incoming
fluid but also to the tension of chordae tendineae and viceversa during the
contraction phase. Moreover comparisons between velocity fields originated
by the chorded mitral valve and the non chorded one have been performed,
pointing out the disturbance effect of such chordae inside the left ventricle.

The main purpose of computational models for cardiac hemodynamics is
to support the medical community, with the hope of having a powerful tool
for testing new intervention procedures or treatments for cardiac pathologies.
Although our model is still far from achieving this final goal, in chapter 5
we have made a first attempt by replicating the patho–physiology of hyper-
trophic obstructive cardiomyopathy, which is a lethal pathology related to the
thickening of the interventricular septum and the elongation of the leaflets.
Our model has shown to be able to capture the pathological behaviours and
especially the systolic anterior motion of the elongated mitral leaflets due to
the accelerating flow in the narrower aortic channel. Different levels of hy-
petrophy have been tested and, consequently, different levels of obstruction
have been observed. In addition the two standard surgical interventions of
septal myectomy, which consists in the removing of the protruding part of the
septum, and leaflets plications, which produces shortened leaflets, have been
simulated and their effectiveness in eliminating the systolic anterior motion of
the mitral valve leaflets has been confirmed.

Along the thesis we have clarified that our model has some differences
with respect to the human left ventricle. The most relevant is the ventricle
dynamics that, even if fully coupled with the flow, is passive and driven by the
prescribed inflow/outflow and the subsequent developing flow structure, while
in reality the ventricle actively contracts during the systole and determines
the outflow rather than adapting to it. Moreover the contraction is caused
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by an electrical signal which propagates through the intraventricular septum,
reaches the apex and moves up to the ventricle following a helical path (Ko-
cica et al., 2006). Therefore the ventricle contraction is not homogeneous, but
instead starts from the apex and produces a twist of the myocardium; this
implies that the flow during the systole could be different from that observed
in the present study. Nevertheless, the diastolic phase is indeed passive, since
the myocardium relaxes and it adapts to the E– and A–waves that are pro-
duced by the pressure of the blood coming from the pulmonary veins and the
atrial contraction. The diastolic flow obtained in this study is thus closer to
the real one and the results could be relevant for the heart, except for the
twisting motion at the boundaries. Accordingly this is an ongoing project
which aims at making the model closer to the real heart. The next step will
consists of the addition of an electrophysiologic model that accounts for the
anisotropic propagation of the electrical signal through the myocardium and
allows for its active contraction (Clayton et al., 2011). Once the electrophysi-
ology will be included and coupled in the full FSI algorithm to the structural
and fluidynamics solvers, the modeling of the whole left ventricle with the
synergistic functioning of all its components will be reached. As shown in
figure 6.1, the computational set–up has already been prepared, including the
physical aortic valve and the deformable aorta, and tested without the active
contraction/relaxation.

Having now this objective in mind, our prospect goes directly one step
further to our final goal, which would be to add one by one all the other
cardiac chambers, starting from the left atrium, and achieve the modeling of
the whole human heart. We believe that the crucial point in achieving such
a challenging purpose would lie in adding the active contraction/relaxation,
since our computational model is already programmed for an arbitrary number
of bodies. Our group is already working on these aspects and each one will be
the topic of a future paper.
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Figure 6.1: Instantaneous snapshots of the velocity field of the flow inside
the whole left ventricle computational set–up including aortic valve and de-
formable aorta.
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